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Introduction
The dominance of non-volatile memories and PCMs (phase change memories) as memory
solutions for various applications have become evident due to their advantages as perma-
nent storage devices [1].
Problem Description: PCMs may face failures in changing their states; in turn, their cells
hold only one phase, becoming stuck (defective). On the other hand, random errors may
occur in these faulty memories.
Solution: A mechanism called masking is used to determine a word
whose entries coincide with writable levels at the (partially) stuck cells.
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Previous works: In [2], the author considered the problem of masking fully stuck cells to-
gether with error correction. The error-free case with partially stuck cells has been consid-
ered in [3], in which improvements on the redundancy necessary for masking are achieved
compared to [2].
Our Contribution: In our code constructions in [4], we consider the problem of combined
error correction and masking of partially stuck cells, and we reduce the redundancy nec-
essary for masking, similar to the results in [3], and even reduce further compared to [3,
Construction 5].
Focus: This work aims to provide coding schemes and bounds on the memory of partially
defective cells that can only store partial information, such as rewritten on these cells without
erasing and simultaneously correcting substitution errors.

Definitions
(Σ, t)-PSMC: For Σ⊂ Fn

q and non-negative integer t, a q-ary (Σ, t)-partially-stuck-at-masking
code C of length n and size M is a coding scheme consisting of a message setM of size M,
an encoder E and a decoder D. If Σ = {s ∈ {0,1}n | wt(s)≤ u}, we say q-ary (u,1, t) PSMC.

Construction 1 [4, Construction 1]
Assume that there is an [n,k,d]q code C with a k×n generator matrix of the form

G =

[
G1

G0

]
=

[
0(k−1)×1 Ik−1 P(k−1)×(n−k)

1 1k−1 1n−k

]
,

where Ik−1 is the (k−1)× (k−1) identity matrix, P ∈ F(k−1)×(n−k)
q , and 1ℓ is the all-one vector

of length ℓ. From the code C, a PSMC can be obtained, whose encoder and decoder are
shown in Algorithm and Algorithm .

Theorem 1 [4, Theorem 1]

The coding scheme in Construction 1 is a (q− 1,1,⌊d−1
2 ⌋) PSMC of length n and cardinality

qk−1.

Algorithm 1 - Encoder E

Input:
•Message: m = (m0,m1, . . . ,mk−2) ∈ Fk−1

q

•Positions of partially stuck-at-1 cells: φ such that |φ |= u

1. Compute w = (w1,w2, . . . ,wn−1) = ·G1

2. Find v ∈ Fq \{wi | i ∈ φ}
3. Compute c = w− v ·G0

Output: Codeword c ∈ Fn
q

Algorithm 2 - Decoder D

Input: Retrieved

•Retrieve y = c+ e , y ∈ Fn
q

1. ĉ← decode y in C
2. v̂← first entry of ĉ
3. ŵ = (ŵ0, ŵ1, · · · , ŵn−1)← (ĉ− v̂ ·G0)

4. m̂← (ŵ1, . . . , ŵk−1)

Output: Message vector m ∈ Fk−1
q

Theorem 2 [4, Theorem 9]: GV-type Bound
Let q be a prime power. Let n,k, t,u be non-negative integers such that

2(t+⌊u
q⌋)

∑
i=0

(
n
i

)
(q−1)i < qn−k+1.

There exists a q-ary (u,1, t) PSMC of length n and size qk−1.

Remark [4, Remark 10]
GV-like bound from Theorem 1 is a special case of Theorem 2 for u≤ q−1.

Comparison
Comparison of other upper and lower limits to our derived GV-like bound in Theorem 2 tak-
ing n = 114, q = 7, 0≤ t ≤ 56 and u≤ q−1. The dashed-dotted green curve shows the rates
for Theorem 1 by Theorem 2 for u ≤ q− 1 in which codes that have the all-one words are
considered. This curve for several code parameters matches the red line that shows the
rates of BCH codes that contain all-one words concerning the designed distances d ≥ 2t +1.
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Figure 1. Comparison of other upper and lower limits to our derived GV-like bound in
Theorem 2.

Conclusion
Our constructions in [4], including Construction 1, can handle both: partial defects (also
called partially stuck cells) and random substitution errors and require fewer redundancy
symbols for u > 1 and q > 2 than the known constructions for stuck cells.
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