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1 Multivariate Similarity Measures

Having n images I = {I1, . . . , In} and corresponding transformations xi, we set up a maximum likelihood framework
to describe the registration process mathematically. The joint density function of interest is p(I1, I2, . . . , In). Due to
its high dimensionality, direct calculation is prohibitive, which makes an approximation necessary. We will consider
two approximations that were recently introduced. The first is an approximation by accumulating pair-wise estimates
(APE). The second approximation is based on the congealing framework.

1.1 APE

The pair-wise approximation is derived as follows. First, we derive a pair-wise approximation with respect to image In
using the product rule and conditional independence

p(I1, . . . , In) Prod.Rule= p(I1, . . . , In−1|In) · p(In) (1)

Cond.Indep.
=

n−1Y
i=1

p(Ii|In) · p(In) (2)

Second, we take the n-th power of the joint density function and do the above derivation for each of the images, leading
to

p(I1, . . . , In)n (2)
= p(I1) ·

nY
i=2

p(Ii|I1) · . . . · p(In) ·
n−1Y
i=1

p(Ii|In) (3)

=
nY

i=1

p(Ii) ·
nY

i=1

Y
j 6=i

p(Ij |Ii). (4)

Third the logarithm is applied

log p(I1, . . . , In)n = n · log p(I1, . . . , In) (5)

=
nX

i=1

log p(Ii) +
nX

i=1

X
j 6=i

log p(Ij |Ii). (6)

And after transforming the equation

log p(I1, . . . , In) =
1
n

nX
i=1

log p(Ii) +
1
n

nX
i=1

X
j 6=i

log p(Ij |Ii) (7)

≈
nX

i=1

X
j 6=i

log p(Ij |Ii). (8)

Following the works of Viola [1] and Roche et al . [2], it is possible to derive SSD, NCC, CR, and MI from log p(Ij |Ii).
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1.2 Congealing

In the congealing framework [3], independent but not identical distribution of the coordinate samples are assumed

p(I1, . . . , In) =
Y

sk∈Ω

pk(I1(sk), . . . , In(sk)) (9)

and then further i.i.d. images I

p(I1, . . . , In) =
Y

sk∈Ω

nY
i=1

pk(Ii(sk)). (10)

Applying the logarithm we get to log p(I1, . . . , In) ≈ −
P

sk∈ΩH(I(sk)) with H the sample entropy. In our extension,
we do not consider the images to be independent but assume each image Ii dependent on a neighborhood of images
Ni. This leads to

p(I1, . . . , In) =
Y

sk∈Ω

nY
i=1

pk(Ii(sk)|INi(sk)). (11)

The size of the neighborhood depends on the structure in the image stack. If there is no further information about
the images, considering a total neighborhood seems reasonable. If there is, however, a certain ordering in the stack
(camera parameters,...), a smaller neighborhood may lead to better estimates.

1.2.1 Voxel-wise SSD

Since the approach taken in the congealing framework focuses on certain pixel or voxel locations, it is also referred to
as voxel-wise estimation [4]. In [5], a similarity measure called voxel-wise SSD was proposed, which does a voxel-wise
estimation and combines this with the assumptions of SSD. The above introduced extension nicely allows us to derive
this measure.

We assume, like for SSD, Gaußian distributed intensity values and the identity as intensity mapping. Furhter, we
incorporate the neighborhood information by estimating the mean µk for each voxel location sk with

µk =
1
n

nX
l=1

Il(sk). (12)

With respect to the neighborhood Ni, the calculation of the mean should not include the image Ii itself. However, this
leads to a much higher computational cost because for each image and each voxel location a different mean has to be
calculated. We therefore go ahead with the approximation, leading to

p(I1, . . . , In) =
Y

sk∈Ω

nY
i=1

1√
2πσ

exp
�
−(Ii(sk)− µk)2

2σ2

�
(13)

with a Gaußian variance σ2. This leads to the formula for voxel-wise SSD

log p(I1, . . . , In) ≈ −
X

sk∈Ω

nX
i=1

(Ii(sk)− µk)2. (14)

Looking at the formula, we can see that voxel-wise SSD leads to the calculation of the variance at each location and
subsequently accumulates the values [6]. The variance is one of the measures to express the statistical dispersion of a
random variable. In contrast to entropy, measuring the structured-ness of a variable, it can only deal with mono-modal
matchings.
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1.3 Connection between APE and congealing

We show the connection between the two approximations, by starting with the extension of congealing, equation (11),
and derive the formula of APE from it

p(I1, . . . , In) =
Y

sk∈Ω

nY
i=1

pk(Ii(sk)|INi(sk)) (15)

Bayes
=

Y
sk∈Ω

nY
i=1

pk(INi(sk)|Ii(sk))
pk(Ii(sk))
pk(INi(sk))

(16)

Cond.Indep.
=

Y
sk∈Ω

nY
i=1

2
4 Y

j∈Ni

pk(Ij(sk)|Ii(sk))

3
5 pk(Ii(sk))
pk(INi(sk))

(17)

Indep.
=

Y
sk∈Ω

nY
i=1

2
4 Y

j∈Ni

pk(Ij(sk)|Ii(sk))

3
5 pk(Ii(sk))Q

j∈Ni
pk(Ij(sk))

(18)

applying the logarithm

log p(I1, . . . , In) =
X

sk∈Ω

nX
i=1

X
j∈Ni

�
log pk(Ij(sk)|Ii(sk))− log pk(Ij(sk))

�
+
X

sk∈Ω

nX
i=1

log pk(Ii(sk)) (19)

and assuming further a total neighborhood

log p(I1, . . . , In) =
X

sk∈Ω

nX
i=1

X
j 6=i

�
log pk(Ij(sk)|Ii(sk))− log pk(Ij(sk))

�
+
X

sk∈Ω

nX
i=1

log pk(Ii(sk)) (20)

An assumption that is different between the pair-wise and voxel-wise (congealing), per design, is that the voxel-
wise coordinate samples are not identically distributed. To relate the two approaches, we set the distribution of the
coordinate samples identical

log p(I1, . . . , In) =
nX

i=1

X
j 6=i

(log p(Ij |Ii)− log p(Ij)) +
nX

i=1

log p(Ii) (21)

=
nX

i=1

X
j 6=i

log p(Ij |Ii) +
nX

i=1

log p(Ii)−
nX

i=1

X
j 6=i

log p(Ij) (22)

=
nX

i=1

X
j 6=i

log p(Ij |Ii) +
nX

i=1

log p(Ii)− (n− 1)
nX

j=1

log p(Ij) (23)

For comparison, the derived formula for the pair-wise approach is (reciting Equation (7))

log ppw(I1, . . . , In) =
nX

i=1

X
j 6=i

log p(Ij |Ii) +
nX

i=1

log p(Ii) (24)

So the pair-wise and congealing approximation are, under the assumption of a total neighborhood, conditional inde-
pendent images and identical distribution of coordinate samples, equal up to the term −(n − 1)

Pn
j=1 log p(Ij). This

term can be neglected because it does not change during the optimization process.
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2 Gradients of Similarity Measures

In the following we state the gradients of the similarity measures - mutual information, correlation ratio, and correlation
coefficient - for which we have found no place in the main article. This completes the article and gives the reader all
the necessary information for implementing an efficient gradient-based optimization of the multivariate cost function.
However, we also want to state that there is no contribution in the calculation of these gradients, since they are
standard, and can e.g . be found in the work of Hermosillo et al . [7].

The gradient that we show in the following was in the article denoted by

∂SM(Ii, I)
∂I

����
I=I↓j

= ∇SM(Ii, I
↓
j ) (25)

with Ii the fixed and I↓j the moving image. We define the following auxiliary variables (mean, variance) with i1 an
intensity in Ii and i2 an intensity in I↓j

µ1 =
Z
i1p(i1)di1 (26)

µ2 =
Z
i2p(i2)di2 (27)

µ2|1 =
Z
i2
p(i1, i2)
p(i1)

di2 (28)

v1 =
Z
i21p(i1)di1 − µ2

1 (29)

v2 =
Z
i22p(i2)di2 − µ2

2 (30)

v1,2 =
Z
i1i2p(i1, i2)d(i1, i2)− µ1 · µ2 (31)

p(i1) the probability for intensity i1 in Ii and p(i1, i2) the joint probability.

2.1 Mutual Information

The formula for mutual information is

MI(Ii, I
↓
j ) = H(Ii) + H(I↓j )−H(Ii, I

↓
j ) (32)

=
Z
R2

p(Ii, I
↓
j ) log

p(Ii, I
↓
j )

p(Ii) · p(Ij)
(33)

with H the entropy. The derivation is

∇MI(Ii, I
↓
j ) = GΨ ∗

1
|Ω|

��
∂

∂Ij
p(Ii, I

↓
j )

p(Ii, I
↓
j )
−

∂
∂Ij
p(I↓j )

p(I↓j )

��
(34)

with the Gaußian GΨ and the image grid |Ω|.

2.2 Correlation Ratio

The formula for correlation ratio is

CR(Ii, I
↓
j ) = 1−

E(Var(I↓j |Ii))
Var(I↓j )

. (35)

The derivation is

∇CR(Ii, I
↓
j ) = GΨ ∗

µ2 − µ2|1 + CR(Ii, I
↓
j ) · (i2 − µ2)

1
2 · v2 · |Ω|

. (36)
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2.3 Correlation Coefficient

The formula for correlation coefficient is

CC(x) =
(Ii − µ1)(I↓j − µ2)

v1 · v2
(37)

and its derivation

∇CC(Ii, I
↓
j ) = − 2

|Ω|

�
v1,2

v2

�
i1 − µ1

v1

�
+ CC(Ii, I

↓
j )
�
i2 − µ2

v2

��
(38)
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