

# **Optical Flow Estimation with Uncertainties through Dynamic MRFs**





Ben Glocker<sup>1,2</sup>, Nikos Paragios<sup>1</sup>, Nikos Komodakis<sup>1,3</sup>, Georgios Tziritas<sup>3</sup>, Nassir Navab<sup>2</sup>

<sup>1</sup> GALEN Group, Mathématiques Appliquées aux Systèmes (MAS), Ecole Centrale Paris, France <sup>2</sup> Computer Aided Medical Procedures (CAMP), Technische Universität München, Germany <sup>3</sup> Computer Science Department, University of Crete, Greece



### Flow Estimation through MRFs

**Brightness Constancy Assumption** 

$$I(\mathbf{x},f) = I(\mathbf{x} + \mathcal{D}(\mathbf{x}), f+1)$$

Flow Estimation as Energy Minimization Problem

$$E(\mathcal{D}) = \int_{\Omega} \underbrace{|I(\mathbf{x},f) - I(\mathbf{x} + \mathcal{D}(\mathbf{x}),f+1)|}_{\rho(\mathbf{x}) \quad \text{(DataTerm)}} + \underbrace{\phi(\nabla \mathcal{D}(\mathbf{x}))}_{\text{(SmoothnessTerm)}} d\mathbf{x}$$

#### 1. Dimensionality Reduction

Transformation Model based on Linear Combination of Control Points

$$\mathcal{D}(\mathbf{x}) = \sum_{\mathbf{p} \in G} \eta(|\mathbf{x} - \mathbf{p}|) \, \mathcal{C}(\mathbf{p})$$

Reformulation of Energy Terms [1]

$$E_{\text{data}}(\mathcal{D}) = \frac{1}{|G|} \sum_{\mathbf{p} \in G} \int_{\Omega} \hat{\eta}(|\mathbf{x} - \mathbf{p}|) \, \rho(\mathbf{x}) d\mathbf{x}$$

$$E_{\mathrm{smooth}}(\mathcal{D}) = \frac{1}{|G|} \sum_{\mathbf{p} \in G} \int_{\Omega} \hat{\eta}(|\mathbf{x} - \mathbf{p}|) \left( |\partial_x \mathcal{D}(\mathbf{x})| + |\partial_y \mathcal{D}(\mathbf{x})| \right) d\mathbf{x}$$

Back-Projection Function

$$\hat{\eta}(|\mathbf{x} - \mathbf{p}|) = \frac{\eta(|\mathbf{x} - \mathbf{p}|)}{\int_{-\eta(|\mathbf{y} - \mathbf{p}|)d}}$$

ojection Function 
$$\hat{\eta}(|\mathbf{x} - \mathbf{p}|) = \frac{\eta(|\mathbf{x} - \mathbf{p}|)}{\int_{\Omega} \eta(|\mathbf{y} - \mathbf{p}|) d\mathbf{y}} \qquad \qquad \hat{\eta}(|\mathbf{x} - \mathbf{p}|) = \begin{cases} 1, & \text{if } \eta(|\mathbf{x} - \mathbf{p}|) > 0 \\ 0 & \text{if } \eta(|\mathbf{x} - \mathbf{p}|) = 0 \end{cases}$$



#### 2. Discrete MRF Formulation

Discrete Set of Labels and Quantized Version of Displacement Space

$$L = \{l^1, ..., l^n\}$$
  $\Theta = \{\mathbf{d}^1, ..., \mathbf{d}^n\}$ 

Energy of Discrete Labeling as Sum of Unary and Pairwise Potential Functions

$$E_{\mathrm{MRF}}(l) = \sum_{\mathbf{p} \in G} V_{\mathbf{p}}(l_{\mathbf{p}}) + \sum_{\mathbf{p} \in G} \sum_{\mathbf{q} \in \mathcal{N}(\mathbf{p})} V_{\mathbf{p}\mathbf{q}}(l_{\mathbf{p}}, l_{\mathbf{q}})$$

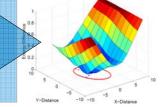
**Definition of Potential Functions** 

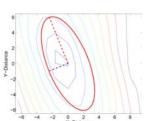
$$\underbrace{V_{\mathbf{p}}(l_{\mathbf{p}}) \approx \int_{\Omega} \hat{\eta}(|\mathbf{x}-\mathbf{p}|)\,\rho(\mathbf{x})d\mathbf{x}}_{} \qquad V_{\mathbf{p}\mathbf{q}}(l_{\mathbf{p}},l_{\mathbf{q}}) = \lambda \left| \left(\mathcal{C}(\mathbf{p}) + \mathbf{d}^{l_{\mathbf{p}}}\right) - \left(\mathcal{C}(\mathbf{q}) + \mathbf{d}^{l_{\mathbf{q}}}\right) \right|$$

Fast Approximation Scheme

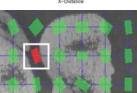
Optimization through Fast-PD Algorithm [2]

## **Uncertainty Estimation for Dynamic Label Set Adjustment**


Min-marginal Energy Computation [2,3] for Multi-Labeling Solutions


$$\mu_p(\alpha) = \min_{l:l_p = \alpha} E(l) \qquad V_{\mathbf{p}}^{\mathrm{new}}(l_{\mathbf{p}}) = \begin{cases} V_{\mathbf{p}}(\alpha), & \text{if } l_{\mathbf{p}} = \alpha \\ \infty, & \text{if } l_{\mathbf{p}} \neq \alpha \end{cases}$$

Iterative Computation of Uncertainty Map for each Control Point using Fast-PD for Dynamic MRFs [2]


$$U_p(\alpha) = \frac{\exp^{-\mu_p(\alpha)}}{\sum_l \exp^{-\mu_p(l)}}$$

Local Adjustment of Discrete Displacement Space according to Covariance of Uncertainty Map





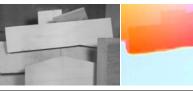




#### **Experiments**

Matching Criteria combining Photometrical and Geometrical Features

$$\rho_{\text{CC+GIP}} = (1 - \gamma) \left( 1 - \left| \frac{\sum_{\Omega} (a - \bar{a}) \left(b - \bar{b}\right)}{\sqrt{\sum_{\Omega} (a - \bar{a})^2} \sum_{\Omega} \left(b - \bar{b}\right)^2} \right| \right) + \gamma \sum_{\Omega} \left| \frac{\nabla a}{|\nabla a|} \cdot \frac{\nabla b}{|\nabla b|} \right|$$


Evaluation on Opical Flow Data Base [4]

- Training Data with Ground Truth for Parameter Setting
- Evaluation Data with Remote Error Computation









| ш | Average Angular Error | Army |      |        | Mequon |      |        | Schefflera |      |        | Wooden |      |        | Grove |      |        | Urban |      |        | Yosemite |      |        | Teddy |      |        |
|---|-----------------------|------|------|--------|--------|------|--------|------------|------|--------|--------|------|--------|-------|------|--------|-------|------|--------|----------|------|--------|-------|------|--------|
| Н |                       | all  | disc | untext | all    | disc | untext | all        | disc | untext | all    | disc | untext | all   | disc | untext | all   | disc | untext | all      | disc | untext | all   | disc | untext |
| L | Dynamic MRF           | 4.95 | 15.0 | 4.20   | 3.71   | 15.3 | 2.58   | 6.77       | 17.8 | 3.26   | 4.50   | 23.7 | 2.62   | 3.95  | 4.63 | 4.65   | 7.67  | 19.1 | 7.20   | 3.63     | 5.29 | 4.62   | 8.32  | 17.8 | 8.16   |
| П | LP-Registration       | 7.36 | 16.8 | 6.30   | 3.94   | 13.8 | 3.00   | 7.33       | 17.8 | 4.43   | 5.54   | 24.5 | 3.57   | 4.24  | 4.56 | 5.63   | 10.5  | 21.4 | 9.57   | 4.54     | 5.48 | 3.95   | 8.15  | 17.9 | 7.82   |
|   | Black & Anandan 2     | 7.83 | 18.7 | 6.41   | 9.70   | 21.9 | 8.60   | 13.7       | 23.7 | 18.1   | 10.9   | 30.0 | 9.44   | 4.43  | 5.23 | 4.94   | 7.95  | 18.2 | 6.51   | 2.61     | 4.44 | 2.15   | 8.58  | 14.3 | 8.54   |
|   | 2D-CLG                | 10.1 | 22.6 | 7.59   | 9.84   | 16.9 | 11.1   | 16.9       | 28.2 | 18.8   | 14.1   | 31.1 | 13.1   | 3.66  | 4.25 | 4.41   | 6.69  | 22.2 | 6.96   | 1.76     | 3.14 | 1.46   | 6.29  | 12.9 | 5.81   |
| ı | Horn & Schunck        | 8.01 | 19.9 | 8.38   | 9.13   | 23.2 | 7.71   | 14.2       | 25.9 | 14.6   | 12.4   | 30.6 | 11.3   | 4.44  | 5.27 | 4.59   | 8.25  | 25.8 | 8.77   | 4.01     | 5.41 | 1.95   | 9.16  | 17.5 | 8.86   |
| ı | Black & Anandan       | 8.93 | 18.5 | 9.99   | 12.9   | 22.4 | 13.3   | 15.8       | 25.9 | 18.3   | 13.2   | 31.8 | 12.0   | 5.69  | 6.35 | 7.77   | 9.37  | 18.8 | 9.02   | 3.10     | 4.88 | 3.96   | 13.4  | 18.3 | 15.1   |
|   | Pyramid LK            | 13.9 | 20.9 | 21.4   | 24.1   | 23.1 | 30.2   | 20.9       | 29.5 | 21.9   | 22.2   | 34.6 | 25.0   | 18.7  | 22.9 | 19.9   | 21.9  | 26.2 | 23.5   | 6.41     | 7.02 | 10.8   | 25.6  | 31.5 | 34.5   |
| ı | MediaPlayerTM         | 18.3 | 30.8 | 15.0   | 17.7   | 29.2 | 17.4   | 19.9       | 32.7 | 21.6   | 26.3   | 45.9 | 25.9   | 7.23  | 6.95 | 10.2   | 19.4  | 32.9 | 19.3   | 12.7     | 18.7 | 17.2   | 17.4  | 22.9 | 20.7   |

[1] Glocker et al. Inter and Intra-Modal Deformable Registration: Continuous Deformations Meet Efficient Optimal Linear Programming. IPMI 2007 [3] Kohli & Torr. Measuring Uncertainty in Graph Cut Solutions: Efficiently Computing Min-marginal Energies using Dynamic Graph Cuts. ECCV 2006

[2] Komodakis et al. Fast, Approximately Optimal Solutions for Single and Dynamic MRFs. CVPR 2007 [4] Baker et al. A database and evaluation methodology for optical flow. ICCV 2007