The number of walks and degree powers in directed graphs

Hanjo Täubig

Abstract

Fiol and Garriga proved that in undirected graphs the number \(w_k \) of walks of length \(k \) does not exceed the sum of the \(k \)-th powers of the vertex degrees, i.e., \(w_k \leq \sum_{x \in V} d(x)^k \). Here, we propose a generalization of this inequality for directed graphs using the geometric mean of the sums of the \(k \)-th powers of in- and out-degrees, namely, \(w_k^2 \leq (\sum_{x \in V} d_{in}(x))^k (\sum_{y \in V} d_{out}(y))^k) \). Further, we show that this inequality can be generalized for the case of nonnegative matrices, i.e., the sum of entries of the \(k \)-th matrix power is bounded from above by the geometric mean of the sums of the \(k \)-th powers of the row sums and column sums.

1 Introduction

Throughout the paper we assume that \(\mathbb{N} \) denotes the set of nonnegative integers. Let \(G = (V, E) \) be a directed graph having \(n \) vertices, \(m \) edges and adjacency matrix \(A \). We investigate (the number of) walks, i.e., sequences of vertices, where each pair of consecutive vertices \(v_i \) and \(v_{i+1} \) is connected by a directed edge \((v_i, v_{i+1}) \in E\). Nodes and edges can be used repeatedly in the same walk. The length \(k \) of a walk is counted in terms of edges.

For \(k \in \mathbb{N} \) and \(x, y \in V \), we denote by \(w_k(x, y) \) the number of walks of length \(k \) that start at vertex \(x \) and end at vertex \(y \). Since the graph is directed this number can be different from the number of walks of length \(k \) that start at vertex \(y \) and end at vertex \(x \). By \(s_k(x) = \sum_{y \in V} w_k(x, y) \) and \(e_k(x) = \sum_{y \in V} w_k(y, x) \) we denote the number of all walks of length \(k \) that start or end at node \(x \), resp. Consequently, \(w_k = \sum_{x \in V} s_k(x) = \sum_{x \in V} e_k(x) \) denotes the total number of walks of length \(k \). The set of all walks of length \(k \) is denoted by \(W_k \), i.e., \(w_k = |W_k| \). \(d_{in}(x) \) and \(d_{out}(x) \) denote the in-degree and the out-degree of vertex \(x \).

It is a well known fact that the \((i, j)\)-entry of \(A^k \) is the number of walks of length \(k \) that start at vertex \(i \) and end at vertex \(j \) (for all \(k \geq 0 \)). Fundamental observations about the number of walks are due to their decomposition into two or more segments:

Observation 1. For arbitrary graphs \(G = (V, E) \) and all vertices \(x, z \in V \) holds

\[
w_{k+\ell}(x, z) = \sum_{y \in V} w_k(x, y) \cdot w_{\ell}(y, z)
\]

and

\[
w_{k+p+\ell} = \sum_{(x^{\rightarrow} y) \in W_p} w_k(x) \cdot w_{\ell}(y)
\]

In particular, this implies:

\[
w_{k+1} = \sum_{x \in V} d_{in}(x) \cdot s_k(x) = \sum_{x \in V} d_{out}(x) \cdot e_k(x)
\]

\[
w_{k+\ell} = \sum_{x \in V} e_k(x) \cdot s_{\ell}(x) = \sum_{x \in V} e_{\ell}(x) \cdot s_k(x)
\]

Institut für Informatik, Technische Universität München, D-85748 Garching, Germany, taeubig@in.tum.de
2 Walks and degree powers

The following inequality for undirected graphs was conjectured by Marc Noy and proven by Fiol and Garriga [FG09]:

Theorem 2. In any undirected graph, the number \(w_k \) of walks of length \(k \) does not exceed the sum of the \(k \)-th powers of the vertex degrees, i.e.,

\[
 w_k \leq \sum_{x \in V} d_x^k.
\]

In the following, we discuss possible generalizations of this theorem to directed graphs. The conceivable inequality \(w_k \leq \sum_{x \in V} d_{in}(x)^k \) is invalid. For instance, it is violated by the graph shown in Figure 1. Because of the reversely directed counterpart of this graph, the same applies to the inequality \(w_k \leq \sum_{x \in V} d_{out}(x)^k \). Also, trying to generalize the inequality by using direct products of \(d_{in}(x) \) and \(d_{out}(x) \) is not successful, since, e.g., \(w_k \leq \sum_{x \in V} \sqrt{d_{in}(x) \cdot d_{out}(x)}^k \) is violated for \(k = 1 \) by the graph consisting of only one directed edge.

Observation 3. The following inequalities are invalid generalizations of Theorem 2:

\[
 w_k \not\leq \sum_{x \in V} d_{in}(x)^k \\
 w_k \not\leq \sum_{x \in V} d_{out}(x)^k \\
 w_k \not\leq \sum_{x \in V} \sqrt{d_{in}(x) \cdot d_{out}(x)}^k
\]

While the power sum for \(d_{in}(x) \) or \(d_{out}(x) \) alone is not suitable for bounding \(w_k \), we will show that a combination (namely, the geometric mean) of both sums is sufficient. To this end, we first show that for the consideration of power sums with exponent \(q \) over the set of walks of length \(p \) the total cannot decrease if we shorten the walk length while at the same time the exponent is increased by the same difference.

Lemma 4. For every directed graph \(G = (V, E) \) and for all nonnegative integers \(p, q \in \mathbb{N} \) holds

\[
 \left(\sum_{(x \rightarrow y) \in W_p} d_{in}(x)^q \right) \left(\sum_{(x \rightarrow y) \in W_p} d_{out}(y)^q \right) \leq \left(\sum_{(x \rightarrow w \rightarrow y) \in W_{p-1}} d_{in}(x)^{q+1} \right) \left(\sum_{(x \rightarrow w \rightarrow y) \in W_{p-1}} d_{out}(y)^{q+1} \right)
\]

Proof. The proof starts with decomposing and counting walks of length \(p \) from \(x \) to \(y \), denoted by \((x \rightarrow y) \), into walks of length \(p - 1 \) which is prepended or followed by a single edge, i.e., \((x \rightarrow w \rightarrow y) \) and \((x \rightarrow z \rightarrow y) \), resp.
Theorem 5. For every directed graph $G = (V, E)$ and for all nonnegative integers $p \in \mathbb{N}$ holds
\[
w_p^2 \leq \left(\sum_{x \in V} d_{in}(x)^p \right) \left(\sum_{y \in V} d_{out}(y)^p \right)
\]
Lemma 7. For every nonnegative $w \in \mathbb{R}$, therefore, at least one of the two power sums must be greater than or equal to w.

Proof. The proof works by repeatedly applying Lemma 4 to w_p^2:

$$w_p^2 = \left(\sum_{x \in V} \sum_{y \in V} w_p(x, y) d_{in}(x)^{2p} \right) \left(\sum_{x \in V} \sum_{y \in V} w_p(x, y) d_{out}(y)^{2p} \right)$$

$$\leq \left(\sum_{x \in V} \sum_{w \in V} w_{p-1}(x, w) d_{in}(x)^{p} \right) \left(\sum_{z \in V} \sum_{y \in V} w_{p-1}(z, y) d_{out}(y)^{p} \right)$$

$$\vdots$$

$$\leq \left(\sum_{x \in V} \sum_{w \in V} w_0(x, w) d_{in}(x)^p \right) \left(\sum_{z \in V} \sum_{y \in V} w_0(z, y) d_{out}(y)^p \right) = \left(\sum_{x \in V} d_{in}(x)^p \right) \left(\sum_{y \in V} d_{out}(y)^p \right)$$

The last equality follows from the fact that $w_0(x, y)$ is 1 for $x = y$ and 0 otherwise.

This means, although $w_k \not\leq \sum_{x \in V} d_{in}(x)^k$ and $w_k \not\leq \sum_{x \in V} d_{out}(x)^k$, we know for the geometric mean of the two power sums that

$$w_k \leq \sqrt{\left(\sum_{x \in V} d_{in}(x)^k \right) \left(\sum_{x \in V} d_{out}(x)^k \right)}.$$

Therefore, at least one of the two power sums must be greater than or equal to w_k:

$$w_k \leq \max \left\{ \sum_{x \in V} d_{in}(x)^k, \sum_{x \in V} d_{out}(x)^k \right\}$$

and of course, the inequality of arithmetic and geometric means implies

$$w_k \leq \frac{1}{2} \left(\sum_{x \in V} d_{in}(x)^k + d_{out}(x)^k \right).$$

Note that Theorem 5 contains Theorem 2 by Fiol and Garriga as a special case ($d_{in}(x) = d_{out}(x)$).

3 Nonnegative Matrices

For an arbitrary $n \times n$-matrix A, let $\text{sum}(A)$ denote the sum of the entries of A. The set of matrix indices $\{1, \ldots, n\}$ is denoted by $[n]$. Further, we define $a_{ij}^{[p]}$ to be the (i, j)-entry of A^p. The row and column sums shall be denoted by r_i and c_j ($i, j \in [n]$).

Actually, Theorem 2 is only the special case for adjacency matrices of the following theorem (see Corollary (3.24) in the book by Berman and Plemmons [BP94]) that holds for powers of symmetric matrices and their row or column sums:

Theorem 6. For every symmetric matrix with row sums r_i ($i \in [n]$) holds:

$$\text{sum} (A^k) \leq \sum_{i=1}^n r_i^k$$

Now, we will generalize this theorem to the case of arbitrary nonnegative matrices.

Lemma 7. For every nonnegative $n \times n$-matrix $A = (a_{ij})$ with row sums r_i and column sums c_i ($i \in [n]$) holds:

$$\left(\sum_{x \in [n]} \sum_{y \in [n]} a_{xy}^{[p]} c_x^q \right) \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{xy}^{[p]} c_y^q \right) \leq \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{xy}^{[p-1]} c_x^{q+1} \right) \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{xy}^{[p-1]} c_y^{q+1} \right)$$

4
Proof.

\[
\left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^p \right) \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^p \right) = \left(\sum_{x,y \in [n]} a_{x,y}^{p-1} \right) \left(\sum_{x,y \in [n]} a_{x,y}^{p-1} \right) = \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^{p-1} c_2^x \right) \left(\sum_{y \in [n]} \sum_{x \in [n]} a_{x,y}^{p-1} c_2^y \right) = \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^{p-1} c_x \right) \left(\sum_{y \in [n]} \sum_{x \in [n]} a_{x,y}^{p-1} c_y \right) \]

Theorem 8. For every nonnegative \(n \times n \)-matrix \(A = (a_{ij}) \) and \(p \in \mathbb{N} \) holds

\[
\text{(sum}(A^p)\text{)}^2 \leq \left(\sum_{x \in [n]} c_x^p \right) \left(\sum_{y \in [n]} r_y^p \right)
\]

Proof. The proof works by repeatedly applying Lemma 7 to the squared entry sum of matrix \(A^p \):

\[
\text{(sum}(A^p)\text{)}^2 = \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^{p-1} c_x^1 \right) \left(\sum_{y \in [n]} \sum_{x \in [n]} a_{x,y}^{p-1} r_y^1 \right) \leq \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^{p-1} c_x^1 \right) \left(\sum_{y \in [n]} \sum_{x \in [n]} a_{x,y}^{p-1} r_y^1 \right) \leq \left(\sum_{x \in [n]} \sum_{y \in [n]} a_{x,y}^{p-1} c_x^1 \right) \left(\sum_{y \in [n]} \sum_{x \in [n]} a_{x,y}^{p-1} r_y^1 \right) = \left(\sum_{x \in [n]} c_x^p \right) \left(\sum_{y \in [n]} r_y^p \right)
\]

The last equality follows from the fact that \(a_{ij}^{(0)} \) is 1 for \(i = j \) and 0 otherwise, since \(A^0 \) is the identity matrix. \(\square \)
The last theorem implies an even more general form of Theorem 5 for walks:

Corollary 9. For every directed graph $G = (V, E)$ and for all nonnegative integers $p \in \mathbb{N}$ holds:

$$w_{pk}^2 \leq \left(\sum_{x \in V} e_k(x)^p \right) \left(\sum_{y \in V} s_k(y)^p \right)$$

References
