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Abstract—We investigate the throughput maximizing data
transmission strategy of an energy harvesting node which is able
to harvest and store energy for communication. Solar cell and
rechargeable battery technologies have made such nodes feasible.
In addition to the energy arrival process and the battery capacity
limitation, the energy consumption of the circuits of the node also
plays an important role in the way how the harvested energy
should be utilized. To this end, we assume for the transmitting
node an active mode for which a constant circuit power is
incurred, and a sleep mode for which no energy is consumed. The
criteria that an optimal transmission strategy should satisfy are
discussed, and based on them, a construction procedure of the
optimal transmission strategy is proposed. Numerical simulations
are performed to verify the theoretical results, and the impact
of circuit power on the optimal transmission strategy and the
maximal achievable throughput is studied.

I. INTRODUCTION

Battery powered communication systems are considerably

limited in lifetime. Recharging or replacing the empty batter-

ies may cause notable inconvenience and cost, especially in

wireless sensor networks deployed for industrial monitoring

and control. Devices with energy harvesting ability offer a

possible solution to this problem. Unlike the constant power

provided by fixed utilities, the supply to energy harvesting

devices is rather variable, unsteady, and depends heavily on

environmental conditions or human impact. Therefore, it is

of both theoretical and practical importance to investigate

energy utilization issues in such systems and evaluate the

performance limits [1][2]. On the other hand, improving the

energy efficiency of communications, which is often measured

by the metric “bit per Joule”, is an alternative to expand the

lifetime of battery powered systems. This requires a thorough

study on the energy consumption of all signal processing

blocks in a communication device [3][4]. In this work, we

focus on finding the optimal transmission strategy of an

energy harvesting transmitter in the sense that the short-term

throughput is maximized, where a simple form of the energy

consumption model is adopted, i.e., a constant circuit power

is assumed when the transmitter is in active mode.

Stemmed from the convexity of the power-rate relation and

the timeliness of information delivery, the trade-off between

energy efficiency and data rate has been established and many

early works have investigated its implications in rate adapta-

tion and scheduling [5]. In [6], energy efficient transmission

rate adaptation was considered given the arrival and deadline

information on buffered packets in the system. An energy

expenditure minimization problem subject to strict deadline

constraints has been formulated and a construction method

of the optimal service curve is obtained using a calculus

approach. The throughput maximization problem at an energy

harvesting transmitter, as first proposed by the authors of

[2], resembles much mathematical similarity with the energy

minimization problem in [6]. We further introduce circuit

power of the transmitter into the optimization and pursue a

similar calculus approach in tackling the problem. Although

the new consideration destroys the convexity of the problem,

an optimal solution can be found without much additional

effort but is of more practical relevance.

The rest of paper is organized as follows: in Section II

we first introduce the data transmission model and the energy

arrival/consumption model, and then formulate the throughput

maximization problem with constraints. In Section III we ana-

lyze the optimal solution of the basic problem which provides

us with important insight on how to solve general throughput

maximization. Optimality criteria and a construction procedure

of the optimal transmission strategy are proposed and proved

in Section IV. Simulation results are shown in Section V

before we conclude the work in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an energy harvesting node which transmits data

over a single link during the time slot [0, T ]. A continuous-

time model is adopted and it is assumed that the transmit

power of the node, denoted by ptx(t), can be adapted con-

tinuously to any desired finite value. Let f (ptx(t)) be the

corresponding instantaneous data rate, where f(·) is assumed
to be nonnegative, strictly concave, monotonically increasing,

and invariant over the time slot [0, T ]. Obviously, the Shannon
formula is a valid choice of f(·) when the transmission link

remains unchanged for t ∈ [0, T ].
Besides the energy used for the actual data transmission,

i.e., ptx(t) cumulated over time, there is additional energy

consumption within the circuit of the transmitter e.g. by active

filters, which is relatively independent of transmit power [7].

We denote the circuit power by a constant pc and define the

total power usage of the node as

p(t)
△
=

{

ptx(t) + pc, ptx(t) > 0,
0, ptx(t) = 0.

(1)



The transmitter is considered as in active mode for ptx(t) > 0,
in which case the circuit power pc contributes to p(t). For
ptx(t) = 0, the transmitter can be turned into a sleep mode

for which we assume there is no energy consumption. The

energy consumption associated with mode switching is also

neglected here, but in the design of the optimal transmission

strategy we have taken care that the number of mode switches

is minimized.

For a simple visualization of the problem and easier appli-

cation of the theory on the calculus of variations, we utilize a

cumulative model to describe the energy input and expenditure

of the transmitting node. To this end, we define the following

nondecreasing functions for t ∈ [0, T ]:

• W (t): total energy expenditure of the node until time t;
• A(t): the total amount of available energy by time t;
• D(t): the minimal amount of energy that has to be

consumed by the node by time t.

Due to passivity and causality, W (t) ≤ A(t) must be satisfied
for any t ∈ [0, T ]. D(t) on the other hand, is given rise to by

physical limitations on the battery. Let Emax be the maximal

amount of energy that can be held by the battery and further

energy input is lost due to overflow. If Emax is constant, we

need to have

W (t) ≥ D(t) = max(0, A(t)− Emax), ∀t ∈ [0, T ] (2)

in order to avoid battery overflow. Note that in the sequel we

do not restrict D(t) to be related to A(t), which gives us the

flexibility to allow for any imperfection of the battery.

The throughput maximization problem, which aims to find

the function W (t) that maximizes the sum rate over the time

interval [0, T ], can be formulated as

max
W (t)

∫ T

0

f(ptx(t))dt

s.t. W (t) =

∫ t

0

p(τ)dτ , ∀t ∈ [0, T ], (3)

D(t) ≤W (t) ≤ A(t), ∀t ∈ [0, T ],

W (T ) = A(T ).

We refer to a function W (t) that fulfills all constraints in

(3) as an admissible curve, which corresponds to a feasible

transmission strategy that can be taken in [0, T ]. Denote the

optimum solution to (3) by Ŵ (t). The constraints W (t) ≥
D(t) and W (T ) = A(T ) mean that battery overflow should

not be allowed and energy should be exhausted by the end of

the transmission, respectively. They are included in (3) only

because any W (t) that violates them are suboptimal due to the

monotonically increasing property of the rate function f(·).
The problem discussed in [2] is a special case of (3) in

which pc = 0, A(t), D(t) are discrete and D(t) is A(t) shifted
downwards by Emax. With pc = 0, Problem (3) is convex and

the optimal solution has the nice geometrical interpretation

that it is the shortest trajectory in the admissible region [6].

However, the problem becomes nonconvex when pc > 0. We

define D(T+)
△
= A(T ) for the simplicity in explanation. This

clearly has no influence on the solution of (3).

III. ANALYSIS OF THE BASIC PROBLEM

We start with analyzing the simplest situation, where the

battery has an nonempty initial state A0 where A0 ≤ Emax,

and there is no energy arrival during [0, T ], i.e., A(t) ≡ A0,

D(t) ≡ 0 for t ∈ [0, T ]. Problem (3) under this particular

setting will be referred to as the basic problem.

It is well-known that for the basic problem with pc = 0,
Ŵ (t) = A0

T
· t (a proof can be found in [6] or [8]), which

suggests that using a constant transmit power over the whole

time slot leads to the maximal throughput when circuit power

is not considered. Now suppose that the transmitter is only

active for a period of length u, u ∈ (0, T ], and is asleep for

the rest of the time slot. The circuit power causes an energy

consumption of pc · u for the whole active period. Here we

assume that A0 > pc · T , because otherwise the transmitter

has to sleep during some part of the time slot which can be

dropped from consideration. The rest of the energy, A0−pc ·u,
is optimally used with constant transmit power ptx = A0

u
−pc.

Consequently, an optimization of u can be formulated as

max
u

g(u)
△
= u · f

(

A0

u
− pc

)

s.t. 0 < u ≤ T. (4)

With simple derivations we come to

g′(u) = f

(

A0

u
− pc

)

−
A0

u
· f ′

(

A0

u
− pc

)

, (5)

g′(u) → +∞, u → 0 and g′′(u) < 0, (6)

which imply that there exists a unique optimal u∗ that satisfies
{

g′(u∗) = 0, u∗ ∈ (0, T ], if g′(T ) ≤ 0
g′(u∗) > 0, u∗ = T, otherwise.

(7)

In the first case, noticing that p∗tx = A0

u∗
− pc can be plugged

into (5), we have

f (p∗tx)− (p∗tx + pc)f
′ (p∗tx) = 0, (8)

which means the optimal transmit power p∗tx depends only on

pc but not on A0 or T . This property enables us to easily

find the optimal transmission strategy for any basic problem

(without the assumption that A0 > pc ·T ) given p∗ = p∗tx+pc:

if A0

T
< p∗, then the transmitter should be turned into sleep

mode for a time period of T − A0

p∗
and then transmit with

power p∗tx; otherwise the transmitter should transmit over the

whole time slot with power A0

T
. Note that where and how the

sleeping period is located in the time slot does not influence

the throughput. The optimal transmission strategy we propose

in the next section obeys in general a “sleep first” principle.

We illustrate our analysis on the basic problem in Figure 1.

Here and also in later numerical simulations we use the rate

function f(x) = log(1 + x). In Figure 1(a) a basic problem

with A0 = 10 and T = 15 is depicted. Curves I and II

represent Ŵ (t) for pc = 0.6 and pc = 0.2, respectively.
For pc < 0.13 approximately, p∗ falls below 10/15 hence Ŵ
should be the straight line connecting (0, 0) and (T,A0). The
optimal transmit power p∗tx as dependent on pc can be obtained



by solving (8) with the bisection method. The results can be

stored in a look-up table for quick search. The variations of

p∗tx and p∗ with increasing pc is shown in Figure 1(b).
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Figure 1. Analysis of the Basic Problem

We will use from here the term change of mode to indicate

the switch from active mode to sleep mode or vice versa. The

term change of slope will only refer to the change in transmit

power from a positive value to another, but not to the change

in transmit power associated with a change of mode. We make

the following definition in order to identify an important class

of curves in our problem.

Definition 1. Let W1(t) and W2(t) be two admissible curves

which differ only in a finite number of subintervals [ai, bi] ⊆
[0, T ], i = 1, 2, . . . ,K. If on these subintervals, W1(t) and

W2(t) both consist only of horizontal lines and straight lines

with slope p∗, then W1(t) and W2(t) are equivalent, denoted

by W1(t) ∼W2(t).

The Curve I and IV in Figure 1(a) are equivalent. The

definition indicates that the transmission strategies represented

by equivalent curves are identical in the active periods where

only changes of slopes are involved, and differ in the location

and length of each sleeping period. Obviously, equivalent

curves yield the same throughput.

IV. OPTIMALITY CRITERIA AND CONSTRUCTION OF THE

OPTIMAL ADMISSIBLE CURVE

Based on our analysis of the basic problem, we establish

the following theorem where we assume that p∗ is known.

Theorem 1. Let W (t) be an admissible curve and L(t), t ∈
[a, b] be a curve that adjoins (a,W (a)) and (b,W (b)) where

a, b satisfy 0 ≤ a < b ≤ T . Denote the slope of the straight

line that connects (a,W (a)) and (b,W (b)) by k.

1) If k < p∗ and L(t) satisfies

• L(t) consists only of horizontal lines and straight

lines with slope p∗,
• L(t) 6∼W (t), t ∈ [a, b],
• D(t) ≤ L(t) ≤ A(t), ∀t ∈ [a, b],

2) If k ≥ p∗ and L(t) satisfies

• L(t) is a straight line segment,

• L(t) 6≡W (t), t ∈ [a, b],
• D(t) ≤ L(t) ≤ A(t), ∀t ∈ [a, b],

then replacing the part of W (t) between [a, b] with L(t)
increases the throughput.

Proof: Consider the basic problem between (a,W (a))
and (b,W (b)) where the upper and lower boundaries are

given by Ã(t) = W (b) and D̃(t) = W (a), t ∈ [a, b]. The
curve L(t) that satisfies the conditions given in Theorem 1

is in fact the optimal solution to this basic problem. Due

to the fixed end points (a,W (a)) and (b,W (b)), W (t) is

upper bounded by min
(

A(t), Ã(t)
)

and lower bounded by

max
(

D(t), D̃(t)
)

, t ∈ [a, b], which means Problem (3)

localized between (a,W (a)) and (b,W (b)) has an equal or

smaller admissible region than the defined basic problem, and

therefore L(t) leads to no less throughput than any other

feasible curve on [a, b]. As the theorem states that W (t) is

not equivalent with L(t) in the first case and not equal to

L(t) in the second case, the replacement of W (t), t ∈ [a, b]
with L(t) increases the throughput.

Although Theorem 1 does not give us directly a method

to construct Ŵ (t), it provides the Optimality Criteria which

can be used to determine whether an admissible curve is

optimal: along Ŵ (t), t ∈ [0, T ] there do not exist any two

points between which the part of Ŵ (t) can be reconstructed

successfully as indicated by Theorem 1.

From the optimality criteria it is straightforward to observe

and prove the following lemmas:

Lemma 1. The slope at any point of Ŵ (t) is greater or equal
to p∗ except for the horizontal part.

Lemma 2. Any horizontal part of Ŵ (t) is at least arrived at

or followed by a straight line of slope p∗.

Lemma 3. The points at which Ŵ (t) changes slope are either
on A(t) or on D(t). Moreover, the slope change at a point

on D(t) is negative, whereas the slope change at a point on

A(t) is positive.

It is clear that the optimal admissible curve is not unique.

In fact, there are infinitely many of them which all lead to the

same maximal throughput. The theorem below gives us the

guarantee of uniqueness in the sense of equivalence.

Theorem 2. All admissible curves that satisfy the optimality

criteria are either equivalent or identical.

Proof: Suppose that there exist two distinct admissible

curves W1(t) and W2(t) which do not violate the optimality

criterion. As W1(0) = W2(0) = 0 and W1(T ) = W2(T ) =
A(T ), the two curves do not differ over the whole time slot of
interest. Let (a, b) be an interval over which W1(t) 6= W2(t)
and W1(a) = W2(a), W1(b) = W2(b). Without loss of

generality, we assume that W1(t) > W2(t) which implies

D(t) ≤ W2(t) < W1(t) ≤ A(t), t ∈ (a, b).

The uniqueness of Ŵ (t) when there is no circuit power can
be proved based on Appendix A in [6]. From Lemma 3, we

find that there exists a time instance t0 such that for t ∈ [t0, b],
W1(t) is a horizontal line, otherwise the curve W2(t) with



a nonincreasing slope can not meet the curve W1(t) with a

nondecreasing slope at t = b, starting from any point t̃ ∈ [a, b).
Then it can be deduced that W1(t) consists only of straight

lines with slope p∗ and horizontal lines on t ∈ [a, t0]. The
part of W1(t) immediately after point t = a is a straight line

with slope p∗, otherwise W1(t) > W2(t) can not be satisfied,

and W2(t) starting from t = a has to be a horizontal line

for its slope has to be smaller than that of W1(t) but should
not exceed p∗ according to Lemma 1. It then follows from

Lemma 2 that W2(t) also consists only of straight lines with

slope p∗ and horizontal lines, which is to say, W1(t) ∼ W2(t)
on t ∈ (a, b). The argument holds for all intervals on which

the two curves differ, which is to say, if W1(t) is not identical
to W2(t), then it must be equivalent with W2(t) on [0, T ].
Let (t0, α0) be in the admissible region, i.e., D(t0) ≤

α0 ≤ A(t0). Straight lines of nonnegative slopes starting

from this point, denoted by L(t0,α0)(t), can be distinguished

by whether they intersect with A(t) or D(t) first. Note that

“intersection” here means, take D(t) as an example, that

L(t0,α0)(t1) = D(t1) for some t1 > t0 if D(t) is continuous
at point t1, or L(t0,α0)(t)−D(t) changes sign at some t1 > t0
if D(t) is discontinuous at that point. Let SA(t0, α0) and

SD(t0, α0) denote the sets of slopes which lead L(t0,α0)(t)
to intersect with A(t) and D(t) first, respectively. Since

A(t) > D(t) for all t ∈ (0, T ), it is easy to see that

βA > βD, ∀βA ∈ SA(t0, α0), βD ∈ SD(t0, α0),

which further leads us to

inf SA(t0, α0) = supSD(t0, α0)
△
= β(t0, α0).

Using these notations and definitions we describe the construc-

tion of the optimal admissible curve in Algorithm 1.

We first clarify some points about Algorithm 1 and then

prove its optimality. In each iteration we determine how to

move from an admissible point (t0, α0) by first computing

β(t0, α0) and then comparing it with p∗. If β(t0, α0) > p∗,
we move basically in the direction of β(t0, α0), i.e., the node
transmits with power β(t0, α0) − pc. In order to avoid the

ambiguity that when (t0, α0) is on A(t) or D(t), moving in

the tangent direction of the point does not give any intersection

point even with infinitesimal stepsize, we distinguish between

the three cases where we move along A(t), D(t), or the

straight line with slope β(t0, α0). At points where A(t) and

D(t) are not differentiable, the conditions in Line 11 and 15

are considered as unsatisfied. If β(t0, α0) ≤ p∗, we decide for
the possibly longest sleeping period and then activate the node

to transmit with power p∗ − pc.

Proof: From Appendix D in [6] we know that the curve

W (t) constructed by Algorithm 1 is admissible and fulfills

Lemma 3. It is also clear from the algorithm that the slope at

any point of W (t) is no smaller than p∗. Consider the starting
point (t0, α0) in some iteration with β(t0, α0) ≤ p∗. Note
that (t0, α0) is either on A(t) or on D(t) according to the

algorithm. If (t0, α0) is on D(t) and D′(t0) 6= 0, no horizontal
line is constructed in the current iteration, and the straight

line with slope p∗ intersects A(t) at t = t1. As a result,

Algorithm 1 Construction of the Optimal Admissible Curve

1: initialize (t0, α0) ← (0, 0), W (0) ← 0;
2: repeat

3: (t0, α0) ← (t1, α1);
4: if α0 = A(T ) then
5: t1 ← T , W (t) ← horizontal line from (t0, α0) to

(t1, α0), t ∈ (t0, T ];
6: end if

7: compute β(t0, α0) = inf SA(t0, α0) = supSD(t0, α0);
8: if β(t0, α0) > p∗ then

9: if (t0, α0) is on A(t) and β(t0, α0) = A′(t0) then
10: find the largest t1 such that β(t, A(t)) = A′(t),

t ∈ [t0, t1];
11: α1 ← A(t1), W (t) ← A(t), t ∈ (t0, t1];
12: else if (t0, α0) is on D(t) and β(t0, α0) = D′(t0)

then

13: find the largest t1 such that max(β(t,D(t)), p∗) =
D′(t), t ∈ [t0, t1];

14: α1 ← D(t1), W (t) ← D(t), t ∈ (t0, t1];
15: else

16: W (t) ← L(t0,α0)(t) with slope β(t0, α0) until the
intersection point (t1, α1);

17: end if

18: else

19: find the largest t̃0 s.t. ∀t ∈ [t0, t̃0], (t, α0) is in the

admissible region and β(t, α0) ≤ p∗;
20: W (t) ← horizontal line from (t0, α0) to (t̃0, α0),

t ∈ (t0, t̃0];
21: W (t) ← L(t̃0,α0)

(t) with slope p∗ until the intersec-

tion point (t1, α1);
22: end if

23: until t1 = T .

if a horizontal line is constructed in the next iteration, it is

arrived at with a straight line with slope p∗. If (t0, α0) is on
A(t), then the constructed horizontal line is always followed

by a straight line segment of slope p∗. Therefore, we claim

that W (t) satisfies both Lemma 1 and Lemma 2. As a result,

around any point on curve W (t), it is impossible to perform a

construction as required by Theorem 1 to violate the optimality

criteria. The constructed curve W (t) is therefore optimal, as all
admissible curves that do not violate the optimality criterion

are equivalent and yield the same maximal throughput.

V. SIMULATION RESULTS

We test our results with both continuous and discrete energy

inputs. In the continuous case, we set T = 10,

A(t) =







t2 + 9, t ∈ [0, 6],
54− 4(t− 7.5)2, t ∈ (6, 7.5],
54 + (t− 7.5)3, t ∈ (7.5, 10],

D(t) =

{

0, t ∈ [0, 2]
20 log(t− 1), t ∈ (2, 10].

The constructed Ŵ (t) for several pc values are shown in

Figure 2. The optimal curve is composed of 4 segments when



pc = 0: from the origin it moves along the straight line that

is tangent to the first part of A(t), then it follows A(t) until
the tangent point where the common tangent line between the

first and third parts of A(t) is met. After traveling through the
common tangent line, Ŵ (t) follows A(t) again until t = T .
D(t) is not involved here as it does not obstruct the shortest

trajectory from origin to the destination point (T,A(T )). The
smallest slope of Ŵ (t) is 6, which is between p∗(pc = 2)
and p∗(pc = 3). As a result, the optimal admissible curves for
pc = 0, 1, 2 are identical. For pc ≥ 3, change of mode comes
into play to replace the parts of Ŵ (t) that have smaller slopes
than the corresponding p∗. From Figure 2 it can be observed

that the larger the circuit power pc, the more often and for the

longer period of time the node is turned into sleep mode.
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Figure 2. Continuous Energy Arrivals

For the discrete energy arrival case, we set T = 15 and

assume that D(t) is related to A(t) according to (2) where

Emax = 50. Figure 3 shows A(t), D(t), and two optimal

admissible curves. The discrete case requires significantly less

computations in the construction of Ŵ (t) than the continuous
case, for only the points of discontinuity on A(t) and D(t)
need to be considered.
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Figure 3. Discrete Energy Arrivals

The maximal throughput of the two test cases are plotted in

Figure 4 with solid lines. The dotted reference curves represent

the throughput achieved by using Ŵ (t) with pc = 0. Note that
we need to make sure that Ŵ (t), pc = 0 is admissible for the

current circuit power pc before we calculate the throughput.

Although the maximal throughput seems to decrease approx-

imately linearly with increasing pc in the plots, the specific

decrements still depend mainly on the shape of A(t) and D(t).
With relatively large pc, the gain in throughput by applying

the optimal transmission strategy is rather significant.
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Ŵ (t)
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Figure 4. Optimal Throughput

VI. CONCLUSION

We consider data transmission of an energy harvesting node

over a single invariant link, where the energy arrival process

A(t) and some energy departure constraint D(t) are known.

Energy consumption of the circuit of the node is introduced

into the model, and a construction procedure which produces

the optimal solution to the throughput maximization problem

is proposed and proved. Simulation results show that the

optimal transmission strategy differs noticeably from the one

obtained without the consideration on circuit power, and some

gain in throughput can be achieved which is dependent on the

specific energy arrivals and the circuit power.
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