Benutzer: Gast  Login
Titel:

EmoNet: A Transfer Learning Framework for Multi-Corpus Speech Emotion Recognition

Dokumenttyp:
Article
Autor(en):
Gerczuk, Maurice; Amiriparian, Shahin; Ottl, Sandra; Schuller, Bjorn W. W.
Abstract:
In this manuscript, the topic of multi-corpus Speech Emotion Recognition (SER) is approached from a deep transfer learning perspective. A large corpus of emotional speech data, EMOSET, is assembled from a number of existing Speech Emotion Recognition (SER) corpora. In total, EMOSET contains 84181 audio recordings from 26 SER corpora with a total duration of over 65 hours. The corpus is then utilised to create a novel framework for multi-corpus SER and general audio recognition, namely EMONET. A...     »
Zeitschriftentitel:
IEEE Trans Affect Comput
Jahr:
2023
Band / Volume:
14
Heft / Issue:
2
Seitenangaben Beitrag:
1472-1487
Volltext / DOI:
doi:10.1109/TAFFC.2021.3135152
Print-ISSN:
1949-3045
TUM Einrichtung:
Lehrstuhl für Health Informatics (Prof. Schuller)
 BibTeX