Translated abstract:
In dieser Doktorarbeit werden Graph-neuronale Netze (GNNs) aus der Perspektive der feindlichen Robustheit betrachtet. Das Konzept der feindlichen Angriffe -- kleiner Störungen in den Eingabedaten, um ein Machine-Learning-Modell zu täuschen -- wird generalisiert von traditionellen unabhängigen Datentypen wie Bildern hin zu Graphen. Weiterhin werden Methoden für die mathematische Zertifizierung der Robustheit von GNNs gegenüber Störungen der Knoten-Attribute sowie der Graph-Struktur präsentiert.