User: Guest  Login
Title:

Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning.

Document type:
Journal Article; Multicenter Study; Research Support, Non-U.S. Gov't
Author(s):
Werfel, Stanislas; Günthner, Roman; Hapfelmeier, Alexander; Hanssen, Henner; Kotliar, Konstantin; Heemann, Uwe; Schmaderer, Christoph
Abstract:
AIMS: Dynamic retinal vessel analysis (DVA) provides a non-invasive way to assess microvascular function in patients and potentially to improve predictions of individual cardiovascular (CV) risk. The aim of our study was to use untargeted machine learning on DVA in order to improve CV mortality prediction and identify corresponding response alterations. METHODS AND RESULTS: We adopted a workflow consisting of noise reduction and extraction of independent components within DVA signals. Predictor...     »
Journal title abbreviation:
Cardiovasc Res
Year:
2022
Journal volume:
118
Journal issue:
2
Pages contribution:
612-621
Fulltext / DOI:
doi:10.1093/cvr/cvab040
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/33576412
Print-ISSN:
0008-6363
TUM Institution:
Institut für KI und Informatik in der Medizin; Lehrstuhl für Allgemeinmedizin (Prof. Schneider) (keine SAP-Zuordnung!); Professur für Nephrologie (Prof. Heemann)
 BibTeX