Benutzer: Gast  Login
Titel:

Video Summarization Through Reinforcement Learning With a 3D Spatio-Temporal U-Net.

Dokumenttyp:
Journal Article
Autor(en):
Liu, Tianrui; Meng, Qingjie; Huang, Jun-Jie; Vlontzos, Athanasios; Rueckert, Daniel; Kainz, Bernhard
Abstract:
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently encode spatio-temporal information of the input videos for downstream reinforcement learning (RL). An RL agent learns from spatio-temporal latent score...     »
Zeitschriftentitel:
IEEE Trans Image Process
Jahr:
2022
Band / Volume:
31
Seitenangaben Beitrag:
1573-1586
Volltext / DOI:
doi:10.1109/TIP.2022.3143699
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/35073266
Print-ISSN:
1057-7149
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX