Benutzer: Gast  Login
Titel:

Self-Supervised Learning for Few-Shot Medical Image Segmentation.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Ouyang, Cheng; Biffi, Carlo; Chen, Chen; Kart, Turkay; Qiu, Huaqi; Rueckert, Daniel
Abstract:
Fully-supervised deep learning segmentation models are inflexible when encountering new unseen semantic classes and their fine-tuning often requires significant amounts of annotated data. Few-shot semantic segmentation (FSS) aims to solve this inflexibility by learning to segment an arbitrary unseen semantically meaningful class by referring to only a few labeled examples, without involving fine-tuning. State-of-the-art FSS methods are typically designed for segmenting natural images and rely on...     »
Zeitschriftentitel:
IEEE Trans Med Imaging
Jahr:
2022
Band / Volume:
41
Heft / Issue:
7
Seitenangaben Beitrag:
1837-1848
Volltext / DOI:
doi:10.1109/TMI.2022.3150682
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/35139014
Print-ISSN:
0278-0062
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX