User: Guest  Login
Document type:
Konferenzbeitrag 
Contribution type:
Textbeitrag / Aufsatz 
Author(s):
Darrin C Bentivegna, Christopher G Atkeson, Gordon Cheng 
Title:
Learning similar tasks from observation and practice 
Pages contribution:
2677-2683 
Abstract:
This paper presents a case study of learning to select behavioral primitives and generate subgoals from observation and practice. Our approach uses local features to generalize across tasks and global features to learn from practice. We demonstrate this approach applied to the marble maze task. Our robot uses local features to initially learn primitive selection and subgoal generation policies from observing a teacher maneuver a marble through a maze. 
Editor:
IEEE 
Book / Congress title:
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems 
Date of congress:
9.-15.10.2006 
Publisher:
IEEE 
Year:
2006