Benutzer: Gast  Login
Dokumenttyp:
Zeitungsartikel 
Autor(en):
Delerue, Thomas 
Titel:
Normal approximation of the solution to the stochastic wave equation with Lévy noise 
Abstract:
For a sequence $\dot{L}^{\eps}$ of Lévy noises with variance $\si^2(\eps)$, we prove the Gaussian approximation of the solution $u^{\eps}$ to the stochastic wave equation driven by $\si^{-1}(\eps) \dot{L}^{\eps}$ and thus extend the result of C. Chong and T. Delerue [Stoch. Partial Differ. Equ. Anal. Comput. (2019)] to the class of hyperbolic stochastic PDEs. That is, we find a necessary and sufficient condition in terms of $\si^2(\eps)$ for $u^{\eps}$ to converge in law to the solution to the s...    »
 
Stichworte:
càdlàg modification, distribution-valued process, functional convergence in law, Hermite functions, Lévy space--time white noise, martingale problems, Skorokhod representation, Skorokhod topology, small jump approximation, stochastic PDEs, strong martingale, weak limit theorems 
Dewey Dezimalklassifikation:
510 Mathematik 
Zeitschriftentitel:
Preprint 
Jahr:
2019 
Jahr / Monat:
2019-11 
Quartal:
4. Quartal 
Monat:
Nov 
Seitenangaben Beitrag:
28 
WWW:
_blank 
Status:
Preprint / submitted 
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik 
Format:
Text