User: Guest  Login
Document type:
Buchbeitrag 
Author(s):
Bertoin, J., Lindner, A., Maller, R. 
Artist:
Donati-Martin, C., Émery, M., Rouault, A. und Stricker, C. (Eds.) 
Title:
On continuity properties of integrals of Lévy processes 
Pages contribution:
137-159 
Abstract:
Let (ξ,η) be a bivariate Lévy process such that the integral ∫0 et-t converges almost surely. We characterise, in terms of their Lévy measures, those Lévy processes for which (the distribution of) this integral has atoms. We then turn attention to almost surely convergent integrals of the form I:=∫0g(ξt)dYt, where g is a deterministic function. We give sufficient conditions ensuring that I has no atoms, and under further conditions derive that I has a Lebesgue density. The results are also extended to certain integrals of the form ∫0g(ξt)dYt, where Y is an almost surely strictly increasing stochastic process, independent of ξ. 
Book title:
Donati-Martin, C., Émery, M., Rouault, A. und Stricker, C.: Séminaire de Probabilités 
Publisher:
Springer 
Year:
2008 
Reviewed:
ja 
Language:
en 
Semester:
SS 08 
Format:
Text