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Abstract

This thesis, entitled 'Development of computational models of the chlamydial interac-

tomes and bacterial secreted proteins', comprises two parts: the prediction and analysis

of interactomes of di�erent species of Chlamydiae and the prediction of virulence factors

transported by the Type III secretion system by their amino-acid sequence.

The bacterial genus Chlamydiae comprises important agents of human and animal dis-

eases as infertility and trachoma. The genomes of these obligate intra-cellular organisms

are heavily reduced and contain many speci�c genes of unknown function. In addi-

tion to the pathogenic species, several environmental Chlamydiae have been sequenced.

These environmental species exhibit less reduced genomes. A functional comparison

to pathogenic strains reveals insights in the evolution of Chlamydiae in higher eukary-

otes. Since no genetic manipulation system in Chlamydiae exist which would allow

to investigate protein function in these species, function prediction by bioinformatics

approaches is of high relevance to understand the biology of Chlamydiae and to guide

further experiments. By integration of di�erent bioinformatics approaches, I built up

a chlamydia speci�c interaction network. This network has been further analyzed to

delineate functional sub-systems (called 'functional modules'). The use of these mod-

ules for the identi�cation of virulence related genes and for inference of annotation have

been assessed and used for function prediction of uncharacterized genes and to identify

virulence related proteins. The evolution of these modules due to the adaptation level

on their hosts has been investigated and revealed a non-random pattern indicating a

preferred loss of complete functionalities.

The major transport route of e�ector proteins from many Gram(-) bacterial into their

host cells is the Type III secretion apparatus. The identi�cation of e�ector candidates

is a short-cut to identify novel virulence factors, since systematic screens in the bacteria

of interest are di�cult to achieve. Until this work, no general applicable bioinformat-

ics approach to detect e�ectors has been proposed. I could show, that the recognition

signal that leads to speci�c transport is taxonomically universal and can be modeled

computationally using a machine-learning approach. The resulting software-package (Ef-

fectiveT3) allows the generation of high con�dent e�ector candidate lists from sequence

information that will accelerate the characterization of novel e�ectors.
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Zusammenfassung

Die vorgelegte Arbeit �Development of computational models of the chlamydial inter-

actomes and bacterial secreted proteins� gliedert sich in zwei Abschnitte: der erste Teil

beschreibt die Berechnung von Interaktionsnetzwerken der Chlamydien und ihre weitere

Analyse. Der zweite Teil beschreibt eine sequenzbasierte Methode zur Vorhersage von

E�ektor-Proteinen, welche durch das Type III Sekretionssystem sezerniert werden.

Die Gruppe der Chlamydien beinhaltet relevante Mensch- und Tierpathogene, welche

u.a schwere Erkrankungen des Auges und des Genitaltraktes hervorrufen, speziell sind

Chlamydieninfektionen eine häu�ge Ursache von Infertilität. Die Genome dieser Chlamy-

dien sind stark reduziert und die Funktionen vieler ihrer Gene ist unbekannt. Die Genome

etlicher der pathogenen Vertreter der Chlamydien liegen sequenziert vor. Chlamydi-

en, welche aus Umweltisolaten gewonnen wurden, zeigen eine geringere Reduzierung

iher Genome. Ein systematischer Vergeich der Genomdaten kann Aufschluss über die

funktionelle Evolution in Bezug auf die Anpassung an einen spezi�schen Wirt geben.

Für Chlamydien existiert kein genetisches Manipulationssystem, und die Charakter-

isierung vieler ihrer Genprodukte ist daher eingeschränkt. Daher besitzt die Bioin-

formatik in der Erforschung der Chlamydien einen hohem Stellenwert, insbesondere

zur Funktionsvorhersage. Durch die Integration verschiedener Methoden der Bioinfor-

matik habe ich eine (funktionelle) Interaktionskarte der Chlamydien erstellt. In folgen-

den Analysen wurden zelluläre Systeme (sog. funktionelle Module) aus diesen Netzw-

erken abgeleitet und Strategien zur Identi�zierung unbekannter Virulenzfaktoren und

zur Funktionsannotation mit Hilfe dieser Module entwickelt und für Vorhersagen einge-

setzt. Des weiteren konnte gezeigt werden, dass die Evolution der funktionellen Module

zwischen humanpathogenen Chlamydien und den Umweltchlamydien Regelmäÿigkeit-

en unterworfen ist und bevorzugt komplette Module und nicht einzelne Proteine bei

der Genomreduktion verloren gehen. Ein wichtiger Weg zur Sekretion von E�ektorpro-

teinen ist das Type III Sekretionssystem. Eine Vorhersage der transportierten Proteine

ist von hoher Relevanz, da die Sekretion nur mit hohem Aufwand im Labor gezeigt

werden kann. Bisher existierte kein generelles Vorhersageverfahren, welches aus Sequen-

zdaten wahrscheinliche Substrate des Type III Weges identi�zieren konnte. Ich kon-

nte zeigen, dass das Signal zum Transport in verschiedenen Bakterien universell ist

und zur generellen Vorhersage von Type III transportierten E�ektoren nutzbar ist. Die

Vorhersage-Software E�ectiveT3 kann eingesetzt werden, um mit hoher Verlässlichkeit

E�ektorkandidaten aus Sequenzdaten vorherzusagen und so die Suche nach noch un-

bekannten E�ektoren zu beschleunigen.
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1
Introduction

The kingdom of Bacteria can be seen as the most successful one in terms of biomass and

diversity. Bacteria participate in almost every important biological process on earth as,

among many others, the �xation of nitrate or the degradation of dead biomass. So,

they intensively shape the ecological systems on earth. Many Bacteria have developed

symbiotic or parasitic life-styles and live in close relationship with diverse hosts. In

amoeba, for example, several bacterial species can be found a�liated or as intra-cellular

symbionts including Chlamydiae and Bacteroidetes [1, 2]. Other bacteria are important

agents of human and animal infections causing a wide range of diseases as Yersinia or

Salmonella [3, 4]. Many of these pathogenic and symbiotic bacteria exhibit a facultative

or obligate intra-cellular life-style. The genomes of many intra-cellular bacteria exhibit

a reduction in their gene content. Driving forces of this reduction are the restricted

ability to acquire genetic material and therefore to compensate deleterious mutations,

and the possibility to acquire nutrients from the host, a process that allows to lose

the corresponding anabolic pathway in the bacterium [5, 6]. An important aspect of

the interaction between bacterial and eukaryotic host cells is the direct manipulation

of the host by the bacterium using e�ector proteins which are actively transported into

the target cells by di�erent transport systems. Knowledge on these e�ector proteins is

therefore the basis to understand the mechanisms of bacterial virulence and a possible

starting point for the development of novel antibiotic drugs.

An interesting bacterial clade comprise the Chlamydiae, pathogens with an obligate

intra-cellular life-style. Chlamydiae are an important target for bionformatic's research:

despite of their clinical relevance, the availability of complete genome sequences from

a variety of di�erent chlamydial species allows comparative studies to investigate the

evolution of host adaptation. Most importantly, Chlamydiae are di�cult to assess by

wet-lab standard procedures as genetic screens which makes bioinformatics analyses es-
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CHAPTER 1. INTRODUCTION

pecially important to the Chlamydiae research community to short-cut experimental

costs and time.

The molecular mechanisms of biological processes such as bacterial virulence cannot be

understood by looking at one protein or gene alone. The availability of a plethora of

data as complete genome sequences (thousands genome reached) and exhaustive protein-

protein interaction screens allows to investigate the interplay of proteins on a large scale

and to identify groups of genes which work together, commonly named functional mod-

ules. These modules allow a view on cellular functionality which is not gene-centric but

describes a cell in terms of sub-systems.

The �rst part of this work deals with the prediction of chlamydial interactomes and

functional modules. The use of this information to detect novel virulence factors and to

annotate proteins is assessed. In addition, the evolution of functional modules between

chlamydial species with di�erently strong host adaptation and genome reduction is de-

scribed. The second part comprises a new approach to detect bacterial virulence factors

transported by the Type III secretion apparatus, called E�ectiveT3. The thesis starts

with an introduction to the biological background and bioinformatics' concepts used in

the work.

1.1 Type III secretion

Many bacteria can manipulate their environment by the secretion of proteins which

enable, e.g the utilization of nutrients and defense against competitors or the immune

response of a respective host [7, 8, 9]. Most prominent is the interaction of symbiotic

and pathogenic bacteria with their respective host cells [10]. Seven di�erent secretion

systems (Type I�VII) have been described until today. Three of them (Type III, IV

and VI) allow penetrating host cell membranes and injecting proteins into the cytosol

of host cells. Among them, the Type III secretion apparatus (TTSS) is encoded in the

genomes of many, mainly pathogenic or symbiotic, Gram-negative bacteria and is a key

factor for the virulence of pathogens.

1.1.1 The Type III secretion system

Structure and Function The TTSS is evolutionary related to the �agellar system and

well conserved across a wide range of taxa [11]. It spans both bacterial membranes and

enters the host cytosol and is formed by 20�30 di�erent proteins. Several proteins form

the exporter, which envelopes the proteins of the basal body. The basal body spans

10



1.1. TYPE III SECRETION

the inner membrane, followed by the secreton which spans the outer membrane and is

followed by the needle subunit. The needle is topped by the translocon, which upon

contact to the host cell forms a translocation pore within the eukaryotic membrane.

Proteins of the translocon are transported by the TTSS itself. The TTSS transports a

Figure 1.1: The Type III secretion system in Chlamydiae as described in [12]. Figure from
'Bacterial secretion systems with an emphasis on the chlamydial Type III secretion system',
Beeckman, D. S. and Vanrompay, D. C, 2010. On the left side, an inactive T3SS is shown,
while the right side depicts the T3SS after activation. IM, bacterial inner membrane; OM,
bacterial outer membrane; IncM, inclusion membrane.

variety of proteins directly into the host cell in a speci�c and energy dependent man-

ner. These transported proteins interact with proteins in the host yielding an e�ect

suitable for the bacterium and are therefore called e�ectors. The speci�c transport im-

plies a targeted recognition of e�ectors as substrate for transport, the mechanisms of

this speci�c recognition are merely unknown and could only be fully understood with

comprehensive knowledge of the TTSS on the structural level. However, up to now, only

a small number of TTSS related structures have been resolved. Especially structures of

e�ectors bound to components of the TTSS could not be crystallized yet which would

be informative on the substrate recognition and transport. Some recognition particles
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CHAPTER 1. INTRODUCTION

within the TTSS could be identi�ed: in Escherichia coli, a direct interaction between

the e�ector Tir and the ATPase EscN has been reported. The latter one is part of the

exporter component of TTSS. The chaperon CesT interacts with both Tir and EscN

while enhancing secretion [13] and the ATPase might therefore play a role in initial sub-

strate binding. The Yersinia proteins YscP and YscU both in�uence the regulation of

translocon and e�ector secretion. YscP was found to control the needle length and also

works as a substrate speci�city switch. It is suggested to stop secretion of the translo-

con YscF while activating Yop secretion upon contact to the host cell [14]. Mutations

that trigger conformational changes in the exporter component inhibit recognition and

transport of translocon components. The same mutations do not a�ect export of the

Yop e�ectors [15]. This is an evidence that the recognition di�ers for transport between

substrates which build up the system and e�ector proteins with destiny to the host cell

di�er.

TTSS related chaperons Related to the TTSS system itself, several TTSS related

chaperons exist. These chaperons play important roles for recognition and regulation,

covering several di�erent aspects within the TTSS machinery. Several e�ectors depend

on the association with a speci�c chaperon for e�cient translocation and secretion. For

example, the transport of the Yersinia e�ector YopE is activated through binding to

its chaperon SycE [16]. In Y. pestis, the Yop e�ectors are mediated by their individual

corresponding Sycs (speci�c Yop chaperones)[17], probably introducing an hierarchy

and temporal order for secretion among them [18]. Such chaperons are not restricted

to Yersinia: in Salmonella, the e�ectors SptP and SopE contain a chaperon binding

domain essential for secretion into the host cell via the TTSS machinery [19]. Many

e�ector-binding chaperons have a common fold and e�ector-binding mode [20], while

others show no structural similarity at all [21]. Before completing the secretion step,

the e�ector�chaperon association is released via the SctN component of the TTSS as

shown for the SctN homolog InvC in Salmonella [22]. Although many �ndings support

the importance of these chaperons for secretion, no general mechanism based on the

interaction of e�ectors with chaperons can be deduced. The binding sites of di�erent

chaperons show only weak sequence similarity over di�erent e�ector molecules [20] and

can therefore not be employed for the general detection of novel e�ectors.

12



1.1. TYPE III SECRETION

1.1.2 E�ectors

The characterization of e�ector proteins gives hints on the strategies bacteria use to

manipulate host cells: some interact with cell signaling pathways to suppress immune

response by inducing apoptosis in macrophages as the Yersina e�ector YopJ or the

Salmonella e�ector SipB [23, 24]. Other known e�ectors manipulate the cytosceleton by

actin re-arrangements as described for the Salmonella e�ector SipA [25]. The arsenal of

known e�ectors varies widely between di�erent bacterial species due to adaptation to

di�erent hosts and di�erent survival strategies [26] and even between di�erent strains of

the same organism as shown for Pseudomonas syringae [27]. E�ectors are very diverse

and show no typical folds or domain composition, which could be used to identify them

with certainty. This picture is congruent with the diverse functions in di�erent hosts

and environments that these sequences have to ful�ll. Nevertheless, the N-termini share

an unusual amino acid composition in the �rst 20�50 residues, in which e.g. Serine is

enriched compared to arbitrary sequences [28]. For several organisms, speci�c promoters

as the Pseudomonas HrP box have been described [29], which allow co-regulation of

e�ectors with the TTSS or secretion related chaperons. Since the e�ectors often interact

with complex eukaryotic speci�c pathways as cell signaling, they have to implement

eukaryotic like functional domains. These can be either analogous replacements of an

eukaryotic functionality (and act as molecular mimicry [30]), or could be acquired by

gene transfer as initially eukaryotic sequence. Many pathogens comprise proteins with

a detectable eukaryotic-like domains as the amoeba symbiont Candidatus Amoebophilus

asiaticus [1] or the environmental Chlamydium. An example of a known interaction

between the host and e�ectors with such characteristics comprise the Yersinia YopJ

e�ector which inhibits NF-κB by a eukaryotic like SH2 domain [31]. A typical pattern

of attack used by several bacteria is to mimic parts of the ubiquitin proteasome by

e�ector proteins [32].

1.1.3 Experimental derived knowledge on the TTSS secretion

signal and modes of transport

In the case of the Type III secretion system, the exact mode of signal recognition is un-

known. Several experimental evidences could give hints on the nature of the signal and

are shortly reviewed here and further insights that could be gained by a computational

analyses are discussed .
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CHAPTER 1. INTRODUCTION

Location of the signal The N-terminal location of the signal has been assessed by

the use of fusion proteins consisting of a N-terminus of an e�ector protein (the putative

signal) and a reporter gene which allows to identify the (secreted) protein outside the

bacterial cell. It has been initially studied on the Yersinia e�ector proteins (Yersinia

outer proteins, Yops), namely YopH, YopQ, and YopE by Michiels et al. [33] using such

hybrid protein assays and has been localized on the �rst 48�98 N-terminal residues of

the Yops. Even shorter N-terminal regions between 10 and 25 residues are su�cient for

transportation as shown in several fusion experiments of reporter genes with e�ector

N-termini [34, 35] in di�erent organisms. For example, the minimal signal length of the

Yersinia YscP e�ector has been determined by Riordan et al. to be only 10 residues

long. The N-terminal signal can even be exchanged between di�erent e�ectors of E. coli

without abolishing function [36]. These �ndings imply an N-terminal signal location for

the proteins under investigation. A computational method that captures the secretion

signal can give further insights here: the generality of the N-terminal location can be

shown by tests on several e�ectors, and the length and size of the signal can be deduced

as the areas with the highest discriminative power between e�ectors and non-e�ectors.

Mode of encoding and transport Whereas the N-terminal localization of this signal

is commonly accepted, there is a debate whether the signal is encoded in the translated

peptides or in the underlying mRNAs. The mRNA signal hypothesis introduced by

Schneewind, Anderson and co-workers (reviewed in [37]) is based on the observation

that point as well as frame-shift mutations of several Yop N-termini do not abolish

transport, whereas silent mutations on the underlying mRNA have in�uence on trans-

port [38, 39, 40]. In addition to the proposed N-terminal mRNA signal, Blaylock et al.

found a second putative mRNA born signal in the Yersinia e�ector YopR mRNA at

codon position 131�149, which is sensitive to silent mutations. For this second signal,

a secondary structure containing a stem-loop could be modeled. Interestingly, a mu-

tation in the mRNA, which was predicted not to alter this secondary structure, kept

this signal functional whereas mutations abolishing the structure did not [41]. A study

with mutants of the Pseudomonas e�ectors AvrB and AvrPto indicates an mRNA signal

which can be detected by a Yersinia TTSS [42] and could also be a functional signal in

Pseudomonas. This theory implies that translation does not occur before recognition

by the TTSS and the e�ectors are synthesized into the TTSS during transport. This

is contradicting to the existence of e�ector-binding chaperons, which can only act on

translated sequences. Translation before translocation has been explicitly shown for

14



1.1. TYPE III SECRETION

some e�ectors as for the Salmonella SopE and SipA [43, 44] the Shigella IpaB and IpaC

proteins [45], and the Yersinia YopE [46] proteins. In case of IpaB, IpaC, and SipA,

the existence of a large pool of proteins in the bacterial cell and its rapid translocation

during infection has been shown by time-lapse microscopy [44, 45]. Even more, there is

evidence that e�ectors can exist in folded state prior to secretion and must be unfolded

before transport [47]. A successful computational modeling of the signal based on the

amino-acid sequences would be a strong hint in favor to the peptide-based hypothesis

but no general proof: the protein sequence is dependent on its' coding RNA and from

a theoretical point of view, a signal (encoded by regularities in either the mRNA or

amino-acid sequence) could be mutually detected in both sequences due to their cor-

relation by translation as if the mRNA encoded recognition sequence would be strong

enough to alter the amino-acid sequences in an detectable fashion. Both theories are

picturized in Figure 1.2.

Figure 1.2: Schematic illustration of the two hypotheses of the location of the N-terminal secretion
signal: mRNA-based (A) and peptide-based (B). In (A), the e�ector mRNA, which carries
the signal, is synthesized into the TTSS during transport. In (B), the e�ector is translated
in the bacterial cytosol and recognized by a peptide born N-terminal signal. Chaperones
play di�erent roles, as enhancing signals or holding the protein in an unfolded, transportable
state.
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CHAPTER 1. INTRODUCTION

Generality As reported above, the N-termini of di�erent e�ectors could be exchanged

without loss of transportation. As a consequence, no dependency between the functional

part of the protein and the signal exists for several E. coli e�ectors [36]. The use of

an heterologous assay used in the study of Subtil et al. also indicates that the signal

of chlamydial e�ectors can be recognized by the Shigella TTSS. A certain generality of

the signal can be expected since the TTSS itself is highly conserved. A computational

approach could prove this hypothesis further if unseen instances can be predicted in

species that did not participate in the initial deduction of the method.

1.1.4 Approaches to detect Type III secreted proteins by

computational methods

Computational analyses have been employed to short-cut screens for e�ector proteins in

several studies which are shortly reviewed here. The perhaps most widely used approach

to detect proteins with certain traits is to search for homologs of known proteins com-

prising those traits. Homology searches against a database of known e�ectors has been

successfully applied by Tobe et al. as initial step to create a candidate list of more than

60 putative e�ectors in enterohemorrhagic E. coli (EHEC) O157:H7, from which for 39

proteins secretion could be shown [35]. Vinatzer et al. and Studholme et al. [48, 49]

compared the e�ector repertoire between di�erent Pseudomonas strains using BLAST

as initial step. This approach is applicable since a plethora of Pseudomonas e�ectors are

known and therefore the variance between di�erent closely related Pseudomonas strains

can be estimated by homology information. Since virulence factors must act in a con-

certed manner, the detection of co-regulation of e�ectors with TTSS components could

lead to the identi�cation of e�ectors since special transcriptional control of e�ectors has

been described in several species [50, 51]. Their speci�c regulatory elements have been

described in Pseudomonas [52], Xanthomonas [53], Escherichia [54, 55], and Salmonella

[56]. In P. syringae, the virulence speci�c hypersensitive response and pathogenicity

sigma factor HrpL activates the pathogenicity regulon, including the TTSS, as well as

of some e�ectors. Fouts et al. [57] created a sensitive Hidden Markov Model detecting

HrpL binding sites (called Hrp boxes in Pseudomonas [52]) in P. syringae pv tomato

DC3000 and detected twelve e�ectors or other virulence related genes in the downstream

region of the speci�c promoter binding sites. Jiang et al. detected 47 novel e�ectors in

Xanthomonas campestris pv campestris, screening for a motif of the plant-inducible pro-

moter (PIP) described as binding site for the HrpX regulatory protein in Xantomonas
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[58]. Chaperons play a mediating role for the translocation of several e�ectors, and an

initial screen on them can give hints to yet unknown e�ectors. Panina et al. screened

Bordetella bronchiseptica and several other organisms for putative TTSS related chap-

erons [59], identi�ed using predicted characteristics as molecular weight fold. Proteins

co-localized to these putative chaperons on the chromosome have been further �ltered to

exclude unlikely candidates. Chaperon�e�ector pairs have been identi�ed, comprising

previously known as well as unknown of these pairs. Hu et al. modeled the interac-

tion of the e�ector YopE with the chaperon SycE using a docking approach starting

with a predicted structure of YopE unbound to the chaperon [60]. The model turned

out to be in good agreement with the experimentally solved structure of the complex.

This approach does not screen for novel candidates directly, but might be a starting

point for an novel bioinformatics approach predicting speci�c e�ector/chaperon pairs.

Due to the large amount of experimental evidence for a protein born N-terminal signal,

it should be straightforward to identify novel e�ectors by their N-terminal sequences,

as by sequence similarity to N-termini known to be transported. Unfortunately, the

N-termini of known e�ectors are very diverse and show no apparent evolutionary con-

servation between di�erent e�ector orthologs and therefore do not allow the deduction

of a meaningful alignment. In consequence, classical bioinformatics approaches as e.g.

deriving sequence motifs, which rely on an initial multiple alignment of a domain, are

not applicable to model the signal. Lloyd et al. investigated the �rst eight residues

of the signal peptide by a mutation analysis (directed towards an enrichment of Serine

residues) of the Yersinia YopE e�ector [61] and deduced a model of the signal using

linear regression. This `synthetically' derived model has been found to be descriptive

for real and putative e�ectors from di�erent species. This model described the signal

as an amphipathic character and an enrichment of Serine in the N-termini is (up to

�ve Serines in the �rst eight amino acids). Schechter et al. use a composition based

rule derived from known Pseudomonas e�ectors to create an initial candidate list for

novel e�ectors [62]. When analyzing the �rst 50 residues of Pseudomonas e�ectors, they

found Serine and Proline enriched, comprising together >10% of the N-terminus, and at

position 3 or 4 always an aliphatic amino acid. In addition, no acidic amino acid could

be found within the �rst 12 residues Petnicki-Ocwieja [63] used a very similar pattern

derived from Pseudomonas e�ectors comprising an high amount of Serine and Proline

(>10% in the �rst 50 residues). The screen with these patterns revealed several novel

e�ectors, but the applicability of the model to other species is unclear.

These bioinformatics approaches can be broadly categorized into 'non-signal' and 'signal'
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based, depending on whether they assess and model the N-terminal signal directly or

identify e�ectors by other information. All 'non-signal' based approaches are limited due

to their generality and/or applicability, and for the signal based approaches described

so far, their applicable generality in terms of independence of the organism has not been

shown. Homology based approaches can only detect e�ectors which are members of

known e�ector families, and these are mostly speci�c for certain well-known bacterial

species. This approach lacks the ability to detect novel e�ector families where no initial

query sequence is available. This drawback is rather severe, since many e�ectors are spe-

ci�c to a certain clade of bacteria, as e.g. the inclusion proteins of Chlamydia [64], since

they depend on the evolutionary history, ecological niche and host adaptation of the

bacteria and substantially di�er even between closely related species. Thus, the method

is particularly not applicable for species with no or only few well studied relatives. Nev-

ertheless, sequence similarity searches are an important tool for comparative genomics

studies in closely related species Approaches using transcriptional co-regulation need

knowledge about a TTSS e�ector speci�c promoters which have not yet been described

for most bacteria possessing a TTSS. The unusual amino acid composition in the e�ec-

tor N-termini has to date only been described and exploited in screens in P. syringae.

Chromosomal co-localization is only applicable if e�ectors and TTSS related proteins or

chaperons are clustered in genomic proximity as described for the pathogenicity islands

in Salmonella [65]. However, these pathogenicity islands are absent in other bacteria

known to harbor a TTSS such as the Chlamydiae, for which the genes encoding known

e�ectors are scattered around the genome [66, 67]. The applicability of genomic prox-

imity has been further assessed in this work, as well as the use of 'genomic context

methods' to detect functional relationships between e�ector and secretion system pro-

teins. In addition, the co-membership of chlamydial e�ectors and TTSS components

in virulence related functional modules has been investigated as described in Chapter

??. Analyses based on co-regulation are restricted to organisms for which a special reg-

ulation for virulence is known and an identi�cation of the related regulatory elements

is feasible by bioinformatics methods, which is a di�cult problem in many cases due

to the degenerated nature of their short sequences within the promoter. Approaches

by this concept lack speci�city to TTSS mediated secretion as they may also detect

virulence related genes in general, but could be complemented by additional, e�ector

speci�c information as an unusual amino acid content in the N-termini of candidates,

as utilized by Fouts et al. [57]. The approach to detect pairs of e�ectors and their

cognate chaperons is very elegant since it is species-independent. It is constraint by
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the actual need of a chaperon for transport, which has only been shown for a couple of

e�ectors. Large-scale screens using the very N-terminal end of an e�ector [34, 35, 62]

strongly indicate chaperon independent substrate recognition which might be regularly

the case in vivo. This leads to a high false negative rate, since e�ectors need not to be

co-localized to a chaperon.

1.1.5 Complementary approaches to detect secreted and e�ector

proteins of other pathways

E�ector proteins (or, more generally, proteins that act outside the bacterial cell) can

be delivered not only by the TTSS, but also by other secretion systems. The general

secretion pathway recognizes an N-terminal signal which contains a cleavage-site that

is removed during transport. The complete signal and especially the cleavage-site can

be computationally modeled and used for the prediction of proteins that are substrate

to this system. The most prominent implementation of such a prediction software is

SignalP [68] which is based on a neural net to predict cleavage site and secretion prob-

ability. As aforementioned, many e�ectors mimic eukaryotic domains. This observation

can be used to identify e�ector proteins rather by their eukaryotic like function as by

their recognition sequence. These eukaryotic like proteins can be identi�ed by domain

signatures that occur on proteins participating in typically eukaryotic functionalities as

in signal transduction pathways. Since they nevertheless exist in bacteria as e�ectors,

they are named 'eukaryotic like domains'. This idea has been applied in several studies

as by Angot and co-workers [32] or as feature in an integrative approach for the detection

of Legionella e�ectors by Burstein and co-workers [69]. This approach is fruitful, since

for most secretion systems no prediction tool is available (as by the Type IV system).

In a project of our group, Andre Jehl systematically identi�ed eukaryotic like domains

using a simple statistical frame-work and exhaustive comparisons of bacterial and eu-

karyotic genomes. The aim of the project is to identify domain signatures enriched in

pathogenic and depleted in non-pathogenic bacteria that are also present in eukaryotes.

The system revealed several known examples as well as novel domain candidates.

1.2 Chlamydiae

The �rst part of this work deals explicitely with Chlamydiae, therefore they are shortly

introduced in this Section.
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1.2.1 Biology and clinical relevance

Chlamydiae, �rstly described as Chlamydozoa by Halberstaedter and von Prowazek in

1907 [70] as agent of trachoma, are obligate intra-cellular bacteria. They exibit a unique

biology with a bi-phasic life-style and form separate inclusions in their host cell. They are

causing agent of several diseases and Chlamydia infection is the most frequent sexually

transmitted diseases in developed countries. Several di�erent species of the phylum have

been described and the host range of Chlamydiae covers species as di�erent as amoebae

[71, 72], birds [73], small ruminents [74], �sh [75], frog [76], cattle [77], and human

[78, 79], whereby the individual species and strains are typically found in a speci�c sets

of hosts [73].

Clinical and economic relevance In humans, Chlamydiae cause several diseases in-

cluding pelvic in�ammatory disease leading to infertility (estimiate of cases of chlamydia

caused infertility in the USA: 40000 p.a. [80]) and urinary tract infections [81], diseases

of the respiratory tract [82, 83], and infection of the eye [84]. The complete economic

costs are estimated by Washington and co-workers as around 1.5 billion USD p.a. in the

United States alone [85]. The impact of Chlamydiae based infection on animals cannot

be neglected: a speci�c strain of C. pneumoniae [86] could be related to the decline

in the population of the koala Phascolarctos cinereus [87] and chlamydial infection of

animals is also an economic issue due to high abort rates caused by Chlamydia abortus

in sheep, goat and cattle [88, 77].

Taxonomy The taxonomy of the Phylum Chlamydiae is a topic of vivid discussion

in the scienti�c community. Broadly, the known chlamydia-like species can be sepa-

rated into 'pathogenic' species which are very specialized to an higher eukaryotic host,

and 'environmental' species, often symbionts in amoebae, that are supposed to have

a broader host range and that are isolated from environmental samples. A molceular

based taxonomy has been introduced recently by Bush and co-workers by the creation

of robust trees from �ve di�erent proteins (the major outer membrane complex MOMP,

the GroeL chaperone, a KDO transferase, a small cystein rich lipoprotein, and another

cysten rich protein) [89]. The resulting consensus-tree turned out to be discriminative

between the nine species used in this work. The authors propose a phylogeny in which

the 'pathogenic' Chlamydiae are split into two genus, the Chlamydophila and Chlamydia

which comprise the family of Chlamydiaceae. The 'environmental' species comprise their

own families Simkaniaceae, Waddliaceae and Parachlamydiaceae.

20



1.2. CHLAMYDIAE

Chlamydial genomes: reduction due to intra-cellular life-style The amount of cod-

ing sequences in the genomes of the Chlamydiae di�ers between 895 genes in the smallest

pathogenic and genes 2854 in the largest genome of the environmental species. Such

relatively small amounts of genes are typical for bacteria with intra-cellular life-style

[90], for which di�erent evolutionary forces lead to genome reduction in intra-cellular

pathogens as the inability to acquire novel genetic material by horizontal gene trans-

fer [90, 91]. This variance in genome sizes within the environmental and especially in

comparison to the pathogenic Chlamydiae can be interpreted as di�erently strong adap-

tation to the respective hosts as indicated by greater metabolic capabilities and a wider

host range of the environmental samples [92, 93, 94, 95]. In general, loss of genes due

to an intra-cellular life-style eleminates complete cellular functionalities [96] which must

be complemented by (parasitic) interaction with the host [97, 98, 1, 99].

Biphasic life-cycle and inclusion The life-cycle of Chlamydiae comprises two di�erent

cell states: the elementary body (EB), and the reticulate body (RB). Both di�er in

their morphology and general functionalities. The only other knwon bacteria with a bi-

phasic life-cycle are the Ricketsiales which di�er substantially from that of Chlamydiae

[100]. The EB comprise the extracellular, infectious form of Chlamydiae. This form is

metabolic inactive, however the Type III secretion system seems to be active as needed

for the invasion of the host cell [101]. The EB attaches to the host cell and initiates the

uptake of the Chlaymdium which is at least partly mediated by the Type III secreted

e�ector TARP that recrutes Actin from the host [102]. After entry, the EB di�erentiates

to RB as metabolic active form, a process called 'primary di�erentiation'. This process

includes the activation of several genes (named 'early' genes) and the building of a

separate area, the inclusion, a vacuole like structure typical for Chlamydiae. Belland and

co-workers identi�ed genes expressed in this phase by exprexssion analysis and found at

least eight chlamydia-speci�c genes activated in this phase [103]. After a lag phase, the

bacterial cells start to replicate while the inclusion is expanded and the cells' metabolic

activity is at its maximum. Within this time-phase several e�ectors are secreted by the

Type III system but also by other tranport routes as in the case of CPAF [104]. The

Chlamydiae infer with the Golgi apparatus to obtain lipids from the host [105]. The

'secondary di�erentiation' creates EBs while the chromosomes are condensed and the

metabolism switches to an rather inactive state. This process involves at least 70 genes

as identi�ed by Nickolson et al. [106]. Both, the pathogenic as well as the environmental

Chlaymdiae exhibit this bi-phasic life-cycle. A special feature of the Chlamydiae is the
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inclusion, a vacuole like structure that bears the chlamydial cells and separates them

from the host cell. This structure is membrane bound and built up by lipids from the

host, mainly sphingolipids. The inclusion contains several chlamydia speci�c proteins

(termed Inc proteins), which are relatively diverse but share a certain hydrophobicity

pattern. Many of these are transported by the Type III secretion system. The IncA

protein [107], for example, is required for the fusion of 'stolen' vesicles from the exocytic

pathway into the inclusion membrane. However, the function of most inclusion proteins

are unknown, as well as how nutriens are acquired from the host cell.

1.2.2 The role of computational biology for chlamydia research

Since the Chlamydiae exhibt their special life-style, their genomes cannot be geneti-

cally manipulated since they are either inactive or unaccessible in the host cell. This

fact renders experiments based on genetic manipulation useless [108] and encourages

predictive analyses by bioinformatics' means. Important questions to solve include the

identi�cation of the genes that participate in the development cycle and infection as

by expression analyses and, importantly, by the detection of e�ector candidates. The

amount and function of proteins which populate the inclusion or are e�ctors is unknown

and screens for further candidates included an initial computational analysis [34, 64].

Many chlamydial proteins are of unknown function since the species are relatively distant

to well studied organism from which inferences could be made. Especially, the environ-

mental species provide a large fraction of genes which exhibit no detectable orthology

to known proteins. This �nding motivates an annotation prediction that is not solely

dependent on homology searches. The phylogenetic relationships of the Chlamydiae to

other clades as the Planctomycetes is not yet resolved and could give, with the help of

bioinformatics, insights into the general evolution of Bacteria [109]. Many yet unknown

Chlamydiae will be isolated from environmental samples by second generation sequenc-

ing, which will encourage the development of useful assembly strategies for these species.

Importantly, bioinformatics plays a role in the sub-typing of di�erent chlamydial strains

due to their pathologic behaviour [110]. In general, bioinformatics can provide short-

cuts bye.g. proposing e�ector candidates. In return, information gained speci�c for

Chlamydiae could give insight in the application of bioinformatics' tools when dealing

with non-standard organisms.
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1.3 Concepts used in this work

In this section, concepts and methods that are used in this work are introduced. For

the modeling of the Type III secretion signal, machine learning algorithms (i.e. binary

classi�cation algorithms) are employed. Machine Learning also deals with the �eld of

clustering that is needed in this work to group proteins by common origin (in order

to get orthologous groups) or by function (in order to delineate functional modules

from interaction networks). Di�erent methods to measure and to predict interactions

are outlined, as well as their integration into a �nal, predicted interaction network as

generated for the chlamydial genomes in this work. General properties of biological

networks are introduced as well as strategies for the delineation of functional modules.

The prediction of protein-function using the functional modules is one application used

herein, in consequence, basics of function prediction as well as advanced module and

network-based concepts on this topic are introduced. The detection of orthologs plays

a role in several steps of the network based analyses.

1.3.1 Machine learning

In this section, mathematical and algorithmic concepts used within this work are intro-

duced. These can be broadly subsumed as machine learning algorithms.

Machine learning The �eld of machine learning comprises statistical, mathematical

and algorithmic concepts to extract non-trivial knowledge from data. The applications

of algorithms invented in this �eld are numerous and cover any domain that deals with

large amounts of empirical data as the analyses of customers' behavior, prediction of the

development of stock prices, automatic analyses of satellite images, text-mining to de-

duce relevant relationships between entities, and localized services on cellular phones and

many more. Many bioinformatics' approaches comprise machine learning techniques as

gene prediction, the detection of gene families by clusterings, several classi�cation ap-

proaches as automated functional annotation and many more. Two main categories

of machine learning techniques exist: supervised and un-supervised learning. Learn-

ing means here the generalization of concepts from data which are predictive and/or

descriptive. The unsupervised methods analyze the structure of data and report knowl-

edge, e.g. a partitioning or association rules, that has been unknown and for which

no a priori assumption has been made. Examples of un-supervised learning are clus-

tering algorithms which deduce groups of similar objects from data and hereby report
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classes in the data that have been unknown before. Supervised methods learn by a given

training set which is de�ned in advance. Binary classi�cation algorithm are prominent

examples of this case: they abstract rules from positive and negative training instances

of a certain class of interest in a training step, and predict if unseen instances belong

to this class. The classi�cation into supervised/un-supervised approaches is �uent and

machine learning based analyses may contain both aspects. In this work, representatives

of both concepts are used: functional modules are deduced by un-supervised clustering,

and Type III e�ector proteins are predicted by supervised learning.

Clustering Clustering techniques group objects due to their similarity or distance and

result in a projection of the objects to groups, then called clusters. The members within

a group are ideally more similar to each other as to instances of other clusters. Clustering

is one of the key procedures in bioinformatics, and any introduction cannot be complete:

as in September 2010, the bioinformatics' journal 'BMC Bioinformatics' lists 1302 papers

when querying the term 'clustering algorithm', the older journal 'Bioinformatics' 6262,

and the general journal 'Nature' 828. Prominent examples are the delineation of protein

families, groups of orthologs, and the detection of functional modules from interaction

networks.

Distance measures Initial to clustering a certain set of objects, relationships between

the objects must be determined. These can either be de�ned as distance or as corre-

lation and the de�nition of a suitable measure is basic to the meaningful application

of cluster algorithms. In the example of the clustering of protein families, a suitable

measure is sequence similarity that re�ects the evolutionary relationships of proteins.

In the example of functional modules, the distance or correlation must re�ect functional

dependency which is, for example, given by the con�dence of a measured or predicted

functional or physical interaction.

Principal classes of clustering approaches The amount of available clustering algo-

rithms is huge, and many specialized solutions for certain domains of interest exists. The

algorithms can be broadly grouped by following properties: approaches with and with-

out a priori assumption on the amount of clusters, hierarchical or grouping approaches,

and network-based or general approaches. Clusterings which need a given amount of

clusters are the K-means clustering and expectation maximization algorithms. In many

questions of computational biology, the amount of clusters is unknown and must be
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estimated in advance when using these algorithms, as in the case of the delineation of

modules or protein families. Hierarchical methods do not create groupings but build

a tree by joining iteratively objects to their most similar cluster. Prominent examples

are provided by the family of linkage clusterings. There a several applications of these

approaches for biological data, since many biological entities can be related in an hi-

erarchical structure as evolutionary relations between genes (as by phylogenetic trees)

or protein families as in the SYSTERS project [111]. Other problems are solved by

partitioning but not by an hierarchy, as the delineation of orthologous groups [112] or

most module clustering approaches. Network based methods analyze not only the bi-

nary relations between objects but take network properties into account (either directly

or indirectly) since this information is meaningful in real-world networks [113]. They are

applied if dense regions in a network should be delineated and often rely on principles as

information �ow or local topology as clustering coe�cients. The Markov Clustering al-

gorithm, for example, has been successfully applied in several domains of bioinformatics,

including the detection of modules and protein families [114, 115].

Binary classi�cation Approaches of binary classi�cation are supervised methods which

abstract knowledge of training instances in order to predict unseen instances. They are

therefore often referred to as classi�cation algorithms or classi�ers. Their use in bioin-

formatics is widespread: applications comprise the identi�cation of signal peptides (this

work) [116, 117], the identi�cation of tumor sub-types [118], prediction of the origin of

EST sequences [119], sub-cellular localization [120], and function [121, 122]. Several dif-

ferent classi�cation algorithms exist based on di�erent mathematically principles. The

most simple classi�cator is the k-nearest neighbor approach which classi�es instances

related by some distance/similarity measure by the majority vote of k next instances

of the training. Neural networks are an analog to the biological neurons and comprise

di�erent layers (input, hidden, and output layers, depending on the used variant) with

transition probabilities between them. The training of the networks adjusts these transi-

tion probabilities to the target function (the classi�cation found in the training). Unseen

instances presented the input layer lead then to a prediction of the output layer. Support

vector machines (SVM) �nd the most separating hyperplane in the space of instances

de�ned by the 'supporting vectors'. Unseen instances are then judged by their position

in regard of the trained hyperplane. A principle often used with SVMs is the use of so-

called 'kernel' functions that allow to project the feature space into a coordinate-system

in which instances are separable if this is not su�ciently possible in the original case.
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The naive Bayesian classi�er is based on the Bayesian theorem and judges the odds ratio

of the conditional probabilities to see a certain feature in the positive and in the neg-

ative class. The approach is called naive due to the simpli�cation, that di�erent kinds

of features are treated as independent from each other in the Bayesian mathematical

frame-work, allowing to judge sparse data and saving computational costs. The WEKA

toolbox provides implementations of many classi�cation algorithms ready-to-use [123].

Performance measures The performance of a binary classi�er must be assessed using

independent test sets, which is mostly done by cross-validation. This process divides

the set of known instances into equally sized training and test sets, trains with the

former one and computes performance measures with the latter one. These measures

are based on the counts of true positive (TP), false positive (FP), true negative (TN),

and false negative (FN) cases. Typical performance measures computed are Sensitivity
TP

(TP+FN)
(also called Recall), Selectivity TN

TN+FP
, and Precision computed as TP

(TP+FP )
.

The receiver operating statistic (ROC analysis) has been originally invented to judge

the performance of radar systems in detecting aircrafts causing its' name. A ROC curve

is obtained by plotting the true positive versus false positive rate which is commonly

obtained by varying a threshold above test instances are classi�ed as positive. So, this

plot describes the behavior of the classi�er in more detail. The area under the curve

(AUC) gives a measure of the classi�ers general performance and can be used to compare

di�erent approaches on the same data.

1.3.2 Orthology and orthologous groups

The term orthology in the context of genomics describes the descent of a certain protein

common to a pair of species by the speciation of their common ancestor in contrast

to duplication events (which provides paralogs) or horizontal transfers. Conceptually,

two orthologs comprise 'the same gene' in di�erent organisms and, although de�ned

in the context of evolution, two orthologs are often regarded to implement the same

functionality in the two di�erent species. This point of view is clearly not correct in

all cases since the orthologs might have adapted novel functionalities due to di�erent

evolutionary pressures. However, an ortholog is the most probable functional equiva-

lent of a protein in another species. The topic of functional equivalence is reviewed by

Eugene Koonin, and in a test on orthologs between E. coli and B. subtilis, no clear

case of functional di�erence could be found [124]. However, examples exist as for the

DnaG primase which acts in di�erent cellular processes in archeal and bacterial cells as
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described in this review. This functional equivalence indicates the importance to detect

orthologous relationships to facilitate function transfer and comparative studies between

di�erent organisms. In this work, the identi�cation of functional interactions by genomic

context methods as well as a comparative study between the functional equipment of

pathogenic and environmental Chlamydiae directly refer to methods of ortholog recog-

nition. The main di�culty in the detection of orthologs are a) the determination of

the correct ortholog in case of several candidates introduced by horizontal transfer and

duplication events, b) the recognition of absence of an ortholog due to gene loss, and c)

the detection of orthologs in distant species which are di�cult to detect due to the lack

of sequence similarity. The most reliable method to cope these problems is a careful

analyses of the evolutionary relationship by phylogeny [125]. However, this approach is

time consuming and computational costly. The bi-directional best hit method relies on

a complete matrix of exhaustive pairwise all-against-all similarity searches and is based

on the rational that a reciprocal best hit is the most probable ortholog. This criterion

fails in the case of gene loss, paralogs, and HGTs and therefore, problem a) and b) is

tackled by this procedure. To extend this idea, a triangle criterion has been introduced

using three instead of two species by Tatusov [112] when creating groups of orthologs.

This criterion should further reduce the rate of miss-assignments and is also the basis

to create cluster of orthologs which span, in the extreme case, the whole tree of life.

The building of clusters of orthologous groups tackles problem c) since transitive rela-

tions are introduced which join distant orthologs by cluster co-membership without the

need of signi�cant sequence similarity between them. Several resources of orthologous

groups exist as the NCBI COG database [112] and eggNOG [126]. Other approaches

deal with the concept of paralogy by detecting duplication events which are younger as

the speciation event as done by Inparanoid [127].

1.3.3 Networks

Networks are a structure that can be found everywhere: the World-Wide-Web, the

layout of underground connections, our social networks and many more entities have

a network structure. It is therefore not astonishing that networks gained attention

in various areas of research from mathematics to economics. In biology, networks are

ubiquitous: ecosystems can be described by them as well as the molecular interplay

in the cell. The network representation of biological entities gave rise to the �eld of

systems biology by shifting the paradigm away from the interest in only one gene or

protein towards their interplay in systems.
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Mathematical representation as graphs Networks can be mathematically represented

as a graph containing a set of nodes (vertices) that represent objects and a set of edges

which form their relationships. Edges might be directed or undirected depending on the

kind of relationship they describe and may have either an uniform weight or describe

the strength of a relationship by di�erent weights. A graph might comprise only one

kind of nodes and edges or several di�erent classes of them. This representation can be

directly transfered into suitable data structures which are easily accessible by algorithms

on that graphs as adjacency matrices.

Network properties Networks are a vivid subject of research in mathematics, since

Erdös introduced this topic in 1960 by investigating random graphs [128]. However, most

natural networks do not follow the characteristics of these random model. Barabasi and

co-workers developed a mathematical frame-work to describe properties of networks

from various domains [129]. Many of the real world networks share general properties

[113, 130, 131, 132] and can be described by a scale-free architecture which follows a

power law distribution. 'Scale free' in this context means the absence of some network

measure which could be used to characterize the network as 'by a typical node' [129].

A very good overview of network properties and their relation to principal patterns

of behavior (as robustness and inner structure) of biological networks are summarized

in a review of Barabasi and Oltvai [113] which are shortly outlined here: important

measures to characterize properties of real-world networks are (beside others) the degree

distribution and the average clustering coe�cient. The degree (amount of incident

edges to a node) distribution describes the probability to get a certain amount of direct

partners if randomly choosing a node from the network. In many natural networks, this

distribution follows a power law of the form of P (k)˜k−γ, but a Poisson distribution in

random networks. Typical for the scale free networks is the existence of 'hubs', nodes

which connect to many other nodes in the network. Furthermore, these networks are

'small world' networks indicating that each node can be reached from any starting point

in only a few steps. The latter property can be related to the exponent γ of the power

law distribution and in cases of γ between 2-3, the network is even 'ultra-small' and

any node can be reached in only 2-3 steps [129], a property found in many biological

networks. As rule of thumb, the properties of scale-free networks (existence of hubs,

small world phenomenon, robustness etc.) are valid if the exponent γ is smaller then

three. The average clustering coe�cient describes the inner structure between the nodes,

i.e. their tendency to form highly connected sub-groups. This measure is dependent on
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the network composition (amount nodes and edges). High average clustering coe�cients

indicate the existence of dense regions and a modular structure of the network. A similar

measure, the function C(k) that describes the cluster-coe�cients for nodes of degree

k can give further hints to the network structure: hierarchical structures within the

network are re�ected by a power law distribution of C(k).

Biological networks By principle, any relationship between molecules can be repre-

sented as graphs. However, the concept is especially fruitful for certain biological aspects

that should be investigated by the interplay of their components. Metabolic pathways,

for example, can be modeled as graphs: enzymes and substrates provide nodes, and the

reactions comprise (directed) edges in the network. Such networks have found to be scale

free [133] when comparing the organization of these networks in 43 di�erent species, in-

dicating a common design principle which is evolutionary conserved. The regulation of

cellular processes can be represented as directed graphs since regulation has a direction.

Lee an co-workers modeled an regulatory network for yeast and analyzed the existence

of network motifs, small patterns consisting of few edges which appear above random

[134]. These motifs can be seen as building blocks of functionality in such networks

since they implement a certain kind of regulatory behavior. Prominent examples are

the bi-fan motif or feed-forward loops. Such motifs can be �nd in di�erent networks and

are characteristic for the kind of network under investigation [135]. The focus in this

work is on protein-protein interaction networks. These networks are commonly modeled

as undirected graph since the interaction descriptions are undirected (two proteins in-

teract or do not interact), however directions could be introduced to model interactions

that lead to modi�cations. The interaction networks result either from measurements

or predictions as described separately. The applications of these networks are various

and include function transfer (compare Section 1.3.6) and the deduction of functional

modules identi�ed as dense regions in the interaction graph (see Section 1.3.5). These in-

teraction networks can be combined with additional information. Jensen and co-workers

integrated the prediction of speci�c phosphorylation sites into a network of functional

interactions. This system, called NetworKIN, allows to identify the probable substrate

of a kinase by evaluating the functional neighborhood in the interaction graph. The

combined method increases the speci�city of the phosphorylation prediction by 2.5 fold

[136]. Combination of network information with data of essentiality and expression re-

vealed the importance of proteins that comprise bottlenecks in the interaction network

[137] and the combination with structural information revealed di�erent types of hubs
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(party and date) which interact either concurrently or consecutive with many other

proteins since they provide several binding interfaces or only few [138].

1.3.4 Protein-protein interactions

Protein-protein interactions play a key role in the implementation of cellular function-

ality as most processes comprise an interplay of di�erent proteins. In the �rst part

of this work, interactions between chlamydial proteins are predicted exhaustively from

genomic data and provides the basis to deduce functional modules. The backgrounds

for interaction measurement and prediction are presented in this section.

Detection of protein-protein interactions in the laboratory The laboratory methods

to detect protein-protein interactions (PPIs) are manifold, and the Microbial Protein In-

teraction Database (MPIDB) knows, at the moment, over 70 di�erent kinds of methods.

Among these, the two-hybrid and tandem a�nity puri�cation based methods are the

two most important contributors of information in this database. The basic principle of

the two-hybrid assays is to reconstruct the GAL4 transcription factor which has been di-

vided into two parts (a promotor binding and an polymerase activation domain). These

parts are fused to two proteins suspected to interact (the hybrids). Only if these two

interacts, the two domains come into proximity and resemble the transcription factor

while activating the transcription of a reporter gene. The method can be used for large

scale screens using one protein as 'bait' and detecting unknown interactors as 'prey'

and comprehensive maps of PPI interactions have been created as for yeast [139, 140].

The two-hybrid assay is capable to detect transient interactions and, especially detect

interactions occurring in in vivo. Tandem a�nity puri�cation (TAP) uses a two step

chromatographic procedure to co-purify interactors with their bait protein. To use chro-

matographic puri�cation of proteins, the latter must be fused to a tag sequence which

binds the protein to molecules �xed on a column. In the TAP procedure, two di�erent

tags are used which are separated by a protease cleavage site. The �rst tag is highly

a�ne to the column but the binding can only be resolved while denaturating the protein

complex. This problem is solved by the speci�c protease domain which is used to cleave

the detected complex from the column. The second tag allows mild release of the found

complexes and is used to wash out the protease. The method can identify indirect in-

teractions since whole complexes are detected and allows to assess the stoichiometry of

the found proteins in natural conditions. The former aspect might also be a drawback

if only direct interactions should be investigated. To resolve this problem, the MPIDB
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database adds only interactions predicted between a pair of proteins by this method.

Large scale screens with complete proteomes based on variants of this method have been

performed for several species including yeast [141] and E. coli [142, 143].

Resources of protein-protein interactions The Munich Information Center for Pro-

tein Sequences (MIPS now IBIS) provides comprehensive and curated interaction data of

S. cerevisiae [144] as well as a resource for mammalian complexes [145]. The database of

Interacting Proteins (DIP) comprises interactions from various species including two pro-

caryotic set for E. coli and Helicobacter pylori. BIND, the Biomolecular Interaction Net-

work Database, comprises interactions of various kinds of biologically relevant molecules

including proteins [146]. The Microbial Protein Interaction Database (MPIDB) provides

comprehensively interactions of bacterial proteins. The resource is based on two prin-

cipal data-sources: interactions have been curated from literature and bacterial related

interactions have been extracted from other data collections [147, 148].

Prediction of protein-protein interactions Functional protein-protein interactions

(FPPI; proteins contributing to the same cellular functions, e.g. to a metabolic pathway)

often result in an evolutionary coupling of the involved proteins. By systematic compar-

isons between genome sequences, FPPI can be computationally predicted. Typically,

three di�erent methods are subsumed under the term genomic context methods: the

detection of gene fusion [149] or �ssion events, the (conserved) genomic neighborhood

method [150, 151, 152], and phylogenetic pro�ling (also called cooccurrence method)

[153]. These methods are in principle applicable to any completely sequenced genome,

with the limitation that genomic neighborhood is only well conserved in prokaryotes.

Crucial to all these methods is the identi�cation of the `same' gene in di�erent organ-

isms, which is presumed to carry out the same or a similar functionality in most of

the organisms under investigation. Commonly, these corresponding genes are identi�ed

in di�erent organisms by orthology-relationships. The most intuitive genomic context

method is based on the detection of gene fusion or �ssion events. A pair of proteins

occurring in a number of genomes is predicted to interact if their genes are found fused

into one single gene in another number of genomes. If these genomes are not too closely

related, the evolutionary conservation of the fused form provides strong evidence for

functional coupling and even for physical interaction of the pair of not fused proteins.

The (conserved) neighborhood method is based on the observation that functionally in-

teracting genes in prokaryotes are often found in genomic proximity (even in not closely
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related genomes). Co-regulation of genes in operons and the horizontal transfer of ge-

nomic fragments are assumed to evolutionary maintain this co-localization of interacting

genes. The phylogenetic pro�le method is based on the �nding that genes, ful�lling a

common cellular function, often share the same evolutionary fate. If an organism gains

or loses certain functionality, the majority of genes related to this function will also be

gained or lost. This common fate is detectable by comparing the phylogenetic distribu-

tion of genes in many genome sequences. Functionally coupled proteins are then detected

by comparing the pattern of their presence and absence in the genomes. Notably, the

information content of these pro�les di�ers, as e.g. house-keeping genes existent in the

majority of organisms cannot be functionally distinguished by this method. Pro�les

with low information content must therefore be �ltered out in such an analysis. Since

these methods base on di�erent phenomena (common translation, genomic organiza-

tion, evolutionary fate), it is not surprising that they di�er in the amount and quality

of prediction. The gene fusion method predicts the fewest number of functional links.

However, these are highly reliable due to the strength of the evidence. The conserved

neighborhood method returns the highest amount of links, but is only applicable to

prokaryotes. The phylogenetic pro�le method predicts fewer links as the neighborhood

method and cannot be applied to ubiquitous or very speci�c genes. In all three meth-

ods the reliability of the prediction depends on the number and phylogenetic diversity

of genome sequences supporting the interaction. In addition to these classic genomic

context methods that rely on regularities of equivalent genes in di�erent genomes, some

other methods exist: the problem of operon prediction is closely related to the pre-

diction of functional coupling since the operon indicates an unit of common regulation

implying a common functionality. Operons can be predicted as genes with small in-

tergenic distances on the same strand which form 'gene clusters' [154]. The 'interolog'

concept is based on the idea, that two homologs of a pair of known interacting pro-

teins have some probability to interact. Pairs of candidate proteins are detected by

homology searches [155] or orthologous assignments [156] of two known interactors in

a species of interest and the interaction is transfered. A score which can be further

benchmarked can be computed by a function of the sequence similarities found in the

interolog compared to the query [155]. It has been found, that several interactions can

be meaningfully transfered between di�erent organisms and report known and unknown

interactions, even between distant species as yeast an �y [155]. The method relies, as

the others, on completely sequenced genomes to detect the most similar pair of proteins.

Interactions can also be de�ned rather between functional domains as between proteins.
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Several approaches exist to �nd pairs of likely interacting domains as, e.g. de�ned as

pair of Pfam domains. Such pairs can be mapped to proteins carrying the domains

and are therefore suitable to predict protein-protein interactions by this second step.

DIMA ?? is a resource which comprises such domain-domain interactions calculated

by di�erent methods including the Domain Pair Exclusion Method (DPEA) [157], the

domain-pro�le method (DPROF), and iPfam [158]. The three mentioned methods are

based on di�erent principles. The DPEA method computed a log likelihood ratio of

the frequency of pairs of domains found in known interactions against their frequency

in di�erent protein interactions. DPROF is based on the same idea as the protein

based cooccurrence method: interacting domains are under the evolutionary pressure to

be maintained concerted resulting in detectable relationships of the phyletic pattern of

their occurrence. iPfam analyses PDB structures and extracts domain pairs which are in

strong contact in these structures. Another approach to detect PPIs computationally is

the use of text-mining, most commonly by judging the co-occurrence of gene identi�ers

in abstracts statistically [159]. This approach recovers 'known' knowledge in the sense,

that both interaction partners are explicitly mentioned in several studies. However, for

eukaryotic species, this is by far the most contributing method in the STRING database

(see below) since the neighborhood methods cannot be applied in these organisms [159].

Integration of heterogeneous protein-protein interaction data For most organism,

the available interaction data is sparse, and even for the very well studied species as S.

cerevisiae not all interactions are known [160]. The prediction of functional interactions

as well as the deduction by experiments generates data which is partly complementary

and could give additional con�dence when combined. The challenge in such kind of anal-

yses is the integrative step, i.e. how to make di�erent kinds of measures comparable, and

how to integrate them into one resulting network. Lee and co-workers proposed a concep-

tual framework based on an unifying scoring scheme and demonstrated its' application

to create an interaction network of S. cerevisiae [161]. The authors observe an increase

in accuracy when adding methods and the �nal integrated network outperforms all the

individual networks when tested against an independent test-set of known interactions.

This work can be seen as blueprint for similar approaches: This scheme is based on log-

likelihood ratios which express the con�dence for each method integrated. The likelihood

ratios are estimated using a standard of truth (comprising a 'gold-set' of positive and

negative interactions) derived independently of the employed prediction methods. Each

method results in an evidence which is assessed against these gold sets resulting in a con-
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ditional probabilities P (+) = P (Gold|Evidence) and P (−) = P (¬Gold|Evidence). The
gold sets are deduced from KEGG pathways: a link is true positive, if both proteins share

the pathway, negative if they are found in two di�erent ones. A prior estimate of seeing

a certain interaction is computed as the amount of linkages in a certain pathway against

the amount between pathways: Prior = P (L)/P (¬L). The posterior score can then be

expressed as P (+)
P (−)
· Prior, and is logarithmized to obtain the log-likelihood score. This

scoring scheme makes the predictions directly comparable. Several di�erent methods to

predict interactions have been integrated including text-mining, co-expression, phyloge-

netic pro�les, and experimental data. The di�erent methods have been integrated using

a weighted integration scheme which takes into account dependencies between the di�er-

ent methods (described in the supplemental material) [161]). In general, the likelihood

ratios can be integrated by simple multiplication under the naive Bayesian assumption

if they are merely independent from each other. Jansen and co-worker showed that

even very poor predictors for protein interaction (as co-localization or co-essentiality)

can be used to successfully model interaction networks with larger coverage as by the

integration of measures PPIs alone. They also showed, that the Bayesian integration

outperforms a 'voting' approach in which the highest scoring method de�nes the inter-

action [162]. Date and Stoeckert modeled the interactome of P. falciparum [163] by

integrating co-expression data and phylogenetic pro�les under the Bayesian assump-

tion. The resulting network covers 68% of the genome and includes >2000 proteins of

unknown function for which functional inferences could be made. They compare the

interactome with a prediction for a relative, the Plasmodium yoelli. Di�erences in both

networks give hints to the genes responsible for the di�erent phenotypes of the two

species. Strong et al. combine di�erent genomic context methods (especially di�erent

kind of operon predictions) to predict interactions for the bacterium Mycobacterium

tuberculosis [164]. In this work, the di�erent evidences are not integrated by a prob-

abilistic approach but intersections of the di�erent methods are computed in order to

extract high con�dence links. The authors use the genomic context methods to assess

di�erent operon prediction methods. The performance of each genomic context method

is assessed by common key-word recovery of a predicted pairs of interacting proteins

against SWISSPROT key-words. In a further article, the predicted links are correlated

with their organization on the chromosome by representing them in a scatter plot of

the bacterial chromosome [165]. Hu and co-workers employed the Bayesian integration

approach to create a tissue speci�c interaction network for the retina of the mouse [166]

by integrating PPI data, co-expression, and GO term similarity. The nodes of their

34



1.3. CONCEPTS USED IN THIS WORK

network have been chosen by literature search and by expression in the retina. In their

analyses, they identi�ed candidates for retina related disease genes by linkage to known

examples and provide functional predictions. The STRING database [167] integrates

interaction predictions from experiments, databases, literature mining, genomic context

methods (namely, the cooccurrence method, gene fusion, and conserved neighborhood),

and co-expression analyses. The network comprised in STRING has not been estab-

lished for single organisms but between clusters of orthologous groups [167] which are

also used in the prediction process. These orthologous groups are steadily expanded

when novel species are added to the system and are maintained and processed in the

eggNOG project [126]. The interactions can be projected to a genome of interest by

the orthologous relationships. A convenient web-interface allows the navigation through

the interaction network either due to the orthologous group network or in the species

projection. The scoring system in STRING returns an integrated score of all predictions

as well as for each method. The scores are integrated by �tting the accuracy due to the

recovery of KEGG pathways as function of the raw scores to Hill equations which are

related to each other by a function that describes the equivalence between (i.e. which

score of method A results in the same accuracy as score B). The integrated score is

then obtained by multiplication of the individual scores for not interacting (resulting in

P (¬)) as 1 − P (¬) [168] under the naive Bayesian assumption of independence [167].

The downloadable versions of the database also provide the raw scores as returned by

the di�erent methods which, for example, indicate the amount of evidences as for the

gene-fusion or neighborhood method or the correlation scores of the phylogenetic pro-

�les. A similar system is the Prolinks database [154]. The main di�erence between the

two system is that in Prolinks, the interaction predictions are computed on the basis of

proteins and not on orthologous groups.

1.3.5 Functional modules

Cellular functionalities are mostly implemented by an interplay of several proteins in a

modular fashion [169]. These might interact directly as by modi�cation of or binding

to each other, or indirectly by a chain of common intermediates. A group of proteins

which function together in that way is commonly named a 'functional module'. Possible

examples of functional modules are the transcription apparatus, transport systems, and

metabolic pathways. A synonymous term sometimes found in the literature is 'cellular

sub-system' which mostly refers to the same concept as a part of the cell distinguishable

as system from the rest. In addition to the de�nition as sub-system, the term 'func-
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tional module' includes the aspect of a distinct functionality ful�lled by the module.

By principle, a module could be de�ned not only by its' participating proteins but by

all additional intermediates of its' related process, however this is rarely done in the

scienti�c community and the focus is set on the proteins as main carrier of cellular

functionality. Several de�nitions of a functional module exist which emphasize di�erent

aspects of functional modularity. These aspects may comprise the common functional

process, the concerted interplay to ful�ll that certain function, the modular structure,

and a common evolutionary fate. A possible de�nition which indirectly includes several

of the aspects mentioned beforehand is the detectability of modules as dense regions

(clusters) in comprehensive biological networks implying functional and evolutionary

constraints on the module. In this work, the de�nition of a functional module as evo-

lutionary conserved entity comprising several proteins, detectable as natural cluster in

biological (i.e. functional interaction) network, and ful�lling a certain biological function

is followed. The term 'functional modules' has some homonymous meanings describing

di�erent concepts as protein domain composition, network motifs, or cassettes of tran-

scriptional regulatory units which are not regarded herein

The obvious general bene�t of the module concept is a possible description of the cell

by its general functional components beyond single proteins. Hereby, the clustering of

entities (proteins) into groups o�ers a reduction in complexity since the amount of mod-

ules is naturally smaller as of proteins. Since the modules are derived from networks

representing large-scale interaction measurements or predictions, they immediately give

a reduction in complexity the other way round: proteins can be identi�ed which partic-

ipate on a certain process and other can be discarded.

The actual entities used as functional modules in di�erent studies vary depending on

the set-up, the available data, and the underlying biological question. Possible enti-

ties that are not derived by network analysis include (without claim of completeness)

pathway de�nitions and modules generated by text-book knowledge, known operons

and transcriptional units de�ned by common regulatory elements, and measured com-

plexes. Modules have been obtained from network analyses of interaction data pre-

dicted by genomic context methods, co-expression, high-throughput interaction screens

(as by Yeast-2-hybrid screens), text-mining, regulatory networks, genetic interactions

and many more. Often diverse sources of data have been combined int one network

model before the clustering procedure. Depending on the input data, clustering pro-

cedure, and the actual input data, the 'meaning' of a module varies from functional

interaction groups (i.e complexes) to very broadly functionally related entities (as e.g.
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larger pathways).

Studies on and with functional modules Meanwhile, a multitude of studies employ-

ing the concept of the functional module exist. Where di�erent detection methods are

discussed in the next paragraph, some analyses and �ndings covering di�erent aspects

of module related biology are outlined here.

Yang and co-workers identi�ed co-expression modules in mouse and human expression

data using a specialized algorithm (the Iterative Signature Algorithm) introduced by

Bergmann and co-workers for this purpose [170]. They related the modules to di�erent

tissues and compared corresponding modules between mouse and man. The identi�ed

tissue related modules showed a great variance in composition (size and members) be-

tween the two mammals indicating functional di�erences in the interplay of proteins

between human and its' main used model organism, the mouse [171]. From a concep-

tual point of view, an interesting aspect of this work is the conditional clustering of

modules due to tissue and expression. The clustering of gene expression data has been

found to provide meaningful modules by itself [172], and the combination with other

data is a logical next step. Tornow and Mewes joined the analysis of expression data in

yeast with the comprehensive interaction network available for this organism using the

super-paramagnetic clustering algorithm [173]. The study revealed signi�cant correla-

tion of several complexes/interactions with their co-expression while reporting modules

which exhibit con�dence according to both types of data. While in that study, an in-

tegration of expression and PPI data is initially used to detect reliable modules, the

consecutive application of expression data to modules is also fruitful: Lichtenberg et

al. combined modules from the yeast interaction network with expression data from

the yeast cell cycle [174]. The expression data has been screened for genes periodically

expressed during the cell cycle. The modules have then been modi�ed according to the

appearance of their member genes. The analysis revealed, that the composition of many

modules changes during the di�erent stages of the cycle and that some modules are built

or modi�ed by an 'just in time assembly' depending on the genes expressed at a certain

time-point. In a study of Suthram and co-workers [175] the correlation of di�erent hu-

man disease related modules has been investigated by the analysis of gene expression

data from cell states of 54 di�erent diseases. The work-�ow included the delineation of

modules by clustering of high-throughput interaction data, the identi�cation of genes

related to a disease by a systematic evaluation of the expression levels di�erent from

the normal cell state, and a quantitative correlation of the modules to each disease by
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an 'Module Response Score'. In further steps, the authors show that many diseases

are correlated by their participating modules and that 'multi-player' modules involved

in many diseases are also enriched in drug-targets known to be versatile. Even in the

analysis of meta-genomes representing entire microbial communities, functional module

can be applied. In a study of Gianoulis and co-workers [176], combinations of modules

and pathways have been identi�ed which correlate with environmental traits of the com-

munities. These correlations are called 'metabolic footprints', and are characteristic (i.e.

discriminating) for the environments where the samples came from. Li and co-workers

assessed the existence of parallel modules (functionally equivalent modules with partly

analogous members) in ten di�erent organisms comprising bacteria, archaea, and eu-

karyota [177]. The analysis revealed the existence of at least thirteen modules which

have a parallel counterpart including known and unknown parallel modules. The study

shows how the concept of the functional module can be used in comparative studies

on data from individual genomes and is a good starting point to understand functional

aspects of paralogy and gene duplication.

Mering and co-workers investigated the relationship between modules derived from a

functional interaction network and known pathways of the small metabolite metabolism

in E. coli. Many modules could be uniquely assigned to a certain pathway as repre-

sented in the EcoCyc database [178]. The modules tend to cover unbranched pathways

with higher accuracy as the branching points of the metabolic network and give hints to

possible pathway extensions and yet unknown pathways. Furthermore, some modules

participate on several pathways and therefore propose connections between them. Tanay

and co-workers created functional modules for S. cerevisiae by integrating several kind

of comprehensive information including not only PPI data, but also transcriptional and

phenotype information [179]. They could show, that modules can be found consistent

in these di�erent type of networks. Furthermore, they found a higher structure in the

network spanned by the modules (by connecting them due to shared module members)

which turned out to be modular in its organization again implying an hierarchical orga-

nization of functional modules. In their study, they also benchmarked the performance

of module based annotation transfer and predicted GO terms for several proteins.

The evolution of functional modules The evolution of modules has been investigated

in three major studies. They key question in all of them is to which extent a module is

not only a functional, but also a evolutionary unit. This question has been tackled by

comparing the (sometimes partial) existence of a module in several species. Theoret-
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ically, two extreme observations could be made: �rstly, a module is either completely

present or absent as a whole, or secondly, the modules' member proteins are randomly

existent in each species. A tendency to the former case is named (evolutionary) cohesive

behavior. Snel and Huynen [180] compared corresponding modules in 110 organisms.

These modules have been derived from di�erent sources, including MIPS complexes,

known operons, known pathways, transcriptional modules. The measurement used for

cohesive behavior has been computed as deviation of the fraction of present module

members in an organism from the average observation in all species. They found for

around 20% of the investigated modules a cohesive behavior indicating a �exible evo-

lution of many functional entities. The in�uence of noise in the data as introduced,

for example, by insu�cient orthologous resolution (i.e. by paralogs) has been assessed.

The reduction of such in�uences increased the amount of evolutionary cohesive modules

for some sets (as for the pathway modules) but did not change the general trend. The

authors conclude, that the observed cohesiveness is therefore an inherent property of

modules and �exible modules are not caused by �aws in their detection or by noise in

the input data. Campillos et al. determine a module's cohesiveness by assessing the

most parsimonious explanation for the joined evolution of the module members given a

�xed phylogeny. The algorithm returns the fraction of joined evolutionary events (gene

birth and death) and a normalized parsimony score (normalized costs). The distribu-

tion of these two variables is used to compute P-Values using a Monte-Carlo approach

[181]. This P-Value is then used to categorize the module as 'cohesive' or 'not-cohesive'.

Campillos found around 40% of the modules cohesive. Further analyses revealed cer-

tain tendencies of cohesive modules as they are larger, enriched in certain molecular

processes, and often deal with processes that mediate interaction with the environment

as e.g. transporters, but are less frequent horizontally transfered as none cohesive ones.

In summary, the study revealed that cohesiveness is indeed a signal which can be cor-

related to general properties of modules. Fokkens and Snel investigated the cohesive

behavior of eukaryotic modules which could be di�er from the prokaryotic case [182].

As modules, they investigated pathways and complexes, and for the detection of cohe-

siveness, they adapted and compared several measures to exclude a possible in�uence

of varying cohesiveness de�nitions. They found at least 27% of the modules signi�-

cantly cohesive, depending on the module de�nitions. As trend, pathways revealed a

higher cohesiveness as complexes. An interesting question when dealing with eukaryotes

is the in�uence of paralogs. The authors report a less cohesive behavior for modules

comprising several paralogs indicating a negative correlation between cohesiveness and
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functional divergence introduced by e.g. neo-functionalization of paralogs.

Methods to detect functional modules Functional modules can be detected in bio-

logical networks as dense regions. To detect the functional modules de novo from these

networks, clustering algorithms are employed. The amount of di�erent possible cluster

techniques is large, and only a few are introduced here. Many 'classical' clustering ap-

proaches as K-means, UPGMA, or hierarchical method have been successfully applied

to the problem as by Mering and co-workers [114]. These approaches have been de-

veloped to cluster diverse kind of objects given a certain distance measure or metric

but do not take any network properties into account unless coded in the distance mea-

sure. They are applicable to the problem since simple distance measures (as the edge

weight) between the objects in the network can be easily deduced. In the same study,

the Markov clustering algorithm (MCL) is tested as alternative [183]. This algorithm

is especially dedicated to the delineation of natural clusters' from real-world networks.

The algorithm investigates the information �ow in the network given by the network

topology and enforces edges with an high 'information current' while diminishing edges

of low current. While iterating this process, the cluster structure of the network be-

comes apparent. (For mathematical details, compare the publication [183]). The MCL

algorithm has been shown to be very successful in several areas of application including

the detection of protein families [115, 184], and also for the delineation of functional

modules [114, 185, 186] and can meanwhile be seen as a standard tool in computational

biology. MCODE (short for Molecular complex detection) is an algorithm which has

been dedicatedly designed for the extraction of complexes from interaction networks

[187]. The algorithm evaluates the density of a network around a given 'seed' protein

and iteratively expands the seed by neighbors with high clustering structure until a

certain cut-o� is reached. The candidate neighbors are hereby judged by their partic-

ipation on dense regions by a measure termed core-clustering coe�cient (for details,

compare the publication [187]). The method successfully reveals a high number of com-

plexes in di�erent sets. C�nder [188] is based on the Clique Percolation Method [189]

which detects overlapping communities in real-world graphs. These communities re�ect

modules if applied to interaction networks. An interesting feature of the approach is a

possible creation of overlapping clusters. Pereira-Leal and co-workers assessed the use

of a line-graph transformation [186] to enable the same e�ect: due to the line-graph

transformation (which can be seen as transformation of edges into nodes), each node

of the input graph can participate on several modules with a maximum of the amount
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of edges it initially had. The line graph is subjected to MCL clustering to deduce the

actual modules. The approach has been successfully applied to the yeast interaction

network. Tanay [179] et al. employ a bi-clustering approach in an weighted bipartite

graph. Such a graph represents proteins and properties (as co-expression or interaction)

as di�erent kind of nodes and allows to detect signi�cant clusters (sub-graphs) according

to all kinds of properties used (compare Tanay et al. [179] for details). A pruning proce-

dure removes overlapping clusters above a threshold to avoid a grouping to be reported

several times while still allowing overlapping modules.

A complementary approach to the de novo detection of functional modules by clus-

tering is the application of 'network-alignment' tools. These are applicable if a module

itself is already known and should be searched in another biological network. Examples

are the Path-Blast tool for linear modules (i.e. pathways) [190] which needs as input

a sub-network comprising the module, and a target network with sequence information

to search against. It integrates similarity searches with the given topology information

given by the input and returns an ordered list of the best matching pathways. The hits

are determined by a dynamic programming approach which �nds the most probable

path alignment with the lowest cost analogous to a pairwise sequence alignment. In a

succeeding work, the authors describe a related method to handle not only linear path-

ways but also complexes [191]. Torque (the topology-free querying algorithm) [192] is

an extension to the idea which does not need an input network to return reliable results

in the target network.

Curated Module and Pathway de�nitions and resources To assess the quality and

properties of functional modules, de�ned functional entities must be employed. Com-

monly used data-compilations for these purposes comprise curated module data-sets,

pathway de�nitions, or compilations of known complexes. Curated pathway models for

several organisms can be found in the KEGG database [193]. The pathways are initially

de�ned by their participating orthologs and descriptions of the reactions between them.

KEGG provides an own system of orthologous groups which is used to map the path-

way de�nitions onto an organism of interest. All ortholog and pathway de�nitions are

subject of constant improvement of the KEGG annotation team. Recently, the resource

(which also contains more detailed information on metabolites, reaction types and drug

classi�cations) has been extended by functional module de�nitions. Both, the pathway

as well as the module de�nitions have been used in several related studies [176, 180]. An

alternative database of metabolic pathways is EcoCyc [178] which is a comprehensive
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resource for the small metabolite metabolism of E. coli. MetaCyc is an extension of

the EcoCyc system to a large variety of microorganisms. Both resources are constantly

curated [194].

The Seed project [195] provides a data-source for pre-de�ned cellular subsystems that

are used for annotation. These sub-systems are conceptually near to functional modules.

Albeit neither the modules in KEGG nor in the Seed are extracted automatically from

a network but are de�ned by human curators. In consequence, they should exhibit sig-

ni�cant overlap but no perfect coincidence with automatically extracted modules from

biological networks. The DICS repository [196] provides an example of a special pur-

pose database based on modules: it contains human disease related modules and genes

which have been found co-clustered with known disease factors in functional modules.

Curated sets of protein complexes are also of importance for the research on functional

modules, since the complexes can be seen as functional entities of di�erent proteins

working functionally closely together. The CORUM database, for example, provides

curated mammalian complex data which is by hand curated and exhibits experimental

evidence [145]. Yeast complexes can be found in the MIPS yeast database which is

one of the most comprehensive resource for curated complex and interaction data so far

[144, 197].

1.3.6 Annotation of proteins

The functional annotation of proteins is one of the key applications of bioinformat-

ics since the large amount of novel sequences cannot be characterized by laboratory

methods. In this work, the use of functional modules for the annotation of chlamydial

proteins is assessed. In this section, concepts and approaches of functional annotations

are introduced.

Controlled vocabularies and ontologies The de�nition of function in the context of

annotation is principally broadly de�ned and may include any level of resolution from

molecular mechanisms to general cellular functionalities. Where it is necessary to at-

tach any of such information to a protein sequence in order to make this information

available to the scienti�c community, an unstructured annotation induces problems:

annotations cannot be compared between di�erent sets of proteins which renders com-

parative analyses impossible. Furthermore, computational approaches cannot make use

of unstructured annotation since algorithm cannot 'understand' free text. A solution

of this problem is the use of controlled vocabularies and biological ontologies. By prin-
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ciple, controlled vocabularies consists of a de�ned set of terms describing a domain of

interest (i.e. protein sequences). Ontologies are an extension of this concept introduc-

ing relations between the terms of a vocabulary. In many cases, these relations re�ect

hierarchical dependencies of objects, but this is no obligate rule. In the �eld of protein

annotation, a frequently used controlled vocabulary is the compilation of SWISSPROT

keywords used as part of the annotation process by the UNIPROT consortium [198].

This vocabulary comprises 1063 terms (as from 19th of August 2010) that are assigned

to ten major categories listed in Table 6.4. These categories do not imply a hierarchy

or de�ne term relationships but qualify the general kind of the described entities, there-

fore, these keywords are a controlled vocabulary but not an ontology. Twenty-three

functional categories have been de�ned by Tatusov an co-workers to functionally cate-

gorize the Clusters of Orthologous Groups (COGs) [?, 199] describing di�erent cellular

abilities as 'Transcription' or 'Defense mechanism' listed in Table 6.2.

Other classi�cation systems provide relationships between their entities and represent

ontologies rather than controlled vocabularies. The Enzyme Commission numbers (EC

numbers) describe the domain of enzymatic reactions encoded in a string consisting of

several numbers [200]. Each position of the string represents a certain level of functional

granularity separated by a delimiter and therefore re�ects an hierarchical order. The

Gene Ontology (GO) initiated by the Gene Ontology consortium is a community based

project to create a comprehensive ontology of gene products. The GO ontology terms are

categorized int three major areas: cellular component, biological process, and molecular

function. GO terms might be interconnected to any other related term building up an

acyclic graph of term relationships. At the moment (as from 19th of August 2010), the

GO ontology comprises 32168 di�erent entries. These amount of terms is huge and is a

result of the community approach used to built up the ontology. Reduced sets (named

GO slim) exist containing a sub-set of GO terms. Some of them are taxon speci�c (as

for yeast or plants) or developed for special purposes (as UniProtKB-GOA, created for

annotation in UNIPROT). The MIPS Functional Catalog (FunCat) is an hierarchical

ontology which contains 1083 categories in 28 main categories, listed in the supplemen-

tary Table 6.3 (version 2.0). The FunCat categories are hierarchically organized from

less to more speci�c terms with a maximum of six levels of di�erent granularity. This hi-

erarchy is encoded in the FunCat identi�er: for each level, two digits are reserved which

refer to a certain entry in the FunCat schema. In the encoding, these levels are separated

by a delimiter as in the case of EC numbers. The FunCat has been initially developed

during the yeast genome project and has been extended to other organisms by adding
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categories not needed for yeast annotation. Reference annotations for following organ-

isms exist: S. cerevisiae, Neurospora crassa, Arabidopsis thaliana, Homo sapiens, the

microbial genomes of Thermoplasma acidophilum, Bacillus subtilis, Helicobacter pylori,

Listeria innocua, Listeria monocytogenes [201, 202], and for P. amoebophila UWE25

created during its' genome project [71]. The strict hierarchical structure of the Fun-

Cat allows to chose adequate levels of granularity due to the problem tackled e.g. for

the analysis of functional modules. Another advantage is the much smaller amount of

di�erent terms than it can be found i.e the GO ontology. This smaller size eases the

annotation process since the selection of the correct category is simpler, and leads to

a clearer and more coherent annotation since the FunCat is merely free of synonymous

entries. For a recent essay on the topic, see Jensen and Bork [203].

Concepts in bioinformatics for functional annotation A newly sequenced gene does

only provide its' primary sequence which is not informative in terms of the functionality

performed by the protein encoded in it. The knowledge about a protein sequence can

be enriched by gathering information that is either already known and accessible in the

literature or is deduced by appropriate computational analyses. This process, commonly

described as functional annotation, can either be done by human experts with the aid

of diverse bioinfomatics tools and databases or in a completely automatic fashion by

an annotation software. Common to both approaches is the deduction of properties

by comparison to already characterized proteins. In general, the annotation by human

experts results in a better quality annotation as automatic methods but is very cost

and time intensive compared to the automatic methods. For an excellent review on this

topic, see the article by Dmitrij Frishman [204]

The most used principle is the annotation transfer (i.e. learning from a related sequence)

due to homology since common origin often implies common or similar function. Ho-

mologs are detected by similarity searches: if two protein sequences share signi�cant

more similarity as by chance they should be evolutionary related and this homology

implies a common or similar function [205]. Several programs to detect similar se-

quences from a sequence database exist, most commonly, the BLAST [206] heuristic or

its' derivate PSI-BLAST is used. Pre-calculated all-against-all similarities computed by

a community grid can be obtained from the SIMAP [207, 208] database saving com-

putational costs. Since this database has been used at several occasions in this work,

it is explained in more detail below. An extension of this approach is the use of or-

thologous groups: orthologs (genes of common origin aroused by a speciation event)
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often represent 'the same gene in di�erent organisms' which makes a correct function

transfer more likely [199, 127]). Orthologous groups merge orthologs from several or-

ganisms and improve the bene�ts of the orthology concept for the application in several

kind of analyses including functional annotation transfer. Another valuable resource

for function prediction are domain descriptions as, for example, contained in the Pfam

database [209] which can be detected over large evolutionary distances using pro�le or

Hidden-Markov model representations of known domains. The Interpro project [210]

uni�es several of such domain databases providing an excellent resource for domain

based annotation. However, these approaches can only be applied if a priori knowl-

edge of either homologs or domain signatures is available. In consequence, sequences

with novel properties (orphans) cannot be assessed by them. Functional links as well as

measured interactions can give hints to a proteins' functionality by the 'guilt by asso-

ciation' assumption: if two proteins functionally interact they are likely to participate

on the same cellular process. In consequence, an appropriate function can be transfered

if signi�cant (functional) interactions between an uncharacterized and a known protein

exist [211, 159, 212, 185, 213]. The same principle implies the use of functional modules

instead of links to de�ne which proteins are functionally related and provide information

for annotation [173, 185, 114]. The module as well as the link based approach cannot

reach the functional resolution of a individual annotation by e.g. a functional domain:

homology or domain based approaches may describe molecular mechanisms (as, e.g.

a kinase activity), functional links/module based approaches do, by de�nition, detect

relations between proteins, they are therefore useful to relate unknown proteins to func-

tional units as metabolic pathways and other cellular sub-systems or processes and to

transfer more general terms of function. Some approaches to make use of functional

interaction networks and modules for annotation are described below, and an excellent

review on this topic has been written by Roded Sharan [214].

SIMAP: a comprehensive resource of pre-calculated sequence similarities and do-

mains The Similarity Matrix of Proteins [207, 208] comprises pre-calculated sim-

ilarity searches of all publicly available genomes. The precalculated data comprises

pairwise alignments computed using the Fasta3 algorithm [215] and comparisons to

domain-signatures as they can be found in Interpro. The database allows fast retrieval

of this data via a Java based middle-ware or Web-Services. SIMAP allows to de�ne

search-spaces that comprise an user de�ned sub-set of the sequence-space by selecting

certain primary data-sources or taxonomic clade. For example, a Chlamydiae speci�c
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search-space can be de�ned which contains only sequences that are existent in these

species. Only alignments in the search-space are then reported when querying SIMAP

and database-dependent scores as the alignment E-Value are re-calculated according

to the search-space on-the-�y. SIMAP also contains the compareDB, an exhaustive

repository of bi-directional best hits which can be used to process own clusterings of

orthologous groups as it has been done in this work in Section 2.2.1. Although not a

solely dedicated to function annotation, SIMAP supports the processes of automated

and by hand curated annotation as it short-cuts similarity and Interpro searches.

Annotation and interaction networks The use of the 'guilt by association' principle

to infer protein function from interaction data can be extended in manifold ways. Joshi

and co-workers propose a system called 'Gene Function Annotation System' (Gene-

FAS) which incorporates S. cerevisiae interaction data of several sources (complex data,

co-expression, physical interaction screens) by an Bayesian integration approach while

judging their reliability due to di�erent GO categories [216]. This is done by computing

a reliability score as the product of a priori probabilities for each source of interac-

tion according to a shared GO term at a certain level of granularity and propose for

two third of the unknown proteins in yeast functional assignments. This method ex-

ploits the network information locally since only the direct neighbors are taken into

account. Vazquez and co-workers propose a simulated annealing based approach to op-

timize function transfer in a network globally [217]. Due to the global optimization,

the method captures transient information which is not encoded in the direct neighbors

but in information of remote nodes of the network. The simulated annealing procedure

automatically results in di�erent near optimal solutions which o�ers a convenient way

for multiple functional assignments for a protein. The authors show, that the reliability

of a functional transfer (although globally optimized), is depending on the degree of the

node (i.e. amount of interacting partners, but not necessarily the amount of annotated

direct interactors) and the more neighbors of a protein exist (i.e. the more local struc-

ture in the network), the better the prediction performs. In any case of degree >1, they

reach an accuracy of 60%-70% in the Yeast interactome. Deng [218] and co-workers

use Markov Random Fields as mathematical backbone to infer function by network-

propagation. The method models a belief propagation network which represents the

initial probability of a functional labeling and uses Gibbs sampling to obtain a posterior

distribution (i.e. the predictions) of the labeling due to the initial labeling after seen the

interaction data. The key feature of the approach is that, although modeled globally,
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nodes nearby in the interaction network have greater in�uence on the annotation as

more distant nodes. Initially investigated on the yest interaction network only, the au-

thors extended the approach for the use on multiple networks [219]. Nabieva et al. [220]

iteratively simulates a step-wise �ow of information in the interaction network. This

procedure automatically takes into account the network topology while propagating in-

formation about annotation from annotated to unknown proteins through the network.

The method slightly outperforms others as majority voting and a variant of the simu-

lated annealing approach. The authors show that incorporation of additional networks

(e.g. genetic interaction networks) and the modeling of the edges due to their reliability

improves the annotation accuracy of their method.

Annotation and functional modules The functional modules are entities which re-

�ect proteins functionally more related to each other as to other parts of the proteome.

Therefore they are a resource that could intuitively be used in annotation. Modes of

such possible use could comprise the correction of miss-annotated proteins, the detec-

tion of proteins related to a certain process, and the use in an automated annotation

transfer from known to unknown genes. In the literature, the use of functional modules

for annotation is often implied but rarely a main focus. Only few studies exist which

explicitly deal with the topic. Tanay and co-workers [179] uses module information de-

duced by their SAMBA software to propose general GO terms to more than 800 yet

not annotated proteins in S. cerevisiae. The annotation work-�ow in this study com-

prised following steps: �rstly, the detection of modules with certain GO terms enriched,

secondly, the assessment of their predictional power by a �ve-fold cross-validation, and

�nally the extraction of annotation for yet unknown proteins. The detection of modules

with signi�cant enrichment automatically determines the set of GO annotations useful

for annotation transfer by these modules while discarding non-informative GO terms.

The resulting predictions refer to more generally GO terms as ribosome biogenesis or

sporulation as it can be seen on the SAMBA web-page. This can be interpreted as in

congruence with the module concept which itself describes function more general as for a

single protein. The cross-validation resulted in partly high speci�city of the predictions

with 40%-100% depending on the functional class. The prediction for �ve unknown

proteins as sporulation related has been tested in the laboratory, and in four cases,

the prediction could be veri�ed. Song and co-workers [185] compared the performance

of module clustering algorithms in terms of function prediction and recovery of known

complexes/modules, in physical interactomes of S. cerevisiae. Furthermore they com-
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pared the performance of module based function prediction with a simple network based

approach. In the study, di�erent yeast interactomes (one containing genetic and physi-

cal interactions, one with all physical interactions, one based on yeast-2-hybrid screens,

one on other high-throughput techniques) have been subjected to six di�erent clustering

algorithms which are commonly used to detect functional modules (Network-Blast [221],

MCL [183], C�nder [188], DPClus [222], Mcode [187] and a spectral clustering method

[223]). The comparison of the performance for each method revealed that no method

is optimal in every combination, for example, MCL outperforms the other methods on

sparse networks but is slightly worse in others. The authors introduce a framework

to assess the performance of clusterings in a comparative manner and introduce qual-

ity measures in terms of the ability to predict function and to recall known functional

groupings. The comparison with a simple network based approach revealed a better

performance of the latter one compared to any module clustering indicating that direct

neighbors in the interaction network are more informative. Other studies do not ex-

plicit assess function annotation but imply the value of modules for such purposes. For

example, the study of Mering and co-workers can be used to improve the annotation of

metabolic pathways as supposed by the authors [167]. The concept of functional mod-

ules can be not only used by the generation of candidates (i.e. function prediction) but

also as direct annotation aid: in the Seed annotation project [195], the task of functional

annotation of complete bacterial genomes is split up in sub-tasks de�ned by typical sub-

systems. These sub-systems from several species can then be curated in a much faster

manner by an expert in the �eld of the sub-system system, a principle adapted from

industrial production lines [224]. This allows a fast annotation of high quality in a

community based project and the technical platform is therefore called RAST (Rapid

Annotation using Subsystems Technology).
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2
Creation and application of chlamydial

functional networks and modules

2.1 Motivation

Due to the relatively small size of the scienti�c community dealing with Chlamydia,

their evolutionary distance to the well studied model organisms like E. coli, and their

restricted accessibility by laboratory manipulation methods, many of their molecular

mechanisms are unclear. Especially, the function of many proteins and most of their

interactions are unknown. For example, the Microbial Protein Interaction Database lists

only 17 chlamydial interactions, where for other species exhaustive screens are available

[147]. This motivates the creation of a comprehensive (functional) interaction network

for Chlamydiae for the generation of prediction based hypotheses on the interplay of

their proteins.

This has been accomplished the implementation of a general pipeline to integrate di�er-

ent functional prediction methods for unseen genomes and arbitrary kinds of functional

link prediction approaches. This system should enable the prediction of functional in-

teraction networks of Chlamydiae which are reliable and cover a large fraction of the

proteomes in order to deduce functional modules for further analyses. Furthermore,

it is intended to study a possible way to distinguish between functional and physical

interactions by the use of di�erent background models.

The concept of functional modules allows an as well comprehensive as condensed view on

an organisms' functional equipment. Furthermore, the functional grouping of proteins

by the modules can be applied to characterize proteins by their module co-membership.

In this section, the application of these principles to relevant questions in chlamydial

research are described. The �rst two parts describe the delineation and benchmarking
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of chlamydial speci�c functional modules including an assessment on the recovery of

known groupings from the KEGG database. The other parts present chlamydia-speci�c

applications of the functional modules. These tackle their use to annotate unknown

chlamydial proteins, to detect virulence related entities, and to enlighten the evolution

of function due to di�erent stages of host adaptation in Chlamydiae.

2.2 Chlamydia speci�c interaction networks

2.2.1 A Pipeline to create functional interaction networks by

bayesian integration

The integration of several function prediction methods into one network has been imple-

mented using a Bayesian integration method as used in several other studies described

in Section 1.3.4 [225, 162, 163] by a pipeline which allows easy integration of additional

sources of information and can theoretically be used for any groups of genomes as long

as su�cient data is available. The pipeline is pictured in Figure 2.1 and the single steps

are described in the next paragraphs. The pipeline includes following steps:

I) Creation of the background models. These models are used to score the

performance of di�erent interaction prediction methods against known knowledge.

A background model comprises negative and positive instances of prior functional

and physical interactions.

II) The prediction component. This component of the pipeline retrieves inter-

action prediction scores for a certain genome. This includes data from following

sources: the genomic context methods and expression data from STRING, and

domain-domain based interaction predictions. This step also includes the map-

ping of new protein sequences to orthologous groups as found in eggNOG [126]

and the creation of novel groups comprising the proteins of the environmental

Chlamydiae.

III) Binning and scoring procedure. Continous scores reported by the prediction

methods are binned into discrete values as needed for the input to the Bayesian

integration. The values are then re-scored according to gold standard sets resulting

in scoring schemata for each method. The re-scored values are then integrated

into a �nal score under the naive Bayesian assumption. These steps includes the

de�nition of a prior probability assumption that de�nes the cut-o� used to prune
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poor predictions. The overall performance is investigated by a �ve-fold cross-

validation with predictions from the organisms comprising the background models

for validation.

IV) Prediction of the actual chlamydial functional interaction networks. This

part of the pipeline generates the chlamydia-speci�c networks using the scoring

schemta and chlamydia speci�c predictions.

V) Further investigations and processing. The interaction network are inves-

tigated due to their network properties and then further processed by clustering

into functional modules.

Material and methods

Used data sets and software The publicly available chlamydial genomes have been

downloaded from RefSeq version of May 2010 (The used data-sets have been updated

regularily, the given dates refer to the latest of recent update). For the non-public

genomes, the gene-prediction pipeline that was implemented in-house by Patrick Tis-

chler has been applied. This pipeline integrates di�erent intrinsic prediction methods

with extrinsic homology information to improve the annotation accuracy of gene-starts,

the resolution of overlapping genes, and the detection of shadow-ORFs (for details,

please refer to PhD thesis of Patrick Tischler). Physical interaction data from diverse

bacteria has been obtained from the microbial protein interaction database (MPIDB)

[147] as from January 2009. The data has been �ltered as follows: data from organ-

isms which contribute less than 100 interactions have been discarded since they would

not result in su�cient coverage for the delineation of backgrounds described below.

Only species which are also processed in the STRING database have been regarded.

This �ltering results in a set of interactions from four species (some interactions have

multiple evidences): Helicobacter pylori (2068 measurements, 1650 interactions), Es-

cherichia coli (3038 measurements, 2262 interactions), Campylobacter jejuni, (17390

measurements, 11858 interactions), and Bacillus subtilis (4366 measurements, 242 in-

teractions). Orthologous groups and KEGG pathway information have been extracted

from the STRING database (version 8.1) as from January 2009 [159], as well as the

raw scores of functional interaction predictions from the fusion, the phylogenetic pro�le,

the co-expression, and the conserved neighborhood methods. Notably, the orthologous

groups in STRING are identical to the groups found in its' 'sister-project', eggNOG
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[126]. Module data has been downloaded from the Seed project[195] as from October

2009. The Seed module data has been curated by removing ten entries that do not

clearly refer to a functional module as indicated by their description. Further redun-

dancies in the Seed modules which might occur due to the community based annotation

approach of the Seed-project have been checked and modules with an overlap >75% to

another module have been removed. The entries in the Seed data have been mapped

onto the orthologous groups in STRING by sequence identity to at least one orthologous

group member to allow the retrieval of orthologous modules for any species in STRING.

This procedure enables to use Seed module de�nitions organisms not yet or insu�ciently

annotated in the Seed.

Predicted domain-domain interactions de�ned as pairs of Pfam identiers have been

downloaded from the DIMA 2.0 resource (version as from January 2010). Pfam do-

mains for each protein have been retrieved from SIMAP [207, 208] (version as from

January 2010, as processed by the Interpro pipeline of SIMAP). Properties of the re-

sulting networks have been investigated using the NetworkAnalyzer plug-in in Cytoscape

[226] plug-in [227] and the tYNA web-server [228].

2.2.2 Detection of orthologous relationships

Since in this study several non public genomes not yet represented in the orthologous

grouping in STRING are processed, the orthologous relationships of them must be de-

termined in order to make use of the data from the genomic context methods as well as

for comparing the resulting data between the chlamydial species. This has been achieved

in two steps: clear orthologs of proteins in already known orthologous groups have been

assigned to the latter. Proteins which could not be assigned have been tested if they

would form orthologous groups of their own.

Extending eggNOG The genomes of the pathogenic Chlamydiacea are merely pro-

cessed in the used STRING version and could be directly mapped to the orthologous

groups. Proteins which might be speci�c to certain strains not in STRING (as the koala

related Chlamydophila pneumoniae LPCoLN [86] as well as the non-public data-sets have

been separately processed. One of the basic concepts in the delineation of orthologous

groups is the use of bi-directional best hits (BBH) between complete sets of proteins

of two species. Since the test on the BBH criterion for each pair of chlamydial and

species in eggNOG would be very costly, the concept has been adapted for the mapping

procedure using the following short-cut: the detection of the best hit in the complete
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set of eggNOG sequences represents the sequence which is the closest relative. This

closest relative has the highest probability of being a bidirectional best hit compared

to all other sequences in eggNOG and the corresponding orthologous group could be

extended by the novel chlamydial sequence. The sequence of the best hit is then tested

if the bi-directionality criterion holds in respect to the primary query sequence. This ap-

proach can be described as using the eggNOG database as a 'ueber-genome' comprising

all possible sequences, an approach that allows to incrementally update the orthologous

groups without the need for any re-clustering. In-paralogs have been detected as se-

quences which are more similar to the main ortholog as to any sequence in eggNOG.

Con�icts which are introduced by in-paralogous sequences with BBH assignments (in

total, 5 cases of them could be detected) have been resolved. The cut-o� set to �nd the

best hit in eggNOG and vice versa are >80% sequence coverage and an E-value better

10e−5. The mapping has been implemented using SIMAP by de�ning own search-spaces

(compare Chapter 1.3.6).

Chlamydia speci�c orthologous groups Proteins that could not be assigned in the

�rst step to eggNOG have been subjected to a simple procedure to detect possible groups

speci�c to the environmental Chlamydiae. For this purpose, bidirectional best hits be-

tween their genomes and one representative of the pathogenic species (C. trachomatis)

as provided by the CompareDB section of SIMAP have been subjected to a connected

component clustering using the in-house Superphyler software (settings: E-value better

10e−5, triangular criterion turned o�, >50% coverage of the sequence lengths, no initial

out-group pruning) The resulting groups have been compared to the eggNOG assign-

ments and novel groups with no connection to eggNOG have been kept separately, the

others have been merged with the corresponding eggNOG clusters.

2.2.3 Detection of Functional Links

The derivation of predicted functional interactions used in the pipeline can be divided in

two strategies: �rstly, mapping of predicted interactions from STRING, and secondly,

by the deduction of functional interactions by direct application of methods not provided

in STRING.

Mapping interactions from STRING The STRING database comprises functional

links predicted by several methods (compare Chapter 1.3.4). Since the use of the in-

tended interaction network is the delineation of functional modules as detectable func-
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tional and evolutionary units (compare the module de�nition given in Chapter 1.3.5),

methods as text-mining or pathway co-membership that rely on curated knowledge have

been discarded from this analysis. In addition, methods based on data used to built up

the background-models (physical interactions providing Interologs or KEGG pathway

co-membership) have been discarded since the background models must be independent

from the prediction methods assessed by them. The methods that ful�ll this criterion

are: the fusion method, the conserved neighborhood method, the cooccurrence, and the

co-expression method.

The local installation of the STRING database allows to deduce raw scores as reported

by the individual prediction methods. These scores are not altered by the STRING scor-

ing scheme and therefore suitable for the processing in the pipeline using own scoring

mechanisms.

The interactions have been extracted as pairs of orthologs with the respective raw scores.

Using the orthologous assignments deduced as described above, the interactions have

been projected on the genomes used in this study (all Chlamydiae and the organisms

used to create the background models). This projection automatically discards interac-

tions which cannot be implemented by the individual genomes if one interaction partner

is missing.

Chlamydia-speci�c neighborhoods The method that generally provides most links of

all genomic context methods is conserved neighborhood (ratio to the next best method

'Cooccurence' is around 4:1). It is therefore probable that the environmental Chlamydiae

which are not processed in STRING could contribute yet unknown links (which should

loosely refer to chlamydiae speci�c operons). I implemented a simple neighborhood

approach to delineate functional links which have only evidence in the environmental

Chlamydiae. By principle, the resulting links can only have weak statistical support

in comparison to functional links in STRING which cover several hundred genomes.

However, some predicted links which, i.e. these detectable in all four environmental

species, could lead to low scoring but valid functional links in the resulting network.

This is even more likely if combined with the raw counts from STRING.

To deduce such links, I implemented following procedure:

- for each gene g in each genome, enumerate the neighborhood N with distance n

on the same strand. The distance is counted as gene coding regions (i.e. n=1 are

the two neighbored genes of g).

- for each gene g �nd orthologous genes g1, g2... in each other genome.

55



CHAPTER 2. CREATION AND APPLICATION OF CHLAMYDIAL FUNCTIONAL

NETWORKS AND MODULES

- for each gene g′ in g1, g2..., get neighborhood N ′ of distance n.

- detect the overlap between each neighborhood N ′ with N . If overlap exists (s by

genes a,b..), report an evidence for interaction between g and a, and g and b.

- summarize the found evidences into a report which can be further processed.

The found evidences have been added to the counts found in STRING in cases where

the detected interaction has already been known, or has been added to the as novel

prediction. The algorithm is parameterized by the distance n which has been set to

n=2. This choice of the parameter allows the existence of one 'intervening' gene and

should be rather restrictive. The detected conserved neighborhoods are only a signal for

functional couplng if the genomes under consideration are not too closely related and

have undergone signi�cant re-shu�ing of their gene order. To inspect this, I plotted

the genomic sequences for each combination of chlamydial genomes using the Gepard

Dotter software package. Stretches of conserved genes appear as lines in the dot-plots.

A manual inspection revealed a high conservation of gene order in several cases of the

pathogenic but not between the environmental Chlamydiae and also not between any

pathogenic and environmental species. Example plots for both cases are given in the

supplementary Figures a and b. In consequence, the simple neighborhood approach

should be meaningfully applicable to the environmental set. The algorithm has been

applied using the orthologous groups mapped and delineated as described above on a

set comprising the environmental species and C. muridarum Nigg. The latter has been

added as representative of the pathogenic Chlamydiae.

Deduction of domain-interaction based predictions Interactions can not only be

de�ned between protein but also between functional domains which often mediate a

PPI. Data from prediction methods of such domain-domain interactions have been col-

lected in the DIMA resource. These domain interactions are de�ned as interactions

between two Pfam domains and can be used to predict interacting pairs of proteins

by selecting all pairs of proteins that carry one of each Pfam domain (self-interactions

were excluded). The resulting pairs have been scored by the score of the predicted do-

main interaction. The predicted link has also been established between the orthologous

groups corresponding to the participating proteins. Following methods from DIMA 2.0

have been used: the domain pair exclusion data (called DIMA DPEA) [229], the pro�le

based method [230] (DIMA DProf), iPfam [158], and 3did [231]. The latter two have

been combined into one method since they re�ect the same prediction principle (called

56



2.2. CHLAMYDIA SPECIFIC INTERACTION NETWORKS

DIMA STRUC). Since the obtained values for these methods from the DIMA resource

are either '1' (prediction exist) or '0' (does not exist), the combination of the latter two

has been done by counting the support by both methods (1=3did or iPfam prediction,

2=predicted by both). For the other, the initial score has been further used.

2.2.4 Creation of scoring schemata

Gold standard sets The de�nition of gold-standard sets of interacting and non-interacting

proteins is not trivial due to the limited knowledge of the real interactomes. A typical

approach in eukaryotes is the use of proteins located in di�erent compartments of the

cell which are very unlikely interaction partners, as, for example done by Jansen and

co-workers [162]. Clearly, this cannot be applied on bacterial data since the prokaryotic

cell has no compartments.

Herein, a stratgey to create gold standard sets based on pathway (from the KEGG

database) and module de�nitions (from the Seed project), as well as known interaction

data (as comprehensively collected in the MPIDB database) is proposed. This approach

generates background models which are further used to delineate the gold sets. Since the

amount of validated interaction data in Chlamydiae is very sparse, and only 18 examples

are reported in the MPIDB database, positive gold sets that show su�cient overlap with

the predictions cannot be meaningfully deduced for Chlamydiae. In consequence, data

from bacterial species which have su�cient interaction data has been employed to create

(bacterial speci�c) gold standard sets. Negative gold-sets are created by the assumption

that proteins in di�erent pathways and functional modules are less likely to interact.

based on these considerations, two di�erent background models, a �functional module�

model (FM) and a �physical interaction� model (PI) have been created. Each back-

ground model consists out of true positive binary physical or functional protein-protein

interactions (TPI) and true negative non-interactions (TNNI). To de�ne TPI and TN-

NIs, the used input data has been processed to obtain groups of most likely interactors

and most likely 'non-interactors'. This has been done by following procedure: for each

species with su�cient high amount of known interactions, three input-graphs have been

built up (a Seed-module, a KEGG pathway, and a PPI interaction graph). Each protein

represents a node in the graph. A binary interaction with uniform weight is drawn if two

nodes share a common interaction in the respective set de�ned as a measured interaction

for the PPI graph, or, a common module or pathway membership in the two other cases.

The graphs have been clustered using the Markov clustering implemented in the MCL

package with di�erent parameters obtaining �ne cluster with few members (In�ation
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parameter=5) or broad groups (In�ation parameter=2.0). In general, this clustering

should delineate probable complexes from the physical interaction networks which can

be used to enlarge the set of likely interacting proteins by additional pairs drawn from

the them. In the case of the KEGG/Seed graph, the clustering should mainly retain

the original modules while combining these entities which share great overlap and are

wrongly split into di�erent entities in the respective databases.

The resulting groups of the �ne grained clustering represent likely true positive com-

plexes (PPI) or pathways/modules (KEGG/Seed) with each protein-protein combination

within a group forming a TPI of the gold standard set. Pairs of proteins which are sep-

arated between the large clusters should be examples of non-interacting proteins. This

property is more likely between di�erent pathways and modules as between complexes

and the former two have been used to de�ne the negative part of the background models.

Two di�erent background models have been created:

- The physical background model: this model comprises positive instances de�ned

by the complex data, and negative instances by possible interactions which share

neither a Seed nor a KEGG entity.

- The functional background model: this model comprises positive instances de�ned

by the Seed module co-membership, and negative instances by possible interactions

which share neither a Seed nor a KEGG entity.

This de�nition of background models is pictured in Figure 2.2. The positive and nega-

tive gold sets have been sampled from these models and are further used to assess the

performance of the di�erent prediction methods.

Binning procedure In order to apply the Bayesian theorem on the continuous predic-

tion values these have to be altered into discrete units by binning. Two di�erent binning

procedures have been implemented: simple binning using �xed intervals over the value

space and a partitioning into bins with equal amount of members. Bins with very few

data-points are not statistically reliable but might occur when using the �rst strategy.

The second binning strategy avoids such malformed bins and is therefore suited for meth-

ods which show only few predictions overlapping with the gold set. This is illustrated

in the Figure 2.3.

Creation of scoring schemata and Bayesian integration Interactomes can be mod-

eled by integrating di�erent functional PPI prediction methods into one (functional) in-

teraction network using a simple Bayesian approach. Mathematically, the problem can
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Figure 2.2: The derivation of background models. Two background models (a 'Functional' and
a 'Physical' one) have been created as pictured on the right side of the illustration. The
pre-processed entities (bona �de complexes, KEGG pathways, Seed modules) which de�ne
all 'known' possible interactions provide di�erent kinds of possible interactions as listed in the
box 'Observations'. The compiled background models provide negative and positive gold-sets
which are derived from the entities with certainty in respect to the entities, i.e. by excluding
unclear and unclassi�ed interactions.

Figure 2.3: The two alternative binning strategies. Depending on the coverage obtained by
the overlap with the gold-sets, one of these two strategies has been chosen. Strategy I) is
based on �xed intervals and is used for methods which produce su�cient data-points over
the whole spectrum of their reported scores. Strategy II) creates intervals with �xed amount
of data-points by setting the borders accordingly. This strategy returned useful binnings in
case of sparse data-points.
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be de�ned as estimating the probability of an interaction between two proteins given an

observed combination of evidences from di�erent kind of measurements. The conditional

probability of the evidence given a real interaction is determined by its frequency in a

gold standard set of interactions/non-interactions. The probability to see an interaction

given a certain evidence can then be computed using the Bayes' rule of computing the

posterior probability. This approach remains tractable if the di�erent measures are con-

ditionally independent from each other and the full Bayesian approach can be simpli�ed

to the naive Bayesian formula. In most implementations for Interactomes, this indepen-

dence is assumed. However, an only �su�cient� mutual independence can be tolerated

as long as the predicted values are not skewed too much. This enables the integration

of measures with only few data-points for which a full (not naive) Bayesian network

cannot be computed.

I followed the approach used by Jansen and co-workers [162], which compute Likelihood

ratios for each binned value of each measure. The same approach has been followed by

by Shailesh and co-workers when modeling the interactome of Plasmodium falciparum

[163].

For each method integrated in the network:

let be for each bin B and the positive and negative gold standards (named G+ and G−):

P (G+|bpos) = P (B|G+);
�� ��2.1

the conditional probability of the bin regarding the positive gold set, and

P (G−|bpos) = P (B|G−);
�� ��2.2

the conditional probability of the bin regarding the negative gold set. Both are estimated

from contingency tables with the overlap of the bins with the gold-sets. (Compare Jansen

et al. [162]). Then the likelihood ratio is de�ned as:

LR(B) = P (G+|bpos)/P (G−|bpos);
�� ��2.3

The values of the individual bins for each method and background model have been

saved as scoring schemata. These schemata also provide information on the amount of

positive and negative instances which have been used to deduce the likelihood ratios.

They have been manually inspected due to malformed bins (i.e. providing only few or no

evidence) and the 'optimal' scoring scheme for each combination of method and back-
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ground model has been chosen. 'Optimal' schemata are those with no malformed bins

and a su�cient resolution to distinguish between 'poorly' and 'well' scoring intervals of

the input values. If a method does not result in any optimal schema it must be discarded

since no predictive power in regard to the background models could be observed.

The overal likelihood ratio for a link with n measures is obtained as:

LR(Link) = LR(B)method_1 · LR(B)method_2... · LR(B)method_n;
�� ��2.4

According to the Bayesian theorem, the posterior likelihood can be computed using a

Prior belief Lprior about the ratio of interacting/non-inetracting proteins:

LRposterior(Link) = LR(link) ∗ Lprior;
�� ��2.5

This last step is used to introduce cut-o�s for the reliability of the predictions which

are de�ned by the prior believe (since a likelihood ratio >=1 is desired to classify a

prediction as interaction) [163]. This step is discussed below.

Estimation of priors Estimating an exact prior probability of an interaction is not

tractable since the amount of interactions in a cell is unknown. Estimates given in the

literature vary: Bader and Hogue estimate the amount of interactions in a yeast cell at

around 30000 [232], Mering at around 20000 [233]. Jansen et al. use a prior based on

the assumption of 30000 interactions which yields a 1
600

a priori chance that two pro-

teins interact in yeast [162]. Following this argumentation, a typical chlamydial genome

with around 900 genes should reveal a prior probability of 1
30

. However, the amount

of interactions in a bacterial cell might be lower due to the lower complexity of bacte-

ria compared to bakers yeast. These values refer to estimates of physical interactions,

but many more functional interactions can be supposed, leading to much higher prior

probabilities. Date and Stoeckert use di�erent priors to �lter their predicted Plasmod-

ium network to obtain di�erent coverages and found in their data a 40% coverage of

the genome with a prior of around 1
6
(likelihood threshold 6), and a 50% coverage at 1

5

(likelihood threshold around 5).

As indication of an useful prior, I investigated the probability of getting positive inter-

actions when comparing the amount of possible instances which share a KEGG pathway

to the amount of possible interactions in disjunct pathways in the background models.

This resulted in proposed prior of 0.18, the same test on the Seed-modules revealed an

prior of 0.37. In the case of putative complexes, the value is 1
25
. I tested these indi-

61



CHAPTER 2. CREATION AND APPLICATION OF CHLAMYDIAL FUNCTIONAL

NETWORKS AND MODULES

cated priors due to their in�uence on network coverage and prediction performance. The

networks resulting from the cut-o�s according to these Priors are further named 'high

con�dence' for the KEGG based one, 'medium con�dence' for the Seed based one, and

'complex' for the physical interaction ba sed case.

Cross-validation A �ve-fold cross validation has been used to asses the performance

of the procedure. For this purpose, the initial background sets are split into �ve equally

sized parts. For each, the complete procedure of background modeling is performed

using the other parts as training. The resulting scoring schemes are used to build up a

network with predictions between proteins from the test-set. These networks are then

iterative �ltered using di�erent cut-o�s on their edge weights and the behavior of the

method is measured by counting true positive predictions TP and false positive predic-

tions FP. The ratio TP/FP is plotted for di�erent cut-o�s as done by Jansen et al [162]

and Date et al.[163]. Furthermore Recall, Precision, and F-measure have been computed

as:

Recall =
TP

(TP + FN)
;

�� ��2.6

Precision =
TP

(TP + FP )
;

�� ��2.7

F −measure =
2 · Precision ·Recall
(Precision+Recall)

;
�� ��2.8

2.2.5 Properties of the deduced networks

The background models create valuable scoring schemata The manual inspection

of the generated scoring schemata revealed for all except the structural based domain-

domain interaction method (DIMA STRUC) suitable models. In case of the DIMA

STRUC, the resulting model has been found not informative in respect to the background

models since no bin resulted in an clear positive odds ratio (best found <1.2). Since

su�cient data-points have been obtained for this method, the most probable explanation

of this behavior is the absence of a linear score (which is not provided by DIMA for these

methods) which could be used to categorize the predictions more �ne-grained. The

3DiD method as provided in the original resource provides Z-scores for each domain

interaction. However, these are interpreted in terms of speci�city of the interaction but
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not as indicator of its' reliability by the authors [231]. The iPfam resource does not

provide any scoring as checked in the literature [158] and on the data on the Sanger

web-site. In conclusion, the prediction of DIMA STRUC could not be improved and

the method has been discarded for the integration of the �nal network. The behavior

of each schema is plotted in Figure 2.4.

Figure 2.4: The performance of the di�erent interaction prediction methods due to the physical
and functional background models plotted as the output-scores for each Bin. For clarity and
comparablity, very high values have been cut.

Di�erent performance of di�erent methods for physical and functional interac-

tions The plots of the scoring schemata according to the background models in Figure

2.4 provide not only valuable insights into the predictive power of each method, but give

also evidence that the applied methods exhibit individual characteristics according to

the functional and physical backgrounds. In consequence, the scoring schemata allow to

delineate networks which di�er according to the background-models. In addition, they

directly show if a method predicts rather functional than physical interactions or vice

versa. These speci�c characteristics should be (at least partially) explainable due to the

methods' underlying principles and are discussed in further detail in this paragraph:

From all methods, the conserved neighborhood has the strongest predictive power in
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terms of the resulting scores. The method produces much smaller odds-ratios in the

physical background compared to the functional case. However, compared to the other

methods, the performance is still high and the method is also a good predictor for physi-

cal interactions, but with a clearly better power in the functional case. This is intuitively

clear since many of these links re�ect conserved operon structures which then re�ect con-

served regulation (and therefore a tendency to be related to the same biological process)

rather then direct interaction. The performance in the physical background exhibits a

drop o� for higher input scores. This can explained by the e�ect that a common path-

way membership is statistically much more frequent as a common physical interaction,

a principle which leads to a decline in the rate of true positive physical interactions for

high counts. The fusion method performs better in the physical case. This has been

expected since the fusion event leads to co-translation into one protein which would be

deleterious for the functionality of the interaction of the non-fused equivalents if that

would not be a strong physical interaction. The relative low odds ratio compared to the

neighborhood method is surprising since the observation of a fusion event should indi-

cate a certain interaction and is probably an artifact of the relatively few instances in the

positive training examples. Common gene expression implies co-regulation and therefore

an rather functional coupling than a physical one, a principle re�ected in the schemata.

The cooccurrence method exhibits two di�erent maxima for both background models.

In the functional case, the maximum is in the area of mean scores, in the physical case

the rule 'the higher the better' can be observed. This re�ects a tendency for functionally

coupled genes to have a common evolutionary fate, but with a less strong coupling as

for physical interactors. The extreme examples in the latter case are complexes which

need each sub-unit to ful�ll their function and are rendered useless if one sub-unit fails

leading to a very cohesive evolutionary fate detected as high cooccurrence-scores.

All DIMA methods perform better in the physical case (except DIMA STRUC, as dis-

cussed above). This can be interpreted as a recovery of domains dedicated to the me-

diation of physical interactions by the methods. This is especially meaningful for the

domain pair exclusion method since its' training source are domains which can be found

enriched in physically interacting proteins. However, the method has still some pre-

dictive power in the functional case contributing to the fact that a physical is also a

functional interaction (what is true for any method). The DIMA pro�le method is also

subjected to the same 'common fate of physical interactors' e�ect as the cooccurrence

method but exhibits almost no predictive power in the functional case.
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The predicted networks exhibit good performance and coverage The integrated

networks exhibit a high ratio of TP/FP over a wide range of cut-o� Lcut. In Figure

2.5, these rates are plotted against the cut-o� for the functional and physical network.

In general, both exhibit a similar behavior with increasing ratios: the higher the cut-

Figure 2.5: The performance of the integrated predictions in terms of TP/FP rate depend-
ing on Lcut, for both networks ('Functional' on the right, and 'Physical' on the left).
The TP/FP ratio is computed according to Jansen et al. [162] as function of Lcut:
TP (Lcut)/FP (Lcut) =

∑
L>Lcut

pos(L)/
∑

L>Lcut
neg(L) Where pos(L) and neg(L) are

the numbers of positives and negatives in the respective gold standard (physical or functional
background-model) with a given likelihood-ration L. The cut-o�s introduced by the di�erent
prior assumptions are indicated by vertical lines (from left to right: 'medium con�dence' cut-
o� at 2.7, 'high con�dence' at 5.5, and 'Complex', the restrictive cut-o� at 25). In the case
of the functional background, spourious data-points with Lcut > 80 have not been plotted
due to clarity.

o� is chosen, the more con�dent is the prediction as indicated by increasing TP/FP

rates. In case of the physical background, the behaviour of the data is more scattered

as between Lcut 15-20, and the physical background model generates overall smaller

ratios of TP/FP as inidicated by the absence of data-points with a TP/FP rate >40.

This can be interpreted as a general lower con�dence of a predicted physical interaction

compared to the functional case. However, the test-set of positive physical interactions

is much smaller than of the positive functional ones since many physical interactions are

unknown. So, the performance in the physical case might be underestimated and obliged

to a stronger statistical variation as in the functional case. The drop o� in the functional
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case for very high values of Lcut (>50) is an artefact due to the existance of around ten

false positive predictions with very high scores. Since the amount of nodes decreases

with higher cut-o�s, the ratio of TP/FP gets slightly worse as these ten false positives

examples are not pruned but less true positives can be counted. The performance due

to the chosen cut-o� has also been measured in terms of Recall and Precision which

is shown for the functional network in Figure 2.6. Both measures diverge rapidly with

growing cut-o� and saturate for high cut-o�s. The small Recall values are contributed

to the fact that most interactions de�ned in the background are not recovered by any

method leading to a high false negative rate. Due to the scissor like behavior of the two

values and the constantly very low Recall values, the F-measure also performs weakly

and cannot give a hint to an optimal compromise between Recall and Precision. In both

plots, the cut-o�s according to the di�erent prior assumptions as estimated above are

indicated by vertical lines. The actual values of the di�erent performance measures at

these cut-o�s are listed in Table 2.1. All cut-o�s are set in the area of low Recall but

Lcut 2.7 5.5 25
Name Medium High Interaction
Precision 0.9 0.95 0.98
Recall 0.06 0.05 0.03
F-Measure 0.12 0.09 0.06
TP/FP 9.34 18.7 56.4

Table 2.1: Performance measures using di�erent prior assumptions. 'Lcut' is the cut-o� corre-
sponding to a prior assumption, 'Name' the name given to the networks,'Precision' precision
computed as TP

(TP+FP ) , 'Recall': recall computed as TP
(TP+FN) , 'F-measure' computed as

weighted harmonic mean of Precision and Recall. 'TP/FP' is the rate of True positive/False
positive predictions.

high Precision, and already in the case of the 'Medium con�dence' network, Precision

of 0.9 is reached. Shortly before this �rst cut-o� at Lcut = 2.7, a rapid transition from

Precision of 0.79 to 0.9 (+0.11) can be observed while the sensitivity drops down by a

decrease of only 0.04 indicating a meaningful pruning of false positive hits at this point.

Date and co-workers used the prior to adjust the desired coverage of their interaction

network. In Table 2.2 the resulting coverages due to the di�erent prior assumptions

done herein are summarized. The coverages reached for the environmental Chlamydiae

are generally lower and contribute to the large fraction of their proteins that are orphans

and cannot be covered by the genomic context methods. At maximum, 65% of the C.

muridarum and 46% of P. amoebophila are covered. The values for the higher cut-o�s

indicate a still high coverage > 40%. These coverages are comparable to those found in
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Figure 2.6: The performance of the integrated predictions in terms of Precision and Recall
depending on Lcut. 'Lcut' is the cut-o� corresponding to a prior assumption, 'Name' the
name given to the networks,'Precision' precision computed as TP

(TP+FP ) , 'Recall': recall

computed as TP
(TP+FN) , 'F-measure' computed as weighted harmonic mean of Precision and

Recall. (from left to right: medium con�dence cut-o� at 2.7, 'high con�dence' at 5.5, and
'Complex', the restrictive cut-o� at 25).

other studies.

The integration of additional methods extends the networks The di�erent methods

predict a di�erent amount of functional interactions. To assess the basic information

gain in terms of extension to the network by each method, the amounts of unique links

and nodes contributed by each method have been determined. These amounts are sum-
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Lcut Edges Cov. patho. Cov. env.
Functional
2.7 7083 0.65 0.46
5.5 4771 0.58 0.38
25 3296 0.52 0.34
Physical
2.7 2725 0.47 0.31
5.5 2587 0.47 0.31
25 1757 0.41 0.26

Table 2.2: Coverage depending on di�erent prior assumptions. 'Lcut' is the cut-o� corresponding
to a prior assumption, 'Name' the name given to the networks, 'Edges' the amount of edges
remaining in the network, 'Cov. patho.' the coverage of the genome of Chlamydia muridarum

Nigg in terms of the fraction of proteins of this organism which participate on the network,
after applying Lcut, 'Cov. env.' the same value for P. amoebophila UWE25.

marized in Table 2.3. Notably, these counts refer to all predictions made by each method

after the initial scoring, many of them might be pruned after applying the bayesian inte-

gration step including the application of the prior based cut-o�. In addition, the median

and maximal degree of the unique nodes has been determined as well as the degree af-

ter pruning according to the high and medium con�dence cut-o�s. By principle, the

contributions of predicted interactions with evidence from one method only correlates

with the amount of links they predict: the neighborhood method is the most powerful

followed by the cooccurrence method. The DIMA DPEA method produces almost as

many predictions as the cooccurrence method but is obviously less correlated to the

other methods as the latter one. This is indicated by the high amount of additional

nodes which are introduced to the network by this method (616 for DIMA DPEA in

contrast to 412 for the neighborhood method). This re�ects the de�nition of interact-

ing domains in this method (compare above) which is truly orthogonal to the other

methods since no evolutionary aspect, especially no orthologous relationships have been

employed in the de�nition and application of this method. The predicted interactions

of DIMA DPEA are merely of low score as indicated by the median values, but also

several high scoring edges are predicted that lead to extensions of both, the high and

medium con�dence networks.

The additional deduction of conserved neighborhood links from the environmental Chlamy-

diae (with support ≥3) revealed 571 new links of which 117 have not been covered by

the mapping from STRING. These comprise 10 interactions between known orthologous

groups and 106 involving environmental speci�c orthologous groups as summarized in
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BG Method Unique Edges Unique Nodes Median Max Medium High
C Coexpression 9078 3 1.02 2.45 0 0
C Fusion 138 0 0.0 0.0 0 0
C Neighborhood 152525 412 0.95 8.28 26 14
C Dpea 24784 616 0.98 13.84 492 62
C Dprof 152 9 1.12 2.60 0 0
C Cooccurrence 29524 3 0.91 0.91 0 0
M Coexpression 9078 3 1.06 18.47 10 4
M Fusion 138 0 0.0 0.0 0 0
M Neighborhood 152525 412 0.92 50.15 32 20
M Dpea 24784 616 0.99 5.21 360 0
M Dprof 152 9 1.09 1.81 0 0
M Cooccurence 29524 3 0.94 0.94 0 0

Table 2.3: The statistics of newly introduced links due to the di�erent prediction methods. 'BG'
is the background-model with C=physical/complex and M=functional/module. 'Method'
refers to the prediction method (compare text). 'Unique Edges' gives the amount of edges
which are solely predicted by the method. 'Unique Nodes' gives the amount of nodes which
would have no link without that method. The former two values are trivially the same
for both background models. 'Median' is the median of the unique edge weights after the
scoring step. 'Max' the maximal score reached in this set, 'Medium' the amount of links
which can be found in the 'medium con�dence network', 'High' the respective value in the
'high con�dence' network.

Table 2.4. The sub-network spanned by these new links has been further tested on struc-

ture by assessing the average clustering coe�cient cl in comparison with the same but

randomized network. This test revealed a higher structure of the 117 links as expected

by random (cl 0.046 against 0.025). In consequence, the found sub-network should be

non-random and therefore biologically meaningful.

The resulting networks are scale-free and exhibit an high inner structure The dis-

tributions of the degree probabilities and the cluster-coe�cients give insights into general

properties of natural networks as introduced in Chapter 1.3.3. A manual inspection of

the degree distribution showed, that the networks follows a power law distribution in

all networks generated in this study. Example plots of the distributions from the high

con�dence networks are given in Figure 2.7. The distribution of the clustering coe�-

cients C(k) did not reveal a clear tendency to follow a distribution of the form C(k)˜k−1

but more C(k) = const and are quite scattered. So, they are independent of the choice

of k. In consequence, a strong hierarchical behavior cannot be stated. Due to the ob-

servations, the networks are clearly scale free. The overall clustering coe�cients of the
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Partner 1 Partner 2 Amount
COG COG 5
COG NOG 5
COG Env 65
NOG Env 17
Env Env 13

Table 2.4: Previously unknown 'neighborhoods' detected using the environmental Chlamydiae.
Pairs of proteins which appeared at least three times in close neighborhood in the environ-
mental Chlamydiae (compare text) have been investigated due to their ability to introduce
new links. Links which have been unknown in the STRING database have been classi�ed by
their composition due to orthologous groups. 'COG' is a COG orthologous group member,
'NOG' a non-supervised orthologous group member, and 'Env' a member of an orthologous
group detected solely in the environmental Chlamydiae. 'Partner 1' and 'Partner 2' refer
to this classi�cation, 'Amount' gives the occurrences found for links between the respective
orthologous groups.

Figure 2.7: The distributions of the clustering coe�cients and the degree probabilities in the case
of the high con�dence networks (log-log scale).
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networks are high ranging from 0.4-0.5, and in every case much higher as a compared

random case, as listed in Table 2.5.

Name Background Cl Cl(rand) Ratio
Complex Physical 0.50 0.015 34.02
Medium Physical 0.47 0.007 67.77
Medium Functional 0.43 0.013 32.86
High Physical 0.46 0.009 53.58
High Functional 0.40 0.0095 42.38

Table 2.5: Cluster coe�cients of the di�erent networks. 'Name' the name of the network, 'Back-
ground' the background-model used, 'Cl' the clustering coe�cient, 'CL (rand)' the clustering
coe�cient of an equivalent randomized network, 'Ratio' the ratio of CL and CL(rand).

The 'complex' and the 'functional' network are highly correlated The di�erent

background models in�uence the resulting networks. To assess how di�erent both net-

works are, they must be compared due to the speci�c amount of nodes. Especially, I

asked if the physical networks comprises parts that are not apparent in the functional

one. The tYNA web-server allows to illustrate such dependencies between networks

by using one network as predictor for the other one. A test using the functional net-

work as predictor of the physical revealed a Precision of 0.69 and a Recall of 0.95. In

consequence, the physical networks is merely a sub-set of the functional one, but with

di�erent edge weights due to the di�erent scoring schemata. Due to this correlation

between the functional and the physical network (especially due to the high Recall), the

di�erent background models do not o�er a simple way to distinguish between functional

and physical links. To derive a list with the most probable candidates for physical in-

teractions, I determined the links that exist only in the 'complex' physical network but

not in the functional one. 85 instances of such interactions exist comprising 56 nodes.

The interactions are listed in the supplementary Table 6.5.

Discussion The integration of di�erent types of interaction prediction leads to net-

works with high TP/FP rates while not loosing too much coverage in terms of nodes.

Especially the integration of the DIMA DPEAmethod added extra knowledge, therefore,

the extention of STRING has been valuable for the project. The background-models

lead to di�erences in the predictive behaviour of the individual methods, however, the

resulting networks are similar in terms of their node and edge content. The result-

ing functional network is the basis for the delineation of Chlamydia speci�c functional

modules which is described in the next section.
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2.2.6 Delineation of functional modules from the chlamydia speci�c

networks

Introduction With the functional interaction networks at hand, functional modules

can be deduced by clustering. As �rst step, the optimal clustering parameters are

determined that result in a functional homogeneous clustering. This can be done by a

parameter exploration which employs an performance measure of the clusters' functional

homogeneity. Such a procedure is a trade-o� between two concepts: on the one hand,

modules should be detectable solely by their traces in the data as they are evolutionary

conserved entities. On the other, a poorly performing detection method can only be

identi�ed by the comparison of the resulting modules against a given, external, functional

classi�cation. A good compromise is to judge the result of a module detection method

by rather broad functional categories from the COG classi�cation in the �rst place.

A strong deviation according to such a general functional categorization (i.e. a large

amount of modules functionally not coherent) would indicate a failure of the method and

an optimization on them does not bias the module detection method into the direction

of man made (but perhaps not correct) de�nitions of individual modules.

Despite of a general parameter exploration, a possible improvement of the clustering

could be to sub-cluster large modules. This idea is based on the observation of very

large entities reported when initially clustering these networks. These large components

re�ect the existence of a giant component in many biological and other 'real-world'

networks [234, 235, 236] and the clusters may contain meaningful sub-clusters that

cannot be extracted from this dense structure. In this chapter, a simple concept to

divide large modules into sub-modules is tested for its' ability to improve the overall

clustering quality.

Material and methods

Preparation of Input Data The mode of the three di�erent input graphs (the com-

plete, medium, and high con�dence, compare section x) have been labeled using the

COG functional categories. For each node, multiple assessments of categories have been

allowed as found in the COG database.

Clustering procedure The input graphs have been clustered using by Markov clus-

tering as implemented in the MCL package, version 1.006 [183]. MCL has been chosen

since it has been shown to produce good results in several studies and performs well for
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input graphs with di�erent statistics [114][185][186]. The resulting clusterings comprise

three di�erent sets of modules, the 'complete', the 'medium con�dence ', and the 'high

con�dence' set, correspondingly named by their input graphs. As anticipated above, the

clusterings exhibit some large components that could be further divided into meaning-

ful sub-clusters. The large component could exhibit a di�erent internal structure (i.e.

higher degrees and edge weights) as the global network. If taken alone, the sub-networks

de�ned by each cluster could be further divided into smaller entities by the Markov clus-

tering approach. To experimentally test this hypothesis, big clusters have been tested

for their ability to be sub-divided into smaller ones by creating sub-networks that only

contain nodes (and edges between them) appearing in the cluster.

The In�ation parameter of the MCL algorithm has been varied between 1.2 (resulting in

less but larger clusters) and 5 (resulting in more but smaller clusters) in steps of 0.2. For

each clustering, the resulting modules have been re-clustered using a second setting for

the In�ation parameter I2 which has been set to one of 1.2, 3.0, and 5.0. This has been

repeated for clusters above a certain size. This size threshold has been varied between

10 and the maximum cluster size for each clustering found in the initial clustering.

The modules derived from the interaction network should be functional homogeneous

and the distribution of function over the clusters should be non random. For the as-

sessment of these properties, a homogeneity measure judging the clustering as a whole

must be employed. I adopted a functional homogeneity measure introduced by Loganan-

tharaj and co-workers [237] originally used to assess the quality of clusters derived from

expression data. This measure incorporates the structure of the clustering (i.e. the

modules) as well as the used functional categories and is based on Shannon's entropy

[238]. It measures the separation of functional categories by the clustering as well as

the inner cluster homogeneity (compare [237]). The non-randomness is then evaluated

by the computation of Z-scores. This overall procedure has been adopted from Hu and

co-workers [143] (Supplementary protocol S6)

The measure is de�ned as follows:

Let be C = {c1, c2, c3...cm} the clustering with groups ci of size n,

Let be F = {f1, f2, f3...fn} the grouping of orthologs with a certain functional label fi
of size m,

Let be pfc the frequency of a functional category f in cluster c,
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the cohesiveness Cc(c) of a cluster c concerning a category f is then de�ned as:

Cc(f) = −
m∑
c=1

pfclog2(pfc);
�� ��2.9

and for the complete clustering, the total cluster cohesiveness CC is de�ned as:

CC = −
n∑
f=1

m∑
c=1

pfclog2(pfc);
�� ��2.10

This equation re�ects the functional cohesiveness regarding the cluster. In order to

judge the performance due to the ability to separate function between the clusters,

Loganantharaj introduced the cohesiveness in respect to the functional groups as follows:

let be bir the frequency of a clustering in a functional category computed as: for a cluster

r with x entries annotated by a functional category n with Ni members in total, let be

bir = x/Ni;
�� ��2.11

The cohesiveness of a functional category is then de�ned as:

Cf(c) = −
n∑
i=1

birlog2(bir);
�� ��2.12

and for the complete set of functional categories, the total functional cohesiveness CF

is de�ned as:

CF = −
f∑
r=1

m∑
i=1

birlog2(bir);
�� ��2.13

The total performance P can then be expressed as the sum of both terms:

P = CC + CF ;
�� ��2.14

The smaller this term, the more functional homogeneous is the clustering. In order to

assess the non-randomness of a clustering, the resulting values of actual clusterings have

been compared with randomized data using Z-score statistics. For this purpose, the

functional labels of the proteins have been randomized while retaining the cluster struc-

ture, and the homogeneity scores of 1000 runs have been computed. After inspection

of the density distribution of the random values which follow a normal distribution, the
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absolute values of the Z-scores have been computed as follows:

Z − score = |× − µ
σ
|;

�� ��2.15

where µ is the score average of the random runs, x the actual score of the clustering and

σ the standard deviation of the random runs.

Creation of organism speci�c modules The resulting modules have been projected to

each chlamydial data-set using the assignments of the proteins to the orthologous groups

as delineated before. Notably, modules might contain paralogs of member proteins.

Results The majority of modules revealed by the clustering of the functional modules

has a size smaller than twenty members, while some exhibit larger sizes, especially in

the case of the complete network. The size distributions for all three networks resulting

from a clustering with in�ation parameter of 3, up to 100 members are plotted in Figure

2.8. The existence of large modules motivates the re-clustering approach. In Figure 2.9,

the impact of the re-clustering procedure is shown. In this plot, the size distributions

of the complete set before and after re-clustering (of all components with size ≤ 10)

are shown. Changes in the size distribution illustrate the ability of the re-clustering to

sub-divide modules. However, the very large component is not split into a bunch of

sub-modules but has been divided in one still large component and few additional small

modules as indicated by the still large cluster existing in the re-clustering (at size 250).

In Figure 2.10 the performance of the three di�erent networks (complete, medium, and

high con�dence) during the parameter exploration (without sub-clustering) are plotted.

The general performance of all clustering is clearly above random. The complete network

results in generally lower Z-scores where the high con�dence network achieves the best

scores.

The quality of the clustering seems rather independent of the chosen parameters, as

only a small increase of Z-scores for higher in�ation values (i.e. higher granularity of the

clustering) can be observed. The parameter exploration in terms of re-clustering of large

modules did not reveal an increase of performance for the medium or high con�dence

networks as indicated by the Z-score as the maximum values could be found for clustering

without re-clustering with Z-score=35.5 for the medium (In�ation=5), and Z-score=38.5

for the high con�dence clustering (in�ation=2.7). Only the clustering of the complete set

could be improved by re-clustering. The maximum Z-score found is 24.5 when clustering

with an in�ation value of 5 in the initial step and re-clustering components with more
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Figure 2.8: Histogram of size distributions resulting in clustering of the three di�erent input
networks ((High=high con�dence, Medium=medium con�dence , All=the complete network)
with in�ation parameter set to 3.0. Modules with a size>100 not shown.

than 220 members with an in�ation parameter of 3.0. This �nding is illustrated in

the additional Figure 6.1 in which the performance in terms of Z-scores are plotted

against the re-clustering of modules above a certain size: while the individual Z-scores

vary little due to the parameter I2 of the re-clustering, a general trend for an increased

performance in relation to the re-clustering cannot be seen since the data-points merely

lie on horizontal lines. The coverage of the chlamydial proteomes (listed in Table 2.6
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Figure 2.9: Histogram of size distributions resulting in clustering of the complete network before
and after the application of the re-clustering procedure (with in�ation parameter set to 3.0).

) by the resulting modules varies between 64% for Waddlia chondrophila and 67% for

Chlamydophila trachomatis (medium con�dence clustering), the values resulting from

the high con�dence clustering are somewhat smaller.

Discussion The modules resulting from the cluster analyses exhibit a functional ho-

mogeneity much above random and should therefore represent meaningful functional

entities. A tolerance in terms of functional homogeneity can be observed in the param-
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Figure 2.10: Z-scores resulted in the parameter exploration of runs without re-clustering
and varying In�ation parameter. Values for all three networks (High=high con�dence,
Medium=medium con�dence , All=the complete network) shown. On the x-axis: the Z-
score as de�ned by |×−µσ | of the cohesiveness measure, on the y-axis: value of the MCL
in�ation parameter.

eter exploration, a �nding in congruence with von Mering et al. [114] who detected the

same robustness for changes in the parameter settings for several clustering algorithms

indicating a strong signal of functional modularity in the networks. The coverage of the

chlamydial proteomes is dependent on the used input network, in maximum, two-third

of the proteins can be assigned to a module with size>1. The re-clustering approach

78



2.2. CHLAMYDIA SPECIFIC INTERACTION NETWORKS

Organism Number proteins Cov. medium Cov. high Num. medium Num. high
C. abortus S26/3 932 65% 57% 603 535
C. trachomatis A/HAR-13 919 65% 58% 593 530
C. muridarum Nigg 911 64% 56% 580 514
C. pneumoniae LPCoLN 1105 56% 50% 621 552
C. trachomatis D/UW-3/CX 895 66% 58% 587 523
S. negevensis 2509 39% 33% 988 839
W. chondrophila 2070 46% 39% 944 810
C. Protochlamydia amoebophila UWE25 2030 49% 42% 999 854
C. trachomatis L2b/UCH-1/proctitis 874 67% 59% 582 520
C. trachomatis 434/Bu 874 67% 59% 582 520
C. trachomatis B/TZ1A828/OT 880 66% 59% 579 516
P. acanthamoebae UV7 2854 41% 35% 1174 996
C. pneumoniae TW-183 1113 55% 49% 612 543
C. pneumoniae J138 1069 57% 51% 614 544
C. felis Fe/C-56 1013 61% 54% 619 548
C. pneumoniae CWL029 1052 58% 51% 607 537
C. pneumoniae AR39 1112 54% 48% 604 535
C. caviae GPIC 1005 60% 54% 606 540

Table 2.6: Coverage of chlamydial proteomes by modules. Column 'Organism' contains the
Organism name, 'Size' is the number of proteins in this organism, 'Cov. medium' the medium
con�dence network as input for the clustering, 'Cov. high' the high con�dence network as
input. 'Num. medium', and 'Num. high' give the absolute numbers of covered proteins in
the respective clustering.

can divide large modules further but did not signi�cantly change the quality of the

clustering in terms of functional homogeneity. This observations re�ects a principally

hierarchical structure of the module space as it has been described earlier [179]. Due

to the projection of the orthologous groups on the individual protein instances, multi-

ple paralogs may populate a module. This might be seen as a small but not avoidable

draw-back: paralogs might have adapted to a di�erent functionality and should be part

of another module and, in some cases, duplications of complete functional entities might

occur. By principle, a functional division of paralogs is not feasible without further

in-deep analyses and their occurrence limits the 'orthologous resolution' in the analyses

based on the delineated functional modules. Such analyses could comprise the evalu-

ation of neighbored genes in the individual genomes that could allow to di�erentiate

paralogs by their operon-membership or phylogenetic analyses. These steps would have

to be done prior to the delineation of functional interactions by the genomic context

methods and would result in a more �ne-grained de�nition of orthologous groups. The

strategy to cluster orthologous groups �rst and to project them on genomes of interest

in a second step has been adapted from Mering and co-workers [114]. The advantage

of this procedure is the utilization of the additional information provided by functional

links to orthologs missing in a genome of interest. Furthermore, this approach allows to

compare the completeness and existence of modules between the di�erent species with-

out a need for complicated mapping procedures. The opposite argument is that links

between orthologs which do partially not exist cannot be implemented by the genome

under investigation. The approach used herein is a compromise between both aspects
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by the use of a taxon speci�c network that contains all general orthologous groups which

can be found in at least one Chlamydium as well as purely chlamydia-speci�c ones.

The resulting modules comprise dense regions of the predicted interaction network and

divide the latter into highly connected components. So chlamydia speci�c cellular sub-

systems have been generated comprehensively. This data represents an inventory of

cellular functions existing in chlamydial cells that can be used, for example, to analyze

comprehensively the evolution of cellular functionalities between the di�erent Chlamy-

diae.

2.3 Analyses using functional modules

2.3.1 Functional modules reveal KEGG pathway and modules

Introduction The detected modules describe the functional equipment of the Chlamy-

diae as it could be delineated due to evolutionary constraints by the prediction methods.

These 'natural' modules might di�er from manually de�ned pathways or modules since

a man-made ontology of modules/pathways can di�er from the picture found in the

chlamydial data. To investigate this point, the recovery of cellular machineries (as path-

ways, transport systems and others) is further assessed by systematically comparing

the delineated functional modules with manually de�ned pathways and modules from

the KEGG database. It is unclear, to which extend the KEGG de�nitions of modules

and pathways match the modules delineated from the network. This information is

necessary to judge the potential of KEGG to describe the chlamydial modules. This

analysis comprises two steps: �rstly, the creation of individual KEGG maps for each

Chlamydium not existent in KEGG, and secondly an assessment of the mutual recovery

of both concepts, modules and pathways.

Material and Methods KEGG pathways, modules, and sequence data has been down-

loaded from the KEGG web-site on the 30th of May 2010. Each chlamydial genome has

been mapped on the KEGG sequence data using SIMAP (best hit, E-value cut-o� 10e-

3). The publicly available genomes are completely processed in the KEGG database

and match with 100% identity. In case of the non-public genomes, hits with a cover-

age less than 60% in length and with less 20% identity have been discarded to avoid

spurious hits. This mapping procedure resulted in individual KEGG maps (pathways

and modules) for each organism. For each chlamydial module the best matching KEGG
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pathway/module has been determined by the maximal Jaccard index introduced by Song

and co-workers [185]. This measure judges the overall coincidence of two partitions (in

this case, of KEGG de�nitions and the module clustering) and is therefore well suited to

assess the overall recovery of KEGG pathway and modules. This measure is called the

'overall Jaccard index'. This index incorporates two initial measures, the 'normalized

average Jaccard index in respect to the modules (JaccardM), and to the KEGG groups

(JaccardK). The overall Jaccard index is de�ned as harmonic mean of JaccardM and

JaccardK.

The Jaccard index between two sets A and B is de�ned as:

J(A,B) =
|A ∩B|
|A ∪B|

�� ��2.16

let be K the set of KEGG pathways or modules, M a module clustering, The normalized

average JaccardM and JaccardK are then de�ned as: Let be ki a kegg module/pathway

in K with |K| pathways, m a module of clustering M with |M | modules, then the best

matching pair is de�ned as:

JaccardCi = max(Jaccard(ki,mj));
�� ��2.17

Let be |Mi| the size of the maximal overlapping module and |Kj| the size of the corre-
sponding Kegg pathway/module, JaccardM is then de�ned by:

JaccardM(M,K) =

∑|M |
i=1 |Mi| · JaccardCi∑|M |

i=1 |Mi|
;

�� ��2.18

and JaccardK analogously

JaccardK(M,K) =

∑|K|
j=1 |Kj| · JaccardCi∑|K|

j=1 |Kj|
;

�� ��2.19

and the overall Jaccard index of a module clustering as the harmonic mean:

Jaccard(M,K) =
2 · JaccardC(M,K) · JaccardG(M,K)

JaccardC(M,K) + JaccardG(M,K)

�� ��2.20

These measures have been determined for each KEGG mapping (pathway and modules)

and the Chlamydial modules resulting from the high and medium con�dence clustering.

To assess the recovery of KEGG pathways in a random background, the individual
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KEGG maps have been randomized by changing pathway-protein relationships while

retaining the structure of the KEGGmodules and pathways in terms of size distributions.

For each module in each organism the best matching KEGG pathway and module have

been determined. Modules which participate on several KEGG pathways/modules have

been identi�ed: a module has been classi�ed to join two KEGG entities if the overlap

to both is greater than one module member. As additional criterion, the overlapping

parts of the module must be disjunct since several KEGG entities share protein entries

which would be trivially recovered. In the same way, KEGG entities which match several

modules have been identi�ed.

Results Additional table 6.6 lists the amount of individual modules matching either

KEGG pathways or modules with a certain maximal Jaccard index. For each chlamydial

organism and module clustering (medium,high) the amount of modules is listed which

have a maximal JaccardCi (de�ned in 2.17) of > 0.5, ≤ 0.5 but > 0, and 0 which

means no overlap to any KEGG instance. In P. amoebophila UWE25, for example, 19

KEGG modules-functional module overlaps result in a JaccardCi >0.5, 89 cases exhibit

overlap, but with low score, and 100 modules do not overlap with KEGG modules at all.

In comparison to pathways, more KEGG modules are recovered by chlamydial modules

with a score ≥ 0.5 and the overall amount of established relationships is higher: only

three modules have a JaccardCi>0.5 with a KEGG pathway, but as many as 134 hit

a pathway in contrast to 108 for the KEGG modules. The results do not di�er much

between the medium and the high con�dence clustering in terms of recovered KEGG

pathways or modules. The amount of modules that do not have any assignment to

KEGG are more frequent in the medium clustering: for example, in C. abortus S26/3

115 high-con�dent modules do not have a counterpart in KEGG where even 136 can-

not be assigned in the medium con�dence case. The tendency of better (i.e. higher

scoring) recovery of KEGG modules instead of pathways is further supported by the

overall Jaccard indices which are listed in the additional Table 6.7. In this table, the

JaccardK, JaccardC, and the overall Jaccard as well as the overall Jaccard in the ran-

domized case are listed for each organism and module set (high, medium con�dence).

The KEGG modules reveal higher scores in all measures. The overall Jaccard of KEGG

modules has its' maximum at 0.22 for C. caviae strain GPIC in the high con�dence

modules, contrarily, the equivalent value for the KEGG pathways is 0.15. In all cases,

the overall Jaccard index is at least twice as high as in the random case. In Table 2.7

all examples of P. amoebophila UWE25 modules are listed that exhibit a high scoring
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Module KEGG-
Module

Description Jaccard

module 150 M00007 Pentose phosphate pathway, non-oxidative phase, fruc-
tose 6P

0.6

module 99 M00368 D-Methionine transport system 1.0
module 91 M00660 RuvABC complex 1.0
module 83 M00105 dTDP-Sugar biosynthesis, Glc-1P => dTDP-Glc =>

dTPD-Rha
1.0

module 82 M00008 Entner-Doudoro� pathway, glucose-6P =>
glyceraldehyde-3P +

0.67

module 78 M00033 Shikimate pathway, phosphoenolpyruvate + erythrose-
4P =>

0.6

module 74 M00114 Lipopolysaccharide biosynthesis, KDO2-lipid A 0.67
module 117 M00366 Polar amino acid transport system 1.0
module 114 M00318 Sulfonate/nitrate/taurine transport system 1.0
module 67 M00284 Complex IV (Cytochrome c oxidase), cytochrome o

ubiquinol
1.0

module 113 M00658 RecBCD complex 1.0
module 64 M00369 Peptides/nickel transport system 0.6
module 103 M00051 Ectoine biosynthesis 0.67
module 52 M00288 V-type ATPase (Prokaryotes) 0.8
module 43 M00671 Sermidine/putrescine transport system 0.8
module 28 M00293 ATP synthase 0.6
module 195 M00285 Complex IV (Cytochrome c oxidase), cytochrome c ox-

idase,
1.0

module 166 M00340 Putative ABC transport system 1.0
module 165 M00380 Lipopolysaccharide transport system 1.0

Table 2.7: Modules matching KEGG modules with Jaccard >0.5 in P. amoebophila UWE25.
'Module' is the functional module. 'Kegg-Module' the module accession in KEGG, 'Descrip-
tion' is the module description in KEGG, 'Jaccard' is the JaccardCi index of Kegg-Module
and module.

hit with KEGG modules (JaccardCi ≥ 0.5). Some KEGG modules are detected exactly

(with JaccardCi = 1) in the chlamydial modules such as the KEGG module M00658

(the RecBCD complex, with three member proteins, recovered by module # 113) or the

ABC like transporter system M00318 (the Sulfonate/nitrate/taurine transport system,

with three members, recovered by module # 114). In the majority of cases, the modules

can be uniquely assigned to a certain KEGG pathway. However, some modules exhibit

overlap with several pathway and module de�nitions and 'join' them. Examples found

in P. amoebophila UWE25 are listed in in Table 2.8 (multiple KEGG modules joined
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Module KEGG enti-
ties

Descriptions Amount

module 88 M00119,
M00114

CMP-Kdo biosynthesis, Lipopolysaccharide
biosynthesis, KDO2-lipid A

2

module 5 M00192,
M00095

C5 isoprenoid biosynthesis, non-mevalonate
pathway, Pyrimidine deoxyribonuleotide
biosynthesis, CDP/CTP =>

2

module 4 M00309,
M00308

Ribosome, archaea, Ribosome, bacteria 2

module 3 M00309,
M00308

Ribosome, archaea, Ribosome, bacteria 2

module 77 M00210,
M00649,
M00648

Phosphatidylglycerol biosynthesis, CDP-
diacylglycerol =>, uvrBC complex,
uvrA2B2 complex

3

module 66 M00373,
M00372

Manganese/iron transport system, Zinc
transport system

2

module 58 M00050,
M00059,
M00679

Lysine degradation, lysine => saccharopine
=>, Isoleucine degradation, isoleucine =>
propionyl-CoA, Pyruvate oxidation, pyru-
vate => acetyl-CoA

3

module 37 M00012,
M00011

Glyoxylate cycle, Citrate cycle, second car-
bon oxidation

2

module 35 M00194,
M00308

C15 isoprenoid biosynthesis, Ribosome, bac-
teria

2

module 15 M00159,
M00160

Fatty acid biosynthesis, initiation, Fatty acid
biosynthesis, elongation

2

module 10 M00309,
M00308

Ribosome, archaea, Ribosome, bacteria 2

Table 2.8: Modules matching several KEGG modules in P. amoebophila UWE25. 'Module': the
module identi�er, 'KEGG entities': the KEGG modules that have overlap with the module,
'Descriptions': the descriptions of these KEGG modules, 'Amount': the amount of KEGG
modules joined by the functional module.

by a functional module) and in the additional Table 6.8 (multiple pathways joined by a

module). The amount of di�erent KEGG entities joined by a single module is generally

low, in most cases two entities can be found joined. In the case of the KEGG modules,

eleven cases can be detected. Nine of them connect two KEGG modules, two three of

them. Fifteen functional modules are part of several KEGG pathways with a maximum

of �ve pathways connected by 'module 6'. Many of these observed joins are biologically

meaningful as the participating KEGG entities are related to a similar process in the

cell. Examples for this interpretation are the 'module 10' which covers two fatty acid
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metabolism related modules and 'module 71' joining the KEGG pathways 'Ribosome'

and 'Aminoacyl-tRNA biosynthesis'. Other observations can be explained by the inter-

nal structure of KEGG which, for example, de�nes two di�erent modules for microbial

ribosomes ('M00309', the 'archeal ribosome' and 'M00308', the 'bacterial ribosome')

which are connected by the ribosome related 'module 3' since orthologs in both KEGG

de�nitions appear in Chlamydiae. Other examples result from insu�cient orthologous

resolution which cannot distinguish certain types of sub-functionalization as in the case

of 'module 66' which joins two metal related ABC transporters. Some examples con-

tain connections which cannot easily be meaningfully interpreted, as for the 'module 35'

which connects 'M00012 C15 isoprenoid biosynthesis' and 'M00308 Ribosome, bacteria'.

KEGG pathways and modules which join di�erent functional modules are listed in ta-

bles 2.9 (modules) and 6.9 (pathways, in the appendix). The KEGG pathway de�nitions

are rather broad and often subsume di�erent functional entities in one map. This im-

plies, that for these kinds of maps the modules cover only a part of the KEGG pathway

which is in fact the case: for example, eight modules cover di�erent parts of the ABC

transporter overview as they represent di�erent ABC transporters which are distinctly

recovered, and three the map KO3070 comprising a compilation of bacterial transport

systems (compare Table 6.9). In general, the functional modules comprise subsystems

of KEGG entities. A good example is the Type III secretion system (M00713 in KEGG)

which is covered by two modules or the ribosomes (M00309, M00308).

Discussion The recovery of KEGG pathways and modules by the functional modules

is partial and the two concepts exhibit communalities and di�erences alike. Many mod-

ules do not hit any KEGG pathway or module as they represent entities that are either

chlamydia speci�c or not yet existent in the KEGG de�nitions. This picture might

change with the progress of curation by the KEGG annotation team, i.e. by their com-

pletion of the module de�nitions. The recovery of the pathway de�nitions given by

KEGG di�ers from case to case. Metabolic pathways are recovered partially, whereas

cellular sub-systems as transport systems or certain complexes result in a good coin-

cidence. Christian von Mering and co-workers found modules derived from STRING

revealing many pathways with high coincidence in E. coli when comparing their module

clustering with curated sets of EcoCyc pathways (84% pathway speci�city in the case

of enzyme related modules) [114]. Notably, the two studies are not directly compara-

ble: despite of di�erences in the design of the studies (as the used measures and the

pre-processing of the functional modules, and benchmarking only proteins existent in
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KEGG entity Description Modules Amount
M00273 Complex I (NADH dehy-

drogenase), NADH dehy-
drogenase I

module 18, module 26 2

M00114 Lipopolysaccharide biosyn-
thesis, KDO2-lipid A

module 88, module 74 2

M00309 Ribosome, archaea module 3, module 10, module 4 3
M00308 Ribosome, bacteria module 29, module 3, module 71,

module 10, module 35, module 4
6

M00369 Peptides/nickel transport
system

module 132, module 64 2

M00713 Type III secretion system module 115, module 81 2
M00192 C5 isoprenoid biosynthesis,

non-mevalonate pathway
module 5, module 168 2

M00679 Pyruvate oxidation, pyru-
vate => acetyl-CoA

module 159, module 58 2

M00159 Fatty acid biosynthesis, ini-
tiation

module 22, module 15, module
122

3

M00246 Heme biosynthesis,
glutamate => proto-
heme/siroheme

module 140, module 162, module
90

3

M00597 DNA polymerase III com-
plex

module 94, module 185 2

Table 2.9: KEGG module matching several functional modules in P. amoebophila UWE25.

the pathway de�nitions) the E. coli data-sets are much more complete due to the study

bias towards this model organism and the used EcoCyc database, which is especially

dedicated to describe the metabolic pathways of E. coli. The chlamydial solutions of cer-

tain processes may di�er from the common pathway descriptions found in the pathway

databases due to their evolutionary distant relationship to typical model organisms and

their highly reduced genomes. Although this reduction in chlamydial genomes has been

taken account of as far as possible by initially projecting the KEGG pathways to the

individual genomes, the reality of chlamydial metabolism might still be less adequately

captured by KEGG as it would be the case for e.g. E. coli. However, most of the KEGG

pathway to module relationships are meaningful and could serve as basis for a curated

de�nition of chlamydial pathways and cellular machineries.
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2.3.2 Annotation based on functional modules

Introduction In this analysis, the value of the delineated functional modules for the

annotation of still unknown proteins in Chlamydiae is assessed. This investigation is

motivated by the large amount of uncharacterized proteins in the Chlamydiae, and sev-

eral of them do not exhibit su�cient sequence homology to known proteins in other

species that would allow an annotation transfer. The functional ontology used herein is

the MIPS functional catalog (FunCat) described in section ??. This ontology has been

chosen for two reasons: �rstly, its' hierarchical structure allows to chose these levels

of functional granularity that are suitable to describe the function of a module (and

hereby of its' member proteins). Secondly, a manually training set is available for P.

amoebophila. Such a set is necessary to assess the performance of a function prediction

approach and for no other Chlamydium a by hand curated set of any functional ontol-

ogy exists. The basic concept of module based annotation is simple and have already

been employed in other studies [185][179]: annotations are transfered from annotated

to not yet annotated module members. As �rst step in this analysis, I analyzed the

possible information gain (i.e. FunCat predictions) which can be obtained by a module

based approach. Secondly, two strategies to delineate FunCat categories of a functional

module have been assessed: a sensitive approach which generates all possible hypothe-

ses of a modules functional categories and a selective approach which deduces the most

probable functional category. The performance of both approaches was benchmarked

using a cross-validation procedure. Possible causes which might negatively in�uence the

result (i.e the choice of clustering parameters and improper functional categories of the

ontology) are further investigated. To compare the performance of the module based

approach with a network based one, the same two strategies have been implemented

using the functional network neighbors instead of modules.

Material and methods

Used data sets In this analysis, the FunCat 2.0 schema has been used as an ontology.

Categories which are obviously not existent in bacteria as well as the categories 98,

�classi�cation unclear� and 99 �unclassi�ed protein� have been �ltered out resulting in

a sub-set of the FunCat which is used further on in the analysis. The set of P. amoe-

bophila annotations has been �ltered due to this scheme resulting in a gold-standard

set of annotations. The projections of the modules and networks on the proteomes of

the chlamydiae as described above 2.2.6 have been labeled by the functional categories
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while allowing multiple labels per protein. After generating stop-lists of FunCat cate-

gories performing poorly (see below), additional sets of modules and networks have been

created by pruning the FunCat scheme according to the stop-lists and by re-labeling of

the proteins with the new schemata.

Annotation status of Chlamydiae The annotation status of Chlamydiae can be de-

�ned by the amount of uncharacterized proteins as indicated by their annotation pro-

vided in the description lines of each protein. For each publicly available Chlamydial

genome, the amount of protein entries which are annotated as 'hypothetical protein' or

'conserved hypothetical protein' in RefSeq has been counted. For each organism, the

amount of such proteins that cluster in modules have been determined. To assess the

local network properties of uncharacterized proteins, a Wilcoxon Rank Sum test on the

degree and the weight distributions from all unknown and all other proteins to direct

neighbors has been performed (in the predicted P. amoebophila selective interaction

network, singletons without functional neighbor were not counted).

Implementation of annotation strategies The implementation of the sensitive ap-

proach is straightforward: all functional categories provided by any module member

are transfered to all other members if they do not already carry this annotation. The

selective approach is based on the rationale to transfer only the functional category that

is most informative, i.e. is the most probable explanation of a modules' function. This

most probable function is determined empirically as the most frequent category. If sev-

eral top scoring categories exist, the category with the highest information content in

terms of functional speci�city is chosen. This category has been determined as follows:

- For each category assigned to a protein, add all higher level categories: if, for

example, the annotation 10.10.20 is given, add 10.10 and 10.

- Find the most frequent FunCat annotations by counting

- If several categories are equally frequent, chose the most speci�c one: if, for ex-

ample, categories 20.10 and 20 are equally frequent, chose 20.10 since it is more

speci�c due to the hierarchical organization of the catalog.

The same two strategies as described above for the module based approach have been

applied using the direct network neighbors instead of the module co-members as input.
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Assessment of performance The performance of the method is assessed using each

protein instance as test instance and the rest as input for the training (leave-one-out

cross-validation). In the cross-validation process, only proteins clustered in modules

and providing FunCat assignments are counted. Notably, a true positive is detected if

the predicted FunCat number is pre�x of the test instance, i.e. more general terms are

counted if the test comprises a more speci�c term from the same category.

In the sensitive approach, the performance can be described by the amount of true pos-

itive protein-FunCat pairs (existent in both sets) TP , false positive (existing only in the

predictions) FP , and false negative FN (prediction missing protein-FunCat pair). As

performance measures, recall and precision are computed as follows:

Recall =
TP

(TP + FN)
;

�� ��2.21

Precision =
TP

(TP + FP )
;

�� ��2.22

In the selective approach the amount of false negatives predictions cannot be mean-

ingfully deduced since only one category is transferred while the others are ignored.

Therefore, the performance in the selective case is measured as rate of correct and in-

correct assignments: a correct prediction is reported if the transferred category exist for

the test protein, an incorrect one otherwise. The rate of correct predictions is by its'

way of computation equivalent to precision. Since the precision in the sensitive approach

is computed regarding all protein-funcat pairs but in the selective only one instance is

counted, both are di�erently named in this analysis to avoid confusion.

Let N be the amount of proteins predicted,

Rate correct =
TP

N
;

�� ��2.23

Rate incorrect =
FP

N
;

�� ��2.24

For comparison, the performance of each method on a random but equally structured

module set is determined. This is accomplished by the perturbation of the protein-

annotation relationships: each protein gets the set of annotations from a randomly

chosen other one. This randomization does not change the module structure nor the

distribution of joined annotated functional categories and is therefore rather conserva-

tive.
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Assessment of systematic negative in�uences Three major causes may a�ect the

performance of the annotation process:

a) certain categories of the FunCat annotation scheme might be inappropriate to

describe functional modules.

b) the clustering might be sub-optimal and does wrongly combine or split 'real' func-

tional entities.

c) the coverage and quality of the gold set might be poor.

Where point c) cannot be assessed by de�nition without further manual curation, point

a) and b) can be investigated further. To assess point a), functional categories that

frequently contribute to false predictions have been excluded. For this purpose, �ve

di�erent stop-lists have been tested:

• a stop-list with the two top categories that produce most often false positive pre-

dictions in random predictions ('Freq. rand.')

• a stop list with the two top categories that produce most often false positive

predictions in random predictions and their sub-categories ('Freq. rand. (all)')

• a stop list with the categories producing 0% percent correct predictions (0% cor-

rect)

• a stop list with the categories producing less than 33% percent correct predictions

(<34% correct)

• a stop list with the categories producing less than 66% percent correct predictions

(<64% correct)

These values have been derived using the selective annotation approach and the high

con�dence module clustering. To assess point b), the clusterings which resulted from

the initial parameter exploration are re-evaluated due to their predictive behavior in the

cross-validation procedure.

Results Comparing the local network-properties of P. amoebophila proteins with un-

known function against the complete set of proteins revealed signi�cant shifts towards

lower values for both, degree and weight, in the high con�dence networks (signi�cance:

P-value degree shift: 0.005951, weight shift: < 2.2e-16) and a large fraction of them
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does not cluster into modules. However, several instances of unknown proteins have

been found to be module members. Therefore, the modules provide candidates for an-

notation transfer as summarized in Table 2.10. The amount of uncharacterized sequences

in modules is on average 60 per organism, with a maximum of 243 proteins (23% of the

entire amount of sequences) in P. amoebophila. The pathogenic Chlamydiae also exhibit

a certain amount of hypothetical protein entries in the modules, ranging from 40 to 70

entries.

Organism Unknown (modules) Unknown (not modules) Prot. in modules Genome size
C. trachomatis D/UW-3/CX 43 234 523 895
C. trachomatis 434/Bu 41 193 520 874
C. trachomatis L2b/UCH-1/proctitis 41 193 520 874
C. muridarum Nigg 66 273 514 911
C. trachomatis A/HAR-13 51 234 530 919
C. abortus S26/3 70 215 535 932
C. caviae GPIC 51 328 540 1005
C. pneumoniae AR39 79 456 535 1112
C. pneumoniae CWL029 51 377 537 1052
C. pneumoniae J138 53 377 544 1069
C. pneumoniae TW-183 58 421 543 1113
C. felis Fe/C-56 40 283 548 1013
C. Protochlamydia amoebophila UWE25 243 998 854 2030
C. pneumoniae LPCoLN 42 353 552 1105
C. trachomatis B/TZ1A828/OT 42 193 516 880
W. chondrophila 0 0 810 2070
S. negevensis 0 0 839 2509
P. acanthamoebae UV7 0 0 996 2854

Table 2.10: Annotation status of chlamydial proteomes. Column 'Organism' contains the organ-
ism name, 'Unknown (modules)' is the amount of hypothetical proteins in modules, 'Unknown
(not modules)' the amount of hypothetical proteins which do not cluster into modules, 'Prot.
in modules' the overall amount of proteins which cluster in modules, 'Genome size' the total
amount of proteins.

The functional categories transfered in the selective approach (high con�dence clus-

tering) are listed in the additional Table 6.11 and the functional categories transfered in

the randomized selective approach (high con�dence clustering) are listed in Table 6.12

in the appendix. These lists have been used to determine the stop lists as described

above. In the randomized case, the categories '01' (Metabolism) and '16' (Protein with

binding function or cofactor requirement, structural or catalytic) are the most frequent

to produce false positive hits (with 496 and 123 cases) and represent clear outliers com-

pared to the other categories. In consequence,they were added to the stop-list 'Freq.

rand.' and with all their sub-categories to 'Freq. rand. (all)'. The amount of correctly

transferred entities per functional category varies widely. Categories which completely

fail mostly comprise only few counted transfers (1-7) which are caused by small modules.

Contrarily, small and medium sized modules exist with high success rates, even with

100% correct predictions. Categories which participate on many predictions (>20) show

success rates between 15% and 70%.

The values for recall and precision in the sensitive approach are summarized in Table
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2.11. The table lists the results for all used stop lists in both, medium and high con�-

dence modules. For each combination, the performance as Recall and Precision for the

actual clusterings and the randomized case are given. The maximum Recall that could

C. Stoplist R Recall (M) Precision (M) Recall (N) Precision (N)
M - - 0.43 0.11 0.48 0.10
M <0.64% correct - 0.74 0.13 0.53 0.10
M <0.34% correct - 0.58 0.12 0.45 0.08
M 0% correct - 0.55 0.10 0.44 0.08
M Freq. rand. - 0.43 0.11 0.48 0.10
M Freq. rand. (all) - 0.45 0.11 0.48 0.09
M - + 0.22 0.03 0.35 0.04
M <0.64% correct + 0.29 0.02 0.36 0.04
M <0.34% correct + 0.26 0.03 0.35 0.04
M 0% correct + 0.28 0.03 0.30 0.03
M Freq. rand. + 0.21 0.03 0.36 0.04
M Freq. rand. (all) + 0.18 0.02 0.32 0.03
H - - 0.44 0.16 0.45 0.16
H <0.64% correct - 0.73 0.16 0.58 0.15
H <0.34% correct - 0.62 0.14 0.52 0.13
H 0% correct - 0.59 0.13 0.50 0.12
H Freq. rand. - 0.44 0.16 0.45 0.16
H Freq. rand. (all) - 0.46 0.17 0.47 0.16
H - + 0.20 0.03 0.26 0.04
H <0.64% correct + 0.28 0.02 0.31 0.04
H <0.34% correct + 0.23 0.03 0.26 0.04
H 0% correct + 0.24 0.03 0.23 0.03
H Freq. rand. + 0.20 0.03 0.26 0.04
H Freq. rand. (all) + 0.17 0.02 0.24 0.03

Table 2.11: Performance of module based annotation, sensitive approach. 'C.' is the clustering
(M: from medium con�dence, H: high con�dence network). 'Stoplist' is the stop-list employed
(compare list given in the text , sub-paragraph 'Assessment of systematic negative in�uences'
in 2.3.2), 'R' de�nes whether the initial annotations are randomized (+) or not (-). 'Recall
(M)' the recall computed as TP/(TP+FN) for the module based approach, Precision (M)
the precision computed by TP/(TP+FP) in the module based approach. 'Recall (N)' ad
'Recall (N)' are the values for the corresponding network based approach.

be reached is 0.74 using the <64% stop-list. The reached Precision is generally low (∼
0.11 in the medium and ∼ 0.16 in the high con�dence modules). The performance of the

approach is clearly above random as indicated by the generally higher values for Recall

and Precision in the non-randomized case. However, the Recall in the randomized case

turned out to be surprisingly high (with a maximum at 0.33). This e�ect is caused
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by the principle to transfer any annotation found within the module which increases

the probability to generate a true positive prediction by chance. This e�ect does not

in�uence the Precision (which can be found always ∼ 0.03 in the randomized case) since

much more incorrect than correct annotations are transferred. This observation holds

also true in the non-random case: many wrong annotations are transferred that lead

to poor values for the Precision in every case. A general observation is that the mod-

ules from the high con�dence network exhibit a little better performance. In terms of

Recall and Precision, the use of stop-lists turns out to be fruitful and to increase the

performance. The results of the selective approach are summarized in Table 2.12. Some

general observations made in the sensitive case are also valid for the selective one: the

high con�dence modules exhibit a better performance (best percentage True positive

predictions 48% compared to 40%) and the in�uence of the stop lists increases the rate

of true positive predictions. The performance in the randomized case is partially high

with up to 28% correct predictions. This high amount is a side e�ect of the strategy to

determine the most probable functional category: in the randomized case, this category

is more frequently one of the high level categories as the only intersection between the

annotations in a module. Although these assignments have few support in the module

they are assigned and counted as true positive if the functional category of the test

instance is equal or a descendant of the predicted category. The initial clustering of

modules could in�uence the performance of the function prediction. The results of an

assessment of a possible in�uence are summarized in Figure 2.11. In this �gure, the

performance for di�erent In�ation parameters are plotted for the selective function pre-

diction approach. The experiment has been done for the function prediction without a

stop list and with the 'Freq. rand.' stop list. An obvious tendency towards a better

performance for �ne grained clustering (i.e. larger In�ation values) can be seen. A fur-

ther test on the re-clustered modules from the initial parameter exploration supported

this �nding since the values for the coarse clusterings increased after re-clustering into

smaller entities (compare 6.3 in the appendix). In comparison with the module based

annotation procedure, the performance of the network-based analysis di�ers in some

aspects: in the selective procedure, the rate of correct predictions is increased compared

to the module based approach for each combination of network/clustering and stop-list.

In the sensitive approach, the Precision in the network is generally a little worse than

for the modules. The values of the Recall exhibit di�erences: in general the Recall of

the network approach is higher when no stop list is used. The picture turns when stop-

lists are employed and the combination module based plus the '<0.64%' stop list clearly
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Clustering Stoplist R True (M) True (N)
M - - 0.38 0.46
M <0.64% correct - 0.35 0.44
M <0.34% correct - 0.40 0.56
M 0% correct - 0.40 0.46
M Freq. rand. - 0.38 0.47
M Freq. rand. (all) - 0.36 0.44
M - + 0.21 0.34
M <0.64% correct + 0.09 0.14
M <0.34% correct + 0.22 0.45
M 0% correct + 0.23 0.34
M Freq. rand. + 0.10 0.12
M Freq. rand. (all) + 0.10 0.18
H - - 0.46 0.53
H <0.64% correct - 0.40 0.53
H <0.34% correct - 0.48 0.60
H 0% correct - 0.48 0.55
H Freq. rand. - 0.42 0.52
H Freq. rand. (all) - 0.41 0.49
H - + 0.21 0.32
H <0.64% correct + 0.10 0.18
H <0.34% correct + 0.24 0.37
H 0% correct + 0.22 0.33
H Freq. rand. + 0.07 0.12
H Freq. rand. (all) + 0.11 0.12

Table 2.12: Performance of module based annotation, selective approach. 'Clustering' is the
clustering (M: from medium con�dence, H: high con�dence network). 'Stoplist' is the stop-
list employed (compare list given in the text , sub-paragraph 'Assessment of systematic
negative in�uences' in 2.3.2), 'R' de�nes whether the initial annotations are randomized (+)
or not (-). 'True (M)' fraction of correctly annotated proteins by the module approach,
'True (N)' the fraction of correct annotations predicted by the network based approach of
the corresponding network (high, medium) con�dence during cross-validation.

outperforms the network based equivalent (Recall 0.74 against 0.53). In addition, the

random runs in the network based annotation produce higher Recalls as their module

counterparts (compare Table 2.11 and Table 2.12).

From the 243 proteins which are annotated as 'unknown' in P. amoebophila, for 178 a

FunCat category can be proposed (no stop-list, high con�dence clustering set) by the

selective procedure. The proposed FunCats are listed in the supplementary Table 6.10.

A check of Funcat predictions for 30 proteins by a biologist (Dr. Astrid Horn, Univer-

sity of Vienna) by careful annotation using database and literature research revealed
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Figure 2.11: Performance of the selective function prediction for di�erent clusterings (with no re-
clustering) with and without stop list (stop-list contains FunCat '01' and '16'). 'In�ation' is
the in�ation value used to cluster the set. 'Percent correct' is the rate of correct predictions.
The di�erent runs comprise: 'no stop-list: complete set of functional categories, with stop-
list: categories 01 and 16 excluded. Both runs have been repeated with randomized FunCat
labels, denoted as 'no stop-list (randomized)' and 'with stop-list (randomized)'.

in eight cases a coincidence with the proposed annotation, in 17 cases the annotation

could not be veri�ed. In �ve cases, no statement could be made. These are listed in the

supplementary Table 6.13.
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Discussion Many unknown proteins of Chlamydiae have a tendency to populate parts

of the network with low local structure as inidicated by the investigation of the local

network-properties. Therefore, they have a lower chance to be clustered into a functional

module, the amount of hypothetical proteins in modules is su�ciently high to justify a

module based annotation approach. For a large fraction of them a functional predic-

tion by module co-membership or by an analysis of the neighborhood in the functional

interaction network can be made. These unknown proteins have not been annotated

due to the lack of clear homologous relationships during the primary annotation process

of P. amoebophila. Thus, this analysis points out the potential of the module/network

based approaches for annotation. Two strategies have been proposed, the rather trivial

sensitive approach and the selective approach. The latter one is based on an adapta-

tion of the commonly used majority vote criterion to the hierarchical structure of the

FunCat. The procedure reveals several examples where a highly speci�c FunCat could

be transfered if the module is in majority speci�c to a sharply de�ned cellular process

that is also �ne grained described in the FunCat scheme. The procedure automatically

adapts to a less �ne description of a module if either the module is functionally more

diverse or its' functionality is not described in a high (i.e. speci�c) level of resolution in

the FunCat. The performance of the network and the module base approach di�er due

to the annotation strategy used. Song and co-workers [185] discuss the performance of

similar approaches as used herein applied on the yeast interaction network. They found

the performance of a module based approach is outperformed by a network based one in

case of the S. cerevisiae interactome. The �ndings for the functional chlamydial inter-

action network in this study must be further di�erentiated. As found by Song et al., the

general performance of the network based approach is better, but this �nding depends

on the pruning of the used ontology for general terms (i.e. the employed stop-lists) and

the employed annotation strategy (sensitive or selective). The use of the stop lists could

clearly improve the module based approach in the sensitive approach, whereas this has

not been possible for the network based one by this extent. So, a combination of the

module based procedure that is restricted to functional categories that are derived as

'predictive powerful' should be employed. This conclusion can also be interpreted as

observation that the modules re�ect cellular machineries better as enzymatic pathways

since the most erroneous category is FunCat 01 'Metabolism'. However, sub classes of

metabolism with a good speci�city could be be found as, e.g., for the biosynthesis of Cys-

tein (100%), amino-acid metabolism (75%), or the poly-saccharide biosynthesis (80%),

albeit with only few candidates (compare Table 6.11 in the appendix) indicating their

96



2.3. ANALYSES USING FUNCTIONAL MODULES

good representation by functional modules. In the study of Tanay and co-workers on

yeast modules using GO annotations, a dependency of the performance due to the chosen

GO term and module could also be observed: certain GO terms related to broader pro-

cesses as sporulation or amino-acid metabolism could be transferred with a high varying

speci�city between 40%-100% [179] (compare text and supplementary Figure 9 of the

publication), re�ecting the same e�ect found here. The procedure proposed herein can

serve as a basic frame-work for an automated annotation system using network and mod-

ule based information of prokaryotic genomes. Such a system could be employed after a

�rst round of homology based annotation to identify proteins related to certain cellular

processes. Another application would be the use as a system for target prioritization for

further experiments by evaluating modules in which the function prediction performs

poorly or results in very unspeci�c predictions due to lacking primary annotations: the

characterization of a few proteins of such modules would give hints to the function of

all module members and could therefore save time and costs for experiments.

2.3.3 Detection of virulence genes by module co-membership

Introduction Virulence factors are generally detected in silico by two classes of ap-

proaches: �rstly, by homology to known virulence related genes, and secondly by se-

quence properties as in the identi�cation of secreted proteins which are identi�ed by the

detection of a N-terminal secretion signal. In the �rst case, factors which are members

of yet unknown protein families cannot be detected. The second approach cannot detect

virulence related genes that are not secreted as additional secretion system components

or proteins involved in virulence related transcriptional control. Furthermore, not for all

kinds of secretion systems a sequence based prediction method exists and the question

arises if virulence factors (i.e. e�ector proteins) can be detected by co-membership in

modules which are related to virulence. The aim of this analysis is to assess the ability

of the idea to uncover chlamydial virulence factors using the functional modules delin-

eated before. This includes two steps: the identi�cation of relevant modules, and the

extraction of possible candidates.

Material and methods In this analysis, the modules of the high and medium con-

�dence as well as modules originating from the un�ltered networks have been used in

their projection to the individual species. The member proteins have been labeled due

to their relatedness to virulence using a list of known and predicted virulence related

proteins.
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Compilation of a list of virulence related proteins In this analysis data from one

representative strain of each species of the pathogenic Chlamydiaceae as well as the

environmental Chlamydium, P. amoebophila has been used. A list of C. pneumoniae

virulence factors compiled from SWISSPROT [198] and the Virulence database [239] ,

as well as a list of all Chlamydial proteins carrying eukaryotic like domains (compare

Chapter x) have been kindly provided by Marc Andre Jehl. An additional list of known

virulence factors from di�erent Chlamydiae has been obtained from Dr. Astrid Horn,

University of Vienna. This list has been extended by orthologs from all used Chlamy-

diae. Known Type III e�ector proteins have been extracted from the E�ectiveT3 train-

ing set and close orthologs in strains of the same organism have been added to this

list [28]. A list of proteins belonging to transport-systems found in the Chlamydiacea

according to KEGG [193] have been determined by membership to orthologous groups

of these systems. These comprise the Type II, III, IV transport systems as well as the

Sec-dependent pathway. Putative Type III secreted proteins have been predicted with

E�ectiveT3 using sensitive settings (cut-o� 0.95). Proteins predicted to be transported

by the Sec dependent pathway have been determined using SignalP (standard settings)

for each chlamydial proteome. All chlamydial proteins have been labeled according to

these lists as member of a transport system, as e�ector or virulence factor, eukaryotic

like protein, or predicted by either E�ectiveT3 or SignalP. All other proteins have been

labeled as 'not related to virulence'

To investigate di�erences in local network properties for the di�erent kinds of virulence

related genes, the degree and a representative edge weight has been computed for each

protein. The degree has been de�ned as the number of direct edges, the typical edge-

weight has been de�ned by the median weight of the direct edges (both in the complete

functional network instances for each proteome).

Selection of candidate modules As the �rst step in this analysis modules that com-

prise virulence factors must be identi�ed. Since it could be initially observed that the

overall amount of virulence related proteins as labeled above is small in comparison to

the complete set of proteins, interesting modules have been identi�ed by computing a

P-value re�ecting these rare events:

- For all proteins encoded in each Chlamydial genome, chose the label which is

most informative in terms of virulence. Following order has been applied: part of
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transport system > known E�ector > virulence factor, predicted TTSS substrate

> predicted substrate of the Sec-dependent pathway > not related to virulence

- let be L = {Transport system component, E�ector, Virulence Factor, predicted

TTSS substrate, predicted Sec substrate, not related to virulence} and N the

amount of proteins encoded in the genome,

∀x ∈ L : compute:

freq(x) =
x

N
;

�� ��2.25

The score S(m) for each module M is then computed as:

- let p be a protein with label xp,

S(m) =
∏
∀p∈M

freq(xp);
�� ��2.26

The smaller the score S(m), the more likely the module is virulence related. For the

numerical computation of the P-Value of an observed module z with score S(z), a

Monte-Carlo approach has been used by comparing the resulting score to scores out of

several rounds of randomization. The modules are randomized by shu�ing the protein

identi�ers while retaining the module topology (sizes and amounts of modules). The

scores for all modules with the same size as module z are computed and the amount of

random modules r with S(r) ≤ S(z) are counted as c. This has been repeated n = 10000

times. The actual P-value is then computed as:

Pvalue(m) =
c

n
;

�� ��2.27

Modules with a P-Value ≤ 0.1 have been chosen for the deduction of virulence related

candidates.

Creation of candidate lists The delineation of candidates is intuitive: all proteins

not yet known as virulence related due to the initial classi�cation are extracted from

the virulence related modules. The labels attached to the proteins give evidence if

a candidate is probably secreted (with either SignalP or E�ective prediction), could

serve as possible e�ector (carrying a eukaryotic like domain and/or is predicted by

E�ectiveT3), or is a candidate of being generally virulence related if it carries no label.
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Depending on these evidences, the candidate lists can be prioritized for experiments

depending on the research interest. In order to detect e�ectors, for example, proteins

with an eukaryotic domain and a E�ectiveT3 prediction would be good candidates to

start.

Results The amounts of virulence related modules per organism is listed in Table 2.14

ranging from four instances in C. felis to twelve in P. amoebophila (if referred to modules

derived from the high con�dence network). In P. amoebophila, the amount of proteins

in the virulence related modules is substantially larger as in the pathogenic Chlamydi-

aceae. This e�ect contributes to additional modules detected for this organism as well

as to additional proteins in modules common to several Chlamydiales due to its' larger

genome size.

Where the amounts of virulence modules do not drastically di�er between modules delin-

eated from the di�erent networks (high and medium con�dence, and the complete set),

the clustering from the complete network comprise some additional module instances.

Many of the additional modules mainly contain unknown proteins. Due to their uncer-

tainty of correctness and their low annotation status, their relevance for virulence cannot

be easily judged. However, since the known e�ector proteins exhibit only weak and few

functional interconnections, these modules may give valuable hints to novel virulence

related proteins. Only in the clustering of the complete network four characterized e�ec-

tors can be found in co-membership to other virulence related genes. In C. muridarum,

the inclusion proteins IncE, IncF, and IncD can be found clustered together in 'module

3'. This module also contains some instances of the GroEL chaperonine family. These

are identi�ed as eukaryotic like proteins and several hypothetical proteins. One of the

hypothetical proteins found in the module is GI:15835013 (locus tag: TC0394) which

is homologous (SIMAP E-value = 6.45−30, alignment over full length) to the inclusion

protein IncG in C. trachomatis. This protein is supposed to hinder apoptosis of the host

cell in C. trachomatis [240] and is therefore a good candidate for an e�ector protein in

C. muridarum. The e�ector protein CopN (O34020_CHLCV) can be found in 'mod-

ule 91' of Chlamydophila caviae GPIC. It clusters together with two Type III secretion

system related proteins from the list of virulence factors: GI:29840222, a protein of the

hrpY/hrcU family and GI:29840190,a �hA homolog, both involved in TTSS mediated

secretion due to their annotation in the Pedant database. No other known e�ector

protein nor proteins from the list of virulence factors could be found in module co-

membership to a transport system. The amount of not yet characterized proteins which
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are co-localized in a module with a transport systems is generally low: in the example of

Chlamydia muridarum, three candidates can be found connected to a transport system

by module co-membership (candidates in 'Module 115' and 'Module 16'). The candidate

in 'Module 115', TC0092 is already annotated as 'Type III secretion system protein' and

has been missing in the initial set of transporter components. TC0780 in Module 16 is

probably no virulence factor since it is annotated as 'DNA polymerase'. The same ap-

plies to the other candidate of this module, TC0779, which comprises a dephospho-CoA

kinase. Therefore, the modules in this settings did not generate suitable candidates of

unknown virulence factors. The results for Chlamydia muridarum strain Nigg (modules

from high con�dence network) are listed in Table 2.15. Many modules can be found

enriched by components of the transport systems such as 'Module 81' and 'Module 115'

which comprise components of the TTSS system or 'Module 16' which harbors several

components of the general secretion pathway (Sec dependent pathway). 'Module 1' con-

tains three chaperons related to TTSS transport (TC0055, TC0865 and TC0055), two

of them have not been in the list of known virulence factors. The module comprises

twelve virulence candidates, three of them with a eukaryotic like domain.

Since not too many e�ector proteins could be recovered, the local network properties

of the virulence related proteins have been computed to assess whether these do not

tend to cluster in comparison to arbitrary proteins. In Table 2.13, the averages of local

network-properties (degree and edge weights) from proteins of transport systems, known

virulence factors, characterized e�ector proteins, and predicted e�ector candidates (by

either eukaryotic domain, SignalP, or E�ectiveT3) are compared against the complete

set of proteins. Obviously, the known e�ector proteins populate areas of the functional

interaction networks which have weak structure: their average degree is much smaller

(9.07 compared to 226.24) compared to the average of all proteins, however, their aver-

age median weight is not such drastically di�erent from the average of all proteins (0.62

compared to 0.65). Known virulence factors, transporter components as well as proteins

with an eukaryotic like domain exhibit more structure as indicated by higher averages

for degree and weight as the set of all proteins. Proteins predicted to be secreted follow

the trend of known e�ectors and show smaller average degree and weight.

Discussion The Monte-Carlo based approach to detect virulence related modules au-

tomatically revealed several modules comprising known virulence related sub-systems,

i.e. transporter systems. This basic concept of using a Monte-Carlo simulation to detect

signi�cantly enriched sets of di�cult or unknown distribution (which comprises the �rst
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Set Avg. degree P-Value Avg weight P-Value
All proteins 226.24 - 0.65 -
Secretion system 266.04 (+) 5.838E-11 0.86 (+) 2.2E-16
Virulence factor 276.24 (+) 3.973E-16 0.82 (+) 2.2E-16
E�ector 9.07 (-) 7.518E-9 0.62 (-) 0.0783
Eukaryotic domain protein 231.16 (+) 0.08265 0.78 (+) 2.2E-16
Predicted T3 substrate 143.78 (-) 2.2E-16 0.53 (-) 2.2E-16
Predicted Sec-pathway substrate 166.00 (-) 2.2E-16 0.59 (-) 0.006235

Table 2.13: Average degree and average median of edge weights of virulence related proteins in
comparison with all proteins. (+) indicates higher, (-) lower degree/weight in the set as for all
proteins. To judge the signi�cance of these distribution shifts, P-Values have been computed
using an one side Wilcoxon rank sum test. 'Secretion system' comprises proteins of the Type
II, III, and IV secretion systems. 'Virulence factor' comprises a set of di�erent virulence
related genes, 'E�ector' comprises known Type III e�ectors, 'Eukaryotic domain protein' all
proteins with a eukaryotic like domain, 'Predicted T3 substrate' comprise proteins predicted
by E�ectiveT3, 'Predicted T2 substrate' comprise proteins predicted by SignalP

Organism mod.
(high)

prot.
(high)

mod.
(medium)

prot.
(medium)

mod.
(all)

prot.
(all)

C. muridarum 5 33 5 62 9 129
C. trachomatis 6 36 6 64 9 115
C. abortus 5 37 5 40 8 118
C. caviae 5 50 5 75 9 153
C. pneumoniae 5 29 5 27 7 58
C. felis 4 21 3 15 8 122
P. amoebophila 12 157 9 125 14 199

Table 2.14: Amount of virulence related modules detected by the enrichment analysis of virulence
related proteins. 'Organism' is the species, 'mod.(high)' the amount of modules from the
high con�dence network with a P-Value ≤ 0.1, 'prot.(high)' the amount of proteins covered
by these modules. The counts for the medium con�dence and the complete networks are
given in 'mod.(medium)','prot.(medium)','mod.(all)','prot.(all)'

step in this analysis) has been used in a similar way in several studies [241, 242, 196,

243, 244]. However, an initial knowledge of the systems is necessary to perform the

enrichment analysis which can then be used for the candidate generation. The identi-

�ed modules are limited in their ability to predict virulence factors, especially e�ector

proteins, since these are poorly connected by functional links to these modules and do

not cluster together. The connectivity of e�ector proteins in the functional interaction

networks appeared to be very low, especially in terms of functional neighbors as indi-

cated by their low degree. These observations re�ect an independent evolution of e�ector
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Locus-tag Descr. Se.
Sys.

E�ector V. Fac-
tor

Eu. E�. Sig. Candidate

Organism: Chlamydia muridarum Nigg
module 81
TC0853 type III secretion inner membrane protein

SctT
+ - - - - -

TC0852 type III secretion inner membrane protein
SctS

+ - - - - -

TC0365 type III secretion inner membrane protein
SctV

+ - - + - -

TC0848 type III secretion protein SctJ + - - + - -
module 1
TC0073 hypothetical protein - - - - - - *
TC0309 deoxycytidine triphosphate deaminase - - - - - - *
TC0535 ABC transporter, ATP-binding protein - - - - - + *
TC0252 type III secretion chaperone - - - + - - *
TC0390 hypothetical protein - - - - - - *
TC0217 hypothetical protein - - - + - - *
TC0771 hypothetical protein - - - - - - *
TC0379 hypothetical protein - - - - - - *
TC0055 type III secretion chaperone, putative - - - - - - *
TC0767 hypothetical protein - - - - - - *
TC0410 hypothetical protein - - + - + -
TC0546 type III secretion chaperone, putative - - - - - - *
TC0918 UDP-N-acetylglucosamine pyrophosphory-

lase GlmU-related enzyme
- - - - - - *

TC0865 type III secretion chaperone SycD - - + + - -
module 115
TC0040 type III secretion system ATPase + - - - - -
TC0850 type III secretion system protein + - - - - -
TC0092 type III secretion system protein - - - + - - *
TC0090 type III secretion system ATPase + - - - - -
module 113
TC0302 exodeoxyribonuclease V, alpha subunit - - - + - - *
TC0021 exodeoxyribonuclease V, alpha subunit, pu-

tative
- - - + - - *

TC0008 exodeoxyribonuclease V, gamma subunit,
putative

- - - + - - *

TC0007 exodeoxyribonuclease V, beta chain, puta-
tive

- - - + - - *

module 16
TC0858 hypothetical protein + - - - - +
TC0780 DNA polymerase I - - - - - - *
TC0779 dephospho-CoA kinase - - - - - - *
TC0861 general secretion pathway protein D + - - - - -
TC0045 type III secretion protein SctC + - - - - -
TC0860 general secretion pathway protein E + - - - - -
TC0859 general secretion pathway protein F + - - - - -

Table 2.15: Candidate virulence factors detected by module co-membership in Chlamydia muri-

darum strain Nigg. 'Locus tag' locus tag of protein, 'Descr.' description line, 'Se. Sys.'
indicates whether the protein is a known part of a transport system (+) or not (-), 'V.
factor' indicates if the protein is a known virulence factor (+) or not (-). 'Eu.' indicates
presence (+)/absence (-) of an eukaryotic like domain, likewise 'E�.' indicates an E�ec-
tiveT3 prediction, 'Sig.' a SignalP prediction. 'Candidate' marks proteins of interest by an
asterix that are not yet categorized.

proteins for most pathogenic bacteria due to their individual modes of host interaction.

These special adaptations imply many e�ectors to be orphan genes with no or only

few orthologs in closely related species. In consequence, they cannot be detected with

certainty (i.e. su�cient score) by the genomic context methods which rely on orthology

information and regularities between several species. The picture resulting from this

analysis matches expectations implied by the biology of virulence factors: the transport

systems are well conserved cellular machineries and recovered as such, whereas the ef-

fectors should not cluster together with each other since they interact with host proteins

but not with other secreted proteins. Interaction with the transport systems could not
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be frequently detected and is mediated by N-terminal secretion signals (in case of Type

III and Sec dependent secretion), a kind of interaction not modeled in the network.

Some e�ector and predicted e�ector candidates cluster together with chaperons which

have been shown to play a role to mediate Type III secretion. Transported proteins are

therefore not supposed to be computationally detectable physical interaction partners of

the secretion systems, but their functional relatedness to transport systems could pos-

sibly bear a su�cent signal for module co-membership. Although, this is not frequently

the case, some examples could be detected in the complete network, i.e. one module

harboring some of the inclusion proteins. This inclusion proteins play a major role in

the intra-cellular survival of the Chlamydiae [245] and are therefore indeed virulence

related. This module should serve further candidates of inclusion related proteins and

could serve as starting point for further experiments to �nd proteins related to viru-

lence. The low recovery of known e�ector proteins outlines the importance of dedicated

methods to detect them, especially by the identi�cation of their secretion signal or by a

detectable function it could play in the host. Both approaches have been tackled in our

group: the second part of this thesis deals with E�ectiveT3, a software to detect Type

III secreted proteins. The systematic detection of eukaryotic like domains has been as-

sessed by Marc Andre Jehl with my participation and represents an additional, secretion

system independent approach (data from both analyses have already been used in this

chapter).

2.3.4 Evolution of Chlamydiae in terms of functional modules

Introduction The availability of the genomes and, in consequence, the predicted func-

tional modules of representatives of the pathogenic and the environmental species, allows

to study di�erences in the equipment and composition of cellular sub-systems re�ect-

ing their adaptations to di�erent ecological niches. Following questions are tackled by

this analysis: �rstly, I asked which modes of module evolution play a role during the

adaptation from variable hosts to a very specialized host. For example, the modules

could be preferably lost completely or, in contrast, regularily reduced in their size. The

environmental Chlamdiae exhibit less genome reduction. To get a clue on which func-

tionalities the environmental Chlaymdiae still rely but are lost in the pathogenic ones, I

investigated which functional modules are lost in the pathogens but still exist in the en-

vironmental Chlamydiae. Furthermore, three individual example modules are discussed

in detail according to their composition in the individual genomes.

Functional modules may contain sub-groups of proteins which are evolutionary more
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correlated to each other as to the rest of the module, re�ecting common evolution-

ary pressure on parts within the module. For these sub-modules I introduce the term

'cohesive core(s)'. Contrary, proteins which exhibit an irregular pattern of evolution

compared to other module members are named 'shell' proteins. In this chapter, a strat-

egy to detect cohesive cores is proposed and the existence of them in the chlamydial

modules is assessed. The classi�cation of module members into evolutionary coherent

groups allows a more detailed investigation of genome reduction due to the host adap-

tion process in cases where it a�ect the modules by size reduction and not by complete

loss. With the concept of the cohesive cores such reductions can be described in three

di�erent ways. These three alternatives are:

- reduction of cohesive and shell parts alike ('irregular' reduction)

- loss of shell parts while retaining cohesive cores ('purifying' reduction)

- loss of cohesive cores while retaining shell proteins ('cohesive' reduction)

The three alternatives are pictured in Figure 2.12. Since the genomes of the environ-

mental Chlamydiae are less reduced and their host-adaptation is more variable, their

module interior should be more similar to the last common ancestor as it is the case for

the pathogenic ones. Therefore, the di�erent events should be detectable when compar-

ing the environmental and the pathogenic Chlamydiae.
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Figure 2.12: Possible scenarios of module reduction due to host adaptation and genome reduction.
A: 'irregular reduction' B: 'purifying reduction' C : 'cohesive reduction'
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Material and Methods

Data used The organisms used in this study comprise the environmental Chlamydiae

and one representative strain for each pathogenic Chlamydiacea. To avoid circular rea-

soning, a module set has been created based on a the high-con�dence network without

links from the co-occurrence method (using the same cut-o� and clustering parameters

as for the initial high con�dence network). This set has been projected to the genomes

by orthology assignments as described in Chapter 2.2.6. As phylogenetic tree, the NCBI

taxonomy tree as from March 2010 has been used. The orthologous groups as created in

Chapter x) have been employed to create phylogenetic pro�les covering all prokaryotic

genomes in the STRING database and the Chlamydiae used in this study.

Detection of cohesive modules I used an algorithm proposed by Campillos et al.

[181] to compute a cohesiveness score for a given module. The score is based on the

idea to describe a modules' evolution by the most parsimonious explanation of the

pairwise evolution of module members. Module members can appear (gene birth) or

disappear (gene death), and costs for each of these events can be de�ned. Given a

�xed phylogeny and a pro�le of the phyletic distribution of the recent module members,

the most probable scenario of events can then be computed as the one with the lowest

costs [246]. To make tis concept applicable to cohesiveness, the costs are lowered if a

joined event occurs re�ecting the a priori assumption of favored cohesive evolution. The

resulting tree of events is then scanned for the amount of joined vs. single events and the

fraction of joined events, and the average (normalized) costs, are determined. These two

variables, which describe the cohesiveness of a module, follow a multivariate distribution

with parameters depending on the modules' size, the used phylogeny, and on the used

organisms. With this distribution at hand, P-Values can be computed re�ecting the

probability to see the cohesive behavior of a given module by chance.

The probability function of the multivariate normal distribution is given by:

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp[
−1

2(1− ρ2)
[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

−2ρ
(x1 − µ1)(x2 − µ2)

σ1σ2

]];�� ��2.28

where x=fraction of joined events, and y=normalized parsimony costs. P-Values are

computed numerically using a simple Monte-Carlo method as the fraction of random

modules with a probability equal or less the observed module probability (10000 data-
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points for each module size):

let be s the probability of a modulem, f(xm, ym), let be c the amount of random modules

with f(xc, yc) ≤ s;

the P-Value is then computed as:

Pvalue(m) =
c

10000
;

�� ��2.29

An implementation of this algorithm has been kindly received from Sebastian Ullherr

who implemented the algorithm during an internship under my co-supervision. In his

internship-project, the same data-set as used in the original publication has been used

to validate the correctness of the algorithm. To use the algorithm with new data, the

parameters of the two dimensional multivariate normal distribution function had to be

re-estimated according to the used phylogenetic tree, the set of used organisms, and

the used modules which all three di�er from the initial study. The parameters have

been re-estimated from 50000 randomly shu�ed modules (under preservation of the

clustering topology). Notably, the cohesiveness is computed over the whole available

set of complete prokaryotic genomes and not on the chlamydial genomes alone. This

is necessary to gain su�cient resolution as in the related phylogenetic pro�le method

to detect functional links (compare Chapter 1.3.4). The observed cohesiveness may

therefore di�er from the picture seen when looking at the phylogenetic distributions of

a module in chlamydial genomes only. Modules have been classi�ed as 'cohesive' if their

P-Value is smaller or equal 0.01, 'variable' otherwise as done in the literature [181, 182].

A strategy to detect cohesive cores I implemented a strategy to split up a module

into 'cohesive cores' and 'variable shells'. This procedure is an extension of the approach

of Campillos and co-workers described above [181] in which the pairwise cohesiveness

scores of module members are used to establish joined groups of proteins which share

signi�cant cohesiveness. A module may comprise, beside shell proteins, several cores or

none of them. In the cases where shell proteins are absent, the module is completely

cohesive itself.

The algorithm to split a module in core and shell is implemented straightforward

using graph clustering:

• Create an empty graph G with nodes n1..nm where m is the size of the module

representing the member proteins.

• Enumerate all pairs (a, b) of module members with a 6= b. For each possible pair
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c of module-members, compute p = Pvalue(m) as described above.

• If p ≤ 0.01, establish an unweighted link in G between the two module members.

• Cluster the resulting graph, i.e. by deep-�rst search for connected components.

• Proteins in components with a size ≥ 2 are labeled as 'core' proteins.

• Proteins remaining singletons are labeled as 'shell' proteins.

A test with two di�erent graph cluster algorithms (MCL and a simple connected

component clustering) did not revealed clear di�erences in the outcome of the clustering

since the structure of the input graph is trivial in most cases. In this analysis, the

connected component clustering has been further used. Notably, the resulting cores

might be not cohesive by themselves (P-Value ≥ 0.01). These are treated as bona

�de cores since they are detectable by the pair-wise cohesiveness criterion. A manual

inspection of the reported cores indicated, that they often re�ect meaningful sub-units

as partners of a complex.

Classi�cation of modules with reduced size In order to quantify the di�erent modes

of reduction during host adaptation of the pathogenic Chlaymdiacea described in Figure

2.12, the following strategy has been employed:

- all modules categorized as both, 'with core' and 'with shell', have been listed as

initial candidates.

- for each of these candidate modules, the environmental Chlamydium with the max-

imal amount (Emax) of proteins in it has been chosen. This maximum allocation

can be interpreted as most probable representation of the ancient module in the

last common ancestor that can be observed in the data of the available recent

genomes.

- for each of these candidates the pathogenic Chlamydium with the minimal amount

of proteins in the module (Pmin) has been chosen to represent the maximal ob-

servable reduced state after host adaptation.

- modules that do not show reduction (i.e. with Emax ≤ Pmin) have been discarded

since they are not informative.

- each module has been labeled as 'cohesive' if it has lost one of its' cores.
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- each module has been labeled as 'purifying' if it has lost shell proteins while

retaining one of its' cores.

- each module has been labeled as 'irregular' if it has lost shell and core proteins

alike but no complete core.

Since the modules may contain several cores, multiple labels are possible.

Assessing the di�erences in the functional inventories of environmental and pathogenic

Chlamydiae To compare the functional inventory of the environmental and pathogenic

Chlamydiae in terms of modules, following aspects are tackled: �rstly, a clear de�nition

of a modules' presence or absence in the data of an species of interest must be de�ned.

Secondly, general trends in the di�erences of the modules found in the pathogenic and

environmental Chlamydiae in terms of general functional categories are stated by an

enrichment analysis. Thirdly, the modules lost in the pathogenic species are annotated

and inspected by literature and database re-search on the modules' members. An ad-

ditional mode of evolution could be variation in the copy number re�ecting paralogous

modules. The existence of such cases is assessed.

Stating the existence of a functional module in a species The assessment of the

presence or absence of a module is not simple in any case: in the case of complete loss,

a module absence from a species can be clearly stated, but the de�nition of a module's

existence is somewhat arbitrary if the module is only partially lost, since it is not clear to

which point of reduction a module remains functional. The de�nition of cohesive cores

gives an additional criterion which is used to judge the presence of a module. A module

is stated as existent in a genome if it is either completely present (i.e. all orthologs of a

module have at least one instance encoded), or all of it's cohesive cores can be found. In

both cases, one missing protein is accepted to compensate possible missing annotation.

Detection of paralogous modules To assess the existence of paralogous modules, copy

numbers of modules have been determined by counting the paralogs of each member of

a module. The existence of a certain copy number n has been judged analogous as for

the presence criterion described above (all proteins or all cores must be frequent (≥ n)

, with one member tolerance).

Functional categorization The most frequent functional category in the proteins of

a module has been assigned to the module as functional annotation. Enrichment and
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depletion of functional categories have been assessed between di�erent sets of modules

using Fisher's exact test with Bonferroni correction for multiple testing.

Results

Cohesive cores About 20% of the modules show a cohesive behavior as complete

module, additional 27% are not cohesive but provide a cohesive core (overall, 91 of

195 modules have a cohesive part). Most modules (162 of 195) provide shell proteins.

The average amount of cores/module is 1.2 (only modules with core counted) with

a maximum of four cores. From in total 138 cores, 126 exhibit a better P-Value of

cohesiveness as their corresponding module indicating that the detection method is

reliable.

The genome reduction of pathogenic Chlamydiacea An initial comparison of the

module sizes in the environmental and pathogenic set is shown in Figure 2.13. In this

plot, the maximal observed module sizes in each set are plotted against each other.

Many modules (90 instances) can be found on or nearby (with at most one protein

missing in the maximum of one of the sets) the diagonal (red line in the plot). In

these cases, the module can be found complete in both sets. 49 modules are completely

absent in the pathogenic set (the modules at positions x=0), none are completely absent

in the environmental set. Modules which cannot be found at either the diagonal or at

the axes exhibit a more complicated evolution by reduction (left from the diagonal) or

expansion (right from the diagonal) in the pathogenic Chlamydiacea. Despite of the

total loss of modules, several cases of module reduction can be observed: in 49 cases,

the module is reduced in the pathogenic set and in two cases in the environmental. Only

thirteen modules cannot be found rather complete in one of the two sets. This picture

can also be be observed when comparing single pathogenic and environmental genomes.

An example is given in the supplementary Figure 6.2. Notably, this example contains

instances at position (0,0) indicating the absence of modules in both sets. This picture

indicates two existing aspects of the genome reduction: complete loss exists as well as

size reduction. For a further investigation of these aspects, the modules are classi�ed by

their cohesiveness and the existence of cohesive cores. The results of this classi�cation

are summarized in Table 2.16. The modules comprising cohesive cores are candidates for

the analysis of the size reduction of modules and have been classi�ed according to the

three possible observations de�ned in Figure 2.12. In Table 2.17 an example of cohesive
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Figure 2.13: General trends in the evolutionary behavior of Chlamydial modules. The maximal size
of each module detected in the environmental Chlamydiae (max.environmental) is plotted
against the maximum size in the pathogen set (max.pathogen). The size of the points re�ect
the number of modules found at each data-point. The red line indicates the diagonal (x=y).

module reduction is shown. Twenty-one modules have been labeled as solely 'purifying',

four show loss of a complete core (while retaining another) and a reduced amount of

shell proteins and are therefore labeled as 'purifying' and 'cohesive'. Four modules have

lost solely a complete core and are labeled as 'cohesive', two have lost a complete core

in addition to some shell-proteins and proteins of another core (cohesive+irregular).
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Class Amount modules Amount proteins
Cohesive 39 182
Not cohesive 156 738
With core 70 548
With cohesive cores 62 495
Cohesive or cohesive cores 91 566
With shell 162 835

Table 2.16: Evolutionary behavior of chlamydial modules. Column 'Set' contains the classi�ca-
tion of evolutionary behavior (see text), 'Number modules' the amount of modules in the
respective set, 'Number proteins' the amount of proteins in the set.

Pro�le Description Shell/Core
1 1 COG0762 Predicted integral membrane protein shell
0 0 COG1957 Inosine-uridine nucleoside N-ribohydrolase shell
1 1 COG0605 Superoxide dismutase shell
0 1 COG0345 Pyrroline-5-carboxylate reductase core I
0 1 COG0325 Predicted enzyme with a TIM-barrel fold core I

Table 2.17: Example for a cohesive module reduction between environmental and pathogenic
Chlamydiae 'Pro�le': the reduced phylogenetic pro�le, the �rst entry indicates presence (1)
or absence (0) in the pathogenic Chlamydium that shows the smallest coverage of the module,
the second entry indicates presence (1) or absence (0) in the environmental Chlamydium that
shows the highest coverage of the module. 'Description' COG identi�er and description of
the orthologous group, 'Shell/Core': the classi�cation of an orthologous group as shell or
cohesive core element in the module.

Another seven show no clear tendency and are therefore examples of 'irregular' module

reduction. Eleven reduced modules did not contain both, shell and core proteins, and

are therefore not counted in this inventory of events. All individual classi�cations can

be found in the supplementary Table 6.15 in the appendix. Examples for each case are

given in Tables 2.17,2.18, and 2.19. The �rst example presents a cohesive reduction of

a module. The module comprises one core with two members and three shell entries.

One of them could not be found in the two species (the chosen minimal pathogen and

maximal environmental Chlamydium) (COG1957) but the two others are conserved in

both. Contrarily, both core proteins are jointly lost in the pathogen as indicated by the

�rst row of the reduced pro�le. Due to the presence/absence criterion de�ned above,

this module would, by its' loss of the core, be classi�ed as absent in the pathogen.

The second example shows purifying behavior: in this probably cell-wall related module,

the core with four members is conserved but the two shell proteins (a porin and a

predicted thioesterase) of the environmental species are lost in the pathogen.
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Pro�le Description Shell/Core
0 1 COG3203 Outer membrane protein (porin) shell
0 1 COG0824 Predicted thioesterase shell
0 0 COG3064 Membrane protein involved in colicin uptake shell
1 1 COG2885 Outer membrane protein and related

peptidoglycan-associated (lipo)proteins
core I

1 1 COG0823 Periplasmic component of the Tol biopolymer
transport system

core I

1 1 COG0848 Biopolymer transport protein core I
1 1 COG0811 Biopolymer transport proteins core I

Table 2.18: Example for a purifying module reduction between environmental and pathogenic
Chlamydiae. An explanation of the columns is given in Table 2.17.

Pro�le Description Shell/Core
1 1 COG0039 Malate/lactate dehydrogenases shell
0 1 COG2079 Uncharacterized protein involved in propi-

onate catabolism
shell

0 1 COG2513 PEP phosphonomutase and related enzymes shell
1 1 COG0045 Succinyl-CoA synthetase, beta subunit core I
0 1 COG0372 Citrate synthase core I
1 1 COG0074 Succinyl-CoA synthetase, alpha subunit core I

Table 2.19: Example for an irregular module reduction between environmental and pathogenic
Chlamydiae Example for a purifying module reduction between environmental and pathogenic
Chlamydiae. An explanation of the columns is given in Table 2.17.

In the third module (representing a part of the central metabolism and the Citrate-

Cycle) shell and core proteins are lost, the module is therefore an example of irregular

reduction.

The additional functional equipment of environmental Chlamydiae The counts for

modules conserved in either the pathogenic, environmental, or in both sets using the

criterion that either the complete module or at least the cohesive cores are present is

summarized in Table 2.20. Notably, these counts di�er from the values given above due

to the core completeness criterion. Also, not the maximal module sizes in one of the

sets but the instances in all Chlamydiae are counted. The majority of detected modules

exist in all Chlamydiae and de�ne a set of functionalities which are basic to all organisms

investigated (89 modules comprising 338 proteins). No modules can be found as speci�c

loss or gain in a single pathogenic Chlamydium but two modules are exclusively existent

in the pathogenic Chlamydiaceae. One of them is related to the COG category 'Repli-

114



2.3. ANALYSES USING FUNCTIONAL MODULES

Set Number modules Number proteins
Complete 89 338
Both 6 43
Environmental only 63 315
Pathogen only 2 8
Speci�c loss to a pathogen 0 0
Speci�c loss to an environmental 5 35
Speci�c to a pathogen 0 0
Speci�c to an environmental 19 85

Table 2.20: Distribution of modules in the Chlamydiae. Column 'Set' contains the classi�cation,
with:

- Complete: Modules existing in every Chlamydium under investigation
- Both: Modules existing in pathogenic and environmental Chlamydiae under investigation,
but not in every species
- Environmental only: Modules existing only in several environmental Chlamydiae

- Pathogen only: Modules existing only in several pathogenic Chlamydiacea

- Speci�c loss to a pathogen: Modules only missing in one pathogenic Chlamydium

- Speci�c loss to an environmental: Modules only missing in one environmental Chlamydium

- Speci�c to a pathogen: Modules only existing in one pathogenic Chlamydium

- Speci�c to an environmental: Modules only existing in one environmental Chlamydium

'Number modules' the amount of modules in the respective classi�cation, 'Number proteins'
the amount of proteins in the classi�cation.

cation, recombination and repair' but a clear function cannot be stated. The other one

is related to 'Intracellular tra�cking, secretion, and vesicular transport' and provides

two �agellar components (FlhA, FlhB) of which at least on can be related to Type III

secretion (FlhA [247]) and a sigma factor (COG1191, FliA) that controls �agellar genes

in E. coli [248] and B. subtilis [249]. The fraction of modules which are features of the

environmental species only is quite high as expected due to their larger genome sizes

and 63 modules comprise a set of modules conserved in the environmental and lost in

the pathogenic Chlamydiae. The enrichment analyses on the functionality of these sets

of modules gives a �rst insight in the functional di�erences between the pathogenic and

the environmental Chlamydiae which are listed in Table 2.21 . The Modules related to

translation, carbohydrate metabolism, and related to secretion are commonly conserved

and appear therefore enriched in the set of modules common to all Chlamydiae ('Both'

and 'Complete'). In comparison to the complete set, the environmental species have

more abilities for energy production and conversion. Modules which exists in the en-

vironmental set only are enriched in the amount of modules related to the production
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Function P-Value corrected enriched/depleted
Complete
Intracellular tra�cking, secretion, and vesicular
transport

0.0147 +

Translation, ribosomal structure and biogenesis 2.20−4 +
Carbohydrate transport and metabolism 0.0290 +
Amino acid transport and metabolism 0.0395 -
Both
Translation, ribosomal structure and biogenesis 7.59−4 +
Environmental only
Cell motility 0.0263 -
Translation, ribosomal structure and biogenesis 9.70−6 -
Energy production and conversion 3.40−7 +
Speci�c to an environmental
Signal transduction mechanisms 0.0044 +
Inorganic ion transport and metabolism 0.0180 +
Cell wall/membrane/envelope biogenesis 0.0218 -
Translation, ribosomal structure and biogenesis 0.0013 -
Amino acid transport and metabolism 1.91−4 +
Speci�c loss to an environmental
Translation, ribosomal structure and biogenesis 9.64−4 +

Table 2.21: Enrichments and depletions of COG functional categories in the di�erent sets of
phyletic distributions. Each set is compared against all other modules. P-Value corrected
is the corrected P-Value, 'enriched/depleted' indicates whether the functional category can
be found enriched (+) or depleted (-) in the set. Only signi�cant results are shown (with
P-Value corrected ≤ 0.05).Column 'Set' contains the classi�cation,
with:

- Complete: Modules existing in every Chlamydium under investigation
- Environmental only: Modules existing only in several environmental Chlamydiae

- Speci�c loss to an environmental: Modules only missing in one environmental Chlamydium

- Speci�c to an environmental: Modules only existing in one environmental Chlamydium

Classi�cations which did not return signi�cant enrichments/depletions are not shown.

of energy re�ecting an improved capability to gain energy. The translational function-

alities appear depleted in this set since these functionalities are merely existent in all

Chlamydiae. Single environmental Chlamydiae have increased capabilities related to sig-

nal transduction and amino-acid metabolism as these categories can be found enriched

in the set of speci�c environmental modules. Modules related to cell-wall creation and

translation are depleted in this set since they do not appear speci�c in one species but are
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implemented in several Chlamydiae. Waddlia chondrophila lacks some ribosomal genes

and a translation elongation factor rendering three modules related to 'Translation, ri-

bosomal structure and biogenesis' absent in the set 'Speci�c loss environmental'. The

absence of these genes in Waddlia is rather improbable and the observed picture could

be the e�ect of missing gene annotation since the genome is not closed yet. The broad

functional pro�ling by the COG annotations does not provide a detailed information of

the functional repertoire that is commonly lost in the pathogenic species. In order to get

a condensed overview of these functionalities, the modules classi�ed as 'environmental

only' have been further annotated. The result of this annotation is listed in Table 2.23.

For each module an annotation of a probable function and a phyletic pattern describing

the presence/absence of the module as de�ned above are given. Two modules (module

Index NCBI taxonomy-id Name
1 243161 Chlamydia muridarum
2 315277 Chlamydia trachomatis
3 218497 Chlamydophila abortus
4 227941 Chlamydophila caviae
5 115711 Chlamydia pneumoniae
6 264202 Chlamydophila felis
7 264201 Protochlamydia amoebophila
8 71667 Waddlia chondrophila only Waddlia contigs �nal
9 83561 Simkania negevensis �nal
10 83552 Parachlamydia acanthamoebae UV7 �nal

Table 2.22: Explanation of the phylogenetic pro�les use in Table 2.25,2.26,2.27. 'Index' is the
index in the pro�le. 'NCBI taxonomy-id' the NCBI id, 'Name' the name of the organism.

140 and 80) could be related to the stress repair response and exist in all environ-

mental species, several are related to amino-acid metabolism of Histidine, Glutamate,

Cystein, and Glycine which are not present in S. negevensis. As indicated by the enrich-

ment analysis, several modules dedicated to energy production (modules 8,40,5,44,85)

are present in the set. A part of the Type IV secretion system is covered by module

186 and is present in P. amoebophila and S. negevensis as described earlier [71] (cita-

tions needed!), as well as the Twin-Arginine transport system which exists in P. amoe-

bophila and P. acanthamoebae. Five ABC transporters are absent in the pathogenic set:

their putative substrates cover proline and glycine, spermidine and putrescine, Fe3+-

siderophores, polysaccharide-polyol phosphate, and a multidrug transporter. Several

modules with no clear function are present in all environmental Chlamydiae (modules

154,99,51,131,21,186,44,166). Two modules with transposable elements can also be ex-
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clusively found in the environmental set (module 184 and 189): module 184 contains

COG2801 containing proteins with viral Integrase domain (as described in the Interpro

entry IPR001584) and COG2963 providing proteins with a IS3/IS911 type Transposase

described in Interpro in entry IPR002514. Module 189 provides proteins with the Inter-

pro entry IPR001959, the Transposase IS891/IS1136/IS134 and IPR002686, IS200-like

Transposase.
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Name Phyletic
Pattern

Category Annotation

module 8 1101 C ATPase and ATP-synthase
module 40 1111 C Hemecopper-type cytochromequinol oxidase
module 5 1001 C NADH:ubiquinone oxidoreductase
module 44 1111 C perhaps related to Fe-S cluster assembly [250]
module 85 1011 C probably part of glutamine degradation (contains malic enzyme) and Pta-Ack pathway

[251]
module 115 0110 C related to glycerol utilisation
module 143 0101 C related to Krebs cycle
module 111 0101 C unclear function
module 119 0110 E ABC-type proline glycine betaine transport systems
module 46 1111 E ABC-type spermidine putrescine transport system
module 97 1110 E contains Type V autotransporter
module 72 1111 E function unclear, contains several dehydrogenases (for aldehyde, choline, alcohol, and

proline)
module 26 1101 E Glycine cleavage system
module 83 0101 E part of cystein metabolism
module 114 0101 E part of histidine metabolism: Histidine, Urocanate, Imidazolonepropionase
module 174 1111 E protease related
module 134 0101 E related to glutamate metabolism
module 181 0101 E related to ornithine metabolism
module 124 0100 F part of purine de novo synthesis pathway [252][253]
module 172 1010 G ABC transporter (export) of polysaccharide-polyol phosphate
module 141 1101 H part of pyridoxine biosynthesis
module 112 0111 H related to nicotinamid metabolism
module 146 1101 H related to SAM metabolism
module 91 0101 H unclear function
module 21 1111 I Biotin related, exact function unclear
module 186 1111 I membrane associated
module 6 0101 I related to lipid metabolism, exact function unclear
module 20 1111 J related to translation
module 71 1111 J wobble (contains Queuine related enzymes, by description)
module 108 1101 K unclear function, pseudouridine pathway related
module 140 1111 L contains RecN, a SOS gene [254]
module 80 1111 L contains SOS response gene and DNA polymerases, probable DNA repair module
module 116 1001 L DNA methylation related
module 184 1100 L Transposase and inactivated derivatives
module 189 0110 L transposases
module 165 1111 L unclear function
module 39 1101 M contains syalic acid synthase, related to cell wall [255]
module 84 1011 M dTDP sugar metabolism
module 2 1111 M unique function unclear, many membrane related proteins
module 9 1101 O function unclear, contains chaperones and proteases
module 173 0101 P ABC-type Fe3+-siderophore transport system (incomplete)
module 66 1101 P Cbb3-type cytochrome oxidase
module 155 0111 P K+ transport system (Trk-type K+ transport system)
module 127 1000 P related to iron conservation (ferritin),
module 138 1011 R unclear function
module 37 1001 R unclear function
module 79 1111 R unclear function
module 32 1111 R unclear function
module 82 1101 R unclear function
module 23 0001 R unclear function, contains two chaperons (chaperone families: HSP10, HSP60) and two

Aspartate, tyrosine, and aromatic aminotransferases
module 154 1111 S unclear function
module 99 1111 S unclear function
module 51 1111 S unclear function
module 104 1101 S unclear function
module 1 0111 T dedicated function unclear
module 156 1001 T might be related to virulence (stress response protein UspA [256] and a Kef-type K+

e�ux system)
module 168 1010 U part of Type IV transport system
module 153 0101 U Sec-independent secretory pathway, Twin-Arginine system
module 130 1111 V partial ABC-type multidrug transport system
module 74 1010 W probable module of transport and virulence (adhesin transporter and bacteriocin ex-

porter)
module 131 1111 - peptide methionine sulfoxide reductase, related to oxidative stress response [257] and

associated protein
module 166 1111 - unclear function
module 193 0110 - probably related to antioxidant defense, contains Peroxiredoxin

Table 2.23: Modules speci�c to the environmental Chlamydiae. 'Name' the module identi�er,
'Phyletic Pattern' the phylogenetic occurrences in the environmental set (positions as de-
scribed in Table 2.22, only the positions 7-10 of the environmental Chlamydiae are used.),
'Category' the most frequent NCBI functional category in the module, 'Annotation' a by
hand annotation of module functionality.
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The evolution of the pathogenic Chlamydiae may include variations due to the copy

numbers of a module re�ecting duplication events. In our data, �ve cases of a reduction

in copy number in the pathogenic in comparison to the environmental species, and one

pathogenic speci�c duplication could be detected. These modules are listed in Table

2.24.

The variation comprises mainly (four of the six cases) ABC transporter, one module

Name Copy Numbers Annotation F
98 111111 2125 ABC transporter, substrate: antimicrobial pep-

tides
+

109 111111 0002 ABC transporter, substrate: (polar) amino-acids +
120 111111 2101 ABC transporter, substrate: nitrate, sulfonate, bi-

carbonate
+

36 222222 2111 ABC transporter, substrate: dipeptide, oligopep-
tide, nickel

-

178 111111 0022 unclear function +
182 111111 2112 RNA processing +

Table 2.24: Modules with copy number variation between the environmental and pathogenic
set. 'Name' the module identi�er, 'Copy Numbers' the count of occurrences of each module
member in the organisms as pro�le (positions as described in Table 2.22), 'Annotation' a by
hand annotation of module functionality, 'F' indicates whether the module is more frequent
in the environmental (+) or pathogen set (-).

of unclear function, and one related to RNA processing.

Individual evolutionary fate of modules: three case studies To illustrate individual

di�erences of modules between environmental and pathogenic Chlamydiae that do a�ect

parts of modules rather than complete gains or losses, I discuss three examples in more

detail: the module covering the F0F1-type and the archaeal/vacuolar (V-type) ATPase,

a module describing the Tol-Pal system, and a metal ion ABC transporter.

Example 1: two kinds of ATPases The module 'module 8' listed in Table 2.25 com-

prises two evolutionary related complexes organized in separate cores. One, the archaeal

or vacuolar type H+ ATPase is existent in all Chlamydiae, the other one, the F0F1 type

ATP synthase, is absent in the pathogenic Chlamydiaceae and in Simkania negevensis.

Both entities could be seen as separated modules. However, they are interconnected by a

common component, the orthologous group COG0636 which represents subunit C of the

F0F1 type ATP synthase as well as the subunit K of the V-type H+-ATPase re�ecting
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their common evolutionary origin [258][259]. It is unclear whether the V-type ATPase

acts as ATP synthase in Chlamydiae or holds up a proton gradient in the membrane

[66]. The additional F0F1 type ATP synthase in the three environmental species sug-

Pro�le Gene description Core/Shell
111111 1111 COG0636 F0F1-type ATP synthase, subunit

c/Archaeal/vacuolar-type H+-ATPase, subunit K
shell

111111 1111 COG0545 FKBP-type peptidyl-prolyl cis-trans isomerases 1 shell
111111 0111 COG1390 Archaeal/vacuolar-type H+-ATPase subunit E shell
111111 1111 COG1269 Archaeal/vacuolar-type H+-ATPase subunit I core I
111111 1111 COG1155 Archaeal/vacuolar-type H+-ATPase subunit A core I
111111 1111 COG1394 Archaeal/vacuolar-type H+-ATPase subunit D core I
111111 1111 COG1156 Archaeal/vacuolar-type H+-ATPase subunit B core I
000000 1101 COG0711 F0F1-type ATP synthase, subunit b core II
000000 1101 COG0055 F0F1-type ATP synthase, beta subunit core II
000000 1101 COG0356 F0F1-type ATP synthase, subunit a core II
000000 1101 COG0224 F0F1-type ATP synthase, gamma subunit core II
000000 1101 COG0712 F0F1-type ATP synthase, delta subunit (mitochon-

drial oligomycin sensitivity protein)
core II

000000 1101 COG0056 F0F1-type ATP synthase, alpha subunit core II
000000 1100 COG0355 F0F1-type ATP synthase, epsilon subunit (mito-

chondrial delta subunit)
core II

Table 2.25: Example module with cohesive cores I. The module comprises two ATP related
complexes. 'Pro�le' describes the phylogenetic pattern in Chlamydiae. The �rst six entries
describe the existence of orthologs in the pathogenic, the second four in the environmental set
(0=does not exist, 1=does exist). 'Gene description' comprises COG entry and description,
'Core/Shell' the classi�cation into core and shell. To distinguish di�erent cores, they are
numbered with roman numerals.

gest the ability to create additional ATP by oxidative phosphorylation [71] and might

re�ect a less host dependent life-style in terms of energy parasitism. The orthologous

group COG0545 represents FKBP type peptidyl-prolyl cis-trans isomerases which act

as chaperons [260]. This entry is probably attached to the module by a false positive

link since no link to energy production or ATPases could be found in the literature.

Example 2: A Tol-Pal system related module The module 'module 35', listed in

Table 2.26, comprises components of the Tol-Pal system. This system is related to

cell division and membrane stability and colicin (a proteinaceous toxin of bacterial ori-

gin which attacks other bacteria) transport, and necessary for infection by phages in
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Vibrio cholerea, and has been shown to be related to virulence in Erwinia chrysan-

themi [261][262][263][264]. The units in the cluster comprise following components of

the system: COG3064 is TolA, COG0848 is TolR, COG0823 is TolB, COG0811 is TolQ,

members of COG0824 (YbgC) carry a domain which is annotated as Tol/Pal system

associated in Interpro (IPR014166 Tol-Pal system-associated acyl-CoA thioesterase).

COG3203 is OpcP an outer membrane porin, COG2885 a membrane protein carrying

an OmpA domain. The phyletic pattern in Chlamydiae shows complete conservation of

Pro�le Gene description Core/Shell
000000 0100 COG3203 Outer membrane protein (porin) shell
000000 0111 COG0824 Predicted thioesterase shell
000000 0001 COG3064 Membrane protein involved in colicin uptake shell
111111 1111 COG2885 Outer membrane protein and related

peptidoglycan-associated (lipo)proteins
core I

111111 1111 COG0823 Periplasmic component of the Tol biopolymer
transport system

core I

111111 1111 COG0848 Biopolymer transport protein core I
111111 1111 COG0811 Biopolymer transport proteins core I

Table 2.26: Example module with cohesive cores II. The module comprises the Tol-Pal system.
'Pro�le' describes the phylogenetic pattern in Chlamydiae. The �rst six entries describe the
existence of orthologs in the pathogenic, the second four in the environmental set (0=does not
exist, 1=does exist). 'Gene description' comprises COG entry and description, 'Core/Shell'
the classi�cation into core and shell. To distinguish di�erent cores, they are numbered with
roman numerals.

the core module (TolB,TolR,TolQ, and COG2885) in all species. The TolA component,

YbgC, and OpcP are classi�ed as shell-proteins and completely absent in pathogenic

Chlamydiaceae. Their appearance in the environmental set exhibits an irregular pat-

tern. This might re�ect either di�erences in cell-division and the maintenance of mem-

brane stability in the environmental species, or in other functionalities as virulence.

An interesting hypothesis would be that these shell components are responsible to en-

able transport of colicin or other bacteriocins. In fact, many colicins need the TolA

component to be transported in E. coli as summarized in the review of Lazzaroni and

co-workers [263]. A TolA ortholog could be found only in the genome of Parachlamy-

dia acanthamoebae UV7. The TolA component also plays a major role in the uptake

of �lamentous phage DNA [265]. Lateral exchange by mobile phage DNA has been

shown to exist for the obligate intra-cellular bacterium Wolbachia with other bacteria

in co-infected insect cells [266]. However, both aspects, the transport of colicines as well

as phage uptake, should play a minor role in the chlamydial life-style which actively
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happens mainly in the separated inclusion. If these functionalities exist, they should be

found more likely in the environmental species since the less developed immune defense

of their hosts favors the encounter of other bacteria in comparison with the immune

system of vertebrates.

Example 3: A nickel ABC transporter The module 'module 63' shown in Table

2.27 represents an ABC transporter system of metal ions. Although sequence analysis

can give insights into the substrate speci�city of metal-ion transporters [267], the or-

thologous grouping of the ABC transporter components as well as the corresponding

regulators does not necessarily resolve substrate speci�city. However, the most probable

substrate should be zinc since this key-word appears in most of the COG descriptions.

In consequence, I describe the system as bona �de zinc ABC transporter system. The

maintenance of Zn2+ homeostasis is crucial for the bacterial cell to avoid toxic con-

centrations of this metal ion on the one hand and to provide su�cient support of zinc

which is part of many proteins on the other hand [268]. The uptake of su�cient zinc

(and other metal ions) is a special problem for intra-cellular bacteria since the con-

centrations of these in the eukaryotic cells are low. Especially the concentration of

iron is reduced in eukaryotic host cells as part of the immune defense against parasites

[269]. Deletion of the zinc uptake abilities has been shown to diminish the ability of

infection for Salmonella by Ammendola et al. [270]. In many bacteria, Zur proteins,

homologs of the iron dependent Fur proteins regulate the expression of this transporter

[271, 268]. The absence of obvious Fur-like (and therefore of Zur) regulators is a known

feature of Chlamydia trachomatis and one Fur like protein has been detected by careful

analyses of functionally unassigned open reading frames [272]. As summarized by the

example of iron uptake in a review of Rodriguez and Smith [273], Fur and TolR can

be seen as functional homologs for metal uptake regulation. The module contains an

ABC transporter (annotated as speci�c for Zn2+, Mn2+) as core and in its shell two re-

lated regulatory proteins (the orthologs of Fur like regulators represented by COG0735,

existent in P. amoebophila and W. chondrophila, and the orthologs of TroR regulators

COG1321 apparent only in P. acantomoebae). The phyletic pattern of the two corre-

sponding orthologous groups in the environmental Chlamydiae indicates alternative use

of the systems in the di�erent species. The absence of both kinds of regulator proteins in

the pathogenic Chlamydiacea and in S. negevensis can be explained either by the use of

remote homologs or analogs of Zur as shown for the example of Fur in C. trachomatis or

another functional replacement. The observation could also be explained by the minor
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Pro�le Gene description Core/Shell
000000 1100 COG0735 Fe2+/Zn2+ uptake regulation proteins shell
000000 0001 COG1321 Mn-dependent transcriptional regulator shell
111111 1111 COG0803 ABC-type metal ion transport system, periplasmic

component/surface adhesin
core I

111111 1111 COG1108 ABC-type Mn2+/Zn2+ transport systems, perme-
ase components

core I

111111 1111 COG1121 ABC-type Mn/Zn transport systems, ATPase com-
ponent

core I

Table 2.27: Example module with cohesive cores III. The module comprises a nickel ABC trans-
porter. 'Pro�le' describes the phylogenetic pattern in Chlamydiae. The �rst six entries
describe the existence of orthologs in the pathogenic, the second four in the environmental
set (0=does not exist, 1=does exist). 'Gene description' comprises COG entry and descrip-
tion, 'Core/Shell' the classi�cation into core and shell. To distinguish di�erent cores, they
are numbered with roman numerals.

need to regulate the zinc uptake due to more stable environmental conditions as they

exist in a de�ned environment as a certain host cell.

Discussion Around 20% of the chlamydial modules can be found cohesive in this anal-

ysis, much less compared to around 40% of cohesive modules in a general bacterial set

of modules reported by Campillos et al. [181]. This discrepancy may be biologically in-

terpreted as disproportionally higher loss of cohesive modules than of non-cohesive ones

in Chlamydiae compared to a 'complete' set of prokaryotic modules. This interpretation

is in congruence with the concept of module cohesiveness: a trend to common evolu-

tionary fate of the module members implies that non-cohesive modules should be less

vulnerable to partial loss of members and only 'essential' cohesive modules remain. In

consequence, non-cohesive modules should be more frequently observed in the reduced

genomes of the intra-cellular Chlamydiae. This is in congruence with the domino-like

loss observed by Dagan and co-workers [91] in other intra-cellular bacteria.

Modules that are reduced in size in the pathogenic set exhibit a certain tendency towards

purifying and cohesive reduction which can be found in together 31 modules compared

to 18 modules with irregular pattern. Both, purifying and cohesive losses are signs of

a cohesive behavior since the purifying reduction releases those parts of modules which

are indispensable for the survival of the organism and are therefore cohesively kept. In

consequence the remaining conserved cores appear jointly (i.e cohesively) kept. This

observation supports the de�nition of a modules' presence as the existence of its' co-
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hesive cores which has been applied in this study. The amount of modules common to

all Chlamydiae comprises 338 proteins which is less than the smallest bacterial genome

sequenced so far (Mycoplasma genitalium) with 470 genes [274], but more as the the-

oretical minimal genome with 256 genes proposed by Mushegian and co-workers [275].

The amount of chlamydial core modules and genes is therefore in the expected order of

magnitude: Chlamydiae comprise functionalities which are necessary for their life-style

(as genes related to virulence) which are not part of a 'minimal' genome. The functional

variance between the environmental and pathogenic species leads to a reduction of the

amount of common modules covering less genes in their intersection as can be found in

Mycoplasma. The pathogenic Chlamydiae have only few speci�c modules which could

not be found in the environmental ones indicating a reduced ability to acquire novel

genetic material by horizontal gene transfer. Contrarily, the Type IV secretion system

which can transport DNA molecules as well as two transposon related modules exist

in the environmental species, all indicating a possible participation on the exchange of

DNA. Such an exchange could likely happen in an host environment comprising co-

infection with other bacteria or phages as in the amoeba [276, 72]. The functionalities

found exclusively or in higher copy number in the environmental species comprise sev-

eral ABC transporter systems indicating a more versatile interplay of the environmental

Chlamydiae with the environment as the multidrug transport system indicating the

need to tolerate the existence of multiple toxins [277], or a Fe+-siderophore transporter

as additional way to acquire iron in order to hold iron homeostasis. The environmental

species might di�er in the modes of SOS stress response induced by UV radiation and

other agents of stress such as starvation [278][279] as indicated by their two additional

modules that are related to this process.
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3
Sequence based prediction of Type III

secreted proteins

3.1 Motivation

Among the di�erent secretion systems existing in bacteria, the Type III secretion system

is of special interest, as it is encoded in the genomes of many, mainly pathogenic or

symbiotic, Gram-negative bacteria and is a key factor for the virulence of pathogens.

The identi�cation of novel e�ectors had to be done experimentally e.g. by translocation

assays using fusion proteins of a putative e�ector with a reporter gene [35, 34, ?, 62]

or detection of e�ectors in the culture supernatant [35]. In many of these studies, prior

information is derived computationally from the genome or from protein sequences to

create candidate lists of putative e�ectors before testing them in an appropriate assay

[?, 35]. However, none of these methods is either exhaustive or generally applicable

and until recently, no sequence based, general method to identify its substrates have

been available since the signal underlying the substrate recognition has been unknown.

Such a method is desired to short-cut the detection of novel e�ectors and gives the

opportunity to learn the molecular properties comprising the secretion signal. In this

chapter, E�ectiveT3 is described, a prediction software to detect proteins transported

by the TTSS, as well as novel insights into the molecular shape of the recognition signal.

E�ectiveT3 has been published in Plos Pathogens [28].
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3.2 E�ectiveT3- a software to predict and investigate

TTSS substrates

3.2.1 Common features of known e�ector proteins

As �rst step to create a prediction method for TTSS substrates, common traits describ-

ing the signal must be derived from known e�ector proteins. These traits could describe

features of the signal which are detectable and predictive for unseen e�ector proteins.

Material and methods As data basis, all known type-III e�ector proteins have been

collected manually from the literature which have been shown to be speci�cally trans-

ported by the TTSS excluding proteins that are part of the TTSS needle complex al-

though some of them are transported by the TTSS and data from large scale screens.

The latter have been excluded since the data from these screens might contain a cer-

tain rate of false positives. The resulting data set contains 48 proteins comprising

the taxa Chlamydia (17 sequences), Salmonella (9 sequences), Yersinia (15 sequences),

Escherichia (7 sequences). A representation of this set with only one member of each

orthologous group has been created separately. The e�ectors are listed in the supplemen-

tary Table 6.14. The sequences were downloaded from SWISSPROT/UNIPROT [280]

(version as downloaded on 07/30/2008) or, if not contained there, downloaded from Ref-

Seq [281] (version as downloaded on 07/30/2008). These sequences have in common that

they are e�ectors in eukaryotic host cells and are further referred to as 'animal pathogen

set'. A separate 'plant symbiont set' consisting of 52 known Pseudomonas e�ector pro-

teins has been downloaded from the Pseudomonas syringae Genome Resources database

[282] (Hop virulence protein/gene database, downloaded on 07/30/2008). Since the N-

termini should play an important role in the deduction of a signal, their correctness

must be stated. This has been done for the cases, where homologous sequences can be

found by validating the gene starts by manual inspection of multiple sequence align-

ments with their homologs. Negative training sets of non-e�ectors have been created by

randomly choosing proteins from the organisms represented in the animal pathogen and

plant symbiont sets not containing the known e�ectors. Theoretically, the negative set

might therefore comprise unknown e�ectors. I did not �lter the negative set to further

criteria (as using only 'housekeeping' genes less likely to be e�ectors) in order not to

introduce any bias into the negative set which could be recovered wrongly later. Each

negative set is twice as large as its corresponding positive set. This procedure has been
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repeated �ve times in order to enable investigations on the in�uence of the negative set

on the prediction. Protein sequences from completely sequenced genomes of the species

comprising e�ectors as well as of other gram(-) and gram(+) Bacteria, and Archaea were

downloaded from RefSeq (version as downloaded on 07/30/2008) [281]. The data sets

were classi�ed into organism with and without TTSS by manual search in the literature

for the case of gram(−) bacteria or generally classi�ed as �without TTSS� in the case

of gram(+) bacteria and archaea. A list of proteins building the TTSS system has been

obtained by full-text searches against the SIMAP [283] databases using the gene-names

of the TTSS compounds as given by KEGG [284]. The training set might comprise

redundancy in terms of proteins of the same orthologous group. This might lead to an

over-optimistic behavior of a prediction method in the end if orthologs are easily recov-

ered due to their evolutionary relatedness but not the actual secretion signal. Therefore,

an all-against-all comparison of the full length-sequences using the Smith-Waterman al-

gorithm [285] as implemented in the Jaligner package was performed [286]. For each

pair, a similarity score Sratio by dividing the alignment score by the self-score is com-

puted and sequences are iteratively grouped if they show a Sratio value greater or equal

0.15. This measure is similar to the measure used by Lerat et al. in a study of genome

repertoires in bacteria [287] and has been adjusted to maximal sensitivity in the de-

tection of putative orthologs. This procedure allowed to group equivalent proteins and

from each of these groups, only one representative is chosen when needed. The signal in

the N-termini could be encoded in their secondary structure. To asses this possibility,

secondary structure predictions have been performed using the PSIpred-software [288]

applied to the whole sequences. PSIpred can be applied using alignments to conserved

sequences as extrinsic information using PSI-BLAST [289]. Since the N-termini did not

show similarity to su�cient known proteins that could be used as extrinsic information

for PSIpred, only the ab initio prediction without alignment information has been em-

ployed. The fraction for each predicted class in the N-termini have been counted as

possible input feature. To assess possible existing conserved residues in the N-terminal

sequences, multiple alignments have been created using two di�erent methods: ClustalW

(Version 2.0.5) [290], and Muscle (Version 3.7) [291] with standard parameters. Several

rounds of ten randomly chosen sequences from the sets of known e�ectors have been

aligned and manually inspected. Enrichments and depletions of amino acid proper-

ties (frequency, frequency of its representations in a reduced alphabet, frequency of

secondary structure properties) have been performed by an one sided Mann Whitney

test with p< = 0.5 using the Prompt software (Protein Mapping and Comparison Tool
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[292], which employs the statistic software R [293]. E�ector proteins could be linked

by predicted functional interactions. Predicted functional interactions between orthol-

ogous groups containing e�ector sequences and selected TTSS sequences were obtained

from the STRING database [294] (Version 7.1 as downloaded on 10/03/2007). Links

from genomic context methods (conserved neighborhood, gene fusion, phylogenetic pro-

�les) were used, the others were discarded in order not to uncover known knowledge

as from literature mining. Links with a con�dence score less than 0.5 have been dis-

carded and the connected proteins were grouped. To investigate the ability to �nd

e�ectors by genomic proximity (which is di�erent from conserved neighborhood), com-

plete genome and proteome data for the known e�ectors has been downloaded from

the KEGG database [284] (release 2009/01/19). Components of the TTSS have been

identi�ed by their association to the KEGG Orthologous Groups (KO) belonging to the

TTSS reference pathway KO03070 (K03219..K03230). Genomic neighbors of a certain

distance to known e�ectors have been extracted from the KEGG data and grouped by

their associated KO.

Results A systematic comparison of multiple alignments of the e�ector N-termini did

not reveal any regularities, i.e no conserved residues. The presence of conserved posi-

tions would be indicative of a common sequence motif or domain signature. Such a well

conserved entity can therefore be excluded as possible signal. An example alignment of

20 e�ector N-termini is given in Figure 3.1. In Figure 3.2, the functional neighborhoods

of two TTSS related proteins (the TTSS related chaperon SicA from Salmonella and the

IncA e�ector from Chlamydia trachomatis) as found online in the STRING database are

pictured. The �rst example exhibits two instances of e�ectors which could be detected

as functionally coupled with the chaperon and other TTSS related proteins (either com-

ponents or speci�c regulatory elements). In the example of IncA, only few links can

be found which connect it to proteins which are either of unclear function or member

of other pathways and therefore unlikely TTSS related. The observation of these two

examples motivates to assess the amount of e�ector proteins which could be found as

direct neighbors to other TTSS related genes which has been further analyzed. In some

cases, functional coupling between TTSS components/chaperons and the e�ectors from

the training could be found, but most e�ectors do not functionally co-evolve with the

TTSS. The found partnerships between TTSS components and e�ectors are listed in the

supplementary Table 6.16. This �nding is in congruence with the module based analysis

of virulence related groups of proteins, which resulted in the same picture. Although no
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Figure 3.1: Example alignment of e�ector N-termini. The colors refer to standard ClustalX
coloring schema.

conserved functional relationship could be deduced as general rule, the e�ectors might

be joined to TTSS components by common regulation or common acquisition by an

horizontal gene transfer. To check this, Dr. Thomas Rattei performed an analysis of

the genomic neighborhoods of e�ectors and TTSS components alike. This has been

done by �rstly checking the genomic neighborhood of known e�ectors using an statis-

tical enrichment analysis of all co-localized proteins in di�erent distances. The highest

signi�cance of this enrichment has been observed within the range of 30 proteins up-

and downstream. Within these neighbors, 7 structural TTSS proteins show individual

enrichment of statistical signi�cance as listed in the supplementary Table 6.17. However,

particularly in genomes encoding the TTSS on the chromosome as e.g. Chlamydiae, the

majority of e�ectors cannot be found in genomic proximity to components of the TTSS,

as can be seen in the supplementary Table 6.18.
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Figure 3.2: Example of two functional networks of TTSS related proteins as found in STRING
[159]. The chaperon SicA is part of a dense module which is TTSS related, contrarily, the
e�ector IncA cannot be related to TTSS mediated transport by its' functional neighbors.
The proteins have been classi�ed by curated information from databases and literature.

A prediction of secondary structure elements on the e�ector sequences revealed di�er-

ences between arbitrary proteins and the e�ectors: I counted the structural features

(coil, α-helix, β-sheet) at each residue within the �rst 25 amino acids. In the known

TTSS e�ectors, 51% coil, 39% α-helix and 10% β-sheet have been predicted. In ran-

domly selected proteins (not known to be secreted via a TTSS) 39% coil, 45% α-helix

and 16% β-sheet have been found, which indicates that coiled regions are enriched in the

N-termini of TTSS e�ectors. The secondary structure prediction has been applied with-

out the use of extrinsic information due to a lack of su�cient homologs in the e�ector

N-termini and might therefore be less accurate as possible. In addition, the prediction

might fail at the very N-terminal end since not su�cient information on neighbored
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residues could be used by the method. However, since these aspects are the same for

both sets (e�ector and non-e�ectors alike), this should not �aw the observed di�erences.

In conclusion, the e�ector N-termini exhibit less secondary structure. This lack on sec-

ondary structure elements is a �rst hint on the signals nature: an alien composition

in these sequence regions could lead to a smaller fraction of regular structure elements

which are existent and predictable. Such an alien nature of the N-termini �ts well with

data from P. syringae, a well-studied plant pathogen, for which an unusual amino acid

composition in the N-termini of e�ectors has been reported [295], [296], [63]. Indeed,

we found the amino-acid composition of the e�ector N-termini unusual in comparison

with arbitrary sequences: Stefan Brandmaier and Frederick Kleine tested a possible use

of frequency counts of each amino-acid during a practical course and found them to be

predictive for the identi�cation of e�ector proteins. I statistically tested the di�erences

of the amino-acid frequencies in the e�ector N-termini against arbitrary sequences by

an Mann-Whitney test. This test revealed signi�cant enrichments and depletions of cer-

tain amino acids in sequences from animal pathogens and plant symbionts compared to

arbitrary sequences. This e�ect has been found when comparing the �rst 25 residues of

e�ector sequences against complete non-e�ector and e�ector sequences, but also when

comparing the N-terminal ends of e�ectors and non-e�ectors. I also compared complete

e�ector sequences with arbitrary sequences and found the same tendency but to less

extend. Since this e�ect is particularly strong in the N-terminal end, this composition

bias could re�ect an exploitable signal of TTSS mediated transport in congruence with

the N-terminal position proposed by the fusion experiments. The enrichments in the

�rst 25 against arbitrary sequences are plotted in Figure 3.3. The most signi�cant en-

richment in the N-termini of e�ectors of animal pathogens and plant symbionts is that

of Serine. Threonine and Proline are signi�cantly enriched in the e�ectors of animal

pathogens, and leucine is depleted in both animal and plant e�ector proteins. Notably,

the enrichment of proline could explain the enrichment of coiled regions in the N-termini

as this amino acid is known to be less frequent in α-helices and β-sheets. Interestingly,

these experiments revealed both commonalities and di�erences between the N-terminus

of e�ector proteins from plant and animal pathogens, respectively.

Discussion Since the analysis of conserved functional coupling as well as of the genomic

proximity did not recover relationships for most of the e�ectors, these approaches cannot

be applied for an exhaustive search of e�ector proteins. However, in some cases, co-

evolution of certain e�ectors with each other and the co-localization of several e�ectors
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Figure 3.3: Amino acids that are signi�cantly enriched or depleted in the �rst 25 residues of
e�ectors from the animal pathogen e�ector set and from the plant symbiont e�ector set
(p-Value<0.05 in the one sided Mann-Whitney test in at least one of the sets). Frequencies
are given as percentage of amino acids within the 25 �rst residues. Error bars represent one
standard deviation in plus and one standard deviation in minus directions.

with TTSS components and chaperons can be observed. So, these methods are valuable

for situations if such e�ectors or chaperons are already known or if the TTSS is encoded

on a plasmid or on a genomic pathogenity island. The initial examination of the N-

termini by multiple sequence alignment revealed no conserved positions and a putative

signal is therefore not detectable as conserved domain. Where the latter �nding could

indicate evidence for an mRNA based signal, additional analyses detected hints to a

peptide encoded signal: the di�erences in secondary structure (i.e. the absence of merely

regular structures as α helices or β sheets indicate a di�erent composition of the N-

termini. This can be shown more detailed by the enrichment analyses: the N-termini

show an alien distribution in comparison with arbitrary sequences. This initial �ndings

encourage further modeling of the signal computationally.
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3.2.2 Modeling of the N-terminal TTSS signal peptide using a

machine learning approach

Motivation The main di�erence between e�ector and non-e�ector proteins has been

found in their N-terminal amino-acid composition. The commonalities of the N-termini

which lead to the compositional di�erences are not encoded as detectable conserved

residues. Taken both observations together, the signal could be comprised of a com-

bination of certain amino-acids without clear order. Such a signal is not necessar-

ily restricted to individual amino-acids but might comprise combinations of groups of

amino-acids with the same physical-chemical properties (i.e. groups which represent

likely exchanged amino-acids). Furthermore it may contain short combinations of the

length two or three. Taken together, the space of all combinations referring to this

properties is huge and the identi�cation of the combination of these possible features

which is optimal to describe the signal cannot be easily obtained. Especially, there is

not su�cient a priori knowledge which would help to identify the relevant sub-sets of

these properties. Machine learning techniques allow for deduction of non-trivial rela-

tionships from training data without the need of an exact a priori description of the

properties describing a certain class of instances. A promising approach is therefore the

application of binary classi�ers trained on known e�ectors against arbitrary sequences,

which could be used to discriminate unseen instances (in this case, protein N-termini),

being probably TTSS secreted or not secreted, after deducing the most discriminating

properties between the two classes from a training set. The performance of any classi�er

can be assessed by rigorous cross-validation and the predictive power on novel data can

be estimated in comparison to a random classi�cation.

Material and methods The aforementioned properties can be represented as 'reduced'

alphabets to which the initial sequence of amino-acids is mapped. Two alphabets have

been employed: �rstly, the amino-acids have been mapped to an alphabet of amino acid

properties, and secondly, to a hydrophobic/hydrophilic alphabet. Each amino acid is

only added to one of the property classes, although some would �t to several classes.

In this case, the amino acid has been added to the more speci�c (smaller) class. The

feature mapping is listed in Table 3.1. From these representations, the frequencies

of di- and tri-peptides from each of the alphabets have been computed. From these

features, I discarded all these which did not occur at least two times in either the

positive or the negative data set, since these features would lead to the adaptation of
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Property Amino-Acids
Hydrophobic, 1st alphabet A, G, I, L, M, V
Hydrophilic; 1st alphabet P, H, U
Aromatic F, W, Y
Polar N, Q, S, T
Acidic D, E
Alkaline K, L, R
Ionisable C, Y
Hydrophilic; 2nd alphabet S, F, T, N, K, Y, E, Q, C, W, P, H, D, R, U
Hydrophobic; 2nd alphabet V, M, L, A, I,G

Table 3.1: The mapping of amino acids to the two reduced alphabets (amino acid property
alphabet and hydrophilic/hydrophobic alphabet) maps each amino acid to exactly one letter
of the respective alphabet.

the classi�ers to individual sequences (over-�tting). This procedure typically reveals 70

features, depending on the negative set employed. The frequencies of these features range

typically between 2 and 5 and have been taken as input to the classi�cation algorithms

without further discretization. A list of all features is given in the supplementary Table

6.19. To detect the most in�uential features, I applied two feature selection strategies,

a greedy hill-climbing search (the BestFirst algorithm) (parameters: look-up-cache size

= 1, 5 iterations) in combination with Correlated Feature Selection [297] (parameters:

locally predictive = true, missing values = false) as provided by WEKA (version 3.5.6)

[123]. Implementations of several classi�cation algorithms from the WEKA machine

learning package have been tested �ve times using di�erent negative sets (see used data

sets) by a 10-fold cross-validation procedure as provided by WEKA. For cross-validation,

the positive and negative sequence sets have been partitioned into 10 subsamples. In each

of the 10 passes, a single subsample was retained as validation data for testing the model

which has been trained using the remaining 9 subsamples. I systematically aligned each

N-terminus of the training set with each other using the Smith-Waterman algorithm with

a BLOSUM62 substitution matrix. If two sequences showed Sratio (see above)>0.1 over

the whole sequence or more than 0.3 in the area of the signal, one of them was discarded

from the training set. This has been done to avoid learning protein-families instead of

the signal. Sensitivity has been computed as TP
(TP+FN)

, Selectivity as TN
TN+FP

, with TP

= amount true positive predictions, FN = amount false negative predictions, TN =

amount true negative predictions, FP = amount false positive predictions. Receiver

Operating Statistics to determine the AUC value had been created using the WEKA-

toolbox. Precision and Recall are computed separately for both classes, where the
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Name Description
IB1 First Nearest Neighbor, Euklidian Distance, no weight-

ing [298]
Logistic Logistic regression [299]
Voted Perceptron Extension of the Perceptron Algorithm (a simple Feed

Forward Neural Network) [300]
SVM Support Vector Machine with Polynomial Kernel (n=1)

[301]
Naïve Bayes Complement Naïve Bayes classi�er, (An adaption for

skewed training data) [302]
Naïve Bayes Naïve Bayes classi�er with Multinomial Model [303]
Naïve Bayes Naïve Bayes classi�er [304]

Table 3.2: Classi�cation algorithms used in this study.

AUC describes the overall performance of the classi�er. The classi�cation algorithms

employed are listed in Table 3.2.

To assess the optimal position and length of the signal, the pipeline (training and

testing) has been applied to di�erent starting positions and for di�erent signal lengths

starting from the N-terminus. The scan for the optimal position has been done in steps

of �ve residues and a window of �fteen residues has been tested as signal. For each

selection of length and position, the complete feature creation, training and testing

procedure has been repeated repeated.

Results The rationale in this analysis is that a successful training of a binary classi-

�er should result in a model of the signal which is the better, the more the classi�er

is able to distinguish between real e�ectors (positive testing instances) and arbitrary

proteins. The performance is measured as the �Area Under the Curve� (AUC) value

of the Receiver Operating Statistic Curve (ROC). This represents the performance of

a classi�er describing the trade-o� between sensitivity and selectivity by varying over

the classi�er's parameter space. The AUC summarizes this overall performance: an

ideal classi�er yields an AUC of 1.0, whereas a completely random prediction results

in a value of 0.5. Values above 0.5 indicate a prediction above random. The 'animal

pathogen' and the 'plant symbiont' set may perform di�erently since the biological sig-

nal might di�er between both sets. So, each set has been tested separately, as well as

combined. The signal should be captured by several di�erent classi�cation algorithms

above random. This would indicate, that the result is not by accident due to a certain

classi�er/data combination but inherent in the data. A systematic comparison of di�er-
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ent classi�cation algorithms on the TTSS e�ector sets from animal pathogens and plant

symbionts, respectively, resulted in a performance far above random for all classi�ers

tested, with an maximal AUC of 0.85 for the animal pathogen set and an AUC of 0.86

for the plant symbiont set, achieved by the complement naive Bayesian algorithm. Both

sets combined together achieved their best AUC (0.86) with the Naive Bayesian classi�er

3.3. Training the classi�er solely on the predicted secondary structure alphabet of the

combined set performed well with an AUC value of 0.8. However, adding this alphabet

to the sequence derived features did neither improve nor reduce the performance signi�-

cantly: the test revealed an AUC of 0.87 with and 0.86 without the secondary structure

features. The trained classi�er capture therefore the underlying signal, but do not de-

scribe it detailed since they merely act as black box. To get a better understanding

of the signal, the most discriminating features have been derived by a feature selection

procedure (see methods). This feature-selection resulted in a reduced list of properties,

comprise not only the Serine, proline and Threonine frequencies as already indicated

by the amino acid composition analysis, but also depletion of acidic and single alkaline

residues and patterns such as the enrichment of two consecutive alkaline residues or the

pattern �polar-hydrophobic-polar�. This main components of the recognition signal are

listed in Table 3.4. As prove of the concept of the N-terminal signal peptide, C-termini

should have no predictive power. The performance for several classi�ers has been eval-

uated using exactly the same feature selection, training and test procedure as used for

the N-termini. 5 runs with di�erent negative sets have been performed. The resulting

AUC values tend to a random prediction (AUC near 0.5), indicting an absence of any

commonalities in the C-termini, i.e. the absence of a signal. However, it is not clear

which part of the e�ector sequences are the most discriminative ones. Additional signals

could be possible, as well as a longer N-terminal stretch as initially used. To resolve

this question, two tests have been employed by scanning di�erent possible lengths of

the signal starting from the N-terminus (to detect the optimal length), and by a sliding

window over the whole sequence lengths (to detect the optimal position). The results

for these two experiments are shown in Figure 3.4. High AUC values are reported over a

wide range of N-terminal peptide lengths, with only a slight maximum peak at length 30

in the animal pathogen and length 50 in the plant symbiont set, the actual length of the

signal is di�cult to determine. This e�ect can be explained by the fact, that the very

N-terminal end is always part of the prediction and (if it comprises the signal) positively

in�uences the prediction. The position scan revealed that the most discriminating posi-

tions are indeed at the N-terminus followed by a region with less predictive power. The
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Figure 3.4: Exploration of optimal length of the signal (A) and begin position of a 15 amino
acid long window (B). The AUC value for each length and begin position is plotted for the
animal pathogen set (red) and the plant symbiont set (green).

best performance was achieved with the residues 0�30 in the plant symbiont and 0�50

in the animal pathogen set of e�ector proteins. Notably, also the selection 0�15 in both

sets gives a good discriminative power. Some other positions (e.g., residues 90�105 and

120�135 in the plant symbiont set) also show (an indeed weaker) predictive power which

could hint to an additional signal or at least regularity in these regions. The majority

of positions, however, have no predictive power due to AUC values between 0.4�0.6.
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Pattern Enriched/Depleted
polar-hydrophobic-polar enriched
alkaline-alkaline depleted
Threonine enriched
Serine enriched
Proline enriched
polar enriched
alkaline depleted
acidic depleted
hydrophobic-alkaline depleted
polar-polar enriched

Table 3.4: The most discriminating features between e�ectors/non-e�ectors found by the feature
selection procedure.

Algorithm AUC Standard Deviation
Perceptron 0,54 0,04
1 Nearest Neighbor 0,48 0,02
Logistic Regression 0,52 0,02
Support Vector machine 0,49 0,02
Naïve Bayes, Multinomial 0,55 0,03
Naïve Bayes Complement 0,53 0,03
Naïve Bayes 0,52 0,04

Table 3.5: Performance of C-termini.
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Discussion The machine learning approach trained by features delineated by this com-

positional bias successfully captures a non-trivial signal that can be used to predict ef-

fector proteins far better than random. This indicates that a signal is highly probably

encoded in the N-termini and this �nding favors the peptide signal hypothesis over the

mRNA hypothesis. The signal is independently captured by several di�erent algorithms

and is therefore a signal in the data and no artifact. The worst performance (which is

still signi�cantly above random) has been obtained by the 1-nearest neighbor approach

with an AUC in the complete set of 0.68. This classi�er looks for the next data-point

given a query in the Euclidean space spanned by the training instances. The poorer per-

formance indicates, that the signal is complex and can be described better by classi�er

that weight properties (as the Bayesian classi�ers) as by the distance to the next similar

training sequence. The signal could be described by the most discriminating features.

Lloyd et al. found Serine-rich N-termini to be secreted [61], a �nding with is supported

by the analysis herein as Serine has been found among the most discriminative features.

The machine learning approach as well as the trained classi�er can be used for further

investigations on the signal as on the generality and size of the signal.

3.2.3 The signal is robust against point mutations and even

tolerates frame shifts

The secretion signal should be tolerant against single mutations as long as they do

not a�ect residues which are obligate for recognition. The proposed model comprises

traits (as an enrichment of Serine) which are strong contributers to the signal. An

in silico mutation analysis should reveal a behavior congruent with this �ndings: the

signal should break down fast, if such in�uential residues are changed but should be

more resistant against random mutations. Schneewind and coworkers [305] showed that

frame shift mutations in the mRNA altering the N-terminal peptide sequence did not

abolish transport of three TTSS e�ector proteins of Yersinia species. This seems to

contradict the N-terminal signal peptide hypothesis but could be explained, if the frame

shifts lead to altered amino acids in the N-terminus, which nevertheless retained the

characteristic features of the TTSS signal. This has been investigated by looking for

examples in which a non-sense mutation retained or created a new signal.

Material and methods To detect a general robustness of the model, residues have

been accumulatively changed by random in each e�ector previously predicted as (true)
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positive. In a second experiment, these changes have been guided by the most discrimi-

native features and the amount of still positively predicted instances after each round of

mutation has been assessed. For example, the amount of Serine and Threonine has been

depleted by exchanging them in favor of arbitrary residues. The paper of Ramamurthi

et al. [40] provides data of three Yersinia e�ector proteins with three frame shift mu-

tants for each. To test these sequences, the classi�er has been retrained using the �rst

15 amino acids instead of the �rst 25, since only the �rst 15 residues of the mutants are

given in the paper. Simulation of frame shifts has been done by shifting the DNA by one

(+1) and two (+2) positions. In order to get a su�cient amount of sequences with suf-

�cient length, appearing stop codons have been replaced by methionine. Instances have

been selected that exhibit a positive prediction with restrictive parameters (probability

for class �secreted� >0.95 as reported by the Naive Bayesian Classi�er). As negative

control, randomly selected sequences from the same organisms which are covered by the

positive set have been chosen and positively predicted instances have been �ltered out

(probability not secreted >0.95 as reported by the Naive Bayesian Classi�er). Signals

conserved after frame shift were detected with the same settings as in the selection

procedure.

Results In the �rst experiment the signal turned out to be robust when changing

arbitrary residues: after one point mutation 97% after �ve 75% and after ten 54%

of the e�ector proteins still have a detectable signal. In the second experiment (that

introduces mutation on the proposed signals' core), the signal rapidly breaks down: after

one mutation 93% of the e�ectors, but only 27% after �ve and 2% after ten mutations

carry a detectable signal. The resultes of both experiments are plotted in Figure 3.5.

Nine example frame shifts are given in this study which did not abolish secretion. One

Yersinia protein (YopQ) could not be predicted as e�ector and thus represents a false

negative prediction. From the remaining six frame shifts in two proteins (YopE and

YopN), only the −2 frame shift of the YopN N-terminus did not lead to a loss of the

TTSS signal. The same behavior has been shown for the Salmonella e�ector InvJ which

tolerates +1 and −1 frame shifts [306]. In the case of the +1 frame shift the signal is

still revealed by E�ectiveT3, whereas no signal can be detected for the −1 frame shift.

In order to assess the sensitivity of the TTSS signal towards frame shift mutations in

a more systematic manner, I arti�cially introduced all possible frame shift mutations

into the 74 known and positively predicted e�ectors. As control, the same procedure

has been applied to a set of 199 randomly selected and negatively predicted control

143



CHAPTER 3. SEQUENCE BASED PREDICTION OF TYPE III SECRETED PROTEINS

Figure 3.5: Robustness of the TTSS secretion signal against point mutations. The diagram depicts
the percentage of positively predicted TTSS signals after accumulation of point mutations.
The non-targeted mutation strategy exchanged residues accumulatively by random. The
targeted mutation strategy favored to exchange these features, which have the strongest
in�uence on the signal due to the trained model. For both experiments all positively predicted
proteins from the animal pathogen and plant symbiont training sets have been used.

sequences. In 15 cases (10%) of the e�ector mutants, the signal was preserved as it can

be seen in Table 3.6, in contrast to 31% of the control sequences (data not shown).

Discussion The initial two experiments on mutations show, that the signal is robust

against single and multiple point mutations as long as the signi�cant enrichments and

depletions of certain amino acids are not altered. This experiment gives a direct hy-

pothesis testable in the laboratory by guiding targeted mutations which show a possible

loss of TTSS mediated transport of the tested sequences.

The introduction of frame shift mutations should abolish a peptide born signal. Contrar-

ily, some mutants are still predicted as secreted. In agreement with the mRNA signal

hypothesis [307], [39], three e�ector sequences are resistant to both kinds of shifts, the

+1 and +2 mutations. This �nding explains the observed mutation tolerance observed

in the latter experiments without the need to abolish the peptide- based signal hypoth-
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esis in some cases. The experiment of the frame-shift mutations on the control set (the

Name Mutation
Q9Z8P7 CHLPN +1,+2
Q9Z8P6 CHLPN +1
INCA1 CHLTR +2
AAO54130 +2
AF458396 +1,+2
AAO54892 +1,+2
AJ277494 +2

Table 3.6: E�ector sequences which show toleration of frame-shift mutations. The mutations
were introduced by either shifting the DNA sequences by one or two bases to the left, stop
codons where replaced by Methionine.

non-e�ector mutants) revealed an unexpectedly high rate of predicted signals. These

sequences have been found to exhibit patterns of amino acid enrichments and depletions

which are very similar to the characteristics of TTSS e�ectors 3.6. The observed behav-

ior indicates a possible way to acquire an (perhaps week) initial signal from intergenic

space during evolution with only few mutations.
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3.2.4 The TTSS signal peptide is taxonomically universal

Although the Type III secretion system is well conserved and exists taxonomically seen

widespread in very di�erent taxa either inherited or introduced to a genome by horizon-

tal gene transfer [308]. The organisms harboring such a system may di�er completely

in their host speci�city: Pseudomonas, for example, is a plant pathogen where the

Chlamydiae enter eukaryotic cells as their hosts. Although the di�erent modes of host

interaction are merely implemented by the e�ector proteins and their controlled acti-

vation, it cannot be excluded that the substrate recognition could substantially di�er

between di�erent taxa. A certain generality of the system has been uncovered by the ap-

plication of heterologous screens which transported e�ector proteins of another species.

In addition, the initial analysis of the amino-acid frequencies indicate universality of the

signal. The cross-validation procedure itself could not prove this universality, since in

each round of the validation, taxon speci�c features might be introduced. In the follow-

ing analysis, I show this generality explicitly: by systematically excluding genomes from

training, they cannot contribute to the feature selection process. When then used as

test, congruence of the signal in the excluded with the signal in the training sequences

is indicated by high AUC values.

Material and methods In order to test the universality of the signal, each taxon has

been excluded (Yersinia, Salmonella, Escherichia, Chlamydia, Pseudomonas) from the

training and feature-selection procedure. The classi�ers performance with this taxon as

separate test set has been assessed by the AUC value. For both sets, negative sets twice

as large are randomly created from these organisms, which are also in the respective

positive set. The values for the AUC have been computed using the WEKA-toolbox.

The same data has been computed for the same amount of randomly chosen sequences

of the excluded taxon as taxon speci�c null-model.

Results The results of the analysis for the Bayesian classi�er are shown in Figure ??.

High AUC-values between 0.83 and 0.89 were observed for all tested combinations

using the Bayesian classi�cator. Notably, it was possible to predict e�ectors from the

animal pathogen set when trained by the plant symbiont set and vice versa, yielding

an AUC of 0.86 and 0.83 respectively and similar results have been found using other

classi�cation algorithms.
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Figure 3.6: Test on the generality of the signal. The y-axis denotes the achieved AUC value
of E�ectiveT3 when trained without the positive and negative samples from the taxonomic
group denoted at the bottom of the x-axis and tested against this set. The performance on
a randomly chosen set of positives and negatives having the same taxonomic composition is
given for comparison.

Discussion Since a high AUC has been achieved in any combination, the captured

signal is not organism speci�c but must be taxonomically universal. In consequence,

the basic recognition process must also be conserved or only slightly di�erent. It can be

observed, that the AUC values is smallest when excluding the animal set from training

indicating that its' composition of diverse e�ectors from di�erent species contributes

positively to the general performance. Notably, this test encourages the use of E�ective

in unseen genomes of other gram(-) bacteria.
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3.2.5 Evolutionary history of the TTSS signal peptide

In contrast to the secretion apparatus, the e�ectors are not well conserved and the

repertoire in di�erent bacteria is di�erent. This implies the question how bacteria can

invent e�ector proteins de novo in order to cope with changing host speci�city and in

the arms race with the immune response of their respective hosts. Novel e�ectors can

be acquired by horizontal transfer as shown in Pseudomonas [309]. However, at some

time-point in evolution, novel e�ector sequences must arise, e.g. by turning an arbitrary

protein into a secretable e�ector. Stavrinides et al. [310] proposed a mechanism called

terminal re-assortment which describes the acquisition of signal peptides by genome

re-arrangements leading to chimeric sequences, which could be detected for 32% of the

investigated e�ector families in contrast to 7% in arbitrary sequences. Interestingly,

intergenic regions show � if translated � a similar amino acid composition as the signal

predicted by E�ectiveT3. This indicates a simple way of signal acquisition through a

5′ shift of the start codon followed by few subsequence point mutations. An additional

scenario is the turn of an arbitrary protein into an e�ector by random point mutations

which lead to an initial signal. All scenarios are pictured in Figure 3.7. Probably, both

processes might contribute to the evolutionary de-novo invention of e�ectors. To assess

this question, I investigated together with Sebastian Behrens how many changes in the

N-termini of known e�ectors occurred in comparison to their orthologs in an organism

without TTSS.

Material and methods Orthologous groups have been obtained from the eggNOG

database [126] for each e�ector protein. Proteins from organisms other than Gammapro-

teobacteria have been �ltered out. The remaining proteins where labeled as �e�ector�

if in training set, �putative e�ector� if from an organism with TTSS or �non-e�ector� if

from an organism without TTSS. In 10 cases, orthologs of e�ectors in non-TTSS species

could be found. In order to investigate the N-terminal ends with the help of alignments,

the C-terminal functional parts of the sequences must be cut since they would dominate

the alignment. To �nd the most probable start of the functional part of the proteins,

I searched for the �rst functional domain as detected by Pfam [311] (as contained in

InterPro Release 17.0 [312]), cut at the start of the domain and created multiple align-

ments of the remaining N-terminal fragments. Then, regular N-terminal extensions of

e�ector or putative e�ector proteins compared with non-e�ectors by manual inspection

in the case of the multiple alignments. Also pair-wise alignments of e�ector/non-e�ector

sequences from the same orthologous group have been created. I counted elongations
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Figure 3.7: Schematic illustration of possible evolutionary mechanisms leading to new e�ectors.
(1) Terminal re-assortment. This process is based on the shu�ing of genomes creating novel
signal-protein hybrids. If the hybrid furthers the �tness of the organism, it is evolutionary
retained as novel e�ector (a). (2) De-novo generation by mutations. Point mutations could
lead to a weak initial signal which is su�cient for secretion. If the novel e�ector increases
the species' �tness, the signal will be strengthened by selection (b). If the point mutation
leads to an N-terminal elongation by mutating the start codon, the protein is elongated (c)
and the additional N-terminus can adapt towards a full secretion signal without changes to
the proteins original functional parts.

(alignment start of the e�ector greater than of the non-e�ector) and truncations within

one group. Examples are given in the supplement 6.4. If the di�erence between the

alignment starts was smaller than 15 residues, we counted the alignment as having the

same length. The same procedure has been repeated without aligning the sequences by

just comparing the lengths before the start of the functional domain. Multiple align-

ments were built using ClustalW (Version 2.0.5) [290], Muscle (Version 3.7) [291], with

standard parameters, pair wise alignments were calculated with the Smith Waterman

algorithm as implemented in the Jaligner package using the BLOSUM62 substitution

matrix.

Results The results of the principal evolutionary events (truncation, elongation, no

change in size) are summarized in Table 3.7. A manual inspection of the multiple

alignments did not reveal a clear pattern which would support regular fusion events

between a functional protein and a 'signal domain' This result is further supported by

the pair-wise analysis: Elongations of the e�ector sequences compared to non-e�ectors
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E�ector + % - % = %
AAO57557 3 75,00% 1 25,00% 0 0,00%
AAO54387 3 10,71% 4 14,29% 21 75,00%
YPKA YERPS 18 50,00% 18 50,00% 0 0,00%
YOPT YERPS 3 11,11% 22 81,48% 2 7,41%
Q9Z7W9 CHLPN 1 12,50% 7 87,50% 0 0,00%
Q9RPH0 SALTY 0 0,00% 2 100,00% 0 0,00%
YOPM YERPE 7 58,33% 5 41,67% 0 0,00%
YPKA YERPE 18 50,00% 18 50,00% 0 0,00%
YOPT YERPE 3 11,11% 22 81,48% 2 7,41%
AAO58488 0 0,00% 6 100,00% 0 0,00%
TARP1 CHLTR 0 0,00% 1 100,00% 0 0,00%
Q663L9 YERPS 1 16,67% 4 66,67% 1 16,67%

Table 3.7: Evolutionary events. Truncations, elongations and conservations of the N-terminal
length until the �rst functional domain are listed according to the e�ector protein (�rst
column) compared to orthologs from non-TTSS bearing organisms. '+': elongation of the
e�ector, '-': truncation, '=' equal length.

are less frequent (30%) than truncations (57%), whereas a similar length of e�ector and

non-e�ector occurs in 13% of all pairs. All three events can be detected within the same

orthologous group. HopAK1, a Pseudomonas syringae e�ector, is the only example

which is more often elongated (three cases) than truncated (one case). A similar picture

can be seen when only the length of the N-terminal regions before the �rst common

functional domain of e�ector and non-e�ector orthologs were compared: N-terminal

regions with equal lengths can be found in 4%, shorter lengths for the e�ector in 39%

and longer lengths for the e�ector in 57% of cases

Discussion In this analysis, a regular elongation of e�ectors in comparison to non-

e�ectors cannot be stated, however, a certain amount of those events exist. The observed

data favors the mutation accumulation theory since most examples are not elongated

but more often of equal size or smaller compared to their on TTSS relatives. The

examples of elongations refer to either the process of terminal re-assortment as proposed

by Stavrinides et al. [310], or to the acquisition of intergenic space. These two cannot

be distinguished here. Overall, a mixed picture can be seen and the absence of any of

the mechanisms proposed cannot be stated.
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3.2.6 A substantial fraction of proteomes is predicted as secreted

The amount of sequences predicted as secreted could give insights into the amount of

a proteins provided by an organism as e�ector arsenal and can be compared between

di�erent taxa.

Material and methods Complete genome and proteome data of prokaryotic genomes

has been downloaded from the KEGG database [284] (release 2009/01/19). Components

of the TTSS have been identi�ed by their association to the KEGG Orthologous Groups

(KO) belonging to the TTSS reference pathway KO03070 (K03219..K03230). Genomes

in which at least 9 of these 12 KO are present have been considered as genomes with

TTSS. Genomes in which less than 6 of these 12 KO are present have been considered

as genomes without TTSS. All genomes in which between 6 and 8 of these 12 KO

are present have been excluded from this analysis to avoid uncertainty. Additionally, all

bacterial genomes have been excluded from this analysis for which no information on cell

wall type (Gram-positive vs. Gram-negative) was available at the NCBI Entrez Genome

Project Organism Info database [313]. For the remaining 739 proteomes, E�ectiveT3

predictions have been calculated using a selective parameter setting (probability for class

�secreted� >0.99 using the Naive Bayesian Classi�er). To estimate the enrichment of

TTSS e�ector-like sequences in the N-termini of the proteomes, a genome-wide Z-Score is

calculated for every proteome: Z = (N−A)
SD

, whereas N denotes the number of positives

in the N-termini of the real proteome. A and SD are derived from 50 repetitions

predicting positives in randomly chosen segments of 25 aa length (one segment per

protein), whereas A corresponds to the average number of positives in the 50 runs and

SD to their standard deviation.

Results The application on the multitude of di�erent genome provides pre-calculated

data which can be further combined with other knowledge and guide experiments for

the detection of novel e�ectors. The pre-calculated data for the gram(-) bacteria can be

downloaded from www.e�ectors.org.

In organisms encoding a TTSS, a substantial fraction of proteins is predicted as secreted,

varying between 2% and 7% percent with an average of 4% of all proteins. In species

without a TTSS, smaller percentages should be found. However, the recovered (false)

positive rate in these species is quite high and varies between the taxonomic groups.

Interestingly the Deinococci (6%) and the Gram-positive Actinobacteria (up to 10%)

exhibit high percentages of positives despite the di�erences in cell wall composition and
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the absence of a TTSS. Contrarily, Archaea and Firmicutes exhibit a very low amount

of positives with 1%, respectively 2% on average. Between more closely related bacteria,

similar percentages of predicted TTSS e�ectors were found in di�erent strains of e.g.

S. enterica (on average 3%) and E. coli (3%). The amoebae symbiont Protochlamydia

amoebophila exhibits a slightly higher percentage (6.1%) compared to its chlamydial

relatives, which are pathogens of animals and humans (on average 5%). Since the former

genome encodes roughly the double amount of sequences as in the pathogenic species,

the total counts of predicted e�ectors are much higher than for the pathogenic relatives.

This could re�ect a more diverse arsenal of e�ectors employed by the amoeba symbiont

due to an adaptation to more diverse hosts which implies more �exibility in the modes of

chlamydi-host interactions. A direct comparison of several Gammaproteobacteria with

and without TTSS shows a little less amount of predicted e�ectors in the latter case. The

pathogenic Escherichia coli strain O157:H7 EDL933, for example, comprises 3.9% of its'

genome as possible e�ectors, more as the harmless K12 strain with 2.9%. The high rate of

false positives has been further investigated by systematically comparing the composition

of the N-termini with the functional parts of the proteins using Z-score statistics. A high

average Z-score for a genome (>1) indicates a prevalence of true e�ector like sequences

(many N-termini with signal like composition di�ering from the rest of the protein),

otherwise, the genome provides many unusual sequences per se resulting in a high false

positive rate. These Z-scores can therefore be used to classify genomes due to the ability

of E�ectiveT3 to distinguish between e�ector and non-e�ectors. As further investigated

together with Dr. Thomas Rattei, the rate of false positives correlates with the CG

content in Gram(+) and archeal genomes. We found the correlation in case of the

gram(-) weaker (R2=0.05 against R2=0.17) for species harboring a TTSS indicating a

certain evolutionary pressure against signals in non-e�ectors.

Discussion The correlation of the false positive rate of GC content can be explained

by elongated genes with N-termini that have a similar compositional characteristic as

would be produced by the intergenic regions which have been found to bear a signal

in many cases in the frame-shift experiments. Such elongated gene starts can comprise

either real evolutionary events or correspond to wrongly predicted gene starts. The

latter ones have been shown to correlate positively with the CG content [314], a �nding

in congruence with the poitive correlation of false positive e�ector predictiosn and GC

content. In the absence of a TTSS, the evolutionary pressure for arbitrary proteins not to

encode e�ector like N-termini is also absent, which could lead to e�ector like proteins in
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some cases and therefore to false positive predictions in these genomes. Some e�ectors

could be transported by the �agellar system as the recognition seems to be similar:

Badea et al. showed that FliC which is normally secreted by the �agellar apparatus

to form the �agellar hook can be transported by the TTSS in absence of the �agellum

[315]. Interestingly, E�ectiveT3 predicts FliC as TTSS substrate further supporting

this �nding. In consequence, �agellar systems could serve as alternative route for TTSS

e�ectors in species with no detected TTSS.

3.2.7 Comparison to other methods

Three approaches, which utilize binary classi�er to predict e�ector proteins, have been

published recently. Löwer et al.[116] uses a neural network trained with string represen-

tations of the amino acid composition of the �rst 30 residues. The positive training set

contained e�ectors of di�erent organisms and from various studies including large-scale

screens. Samudrala et al. [117] combined the amino acid composition of the �rst 20

amino acids with additional information as nucleotide composition of the gene, phylo-

genetic distribution of orthologs and the overall conservation of the protein as initial

features and extracted the most discriminating features using recursive feature elimina-

tion. In this study, sequences from P. syringae and Salmonella typhimurium have been

used as training for a support vector machine and the performance has been assessed

by cross-validation as well as by a comparison between Pseudomonas and Salmonella

indicating a common signal in both organisms. The E�etiveT3 method is the only one

of them that is available as stand-alone tool and online-prediction server. Löwer and

co-workers found the results of their study in good agreement with the predictions of

E�ectiveT3 [116]. Samudrala et al found as most discriminating features to be an en-

richment of Serine and other polar residues and a depletion in charged residues. In this

study found Serine, Threonine, Proline and polar residues as well as the amphipathic

pattern �polar-hydrophobic-polar� enriched, whereas alkaline and acidic patterns were

depleted in the N-terminal sequences. Overall, these studies are in good agreement with

each other: all three detect the signal in the N-termini and can successfully distinguish

e�ector and non-e�ector proteins.
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3.2.8 The E�ectiveT3 software package and Web-Page

To increase the impact of the E�ective classi�cation software in the scienti�c commu-

nity, easy to use distributions of it are needed which can be used o�ine with private

data and online by a web-interface. Tanja Bieber implemented a graphical user-interface

during her Bachelor thesis in JavaTM(under my and Prof. Dr. Thomas Rattei super-

vision). This software allows to process own protein sequences either in graphical or

batch mode. Di�erent classi�cation schemata (as complete, animal-pathogen, or plant-

symbiont training set) can be loaded dynamically. This enables easy update of future

classi�cation schemata by the user.

I adapted the software for the use in a Web-Portal which allows the on-line predic-

tion of TTSS substrates. In addition, I adapted the E�ectiveT3 user interface to run

as Java Web-StartTMapplication. Both cases implied some modi�cation of the original

code concerning the dynamic loading of the classi�cation modules in order to run in

the Web-Server environment, the Web-Start environment, and as normal stand-alone

software alike. The portal (http://www.e�ectors.org) has been implemented by Prof.

Dr. Thomas Rattei, Marc-Andre Jehl, and me in a common e�ort using Java Server

Pages. The portal also comprises predicted eukaryotic like domains (this part has been

implemented by Marc-Andre Jehl, compare Chapter x.), pre-calculated predictions, sup-

plementary data, and feedback forms to allow the submission of novel e�ector sequences

and subscription to a newsletter. The intention of the portal is to create a platform for

methods and data-sets related to e�ector candidates and known e�ectors. A screen-shot

of an example prediction is shown in Figure 3.8.

Until today, the software has been cited in several publications, either in studies on

novel e�ectors [316] or as part of analysis pipelines [317][318] indicating the actual need

of the provided implementations of the method which are publicly accessible.

A paper describing the Web-Portal and the underlying database of eukaryotic like do-

mains has been submitted.

3.2.9 Can a similar approach detect Type IV secreted proteins?

As in the case of Type III secretion, the mode of e�ector recognition of the Type IV

system [319] is unknown and no general prediction software for its substrates exist

that is based on a system speci�c recognition signal. The positive outcome of the

E�ective pipeline in the Type III case motivated to test the same machine-learning

procedure on Type IV substrates. This has been done by Sebastian Behrens during his
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Figure 3.8: Screen-shot of a E�ective Web-Portal session. The report of an example prediction
is shown.

Bachelor thesis. The position of a recognition signal for Type IV secretion has been

described for several Legionella e�ectors at the C-terminal end. Analyses equivalent

to the Type III case revealed a predictive power above random for C-termini of known

Type IV secreted e�ectors (AUC of 0.83). However, the sequences exhibit an alien

composition over the whole sequence length that is as discriminative and the signal

cannot be stated to be purely C-terminal. In conclusion, the classi�er captures a general

property of the sequences and a C-terminal signal could not be clearly stated. The

training-set comprised in comparison with the Type III case only few instances, mainly

Legionella e�ectors. This introduces two drawbacks: �rstly, the compositional bias in

the amino-acids which has been captured by the classi�cator could be explained by the

existence of pathogenicity islands in Legionella which might exhibit di�erent GC content

as the genome average and in�uence the amino-acid composition [320]. Secondly, the

taxonomic generality of the method could not be stated. In consequence, the resulting

classi�er must be seen as experimental but comprises a good starting point for further

research.

In a cooperative project with the chair of Prof. Ellen Zechner of the University of

Graz, I tested the trained Type IV classi�cator on the helicase TraI from E. coli which
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is an substrate of the Type IV secretion system. This sequence has been suspected

to comprise internal secretion signals that are not C-terminal. Interestingly, a sliding

window approach on the sequence revealed to positions in coincidence with experimental

�ndings of the group. However, the signi�cance of the result could not be stated. Further

analyses on these position revealed their origin by a duplication event from a recD2

domain. A paper describing the internal secretion signal identi�ed in the laboratory

and our analyses on the phylogenetic relationships has been submitted.
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4
Summary and conclusions

In this work, two aspects have been investigated: �rstly, the prediction and use of func-

tional interaction networks to investigate intra-cellular pathogens, namely the Chlamy-

diae by using their genome data. Secondly, I computationally modeled the secretion

signal that leads to speci�c transport by the Type III secretion apparatus. This model

provides insight into the molecular nature of the signal as well as a prediction method

available to the scienti�c community. The key �ndings of this work are summarized in

the following.

The prediction of Chlamydiae interactomes from their genomic sequences revealed

a comprehensive map of the functional interplay of chlamydial proteins. A com-

prehensive knowledge of physical and functional interactions is crucial to understand

the biology of an organism. Cellular functions are ful�lled not by single proteins alone

but by the interplay of several proteins. Only few interactions of chlamydial proteins

have been measured so far and no exhaustive protein-protein interaction screen is avail-

able. A computational prediction of the interactomes by genomic context and related

methods is feasible as soon as the complete genome sequences are available. While

such predicted interaction networks are available for publicly available genomes in the

STRING database, this has not been the case for most of the environmental species. A

pipeline to process the chlamydial genomes has been implemented that is able to inte-

grate any computational interaction prediction method. The resulting data predicted

by the implemented pipeline provides several extensions to the data found in similar

resources as STRING[159]: it comprises chlamydia speci�c proteins that have no orthol-

ogous counterpart in other taxa and employs additional prediction methods that do not

initially rely on the detection of orthologs in other species but on domain signatures.

Furthermore, the pipeline employs di�erent scoring schemata that weight the prediction
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methods according to their ability to predict physical or functional interactions. As an

extension, the pipeline identi�es cellular sub-systems, called functional modules. The

predicted interactomes cover large fractions of the chlamydial genomes. Con�dent hy-

potheses on interactions have been generated for up to 65% of the predicted genes for

the pathogenic Chlamydiae. Even in the case of the much larger genomes of the envi-

ronmental species, it has been possible to predict interactions for a substantial fraction

of proteins.

A substantial gain of information can be reached by integrating various methods.

The integration of di�erent prediction methods into a single scoring scheme has been

shown to be generally fruitful in terms of increased con�dence and coverage in several

studies [114, 162, 163]. The genomic context methods (conserved gene neighborhood,

the detection of fused proteins, and the co-occurrence method) contribute predictions

which rely on the identi�cation of orthologs between a plethora of species. In case

of the chlamydia, several proteins exist which are taxon speci�c. The integration of

domain based methods and the delineation of chlamydial speci�c conserved neighbor-

hoods increased the coverage of the network since these taxon-speci�c proteins could

be processed and several hundred proteins could be added to the interaction networks

with con�dence, especially by the domain based methods. Using the approaches fol-

lowed herein, the coverage and quality of the interaction networks will increase with

more chlamydial genomes sequenced which could contribute to detectable conserved

gene neighborhoods re�ecting chlamydia speci�c operons.

Functional modules of Chlamydiae reveal known pathways but also di�er. The

delineated functional modules have been tested on their broad functional coherence

which can be stated to be much above random. As a consequence, these modules are

highly probable meaningful functional entities. This picture is further supported by the

recovery of known pathways and modules as de�ned in the KEGG database. However,

the recovery is often partial and for many modules no assignment to a pathway could

be made. The only partial recovery of known pathways is not surprising due to the

reduced genomes of the Chlamydiae. The large fraction of modules completely uncovered

indicates a need for additional, chlamydia speci�c pathway and module de�nitions not

yet re�ected in KEGG. The data generated in this analysis can give a basis for such an

extension since it points out missing entities and chlamydia speci�c di�erences.
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Functional modules can be successfully applied to predict functions of unknown

proteins. Many proteins in the chlamydial genomes are of unknown function as the

Chlamydiae are di�cult to assess by standard laboratory techniques and are only dis-

tantly related to the typical model-organisms hindering an exhaustive automated func-

tion transfer by homology. The functional interaction networks and modules o�er a

convenient way to predict function by the guilt by association principle (i.e. by mod-

ule co-membership or inference form the direct interaction neighbors). In this work,

di�erent strategies to employ this idea have been tested for P. amoebophila UWE25

and the FunCat annotation schema and for 178 unknown proteins, a function could

be predicted. The quality of the predictions returned by the approaches (module co-

membership and inference from neighbors in the interaction network) depends on the

choice of adequate functional categories which have been automatically identi�ed during

the analysis. This information can serve as basis for an automated function prediction

procedure in Chlamydiae that can complement i.e. homology based approaches.

Functional modules give hints to yet unknown virulence related genes. A necessary

key feature of the Chlamydiae is their ability to manipulate their host cells by the use of

secreted e�ector proteins. These (and other virulence related genes) could be identi�ed

by co-membership with virulence factors in functional modules. Although recovering a

couple of known virulence factors such as Inclusion proteins and the e�ector CopN, the

approach turned out to be not generally applicable since most known e�ector proteins do

not cluster with their cognate transport system into modules. In general can be observed

that e�ector proteins exhibit less predicted interactions of weaker con�dence as arbitrary

proteins. This indicates that most of them are individual inventions which are taxon

or even species speci�c and their interaction with a transport system is therefore not

detectable by the used methods in many cases. This �nding motivates the development

of a sequence based prediction method as it has been done in this work for Type III

secreted proteins.

The genome reduction of pathogenic Chlamydiae in terms of functional modules:

cohesive fate in most occasions. In contrast to the pathogenic species, the envi-

ronmental Chlamydiae exhibit a weaker genome reduction. This allows to investigate

how the functional equipment of the Chlamydiae changes in the process of adaptation to

higher eukaryotes as host. This has been investigated on the level of functional modules.

The further reduction of the pathogenic cases can be either explained by a concerted
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loss of functionally coupled proteins (cohesive losses), by a preference to keep them (pu-

rifying losses), or by a random reduction by arbitrary proteins (irregular behavior). The

systematic investigation of these events revealed the existence of non-cohesive scenarios

in some cases that indicates tolerance of single gene losses in these cases which must be

complemented by functional alternatives. However, the majority of cases behaves cohe-

sive and the examples of purifying gene loss exhibit the functional cores of the modules.

One plausible interpretation is a loss of sub-functionalities of a module not needed in the

more speci�c environment of the pathogenic Chlamydiacea. Cohesive loss of complete

modules or cores indicate the absence of evolutionary pressure to maintain these func-

tionalities if not complemented otherwise as by host parasitism. An interesting question

for further research would be to ask if remaining sub-modules in the reduced cases neo-

functionalize since they are de-coupled from the original functionality of the module or

are found conserved because they comprise general functionalities not speci�c to their

module.

Additional needs of the environmental Chlamydiae: functional di�erences to the

pathogenic Chlamydiae due to a more variable environment. The comparison of

the functional equipment between the environmental and pathogenic Chlamydiae indi-

cated no detectable gain of functional modules in the latter case, but several modules

existing in the former one. These functionalities comprise di�erent transporter as an

ABC multidrug and siderophore transporters, the Type IV secretion system, modules

that are related to the exchange and repair of DNA, as well as modules of unclear func-

tion. This additional functional equipment indicates a more variable environment for

the environmental species which is less stable as the eukaryotic host cell, a �nding in

congruence with the life-styles of the di�erent Chlamydiae.

The recognition signal for Type III secretion is encoded in amino-acid N-terminus

of e�ector proteins and can be computationally modeled. The Type III secretion

system is a major transport route employed by many Gram(-) bacteria to deliver e�ector

proteins into evolutionary host cells an the identi�cation of novel e�ectors is crucial

to understand the mechanisms of virulence. The general signal that leads to speci�c

transport of e�ectors has been unknown and no prediction method to identify novel

e�ectors from their sequence information existed. In this work it could be shown, that

the model comprises an unusual pattern of amino-acids that can be used to model the

signal computationally by a machine learning approach. The model allows systematic
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investigations on the nature of the signal which could be found encoded in the N-terminal

peptide sequence.

The signal is taxonomically universal. Although the Type III secretion system is a

well conserved entity, it has been not clear if the recognition signal is conserved in several

organisms. An analysis using a taxon-speci�c validation procedure showed that the

signal is indeed general and a computational prediction method based on it is generally

applicable.

The signal is resistant against mutations: implications for the interpretation of

frame-shift experiments and the evolution of novel e�ectors. The computational

model has been used for in silico mutation experiments. Although the signal could be

destroyed quickly if targeting key features of the signal, it turned out to be resilient

against arbitrary point mutations. In some cases, the signal turned out to be immune

against frame-shift mutations, a behavior that had been observed for some e�ector pro-

teins [321, 322] and lead to the hypothesis of a mRNA encoded signal. The examples

found herein give an alternative interpretation of these �ndings without the need to

abolish the peptide-born signal hypothesis which is in general more likely due to several

observations as the existence of translated e�ectors inside the bacterial cell. Further-

more, I found a weak initial signal for some intergenic regions in front of the coding

sequences. This observation implies a novel possible mechanism of the de novo inven-

tion of e�ectors with low evolutionary costs by extending the coding sequence of an

arbitrary protein into the intergenic region.

E�ectiveT3, a software to predict Type III secreted proteins. Application and

availability. The computational model can be used to predict novel e�ector candi-

dates with high accuracy. A test on several genomes resulted in 2%-7% of a genome in

cases of an existent Type III secretion system. Furthermore, possible sources of false

positive predictions are discussed in this work. The software E�ectiveT3 incorporates

the computational model and is freely available as stand-alone software as well as in a

web-interface.

Proposals for further experiments The computational model of the Type III secretion

signal can guide point mutation experiments to further investigate the molecular mech-

anisms of Type III mediated transport. An interesting experiment would be to show

secretion of a fusion protein consisting of an arbitrary gene fused on the N-terminus with
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a possible initial signal found in the nearby intergenic space. The transcriptional regu-

lation of bacterial genes turned out to be much more complex than anticipated and even

the organization of operon structures turns out to be �exible and dependent on the cells'

current state (for a review, see [323]). Data resulting from transcriptomics studies as

from deep RNA sequencing and tiling arrays will provide information on the transcrip-

tional control of the TTSS, e�ectors, and related chaperons. This data will help to re�ne

the prediction of candidate lists and to create dynamic models of the infection process.

An interesting direction of research would be to determine commonalities and di�erences

in substrate recognition between the Flagellum that has secretory capabilities [315] and

the TTSS, as there might be common patterns between the substrate recognition of

both systems congruent with their tight evolutionary relationship. The identi�cation of

a �switch-mechanism� between �agellar and TTSS mediated transport, which might be

under expressional or chaperon based control remains an open question. Computational

models will aid the investigation of this topic by determining di�erences in the signal,

and by dynamic, time dependent computational models of infection and the cell cycle.

Further research towards a better understanding of the TTSS and its molecular recog-

nition of substrates is needed since e�ectors might be highly speci�c drug targets and

novel types of antibacterial drug molecules could directly attack these e�ectors outside

the bacterial cell, circumventing many of the bacterial resistance strategies.
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6
Appendix and supplemental material

Set Name Proteins
P Chlamydia muridarum Nigg 911
P Chlamydia trachomatis A/HAR-13 919
P Chlamydophila abortus S26/3 932
P Chlamydophila caviae GPIC 1005
P Chlamydophila pneumoniae AR39 1112
P Chlamydophila pneumoniae CWL029 1052
P Chlamydophila pneumoniae J138 1069
P Chlamydophila pneumoniae TW-183 1113
P Chlamydophila felis Fe/C-56 1013
P Chlamydia trachomatis D/UW-3/CX 895
P Chlamydia trachomatis 434/Bu 874
P Chlamydia trachomatis L2b/UCH-1/proctitis 874
P Chlamydia trachomatis B/TZ1A828/OT 880
P Chlamydophila pneumoniae LPCoLN 1105
E Candidatus Protochlamydia amoebophila UWE25 2030
E Waddlia chondrophila 2049
E Simkania negevensis 2500
E Parachlamydia acanthamoebae UV7 2833

Table 6.1: Chlamydiae used in this work. 'Set' pathogen (P) or environmental (E), 'Name':
the name with strain identi�er, 'Proteins': amount of coding proteins as predicted by the
gene-prediction software.
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COG functional classi�cations
J Translation, ribosomal structure and biogenesis
A RNA processing and modi�cation
K Transcription
L Replication, recombination and repair
B Chromatin structure and dynamics
D Cell cycle control, cell division, chromosome partitioning
Y Nuclear structure
V Defense mechanisms
T Signal transduction mechanisms
M Cell wall/membrane/envelope biogenesis
N Cell motility
Z Cytoskeleton
W Extracellular structures
U Intracellular tra�cking, secretion, and vesicular transport
O Posttranslational modi�cation, protein turnover, chaperones
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme transport and metabolism
I Lipid transport and metabolism
P Inorganic ion transport and metabolism
Q Secondary metabolites biosynthesis, transport and catabolism

Table 6.2: General categories from the COG scheme
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Main categories of the funcat
01 Metabolism
02 Energy
04 Storage protein
10 Cell cycle and dna processing
11 Transcription
12 Protein synthesis
14 Protein fate (folding, modi�cation, destination)
16 Protein with binding function or cofactor requirement
18 Protein activity regulation
20 Cellular transport, transport facilitation and transport routes
30 Cellular communication/signal transduction mechanism
32 Cell rescue, defense and virulence
34 Interaction with the cellular environment
36 Interaction with the environment (systemic)
38 Transposable elements, viral and plasmid proteins
40 Cell fate
41 Development (systemic)
42 Biogenesis of cellular components
43 Cell type di�erentiation
45 Tissue di�erentiation
47 Organ di�erentiation
70 Subcellular localization
73 Cell type localization
75 Tissue localization
77 Organ localization
78 Ubiquitous expression
98 Classi�cation not yet clear-cut
99 Unclassi�ed proteins

Table 6.3: Main categories of the MIPS FunCat
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Categories of Swissprot keywords
Biological process
Cellular component
Coding sequence diversity
Developmental stage
Disease
Domain
Ligand
Molecular function
PTM (Post translational modi�cation)
Technical term

Table 6.4: General categories used in the controlled vocabulary of Uniprot
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Interactor I Interactor II Score

COG0178 COG0266 191.67482

COG0459 COG1126 191.67482

COG1124 COG0459 175.41096

COG2227 COG0266 175.41096

COG5563 COG1269 191.67482

COG0130 COG0459 202.87624

COG5563 GI:269302908 191.67482

GI:269302987 GI:269303304 191.67482

COG1131 COG0459 175.41096

COG5563 COG0045 191.67482

COG1136 COG0266 175.41096

GI:269303304 COG0045 191.67482

COG0178 COG0459 175.41096

env1641 COG0266 191.67482

GI:269303158 COG0098 191.67482

GI:269303158 COG0097 191.67482

COG2227 COG0459 191.67482

COG0814 COG0266 191.67482

COG0459 COG0577 175.41096

GI:269303304 GI:269302908 191.67482

COG5361 COG0266 191.67482

COG0459 COG1121 191.67482

COG5563 COG0582 191.67482

COG0097 GI:269303432 191.67482

COG5563 COG0515 191.67482

COG1136 COG0459 175.41096

env1641 COG0459 191.67482

COG5361 COG0459 191.67482

COG0814 COG0459 191.67482

GI:269303304 COG1640 191.67482

COG0459 COG0667 132.0155

COG1135 COG0459 191.67482

COG5563 GI:269303106 191.67482

GI:269303106 GI:269303304 191.67482

COG1127 COG0266 191.67482

COG0266 COG0444 175.41096

COG0658 GI:269303304 191.67482

COG1116 COG0266 175.41096

COG0488 COG0266 191.67482

GI:269303304 COG1269 191.67482

COG1127 COG0459 191.67482

COG5563 COG0658 191.67482

COG1116 COG0459 175.41096

GI:269303304 COG0582 191.67482

COG0577 COG0266 175.41096

GI:269303304 COG0515 191.67482

COG0488 COG0459 202.87624

COG0459 COG2274 175.41096

GI:269303428 GI:269303304 191.67482

COG1126 COG0266 191.67482

COG0443 COG2319 102.32367

COG0266 COG1137 191.67482

962855 960876 gsn.131 191.67482

COG5563 COG1294 191.67482

COG0396 COG0266 191.67482

COG0098 COG1137 191.67482

COG0459 COG0444 175.41096

COG3209 COG0266 191.67482

COG4608 COG0459 175.41096

COG0636 GI:269303304 191.67482

COG0444 COG0098 175.41096

COG1271 GI:269303304 191.67482

COG3209 COG0459 191.67482

Continued . . .

Interactor I Interactor II Score

COG5563 GI:269302987 191.67482

GI:269303432 COG0098 191.67482

COG1132 COG0266 175.41096

COG5563 COG0636 191.67482

COG5563 COG1640 191.67482

COG0459 COG1137 191.67482

COG2201 COG0266 191.67482

COG0459 COG0396 191.67482

COG0266 COG1121 191.67482

COG3842 COG0459 175.41096

COG5563 GI:269303428 191.67482

COG5563 COG1271 191.67482

COG2201 COG0459 191.67482

COG0130 COG0266 191.67482

COG0171 COG0388 95.54407

COG0459 COG1134 191.67482

COG0459 COG1132 120.81382

GI:269303304 COG1294 191.67482

COG0266 COG0667 175.41096

Table 6.5: Predicted high probable physical

interactions.
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Figure 6.1: Z-scores resulted in the parameter exploration of runs with re-clustering by and varying
In�ation parameter. Values for all three networks (High=high con�dence, Medium=medium
con�dence , All=the complete network) shown. On the x-axis: the Z-score as de�ned by
|×−µσ | of the cohesiveness measure, on the y-axis: value of the MCl in�ation parameter.
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Figure 6.2: General trends in the evolutionary behavior of Chlamydial modules. The size of each
module detected in the Candidatus Protochlamydia amoebophila UWE25 is plotted against
the maximum size detected in the pathogen Chlamydia muridarum, strain Nigg. The size of
the points re�ect the number of modules found at each data-point. The red line indicates
the diagonal (x=y).
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Organism Run Set >0.5 <=0.5,>0 0
C. abortus S26/3 high module 15 78 115
C. abortus S26/3 high pathway 6 106 96
C. abortus S26/3 medium module 17 82 136
C. abortus S26/3 medium pathway 3 121 111
C. caviae GPIC high module 15 81 112
C. caviae GPIC high pathway 4 110 94
C. caviae GPIC medium module 16 86 133
C. caviae GPIC medium pathway 3 124 108
C. felis Fe/C-56 high module 15 82 111
C. felis Fe/C-56 high pathway 5 110 93
C. felis Fe/C-56 medium module 17 86 132
C. felis Fe/C-56 medium pathway 2 126 107
C. muridarum Nigg high module 14 80 114
C. muridarum Nigg high pathway 4 110 94
C. muridarum Nigg medium module 16 84 135
C. muridarum Nigg medium pathway 2 125 108
C. pneumoniae CWL029 high module 14 80 114
C. pneumoniae CWL029 high pathway 6 108 94
C. pneumoniae CWL029 medium module 16 84 135
C. pneumoniae CWL029 medium pathway 3 124 108
P. amoebophila UWE25 high module 19 89 100
P. amoebophila UWE25 high pathway 3 131 74
P. amoebophila UWE25 medium module 18 97 120
P. amoebophila UWE25 medium pathway 3 146 86
C. trachomatis A/HAR-13 high module 14 79 115
C. trachomatis A/HAR-13 high pathway 3 110 95
C. trachomatis A/HAR-13 medium module 16 83 136
C. trachomatis A/HAR-13 medium pathway 2 123 110
P. acanthamoebae UV7 high module 20 98 90
P. acanthamoebae UV7 high pathway 3 145 60
P. acanthamoebae UV7 medium module 18 108 109
P. acanthamoebae UV7 medium pathway 3 164 68
S. negevensis high module 16 95 97
S. negevensis high pathway 1 134 73
S. negevensis medium module 17 103 115
S. negevensis medium pathway 1 154 80
W. chondrophila high module 21 95 92
W. chondrophila high pathway 2 140 66
W. chondrophila medium module 20 99 116
W. chondrophila medium pathway 2 152 81

Table 6.6: Match statistics of modules to KEGG pathways and modules of representative chlamy-
dial genomes. 'Organism' is the chlamydial genome, 'Set' describes to which KEGG entity
(pathways or modules) the modules are compared, 'Run' is the module clustering (from
medium or high con�dence network).'>0.5' gives the count of modules with maximum Jac-
card(Module,Kegg) between ]0.5-1] ,'<=0.5,>0' is the count between [0-0.5[, '0' gives the
amount of modules which do not match a KEGG entity at all.206



Organism Set Run JacK. JacM. Jac. Jac. (rand)
C. trachomatis D/UW-3/CX module medium 0.15 0.26 0.19 0.08
C. muridarum Nigg module medium 0.15 0.26 0.19 0.09
C. abortus S26/3 module medium 0.16 0.28 0.20 0.08
C. caviae GPIC module medium 0.17 0.28 0.21 0.09
C. pneumoniae AR39 module medium 0.15 0.27 0.19 0.09
C. felis Fe/C-56 module medium 0.16 0.28 0.21 0.09
P. amoebophila UWE25 module medium 0.18 0.23 0.20 0.07
W. chondrophila module medium 0.18 0.22 0.20 0.09
S. negevensis module medium 0.15 0.20 0.17 0.08
P. acanthamoebae UV7 module medium 0.17 0.20 0.18 0.08
C. trachomatis D/UW-3/CX module high 0.15 0.27 0.20 0.09
C. muridarum Nigg module high 0.15 0.27 0.19 0.08
C. abortus S26/3 module high 0.16 0.29 0.21 0.08
C. caviae GPIC module high 0.17 0.29 0.22 0.08
C. pneumoniae AR39 module high 0.15 0.28 0.20 0.08
C. felis Fe/C-56 module high 0.17 0.29 0.21 0.09
P. amoebophila UWE25 module high 0.18 0.24 0.21 0.07
W. chondrophila module high 0.19 0.24 0.21 0.09
S. negevensis module high 0.16 0.22 0.18 0.08
P. acanthamoebae UV7 module high 0.17 0.22 0.19 0.08
C. trachomatis D/UW-3/CX pathway medium 0.10 0.17 0.13 0.06
C. muridarum Nigg pathway medium 0.10 0.17 0.13 0.06
C. abortus S26/3 pathway medium 0.11 0.18 0.13 0.06
C. caviae GPIC pathway medium 0.11 0.18 0.14 0.06
C. pneumoniae AR39 pathway medium 0.10 0.17 0.13 0.06
C. felis Fe/C-56 pathway medium 0.11 0.18 0.13 0.07
P. amoebophila UWE25 pathway medium 0.10 0.14 0.12 0.05
W. chondrophila pathway medium 0.10 0.13 0.11 0.06
S. negevensis pathway medium 0.09 0.12 0.11 0.05
P. acanthamoebae UV7 pathway medium 0.09 0.12 0.10 0.05
C. trachomatis D/UW-3/CX pathway high 0.11 0.19 0.14 0.06
C. muridarum Nigg pathway high 0.11 0.19 0.14 0.06
C. abortus S26/3 pathway high 0.12 0.19 0.14 0.06
C. caviae GPIC pathway high 0.12 0.19 0.15 0.07
C. pneumoniae AR39 pathway high 0.11 0.19 0.14 0.06
C. felis Fe/C-56 pathway high 0.12 0.19 0.14 0.07
P. amoebophila UWE25 pathway high 0.11 0.15 0.13 0.05
W. chondrophila pathway high 0.10 0.14 0.12 0.06
S. negevensis pathway high 0.10 0.13 0.11 0.05
P. acanthamoebae UV7 pathway high 0.10 0.14 0.11 0.05

Table 6.7: Recovery of KEGG pathways and modules. 'Organsim' is the chlamydial genome, 'Set'
describes to which KEGG entity (pathways or modules) the modules are compared, 'Run'
is the module clustering (from medium or high con�dence network). 'JacK.' is the average
of the Jaccard index of the best matching module/KEGG pairs normalized by the KEGG
module/pathway sizes. 'JacM.' is the equivalent normalized by the module sizes, 'Jac.' their
harmonic mean, 'Jac. (random)' is the harmonic mean in the randomized case (compare
Song et al. [185]).
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Module KEGG enti-
ties

Descriptions Amount

module 94 ko03030,
ko03440

DNA replication, Homologous recombination 2

module 6 ko04112,
ko00520,
ko00471,
ko00300,
ko00550

Cell cycle - Caulobacter, Amino sugar and
nucleotide sugar metabolism, D-Glutamine
and D-glutamate metabolism, Lysine biosyn-
thesis, Peptidoglycan biosynthesis

5

module 5 ko00900,
ko00230,
ko00240

Terpenoid backbone biosynthesis, Purine
metabolism, Pyrimidine metabolism

3

module 3 ko00970,
ko03010

Aminoacyl-tRNA biosynthesis, Ribosome 2

module 77 ko00564,
ko03420

Glycerophospholipid metabolism, Nucleotide
excision repair

2

module 2 ko00626,
ko02020,
ko00720

Naphthalene and anthracene degradation,
Two-component system, Reductive carboxy-
late cycle (CO2 �xation)

3

module 71 ko00970,
ko03010

Aminoacyl-tRNA biosynthesis, Ribosome 2

module 58 ko00280,
ko00310,
ko00010

Valine, leucine and isoleucine degradation,
Lysine degradation, Glycolysis / Gluconeo-
genesis

3

module 37 ko00640,
ko00720,
ko00020

Propanoate metabolism, Reductive carboxy-
late cycle (CO2 �xation), Citrate cycle (TCA
cycle)

3

module 35 ko00900,
ko03010

Terpenoid backbone biosynthesis, Ribosome 2

module 29 ko03030,
ko03010

DNA replication, Ribosome 2

module 28 ko00195,
ko00190

Photosynthesis, Oxidative phosphorylation 2

module 21 ko00520,
ko03018,
ko00790

Amino sugar and nucleotide sugar
metabolism, RNA degradation, Folate
biosynthesis

3

module 13 ko02060,
ko00260

Phosphotransferase system (PTS), Glycine,
serine and threonine metabolism

2

module 12 ko00710,
ko00010

Carbon �xation in photosynthetic organisms,
Glycolysis / Gluconeogenesis

2

Table 6.8: Modules matching several KEGG pathways in P. amoebophila UWE25. 'Module': the
module identi�er, 'KEGG entities': the KEGG pathways that have overlap with the module,
'Descriptions': the descriptions of these KEGG pathways, 'Amount': the amount of KEGG
pathways joined by the functional module.
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KEGG entity Description Modules Amount
ko00300 Lysine biosynthesis module 179, module 6 2
ko00970 Aminoacyl-tRNA biosyn-

thesis
module 56, module 50, module
3, module 71, module 59, module
124

6

ko00010 Glycolysis / Gluconeogene-
sis

module 58, module 12, module 96 3

ko00520 Amino sugar and nucleotide
sugar metabolism

module 21, module 6 2

ko00260 Glycine, serine and threo-
nine metabolism

module 13, module 25 2

ko03018 RNA degradation module 14, module 21 2
ko00740 Ribo�avin metabolism module 40, module 44 2
ko00130 Ubiquinone and other

terpenoid-quinone biosyn-
thesis

module 118, module 8 2

ko03010 Ribosome module 29, module 3, module 71,
module 137, module 10, module
35, module 4

7

ko00190 Oxidative phosphorylation module 18, module 24, module
67, module 195, module 26, mod-
ule 28, module 52

7

ko03070 Bacterial secretion system module 115, module 81, module
16

3

ko00900 Terpenoid backbone biosyn-
thesis

module 5, module 168, module 35 3

ko00030 Pentose phosphate pathway module 82, module 150 2
ko00860 Porphyrin and chlorophyll

metabolism
module 140, module 162, module
90

3

ko00540 Lipopolysaccharide biosyn-
thesis

module 88, module 42, module 1,
module 74

4

ko04112 Cell cycle - Caulobacter module 9, module 6 2
ko03030 DNA replication module 29, module 94 2
ko00790 Folate biosynthesis module 97, module 21 2
ko00500 Starch and sucrose

metabolism
module 119, module 46 2

ko00564 Glycerophospholipid
metabolism

module 77, module 178 2

ko03440 Homologous recombination module 91, module 153, module
94, module 113

4

ko02010 ABC transporters module 38, module 43, module
132, module 165, module 64,
module 99, module 66, module
114

8

ko00720 Reductive carboxylate cycle
(CO2 �xation)

module 37, module 2 2

Table 6.9: KEGG pathways matching several functional modules in P. amoebophila UWE25.
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GI mhc mmcf nhc tnhc

GI:46446426 42.34 42.34 01 01

GI:46446796 42.34 42.34 01 01

GI:46445942 42.34 42.34 01 01

GI:46446833 16.21 16 16.21 01

GI:46446537 16.21 16 16.21 01

GI:46446536 16.21 16 16.21 01

GI:46446849 16.21 16 16.21 01

GI:46447036 16.21 16 16.21 01

GI:46446830 16.21 16 16.21 01

GI:46446183 01.06.01.01 01 01

GI:46445659 01.06.01.01 01 1 01

GI:46446576 01.06.01.01 01 1 01

GI:46446807 14.07.10 16 11.06.02 16

GI:46445991 16.03.10 12 16 16

GI:46446734 16.03.10 16.03.10 16.03.10 16.03.10

GI:46447502 16.03.10 16.03.10 16.03.10 01

GI:46445845 01.03.10 01 01.03.10 16

GI:46445844 01.03.10 01 01.03.10 16

GI:46446113 10.01.10 10.01.10 16 16

GI:46446111 10.01.10 10.01.10 01 01

GI:46447135 11.06.02 01 42.34 01

GI:46447621 11.06.02 01 01

GI:46445887 11.06.02

GI:46445964 01.07.01 01

GI:46445905 01.07.01 01 1 01

GI:46447522 32 01 01

GI:46447520 32 32 01

GI:46446923 32 01 1 01

GI:46447012 32 10.01.10 01 01

GI:46447523 32 32 01 01

GI:46447521 32 32 01

GI:46447204 32 10.01.10 01 01

GI:46446268 32 32 01 01

GI:46446964 32 10.01.10 01 01

GI:46447622 32 01.01.10 01.01.10 01

GI:46447369 32 01.01.10 01.01.10 01

GI:46445669 32 01 01

GI:46447013 32 10.01.10 01 01

GI:46446572 32 32 32 01

GI:46447495 32

GI:46446852 32 32 01 01

GI:46446220 20 20 20 01

GI:46446450 20 20 01 01

GI:46446012 20 20 11.06.02 11.06.02

GI:46445738 20 20 20 16

GI:46447029 16 01 1 01

GI:46446106 16 16 16 16

GI:46446485 16 16

GI:46445775 16 16 16 01

GI:46446667 16 16 16 16

GI:46446690 16 16 16 01

GI:46446832 16 16 01 01

GI:46447563 16 16 01 01

GI:46446777 16 16 01 01

GI:46447295 16 16 16 16

GI:46446329 16 16 16 16

GI:46445986 16 16 01 01

GI:46446604 16 16 16 16

GI:46446714 16 16 01 01

GI:46446314 16 16 16 16

GI:46447083 16 16 16 16

GI:46446271 16 16 01 01

GI:46446975 16 16 16 16

Continued . . .

GI mhc mmcf nhc tnhc

GI:46445973 16 16 16 16

GI:46446350 16 16 16 01

GI:46445895 16 16 01 01

GI:46446270 16 16 01 01

GI:46446666 16 16 16 16

GI:46447273 16 16 16 16

GI:46446347 16 16 16 16

GI:46447248 16 16 16 16

GI:46447025 16 16 16 01

GI:46445972 16 16 16 01

GI:46445716 16 16 16 01

GI:46445898 16 16 16 16

GI:46447606 16 16 16 16

GI:46446962 16 16 16 01

GI:46446221 16 16 20

GI:46446585 16 16 16.03.10 16

GI:46447333 16 01 16 01

GI:46446348 16 16 16 16

GI:46446344 16 16 16 16

GI:46446343 16 16 16 16

GI:46447245 16 16 16 16

GI:46445788 16 16 16 16

GI:46446345 16 16 16 16

GI:46447089 16 16 16 16

GI:46445672 16 16 16 16

GI:46446486 16 16

GI:46446219 12 01 01

GI:46445827 12 12 16 01

GI:46446243 12 01 01

GI:46447259 12 12 01.03.10

GI:46446930 12 01

GI:46447190 2 2 2 2

GI:46446425 01 1 01

GI:46447490 01 1 01 01

GI:46445675 01 1 01 01

GI:46447267 01 1 01 01

GI:46446640 01 1 32 32

GI:46445769 01 1 01 01

GI:46445943 01 1 01 01

GI:46446751 01 1 01 01

GI:46445688 01 1 01 01

GI:46447474 01 1 01 01

GI:46446494 01 1 01.05.10 01

GI:46447616 01 1 01 01

GI:46446643 01 1 32 32

GI:46446480 01 1 01 01

GI:46446645 01 1 01 01

GI:46446020 01 1 32 32

GI:46446719 01 1 01 01

GI:46446024 01 1 32 32

GI:46447491 01 1 01 01

GI:46445700 01 1 01 01

GI:46446688 01 1 01 01

GI:46446989 01 1 32 32

GI:46445822 01 1 42.34 01

GI:46446591 01 1 11.06.02

GI:46447180 01 1 32 32

GI:46446103 01 12 01

GI:46446376 01 1 32 01

GI:46446188 01 1 01 01

GI:46447117 01 1 01

GI:46446387 01 1 11.06.02 11.06.02

GI:46445641 01 1 01 01

Continued . . .
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GI mhc mmcf nhc tnhc

GI:46446273 01 1 01.05.10 01

GI:46446460 01 1 32 32

GI:46446966 01 1 01 01

GI:46447555 01 1 32 32

GI:46446148 01 1 01 01

GI:46447176 01 1 32 32

GI:46446955 01 1 32 32

GI:46447591 01 1 01 01

GI:46446226 01 1 20 20

GI:46446086 01 1 01 01

GI:46447578 01 1 32 32

GI:46447268 01 14.07.10 01

GI:46446701 01 1 01 01

GI:46447433 01 1 01 01

GI:46447656 01 1 32 32

GI:46446765 01 1 01 01

GI:46447463 01 1 01.07.01 16

GI:46446294 01 1 01 01

GI:46446842 01 1 32 32

GI:46446753 01 1 01 01

GI:46445983 01 1 01 01

GI:46447234 01 1 01 01

GI:46445978 01 1 10.01.10 01

GI:46446860 01 1 01 01

GI:46445676 01 1 01 01

GI:46447254 01 1 01 01

GI:46445888 01 1 01 01

GI:46446680 01 1 01 01

GI:46446792 01 1 01 01

GI:46447101 01 1 32 32

GI:46447252 01 1 32 32

GI:46445693 01 1 01 01

GI:46446891 01 1 42.34 01

GI:46445691 01 1 01 01

GI:46446282 01 1 01.07.01 16

GI:46446677 01 1 11.06.02

GI:46445690 01 1 32 32

GI:46447422 01 1 01 01

GI:46445685 01 1 01 01

GI:46446728 01 1 01 01

GI:46445692 01 1 01 01

GI:46446733 01 1 42.34 01

GI:46446757 01 1 01 01

GI:46445687 01 1 01 01

GI:46446747 01 1 01 01

GI:46447427 01 1 11.06.02

GI:46446085 01 1 01 01

GI:46445686 01 1 16 16

GI:46446762 01 1 32 32

GI:46445680 01 1 16 16

GI:46445678 01 1 01 01

GI:46445660 01 1

GI:46447403 01 1 01.01.10 20

GI:46446763 01 1 32 32

GI:46445679 01 1 01 01

GI:46445674 01 1 01 01

GI:46446782 01 1 01 01

GI:46446754 01 1 01

GI:46446310 01 1 32 32

GI:46446541 01 1 42.34 01

GI:46446875 01 01

GI:46446873 01

GI:46446993 42.34 42.34

Continued . . .

GI mhc mmcf nhc tnhc

GI:46446318 2 2

GI:46446590 01

GI:46445859 01 01

GI:46447509 01 01

GI:46445910 01 01

GI:46446552 16 10

GI:46446995 42.34 42.34

GI:46446971 20 20

GI:46446351 01 16

GI:46446994 42.34 42.34

GI:46446322 01

GI:46445776 01 01

GI:46447619 16 16

GI:46446635 01

GI:46446615 20 01

GI:46446553 01

GI:46446608 01 01

GI:46446134 01.01.10 01.01.10

GI:46447342 01

GI:46445877 01 01

GI:46446639 01 01

GI:46446386 16 12

GI:46447529 16 16

GI:46447279 01 01

GI:46446568 20 01

GI:46446638 01 01

GI:46447387 20 01 01

GI:46446317 2 2

GI:46446100 16 01

GI:46445733 01

GI:46446922 01

GI:46447596 01

GI:46446495 16 01

GI:46446016 10.01.10

GI:46447361 01 01

GI:46446546 01 01

GI:46447271 01 01

GI:46447386 20 01 01

GI:46446161 01

GI:46446969 01 01

GI:46447158 01 01

GI:46447285 01 01

GI:46446945 01 01

GI:46446535 01

GI:46447516 16 01

GI:46445701 10 01 01

GI:46445869 01

GI:46446162 01 01

GI:46447195 01 01

GI:46445868 16 01

GI:46446914 01 01

GI:46447008 10.01.10

GI:46446114 16 01

GI:46446913 01 01

GI:46447118 10.01.10

GI:46446927 01

GI:46446900 16 16

GI:46446902 01 01

GI:46447446 16 10

GI:46446224 01 32

GI:46446644 01 32

GI:46447114 16 01

GI:46446340 16.01.10 01

Continued . . .
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GI mhc mmcf nhc tnhc

GI:46446634 01 01

GI:46446810 01 01.06.01.01

GI:46447493 16 16

GI:46446457 12 12

GI:46447400 11.06.02 16

GI:46446252 01 01

GI:46447200 42.34 42.34

GI:46446207 01

GI:46445814 01 42.34

GI:46445768 42.34 01

GI:46446218 01 1 01

GI:46446215 01 01

GI:46446621 01 01

GI:46446620 01 01

GI:46447517 16

GI:46447201 20 01

GI:46447344 01 16

GI:46446850 01 01

GI:46446907 10 10

GI:46446409 01 01

GI:46445999 01 01

GI:46445963 01 01

GI:46446469 01 01

GI:46446683 16 16

GI:46447651 10 10

GI:46447467 10.01.10

GI:46446684 16 16

GI:46446607 20 20

GI:46447465 16 12

GI:46447638 01 01

GI:46447657 10 10

GI:46446513 01 01

GI:46446187 20 01

GI:46446783 32 01

GI:46447457 16 16

GI:46447451 20 01

GI:46446357 01 01

GI:46446413 10 10

GI:46447242 01 01

GI:46446901 01

GI:46446279 01 01

GI:46447499 01

GI:46445929 01 01

GI:46445652 10 10

GI:46446454 01 2

GI:46446689 01

GI:46447284 01 01

GI:46446280 01 01

GI:46447002 16 16

GI:46447597 01 01

GI:46447437 01 01

GI:46446678 01

Table 6.10: Proposed functional categories

for still uncharacterized proteins. 'GI' the

genebank identi�er, 'mhc' the FunCats

resulting from the high con�dence mod-

ule based run, 'mcf' candidate annota-

tions from the medium con�dence mod-

ules, 'nhc' and 'nhc' the proposed FunCats

by the respective network based approach.

In each case, the selective approach of

FunCat detection has been used.
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Figure 6.3: Performance of the selective function prediction for di�erent clusterings (with reclus-
tering all modules with size>=10 by In�ation parameter 5.0) with and without stop list
(stoplist contains FunCat '01' and '16'). 'In�ation' is the initial in�ation value used to
cluster the set. 'Percent correct' is the rate of correct predictions. The di�erent runs com-
prise: 'no stoplist: complete set of functional categories, with stoplist: categories 01 and
16 excluded. Both runs have been repeated with randomized FunCat labels, denoted as 'no
stoplist (randomized)' and 'with stoplist (randomized)'.
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FunCat identi�er Description Amount transfers Correct
01.01.06.01.01 biosynthesis of aspartate 1 0.00%
01.01.06.06.01.01 diaminopimelic acid pathway 1 100.00%
01.01.06.06.01 biosynthesis of lysine 1 100.00%
01.01.09.07.01 biosynthesis of histidine 1 0.00%
01.01.09 metabolism of the cysteine - aromatic group 3 100.00%
01.01 amino acid metabolism 4 75.00%
01.02.01.09.05 cyanate catabolism 1 0.00%
01.03 nucleotide metabolism 4 50.00%
01.05.01.03.02 polysaccharide biosynthesis 5 80.00%
01.05.01 C-compound and carbohydrate utilization 2 0.00%
01.05 C-compound and carbohydrate metabolism 5 40.00%
01.06.01.01 phospholipid biosynthesis 4 0.00%
01.06.01.07 isoprenoid biosynthesis 2 100.00%
01.06.01 lipid, fatty acid and isoprenoid biosynthesis 3 100.00%
01.06 lipid, fatty acid and isoprenoid metabolism 1 0.00%
01.07.01 biosynthesis of vitamins, cofactors, and prosthetic groups 9 33.33%
01.07 metabolism of vitamins, cofactors, and prosthetic groups 1 0.00%
01.20.19.01 biosynthesis of porphyrins 1 0.00%
01 METABOLISM 304 31.58%
02.07.01 pentose-phosphate pathway oxidative branch 1 0.00%
02.07 pentose-phosphate pathway 2 100.00%
02 ENERGY 22 72.73%
10.01.01 cellular DNA uptake 1 0.00%
10.01.03 DNA synthesis and replication 1 0.00%
10.01.05.01 DNA repair 2 50.00%
10.01 DNA processing 14 78.57%
10.03.03 cytokinesis (cell division) /septum formation 1 0.00%
10 CELL CYCLE AND DNA PROCESSING 6 66.67%
11.04 RNA processing 1 0.00%
11.06.02 tRNA modi�cation 7 0.00%
11 TRANSCRIPTION 1 0.00%
12.04.02 translation elongation 3 0.00%
12.04.03 translation termination 2 0.00%
12.04 translation 1 100.00%
12 PROTEIN SYNTHESIS 61 68.85%
14.01 protein folding and stabilization 1 0.00%
14.07.03 modi�cation by phosphorylation, dephosphorylation, au-

tophosphorylation
2 50.00%

14.07 protein modi�cation 6 33.33%
14.13 protein degradation 1 0.00%
14 PROTEIN FATE (folding, modi�cation, destination) 1 0.00%
16.01 protein binding 5 80.00%
16.03.03 RNA binding 1 0.00%
16.03 nucleic acid binding 8 37.50%
16.19.03 ATP binding 2 0.00%
16.19.05 GTP binding 1 0.00%
16.19 nucleotide binding 1 0.00%
16.21.01 heme binding 1 0.00%
16.21 complex cofactor/cosubstrate binding 20 70.00%
16 PROTEIN WITH BINDING FUNCTION OR COFACTOR

REQUIREMENT (structural or catalytic)
151 50.33%

20.01.01.01.01 heavy metal ion transport (Cu, Fe, etc.) 1 0.00%
20.01.01.07.05 sulfate transport 1 0.00%
20.03.22 transport ATPases 8 87.50%
20.03.25 ABC transporters 1 0.00%
20.03 transport facilitation 1 0.00%
20.09.16.03 Type III protein secretion system (virulence related secretory

pathway, Gram- bacteria speci�c)
6 83.33%

20 CELLULAR TRANSPORT, TRANSPORT FACILITATION
AND TRANSPORT ROUTES

44 81.82%

32.01.11 nutrient starvation response 1 0.00%
32.01 stress response 2 0.00%
32.05.01 resistance proteins 1 0.00%
32.05.05 virulence, disease factors 2 100.00%
32.07.07 oxygen and radical detoxi�cation 1 0.00%
32.07.09 detoxi�cation by degradation 1 0.00%
32 CELL RESCUE, DEFENSE AND VIRULENCE 20 15.00%
34.01.01.03 homeostasis of protons 2 100.00%
34.01 ionic homeostasis 1 100.00%
34 INTERACTION WITH THE CELLULAR ENVIRONMENT 1 0.00%
38 TRANSPOSABLE ELEMENTS, VIRAL AND PLASMID

PROTEINS
1 0.00%

40.01.03 directional cell growth (morphogenesis) 1 0.00%
42.01 cell wall 1 0.00%
42.33 pilus/�mbria 2 100.00%
42.34 prokaryotic cell envelope structures 11 63.64%

Table 6.11: Functional categories transfered in the high con�dence clustering. 'FunCat identi�er'
and 'Description' are the MIPS functional categories with their description, 'Amount trans-
fers' is the number of protein to which the FunCat has been transfered during cross-validation,
'Correct' the percentage of correct transfers.
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FunCat identi�er Description Amount transfers Correct
32.05 disease, virulence and defense 3 0.00%
32.01 stress response 3 0.00%
01.06.01 lipid, fatty acid and isoprenoid biosynthesis 2 0.00%
20.01.01.07.05 sulfate transport 1 0.00%
16.19.05 GTP binding 1 0.00%
10.01.03 DNA synthesis and replication 1 0.00%
16.19.03 ATP binding 2 0.00%
11.04 RNA processing 1 0.00%
20 CELLULAR TRANSPORT, TRANSPORT FACILITATION

AND TRANSPORT ROUTES
21 4.76%

20.01.07 amino acid transport 1 0.00%
11.06.02 tRNA modi�cation 1 0.00%
16.03 nucleic acid binding 1 0.00%
16.21.17 pyridoxal phosphate binding 2 0.00%
32.01.05 heat shock response 1 0.00%
20.09.16.02 Type II protein secretion system (general secretory pathway,

exocytosis)
1 0.00%

16.21.11 thiamin pyrophosphate binding 3 0.00%
43.01.02.05 sporulation and other development of resting stage 1 0.00%
40.01.03 directional cell growth (morphogenesis) 1 0.00%
20.03.25 ABC transporters 1 0.00%
01.07 metabolism of vitamins, cofactors, and prosthetic groups 3 0.00%
14.01 protein folding and stabilization 1 0.00%
01.05 C-compound and carbohydrate metabolism 1 0.00%
16 PROTEIN WITH BINDING FUNCTION OR COFACTOR

REQUIREMENT (structural or catalytic)
123 35.77%

01.03 nucleotide metabolism 2 0.00%
14 PROTEIN FATE (folding, modi�cation, destination) 1 0.00%
01.01 amino acid metabolism 1 0.00%
20.03.01.01 ion channels 1 0.00%
12 PROTEIN SYNTHESIS 24 8.33%
20.03 transport facilitation 1 0.00%
11 TRANSCRIPTION 1 0.00%
10 CELL CYCLE AND DNA PROCESSING 5 0.00%
01.07.01 biosynthesis of vitamins, cofactors, and prosthetic groups 4 0.00%
01.05.01.03.02 polysaccharide biosynthesis 2 0.00%
16.21 complex cofactor/cosubstrate binding 5 0.00%
16.21.01 heme binding 1 0.00%
02.13.01 anaerobic respiration 1 0.00%
10.01.05.01 DNA repair 1 0.00%
32.07.09 detoxi�cation by degradation 1 0.00%
34.01.01.03 homeostasis of protons 2 0.00%
32.07.05 detoxi�cation by export 1 0.00%
42.34.07 peptidoglycan layer or other prokaryotic cell wall 1 0.00%
01.06.01.07 isoprenoid biosynthesis 1 0.00%
42.34 prokaryotic cell envelope structures 1 0.00%
42.33 pilus/�mbria 2 0.00%
10.01 DNA processing 5 0.00%
42.34.03 capsule and slime layer 1 0.00%
02 ENERGY 20 5.00%
42.34.01 bacterial outer membrane (only in Gram- bacteria) 4 0.00%
02.07 pentose-phosphate pathway 1 0.00%
01 METABOLISM 496 21.57%
32 CELL RESCUE, DEFENSE AND VIRULENCE 15 6.67%
16.19 nucleotide binding 5 20.00%
02.01 glycolysis and gluconeogenesis 1 0.00%
32.05.05.08 cytolysins 1 0.00%
32.05.01 resistance proteins 2 0.00%
16.03.03 RNA binding 2 0.00%
16.03.01 DNA binding 1 0.00%
01.01.09 metabolism of the cysteine - aromatic group 1 0.00%

Table 6.12: Functional categories transfered in the high con�dence clustering after randomization.
'FunCat identi�er' and 'Description' are the MIPS functional categories with their description,
'Amount transfers' is the number of protein to which the FunCat has been transfered during
cross-validation, 'Correct' the percentage of correct transfers.
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SWISSPROT-Identi�er

YOPE_YERPS

YOPE_YEREN

YOPH_YERPS

YOPH_YEREN

A6M3V0_YERPE

Q56935_YERPS

YOPQ_YEREN

YOPJ_YERPS

Q93KQ5_YEREN

YOPM_YERPE

Q663L9_YERPS

A1JU68_YERE8

YOPT_YERPE

YOPT_YERPS

YOPT_YEREN

YOPT1_YEREN

YPKA_YERPE

YPKA_YERPS

Q56921_YEREN

O85239_YEREN

YSCH_YERPE

YSCH_YERPS

YSCH_YEREN

O34020_CHLCV

Q9Z8L4_CHLPN

Q824H6_CHLCV

TARP_CHLTR

Y572_CHLPN

Q46210_CHLCV

INCA1_CHLTR

Q9Z8Z8_CHLPN

O84235_CHLTR

Q9Z8P7_CHLPN

O30783_CHLCV

O84236_CHLTR

Q9Z8P6_CHLPN

INCD_CHLTR

INCE_CHLTR

INCF_CHLTR

INCG_CHLTR

Q9Z9F5_CHLPN

Q9Z7W9_CHLPN

SPAN_SALTY

SIPA_SALTY

B5C6I0_SALET

SIFA_SALTY

B5MXT4_SALET

SOPB_SALTY

SOPD_SALTY

SOPE_SALTY

SOPE2_SALTY

SPTP_SALTY

Q58I88_ECOLX

B7UM94_ECO27

B3BD94_ECO57

B3A274_ECO57

B2PHR1_ECO57

O85646_ECOLX

Q8X2D5_ECO57

A2A0X3_ECOLX

B3A307_ECO57

B3BS59_ECO57

AVRB_PSESG

Continued . . .

SWISSPROT-Identi�er

HOPM1_PSESM

Q888Y7_PSESM

Q52537_PSESX

Q886L1_PSESM

Q88BF6_PSESM

Q889A9_PSESM

Q87V79_PSESM

Q882F0_PSESM

Q8RP03_PSEYM

Q888Y1_PSESM

Q87W07_PSESM

HRMA_PSESY

Q87WF7_PSESM

Q87X57_PSESM

Q87W42_PSESM

Q88A09_PSESM

Q881L7_PSESM

Q9K2L5_PSESH

Q87W46_PSESM

Q88AB8_PSESM

HOAE1_PSEU2

Q7PC42_PSEU2

Q52530_PSESH

Q9L6W4_PSESM

AVRP2_PSESJ

Q52394_PSESH

HPAB1_PSESH

Q888W0_PSESM

Q7PC45_PSEU2

AVRA_PSESG

Q52432_PSESX

AVRD1_PSESH

Q52389_PSESX

Q9JP32_PSESM

HOPAD_PSESM

Q87XS5_PSESM

Q9L6W3_PSESM

Table 6.14: Known e�ector sequences used in

the training-step of E�ectiveT3.
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CHAPTER 6. APPENDIX AND SUPPLEMENTAL MATERIAL

Min/max

pattern

Behaviour, COG description Core/Shell

Module 94 purifying

0 1 COG0412 Dienelactone hydro-

lase and related enzymes

shell

1 1 COG0136 Aspartate-

semialdehyde dehydrogenase

core I

1 1 COG0527 Aspartokinases core I

Module 93 purifying

0 1 COG0285 Folylpolyglutamate

synthase

shell

1 1 COG0777 Acetyl-CoA carboxy-

lase beta subunit

core I

1 1 COG0825 Acetyl-CoA carboxy-

lase alpha subunit

core I

Module 83 cohesive

1 1 COG0369 Sul�te reductase, al-

pha subunit (�avoprotein)

shell

0 0 COG2128 Uncharacterized

conserved protein

shell

0 1 COG0626 Cystathionine

beta-lyases/cystathionine

gamma-synthases

core I

0 1 COG0031 Cysteine synthase core I

Module 9 cohesive, purifying

0 0 COG1052 Lactate dehydroge-

nase and related dehydroge-

nases

shell

0 1 COG2256 ATPase related to

the helicase subunit of the Hol-

liday junction resolvase

shell

0 1 COG0071 Molecular chaperone

(small heat shock protein)

shell

1 1 COG0466 ATP-dependent Lon

protease, bacterial type

shell

1 1 COG0172 Seryl-tRNA syn-

thetase

shell

0 0 COG0339 Zn-dependent

oligopeptidases

shell

1 1 COG0542 ATPases with chap-

erone activity, ATP-binding

subunit

core I

1 1 COG0544 FKBP-type

peptidyl-prolyl cis-trans

isomerase (trigger factor)

core I

1 1 COG1219 ATP-dependent pro-

tease Clp, ATPase subunit

core I

1 1 COG0740 Protease subunit of

ATP-dependent Clp proteases

core I

0 1 - core II

0 1 - core II

Module 8 cohesive

1 1 COG0636 F0F1-type

ATP synthase, subunit

c/Archaeal/vacuolar-type

H+-ATPase, subunit K

shell

1 1 COG0545 FKBP-type

peptidyl-prolyl cis-trans

isomerases 1

shell

1 1 COG1390 Archaeal/vacuolar-

type H+-ATPase subunit E

shell

1 1 COG1269 Archaeal/vacuolar-

type H+-ATPase subunit I

core I

1 1 COG1155 Archaeal/vacuolar-

type H+-ATPase subunit A

core I

1 1 COG1394 Archaeal/vacuolar-

type H+-ATPase subunit D

core I

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG1156 Archaeal/vacuolar-

type H+-ATPase subunit B

core I

0 1 COG0711 F0F1-type ATP syn-

thase, subunit b

core II

0 1 COG0055 F0F1-type ATP syn-

thase, beta subunit

core II

0 1 COG0356 F0F1-type ATP syn-

thase, subunit a

core II

0 1 COG0224 F0F1-type ATP syn-

thase, gamma subunit

core II

0 1 COG0712 F0F1-type ATP syn-

thase, delta subunit (mito-

chondrial oligomycin sensitiv-

ity protein)

core II

0 1 COG0056 F0F1-type ATP syn-

thase, alpha subunit

core II

0 1 COG0355 F0F1-type ATP syn-

thase, epsilon subunit (mito-

chondrial delta subunit)

core II

Module 3 cohesive, purifying

1 1 COG0081 Ribosomal protein

L1

shell

0 1 COG5272 Ubiquitin shell

1 1 COG0244 Ribosomal protein

L10

shell

0 0 COG0423 Glycyl-tRNA syn-

thetase (class II)

shell

1 1 COG0250 Transcription an-

titerminator

shell

1 1 COG0199 Ribosomal protein

S14

shell

1 1 COG0080 Ribosomal protein

L11

shell

0 1 COG1597 Sphingosine kinase

and enzymes related to eukary-

otic diacylglycerol kinase

shell

0 1 COG0017

Aspartyl/asparaginyl-tRNA

synthetases

shell

1 0 COG0690 Preprotein translo-

case subunit SecE

shell

0 1 COG0259 Pyridoxamine-

phosphate oxidase

shell

1 1 COG0048 Ribosomal protein

S12

core I

1 1 COG0201 Preprotein translo-

case subunit SecY

core I

1 1 COG0049 Ribosomal protein

S7

core I

1 1 COG0480 Translation elonga-

tion factors (GTPases)

core I

1 1 COG0100 Ribosomal protein

S11

core I

0 1 COG0222 Ribosomal protein

L7/L12

core II

0 1 COG0267 Ribosomal protein

L33

core II

1 1 COG0087 Ribosomal protein

L3

core III

1 1 COG0162 Tyrosyl-tRNA syn-

thetase

core III

Module 77 purifying

0 1 COG0652 Peptidyl-prolyl cis-

trans isomerase (rotamase) -

cyclophilin family

shell

1 1 COG0215 Cysteinyl-tRNA syn-

thetase

shell

Continued . . .
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Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG0018 Arginyl-tRNA syn-

thetase

core I

1 1 COG0008 Glutamyl- and

glutaminyl-tRNA synthetases

core I

Module 2 irregular

0 1 COG1596 Periplasmic protein

involved in polysaccharide ex-

port

shell

0 1 COG2148 Sugar transferases

involved in lipopolysaccharide

synthesis

shell

0 1 COG2244 Membrane protein

involved in the export of O-

antigen and teichoic acid

shell

1 1 COG0561 Predicted hydrolases

of the HAD superfamily

shell

0 1 COG1208 Nucleoside-

diphosphate-sugar py-

rophosphorylase involved in

lipopolysaccharide biosynthe-

sis/translation initiation factor

2B, gamma/epsilon subunits

(eIF-2Bgamma/eIF-2Bepsilon)

shell

1 1 COG0110 Acetyltransferase

(isoleucine patch superfamily)

shell

0 1 COG0381 UDP-N-

acetylglucosamine 2-epimerase

shell

0 1 COG1040 Predicted ami-

dophosphoribosyltransferases

shell

0 0 COG0639 Diadenosine

tetraphosphatase and re-

lated serine/threonine protein

phosphatases

shell

0 1 COG1215 Glycosyltrans-

ferases, probably involved in

cell wall biogenesis

shell

0 1 COG0677 UDP-N-acetyl-D-

mannosaminuronate dehydro-

genase

shell

1 1 COG1132 ABC-type multidrug

transport system, ATPase and

permease components

shell

0 1 COG1086 Predicted

nucleoside-diphosphate sugar

epimerases

shell

0 1 COG1216 Predicted glycosyl-

transferases

shell

0 0 COG3307 Lipid A core - O-

antigen ligase and related en-

zymes

shell

0 1 COG0859 ADP-heptose:LPS

heptosyltransferase

shell

0 1 COG0367 Asparagine synthase

(glutamine-hydrolyzing)

shell

0 0 COG1442 Lipopolysaccha-

ride biosynthesis proteins,

LPS:glycosyltransferases

shell

1 1 COG0717 Deoxycytidine

deaminase

shell

0 1 COG0662 Mannose-6-

phosphate isomerase

shell

1 0 COG0726 Predicted xy-

lanase/chitin deacetylase

shell

0 1 COG1087 UDP-glucose 4-

epimerase

shell

0 1 COG1807 4-amino-4-deoxy-L-

arabinose transferase and re-

lated glycosyltransferases of

PMT family

shell

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

0 1 COG0489 ATPases involved in

chromosome partitioning

core I

0 1 COG0438 Glycosyltransferase core I

0 1 COG0463 Glycosyltransferases

involved in cell wall biogenesis

core I

1 1 COG0457 FOG: TPR repeat core I

1 1 COG0500 SAM-dependent

methyltransferases

core I

Module 76 purifying

0 1 COG0062 Uncharacterized

conserved protein

shell

1 1 COG0860 N-acetylmuramoyl-

L-alanine amidase

shell

1 1 COG0802 Predicted ATPase or

kinase

core I

1 1 COG1214 Inactive homolog of

metal-dependent proteases, pu-

tative molecular chaperone

core I

Module 1 cohesive, irregular

1 1 COG0477 Permeases of the ma-

jor facilitator superfamily

shell

0 1 COG0524 Sugar kinases, ribok-

inase family

shell

1 0 COG2172 Anti-sigma regula-

tory factor (Ser/Thr protein ki-

nase)

shell

1 1 COG1366 Anti-anti-sigma reg-

ulatory factor (antagonist of

anti-sigma factor)

shell

0 1 COG0473 Isoci-

trate/isopropylmalate de-

hydrogenase

shell

1 1 COG2204 Response regulator

containing CheY-like receiver,

AAA-type ATPase, and DNA-

binding domains

shell

0 1 COG0406 Fructose-2,6-

bisphosphatase

shell

0 1 COG1566 Multidrug resistance

e�ux pump

shell

1 1 COG1651 Protein-disul�de iso-

merase

shell

1 0 COG1816 Adenosine deami-

nase

shell

1 1 COG0450 Peroxiredoxin shell

0 1 COG0513 Superfamily II DNA

and RNA helicases

shell

0 0 COG1695 Predicted transcrip-

tional regulators

shell

1 1 COG0697 Permeases of the

drug/metabolite transporter

(DMT) superfamily

shell

1 1 COG0531 Amino acid trans-

porters

shell

0 1 COG0667 Predicted oxi-

doreductases (related to

aryl-alcohol dehydrogenases)

shell

0 1 COG3264 Small-conductance

mechanosensitive channel

shell

0 1 COG1741 Pirin-related protein shell

0 1 COG2259 Predicted membrane

protein

shell

1 1 COG0642 Signal transduction

histidine kinase

core I

1 1 COG0745 Response regulators

consisting of a CheY-like re-

ceiver domain and a winged-

helix DNA-binding domain

core I

Continued . . .
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Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG0265 Trypsin-like serine

proteases, typically periplas-

mic, contain C-terminal PDZ

domain

core I

1 1 COG0204 1-acyl-sn-glycerol-3-

phosphate acyltransferase

core I

0 1 COG0583 Transcriptional reg-

ulator

core I

1 1 COG0178 Excinuclease AT-

Pase subunit

core I

0 1 COG1048 Aconitase A core II

0 1 COG0604 NADPH:quinone

reductase and related Zn-

dependent oxidoreductases

core II

0 1 COG2265 SAM-dependent

methyltransferases re-

lated to tRNA (uracil-5-)-

methyltransferase

core III

1 0 COG0664 cAMP-binding pro-

teins - catabolite gene acti-

vator and regulatory subunit

of cAMP-dependent protein ki-

nases

core III

Module 68 purifying

1 1 COG0441 Threonyl-tRNA syn-

thetase

shell

0 1 COG0073 EMAP domain shell

1 1 COG0291 Ribosomal protein

L35

core I

1 1 COG0292 Ribosomal protein

L20

core I

Module 66 cohesive

1 1 COG2217 Cation transport

ATPase

shell

0 1 COG2836 Uncharacterized

conserved protein

shell

0 0 COG2608 Copper chaperone shell

0 1 COG3278 Cbb3-type cy-

tochrome oxidase, subunit

1

core I

0 1 COG2993 Cbb3-type cy-

tochrome oxidase, cytochrome

c subunit

core I

Module 64 purifying

0 0 COG1858 Cytochrome c perox-

idase

shell

0 1 COG1482 Phosphomannose

isomerase

shell

1 1 COG0363 6-

phosphogluconolactonase/Glucosamine-

6-phosphate iso-

merase/deaminase

core I

1 1 COG0364 Glucose-6-phosphate

1-dehydrogenase

core I

1 1 COG0362 6-phosphogluconate

dehydrogenase

core I

Module 63 purifying

0 1 COG0735 Fe2+/Zn2+ uptake

regulation proteins

shell

0 0 COG1321 Mn-dependent tran-

scriptional regulator

shell

1 1 COG0803 ABC-type metal ion

transport system, periplasmic

component/surface adhesin

core I

1 1 COG1108 ABC-type

Mn2+/Zn2+ transport sys-

tems, permease components

core I

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG1121 ABC-type Mn/Zn

transport systems, ATPase

component

core I

Module 60 irregular

1 1 COG0012 Predicted GTPase,

probable translation factor

shell

1 1 COG0193 Peptidyl-tRNA hy-

drolase

shell

0 1 COG0462 Phosphoribosylpy-

rophosphate synthetase

shell

0 1 COG1947 4-diphosphocytidyl-

2C-methyl-D-erythritol 2-

phosphate synthase

core I

1 1 COG1825 Ribosomal protein

L25 (general stress protein

Ctc)

core I

Module 56 purifying

1 1 COG0327 Uncharacterized

conserved protein

shell

0 1 COG0144 tRNA and rRNA

cytosine-C5-methylases

shell

1 1 COG0223 Methionyl-tRNA

formyltransferase

core I

1 1 COG1198 Primosomal protein

N (replication factor Y) - su-

perfamily II helicase

core I

1 1 COG0242 N-formylmethionyl-

tRNA deformylase

core I

Module 54 purifying

1 1 COG0009 Putative translation

factor (SUA5)

shell

1 1 COG2890 Methylase of

polypeptide chain release

factors

shell

0 1 COG0613 Predicted metal-

dependent phosphoesterases

(PHP family)

shell

1 1 COG0216 Protein chain release

factor A

core I

1 1 COG0254 Ribosomal protein

L31

core I

Module 51 cohesive

1 1 COG0762 Predicted integral

membrane protein

shell

0 0 COG1957 Inosine-uridine nu-

cleoside N-ribohydrolase

shell

1 1 COG0605 Superoxide dismu-

tase

shell

0 1 COG0345 Pyrroline-5-

carboxylate reductase

core I

0 1 COG0325 Predicted enzyme

with a TIM-barrel fold

core I

Module 50 purifying

1 1 COG0016 Phenylalanyl-tRNA

synthetase alpha subunit

shell

1 1 COG0072 Phenylalanyl-tRNA

synthetase beta subunit

shell

0 1 COG0789 Predicted transcrip-

tional regulators

shell

1 1 COG0776 Bacterial nucleoid

DNA-binding protein

core I

1 1 COG0290 Translation initia-

tion factor 3 (IF-3)

core I

Module 47 irregular, cohesive

0 1 COG0753 Catalase shell

0 1 COG2032 Cu/Zn superoxide

dismutase

core I

Continued . . .
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Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG1830 DhnA-type fructose-

1,6-bisphosphate aldolase and

related enzymes

core I

0 1 COG1376 Uncharacterized pro-

tein conserved in bacteria

core I

0 1 COG0380 Trehalose-6-

phosphate synthase

core II

0 1 COG1877 Trehalose-6-

phosphatase

core II

Module 45 irregular

1 1 COG0039 Malate/lactate de-

hydrogenases

shell

0 1 COG2079 Uncharacterized pro-

tein involved in propionate

catabolism

shell

0 1 COG2513 PEP phosphonomu-

tase and related enzymes

shell

1 1 COG0045 Succinyl-CoA syn-

thetase, beta subunit

core I

0 1 COG0372 Citrate synthase core I

1 1 COG0074 Succinyl-CoA syn-

thetase, alpha subunit

core I

Module 43 irregular

0 1 COG2001 Uncharacterized pro-

tein conserved in bacteria

shell

1 1 COG0472 UDP-N-

acetylmuramyl pentapeptide

phosphotransferase/UDP-N-

acetylglucosamine-1-phosphate

transferase

shell

1 1 COG0769 UDP-N-

acetylmuramyl tripeptide

synthase

core I

1 1 COG0770 UDP-N-

acetylmuramyl pentapeptide

synthase

core I

1 1 COG0772 Bacterial cell divi-

sion membrane protein

core I

0 1 COG1181 D-alanine-D-alanine

ligase and related ATP-grasp

enzymes

core I

Module 38 purifying

1 1 COG0112 Glycine/serine hy-

droxymethyltransferase

shell

1 1 COG1327 Predicted transcrip-

tional regulator, consists of a

Zn-ribbon and ATP-cone do-

mains

shell

0 1 COG0384 Predicted epimerase,

PhzC/PhzF homolog

shell

1 1 COG0590 Cytosine/adenosine

deaminases

shell

1 1 COG0117 Pyrimidine deami-

nase

core I

1 1 COG0108 3,4-dihydroxy-

2-butanone 4-phosphate

synthase

core I

1 1 COG0307 Ribo�avin synthase

alpha chain

core I

Module 35 purifying

0 1 COG3203 Outer membrane

protein (porin)

shell

0 1 COG0824 Predicted

thioesterase

shell

0 0 COG3064 Membrane protein

involved in colicin uptake

shell

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG2885 Outer mem-

brane protein and related

peptidoglycan-associated

(lipo)proteins

core I

1 1 COG0823 Periplasmic compo-

nent of the Tol biopolymer

transport system

core I

1 1 COG0848 Biopolymer trans-

port protein

core I

1 1 COG0811 Biopolymer trans-

port proteins

core I

Module 34 irregular

1 1 COG1137 ABC-type (unclassi-

�ed) transport system, ATPase

component

shell

0 1 COG1994 Zn-dependent pro-

teases

shell

1 1 COG1413 FOG: HEAT repeat shell

1 1 COG0442 Prolyl-tRNA syn-

thetase

shell

0 1 COG0516 IMP dehydroge-

nase/GMP reductase

core I

0 1 COG0518 GMP synthase - Glu-

tamine amidotransferase do-

main

core I

1 1 COG0517 FOG: CBS domain core I

Module 31 purifying

1 1 COG0828 Ribosomal protein

S21

shell

1 1 COG0533 Metal-dependent

proteases with possible chap-

erone activity

shell

0 0 COG1610 Uncharacterized

conserved protein

shell

0 1 COG2518 Protein-L-

isoaspartate carboxylmethyl-

transferase

shell

0 1 COG2312 Erythromycin es-

terase homolog

shell

1 1 COG0358 DNA primase (bac-

terial type)

core I

1 1 COG0568 DNA-directed RNA

polymerase, sigma subunit

(sigma70/sigma32)

core I

Module 27 purifying

1 1 COG1523 Type II secretory

pathway, pullulanase PulA and

related glycosidases

shell

1 1 COG1640 4-alpha-

glucanotransferase

shell

1 1 COG0448 ADP-glucose py-

rophosphorylase

shell

1 1 COG0297 Glycogen synthase shell

0 1 COG3280 Maltooligosyl tre-

halose synthase

shell

0 0 COG0366 Glycosidases shell

1 1 COG0058 Glucan phosphory-

lase

core I

1 1 COG0296 1,4-alpha-glucan

branching enzyme

core I

Module 26 irregular

1 1 COG0665 Glycine/D-amino

acid oxidases (deaminating)

shell

0 0 COG0352 Thiamine

monophosphate synthase

shell

0 0 COG2145 Hydroxyethylth-

iazole kinase, sugar kinase

family

shell

Continued . . .
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Min/max

pattern

Behaviour, COG description Core/Shell

1 0 COG1060 Thiamine biosynthe-

sis enzyme ThiH and related

uncharacterized enzymes

shell

0 1 COG0404 Glycine cleavage sys-

tem T protein (aminomethyl-

transferase)

core I

1 1 COG0509 Glycine cleavage

system H protein (lipoate-

binding)

core I

0 1 COG0403 Glycine cleavage

system protein P (pyridoxal-

binding), N-terminal domain

core I

0 1 COG1003 Glycine cleavage

system protein P (pyridoxal-

binding), C-terminal domain

core I

Module 25 purifying

1 1 COG4232 Thiol:disul�de inter-

change protein

shell

1 1 COG0526 Thiol-disul�de iso-

merase and thioredoxins

shell

1 1 COG0492 Thioredoxin reduc-

tase

shell

1 1 COG0623 Enoyl-[acyl-carrier-

protein] reductase (NADH)

shell

0 1 - shell

0 1 COG0755 ABC-type transport

system involved in cytochrome

c biogenesis, permease compo-

nent

shell

1 1 COG1674 DNA segregation

ATPase FtsK/SpoIIIE and

related proteins

core I

1 1 COG1158 Transcription termi-

nation factor

core I

Module 24 purifying

0 1 COG4886 Leucine-rich repeat

(LRR) protein

shell

0 0 COG2114 Adenylate cyclase,

family 3 (some proteins contain

HAMP domain)

shell

1 1 COG1716 FOG: FHA domain shell

0 0 COG1262 Uncharacterized

conserved protein

shell

0 1 COG0666 FOG: Ankyrin re-

peat

shell

0 1 COG2319 FOG: WD40 repeat shell

1 1 COG0631 Serine/threonine

protein phosphatase

core I

1 1 COG0515 Serine/threonine

protein kinase

core I

Module 23 cohesive, purifying

0 1 COG0266

Formamidopyrimidine-DNA

glycosylase

shell

1 1 COG0234 Co-chaperonin

GroES (HSP10)

shell

1 1 COG1448 Aspar-

tate/tyrosine/aromatic amino-

transferase

shell

0 1 COG0302 GTP cyclohydrolase

I

shell

0 1 - core I

0 1 - core I

1 1 COG0459 Chaperonin GroEL

(HSP60 family)

core II

1 1 COG0436 Aspar-

tate/tyrosine/aromatic amino-

transferase

core II

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

Module 21 cohesive, purifying

1 1 COG0231 Translation

elongation factor P (EF-

P)/translation initiation factor

5A (eIF-5A)

shell

0 1 COG4799 Acetyl-CoA carboxy-

lase, carboxyltransferase com-

ponent (subunits alpha and

beta)

shell

0 1 COG1509 Lysine 2,3-

aminomutase

shell

1 1 COG0511 Biotin carboxyl car-

rier protein

core I

1 1 COG0439 Biotin carboxylase core I

0 1 COG1385 Uncharacterized pro-

tein conserved in bacteria

core II

0 1 COG2264 Ribosomal protein

L11 methylase

core II

0 1 COG1217 Predicted membrane

GTPase involved in stress re-

sponse

core II

Module 19 purifying

0 1 COG0790 FOG: TPR repeat,

SEL1 subfamily

shell

0 0 COG0402 Cytosine deaminase

and related metal-dependent

hydrolases

shell

1 1 COG1450 Type II secretory

pathway, component PulD

shell

1 1 COG0237 Dephospho-CoA ki-

nase

shell

1 1 COG0258 5-3 exonuclease (in-

cluding N-terminal domain of

PolI)

shell

0 1 COG2814 Arabinose e�ux per-

mease

shell

1 1 COG2804 Type II secretory

pathway, ATPase PulE/Tfp

pilus assembly pathway, AT-

Pase PilB

core I

1 1 COG2165 Type II secretory

pathway, pseudopilin PulG

core I

1 1 COG1459 Type II secretory

pathway, component PulF

core I

Module 18 irregular (does not �t per-

fectly)

1 1 COG1624 Uncharacterized

conserved protein

shell

1 1 COG0037 Predicted ATPase of

the PP-loop superfamily impli-

cated in cell cycle control

shell

1 1 COG0465 ATP-dependent Zn

proteases

core I

1 1 COG0617 tRNA nucleotidyl-

transferase/poly(A) poly-

merase

core I

1 1 COG1109 Phosphomannomu-

tase

core II

1 1 COG0449 Glucosamine 6-

phosphate synthetase, contains

amidotransferase and phospho-

sugar isomerase domains

core II

0 0 COG1539 Dihydroneopterin al-

dolase

core III

0 1 COG0801 7,8-dihydro-

6-hydroxymethylpterin-

pyrophosphokinase

core III

Continued . . .
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Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG0294 Dihydropteroate

synthase and related enzymes

core III

Module 17 purifying

1 0 COG0333 Ribosomal protein

L32

shell

0 1 COG1853 Conserved pro-

tein/domain typically as-

sociated with �avoprotein

oxygenases, DIM6/NTAB

family

shell

0 1 COG0346 Lactoylglutathione

lyase and related lyases

shell

0 1 COG2070 Dioxygenases related

to 2-nitropropane dioxygenase

shell

1 1 COG1028 Dehydrogenases

with di�erent speci�cities

(related to short-chain alcohol

dehydrogenases)

core I

1 1 COG0331 (acyl-carrier-

protein) S-malonyltransferase

core I

1 1 COG0304 3-oxoacyl-(acyl-

carrier-protein) synthase

core I

1 1 COG0236 Acyl carrier protein core I

1 1 COG0332 3-oxoacyl-[acyl-

carrier-protein] synthase III

core I

1 1 COG0416 Fatty

acid/phospholipid biosyn-

thesis enzyme

core I

Module 14 purifying

1 1 COG0124 Histidyl-tRNA syn-

thetase

shell

1 1 COG0821 Enzyme involved in

the deoxyxylulose pathway of

isoprenoid biosynthesis

shell

0 0 COG0647 Predicted sugar

phosphatases of the HAD

superfamily

shell

1 1 COG0105 Nucleoside diphos-

phate kinase

shell

1 1 COG1426 Uncharacterized pro-

tein conserved in bacteria

shell

0 1 COG0820 Predicted Fe-S-

cluster redox enzyme

shell

0 1 COG1236 Predicted exonucle-

ase of the beta-lactamase fold

involved in RNA processing

shell

1 1 COG0217 Uncharacterized

conserved protein

core I

1 1 COG1160 Predicted GTPases core I

1 1 COG0173 Aspartyl-tRNA syn-

thetase

core I

Module 11 purifying

1 1 COG0504 CTP synthase

(UTP-ammonia lyase)

shell

1 1 COG0469 Pyruvate kinase shell

1 1 COG0205 6-

phosphofructokinase

shell

0 1 COG1064 Zn-dependent alco-

hol dehydrogenases

shell

1 1 COG0588 Phosphoglycerate

mutase 1

shell

0 1 COG3961 Pyruvate decar-

boxylase and related thiamine

pyrophosphate-requiring en-

zymes

shell

Continued . . .

Min/max

pattern

Behaviour, COG description Core/Shell

1 1 COG2877 3-deoxy-D-manno-

octulosonic acid (KDO)

8-phosphate synthase

shell

1 1 COG0190 5,10-methylene-

tetrahydrofolate dehydroge-

nase/Methenyl tetrahydrofo-

late cyclohydrolase

shell

1 1 COG0126 3-phosphoglycerate

kinase

core I

1 1 COG0148 Enolase core I

1 1 COG0057 Glyceraldehyde-

3-phosphate

dehydrogenase/erythrose-

4-phosphate dehydrogenase

core I

Module 10 purifying

1 1 COG0203 Ribosomal protein

L17

shell

0 1 COG0101 Pseudouridylate

synthase

shell

1 1 COG0098 Ribosomal protein

S5

shell

0 1 COG0657 Esterase/lipase shell

1 1 COG0256 Ribosomal protein

L18

core I

1 1 COG0198 Ribosomal protein

L24

core I

1 1 COG0097 Ribosomal protein

L6P/L9E

core I

1 1 COG0202 DNA-directed RNA

polymerase, alpha subunit/40

kD subunit

core I

1 1 COG0099 Ribosomal protein

S13

core I

1 1 COG0200 Ribosomal protein

L15

core II

1 1 COG0024 Methionine

aminopeptidase

core II

Table 6.15: Classi�cation of reduced mod-

ules in the pathogenic Chlamydiacea.

'Min/max pattern': the appearance in the

maximal environmental module (see text)

and in the minimal pathogenic module

(1=exist, 0 does not exist). 'COG descrip-

tion' COG identi�er and description of the

orthologous group the protein belongs to

(in case of an environmental speci�c or-

thologous group not existent in COG, '-' is

set). 'Core/shell': the classi�cation of the

module member in core and shell. Di�er-

ent cores are numbered by roman numer-

als.
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Groups of co-evolving proteins
Identi�er E�ector or TTSS
Group I (Evidence exclusively by fusion events)
YpkA E�ector
SopA E�ector
YopT E�ector
SspH2 E�ector
Group II (Evidence by conserved neighbourhood for all interactions, supported by
phylogenetic pro�le in some cases)
EspD E�ector
Span E�ector
SopB E�ector
SipA E�ector
YscH E�ector
YscN TTSS
YscL TTSS
YscU TTSS
YscC TTSS
YscQ TTSS
YscJ TTSS
YscV TTSS
YscR TTSS
YscT TTSS
YscU TTSS
YscS TTSS
YscB TTSS/Chaperone
YscI TTSS
YscF TTSS
YscY TTSS
Pairs of E�ector and Chaperones
YopN SycN
YopT SycT
CopN SycE

Table 6.16: Groups of co-evolving e�ector and TTSS proteins and examples of co-localized
e�ector proteins and chaperones based on the STRING database For each group of co-
evolving e�ector and TTSS proteins, gene names of the members are given. The right
column indicates, whether the orthologous group comprises e�ectors, TTSS proteins or TTSS
related chaperones. A gene is added to a cluster, if the score of a genomic context method
to another member derived from STRING exceeds 0.5. In the last section, examples of
co-localized e�ectors and chaperones are listed.
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Component Description P-Value
K03229 type III secretion protein SctU 2.11E-005
K03230 type III secretion protein SctV 3.60E-005
K03225 type III secretion protein SctQ 3.12E-004
K04058 type III secretion protein SctW 1.04E-002
K03220 type III secretion protein SctD 2.86E-002
K03227 type III secretion protein SctS 2.90E-002
K03228 type III secretion protein SctT 4.15E-002

Table 6.17: Adjusted p-Value for the enrichment of the KO within 30 neighbours up- and down-
stream of known e�ectors. Known e�ectors and their genomic neighbourhood to TTSS
components. The genomic neighbourhood (30 genes up- and downstream) to TTSS com-
ponents has been evaluated for all known e�ectors, except on Yersinia pestis KIM due to
the absence of the plasmid pCD1 from the KEGG database. The number of e�ectors which
are neighboured to at least one TTSS component is given in the middle column, the re-
maining e�ectors are summarized in the right column. 'Component': the TTSS component,
'Description' its' description, 'P-Value': the P-value of the e�ector enrichment found.

Genome N1 N2
Chlamydophila caviae GPIC 2 3
Chlamydophila pneumoniae CWL029 2 5
Chlamydia trachomatis A/HAR-13 (serovar A) 2 0
Chlamydia trachomatis D/UW-3/CX (serovar D) 3 3
Escherichia coli O157:H7 EDL933 (EHEC) 5 2
Escherichia coli O127:H6 E2348/69 1 0
Escherichia coli O157:H7 Sakai (EHEC) 0 2
Pseudomonas syringae pv. syringae B728a 0 3
Pseudomonas syringae pv. phaseolicola 1448A 1 4
Pseudomonas syringae pv. tomato DC3000 5 19
Salmonella enterica subsp. enterica serovar Choleraesuis 0 1
Salmonella enterica subsp. enterica serovar Schwarzengrund CVM19633 0 1
Salmonella typhimurium LT2 3 5
Yersinia enterocolitica subsp. enterocolitica 8081 9 0
Yersinia pestis Antiqua 1 0
Yersinia pseudotuberculosis IP32953 8 0

Table 6.18: Enrichment of KEGG orthologous groups within the genomic neighbourhood of known
e�ectors This table lists KEGG orthologous groups (KO), which are signi�cantly enriched
(Bonferroni-corrected t-Test p-Value < 0.05) within 30 neighbours up- and downstream of
known e�ectors. 'Genome': the genome from which the e�ectors originate from, 'N1': the
Number of e�ectors in the genomic neighbourhood of TTSS components, 'N2': Number of
e�ectors not in the genomic neighbourhood of TTSS components
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Feature

Amino acid alphabet

Alanine

Arginine

Asparagine

Aspartic Acid

Glutamic Acid

Glutamine

Glycine

Histidine

Isoleucine

Leucine

Lysine

Methionine

Phenylalanine

Proline

Serine

Serine-Leucine

Serine-Serine

Threonine

Threonine-Leucine

Tyrosine

Valine

Hydrophobic/hydrophilic alphabet

hydrophilic-hydrophilic

hydrophilic-hydrophilic-hydrophilic

hydrophilic-hydrophilic-hydrophobic

hydrophilic-hydrophobic-hydrophilic

hydrophilic-hydrophobic-hydrophobic

hydrophobic-hydrophilic-hydrophilic

hydrophobic-hydrophilic-hydrophobic

hydrophobic-hydrophobic-hydrophilic

Amino acid property alphabet

acidic

acidic-hydrophobic

alkaline

alkaline-alkaline

alkaline-hydrophilic

alkaline-hydrophobic

alkaline-hydrophobic-hydrophobic

alkaline-hydrophobic-polar

alkaline-polar

alkaline-polar-polar

aromatic

hydrophilic

hydrophilic-alkaline

hydrophilic-hydrophobic

hydrophilic-polar

hydrophobic

hydrophobic-acidic

hydrophobic-alkaline

hydrophobic-alkaline-hydrophobic

hydrophobic-alkaline-polar

hydrophobic-hydrophilic

hydrophobic-hydrophobic

hydrophobic-hydrophobic-hydrophobic

hydrophobic-hydrophobic-polar

hydrophobic-ionizable

hydrophobic-polar

hydrophobic-polar-hydrophobic

hydrophobic-polar-polar

ionizable

ionizable-polar

polar

Continued . . .

Feature

polar-acidic

polar-alkaline

polar-alkaline-hydrophobic

polar-alkaline-polar

polar-hydrophilic

polar-hydrophilic-hydrophobic

polar-hydrophobic-hydrophobic

polar-hydrophobic-polar

polar-polar

polar-polar-alkaline

polar-polar-hydrophobic

polar-polar-polar

Table 6.19: Input features of the machine

learning algorithms after initial feature se-

lection. This table comprises these fea-

tures, which are selected from all possi-

ble feature combinations using three dif-

ferent alphabets (amino acid alphabet,

amino acid property alphabet, hydropho-

bic/hydrophilic alphabet) with a maximal

pattern length of three. In order to avoid

over-�tting on the data, only features are

selected which are not speci�c to either

the positive or the negative set but exists

in both.
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