
Receding Time Horizon Self-Tracking and Assessment for
Autonomous Manufacturing

Paul Maier, Martin Sachenbacher
Department of Informatics, Technische Universität München

Boltzmannstraße 3, 85748 Garching
Phone: +49 (0) 89 289 19595, E-Mail:{ maierpa,sachenba}@in.tum.de

Abstract

Next-generation production and manufacturing plants create individualized products by
automatically deriving production schedules from design specifications. However,
because planning and scheduling are computationally hard, they must typically be done
off-line using a simplified system model, and are consequently unaware of on-line
observations and potential component faults. This leads to a self-assessment problem
we call plan assessment: Given behavior models and current observations of the plant's
(possibly faulty) behavior, how likely is it that partially executed manufacturing plans
will still succeed? A previously developed self-assessment capability generates � most
probable system behaviors as solutions of a constraint optimization problem. However,
it only allows single products and doesn't scale well with the schedule length. In this
work, we extend the capability towards multiple products and generate � most probable
system behaviors only within a small, fixed time window, which is then moved to cover
schedules longer than the time window. Experiments show the feasibility of this
approximative approach.

Keywords

self-assessment, constraint optimization, model-based reasoning

1 Introduction

Modern factory plants implement complex automation to realize highly autonomous
mass production. Current research [BBW07, FVL+06] envisions and develops plants
that implement planning and scheduling capabilities based on self-models in order to
achieve automated mass production of individualized products, known as „mass
customization“. In a typical scenario a factory plant automatically generates
manufacturing process plans from given product specifications. The operations are
scheduled based on models of the factory stations. Since scheduling and planning are
computationally intensive they are usually performed offline, e.g. during the night for
production the next day. For the same reason the mentioned models are typically
focused: They omit, e.g., knowledge of potential failure behavior. This leads to a
problem of evaluating manufacturing plans with respect to online observations, based

Page 2 P. Maier, M. Sachenbacher

on models focused on station behavior. In [MSR+10] we formalize this as the plan
assessment problem: Given a model �������, the problem of plan assessment is to
compute the success probability ���	|�

�:�� for each manufacturing process plan �	, or
good lower and upper bounds �� and ��: �� � ���	|�

�:�� � ��. �	 is the event of
product � being successfully produced. ���	|�

�:�� or the bounds then allow to decide
whether to a) continue with a plan, b) stop it because it probably won't succeed or c)
gather more information. We describe a decision procedure in [MSR+10], whereas in
this work, we focus on computing the success probability. Plan assessment is especially
interesting from the point of view of autonomous manufacturing control, where systems
are rigid enough to allow automated advance planning/scheduling (rather than online
planning), yet bear inherent uncertainties such as station failures.

Figure 1-1: Effects of cutter deterioration until breakage in machining.

In earlier work [MSR+09, MSR+10] we proposed a combined diagnosis/prediction
method as a solution to this problem, which approximated the success probability for a
single product based on a number � of most probable system trajectories, spanning over
the complete schedule length ��. The problem of enumerating such trajectories is
however exponential in ��, and thus in our experiments we found the method did not
scale beyond �� � 14 time steps. To address this scalability issue, in this work we
extend this method towards a receding time horizon scheme [KN00, MWS05], which
slides a time window of fixed, small length � along the time line in order to cover
realistically sized schedules. Most probable trajectories are only generated within this
window, which renders the problem exponential only in � ≪ ��. This effectively
eliminates one of two exponential dependencies, the second being the number of station
and product states considered. Additionally, we extend this plan assessment method to
enable plan assessment for multiple products simultaneously.

Closest to our work are verification methods such as probabilistic model checking
[RKN+04], online verification [ASB07], or probabilistic verification [MSW04]. Plan
assessment could possibly be formulated as a probabilistic model checking problem.
However, model checking algorithms do not allow a step-wise approach like our time
window shifting, i.e. they have to regard the whole schedule at once. Probabilistic
verification [MSW04] deals only with single most likely behaviors, whereas we have to
consider many goal-violating (and achieving) behaviors. And all of these methods
usually focus on models of single systems such as cars [ASB07]. In contrast, we model
a manufacturing facility and the products it processes. We see our self-assessment

Receding Time Horizon Self-Tracking and Assessment for Autonomous Manufacturing Page 3

capability as a complementary block, which can support other self-X methods such as
self-optimization [Gau05] in achieving the autonomy needed in the envisioned factories.

2 Example: Metal Machining and Assembly

 Our factory test-bed − an iCim3000-based Festo Flexible Manufacturing System −
consists of conveyor transports, storage, machining and assembly. It serves as basis for
hypothetical example scenarios, where a scheduler schedules the manufacturing of toy
mazes (Figure 1-1) and robot arms. A maze consists of an alloy base plate, a small
metal ball and an acrylic glass cover fixed by metal pins. It is manufactured by first
cutting the labyrinth groove into the maze base-plate, then drilling the fixation holes,
putting the ball into the labyrinth, putting the glass cover onto the base plate and finally
pushing the pins in place to fixate it (in our abstract scenarios, we disregard transporta-
tion). For the robot arm, alloy parts for its brackets have to be machined. On its route
through the factory a product might get flawed when worked on by faulty stations.
Machining stations are suspicious candidates, because their cutter might blunt during
operation and is then more likely to break. A broken cutter severely damages maze
products (see Figure 1-1). Vibration sensors provide partial information about possible
failures, which is, however, ambiguous: some components generate random vibrations,
and thus not every vibration means that a component is faulty. We assume that, with
some probability, vibrations in the assembly can trigger signals in sensors of machining
stations. Here, a vibration is detected at ���� �!�"#, while the machining station is cutting
a bracket for the robot and the maze is being assembled (see Figure 2-1). Is the vibration
an indicator for a blunt cutter, and how does this possibility affect the plans? This
scenario comprises one machining and one assembly station, with one maze and one
robot being scheduled for manufacturing.

Figure 2-1: A visualisation of a schedule of a maze (dark) and a robot arm (bright).

3 Plan Assessment with Predicted System Behaviors

 Computing ���	|�
�:�� for a manufacturing plan �	 requires to predict whether �	 will

reach a state that entails a successfully finished product. We use an approach that
generates possible system state sequences, called system trajectories, over a time
window of length � [KN00, MWS05]. We differentiate among trajectories that lead to

Page 4 P. Maier, M. Sachenbacher

goal-achieving states and those that lead to goal-violating states. We combine it with �-
best approximation, enumerating only the � most probable state sequences within the
window, and a receding horizon scheme that shifts the time window along the time line
to cover larger schedules. We assume a given schedule $ of manufacturing operations,
i.e. a sequence of �� tuples 〈��	&, (&, �,)�〉+, where a tuple specifies that component (&

performs action) on product �	& at time �. It can be seen as a composition of the
individual plans �	 for each product, which are sequences of actions). ������� is a
probabilistic model that encodes factory station and product behavior of those stations
and products occuring in $. It also encodes possible observations. It defines a
distribution �,�-�./		|		-�) over possible state transitions given the current plant state
and a distribution �,(1�		|		-�) over possible observations given the current state. -� is
a vector of variables 2� characterizing a system at time �, where 3��(�������) is the set
of all possible (atomic) assignment vectors for -�, and 3�(�������) is the set of all
assignment vectors over all � time steps, i.e. the set of all possible system trajectories.
These trajectories can go beyond current time �, thereby predicting system behavior.
Note that hereafter we deviate from standard notation and do not write vectors of
values/variables bold face, as we mostly deal with vectors. So unless stated otherwise
2�, e.g., will refer to a vector of variables.

We model all products as finite state machines with two states. Thereby system states,
with respect to some given modeled product �, can be partitioned into two sets �	 and
�	, respectively representing „product ok“ (goal states) and „product flawed“(goal-

violating states). We model the interactions of each (unfinished) product with factory
stations, following our underlying assumption that some �	 succeeds as long as no
station working it fails. This simple modeling could be extended to cover a richer set of
product states than {„product ok", „product flawed"}. �	 represents the success event,
where success means that �	 generates a product according to its specification. Success

of �	 is modeled as a constraint 6	 encoding 2789.";
(��<) == �>?@AB, i.e. that the product

identified by ��C must be in an ok-state at finishing time ��<. The single variable 2789.";
(��<)

is part of the plan assessment model. Finally, a plan is successful if it entails 6	, i.e. if
6	 is consistent with all system states possible after its execution. We define �	 as the
set of all goal-achieving trajectories �	 = {D ∈ 3�(�������)		|		D	6	} and �	 = {D ∈
3�(�������)		|		D	6	}. This leads to the following definition of success probability:

 Definition 1. Plan Success Probability Given a model M������ , a sequence of obser-
vations o�:! from the start of the manufacturing process schedule up to current time t
and a manufacturing plan �� , we define the probability that �� will succeed as

�(�	|��:�) = I 	
J∈�<

�,(D		|		��:�) = ∑ 	J∈�< �,(D, ��:�)
�,(��:�) = ∑ 	J∈�< �,(D, ��:�)

∑ 	J∈L �,(D, ��:�)

In most cases, it is infeasible to compute �(�	|��:�) exactly as it requires enumerating
all trajectories Θ = 3�(�������) to generate the complete distribution. Approximations

Receding Time Horizon Self-Tracking and Assessment for Autonomous Manufacturing Page 5

can be computed based on a reduced set of trajectories Θ∗ ⊂ 3�(�������). In [MSR+09]
we introduced an approach that enumerates only the � most probable trajectories:

�P(�	(�)|��:�) = ∑ Pr(D, ��:�)J∈�<(P) 	
∑ Pr(D, ��:�)J∈L(P) 			.	

 Θ(�) is the set of �-best trajectories and �	(�) ⊆ Θ(�) the subset of goal-achieving
trajectories. With increasing � the approximation eventually becomes the exact
probability �,(�	|��:�). Computing meaningful hard bounds �� and �� turnes out to be
a challenge [MSR+10], and is still an open problem. In [MJW+10] we show how to
compute statistical bounds based on sampling system trajectories rather than computing
the �-best.

4 Model-Based Computing of Plan Success Probabilities

As modeling framework we use probabilistic hierarchical constraint automata (PHCA)
[WCG01], a formalism tailored to suit embedded systems development and model-
based tracking of complex, uncertain system behavior. In particular it allows modeling
of probabilistic failures as well as parallel composition of components. A PHCA is a
hierarchical automaton with a set of locations Σ, consisting of primitive and composite
locations, a set of variables Π, a set of transitions V and a set W consisting of behavior
constraints (propositional formulas) for locations and guard constraints for transitions.
For each location 2� ∈ Σ a transition function �X(2�) defines distributions over subsets
of outgoing transitions of 2�. Π consists of dependent, observable and commandable
variables. The locations represent hidden modes of the modeled system. The state of a
PHCA at time � is a set of marked locations called a marking Y� ⊂ Σ. To avoid ambigu-
ity with “state” we will refer to markings rather than PHCA states. A sequence of such
markings D = (Y�,Y�./, … ,Y�.[) is called a PHCA trajectory. The execution seman-
tics of a PHCA is defined in terms of possible evolutions of such markings. We model a
plant as single PHCA, where station behavior and product states are modeled as compo-
site locations. E.g., our example model consists of two composite locations for machin-
ing and assembly as well as two composite locations for the maze and the robot.

Most Probable State Sequences As Constraint Optimization

In [MWS05] we casted the problem of finding most probable sequences of PHCA
markings within a window of � time steps as computing the best solutions to a
combinatorial optimization problem. Executing a PHCA, given a marking Y�, means to
identify possible target locations to be marked at � + 1, probabilistically choose
transitions and check consistency of observations and commands with transition guards
as well as behavior of the targets. Also, it involves checking for interdependences
encoded in behavior PHCA constraints, e.g., that a vibration occurs if and only if a
vibration occurs in machining or in assembly. Finally, a correct marking must be
ensured regarding, e.g., the hierarchical structure of a PHCA and initial marking.

Page 6 P. Maier, M. Sachenbacher

Given an �-step time window, these execution semantics are encoded as soft
constraints [MRS06] for all time points in this time window and the transitions between
them. This representation unfolds the PHCA over the � time steps and forms a
constraint optimization problem (COP) ℛ = (2, B, ^) (similar to definitions in
[MRS06]), where 2 = {2/, . . . , 2[} is a set of variables with a corresponding set of
finite domains B = {B/, … , B[}, and ̂ = { /̂, … , ^_} is a set of constraints (3	, 	̀) with

scope 3	 = {2	/, … , 2	a} ⊆ 2 and a constraint function ̀	 : B	/ ×…× B	a → [0,1]
mapping partial assignments of variables in 3	 to a probability value in [0,1]. For all
time points � = ��. . �g, hard constraints in ̂ (̀ evaluates to {0,1} only) encode
hierarchical structure as well as consistency of observations and commands with
locations and transitions, while soft constraints in ^ encode probabilistic choice of
initial locations at � = �� and probabilistic transitions. Π� ⊆ 2 encodes PHCA variables
and auxiliary variables (needed to, e.g., encode hierarchical structure). A set of binary
variables h = {2ij

� , 2ik
� , … } ⊆ 2, the solution variables of ℛ, encodes location

markings. The �-best solutions to ℛ are assignments to h which, extended to all
variables 2, maximize the global probability value in terms of the functions ̀	 (i.e. the
best solution has the largest probability value, the second best the second largest etc.).
These assignments correspond to the most probable PHCA system trajectories. The size
of ℛ is essentially � times the PHCA size, since the encoding doesn’t flatten the
hierarchy (see [MWS05] for details).

To track multiple products, in addition to modeling each product with its own
composite location we have to ensure that if at time �+ a product ��C is worked by

component (�C, a link between the two is established. We do this by adding a hard
constraint, called link constraint, that enforces equality of two helper variables. The
schedule $ determines which products and components are to be linked in the current
time window, and according link constraints are added before trajectory enumeration
(see Algorithm 4-1). For example, if product ��C = maze and component (�C =
machining are to be linked, a constraint over helper variables 2u�v�, 2u�wx�#�#y with
domain Bz "C{w!	|�{}! = {OK, FAULTY} is added, enforcing 2u�v� = 2u�wx�#�#y. 2u�v�,
as part of the product composite location’s transition guards, determines the maze's fault
transition, while 2u�wx�#�#y, occuring in the component's location behavior constraints,

explicitly identifies fault locations relevant for the product. Thereby equality of the two
variables enforces that the maze becomes flawed if the machining’s cutter is broken.

Plan Assessment Based on Time Window Filtering

Let the end time of a manufacturing plan �	 be ��<. Typical schedules cannot be

assessed with a single time window. Therefore, we shift a relatively small time window
along the whole time line of a given schedule, until it covers ��<. When we finally reach
��<, we sum over goal-achieving trajectories among the �-best to compute �(�	|��:�).
Before each shift trajectories of length � are generated, ranging over ��. . ��. Then the
time window is shifted one step forward and the distribution �,(2�j = ��j , ��:� = ��:�)
over the new initial states is computed recursively in terms of distributions over

Receding Time Horizon Self-Tracking and Assessment for Autonomous Manufacturing Page 7

previous initial states at �� and over trajectories within ��. . �� (where ��:� is the vector
of observation variables from the start of the schedule to �). Note the following
notational conventions: we abbreviate �,(2�j = ��j , ��:� = ��:�) to �,(��j , ��:�). Start
and end times of the time window are denoted as � = �� and � = ��. � = 0 is the start
time of the schedule and � = �� is the current time point, i.e. no observations are
available after ��. Unless stated otherwise, � refers to the current time point. The
notations � + � and � − � indicate � time points ahead or behind �. For example, states
��, �/, ���, ���, ��, ���< represent the first and second state relative to the schedule start,
the first and last state within the time window, the current state and the state when
product � is expected to finish. Observations are indexed analogously. Finally, 3�, 3�� , …
denote summation variable vectors for states.

 Proposition 1. Let α = /
� ("�j:�). Given observations o�:! we can compute the distribu-

tion over system states at t/ recursively as

�,(��j , ��:�) = � I 	
��� ,��k ,…,���

�,(��j , … , 3�� , ��j:�|3��)	�,(3�� , ��:�)

Proof. Observe that
�,(��j , ��:�) = ∑ 	�� ,�j,…,��� ,��j ,��k ,…,��� �,(3�, 3/, … , 3�� , 3�j , ��j , 3�k , … , 3�� , ��:�)
= ∑ 	�� ,�j,…,��� ,��j ,��k ,…,��� �,(��j , 3�k , … , 3��|3�, … , 3�� , ��:�)	�,(3�, … , 3�� , ��:�)
Then with Markov property for the system states and the observations (3�j , … , 3��
independent of 3�, … , 3��j and ��:��) we have

 = ∑ 	��,�j,…,��� ,��j ,��k ,…,��� �,(��j , 3�k , … , 3��|3�� , ��j:�)	�,(3�, … , 3�� , ��:�)
 = �∑ 	��,�j,…,��� ,��j ,��k ,…,��� �,(��j , 3�k , … , 3�� , ��j:�|3��)	�,(3�, … , 3�� , ��:�)
 = �∑ 	��� ,��k ,…,��� �,(��j , 3�k , … , 3�� , ��j:�|3��)	∑ 	��,…,���j �,(3�, … , 3�� , ��:�)
 = �∑ 	��� ,��k ,…,��� �,(��j , 3�k , … , 3�� , ��j:�|3��)	�,(3�� , ��:�)∎

This recursive term represents the exact computation, enumerating all trajectories. As
this is typically infeasible, we approximate based on the �-best trajectories instead.
Given these trajectories, we compute approximations for � and the distribution
�,(2�� , ��:�) (�� relative to the new window). For every shift of the time window we
add �,(2�� , ��:�) as constraint ̂�� to the original constraint problem. A modified
external solver then computes the � most probable trajectories along with their joint
probabilities �,(���:�� , ��:�) = �,(��j , … , ��� , ��j:�|���)	�,(��� , ��:�) for the next shift.

Algorithm 4-1 implements the Time Window Filtering (TWF). Consider the following
example (illustrated in Figure 4-1), where we focus on three system states from �������:
1) a state were both maze and robot arm are “ok”, 2) a state were the cutter broke and
thus led to a flawed robot, but the maze is “ok” and 3) like 2, with the difference that
here additionally vibrations in the assembly occured (not only caused by the
blunt/broken cutter). These states are encoded as location variable assignments, e.g.

Page 8 P. Maier, M. Sachenbacher

2u�v�.";� = �. Note that for clarity the location domain 4MARKED, UNMARKED5 is
abbreviated to 4M, U5 and the super script� is omitted in Figure 4-1.

Algorithm 4-1: The Time Window Filtering algorithm. Function AsUnaryConstraints
maps observations to unary constraints over observation variables, function
TimeStepStates maps a set of trajectories to the set of states for the given
time point. Function ProductComponentLinks generates product-
component link constraints.

A time window of � = 2 is used and � = 6 trajectories are enumerated. We use the
notation ��

� = �],�, �� for a time window of length � starting at time point �, with
behaviors encoded in COP]. Trajectories are numbered 1 (most probable) through 6
(least probable). At first, the time window ��

� does not cover the product finishing time
and thus success probabilities can't be computed. The time window is shifted (��./

�),
and in doing so probabilities of trajectories leading to the same initial state in the next
window are summed up. They are normalized using the approximation �∗ =

/

∑ 	�∈ ∗ ¡¢�J,£
�:��

. This is done for all initial states, and thereby the approximate initial state

distribution for the next time window is created. Now the finishing time is covered.
Again, � = 6 trajectories are enumerated within the new time window. Only one of
these trajectories is goal-achieving for the robot arm, while all of them lead to a
properly finished maze. Summing over the respective goal-achieving and normalizing
over all enumerated trajectories yields approximate success probabilities for the maze

Receding Time Horizon Self-Tracking and Assessment for Autonomous Manufacturing Page 9

and the robot arm. Note that the approach readily deals with unknown future
observations, which are simply handled as additional unkown variables.

Figure 4-1: Above: Moving time window ��� one step, generating time window ��./� .
Below: Computing success probabilities after � = 6 trajectories have been
enumerated in the new time window ��./� .

5 Results and Discussion

 We implemented the constraint-based �-best enumeration of most probable trajectories
as described in section 4 and ran experiments on an intel core 2 duo machine with 2.53
Ghz and 4GB of RAM, using a simple factory PHCA model (see Figure 5-1) for our
scenario. Table 5-1 presents results for our scenario with �� = 9, which can be solved
without TWF with an � = 9 time window. It shows that plan assessment can indeed
identify the robot arm to be jeopardized, given the observation of a vibration, while
clarifying that the maze's success is not influenced. Intuitively, only products which

Page 10 P. Maier, M. Sachenbacher

further use suspicious components (machining) are likely to be flawed. We could solve
instances of our scenario with schedule length' up to 14 time steps, which we generated

Figure 5-1: PHCA composite locations for maching and assembly stations.

Table 5-1: Success probabilities for the robot arm and the toy maze over different �
with �� = 9. The accoring COP has � 1200 variables and � 1250
constraints. First col.: exact solution. Last row: COP solving time.

 �
 exact 10 5 4 3 2

 �,��¦�v�| … � 1.0 1.0 1.0 1.0 1.0 1.0
�,��§"�"!|… � 0.53 0.65 0.74 0.81 0.78 0.74

 time 3.0 2.0 1.8 1.8 1.8 1.8

by simply multiplying scheduled actions. Tweaking solver parameters might gain
another one or two steps, but eventually the exponential dependency on schedule length
exhausts resources (memory in this case). In a preliminary experiment using our novel
TWF method we could solve a problem with �� = 29, � = 5 in 240 seconds. We
solved the problem by moving the time window along the whole schedule length, doing
24 shift operations, where each interleaved estimation step took 4-10 seconds. Table 5-2
shows how much the success probability for the robot deviates from the exact solution

Receding Time Horizon Self-Tracking and Assessment for Autonomous Manufacturing Page 11

when varying � and �. Clearly, if � is big enough to enumerate all non-zero trajectories
(« 80), TWF yields the exact solution independently of �. When choosing only one
trajectory, increasing � seems to reduce the error.

Table 5-2: Comparing the success probability error (above) and runtime (in seconds,
below) for the robot product for different number of trajectories � and time
window sizes �.

The measured runtimes indicate feasibility within a day-to-day computation cycle. TWF
allows to address bigger schedules and depends only linearly on the number of shifts.
However, runtime increases considerably, especially when comparing the runtime for
solving a problem with �� = 9 (4s at worst) with the TWF performance. Partly this is a
problem of our prototype implementation, which has some overhead. However, there
are two other problems: First, computing the distribution over initial states for the next
time window, even if only approximated, yields a big constraint over many location
variables. It renders the trajectory enumeration step considerably harder and has the
effect that above � 30 locations in the assessment model our solver fails to even load
the COP. Second, because the COP is changed with every shift in TWF, we did a
preprocessing step on-line that usually can be taken off-line. The first problem could be
alleviated with smaller time windows, and other solvers might be a remedy. However,
we are not aware of any solvers that support �-best solution generation for constraint
optimization. For the second problem it might suffice to modify the preprocessing step
to allow off-line computing again. Further improvements could be to move the time
window multiple steps at once, decreasing the number of estimations, and to only shift
the time window to keep up with the schedule. Only if an assessment is requested the
window is moved towards ��<. All in all, we think that TWF makes a step towards a

practical solution of the plan assessment problem, but a number of challanges remain.

Page 12 P. Maier, M. Sachenbacher

6 Conclusion

Within an autonomous factory setting, we presented a novel method to solve the plan
assessment problem, which asks whether a product presently being processed will be
successfully produced. The method computes the product's success probability by
tracking the � most probable factory behaviors and the product's states within a small,
fixed-length time window. To cover large schedules the time window is moved along
the time line, computing a distribution over initial states of the new window from
enumerated trajectories in the current window. Our preliminary results indicate that our
novel algorithm can indeed solve problems that a method that enumerates trajectories
over the complete schedule length cannot solve.

References
[ASB07] Althoff, M.; Stursberg, O.; Buss, M.: Online Verification of Cognitive Car Decisions.

Proc. IV-2007, 2007.

[BBW07] Beetz, M.; Buss, M.; Wollherr, D.: Cognitive Technical Systems --- What is the Role of
Artificial Intelligence? Proc. KI-2007, pages 19--42, 2007.

[FVL+06] Ferrarini, L.; Veber, C.; Luder, A.; Peschke, J.; Kalogeras, A.; Gialelis, J.; Rode, J.;
Wunsch, D.; Chapurlat, V.; e Informazione, D.E.: Control Architecture for Reconfigurable
Manufacturing Systems: the PABADIS'PROMISE Approach. Proc. ETFA-2006, pages
545--552, 2006.

[KN00] Kurien, J.; Nayak, P. P.: Back to the Future for Consistency-Based Trajectory Tracking.
Proc. AAAI-2000, pages 370--377, 2000. AAAI Press.

[MSW04] Mahtab, T.; Sullivan, G.; Williams, B. C.: Automated Verification of Model-based
Programs Under Uncertainty. Proc. ISDA-2004, 2004.

[MJW+10] Maier, P.; Jain, D.; Waldherr, S.; Sachenbacher, M.: Plan Assessment for Autonomous
Manufacturing as Bayesian Inference. Proc. KI 2010, 2010.

[MSR+10] Maier, P.; Sachenbacher, M.; Rühr, T.; Kuhn, L.: Automated plan assessment in cognitive
manufacturing. Adv. Eng. Informat., 2010. To appear.

[MSR+09] Maier, P.; Sachenbacher, M.; Rühr, T.; Kuhn, L.: Constraint-Based Integration of Plan
Tracking and Prognosis for Autonomous Production. Proc. KI-2009 in LNCS, Paderborn,
Germany, 2009. Springer.

[MWS05] Mikaelian, T.; Williams, C. B.; Sachenbacher, M.: Model-based Monitoring and Diagnosis
of Systems with Software-Extended Behavior. Proc. AAAI-2005, Pittsburgh, USA, 2005.
AAAI Press.

[RKN+04] Rutten, J.; Kwiatkowska, M.; Norman, G.; Parker, D.: Mathematical Techniques for
Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph Series.
American Mathematical Society, 2004.

[WCG01] Williams, B. C.; Chung, S.; Gupta, V.: Mode Estimation of Model-based Programs:
Monitoring Systems with Complex Behavior. Proc IJCAI-2001, pages 579--590, 2001.

[MRS06] Meseguer, P.; Rossi, F.; Schiex, T.: Handbook of constraint programming, chapter 9: Soft
Constraints, pages 281–328. Foundations of Artificial Intelligence. Elsevier, 2006.

[Gau05] Jürgen Gausemeier. From mechatronics to self-optimizing concepts and structures in me-
chanical engineering: new approaches to design methodology. Int. J. Computer Integrated
Manufacturing, 18(7):550–560, 2005.

