Receding Time Horizon Self-Tracking and Assessment for
Autonomous Manufacturing

Paul Maier, Martin Sachenbacher
Department of Informatics, Technische Universitat Minchen
BoltzmannstralRe 3, 85748 Garching
Phone: +49 (0) 89 289 19595, E-Mail:{ maierpa,sachenba}@in.tum.de

Abstract

Next-generation production and manufacturing plansite individualized products by
automatically deriving production schedules fromsige specifications. However,
because planning and scheduling are computatiohalg, they must typically be done
off-line using a simplified system model, and amnsequently unaware of on-line
observations and potential component faults. Té#l$ to a self-assessment problem
we callplan assessment: Given behavior models and current observationtbh@fplant's
(possibly faulty) behavior, how likely is it thaagially executed manufacturing plans
will still succeed? A previously developed selfessment capability generatesnost
probable system behaviors as solutions of a canstatimization problem. However,
it only allows single products and doesn't scaldl wéh the schedule length. In this
work, we extend the capability towards multiple guwots and generatemost probable
system behaviors only within a small, fixed timenxdow, which is then moved to cover
schedules longer than the time window. Experimesitew the feasibility of this
approximative approach.

Keywords

self-assessment, constraint optimization, modeddasasoning

1 Introduction

Modern factory plants implement complex automationrealize highly autonomous

mass production. Current research [BBWO07, FVL+0®}igons and develops plants
that implement planning and scheduling capabilibased on self-models in order to
achieve automated mass production of individualipgdducts, known as ,mass
customization“. In a typical scenario a factory ntlaautomatically generates
manufacturing process plans from given product iipattons. The operations are
scheduled based on models of the factory stati®imce scheduling and planning are
computationally intensive they are usually perfadnadfline, e.g. during the night for

production the next day. For the same reason thetiomed models are typically

focused: They omit, e.g., knowledge of potentidlufe behavior. This leads to a
problem of evaluating manufacturing plans with extpo online observations, based

Page 2 P. Maier, M. Sachenbacher

on models focused on station behavior. In [MSR+4@] formalize this as thplan
assessment problem: Given a modelM, ..., the problem of plan assessment is to
compute the success probabilRyg;|0%t) for each manufacturing process plgn or
good lower and upper boungs and p,: p; < P(G;|0*) < p,. G; is the event of
producti being successfully produced(G;|0°%") or the bounds then allow to decide
whether to a) continue with a plan, b) stop it lbseait probably won't succeed or c)
gather more information. We describe a decisiorcguiare in [MSR+10], whereas in
this work, we focus on computing the success pntibabiPlan assessment is especially
interesting from the point of view of autonomousnui@cturing control, where systems
are rigid enough to allow automated advance plajisateduling (rather than online
planning), yet bear inherent uncertainties sucstatson failures.

Figure 1-1: Effects of cutter deterioration until breakage in machining.

In earlier work [MSR+09, MSR+10] we proposed a comld diagnosis/prediction
method as a solution to this problem, which apprated the success probability for a
single product based on a numbkeof most probable system trajectories, spanning ove
the complete schedule lengfti. The problem of enumerating such trajectories is
however exponential ilVg, and thus in our experiments we found the methddhdt
scale beyondVs = 14 time steps. To address this scalability issuethia work we
extend this method towards a receding time horgdreme [KNOO, MWSO05], which
slides a time window of fixed, small lengtt along the time line in order to cover
realistically sized schedules. Most probable ttajees are only generated within this
window, which renders the problem exponential omyN <« Ng. This effectively
eliminates one of two exponential dependenciesséloend being the number of station
and product states considered. Additionally, weseatthis plan assessment method to
enable plan assessment for multiple products sametiusly.

Closest to our work are verification methods sushpeobabilistic model checking
[RKN+04], online verification [ASBO7], or probabdiiic verification [MSWO04]. Plan
assessment could possibly be formulated as a piishabmodel checking problem.
However, model checking algorithms do not allowtepswvise approach like our time
window shifting, i.e. they have to regard the wheltghedule at once. Probabilistic
verification [MSWO04] deals only with single moskdily behaviors, whereas we have to
consider many goal-violating (and achieving) bebes:i And all of these methods
usually focus on models of single systems suchaes [ASB07]. In contrast, we model
a manufacturing facility and the products it preaess We see our self-assessment

Receding Time Horizon Self-Tracking and Assessrifmmfutonomous Manufacturing Page 3

capability as a complementary block, which can suppther self-X methods such as
self-optimization [Gau05] in achieving the autonongeded in the envisioned factories.

2 Example: Metal Machining and Assembly

Our factory test-bed — an iCim3000-based Fese&xiBle Manufacturing System -
consists of conveyor transports, storage, machiamyjassembly. It serves as basis for
hypothetical example scenarios, where a schedalexdsiles the manufacturing of toy
mazes (Figure 1-1) and robot arms. A maze conefstn alloy base plate, a small
metal ball and an acrylic glass cover fixed by rhetas. It is manufactured by first
cutting the labyrinth groove into the maze baséeplthen drilling the fixation holes,
putting the ball into the labyrinth, putting theags cover onto the base plate and finally
pushing the pins in place to fixate it (in our ahst scenarios, we disregard transporta-
tion). For the robot arm, alloy parts for its bratk have to be machined. On its route
through the factory a product might get flawed wheorked on by faulty stations.
Machining stations are suspicious candidates, Isecéheir cutter might blunt during
operation and is then more likely to break. A broleutter severely damages maze
products (see Figure 1-1). Vibration sensors pm@ydrtial information about possible
failures, which is, however, ambiguous: some coreptsigenerate random vibrations,
and thus not every vibration means that a compoisefaulty. We assume that, with
some probability, vibrations in the assembly cagger signals in sensors of machining
stations. Here, a vibration is detectedai;4:ion, While the machining station is cutting
a bracket for the robot and the maze is being dsleehisee Figure 2-1). Is the vibration
an indicator for a blunt cutter, and how does tmssibility affect the plans? This
scenario comprises one machining and one asserdtlgrs with one maze and one
robot being scheduled for manufacturing.

CNC » Maze Bracket1i1 [Bracket1-2] [Bracket2-1 H Bracket2-2
Transport 1_] D

Assembly | Ball \ Cover || Bolts |

tv Lraton

Figure 2-1: A visualisation of a schedule of a maze (dark) and a robot arm (bright).

3 Plan Assessment with Predicted System Behaviors

ComputingP (G;|0%%) for a manufacturing plaf®; requires to predict whethd; will
reach a state that entails a successfully finishexdiuct. We use an approach that
generates possible system state sequences, cgBisth trajectories, over a time
window of lengthN [KNOO, MWSO05]. We differentiate among trajectoriésit lead to

Page 4 P. Maier, M. Sachenbacher

goal-achieving states and those that lead to go#dting states. We combine it wilfx
best approximation, enumerating only thenost probable state sequences within the
window, and a receding horizon scheme that stiftgtitme window along the time line
to cover larger schedules. We assume a given skeh&daf manufacturing operations,
i.e. a sequence ofs tuples((piq, cia, t, @)}, Where a tuple specifies that compongpt
performs actiona on productp;; at timet. It can be seen as a composition of the
individual plans®P; for each product, which are sequences of actinn¥, ... IS a
probabilistic model that encodes factory statiod product behavior of those stations
and products occuring ir§. It also encodes possible observations. It defiaes
distribution Pr(Xt*1 | X*) over possible state transitions given the curpiant state
and a distributiorPr (0t | X') over possible observations given the current sktés

a vector of variableX* characterizing a system at timewhereStt (M,s..ss) IS the set

of all possible (atomic) assignment vectors X8t and St(M,s.ss) iS the set of all
assignment vectors over all time steps, i.e. the set of all possible systejedtories.
These trajectories can go beyond current timéherebypredicting system behavior.
Note that hereafter we deviate from standard rwia@ind donot write vectors of
values/variables bold face, as we mostly deal w#btors. So unless stated otherwise
Xt, e.g., will refer to a vector of variables.

We model all products as finite state machines with states. Thereby system states,
with respect to some given modeled prodijatan be partitioned into two sefs and

Ei, respectively representing ,product ok" (goal etatand ,product flawed“(goal-
violating states). We model the interactions ofhe@mfinished) product with factory
stations, following our underlying assumption tisaime ?; succeedsas long as no
station working it fails. This simple modeling could be extended to coveclzer set of
product states thafj,product ok", ,product flawed. G; represents the success event,
where success means ttRatgenerates a product according to its specificatboocess

. . . tp. .
of P; is modeled as a constra@ytencodlngxg_:}jk == MARKED, i.e. that the product
t?i)

identified byp;q must be in an ok-state at finishing time. The single variabla’;idlok
is part of the plan assessment model. Finallyaa 8 successful if it entailsG;, i.e. if
G; is consistent with all system states possibler @fteexecution. We defing; as the
set of all goal-achieving trajectoriesG; = {0 € St(M,gssess) | 6G;} and Ei ={0 €

St(M,ssess) | 0G;}. This leads to the following definition of succgssbability:

Definition 1. Plan Success Probability Given a model Mg , @ Sequence of obser-
vations 0%t from the start of the manufacturing process schedule up to current time t
and a manufacturing plan 2; , we define the probability that P; will succeed as

degi Pr(eJ OO:t) Zeegi Pr(Q'OO:t)
Pr(o%) Xgeo Pr(6,0%%)

P(Gilo™) =) Pr(o | o) =

0€g;

In most cases, it is infeasible to compur€g;|0%t) exactly as it requires enumerating
all trajectoriesd = St(M,ssess) 10 generate the complete distribution. Approximi

Receding Time Horizon Self-Tracking and Assessrfamfutonomous Manufacturing Page 5

can be computed based on a reduced set of tragsorc St(M,ssess)- IN [MSR+09]
we introduced an approach that enumerates only thest probable trajectories:

Yoeg,) Pr(6,0%")
Yoco) Pr(6,0%t)

0(k) is the set ofk-best trajectories ang;(k) € 0(k) the subset of goal-achieving
trajectories. With increasindge the approximation eventually becomes the exact
probability Pr(G;|0%%). Computing meaningful hard boungsandp,, turnes out to be

a challenge [MSR+10], and is still an open problém[MJW+10] we show how to
compute statistical bounds based sampling system trajectories rather than computing
thek-best.

PH(GiI0)l0%) =

4 Model-Based Computing of Plan Success Probabilities

As modeling framework we use probabilistic hieracahconstraint automata (PHCA)
[WCGO01], a formalism tailored to suit embedded syst development and model-
based tracking of complex, uncertain system belnainoparticular it allows modeling
of probabilistic failures as well as parallel compion of components. A PHCA is a
hierarchical automaton with a set of locati@disconsisting of primitive and composite
locations, a set of variablég a set of transition¥ and a se€ consisting of behavior
constraints (propositional formulas) for locaticasd guard constraints for transitions.
For each locatioX; € ¥ a transition functiorP;(X;) defines distributions over subsets
of outgoing transitions ok;. I1 consists of dependent, observable and commandable
variables. The locations represent hidden modeéeeomodeled system. The state of a
PHCA at timet is a set of marked locations called a markitfgc X. To avoid ambigu-

ity with “state” we will refer to markings rathenan PHCA states. A sequence of such
markingsd = (mt,m**1, ..., mt*") is called a PHCA trajectory. The execution seman-
tics of a PHCA is defined in terms of possible eNioins of such markings. We model a
plant as single PHCA, where station behavior adyect states are modeled as compo-
site locations. E.g., our example model consistsvof composite locations for machin-
ing and assembly as well as two composite locafionthe maze and the robot.

Most Probable State Sequences As Constraint Optimization

In [MWSO05] we casted the problem of finding mosblpable sequences of PHCA
markings within a window ofN time steps as computing the best solutions to a
combinatorial optimization problem. Executing a PA@iven a markingnt, means to
identify possible target locations to be markedtat 1, probabilistically choose
transitions and check consistency of observatiomscammands with transition guards
as well as behavior of the targets. Also, it ineslvchecking for interdependences
encoded in behavior PHCA constraints, e.g., thatbeation occurs if and only if a
vibration occurs in machining or in assembly. Hyah correct marking must be
ensured regarding, e.g., the hierarchical struaitieePHCA and initial marking.

Page 6 P. Maier, M. Sachenbacher

Given an N-step time window, these execution semantics areodsd as soft
constraints [MRSO06] for all time points in this gmvindow and the transitions between
them. This representation unfolds the PHCA over khdime steps and forms a
constraint optimization problem (COPR = (X,D,C) (similar to definitions in
[MRSO06]), whereX = {X;,...,X,} is a set of variables with a corresponding set of
finite domainsD = {Dy, ..., D,}, andC = {(;, ..., (4} is a set of constraints;, F;) with
scopeS; = {X;1, ..., Xim} € X and a constraint functiof; : D;; X ... X Dy, — [0,1]
mapping partial assignments of variablesSirnto a probability value if0,1]. For all
time pointst = t,..ty, hard constraints irC (F; evaluates to{0,1} only) encode
hierarchical structure as well as consistency ofeolations and commands with
locations and transitions, while soft constraimsCi encode probabilistic choice of
initial locations at = t, and probabilistic transition$l* € X encodes PHCA variables
and auxiliary variables (needed to, e.g., encodeahthical structure). A set of binary
variables Y = {X] ,X[,..} € X, the solution variables ofR, encodes location
markings. Thek-best solutions tdR are assignments t8 which, extended to all
variablesX, maximize the global probability value in termstioé functionsF; (i.e. the
best solution has the largest probability value, $bcond best the second largest etc.).
These assignments correspond to the most prob&ll&Rystem trajectories. The size
of R is essentiallyN times the PHCA size, since the encoding doesattefh the
hierarchy (see [MWSO05] for details).

To track multiple products, in addition to modelirpch product with its own
composite location we have to ensure that if aetima productp;q is worked by
componentc;y, a link between the two is established. We do Hyisadding a hard
constraint, called link constraint, that enforcegiadity of two helper variables. The
scheduleS determines which products and components are tomked in the current
time window, and according link constraints are extithefore trajectory enumeration

(see Algorithm 4-1). For example, if produpfy = maze and component;q =
machining are to be linked, a constraint over helper va€igll,,,¢, Xmachining With

domainDy oduct faule = {OK, FAULTY} is added, enforcingaze = Xmachining: Xmazes

as part of the product composite location’s tramsiguards, determines the maze's fault
transition, whileXpachining: OCCUring in the component's location behaviorst@mts,
explicitly identifies fault locations relevant ftlne product. Thereby equality of the two
variables enforces that the maze becomes flawdkifmachining’s cutter is broken.

Plan Assessment Based on Time Window Filtering

Let the end time of a manufacturing pldh be tp,. Typical schedules cannot be
assessed with a single time window. Therefore, ¢ & relatively small time window
along the whole time line of a given schedule,luntoverst,,. When we finally reach
tp;, We sum over goal-achieving trajectories amongktest to comput® (G;|0°").
Before each shift trajectories of lengthare generated, ranging ovgt.ty. Then the
time window is shifted one step forward and theritigtion Pr (X't = st1, 0%t = 0%%)
over the new initial states is computed recursivielyterms of distributions over

Receding Time Horizon Self-Tracking and Assessrfamfutonomous Manufacturing Page 7

previous initial states at, and over trajectories withity..t, (where0%t is the vector
of observation variables from the start of the dcife to t). Note the following
notational conventions: we abbrevide(X‘t = st1,0% = 0%) to Pr(s't, 0%"). Start
and end times of the time window are denoted &st, andt = ty. t = 0 is the start
time of the schedule antl=t, is the current time point, i.e. no observations ar
available aftert.. Unless stated otherwise, refers to the current time point. The
notationst + x andt — x indicatex time points ahead or behimdFor example, states
s% s1, sto, sty st st represent the first and second state relatived@sthedule start,
the first and last state within the time windowe tburrent state and the state when
producti is expected to finish. Observations are indexedagously. FinallyS°, Sto, ...
denote summation variable vectors for states.

1
Pr(otlit)'
tion over system states at t, recursively as

Pr(st1,0%) = a Pr(st, ..., S, ot1it|Sto) pr(Sto, o%t)

Sto,stz2,. StN

Proposition 1. Let a = Given observations 0%t we can compute the distribu-

Proof. Observe that
PT(Stl, OO:t) = ZSO,Sl,...,StO,Stl,StZ,...,StN PT(SO, Sl, ...,Sto, Stl, Stl,StZ, ...,StN, OO:t)

= 250,51,...,StO,Stl,StZ,...,StN PT(Stl, Stz, ...,StNISO, ...,Sto, OO:t) PT(SO, ...,Sto, OO:t)

Then with Markov property for the system states #mel observationsSt, ..., StV
independent af?, ..., St-1 and0%%) we have

= Ysos1 stost stz stn Pr(s™, 8%, ..., SN|Sto, ot1) Pr(SP, ..., 8%, 0%F)

=& Y051 gtosts stz sty Pr(st, 8%, ..., SN, 0t |St0) Pr(SP, ..., %, 0%F)
= a Yo gta_stn Pr(st, 8%, ..., 80, 0tt|St0) Yoo oty Pr(S°, ..., 8%, 0%F)
= & Yo gta,_stn Pr(st, 8%, ..., S0, o'1t|Sto) Pr(St, 0%)m

This recursive term represents the exact computaéoumerating all trajectories. As
this is typically infeasible, we approximate basmd the k-best trajectories instead.
Given these trajectories, we compute approximatirsa and the distribution
Pr(Xt,0%) (t, relative to the new window). For every shift otlime window we
add Pr(X%, 0% as constraintCs, to the original constraint problem. A modified
external solver then computes themost probable trajectories along with their joint
probabilitiesPr(stoty, 0%t) = Pr(st, ..., stN, ot1:t|sto) Pr(ste, 0%t) for the next shift.

Algorithm 4-1 implements the Time Window Filterii§gWF). Consider the following
example (illustrated in Figure 4-1), where we fooushree system states fraf)qess:

1) a state were both maze and robot arm are “ok§ &ate were the cutter broke and
thus led to a flawed robot, but the maze is “oktl &) like 2, with the difference that
here additionally vibrations in the assembly ocdur@ot only caused by the
blunt/broken cutter). These states are encode@camidn variable assignments, e.g.

Page 8 P. Maier, M. Sachenbacher

XL = M. Note that for clarity the location doma{iMARKED, UNMARKED} is

aze.ok —

abbreviated tgM, U} and the super script’ is omitted in Figure 4-1.

I: function TWF(W/Y, o', S, k)

©* «— ESTIMATE(W), 0", S, k)

WA, | < SHIFTTIMEWINDOW(W/Y, ©%)
return (0", W,)

4: end function

5: function ESTIMATE(W}Y, 0™*, S, k)

6: (R, N, to) — WL

7: C" — R.C'U ASUNARYCONSTRAINTS(00")

8.

9

0

C" « C'U PRODUCTCOMPONENTLINKS(S, R)
R = (RX,R.D,C"
O* «— SOLVE(R/, k)
return @*
11: end function
12: function SHIFTTIMEWINDOW(W,Y ,©)
13: (R N, t()) — Wtj(\:
14: if to = O then

15; Remove constraints for initial location marking from R

16: end if

17: Ssp «— {X;{1 |L is location marking variable}

18: Fsp « {s"' — SUMTRAJECTORIESFORSTATE(s"!, N) |s'* € TIMESTEPSTATES(O*, 1) }

19: Csp < (Ssp, Fsp)

20: R.C —R.C'UCsp > overrides previously added Csp

return (R, N, to + 1)
21: end function
22: function SUMTRAJECTORIESFORSTATE(s'?, V)

return a Y geo gta gty Pr(s, 52,..., 8N, 01| §%) Pr(St0|o%t)
23: end function

Algorithm 4-1: The Time Window Filtering algorithm. Function AsUnaryConstraints
maps observations to unary constraints over observation variables, function
TimeStepStates maps a set of trajectories to the set of states for the given
time point. Function ProductComponentLinks generates product-
component link constraints.

A time window of N = 2 is used andk = 6 trajectories are enumerated. We use the
notationW}N = (R, N, t) for a time window of lengtiV starting at time point, with
behaviors encoded in COR. Trajectories are numbered 1 (most probable) tirc
(least probable). At first, the time windd®}?> does not cover the product finishing time
and thus success probabilities can't be computed.time window is shiftedif),

and in doing so probabilities of trajectories |le@dto the same initial state in the next
window are summed up. They are normalized using adp@roximation a* =

— L This is done for all initial states, and there¢hg approximate initial state
Loeo+ Pr(6,099)

distribution for the next time window is createdow the finishing time is covered.
Again, k = 6 trajectories are enumerated within the new timadaw. Only one of
these trajectories is goal-achieving for the robon, while all of them lead to a
properly finished maze. Summing over the respedjval-achieving and normalizing
over all enumerated trajectories yields approxinsatecess probabilities for the maze

Receding Time Horizon Self-Tracking and Assessrifmmfutonomous Manufacturing Page 9

and the robot arm. Note that the approach readéglsd with unknown future
observations, which are simply handled as additionkown variables.

t
St (Massess) move window 1 step
Xmaze.ok = M A > .

Xrobot.ok = M

Xmachining.blunt cutter = U

=

> > > >

Xmachining.blunt cutter.cutter broken

Xassembly.vibration.vibration = M

Xmaze.ok = M

Xrobot.ok = U

= 1 > 2=

X machining.blunt cutter = =M

X machining.blunt cutter.cutter broken = M

Xassembly.vibration.vibration =

Xmaze.ok = M

Xrobot.ok = U

X machining.blunt cutter = M

> o2 B> 2>

Xmachining.blunt cutter.cutter broken = M

|
|
t—1

I vibration products
. w2 observed finished

Xassembly.vibration.vibration = M 0 (

=
-

Xmazeok =M A

Xrobot.ok =M A

compute

A success probability

Xmachining.blunt cutter =

Xmachining.blunt cutter.cutterbroken = U A

Xassembly.vibration.vibration = M

Xmazeok =M A
Xrobot.ok =U A

Xmachining blunt cutter = M A|) —9=

Pr(0
i %
1,2,3,4,5,

2123456 7(0)
Pr(G 0p:t) = = ———
i) 2123456 P7(0)

¢ — A
Xmachining blunt cutter.cutter broken = M~ A

Xassembly.vibration.vibration =

Xmazeok =M A

Xrobot.ok = U

Xmachining blunt cutter = M

i eyt 4T
Xassembly.vibration.vibration = M (
0 t+1 t+2 t+3
\products

finished

Figure 4-1: Above: Moving time window W one step, generating time window W2 ;.
Below: Computing success probabilities after k = 6 trajectories have been
enumerated in the new time window W2 ;.

5 Results and Discussion

We implemented the constraint-basgetlest enumeration of most probable trajectories
as described in section 4 and ran experiments ontelncore 2 duo machine with 2.53
Ghz and 4GB of RAM, using a simple factory PHCA mlotsee Figure 5-1) for our
scenario. Table 5-1 presents results for our saemath Ng = 9, which can be solved
without TWF with anN = 9 time window. It shows that plan assessment caredd
identify the robot arm to be jeopardized, given tieservation of a vibration, while
clarifying that the maze's success is not infludndatuitively, only products which

Page 10 P. Maier, M. Sachenbacher

further use suspicious components (machining)iketylto be flawed. We could solve
instances of our scenario with schedule lengthoup! time steps, which we generated

machining

cutter blunt
cmd = noop; 1.0

Q

idle
Vibration = OCCURRED

cmd = cut; 0.5
cmd = hQop; 1.0 cut
Vibration = OCCURRED - 0.
cmd =\cut; 0.5
cutter broken ecmd = cut; 0.5 Vibration
Vibration = OCCURRED U

U cmd = cut; 0.9
cmd = cut; 0.1
;1.0
assembly
vibration
——————————————————————————————————————— N
cmd = noop; 1.0 cmd # noop; 0.8 cmd # noop; 0.8

idle no vibration
Vlbratlon = NONE | ¢cmd = noop;1.0 | Vibration = NONE

1

1

1

1

1

1

1

1

1

: op; 0.2 cmd # adop; 0.2
' cmd = noop; 1. 0 cmd # noop; 0.8
: vibration

| Vibration = OCCURRED

1

1

1

1

cmd # noop; 0.2

cmd = asse

Figure 5-1: PHCA composite locations for maching and assembly stations.

Table 5-1: Success probabilities for the robot arm and the toy maze over different k
with Ng = 9. The accoring COP has = 1200 variables and = 1250
constraints. First col.: exact solution. Last row: COP solving time.

k
exact 10 5 4 3 2
Pr(Gmazel ---) 1.0 1.0 1.0 1.0 1.0 1.0
Pr(Grobot| --+) 0.53 0.65 0.74 0.81 0.78 0.74
time 3.0 2.0 1.8 1.8 1.8 1.8

by simply multiplying scheduled actions. Tweakinglver parameters might gain
another one or two steps, but eventually the expiadedependency on schedule length
exhausts resources (memory in this case). In anpnary experiment using our novel
TWF method we could solve a problem wit =29, N =5 in 240 seconds. We
solved the problem by moving the time window alding whole schedule length, doing
24 shift operations, where each interleaved esiimatep took 4-10 seconds. Table 5-2
shows how much the success probability for the raleeiates from the exact solution

Receding Time Horizon Self-Tracking and Assessrifmmfutonomous Manufacturing Page 11

when varyingk andN. Clearly, ifk is big enough to enumerate all non-zero trajeesori
(> 80), TWF yields the exact solution independentlydaf When choosing only one
trajectory, increasingy seems to reduce the error.

Table 5-2: Comparing the success probability error (above) and runtime (in seconds,
below) for the robot product for different number of trajectories k and time
window sizes N.

k|| N=1N=2N=3N=4N=5N=6N=7TN=8N=9
9 0.46 046 046 046 0.26 0.21 0.21 0.21 0.21
39.77 36.14 34.44 35.84 50.82 57.56 57.14 47.50 27.65
3 0.42 046 046 046 046 025 0.25 0.25 0.25
39.68 36.08 34.39 36.54 50.85 58.05 57.58 47.28 27.97
4 0.26 030 036 036 036 0.28 0.28 0.28 0.28
39.56 35.96 34.35 36.02 50.81 58.62 57.34 48.88 27.94
5 0.25 031 034 032 026 0.21 0.21 0.21 0.21
39.54 36.47 34.55 36.68 51.25 59.26 58.61 48.15 29.30
10 0.06 0.13 0.09 0.09 0.11 0.12 0.12 0.12 0.12
40.92 36.09 34.89 36.49 53.37 59.68 59.11 48.45 28.34
95 0.00 0.02 0.03 0.06 0.06 0.05 0.05 0.05 0.05
41.03 36.66 35.49 37.73 54.97 61.95 61.73 48.50 28.62
50 0.00 0.00 0.00 o0.01 0.01 0.01 0.01 0.01 o0.01
40.32 37.19 37.69 39.19 54.46 60.72 60.04 50.79 29.34
100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
40.89 39.26 37.53 39.23 54.87 61.56 60.76 50.56 29.98

The measured runtimes indicate feasibility withitag-to-day computation cycle. TWF
allows to address bigger schedules and dependslinabrly on the number of shifts.
However, runtime increases considerably, especialign comparing the runtime for
solving a problem witlNg = 9 (4s at worst) with the TWF performance. Partlgtisi a
problem of our prototype implementation, which lsasne overhead. However, there
are two other problems: First, computing the distion over initial states for the next
time window, even if only approximated, yields @ lmonstraint over many location
variables. It renders the trajectory enumerati@p stonsiderably harder and has the
effect that above= 30 locations in the assessment model our solver faiksven load
the COP. Second, because the COP is changed wetly shift in TWF, we did a
preprocessing step on-line that usually can bentakieline. The first problem could be
alleviated with smaller time windows, and otherveos might be a remedy. However,
we are not aware of any solvers that suppelest solution generation for constraint
optimization. For the second problem it might stéfto modify the preprocessing step
to allow off-line computing again. Further improvents could be to move the time
window multiple steps at once, decreasing the nurabestimations, and to only shift
the time window to keep up with the schedule. Ghlgn assessment is requested the
window is moved towardsp,. All in all, we think that TWF makes a step towaal

practical solution of the plan assessment problermma number of challanges remain.

Page 12 P. Maier, M. Sachenbacher

6 Conclusion

Within an autonomous factory setting, we presemtetvel method to solve the plan
assessment problem, which asks whether a prodasemily being processed will be
successfully produced. The method computes theuptsdsuccess probability by
tracking thek most probable factory behaviors and the prodstites within a small,
fixed-length time window. To cover large schedules time window is moved along
the time line, computing a distribution over initistates of the new window from
enumerated trajectories in the current window. @retiminary results indicate that our
novel algorithm can indeed solve problems that ¢hotethat enumerates trajectories
over the complete schedule length cannot solve.

References

[ASBO7] Althoff, M.; Stursberg, O.; Buss, M.: Omé Verification of Cognitive Car Decisions.
Proc. IV-2007, 2007.

[BBWO7] Beetz, M.; Buss, M.; Wollherr, D.: Cogmi¢ Technical Systems --- What is the Role of
Artificial Intelligence? Proc. KI-2007, pages 19--42, 2007.

[FVL+06] Ferrarini, L.; Veber, C.; Luder, A.; Pdd@, J.; Kalogeras, A.; Gialelis, J.; Rode, J,;
Wunsch, D.; Chapurlat, V.; e Informazione, D.E..n@ol Architecture for Reconfigurable
Manufacturing Systems: the PABADIS'PROMISE AppraadAroc. ETFA-2006, pages
545--552, 2006.

[KNOO] Kurien, J.; Nayak, P. P.: Back to the RFetdor Consistency-Based Trajectory Tracking.
Proc. AAAI-2000, pages 370--377, 2000. AAAI Press.

[MSWO04] Mahtab, T.; Sullivan, G.; Wiliams, B. CAutomated Verification of Model-based
Programs Under Uncertaintyroc. |SDA-2004, 2004.

[MIJW+10] Maier, P.; Jain, D.; Waldherr, S.; Sachactier, M.: Plan Assessment for Autonomous
Manufacturing as Bayesian Inferenderoc. Kl 2010, 2010.

[MSR+10] Maier, P.; Sachenbacher, M.; Rihr, T.; Kuh.: Automated plan assessment in cognitive
manufacturing.Adv. Eng. Informat., 2010. To appear.

[MSR+09] Maier, P.; Sachenbacher, M.; Ruhr, T.; Kuh.: Constraint-Based Integration of Plan
Tracking and Prognosis for Autonomous Productrac. KI-2009 in LNCS, Paderborn,
Germany, 2009. Springer.

[MWSO05] Mikaelian, T.; Williams, C. B.; Sachenbachkl.: Model-based Monitoring and Diagnosis
of Systems with Software-Extended Behavidiroc. AAAI-2005, Pittsburgh, USA, 2005.
AAAI Press.

[RKN+04] Rutten, J.; Kwiatkowska, M.; Norman, QRarker, D.: Mathematical Techniques for
Analyzing Concurrent and Probabilistic Systems, volume 23 of CRM Monograph Series.
American Mathematical Society, 2004.

[WCGO01] Wiliams, B. C.; Chung, S.; Gupta, V.: Modestimation of Model-based Programs:
Monitoring Systems with Complex Behavidproc [JCAI-2001, pages 579--590, 2001.

[MRSO06] Meseguer, P.; Rossi, F.; Schiex, T.: Haakbof constraint programming, chapter 9: Soft
Constraints, pages 281-328. Foundations of Arifiitelligence. Elsevier, 2006.

[Gau05] Jiurgen Gausemeier. From mechatronics feopémizing concepts and structures in me-
chanical engineering: new approaches to designadetbgy. Int. J. Computer Integrated
Manufacturing, 18(7):550-560, 2005.

