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Abstract

Context-aware computing generally focuses on abstracting the situation of individual en-
tities, such as persons, places and objects, making this information available for further
computational exploitation. Those resulting entities’ contexts allow a wide spectrum of
application cases in various domains, foremost in mobile computing and internet appli-
cations. With contexts from multiple entities available, the degree of alikeness of those
contexts poses an interesting piece of information. For this purpose, we propose a con-
text model capable of easily identifying affinities among contexts. This multi-dimensional
context model is inspired by geographical map models, which are generally applicable for
geographical proximity management. We have discovered that geographical proximity can
be leveraged to contextual proximity depicting the alikeness of different contexts. Hence,
our goal is to apply proximity detection methods from the location-aware computing
domain on context-aware computing. The context model has been named the contextual
map, representing an entity’s context by a set of multiple contextual attributes in a multi-
dimensional vector. The representation of entities’ contexts as multi-dimensional points
in Euclidean space allows the application of location-based proximity detection in order
to identify affinities between contexts that encompass far more contextual information
than just location. This work presents the concept of the contextual map and discusses
its prototypic application in identifying large clusters of similar contexts that aim to facil-
itate the adaptation mechanisms of context-aware systems. We especially emphasize the
utilization of proximity and separation detection on general non-location contexts, hence
enabling to dynamically monitor their affinity to each other.
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Chapter 1

Introduction

Context-aware computing focuses on utilizing any information describing the current con-
text of an entity. An entity is an abstract term that may represent a place, a person, an
object, etc. Hence, context is the information that is comprised of the situation of such
an entity, derived from its current surrounding. So basically, an entity’s context is an
abstract description of its physical and logical (non-physical) surrounding, captured by
context sensors. The physical surrounding depicts the physically measurable environment
of an entity, such as its location, environmental conditions and influences, physical move-
ment, velocity and so on. An entity’s logical surrounding is described by all non-physical
characteristics encircling the entity, e.g. relationships of all kinds (e.g. to other entities),
the entity’s local attributes, etc. Together, the physical and logical characteristics of an
entity and its surrounding define its situation, and thus, its own unique context.

While the physical aspects of context are acquired directly by hardware sensors, such
as motes or mobile devices, other context sensors provide additional information from
databases, the infrastructure hosting mobile devices and sensors, etc. to supplement the
entity’s contextual information on the logical (non-physical) plane [36, 42]. The decisive
purpose of context-aware systems is to utilize the acquired information to make it available
to a ubiquitous environment of entities and - finally - users roaming in that environment.
This procedure allows the pervasive utilization of contexts belonging to diverse entities,
i.e. places, persons, objects. The utilization of contextual information enables context-
aware systems to automatically adapt applications to their users’ preferences. At this, the
utilization of an entity’s single context is equally important as the utilization of meshed
context consisting of multiple contexts belonging to different entities.

This work focuses on the contexts of individual entities. To store and exploit such con-
textual information, context-aware systems utilize sophisticated context models. Those
models represent the context captured from the real-world in a way suitable for further
processing, such as identifying contextual coherences and inferring new context. An im-
portant aspect in context-aware computing is the identification of similar contexts, i.e.
entities sharing similar situations. It allows to identify and evaluate relationships among
entities, which is applicable for a wide spectrum of higher-level application cases.
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1.1 Problem Statement 1 Introduction

1.1 Problem Statement

As stated, context-aware systems aim at making individual context information ubiq-
uitously available. With each entity possessing its situational context, context-aware
systems are usually expected to adapt to each of the entities’ context individually. E.g., a
user visiting a smart exhibition wishes to receive information about exhibits on his PDA.
However, only a small subset of exhibits is suitable to the visitor’s situation: only those
that are located in his current hall and fitting his personal interests. Hence, the context-
aware exhibition system needs to adapt to each visitor individually. With an increasing
number of entities and an increasing level of adaptation complexity, the context-aware
system’s context adaptation mechanism gets increasingly elaborate. Let us keep in mind
that a context-aware adaptation process may include large numbers of context-attributes
from many highly heterogeneous context sources, clearly extending our fairly simple ex-
hibition example. Following this observation, context-dependent adaptation mechanisms
do not scale well under the discussed circumstances.

Instead of regarding individual entities, efforts can be significantly reduced by address-
ing groups of entities, which share similar context, i.e. which are in similar situations.
Hence, a context-aware system needs to uniquely adapt to such sets of entities with simi-
lar contexts instead of adapting to each individual one. Recalling the exhibition example,
identifying groups of visitors in adjacent exhibition halls with similar interests yields the
definition of entity sets in which all entities (visitors) have contexts (situations) similar
to each other. The context-aware exhibition system may restrict to adapting to those
visitor groups providing each group with the same information. In summary, we aim
at identifying contextual similarity among entities, which possess similar situations, i.e.
contexts, in order to determine groups of entities sharing similar context.

The deduction of a set of similar contexts may be labeled as a contextual similarity
query. Given a reference context, such a query outputs all entities whose context is
similar to the reference context. Since the reference context serves as the center point
for identifying contextually similar entities, it is to be regarded as the query point for
the contextual similarity query. The applicability is straight-forward: with a query entity
given, many application cases require knowledge about entities with similar situations,
i.e. with similar contexts.

Following this argumentation, the examination of contextual similarity implies the
deduction of super-situations that include the contexts of entities, which are similar to
each other. Such super-situations correspond to the union of situations belonging to
sets of entities with similar contexts. Thus, a super-situation defines the contextual realm
denoting a unified contextual representation of those entities, so that this contextual realm
abstractly depicts the union of their situations. Hence, the context adaptation process
of a context-sensitive system is simplified, since it needs to adapt to the super-situation
only while addressing all included contexts as well.

The scope of this work is the definition of mechanisms to enable the application of con-
textual similarity and the deduction of sets encompassing similar contexts. In particular,
we cover the following problems:
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• How to formally describe contextual similarity and how to define an according sim-
ilarity metric?

• How to determine similar contexts based on the contextual similarity metric?

• How to reasonably exploit contextual similarity?

With those questions tackled, we derive a foundation for handling entities with sim-
ilar contexts, i.e. entities in similar situations. This applies for both similarity among
individual entity contexts as well as for groups of contextually similar entities.

1.2 Approach in brief

Our approach to illuminate the aspect of contextual similarity is inspired by the principles
of managing geographical proximity in the domain of location-aware systems. In order
to introduce our approach to the reader, we therefore regard an entity’s unique piece
of contextual information: its location. Although generally utilized by context-aware
systems, location-awareness has its own dedicated application domain. Location-aware
systems employ map-based models, which are primarily designed to manage locations
and associated information. Hence, the trivial approach to identify geographical proximity
between entities is to locate them and check the distance between them against a proximity
threshold, which defines entities to be proximate at all.

Although exhibiting a high degree of specialization, location models yield principles,
which can be applied to conventional context-aware-computing as well. We have surveyed
the current research in the domain of location-based services and combined the presented
approaches with mechanisms of general context-aware computing. We have discovered
that the principle of proximity in the location domain can be applied to face certain
aspects of context-awareness, too. The geographical proximity in the location domain
expresses that entities are physically close to each other. By projecting this setting on
more general contexts, contextual proximity may express that contexts are alike or affine,
hence ”close” to each other. Thus, we use the term contextual proximity synonymously
with expressing contextual similarity from this point forward.

For example, one can imagine a weather station’s context expressing its measured
environmental conditions. Hence, an Acapulco-based weather station’s context may be
quite ”close” to the context of a station in Rio de Janeiro since both are located in tropical
climate zones with similar weather conditions. On the contrary, the Acapulco station’s
context may be ”distant” to a weather station in Eastern Russia’s Wladiwostok, which
records frosty climate all-year long. Hence, the contextual proximity between the stations
in Acapulco and Rio is high in terms of being contextually ”close” to each other, whereas
Acapulco and Wladiwostok are contextually distant depicting low contextual proximity.
Concluding, we use contextual proximity to depict the similarity between the contextual
information of weather stations. Geographical proximity does not have any influence on
this approach (the stations in Acapulco and Rio are contextually proximate despite being
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thousands of kilometers apart). Nevertheless, we borrow the principles of geographical
proximity to determine contextually similar entities.

Recalling the introductory discussion from the previous section 1.1, an entity’s context
is comprised of its current situation. Thus, the first step in determining contextual prox-
imity is to decompose the situations of individual entities into contextual attributes so that
each attribute represents a particular part of the entity situation. Subsequently, those
contextual attributes are quantified accordingly and mapped into a multi-dimensional
Cartesian map model - the Contextual Map. As a Cartesian map, the contextual map
is spanned by multiple dimensions. The key idea of this model is to assign each context
attribute to exactly one of the contextual map’s dimensions. In detail we proceed as
follows:

1. Typification: An entities context is typified, meaning that it is decomposed into
contextual attributes.

2. Quantification: The attributes are assessed with values depicting the current con-
textual situation of the entity.

3. Mapping: The context attributes are mapped into the contextual map by assigning
each attribute to one of the map’s dimensions.

Concluding, an entity’s situational contexts is represented as a multi-dimensional point
(or location vector, respectively) in the contextual map model, because all dimensions rep-
resent all contextual attributes equally, and thus the complete entity context or situation,
respectively.

In this setting, this model allows the identification of contextual proximity according
to the Euclidean distance between those points representing individual contexts. The
distance between contexts in the contextual map determines their degree of alikeness.
At this point, the analogy between proximity management in location-aware computing
and contextual proximity in the context map becomes illuminated. Such as geographical
proximity detection requires the location of entities given by coordinates in real-world
3-space, contextual proximity management requires the ”location” of the entities’ con-
texts in the contextual map given by the quantifications of their contextual attributes.
In terms of location-awareness, the Euclidean distance between entities expresses the de-
gree of geographical proximity. In the contextual map, Euclidean distance denotes the
degree of contextual alikeness between entities. Since this context model represents con-
textual information in a multi-dimensional geographic model, it allows the application of
mechanisms known from location-aware computing on non-location contextual informa-
tion. Figure 1.1 sketches the idea behind the contextual map and its contextual proximity
determination.

It remains to be clarified how proximity thresholds are defined in the contextual map.
Concerning geographical proximity, such a threshold is usually scalar defining a distance
when entities are to be regarded as proximate. However, since the similarity among con-
texts may encompass many contextual attributes from complex environments, we need a
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Figure 1.1: Contexts in the Contextual Map

more sophisticated data structure defining contextual proximity. In our approach, we de-
fine the notion of context boundaries as the degree of alikeness between different contexts.
Those data structures texture all context attributes relevant for contextual proximity de-
tection. Since contextual information is highly heterogeneous and situation-dependent,
contextual boundaries are highly application-specific, as the upcoming discussions in sub-
sequent sections will show. We have identified general principles of proximity and separa-
tion detection [61] to employ such context boundaries as a metric for determining affinity
between contexts. More precisely, we monitor dynamic affinities between pieces of con-
text according to their changing Euclidean distances to each other in the contextual map.
Those distances allow us to determine, whether context boundaries have been crossed,
hence whether contexts have become more affine (converging) or less affine (separating).

Based on the contextual map model, sets of contexts that encompass similar (i.e.
proximate) contexts can be deduced. The definition of such context sets ranges from
the identification of contexts similar to a specific query context to the identification of
large context clusters, which are spawned by numerous contexts, which are all similar to
each other. Finally, such a context set can be deduced to a situation definition, which
encompasses the contexts of the underlying context set. As stated in the previous section
1.1, that context set allows context-aware systems to adapt to that situation only, while
serving all corresponding entities of the underlying context set.

1.3 Problem Decomposition

In the previous sections 1.1 and 1.2 we have discussed the motivation of determining
contextual proximity as well as sketching our basic approach to address the problem. In
this section we further decompose the problem into multiple blocks in order to illuminate
the problem definition. We conduct this process by defining a top-level workflow describ-
ing how contexts of entities are applicable for use cases employing contextual similarity.
Figure 1.2 illustrates the workflow, which is described in the following.
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Figure 1.2: Applicability of the Contextual Map

As the figure shows, the data flow is divided into four layers describing which input is
provided to the contextual map model, what output is generated by applying similarity
detection operations on the model, and how this output is utilized application-specifically.
In more detail, the workflow is to be interpreted as follows:

1. Input : In order to perform contextual similarity detection at all we need two pa-
rameters:

• Entities that are to be regarded. For this purpose, the contexts of potentially
many entities are captured and mapped to the contextual map.

• A threshold defining proximity. As described above in section 1.2, we em-
ploy our notion of contextual boundaries to define the degree of contextual
similarity.

The input part - as denoted in figure 1.2 - includes the definition of mapping tech-
niques describing how the contexts of entities have to be abstracted into the contex-
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tual map’s Euclidean space. This context mapping requires to be conducted without
semantic loss of the situational context of the represented entity. Additionally, this
part requires a thorough definition of the contextual boundary data structure. It
defines the desired degree of proximity and is mostly application-specific (mean-
ing that the use case for which contextual proximity handling is actually utilized
specifies the similarity degree, see subsequent tag point 4)

2. Model: After completing context mapping, the contextual map stores each entity’s
context as a multi-dimensional point or location vector, respectively1, denoting all of
the respective entity’s contextual attributes. The basic operation conducted on the
context map is the identification of contexts that are similar to each other. Thus,
the model part particularly includes the architectural design of the context model
and the design of efficient data structures, which enable fast querying of contexts.
Monitoring of dynamic similarity changes among contexts also falls into the model
block. Those changes occur due to constantly changing situations of the entities.

3. Output: The similarity detection operation performed on the contextual map yields
similar contexts. This output can be divided into two possible result sets:

• the basic result is a pair of contexts that are similar to each other, i.e. which
are close to each other in regard to the Euclidean distance between each other
checked against a defined context boundary. This result usually originates due
to a dynamic similarity change, i.e. contexts have recently become similar in
a sufficiently high degree so that becoming relevant to a contextual boundary.
The event of becoming similar is of pivotal importance here, since recurring
results of the same context pairs with the same similarity degree hold much
fewer information.

• A more sophisticated result set extracted from the contextual map is the context
cluster. It includes similar contexts where every included context is similar
to at least one other context. As a prerequisite, a context cluster requires
to determine pairs of similar contexts, since decomposing a cluster results in
context pairs as well. In summary, context pairs form the building blocks of a
context cluster, as illustrated by an according arrow in figure 1.2.

4. Application: Inferring from the output of the similarity operations conducted on
the contextual map, we have identified two application cases:

• A Similarity Query yielding a Similarity Result Set including all contexts or
entities similar to a given a query context or query entity, respectively. The
similarity query relies on the identification of similar context pairs, so that
each context returned by the query is similar to the query context (thus, each
context and the query context denoting a context pair). The similarity query
answers the basic question:

1location vectors are a representation of points in Euclidean space
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”Which entities are similar to a particular query entity?”

• The second possible application is the Contextual Realm interpreted from con-
text clusters. Such a context cluster describes a ”super situation”, which a
context-aware system may solely adapt to while addressing the contexts of all
entities represented in the contextual realm. Thus, the realm is spanned by
the contexts belonging to the cluster. Since contexts denote entity situations,
and since the clustered contexts are similar to each other, a coherent realm
is depicted by the context cluster. The question to answer in this application
case is:

”Which (super-)situation satisfies the contexts of a set of similar entities?”

Again, figure 1.2 illustrates the decomposition of contextual proximity handling into
multiple problems aligned into a causally dependent workflow. It is to be noted that the
denotation of the elements is complemented by an annotation (italic, in parenthesis) de-
picting what they actually represent. E.g. on the input layer, contexts actually represent
the situations of entities and context boundaries define the similarity.

With the workflow above described, the problem statement of this work is outlined.
In the subsequent chapters we give an overview about affected research domains before
approaching the problems identified in this section.

1.4 Structural Overview

This work explores the application possibilities of the contextual map model. Chapter 2
enumerates the work related to our project and delivers a detailed overview of the research
domains related to the contextual map. It especially concerns the areas of context- and
location-awareness. With this discussion given, we introduce our contextual map model
in chapter 3. Chapter 4 explains how the contextual map is employed to monitor affinity
between contexts and how this is related to contextual boundaries. With the basic mech-
anisms defined, the subsequent chapter 5 focuses on utilizing contextual proximity. It is
dedicated to the contextual similarity query and it describes the conceptual mechanisms
of detecting clusters of similar contexts in the contextual map. Subsequently, chapter 6
discusses system-specific aspects that concern the implementation of the contextual map
model. This particularly concerns the application of the contextual map in distributed
environment. The design and implementation of this concept is documented in chapters
7 and 8, respectively. Closing, chapter 9 concludes the contextual map documentation
proposing some additional interesting application cases for the contextual map and giving
an outlook on the enhancements of the approaches presented here.
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Chapter 2

Background and Research Domains

In this chapter we introduce the research domains and related work that converge with
our research. First of all, in section 2.1, we present an overview on related research by
sketching the most important work conducted by other research groups. Subsequently,
sections 2.2, 2.3 and 2.4 summarize the domain of context-aware computing, which is the
decisive cornerstone of our work. Sections 2.5 and 2.6 present a brief overview of location-
aware systems and location-based services, especially discussing principles of proximity
detection in 2-space, which forms our starting point for inferring contextual proximity.
Section 2.7 illuminates another issue, which influences both the application of context-
and location-aware systems: the heterogeneity of sources and technology. The concluding
section 2.8 explains, how the contextual map fits into the research domains described in
this chapter.

2.1 Overview on related Work

This section aims at sampling related work out of the contextual map’s research scope
to provide an according overview. It basically represents a list of publications that have
influenced the conceptualization of the contextual map. An in-depth discussion about the
related work presented in this section is provided in the rest of the chapter in sections 2.2
through 2.7.

2.1.1 Context-Awareness

Prior to the conceptualization of the contextual map, we have surveyed the domain of
context-aware computing aiming at identifying common characteristics in order to gen-
erate a generalized view on the domain. We have analyzed research results depicted by
various groups active in the domain as enumerated subsequently. The works in [22] and
[95] provide surveys about context-aware computing from different viewing angles. Ad-
ditionally, Strang et al. provide a thorough overview about context models [95] whereas
Christopoulou et al. present a generally applicable context reasoning process [36]. In
addition, we have analyzed publications about several context-aware system implementa-
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tions [26, 29, 40, 67, 100] extracting additional important aspects to augment our survey.
The detailed results of this survey, which includes the derivation of a generalized perspec-
tive on the context-aware computing domain, is discussed in the subsequent sections 2.3
and 2.4.

Regarding context models, the contextual map model is quite specialized in nature due
to its narrow focus on contextual affinities. The unquestionably most widespread context
models are based on ontologies [95]. For this reason, the majority of researchers put their
focus on this type of context models [36, 37, 51, 56]. The contextual map can be regarded
supplemental to such well proven context models in the context-aware computing domain,
in order to augment those with contextual similarity handling.

2.1.2 Location-Awareness and Proximity Detection

With the conceptual map, we present a novel concept of a context model exploiting prin-
ciples of the location-aware computing domain for determining contextual proximity. An
important cornerstone of our work is depicted by the principles of geographical proximity
and separation detection Amir et al. [20] and Küpper and Treu [61] have elaborately
examined this issue. As a particular aspect of location-awareness, geographical proximity
detection may be reduced to checking the distance between two mobile entities against a
defined proximity threshold to declare them as proximate or not. It subdivides into two
important problems:

• First, given a query entity, which of potentially many other entities are eligible for
calculating the distance to the query entity? Distance calculation is elaborate. So
obviously, calculating the distance from the query entity to every other entity in
the system is not feasible. Bononi et al. give a short insight into the problem [31].
Nearest-neighbor queries [86, 94] and nearest-surrounder queries [64, 63] examine
a queried entity’s neighborhood and thus, narrow the set of entities, which may
be proximate to that query entity. Hence, such result set of entities is eligible
for distance calculation and thus, proximity detection. Further, locations can be
indexed in efficient indices yielding location indices. Lots of research has been done
on efficient multi-dimensional indices [30, 28, 62, 101, 25, 58, 66], which allow to
approach the proximity detection issue with the help of range queries. A range
query performed on such an index fetches elements from a particular part of the
index. A range query conducted on a location index equals fetching all entities in a
particular given area (or space).

• The second important aspect concerning proximity detection is keeping entity lo-
cations current. Constant tracking of all entities’ locations is inefficient and due to
generally costly location updates not feasible. Amir et al. [20] present principles
to minimize the amount of location updates while keeping the locations as current
as possible. Küpper and Treu [61] have augmented those principles and focus on
optimizing the accuracy of the detection mechanism while minimizing the amount
of location updates committed in a distributed environment. Their work represents
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an important cornerstone for the contextual proximity mechanisms developed in our
work.

The mechanisms for enabling proximity and separation detection allow the definition
and utilization of context boundaries when employed with the contextual map model.
Context boundaries define the distance of contextual information relevance crossing a
specified threshold. A similar scenario is given by Roman et al. [85] where contextual
affinity in ad-hoc network environments in examined.

2.1.3 Related Approaches

An approach, which is similar to our work, is depicted by the theory of context spaces
introduced by Padovitz et al. [75]. As the contextual map, context spaces aim at the multi-
dimensional representation of contextual attributes. Multi-dimensional context spaces
are partitioned into regions denoting bounds of specific contextual situations. Concrete
context states mapped from real world entities are then associated to such context regions
according to their proximity in the context space. The authors of [75] employ their context
space model to maintain stability of contexts in context-aware systems by evaluating and
refining uncertain contextual data, which is represented in proximity of each other in the
context space [77, 78, 76]. Predefined multi-dimensional regions in the context space are
defined by ranges of contextual attribute values, hence defining context situations, which
are considered stable. Those regions are used to map uncertain situations to stable and
known situations.

2.2 Context: Definition and Properties

This section introduces the reader to the context-aware computing domain by examining
the term context in more detail. We begin with the discussion about the definition of
context, so that we can agree on a distinct definition of an ambiguous term. Based on
this discussion, we proceed with arguing about how to model and employ contextual
information from entities in the real world in the subsequent sections 2.3 and 2.4, which
focus on context modeling and on the utilization of context models.

2.2.1 Context Definition

An early definition of context has been presented in 1994 by Schilit et al. [88] who regard
context as a limited amount of information covering a person’s proximate environment.
They have identified the main aspects of context being the subject’s location, its relation-
ship to other subjects and its nearby resources. This early context definition implies that
the notion of context has evolved from the notion of location by enriching it with auxiliary
information. Later on, in 1999, Schmidt et al. [89] have contributed further work about
location evolving to context, decoupling the notion of context semantically from location.
The most notable and broadly accepted definition of context was postulated by Abowd,
Dey et al. [18]. Context has been coined as follows:
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Context is any information used to characterize the situation of an entity, where an
entity can be a person, place or physical or computational object

Many research groups have defined context in accordance to their respectively specific
focus of research. None of them, however, provides a definition, which differs signifi-
cantly from the one quoted above. It is to be noted that the definition equalizes context
and situation, as we have argued earlier already. Most of the research groups in the
context-awareness domain agree that context is a set of the associated situations [36, 22].
Henricksen et al. [49] regard context employed in an application and thus describe context
as the circumstances or situation in which an application’s computing tasks takes place.

A significant aspect in this discussion is the information that actually comprises con-
text [24, 29, 42, 77, 76]. Context, as defined above, is composed of pieces of individual in-
formation. That individual contextual information must be acquired from suitable sources
[22], such as sensors, databases and users. After acquiring and refining elementary context
data, it is put together yielding semantic context. Those sources are highly heterogeneous,
since context can be comprised of all kinds of information. In summary, context comprises
of contextual information which is retrieved from heterogeneous sources.

Context is the physical and logical surrounding of a physical device. While the physical
neighborhood is captured by sensors of the device or the infrastructure, the logical context
information surrounding the entity is mostly derived from known context or profiled by
the user himself. A device’s awareness of context may further be categorized as either
direct, denoting the context is captured by the device’s sensors, or indirect, or indirect in
case context implied (e.g. by the infrastructure) [42].

Context awareness is the ability of capturing and processing contexts [22], enabling
the provision of context-relevant information for entities [18]. Hence, a context-aware
computing environment adapts the information or services it provides to entities’ by
deriving the entities’ needs from their surrounding contexts [49]. In other words, a context-
aware system responds to its environment [88, 18] by continuously sensing the entities’
contexts, i.e. their physical and computational environments [81]. The design of context-
aware systems is subject of the subsequent section 2.4 and will be discussed in depth
there.

2.2.2 Properties of Context

Contextual information and full entity contexts excel a few characteristics, which are
strongly related to ubiquitous computing environments. E.g., those characteristics par-
ticularly include the following:

• Temporal characteristics: Context may be composed of both static and dynamic
contextual information. Static context data is invariant over its lifetime whereas
dynamic data is subject to continuous change [49]. E.g., when regarding context of
people, birthdays and gender pose static contextual information, because they never
change. On the other hand, locations, personal preferences, relationships, etc. pose
dynamic contextual data, since all of the latter is dynamic in nature, i.e. it may
change arbitrarily.
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• Context is highly dynamic: As stated, context depicts an entity’s situational in-
formation as well as its physical and logical surrounding, all originating from the
entity’s environment. Since pervasive environment are constantly changing, the re-
sultant context information and context itself is highly dynamic [88, 22]. Context-
aware systems need to react accordingly.

• Imperfection of contextual information: Context is comprised of an abundant amount
of information. However, none of it can be regarded as accurate if regarded right
after being acquired [49, 78, 29]. Faulty sensor readings, wrong inferences about
context and other errors lead to the falsification of contextual information. This
has a crucial impact on the quality of contexts. Hence, contextual errors must be
identified and handled accordingly (and corrected if possible).

• Heterogeneity: Heterogeneity has a decisive impact on context-awareness since per-
vasive computing environments are packed with heterogeneous hardware and even-
tually heterogeneous context sources [49, 39]. This especially applies for a wide
spectrum of different sensors utilized in pervasive environments. Context-aware sys-
tems have to address the heterogeneity issue by proper interpretation and loss-free
generalization of heterogeneous data (further discussion follows in section 2.4.4).

• Interrelation of contexts: A single entity’s context is usually related to multiple
other entities’ contexts [49]. For one, relationships among contexts can be straight-
forward, such as friendships among persons or communication links among devices.
However, there are also less obvious relations among contexts, for example: if they
are identified by derivation rules. An individual entity’s context may even be derived
from other entities’ contexts if rules for deriving context are clearly defined by inter-
context relationships.

2.2.3 Context Classification

Closing the context definition section, we briefly sketch our interpretation on how to
classify contextual information. We have identified four aspects to base the classification
on:

• Entity type

• Type of context acquisition

• Context source type

• Contextual information type

Figure 2.1 shows how those aspects are related to each other in regard to the context
capturing procedure.
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Figure 2.1: Context Classification Aspects

Entity Type

This aspect focuses on the type of entity, which contextual information belongs to. E.g.,
the context of a restaurant in downtown San Francisco is totally different than the context
of a student at Oxford University. Obviously, both are totally different entities (place vs.
person) with totally different context characteristics. This motivates us to distinguish
contextual data according to their corresponding entity type. Earlier, we have already
mentioned the typification, which is defined as follows [18]:

• Place: depicting a stationary entity at a certain location, e.g. the Times Square in
New York City.

• Person: represented by a human being, presumably a user of context-sensitive ser-
vices.

• Physical Object: a spatial existing object, e.g. a mobile phone.

• Computational Object: can be any abstract entity assigned with or being involved in
a computational task, e.g. an object in memory (object-oriented programming), a
data structure, a mobile phone, a stationary terminal, a user involved in a context-
aware service, etc. As it can be seen, a computational object may well be a physical
object.

Context Source Type

As stated before, contextual information is acquired from context sources. Regarding
figure 2.1, the context sources form the initial point in the context capturing process
and depict what context is acquired. We can categorize the context sources despite their
extremely heterogeneous nature:

• Physical Environment: As stated, the physical environment is a major context
source for many application cases [22, 29, 36, 42, 76, 100]. It is usually captured by
sensor motes or sensors attached to mobile devices.

• Profiled Input: This group of context sources are proactively given information to
enrich an entities context. Most commonly, this information is profiled by a user or
a computing system:
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– User: The user is one of the most common and obvious context sources by
proactively committing input to context-aware systems through a dedicated
user interface. In most cases, this input consists of his personal preferences.

– Computing system: a computing system may act as a context source by pro-
viding input to context-aware systems through well-defined interfaces.

• Existing Context: As stated earlier, context can be used to infer new context. Special
inference components apply inferencing rules to conduct this process. Section 2.4
will discuss this approach in more detail.

• Technical Infrastructure: As stated before, the technological setting may provide
valuable context information [42]. E.g., a cellular network may provide the position
of a mobile host by identifying the current cell in which it is currently roaming. A
mobile device’s battery charge level is another example of this context source type.

Context Acquisition Type

This aspect focuses on the issue of how a device acquires contextual information. As
depicted in figure 2.1, after it has been determined what context is to be acquired from
the context sources, this aspect determines how context is acquired.

A device’s context awareness may be differentiated to be direct or indirect [42]. In
the case of indirect awareness, the entire sensing and processing of context occurs in the
infrastructure while the mobile device obtains its context by means of communication.
In contrast, a device has direct awareness of its context if it is able to obtain context
autonomously by itself and independently of any infrastructure (e.g. by its sensors or
user interface).

Contextual Information Type

A significant aspect about classifying contextual information is the aspect about its kind.
This aspect is of importance after contextual information has been acquired, but not
semantically determined yet. We distinguish between internal and external context in-
formation [81], which may both have a temporal dimension (static vs. dynamic).

External Information The external dimension of context depicts the physical envi-
ronment of an entity [81]. It can be decomposed further as follows:

• Location: Besides the location of the entity itself, this aspect includes the proximity
to other entities, too. Further, a location can be decomposed into three ”shapes”
(inspired by [61]):

– Point / Position: depicting a concrete position represented by a set of distinc-
tive coordinates.

– Zone: denoting an area depicting the location.
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– Distance: denoting the distance to a reference point or a reference zone. A
reference point yields a circular line as the depicted position (circle centered
at a reference point). Defining a location, which is based on the distance from
a reference zone, yields a line, which is equidistant to the reference zone at all
times.

• Environmental characteristics, depicting all the physical and measurable character-
istics of the entity’s current surrounding, e.g. temperature, light level, noise-level,
etc.

• Non-environmental characteristics: The physical surrounding is composed of more
data than merrily environmental data. E.g., the presence of entities in the neigh-
borhood, logical data associated with the entity location, etc. represent additional
context information bound to the entity surrounding.

Internal Information The internal dimension of context depicts the contextual infor-
mation coming from ”within the entity” (i.e. not from its physical surrounding). It may
also be considered as the information supplementing an entity’s context together with
the data about its physical surrounding (external context) [81]. We have identified the
following types of internal context data:

• Preferences: Individual preferences set by an entity.

• Rights and Privileges: The permissions to access restricted resources [40].

• Relationships: As stated, entity contexts are highly interrelated. Hence, single
entities may possess multiple relationships of different kinds to other entities.

• Social Aspects: Especially for persons (users) the question about social status and
social relationships is an important part of context [49].

• Other contextual Attributes: Many other characteristics may be identified for an
entity, all relevant for its context. However, due to the heterogeneous nature of
context-awareness, further discussion is out of scope here.

All of the internal context information can be obtained in two ways. Either they
are set by the entity itself, or they are derived from present context(s). An entity’s
current context holds an abundance of information. That information can be used to
infer new (subsequent) context by defining inference rules, which dictate this inference
process [36, 40]. Naturally, rules can apply to an arbitrary amount of contexts allowing
the derivation of new contexts for multiple entities.
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Temporal Characteristics Additionally to subdividing contextual information by its
origin, we can also classify it according to its timely behavior [49]. Static context data
remains invariant for its entire lifetime. It is usually defined by the user or other static
input. Dynamic data is subject to continuous change, such as sensor readings and new
context inferred from existing context. When regarding contextual information, its tem-
poral characteristics have to be regarded as an additional dimension to their information
type.

2.3 Context Modeling

Context modeling is the process of abstracting and representing contextual information
for further processing. According to [22], this particularly includes the following aspects:

• Identification of the most appropriate contextual information that can model well
enough the specific context in a certain domain.

• Identification and modeling of relations among pieces of contextual information.

• Identification of possible dynamic changes in contextual information and thus, mod-
eling appropriate reactions to such changes.

Hence, modeling context is a technique focusing on how to find and relate contextual
information that captures the observation of certain worlds of interest [22]. It decomposes
into 2 subsequent phases: First, characteristics from real world are abstracted conceptu-
ally, as described in section 2.3.1. Afterward, this concept is mapped on a context model
representing the context (section 2.3.2).

2.3.1 Conceptual Approach

Context modeling approaches can be classified into two, not necessarily disjoint, tax-
onomies [22]:

• Context Theoretic Modeling, based on modeling context as situations and changes
in situation by actions.

• Context Conceptual Modeling, focusing on modeling context by mapping information
to certain concepts.

Both approaches can be supplemented by the employment of modals to extend the
semantics of contexts.
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Context Theoretic Modeling

Context theoretic modeling is an approach, which aims at representing context primarily
by fusing information describing situations of entities, that are dynamically changing by
the occurrence of actions affecting those entities and thus their situations [22].

There are two alternatives in the context theoretical modeling approach. Context may
either be described situation-centric or based on the entities’ actions:

• Context as situation composition: Context is the composition of entities’ situations
captured from the entities’ surrounding as well as derived from events/activities
involving those entities [18, 22, 49]. An entity’s situation may be represented as
a snapshot of observable characteristics (i.e. values or contents), which be sensor
readings, user input, etc. With such a snapshot forming static context at a single
point in time, a composition of entities’ snapshots, over time, forms dynamic context.
Context can further be enhanced by assigning roles to entities and by defining
relations between those [22].

• Context as activity hierarchy : Context can also be considered as a set of activities,
which are evaluated based on their performance (meaning being performed) [81].
The central assumption of this approach is that an entity performs an activity,
so that context is defined around the process of performing an entity (with that
process being the relationship between entity and activity as shown in figure 2.2a).
Hence, performing activities generates context by stating which activities an entity
currently performs, which it may perform and which are not possible to perform.
Identifying the current activity and inferring the according context from it can be
done by analyzing the entity’s surrounding (i.e. its situation1). This activity-centric
context modeling approach further emphasizes an activity hierarchy. The hierarchy
is defined by specialization and generalization of activities (e.g. moving specialized
to running and walking, or generalized vice versa). Using such a hierarchy, the
context of a specialized activity can be derived from a more general parent activity
since contexts of generalized activities are usually known. Figure 2.2 visualizes the
activity-centric modeling paradigm.

To avoid confusion we need to clarify in which relation we employ the term situation.
Both modeling approaches describe the situational context of entities as we described
contextual information argued earlier. The former approach rather focuses on observable
characteristics while the latter approach infers possible actions at a particular point in
time.

Context Conceptual Modeling

This type of context modeling describes context as concepts and the relations among such
concepts as n-ary associations. Furthermore, such type of modeling categorizes context

1even though this step is related to building situational context, note that it merrily includes the
acquisition of sensor data (e.g. temperature, etc.) to model context differently from the situational
approach
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(a) activity-centric context

(b) activity hierarchy (cascading activities and contexts)

Figure 2.2: Hierarchical activity-centric Context-modeling [81]

according to its prevalent characteristics [22]. Context conceptual modeling subdivides
into 2 closely related alternatives:

• Context as conceptual graph: Context is mapped to concepts and relations repre-
senting associations between those concepts [49]. Such concepts may be represented
by entities, so that multiple different entities may be put into relation to each other,
thus modeling their contextual coherence as shown exemplary in figure 2.3. Entities
can be enriched with properties, which are represented by attributes in the model.
The associations between entities are directed and can be classified in 2 dimensions:

– static or dynamic: depending on their timely behavior. Static associations rep-
resent invariant relationships among entities whereas dynamic associations are
classified by the nature of their dynamics. E.g., Hendricksen et al. [49] differen-
tiate between (1) associations derived from contextual data sensed by context
sensors, (2) associations derived from other associations based on defined rules,
and (3) profiled associations proactively defined by entities themselves.

– simple or composite: depending on their complexity and amount of linked
concepts. While simple associations put exactly two entity instances in relation
to each other, composite associations may represent associations with many
entity instances. E.g., figure 2.3 shows a visitor being interested in multiple
exhibited objects by relating both the visitor and the exhibited object by a
composite association. In addition, composite associations may have temporal
constraints, such as the association between visitor and exhibition expresses a
visiting period of maximum three hours.
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This modeling approach is best visualized by a directed graph with the vertices
representing concepts and edges denoting relations between concepts. Figure 2.3
shows a simple example of this technique yielding a directed graph. It is to be noted
that such graph visualizes a modeling approach, which is to be clearly distinguished
from the context models in the subsequent section 2.3.2.

• Context as semantic graph: Being similar to the conceptual graph approach, this
approach is based on representing context as a set of propositions rather than a
graphical representation of contextual information. However, the statements of
propositional languages are visualized as a graph leaving it to be interpreted as a
conceptual graph of semantics.

Visitor Exhibition

Exhibited 
Object

visits

is interested in owns
*Ticket ID

has

[3 hours]

*

Room number

located at

Object ID

identified by

Figure 2.3: Conceptual Context Modeling Example

For both alternatives, contextual information may be either static or dynamic. Static
information is obtained directly from appropriate sources. Dynamic context is captured
by observing changing context over time.

Modals

The semantics of context models can be extended by modals, which are defined as specific
properties of the world into which the context belongs [22]. They are used to describe
changes of contextual information and can be sum up as follows:

• Activity : Context modeling is activity-oriented.

• Belief : Context modeling relies on belief committed by updates and revisions.

• Probability : Context models are probabilistic-based.

• Time: Context models dealing with temporal reasoning.

• Fuzziness : Context models are reasoning about uncertain information.

• Category : Context models are referring to more abstract or more specific contexts
in terms of taxonomical interpretation.
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2.3.2 Context Models

In order to create a context model, the conceptual model from section 2.3.1 has to be
implemented appropriately by abstracting the conceptual model into structured informa-
tion. A context model implements particular mechanisms to represent contexts and thus
provides persistent storage and application of context. This section surveys commonly
employed context models and discusses some associated aspects.

Summary and Evaluation of Context Models

An overview of representation models is given by [56] and [95]:

• Key-value models : Those are the most simple data structures associating context
attributes with specific values of contextual information.

• Markup scheme models : These models consist of hierarchical data structures based
on markup tags including attributes and comments. They are usually implemented
as derivatives of SGML [12]. In some cases, markup scheme models are used
to describe context as extensions of Composite Capabilities / Preferences Profile
(CC/PP) [5] and User Agent Profile (UAProf) [15] to cover the high dynamics of
contextual information.

• Graphical models : A quite intuitive approach to model context is to represent con-
textual entities and their relationships graphically. E.g., the conceptual modeling
approach from the previous section 2.3.1 can be expressed best graphically, as seen
on figure 2.3. Representative examples of graphical context models are listed below:

– Unified Modeling Language (UML) [14] is a suitable instrument due to its
strong graphical component. Its generic structure makes it appropriate for
context modeling

– Object-Role Modeling (ORM) [9] can be nicely utilized to represent context
graphically by identifying facts, enriching those with types and roles, and
putting them into relations and dependencies with other facts. A history com-
ponent may be used to attach a time component to facts, as well as distinguish
them to be either static or dynamic.

• Object-oriented-models consist of encapsulating contextual information into objects.
The information can only be accessed through well-defined interfaces and is therefore
hidden to from other objects. Due to the nature of object-oriented modeling this
approach emphasizes reusability and controlled access to contextual information.

• Logic-based models represent a highly formal modeling approach. It is based on
logics, which define conditions on which concluding expressions or facts may be
derived from sets of other expressions or facts. Those conditions are described by
rules in a formal system, so that the facts, expression and rules put all together
define the context.
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• Ontology-based models use ontologies, which are used to represent concepts and
relations between concepts. They represent a uniform way for specifying the model’s
core concepts as well as sub-concepts and facts, thus enabling contextual knowledge
sharing and reuse.

Depending on the conceptual approach when defining context models, one more real-
ization alternatives from the list above are suitable realization options (e.g. ontologies for
the conceptual graph model).

Ontologies

Current research indicates that ontologies are the most expressive context representation
models [39, 95]. Ontologies provide a powerful paradigm for context modeling offering rich
expressiveness and the supporting the dynamic aspects of context awareness. However,
they require ontology engines managing the ontologies in use. Those engines generally
have high requirements on resources, requiring the employing architecture to support
those. This may have negative performance impacts on local context processing, where
resource-constrained devices are employed [39].

As stated, ontologies represent concepts and relationships between concepts. The def-
inition of concepts and their interrelations freely depends on the realization approach of
the context aware application. Abstractions from the real world are usually mapped to
concepts with relations interconnecting those concepts according to their real-world equiv-
alents’ relations. This may include entities such as item, person, location, environment,
service, etc. [51, 37], which are mapped to concepts and represented by ontologies.

The ontologies representing individual entities must often be implemented in a certain
frame to function properly. This frame is the same for all entities implying the need of on-
tologies being reusable. For this reason, ontology models often consist of two components
[36, 37, 51]:

• General ontology : Those ontologies represent the general part of the model, which
is used by all instances. It applies for all entities as it is. General ontologies are
therefore used as a frame for ontologies representing entities.

• Specific ontologies : Those are employed entity-specific. Each entity may have unique
characteristics that are represented by its own specific ontology only.

Concluding, ontologies representing an individual entity include a general part com-
mon in the ontology model, as well as a specific component for the entity’s unique prop-
erties.

Beside their descriptive purposes, ontologies define sets of rules that are utilized by
the inference engines using the context model to calculate the current context [36].

Ontologies are in use by numerous context-aware applications. The following listing
illustrates an exemplary selection of some interesting picks:
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• Christopoulou et al. [37] present an ontology to be used in their E-Gadget Architec-
ture, which aims at making everyday objects context-aware and enhancing them to
react dynamically to their changing environment. A lamp, that turns itself on when
someone enters the room, because a doormat registered such event, is an illustrative
example of this work.

• Huq et al. [51] present an approach to use ontologies to represent context-aware
meeting spaces, whose users and installations collaborate context-aware.

• Khouja et al. [56] introduce an ontology model, which implements the service-
oriented-architecture paradigm by introducing special concepts related to the cor-
respondent SOA-entities (service requester, service registry and service provider).

Combination of Context Models

The practical implementation of context models may not be constrained to a single con-
text model. The employment and mutual complementation of different context modeling
approaches in a single system may highlight the individual strength of the alternatives
chosen. E.g., object-oriented solutions may be combined and enriched with graphical
components.

Biegel et al. [29] propose an interesting way of handling probabilistic aspects of con-
text modeling. Their context-aware system employs a context model, which encapsulates
a situational context into context hierarchies, implemented as an according data structure
(markup hierarchies, graphically using trees). Those hierarchies define actions possible in
such situations based on the specialization/generalization approach discussed in associa-
tion with the activity hierarchy concept in section 2.3.1. To enrich the context with the
probability of those actions to be taken, the activities in the hierarchy are represented by
Bayesian networks [53], that are constructed from context sensors. Those networks allow
a probabilistic conclusion on the actions represented in the context hierarchy.

2.3.3 Further Aspects of Context Modeling

In this section, we give some thoughts to aspect, which affect the context modeling process.
In particular, we look at ways to semantically enrich context models with the notion of
contextual relevancy.

Context Boundaries

An interesting aspect of context awareness is the utilization of distance of contextual
relevance. In other words, we define how important contextual information surrounding
an entity becomes in terms of distance. Although this aspect represents one of the very
purposes of this work, we postpone the detailed discussion to the subsequent chapter
4. Here, we are about to briefly discuss the concept of bounding contextual data in the
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context of our survey. We do so by presenting two application cases depicting a data
structure for bounding context: a contextual boundary2.

Topological Proximity An approach presented by Roman et al. [85] conceptualizes
context to be distributed on all participating nodes in a network. But a single node in
the network is usually not interested in the complete context in the network, but rather
only in relevant contextual information in its vicinity, which consist of the contextual
data available at the proximate nodes. Thus, each node may define its context boundary,
depending on its individual preferences. This boundary is therefore individually rooted
at the respective node defining its relevant context.

Roman et al. [85] compute the boundary on the basis of the logical topology graph
of the underlying network. The logical topology is derived from the physical topology
by refining it in regard to application specifics. Defining the context boundary solely
depends on the individual nodes preferences and may be implemented by any procedure
that fits this purpose. With the context boundary set, the access to the bound context
consists of accessing the contextual data at all nodes within the context boundary. The
access is optimized by defining the optimal access route for each of those nodes. This
is done by constructing a shortest-path-tree, including all of those nodes, and refining it
by regarding cost aspects. Those cost aspects may directly influence context boundary,
which may have to be adjusted in the process. The resultant data structure includes a
minimum-cost-path for each node within the context boundary.

Since the physical network topology, the nodes’ information base and individual pref-
erences are usually constantly changing, the context boundary and the implied minimum-
cost-cost-paths at each node have to be constantly updated.

Context spaces A different approach in bounding context information is introduced
by Padovitz et al. [75, 77]. Similarly to the contextual map approach, context is split into
contextual attributes and mapped to multi-dimensional space, which the authors called
context space. By defining hyper-dimensional regions in the context space (i.e. subsets
of the context space), the bounds for a set of possible situations are set. Such a region
is defined as an accepted situation space including possible situations, which are clearly
identified and accepted by a context-aware system. Hence, every context mapped to a
point inside such a region depicts an accepted situation. Thus, the context boundary in
this approach is depicted by the edges of a region in the context space.

Heterogeneity Aspects

The heterogeneity of mobile environment has a peripheral impact on context modeling.
Especially the following aspects are to be regarded [39]:

• Software heterogeneity : Context models may have to address certain application
requirements. Hence, the presence of heterogeneous software may have to be con-

2not to be confused with the contextual map’s contextual boundaries
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sidered. Additional problems arise when heterogeneous context models are to be
employed simultaneously [92].

• Architectural heterogeneity : Context models may be bound to specific network do-
mains, because only some context information may be relevant. Multiple heteroge-
neous networks may have to be considered.

Context quality

The quality of context reflects how accurately it describes the corresponding entity’s real-
world situation. In other words, it describes the degree of contextual error [49, 78, 76, 77].
Contextual errors have many possible causes. For one, readings from context sources, such
as sensors afflicted with a certain level of error. Consequently, the resultant context built
from this false information inherits the error. Another cause is the heterogeneity of context
sources. Collecting data from many mutually different sources is complex process forcing
to convert the heterogeneous input into a common representation, so that the collected
data from all sensors may be used together. This transformation process always carries
the risk of losing some of the information causing the common representation to be false.
Building contexts from this information inherits the error, too.

There have been efforts to counteract this problem. We will return to this issue during
the discussion about context-aware system design in the following section 2.4.

2.4 Context-aware Computing Systems

After having discussed the basics on how to define and model context, we put our focus
on the design of systems utilizing context. We especially emphasize the requirements and
architectural issues of context-aware systems.

2.4.1 Relevant Aspects and Requirements

Context-aware applications are required to consider certain aspects concerning context
acquisition, modeling, access, handling and adaptation [22, 39]. The requirements of
a context-aware application are characterized by the proper handling of the following
aspects:

• Context discovery : The aim of context discovery is to locate and access contextual
sources [22]. It may be utilized in conjunction with a serving context request (e.g.,
discovering the appropriate or approximate context pertinent to an entity). Context
discovery covers the issues of service description, advertisement and discovery.

• Context distribution: The distribution policy specifies how access to distributed
context information is supported. There are 2 basic approaches [39]:

– local context, i.e. context data probed and used only at a device.
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– distributed contexts that can express situation of a set of entities that may be
distributed over a network.

• Context acquisition: A mechanism to obtain context data from diverse context
sources. This includes hardware sensors delivering information that conforms to a
low-level data model [22, 42, 76], as well as software components acquiring contextual
information from elsewhere [81].

• Context aggregation: A mechanism that provides context storing and integrity [22].
In case of a shared context model, the context aggregation forms a basis for merging
correlated contextual information. The context composition is a specific kind of
context aggregation, when the involved contexts are compatible with the same, or
equivalent, context model.

• Distributed composition of context : Ubiquitous computer systems are derivatives of
distributed systems, thus possibly lacking a central instance to provide the context
model [95]. Composition and administration of a context model varies with notably
high dynamics in terms of time, network topology and source.

• Communication of context : The communication policy specifies how context infor-
mation is disseminated or gathered through the network by interested applications.
The information can be distributed either synchronously or asynchronously [39].

• Context consistency : Context consistency enables the rationality of dynamically
changing distributed context models [22]. Such mechanism, regarded as being an
extended context aggregation mechanism, maintains the structure of the contextual
model into higher levels of abstraction.

• Handling of ambiguity and incompleteness : The set of contextual information char-
acterizing relevant entities in ubiquitous computing environments is usually incom-
plete and/or ambiguous, in particular if this information is gathered from sensor
networks [95, 49, 77, 76, 78]. This should be covered by the context model.

• Partial validation of context models : It is desirable to be able to partially validate
contextual knowledge on structure as well as on instance level against a context
model, even if there is no single place or point in time where the contextual knowl-
edge is available on one single node, since context is usually composed distributed
[95].

• Formality of context models : It is always a challenge to describe contextual facts
and interrelationships in a precise and traceable manner. It is highly desirable, that
each participating party in an ubiquitous computing interaction shares the same
interpretation of the data exchanged [95].

• Context querying : Context querying is the task of handling requests, that need to be
executed over the context repository. Context retrieval tasks must be transparent
to the requester and posed in a concerted form (e.g. by a querying language)
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[22]. Context consumers should register interest in context in order to be notified
asynchronously when it changes. Context querying can be implemented in 2 ways
[39]:

– centralized handled queries, in which a query is sent directly to the repository.

– distributed queries, in which a query can be distributed among several reposito-
ries and the result is composed as a unique context information, that maintain
the context.

• Context adaptation: The context-aware application should be capable of adapting
its behavior according to contextual information [22]. Specifically, it automatically
adapts the system configuration in response to a contextual change.

• Context reasoning : Context can be elaborated with reasoning mechanisms [22].
Context reasoning is a process for inferring new context, previously unidentified on
the basis of the context currently known by the application. Basically speaking,
context is reconfigured according to known context and newly acquired contextual
data [88]. Reasoning tasks check context consistency and deduce high-level context
according to contextual information. Specifically, it automatically adapts the system
configuration in response to a contextual change.

• Update of context : The updating policy specifies how a context information is up-
dated at a repository and how this update is disseminated to context consumers
[39]. The most common policy is to send frequent updates in order to guarantee
that context consumers access the up-to-date context information. However, this
trivial approach is inefficient, since updates can either be committed too late (in
case of fast changing context) or unnecessarily (in case of slowly changing context).
Proactive updates committed upon a change of context remedy this problem but can
result in a high update load in case of fast changing context. More sophisticated
update semantics check for certain conditions that justify an update [61]. A slightly
different approach is to enable context consumers to use intelligent components that
infer the actual information based on a history, or evaluate the information’s fresh-
ness through a comparison of time-stamps.

• Context evaluation: The context evaluation policy specifies how a context-aware
application evaluates each attribute that composes a context information [39]. There
are two approaches: eager evaluation and lazy (on-demand) evaluation.

• Quality of context information: Context information usually comes from hetero-
geneous context sources, such as sensors and software services. The quality and
richness of that information can vary over time [22, 39]. As stated before, sen-
sor readings can be afflicted with an uncertain error reducing the quality of the
contextual data derived from such sensor readings. Transforming such low-level
contextual information into higher levels of context is another source of error affect-
ing the quality of context [49]. Furthermore, the lack of a universal context model
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and application-specific representation of the contextual data undermines the con-
sistency of the sensed information. A mechanism for maintaining predefined sets
of quality indicators and corresponding quality metrics is very important [22, 49].
Such indicators may be resolution, accuracy, repeatability, frequency and staleness
of context. Context quality has a direct impact on context stability. Improper con-
text data may cause an entities context to fluctuate even if its real-world context
stays unchanged. Thus, maintaining contexts stability is an important requirement
for context-aware systems [77].

• Context integration: Existing context models vary in the expressiveness they sup-
port, in semantics, and in the abstraction level of the conceptual entities [22]. Con-
textual information integration can be conducted whenever different context models
are in accordance, not only with their semantics, but also with their similar domains
of interest.

• Applicability : From the implementation perspective it is important, that a context
model must be applicable within existing infrastructures of ubiquitous computing
environments [95].

• Context service placements : The placement policy specifies where the context man-
agement is hosted. The simpler policy is the adoption of a centralized context
service, but it imposes performance and scalability problems. Distributed context
services can be implemented using four approaches [39]:

– interconnecting context services distributed through a network

– maintaining a context service in order to handle local context plus a remote
service to disseminate context among other devices

– implementing ad hoc services to enable context management in ad hoc networks

– using a combination of the aforementioned solutions

2.4.2 Architectural Issues

This section takes a closer look on the architectural design of context-aware systems. We
regard both static and dynamic aspects. Beginning with a list of involved components,
we also reflect on the workflow of those systems.

Components

The composition of context-aware systems is characterized by a high degree of hetero-
geneity. However, all approaches agree in decoupling context capturing and context pro-
cessing from application composition [36] by encapsulating the context management logic
into middleware.

An analysis of the architectures of multiple context-aware systems presented in various
publications [42, 52, 29, 36, 39, 100] identifies the following abstract components shared
by the majority of those systems:
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• Context sensors : Those sensors exist either as pieces of hardware sensing the physi-
cal environment, or as software component providing data from other context sources
[52, 22, 49, 81, 42]. The primary task of both sensor types is the acquisition of raw
data for further refinement into contextual information. In section 2.2.3, we have
discussed and classified the possible context sources that context sensors acquire
their data from. Concluding, we can depict the following types of sensors [42]:

– Visual and auditory : Those used to capture aspects of the real world

– Location: There are two basic options of how to determine the current location
of a mobile device: (1) triangulation using the sensor infrastructure consisting
of cells, or (2) using a satellite-based positioning system, such as GPS and
GLONASS. A special approach is the application of visual sensors for location
detection by recognizing visual waypoints.

– Other environmental sensors : This set includes all other environmental sen-
sors, not covered in the list so far. E.g., it may include motion detectors and
temperature sensors.

– Software sensors : Those ”sensors” are software components that draw infor-
mation from context sources other than the environment. This may include
databases or network infrastructures.

This list emphasizes the construction of context information from powerful single-
purpose sensors. While this approach is quite practicable, it has several shortcom-
ings concerning cost and the ability to capture dynamic aspects. The alternative
approach proposes to replace such sensors by collections of multiple simple sensors,
enabling the so called multi-sensor context awareness [42]. Even though simple
sensors individually capture a much smaller portion of the environment than more
complex sensors, the mass of simple sensors usually provides a more accurate aware-
ness of the environment than their more powerful counterparts.

• Context capturing interface: Data acquired by sensors is usually uncertain and
difficult to interpret by high-level components [95]. For this reason, sensor data
needs to be refined for further processing by deriving a higher level of context from
uncertain multi-modal sensor data - a process that may be called sensor fusion
[29]. It is characterized by refining raw sensor data into data structures that are
utilizable for higher application levels, thus providing a proper interface for the
sensed environments [42]. Such data structures may reach from simple data types
to sophisticated structures, such as Bayesian networks employed for probability
calculations [53].

• Context repository : The context repository represents the persistent storage compo-
nent in a context-aware system. It stores all context information currently known
to the system. Thus, it implements the context model of choice (as discussed in
section 2.3.2).
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• Context reasoning : The context reasoning component is responsible for inferring new
context based on the current contextual information in the context repository and
new contextual data acquired through the context capturing interface. This process
is put in practice by inference engines that work on the basis of rules [29, 52]. They
fetch the contextual information from the repository and the contextual updates
from the context capturing interfaces as input parameters, and they output an
updated context model, that is committed to the context repository. Rules can be
either of global or local scope. Global rules affect the entire context model. Local
rules, however, have an effect on local entities only [36].

• Context API : The context API provides an interface for context-aware applications
to actually utilize contextual information [39]. The employment of such an interface
implements the commonly accepted paradigm of separating context management
from application logic [36]. It actually represents the cut between those two by
laying on top of the context management system making it transparent for context-
aware applications.

• Context application: Applications accessing the context API can actually use the
contextual information for their application-specific purposes. For this purpose, the
context API provides well-defined context information, which is suitable for the
accessing application. Concluding, the context API is usually application specific.
Application-based employment of context includes the automatic execution of ser-
vices based triggered by special contextual conditions, as well as the discovery and
allocation of resources relevant to the current context [67]. The aspect of context
application especially emphasizes the deployment of legacy applications [52].

• Communication interface: Since a context-aware system is distributed in nature,
communication needs to be handled appropriately. This especially concerns the
reasoning mechanisms, which may want to commit contextual updates into the net-
work, and context capturing components, that may request contextual information
from other nodes in the network.

• Actuators : Actuators are the counterparts of sensors. Unlike sensors, which sense
their environment, the actuators’ primary purpose is to alter the environment. Actu-
ators are usually utilized as a result of a contextual update [29] requiring a proactive
change of context.

Layered Architecture

The components discussed above form a flat representation of a generic context-aware
system. In order to add levels of abstraction to it, we subdivide it into a hierarchy of
layers with each layer representing information on a specific level of detail [36]. We proceed
from low-level to high-level layers:

• lexical level: signals from sensors are abstracted into basic context events.
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• syntactical/representation level: context events are translated to atomic context
information, such as matching sensor data to real-world-properties.

• reasoning level: basic context information is refined and organized, context infor-
mation is fused into a reasonable representation suitable for more sophisticated
processing (context fusion in context hierarchies).

• planning level: context is evaluated, changes in context are detected, reactions to
context changes are planned and scheduled.

• interaction level: reactions to context changes are executed in form of personal and
collaborative interactions with the user and other hosts.

Figure 2.5 shows the coherence of the components and layers.

Workflow

So far, we have put our focus on the static aspects of context-aware systems only. To
describe the dynamic behavior of such a system we can derive the workflow of capturing,
storing and utilizing contextual information from the static architecture (components and
layers) by extracting the components’ tasks and putting those in sequence reasonably.
Figure 2.4 visualizes the subsequently documented approach.

1. Context sensing : Detection and representation of contextual information [67]

(a) Acquisition of sensor data (low-level context): Raw data is captured by sensors,
representing contextual information on the lowest level of abstraction (sensors
on the lexical level) [36].

(b) Refinement of sensor data: Raw data acquired by sensors is interpreted and
represented in data structures to provide a higher level of context (context
capturing interface on the syntactical level) [36].

2. Context update and management : The refined and well-presented contextual infor-
mation is fetched and merged into the context repository. The overall context is
updated in the process (context reasoning and context repository on the reasoning
level) [36].

3. Application of context : The most current contextual information is fetched from the
context repository through the context API [39] to be used by the context-aware
application. This may occur by either pushing or pulling the information to the
application level, dependent on the implementation of the application. The use of
the current context includes the following aspects:

• Contextual adaptation: Context-aware applications automatically adapt to the
current context by updating/executing their according services and their in-
ternal states [67] (context application on the planning level [36]).
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• Contextual resource discovery : The dynamic state of the context requires the
dynamic location and association of resources relevant to the user’s context.

• Context augmentation: The user’s context is enriched by digital data, which is
presented accordingly to the user.

Environment

Acquire
sensor data

Refine
sensor data

Update & store
context

Context reasoning

Context
application

User

Context Context
Repository

Figure 2.4: General Context Management Workflow

Summary and Implications

So far, we have identified common architectural traits of context-aware systems in re-
gard to both structural (components) and behavioral (workflow) aspects. This enables
us to conclude the architectural analysis by deriving a general conceptual architecture for
a context management system providing contextual information for context-aware appli-
cations. Figure 2.5 visualizes this concept employing all of the relevant components on
corresponding abstraction layers and implementing the context capturing process as dis-
cussed earlier in this section. It is to be noted that the visualized architecture depicts our
particular view on context-aware system architectures, which we have elaborated during
our survey on context-awareness.

The core of each system excelling awareness of context is the context model storing
the current contextual information. As we have stated earlier, ontologies are the first
choice made by most research groups due to their high degree of expressiveness. Since
the employment of ontologies requires adequate hardware capabilities, one may be forced
to fall back on less demanding context models if the available hardware is constrained.

The workflow of recognizing, updating and utilizing context is strongly inspired by the
procedure described in the preceding subsection. Sensors (which may explicitly include
software components as well) acquire raw environmental data, which is refined by the
context capturing interface. This process is conducted by converting the raw data into
contextual information. This means that the source data is abstracted into discrete data
structures and enriched semantically, so that it becomes clear which data coming from
which source contributes to which part of context. The resultant contextual information
can be processed further by high-level components in the context management system.
The contextual information is then committed to the context repository, which is respon-
sible for the persistent storage of the context using an appropriate context model. The
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Figure 2.5: General Architecture for context-aware Systems

context repository controls the access to the contextual data and therefore functions as
an interface to both the rest of the context management system and any context-aware
applications utilizing context.

Context in the repository can be used to infer new context. This inference process
is conducted by the inference engine according to inference rules, which define how new
context is inferred. Both the rules and contextual information are loaded by the inference
engine, which subsequently updates the context in the repository according to the infer-
ence rules. Since we are dealing with a distributed system, newly inferred context may
be propagated to other nodes via the communication interface, which is attached to the
communication hardware. The inference engine may also trigger any actuators, which are
affected by the update of context. Contextual updates may also be received from other
nodes in the network, so that the communication interface forwards them to the context
repository.

The context API provides access to the context for user applications, and it represents
the architectural cut between context management and context utilization as we have
argued earlier [36]. The context API has direct access to the context repository, meaning
it reads the current context and commits user updates into the context. The inference
engine may also notify user applications through the context API, if the inference of new
context requires it.

Regarding the architecture sketched in figure 2.5, we are dealing with an actual implica-
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tion derived from various context-aware system architectures, thus going beyond a simple
survey or enumeration on related research, respectively. For this reason, we clarify how it
integrates into the contextual map’s problem statement in section 1. For this purpose, we
regard figure 1.2 from section 1.3 depicting the decomposed problem statement for con-
textual similarity handling. The reasoning level in the architectural concept (figure 2.5)
corresponds to the model layer in the problem statement (figure 1.2). Our architectural
concept includes the context repository, which stores reasoned and semantically accurate
context. That is exactly what the contextual map model does. Its multi-dimensional
context representation represents current and error-purged entity situations. The next
upper level in our architectural concept, the planning level, corresponds to the output
level in the problem statement. The planning level is dedicated to inferring new context,
thus enriching present context without the acquisition of additional contextual informa-
tion. The identification of similar context pairs and context clusters can be related to this
procedure, since it also yields augmentation of the contextual map’s current context data.
The application levels in both representations represent another correspondence. Both
are dedicated to the utilization of context data prepared by the respective lower levels.

2.4.3 Aspects of computational Distribution

Even though approaches featuring a centralized context management component are gen-
erally realizable, almost all of the current research emphasizes either distributed systems or
hybrid approaches, where centralized component act as a subordinate system supplement.
This fact implies that software providing context-awareness is deployed as middleware on
the nodes in the distributed system. This section illuminates the aspect of dealing with
geographically distributed and mobile entities.

Constrains

Since context-aware computing emphasizes the use of mobile devices, certain hardware
restrictions must be considered [97]:

• Power : Mobile devices have a limited power supply, that has a direct impact on the
performance of its components.

• Communication: Connections may become transient and occur non-deterministically.

• Processing : Mobile CPUs have low capabilities due to the low amount of available
power and space.

• Storage: Storage components are non-mechanical and face the same problem of
power and space availability. For this reason, mobile storage components are re-
strained, too.

• User interface: Due to the reduced size of mobile component, the user interface is
forced to be very simple.
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With those restriction applied, context-aware middleware further needs to enable mo-
bile nodes to meet the following requirements [29]:

• Sentience: The node has to be able to sense its own environment by utilizing hard-
ware or software sensors.

• Autonomy : Since we assume a distributed system, nodes are required to operate
independently.

• Pro-activeness : Mobile nodes require the ability to act in anticipation of future
goals.

Distributed context Spaces

The notion of context spaces is used to group contextual data under certain characteristics.
In sections 2.1 and 2.3.3, we have already mentioned context spaces synonymously with
similar contextual realms. Jacob et al. present an approach employing context spaces
in a slightly different manner. They define context spaces on sets of distributed entities
with similar contexts [52]. In their decentralized system, a context space is set of nodes,
which commonly share information. That implies a bounded locality of context inside that
context space. Thus, a context space allows a distinction between local and global context
aware applications: the local ones only access the contextual information in their context
space, global context-awareness denotes the utilization of the global context consisting of
all subordinate contexts in the respective context spaces. Since context is being bounded,
this approach has peripheral similarity to the context boundary aspect, introduced in
section 2.3.3 [85].

Modularity

Since context-aware middleware needs to be deployed on a large number of devices, addi-
tional requirements regarding scalability and maintainability need to be considered. As
stated before, the most significant architectural cut consists of separating the context
management system from the context-aware application [36]. This enables the deploy-
ment of individual applications on the same context management system.

However, the context management system itself may have to be applied to different
use cases - basically requiring different context management systems. Hence, unitizing
the context management system seems reasonable [100]. A component used by a context
management system may be used as a generic component on all devices. This usually in-
cludes the acquisition and provision of contextual information. Specific context-processing
components can then be deployed on top of the generic ones. They usually implement
the mechanisms how context is individually processed (update, storage, context API).

2.4.4 Heterogeneity Aspects

The impact of heterogeneity in pervasive environments has been stated several times. For
context-aware systems deployed in those environments, this aspect especially complicates
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the context acquisition process due to heterogeneous context sources. Besides environ-
mental aspect, application-specifity may cause heterogeneity having an impact on the
technical design of context-aware middleware as well [39]:

• Hardware heterogeneity : Servers, workstations and mobile devices in a context-
aware system have very different characteristics and capabilities, especially con-
cerning platforms, network technologies, computational power. The challenge in
middleware design is to make it deployable on all of those device types.

• Software heterogeneity : The software running on the devices may differ highly, too.
This encompasses the presence of different operating systems and applications.

• Architectural heterogeneity : The communication between various nodes may not be
uniformly defined neither. This heterogeneity aspect comprises of the existence of
different network architectures and communication protocols.

The impact of heterogeneity has been discussed only in brief at this point. Section 2.7
presents an in-depth discussion about the heterogeneity issue.

2.4.5 Application Cases

In this section we conclude our context-aware computing survey by presenting a few
applications showing awareness of context:

• Contextual risk based access : Diep et al. [40] employ an access scheme based on
contextual risk calculation. It is based on 3 factors: availability, integrity and con-
fidentiality. A context module acquires the context, a risk assessment component
calculates the risk from the gathered contextual information by evaluating the out-
come of possible actions, and finally, the access control manager decides about the
grant of access based on both contextual information and the calculated risk value.

• Pheromonial assessment of relevance of information: Jacob et al. [52] introduce a
system of context-aware and loosely coupled devices communicating within ad-hoc
networks. Personalized context relays (PCR) represent middleware deployed on the
devices, managing the context and enabling context-aware applications. The rele-
vance of contextual information is inspired by biological pheromones : the more often
an information is queried the more important it is and vice versa. Context aware
applications are classified either local or global depending if they access context in
their context space only, or if they require global context.

• Location history A cost effective way of enabling location histories in a context-
aware environment is presented by Mantoro et al. [67]. The location, commonly
considered as an important context attribute, of entities is detected, traced, stored
in a database and made accessible by a querying language. Context agents are used
to autonomously recognize user requests and fetch the required location information
from the database. The freshness of this information depends on the most current
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location update. The system is also able to predict locations based on the location
history.

• Utilization of the Object-Request-Broker (ORB) concept : The context-aware ap-
proach developed by Yau et al. [100] implements a modular middleware for ad-
hoc networks. Context-capturing core components (R-ORB) acquire contextual in-
formation and distribute it around the network implementing the ORB-paradigm.
Adaptive context containers (ADC) represent individual context-processing compo-
nents accessing the contextual information presented by the underlying R-ORB.
Context-aware applications are executed on top of ADCs, utilizing the context pro-
vided by those.

• Sentient objects : Biegel et al. [29] introduce a framework, which emphasizes the
conceptualization of sentient objects. It supports the development of context-aware
software components, which are capable of autonomous sensory sensing, context
abstraction and reasoning, and controlling of actuators. It uses Bayesian networks
[53] to control probability aspects.

• Location and context awareness : A mobile computing middleware presented by
Bellavista et al. [26] focuses on the visibility of user characteristics. Location is
defined as the visibility of a user’s position, whereas context denotes the visibility
of resources associated with the user. The context management system emphasizes
mobile agents to autonomously handle problems caused by the mobility aspect.

As presented, context-awareness is applicable in many utilization domains. On the
one hand, the utilization of context is very suitable in distributed systems due to their
dynamic behavior making context to change very quickly. This aspect makes mobile
service development one the prime targets of our work. On the other hand, another
interesting application domain is the development of internet services. Keeping this in
mind, hybrid approaches implementing web-based mobile services are an important target
group, too [90, 91].

2.5 Location-aware Computing

In the introductory section 1.2, we outlined the idea to borrow the mechanisms of geo-
graphical proximity detection for the identification of contextual similarities. Since prox-
imity detection is settled in the location-awareness domain, this circumstance motivates
a short survey about that research domain. Thus, this section introduces the area of
location-aware computing in brief. For the technical aspects of the subsequent discussion,
we assume mobile entity possessing a mobile device, which allows its localization.

2.5.1 Location and location-based Services

Location is an essential part of contextual information in the mobile computing domain
and can generally be defined as the property of physical position of users, devices and
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resources [26]. The dynamic nature of this property has yielded a wide spectrum of
sophisticated and highly dynamic services employing location-awareness [90], but sum-
moning challenges in the fields of infrastructure design and location management as well
[99].

Location-based services come with a set of requirements specific to their dedicated
application domain [87, 90]:

• Mobility: denoting the presence of mobile objects implying the necessity to manage
their locations appropriately.

• Heterogeneity: reflecting the issue that involved devices are highly heterogeneous
regarding their individual capabilities.

• Availability and responsiveness: require services to be always available and minimize
response times independently from the mobility aspect.

• User interface: designed according to the applying output restrictions, hence re-
quired to be simple, but efficient.

• Distribution: reflects the presence of distributed component comprising a single
system, especially noting the option of absence of centralized components.

• Transparency: emphasizing the location-aware tier to encapsulate location manage-
ment to upper layers, such as applications.

2.5.2 Location Detection

Determining the position of a mobile device may be partitioned into two basic approaches
[90, 54]:

• Zone-based: In this approach, position determination is conducted by the infras-
tructure solely without including the mobile device into the process. Any location
updates are initialized by location servers, which detect the presence in one of their
attached infrastructural zones, implying that this approach is only feasible in client-
server architectures. Consecutively, the server keeps autonomously track of the
clients. Further, this approach can be decomposed as follows:

– Cellular: Since most networks including mobile devices are cellular, a mobile
device’s position can be detected when it enters a cell and registers with the
cell’s base station. Since cells differ significantly in size, this determination
method is quite imprecise leaving a large area of possible location instead of a
unique point. There are sophisticated approaches to increase accuracy of this
localization method, such as triangulation [90].

– Sensory: Similar to the cellular detection mechanism, this approach works on
the basis of tracking devices with sensors. Each sensor spans a detection area
in which a mobile device can be detected by the sensor. However, cellular
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detection implies that the entire roaming area is covered by cells whereas sen-
sory detection may only cover spatially distributed and non-adjacent zones.
Sensory detection is normally conducted by tracking the device without its
apprehension, for example via RFID [87].

Despite the shortcomings of infrastructure-dependent location detection it is often
the chosen course of action, since the requirements on mobile devices are consider-
ably low. Given the fact, that the number of mobile devices roaming in a network
may be very high, any distribution issues arising when involving mobile devices in
location detection do not exist. Location detection is instantly possible with any
device roaming the area covered by the infrastructure.

• Map-based: This approach focuses on locating a mobile device at an exact geographic
point. Compared to zone-based detection mechanisms, this approach is far more
accurate. However, location detection must be conducted by the mobile device
itself using a satellite grid enabling location determination (e.g. GPS, GLONASS,
Galileo). Subsequently, the mobile device commits location updates to a centralized
server or to other mobile hosts [54].

This approach allows implementation following both client-server and peer-to-peer
architectures. However, it requires at least a small portion of application logic to
be deployed to any involved mobile host decreasing the scalability of this approach
in comparison to the zone-based mechanisms.

With location update mechanisms being an integral building block of location detec-
tion, the emphasis here lies on maximizing their efficiency by minimizing the amount of
updates and maximizing the currency of location information. This paradigm is justified
in the effort to minimize traffic in the network, in order to reduce costs and avoid flooding
[67, 61, 57].

2.5.3 Location Models

Location models denote data structures and strategies to store location-related informa-
tion in location-aware systems, including physical environments and locations themselves.
Those models form the frame for representing location in databases and according infras-
tructures [67]. There are two basic approaches on implementing location models:

• Cartesian: Location models implementing this approach are based on Cartesian
coordinates allowing geographic map-based models. A popular example of this
model is an annotated road network, represented as a graph with attributes on its
edges (streets) and vertices (intersections) [54]. The location of mobile nodes is
projected upon this graph and location management is conducted on the basis of
this model. Attributes in the graph are used to augment the models information,
such as enriching edges (streets) with information about speed limit, width, etc.
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• Hierarchical: This approach focuses on topologies organized in hierarchies. They
are usually tree-based and reflect locational spaces in hierarchical relations to each
other. For example, one may imagine a house, including rooms with each room
containing tables and chairs [87]. Each of those entities (house, room, table, chair)
may be regarded as a space anchored in a topological tree. As with Cartesian models,
hierarchical models may be annotated to add auxiliary information, such as adding
attributes to nodes in the tree hierarchy. However, unlike with Cartesian models,
hierarchical models allow the insertion of auxiliary information inside the model’s
core structure. This means that non-location-related nodes may be inserted into
the tree. Children of a node denoting a space may represent auxiliary information
about that particular space. For example, the model proposed by Satoh [87] is based
on the discussed tree hierarchy. The tree nodes represent spaces as well as auxiliary
information such as auras (some sort of an object’s virtual space) and services. A
space-node’s children being auras and services describe the auras and services being
associated with the parent space.

Figure 2.6 visualizes those two models exemplary.
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Figure 2.6: Location Model Examples

2.5.4 Location Management

With the location models introduced, this section focuses on how such models are utilized
in managing location. The discussion emphasizes on how this information is processed in
a location-aware system by regarding its architectural characteristics.

Architectural Layout

We begin our discussion by briefly outlining the two mutually excluding top-level design
choices: client-server vs. peer-to peer.
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Client-server The basic thought of location-aware client-server-based systems is cen-
tered around a centralized server taking care of all location management tasks [72]. Lo-
cation updates are generated by monitoring movements of mobile hosts by means of the
infrastructure or by receiving location updates from the clients, either autonomously or
following the server’s update request.

This basic 2-tier architecture, including the server and the mobile clients, can be ex-
tended to multiple tiers by including local servers into the architecture [99]. Local servers
are responsible for local regions, where each local server manages a particular region, ba-
sically meaning that location management tasks are delegated from the central server to
the local servers. Moreover, local servers can be grouped into multiple hierarchical levels
depicting a differentiated granularity of regional partitioning. In this setting servers are
structures in a tree-based hierarchy with the root being the central location server. A
local server on a lower hierarchy level is responsible for a region, which is a subset of the
responsible region of the server’s corresponding parent server on the next higher level.
Figure 2.7 shows the architectural layout of this system.
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Figure 2.7: Multi-tier hierarchical Location Management System

The following fictional example is intended to illustrate this architecture. Consider a
macroscopic location-based service being deployed in North America. With millions of
mobile devices using this service, location management is extremely elaborate and cannot
be processed by a basic 2-tier client-server system (one server, mobile clients). Hence, this
architecture is extended into a hierarchy of local location servers with associated regions
with every location server managing the mobile targets in its region only. Starting, there
may be one server for Canada, one for the USA. Regarding the USA-server, one location
server may be installed for each of the 50 states on the next lower level of this hierarchy
with the USA being their parent server. In California, location servers for San Francisco
and Los Angeles can be deployed on the next lower level, and so on.

Although this multi-tier approach is highly scalable, it raises communication issues
on how to efficiently propagate location updates in the hierarchy [57]. Basically focusing
on optimizing traffic caused by location updates, the basic principle addressing this issue
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consists of handling location updates from the bottom up in the hierarchy. Location
updates are only propagated to the next higher level, if the update concerns this level at
all. Consecutively, the resultant traffic stays as local as possible.

Peer-to-peer The absence of centralized components in mobile P2P-mashnets shifts
location management tasks to the mobile peers themselves [87]. Naturally, this mainly
includes handling the particular location model and processing location updates. The
challenge in this approach is to keep the peers’ current location data consistent albeit
interaction between peers remains short and transient. Another issue is the presence
of restrained capabilities existent on mobile peers [97], requiring location management to
obey those constraints. Three basic approaches can be identified for location managements
in P2P environments:

• Each peer manages its location model itself. Location updates are propagated during
the brief interactions with other peers [87].

• Temporary location servers are peers that become a centralized node in the network
if certain conditions are true [57]. They perform location management tasks until
they are discharged of this duty.

• Super peers are mobile peers, that act as gateways for other peers [46]. Although
this setting has close conceptual similarity with client-server approaches, it is to be
emphasized, that super peers are full members of the P2P network.

Hierarchical partitioning of the covered area as introduced in the previous client-server
discussion can be used to optimize both location management and traffic in P2P-networks
as well. The regional partitioning itself is predefined and analogous to the client-server
approach: regions on lower levels are subsets of parenting regions on higher levels [57].
In comparison to the client-server architecture, stationary local servers administrating
those regions do not exist. Instead, peers become temporary location servers or location
management is provided by super peers:

• Temporary location servers : Selection of temporary location servers must be uni-
formly enabled by all peers. Since broadcast mechanisms in P2P-networks are in-
sufficient in terms of providing information about current location servers ubiqui-
tously, selection and identification of temporary local servers can be conducted by
algorithms using pre-defined hash-functions [57].

• Super peers : This approach comes with the requirement of at least one super peer lo-
cated in a region. Taking into account that super peers are mobile, this requirement
cannot be guaranteed. Hence, this approach must be complemented by mechanisms,
such as the temporary location server approach, to work properly.
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Workflow

The location-aware system (i.e. a server or a mobile device, depending on the architecture)
initiates a location-based service either reactively or proactively:

• reactively: The system receives a service request coming from a mobile device.

• proactively: The system monitors its mobile hosts and detects the necessity to
initiate a location-based service.

Although location-aware services are often very specific, the following general workflow
can be devised as visualized in figure 2.8 by a UML activity diagram [54, 72, 61]:

1. Location Detection: The location of the mobile device (and it user) is detected as
described in section 2.5.2. Besides the detection method, the initiation of a location
detection event poses another issue. There are two fundamental mechanisms:

• Global Monitoring: The mobile hosts’ locations may be monitored continu-
ously. This is only feasible in zone-based/cellular network-architectures, as
described in section 2.5.2.

• Local Monitoring and Location Update: Mobile hosts detect their location
themselves and commit it as a location update to the entity executing the
location-based service (server, another mobile host, etc.). Location updates
are initiated, if certain prerequisites are given. The following enumeration
highlights the most common approaches [61]:

– Polling: The service-executing entity polls mobile hosts to report their
positions.

– Periodic: Mobile hosts commit their positions in regular intervals with the
update interval dictating the time between two updates of each host.

– Distance-based: A mobile host reports its position when the distance to
the position of its last location updated exceeds a certain threshold, the
update distance.

– Zone-based: A position update is initialized by the mobile host upon en-
tering or leaving a certain area, the update zone.

2. Proximity/Separation Detection: The change of location triggers a location-based
service to be executed if certain prerequisites are given. Usually, those are defined
by the presence and/or absence of the mobile host in certain areas. Detecting the
mobile host entering such an area, proximity to this area is detected. The opposite
case, when a mobile host is detected exiting such an area, triggers a separation
event.

3. Notification composition: Upon detecting the necessity to execute a location-based
service and to deliver information to the mobile device, the data to be delivered is
composed according to the specification of both the client and the delivering entity
(mobile device, server, etc.).
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4. Information Delivery: The information is transmitted to the mobile host consum-
ing the location-based service. Such data can be delivered on any logical channel
supported by the mobile device, such as SMS, WAP-Push, MMS, etc.
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Figure 2.8: Workflow of a location-based Service Execution

Layered Architecture

Location-aware systems can generally be interpreted as middleware concepts, taking care
of all location management tasks and offering high-level applications a location API. A
layering reflecting this approach is depicted in figure 2.9, including the following levels
[61] :

• Positioning method: Not being explicitly part of the middleware, this layer provides
the technical position detection employing the proper technology, such as GPS,
WLAN, etc.

• Low-level position management: The middleware’s lower level is responsible for
determining the current position and providing it to the higher levels in this chart.
This particularly includes gathering the location data directly from the position
technology by employing the update techniques discussed earlier (polling, periodic,
distance-based, zone-based).

• High-level position management: Based on the most current location provided by the
low-level position management layer, this middleware layer conducts more sophis-
ticated analysis of the gathered locations. An excerpt is given below, such as clus-
tering (detecting geographical clusters of mobile hosts) and proximity/separation-
detection (see subsequent section 2.6). The results are provided by the location API
on top of this layer.

• Location-based application: Location-aware applications and services may utilize
all of the refined location-based data provided by the location API. The access is
transparent hiding all of the tasks on the lower layers.
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Figure 2.9: Layered location-aware Middleware Concept

Location History and Location Prediction

Location history is the chronological sequence of a mobile host’s locations. The main
application cases of location history are to query a mobile host’s location at a given time
in the past or to predict its location at a given time in the future. While the former
case simply requires a query from a database, the latter case requires more sophisticated
calculations.

Predicting the location of mobile hosts enables location-based services to prepare their
services in advance in order to provide them in the future when the target host is at its
future location. Generally speaking, two approaches can be identified:

• Route prediction: This approach focuses on predicting the route of a moving mobile
device. Its general workflow of predicting location works in three steps [54]:

1. Detect current location: Location detection is processed as described in section
2.5.2.

2. Detect current trajectory: A trajectory is interpreted as a mobile user’s geo-
graphical path, i.e. his movement over time. In the Cartesian model, given in
section 2.5.3, such a trajectory is a sequence of edges in the graph representing
the map model.

(a) A mobile host’s trajectories are recorded and stored, becoming its historic
trajectories.

(b) To detect a mobile host’s current trajectory, those are used to develop
probabilistic models for future trajectory prediction. E.g., the probability
of turning from a particular street to another at an intersection can be
derived from the amount of such turns in the past.

(c) The current trajectory of a mobile host is calculated from the current
location, its presently covered way, and its current probabilistic model
based on its historic trajectories.

3. Predict location: Given a future point in time, the location is predicted by
projecting the location on onto the trajectory at that given time.
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• Policy creation: Another approach of predicting location is to create policies out of
a mobile user’s behavioral patterns [67]:

1. The targeted mobile user’s behavior is observed and patterns are derived out of
it. Those patterns may include regular movements, regular stays at particular
places, etc.

2. Out of those historic patterns, dynamic policies can be created by combining
them and adding probabilities of such patterns’ occurrences. E.g., if a mo-
bile user is located in room X during 3 Tuesdays in a period of 4 weeks, the
probability of being at room X on Tuesday is 75%.

3. Querying the user’s position on Tuesday may result in ”quite possibly in room
X”, given the policy, that the probability of 75% is corresponding to the output
of ”quite possible”.

Both prediction approaches requires some kind of location history making it is an
essential piece of information for location prediction.

2.5.5 Service Issues

This chapter outlines some aspects relevant for the development of location-based services.
The following enumeration presents a rough overview:

• Transparency: Location-based services usually have transparent access to the loca-
tion API provided by the location-aware middleware [87], meaning that the service
itself does not have any knowledge about the location management at all. High-level
location information is provided for readable access by the API, as are high-level trig-
gers and listeners providing location events, such as proximity and separation events
[61]. In summary, the location-based service is the highest level of any location-aware
architecture. Thus, it is usually decoupled from the location management middle-
ware (see section 2.4 for an analogous discussion concerning context-aware systems).
This argumentation is illustrated in figure 2.9, where the location API represents
this architectural cut.

• Service initiation: The initiation of a location-based service occurs on the applica-
tion layer as drafted in figure 2.9. There are two possibilities how this may occur
[61]:

– proactively: The service or the user himself requests location-based information
from the location API.

– reactively: A trigger is activated by the location management middleware due
to a location event, such as detection of proximity, separation, or the presence
in an area of interest (e.g.).

• Context-dependency: Location-based services may rely on further contextual infor-
mation besides context, implying the service to be executed in a scope of acquiring,
refining and utilizing such contextual information [87].
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2.5.6 Application Cases

We conclude this short survey on location awareness by presenting a selection of systems
examples from this research domain.

• Location prediction in a road network: Karimi et al. have proposed and imple-
mented a system to predict locations of mobile host in a Cartesian location model
representing a road network [54]. It works on the basis of calculating the trajectory
of a mobile device based on its historical movements and inferentially calculated
movement probabilities (as described in section 2.5.4). Location prediction is used
to prepare relevant information for the mobile user, where that information might
be of his interest in the near future (e.g. traffic jams, etc.).

• Hierarchical location management: The efforts of the research group circled around
Kieß et al. [57] are focused on the minimization of traffic in peer-to-peer networks by
employing a hierarchical location model. The entire covered area is hierarchically
partitioned into regions with cells being the smallest regions at the lowest level
of the hierarchy. Each region on each hierarchy level has a responsible location-
server (which is a mobile peer itself) roaming in a responsible cell. Responsible cells
are dynamically dedicated cells including the dynamically selected location server
managing a region on the lower hierarchy level. In addition, the model handles
the dynamic assignment and propagation of those temporary location servers, since
they are mobile peers and moving just as other peers are.

• Location management in a P2P network: The work presented by Satoh [87] proposes
a location model for pure peer-to-peer networks. In comparison to the previous
application case featuring peers functioning as temporary location servers, Satoh’s
approach relies on a principle omitting all kinds of centralized instances. Hierarchical
location models are calculated and kept by each peer individually. Updates to the
current model are derived from brief interactions with neighboring peers.

2.6 Proximity and Separation Detection

The detection of mobile entities approximating or departing each other depicts important
application cases for location-based services [61]. Abstractly speaking, detecting proximity
requires a subject, an object and a distance threshold. Proximity is detected if the subject
is closer to the object than the distance threshold. While a subject is always represented
by a mobile client, an object can be another mobile client, a physical object, a place
or an area. Separation detection works analogously in the opposite direction: a subject
separates from an object if having moved farther from it than the distance threshold. If
separation and proximity are to be handled on the basis of different distances, we can
distinguish between a proximity threshold and a separation threshold.

In the following, we drop the distinction between subject and object and generalize
both to mobile entities. As with all of the services implying location, proximity and sepa-
ration detection requires frequent location updates of the involved mobile entities. Based
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upon the location committed by the entities, proximity or separation can be detected. As
depicted in section 2.5.4, there are four basic mechanisms on how to trigger a location
update [61]: polling a mobile client to commit its location, periodic updates sent repeat-
edly at certain intervals, distance-based updates committed after having traveled a certain
distance, and zone-based updates committed after entering a certain area.

A common endeavor on designing update semantics is the minimization of the amount
of updates while keeping the location of the target as current as possible [20, 61, 57].
There are two efficient ways to achieve this objective in combination with detecting prox-
imity or separation of mobile entities [61]. Both conduct the detection mechanism in
2-dimensional space following a mobile entity’s location update. Both approaches work
on the basis of defining geometrical regions in their area of coverage: circles and strips.
Both approaches are introduced in detail in the subsequent sections 2.6.1 and 2.6.2. In-
dependently from both approaches, the detection of proximity and separation is based
on predefined proximity and separation thresholds. If distances between mobile hosts
have been detected to have fallen below or have exceeded those thresholds, proximity or
separation alerts are triggered, respectively.

2.6.1 Proximity Detection based on circular Zones

The first approach is based on circular areas centered around mobile hosts [61]. Every time
a mobile entity commits a location update, the circle is redefined and centered around
the entity’s current position. The next location updates is committed by the entity upon
leaving this circular area. This implies that the location-aware system remains unaware
of the entity’s exact location as long as the entity does not leave the circular area defined
around it. However, depending on the radius of the circle, its current position is fairly
approximate.

Given two mobile entities with their respectively defined circles around them, prox-
imity and separation are detected upon calculating the smallest and largest possible dis-
tances. Both distances depend on the circles’ radii, as it is visualized in figure 2.10a. For
proximity detection, it is checked whether smallest possible distance is lower than the
proximity threshold. Separation is detected analogously checking if the largest possible
distance exceeds the separation threshold.

This zone-based approach eliminates the necessity of polling or periodic updates since
updates are only committed once a mobile entity significantly changes its position. Dy-
namic radii and shifting circles further enhance the ratio of update amount to detection
accuracy [61].

Extending those circle-based update semantics from two to an arbitrary number of
entities yields no significant challenges. Every entity is concerned about its own radius
of relevance when it comes to decide whether to commit an update. Concerning the
location management, those semantics scale well. Given n entities, there are n circles to
be regarded. The complexity is O(n).
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Figure 2.10: Proximity and Separation Detection

2.6.2 Strip-based Proximity Detection

The second approach focuses on defining an orthogonal strip between two mobile entities
and spanning a circle around the center of the line between them, as seen in figure 2.10b.
Both circle and strip are defined right after committing a location update. In contrast to
the first approach, this mechanism requires each of the two entities to know the current
position of the other entity. Without knowledge about the other’s location, neither one
would be able to define the strip.

Location updates are committed upon either entering the strip or leaving the circu-
lar zone. As stated, this method requires polling the potentially converging/separating
partner entity’s location. Proximity is detected upon a location update triggered by one
of the entities entering the strip. After having polled the other entity’s location it can
be determined if it has come closer than the proximity threshold. Separation detection
is conducted after a location update committed by a target leaving the circular zone.
Separation occurred if the distance to the other entity (location has been polled as well)
has exceeded the separation threshold. Figure 2.10b illustrates this approach.

Extending this approach from two to an arbitrary number of entities, we face the
following problem. In this setting, an entity needs to define a strip in between itself
and every other known entity [20]. Assuming that n mobile entities are registered in the
system, every entity needs to define n− 1 strips. This leads to two issues:

• The first issue concerns the number of strips known to each entity. We can observe
an exponential increase of complexity when linearly increasing the entity count:
O
(
n(n−1)

)
with n entities calculating n−1 strips each. The solution is to partition

the covered area. A straightforward approach is the subdivision into squared regions.
In this setting, each square has usually eight neighbors (in directions N, NE, E, SE,
S, SW, W, NW) and is labeled live if it is occupied with at least one entity. Further
in this setting, each entity is only concerned about other entities in its own squares
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region and in the eight neighboring regions. Thus, each entity generates strips
to entities located in those nine regions only. Besides the approach with squared
regions, there are numerous other ideas of partitioning space (e.g. [71]), which can
be employed to help managing mobile entities.

• The second problem arises out of the following observation. For each mobile entity,
although the number of concerned proximate entities is reduced to those located
in its own and neighboring region, the entity needs to monitor whether it enters
one of its neighboring strips. Figure 2.11 shows this scenario. The neighboring
strips create a bounding polygon, in which it is hard to track its own movements.
While staying inside the polygon, no update is necessary. Leaving the polygon
equals entering one of the strips and the necessity of committing an update. To
reduce the elaborate monitoring process of checking whether leaving the bounding
area, the polygon can be approximated by geometrical structures, which are much
easier to monitor. E.g., Figure 2.11 shows a minimum bounding rectangle (MBR)
approximating the bounding polygon. Despite generating more updates, an MBR
is less elaborate to monitor.

M

Minimum Bounding
Rectangle

Bounding Polygon

Figure 2.11: Strip-based Update Semantics with 4 Neighbors

It is to be recalled that the strip-based issues concern the proximity detection only.
Separation detection is based on the circular-zoned update semantics (as discussed in
section 2.6.1, which are considerably less complex. For this reason, we omit a further
discussion at this point.
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2.7 The Heterogeneity Issue

Context-awareness has a strong focus on mobile computing environments. In many cases,
mobile devices represent context sources and hosts for context-aware applications. We
will refer to mobile devices on multiple occasions when elaborating on the contextual
map concept in the forthcoming chapters. However, mobile computing is characterized
by a high level of heterogeneity, since there are only a few standards, which are commonly
obeyed by the device manufacturers, software developers and network providers [90]. This
aspect is especially reflected by heterogeneous characteristics of mobile devices, operating
system, resources and network capabilities [39]. In this section, we provide a brief review
about the impact of heterogeneity in mobile computing environments. It is to be regarded
as a peripheral complement to the contextual map’s core domains of context awareness
and geographical proximity handling.

The goal of mobile computing suggests including devices spanning the entire hardware
spectrum [69]. This argumentation includes the appliance of various use cases, including
both the pervasive access to mobile services and ubiquitous communication between mo-
bile hosts [90, 73]. Hence, those application cases can be reduced to the basic demand of
communication among heterogeneous devices in heterogeneous environment. This state-
ment can be refined as follows:

• Communication among mobile devices: This basic use case depicts the communica-
tion of at least two mobile hosts, both capable of roaming in correspondent networks
and enabling the mobile devices’ users to exploit this communication link.

• Communication with back-end systems: In this case, the user employs his mobile
device to connect to a network’s back-end system. This activity usually triggers a
specific workflow on the back-end, e.g. a mobile service delivering a specific response
to the requesting user.

Many research groups agree in handling heterogeneity by employing middleware so-
lutions [39, 69, 35, 73]. The common idea behind those approaches is to position the
middleware layer between the application layer at the top and the heterogeneous environ-
ment at the bottom as displayed in figure 2.12. Hence, transparent access is provided to
the heterogeneous environment by masking the underlying heterogeneity.

2.7.1 Heterogeneity Abstraction

In mobile environments, the problem of heterogeneity concerns a wide range of architec-
tural domains. A simple cut allows the abstraction of heterogeneity into three different
views [39]:

• Hardware heterogeneity: Hardware heterogeneity reflects the presence of different
devices with different capabilities, as well as different network technologies integrat-
ing those devices.
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Figure 2.12: Heterogeneity-aware Middleware Design

• Software heterogeneity: Software heterogeneity is characterized by the presence of
different applications and operating systems.

• Architectural heterogeneity: This heterogeneity aspect illustrates environments where
network interconnections do not share any common architectural characteristics.

All of those heterogeneity aspects address the problems arising from the endeavor to
achieve interoperability among different devices and systems. Interoperability may be
decomposed into the following communication models:

• Direct communication: Mobile devices communicate directly with each other. Het-
erogeneity has a direct impact here, since communication among mobile devices
must be based on commonly shared standards.

• Brokered communication: The communication link between devices is established
by some sort of centralized instance. The challenge here is to make the server being
able to address a heterogeneous mass of devices.

• Unidirectional workflow activation: A mobile user may trigger a specific workflow
on a server by contacting it unidirectionally. In this case, the demand for support
of heterogeneous callers applies again.

• Service provision: A mobile user employs his device to use services provided by a
server by requesting the service and getting an appropriate response subsequently.
Technically speaking, this application case describes an extension of the previously
described universal workflow activation adding a response after completion of the
workflow, so that the service is described by the delivery of responses following client
requests. Again, the server must be able to deal with heterogeneous sets of devices.

Hardware Heterogeneity

Hardware heterogeneity simply reflects different physical implementations of the mobile
devices’ underlying technologies. Based on that, different capabilities of the particular
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devices can be derived. Those capabilities allow the heterogeneous set of devices to
be structured accordingly. We categorize those capabilities under consideration of the
following aspects of hardware heterogeneity, which are of particular interest in mobile
environments:

• Communication interfaces: Those are the physical components, that connect the
device with its surrounding, i.e. enabling access to the network [37, 24, 69]. There
is an abundance of network technology available. Examples are given below:

– Wide Area Networks: GSM, TETRA, 3G-networks, satellite phone networks,
etc.

– Local Area Networks : 802.11, etc.

– Piconets : Bluetooth, Zigbee, etc.

• UI capabilities: User interfaces differ widely among mobile devices concerning both
input (keypad, microphones, etc.) and output (displays, speakers, etc.) capabilities.
Since this aspect concerns the interaction with the user, it aims at providing content
to the user and gathering his commands, which can both be device-specific [91].

• Performance: Mobile devices are equipped with performance-constrained hardware
due to limitations in the power supply and the available space. Although those
restrictions apply to most of the mobile device spectrum, the level of restriction
differs significantly. The reduction of performance especially concerns capabilities
of computation, communication and storage [97].

Software Heterogeneity

Software heterogeneity concerns the set of software payloads on mobile devices. It can be
decomposed into four categories:

• Operating systems: There are numerous operating systems running on mobile de-
vices. They all handle their particular systems tasks differently creating a high
degree of heterogeneity on the level of OS-internal architectures. Furthermore, op-
erating system can be categorized as follows:

– Closed systems : In many cases, the manufacturers of mobile devices provide
a proprietary operating system on their products. Usually, those are closed,
i.e. there are no APIs which might allow third-party software to run on those
systems (e.g. Nokia OS, Series40).

– Open API: Those operating systems provide common native APIs for third-
party applications to run on them. Established representatives of such systems
are SymbianOS [13] and Windows Mobile [8]. In recent years, more notable
operating systems with open APIs have appeared in the mobile computing
domain, such as iPhoneOS [4], Android [6] and WebOS [10].
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• Middleware APIs: Some operating systems provide common non-operating-system
APIs for third-party applications. Those APIs are designed to supplement the op-
erating system. Hence they are shielded from the operating system’s core functions
making them less powerful than an operating system’s native API (if existent). A
prominent example for such a middleware API is J2ME [7].

• Applications: This abstraction criterion describes the mass of applications available
for APIs provided by operating systems and middlware as stated above.

• Application domains: Applications can further be categorized by application do-
mains (e.g. context awareness, mobile billing, etc.). Even though application do-
mains differ among each other, software belonging to a particular domain often
shares common principles.

Architectural Heterogeneity

Architectural heterogeneity addresses differences in any aspects focusing the architectural
design of mobile computing systems, of which the following seem to matter most:

• Network topology: A network’s static and dynamic settings can both differ greatly.
Although the static architecture can only differ among complete networks, this
aspect is relevant when mobile devices roam between such different networks. Dy-
namically changing network topologies even concern devices roaming across one
network. Those issues particularly raise availability issues and imply accordingly
working hand-over techniques [38].

• Services : Heterogeneity of services is reflected by the existence of a large spectrum
of diverse services, which can be utilized by mobile devices. It especially concerns
the services’ protocols specifying access and result delivery [90].

2.7.2 Heterogeneity Handling

This section focuses on how to overcome the heterogeneity issues as decomposed in section
2.7.1 in order to maximize interoperability. As stated earlier, a key concept in approaching
the problem is the design of middleware solutions, which are intended to make hetero-
geneity transparent. The following subsections discuss various concepts addressing this
issue. First, techniques of abstracting heterogeneous data into proper representations
are discussed. Subsequently, this information is employed to evaluate diverse operational
techniques of overcoming the problems caused by heterogeneity. It is further to be noted,
that all of these concepts presented in this section are not necessarily disjoint.

Representing Data from heterogeneous Sources

This section focuses on abstracting heterogeneous data into uniform representations in
order to facilitate common storage of such data and workflows utilizing it.
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Capabilities Heterogeneity defines itself by the presence of different capabilities in the
same domains. In order to accomplish interoperability among heterogeneous devices, the
first step is often to capture all of their capabilities and structure them into suitable
representations. Those representations serve as a data basis for solutions adapting to the
device heterogeneity.

There are plenty of representation techniques available, which are suitable for imple-
menting such representations. Two examples are given below:

• Device capability databases: A DCDB stores the devices’ capabilities and provides
them to the system, which is communicating with the devices [91, 73]. It especially
applies for understanding the devices’ requests and providing according content to
them. DCDBs are normally implemented as relational databases or using XML. A
very neat example for the latter case is the open source project WURFL [79].

• Ontologies: A more sophisticated way of storing data is the employment of ontolo-
gies. Ontologies allow the representation of data as an interrelated set of concepts
[95]. E.g., Christopoulou et al. [37] employ ontologies to describe the characteris-
tics of heterogeneous devices. Just like the DCDBs, those ontologies solely focus
on characteristics, which differ among the devices in question. However, since an
ontology is usually intended to describe a device as a whole, the custom ontologies
noted here may not suffice due to their sole focus on heterogeneous capabilities.
Hence, to solve this issue they can be complemented by a general ontology, which
describes device characteristics common to all target devices.

DCDBs and ontologies serve the same purpose, whereas ontologies may be regarded as
a sophisticated refinement of DCDBs. Since both are storing information about devices,
they will both be referred as device databases from now on.

Intermediary Representations The capability representation techniques have shown
an approach how to reduce a heterogeneous spectrum of data to uniform representations,
hence allowing uniform storage of heterogeneous data. Analogously, this principle can be
applied to facilitate workflows of middlewares dealing with heterogeneous environments.
In that case, the middleware uses uniform representations of data to allow communica-
tion between heterogeneous mobile devices among each other and any back-end system
behind the middleware. Such representation represents a generalization of all supported
communication semantics from the heterogeneous spectrum. It may be called interme-
diary since it is not feasible for neither any of the devices nor the middlware’s back-end
services. When communicating with either of those the data is dynamically adapted to
the target’s specification at runtime using DCDBs as described in the capabilities dis-
cussion. Concluding, intermediary representations introduce an interoperability layer in
the middleware enabling heterogeneous communication through a generalizing approach,
such as illustrated in figure 2.13. It is to be noted, that the middleware is not necessarily
physically decoupled from the mobile device. Possible deployment option of middleware
are discussed later on.
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Figure 2.13: Intermediary Layer

In summary, an intermediary representation allows the middleware to utilize hetero-
geneity aspects uniformly at runtime. This concept can be particularly exploited for the
following application domains:

• Inter-device communication: Intermediary representation can be used to represent
all aspects relevant for the communication between devices, which differ in charac-
teristics, protocols, etc. [73].

• Content provision: The utilization of intermediary representations can facilitate
the provision of content to a heterogeneous spectrum of devices by first generat-
ing device-independent intermediary content, which is subsequently adapted to the
receiving device [91]. This approach emphasizes the entire spectrum of defining
content (structure, content, style, etc.).

Exploiting common Interfaces

One of the most basic approaches in enabling interoperability among mobile hosts is to
identify their common interfaces and exploit them accordingly. Those interfaces allow the
devices to be very different by hiding their individual heterogeneous characteristics behind
their commonly shared interface specification and thus making themselves transparent to
each other [24].

This thought is projectable on both heterogeneity domains of hardware and software,
as depicted in section 2.7.1. Regarding heterogeneous hardware, this simply means that
all devices communicate via the same technology and/or via the same protocols. E.g.,
devices from a large spectrum reaching from desktop computers to small handhelds may
communicate wirelessly although being very different individually. The same principle
applies for software heterogeneity, where the utilization of common APIs marks the cor-
respondent approach. E.g., J2ME [7] or the Series60 API [11] provide uniform and widely
spread interfaces for applications. The common idea behind the general approach and
the applicability to the heterogeneity handling concerning both software and hardware is
depicted in figure 2.14.
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Figure 2.14: Common Interfaces

However, refinement of the common interface principle allows yet more sophisticated
solutions. Common APIs on mobile devices provide a sort of gateway to the devices’
heterogeneous subsystems to deploy more functionality. In this case, the common API
is used to deploy and utilize device-specific implementations on any target device and to
provide universal communication to the network. An illustrative example is the mode of
operation of the Gaia Microserver, presented by Chan et al. [35]. It is intended to enable
mobile devices to access a server platform for ubiquitous computing. Since the targeted
devices are heterogeneous, the microserver would have been needed to be deployed as a
device-specific package on each device. Instead, the J2ME middleware, which is shared
among all target devices, is used to provide the desired device-independence, and thus the
interoperability. A J2ME package containing all available device-specific implementations
is deployed to the device and executed subsequently. The J2ME middleware selects and
installs the appropriate specific implementation for the device. The resultant mode of
operation consists of providing access to the ubiquitous computing platform in the back-
end by accessing the device’s native function through the device-specific implementation
and by providing access to the back-end via the J2ME middleware. It is to be emphasized
that this symbiotic solution between device-dependent implementations and the device-
independent J2ME API is utilized by a single distribution.

Individual Adaptation

Direct communication among two heterogeneous partners requires that at least one of
the communication partners adapts to the other’s communication technique. This may
include direct inter-device communication as well as communication between a device and
a server. Extending this approach on a setting with devices implementing numerous dif-
ferent communication techniques requires uniform communication to satisfy the demand
of general interoperability [73].

Apart from the necessity of using commonly shared hardware technology, which comes
along with the direct communication approach, the concept of adapting communication
to the current partner dynamically may handle heterogeneity issues in both hardware and
software, as depicted in section 2.7.1. The following workflow enables this principle [91]:
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1. As soon as the communication partner is identified, it is evident which commu-
nication standard is needed. Identification is conducted using a device detection
mechanism exploiting a device database, which also contains the capabilities of the
identified device.

2. Since the communication partner supports only one of many communication stan-
dards, an intermediary layer is inserted between the communicating entities for
reasons explained previously. Incoming and outgoing communication is translated
to the intermediary representation first before being committed to the communica-
tion partner or the adapting device (its back-end). The intermediary layer allows
swift and scalable adaptation to any communication technique necessary.

The application cases of this principle, which is illustrated in figure 2.15, are various.
The approach can be projected onto the client-server paradigm, so that a server adapts
to a heterogeneous set of mobile devices, which implement heterogeneous communication
techniques [91, 73]. An implementation based on a P2P architecture is imaginable, too,
but raises question about facing the peers’ low capabilities concerning computation and
storage, with are both required for the adaptation process.
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Intermediary Representation

Backend Business Logic

Heterogeneity Layer

Middleware
Device Adaptation Layer

Device 
Detection Adapt Communication

Middleware Backend Layer

Device 
Database

Application Layer

Figure 2.15: Individual Adaptation to Communication Partner

Bridges

The basic thought in the approach discussed in this section is the insertion of an entity
between at least two heterogeneous systems or devices enabling the communication be-
tween those. This concept may be allegorically related to bridges, since they are intended
to connect possibly totally different domains. Since the concept is very basic in nature,
numerous instantiations are imaginable. The following discussion categorizes the general
application cases:
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• Hardware bridges: Those are dedicated stand-alone hardware devices negotiating
the communication between heterogeneous communication partners. Those bridg-
ing devices provide interfaces for each of the supported heterogeneous domains. As
an example, consider a laptop as a bridging device for heterogeneous sensors as
depicted by Bartelt et al. [24] and Volgin et al. [96]. It is to be assumed, that those
sensors may be connected to the laptop through its various interfaces (e.g. USB,
PCMCIA, serial port, etc.). The laptop captures the sensory data, refines them into
an appropriate format and commits them to the system’s back-end wirelessly via
802.11. The conclusion of this example denotes heterogeneous data acquisition com-
bined with a common communication mechanism, which masks the heterogeneous
aspects of the data collectors.

• Software bridges: Such as hardware bridges provide interoperability between differ-
ent hardware domains, software bridges enable the communication between differ-
ent systems on the software level analogously. For this purpose, consider a bridging
framework, as described by Nakazawa et al. [73]. Several levels are important on
the abstraction layer dealing with software bridging:

– Transport-level bridging: Transport-level bridging involves translation of pro-
tocols and data types inherent in the systems to be bridged. Since each system
uses its own base protocols and data types for communication the bridging
framework must be able to understand and translate each enabling devices
from the bridged systems to communicate seamlessly with each other.

– Service-level bridging: This level of bridging includes the discovery of new
devices in bridged systems and offering appropriate services to them. Those
services are not coercively uniform since each device may require different ser-
vices and may offer services to others on its own.

– Device-level bridging: Different device semantics are handled and translated by
device-level bridging, including roles of devices and their compatibility across
the different systems.

Since all of the bridging levels discussed here are characterized by heterogeneous
communication they are eligible for the adaptation mechanism discussed previously.
They need information about how to adapt the communication to the correspon-
dent device, requiring some sort of capability databases. Also, the translation of
protocols, data types, services and device semantics require individual handling for
each bridged system. In order not implement a translation technique for each pair of
systems, an intermediary representation of information on each bridging level may
greatly reduce the translation complexity.

Mobile Agents

The discussion so far has focused on the heterogeneity aspects concerning mobile devices’
hardware and software (as depicted in section 2.7.1). A suitable way of addressing the
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remaining aspect of architectural heterogeneity is the employment of mobile agents. Those
autonomous programs usually run on back-end systems (not on mobile devices) and may
be used to individually address any arising heterogeneity issue. For example, consider
a set of heterogeneous services, which are accessible by mobile devices. Mobile agents
can be employed to handle service request for such devices by implementing the following
workflow [23, 83]:

1. The mobile agent provides a uniform interface for mobile devices and accepts their
service requests.

2. Subsequently, the agent queries the appropriate service and waits for its result de-
livery. This is the phase where the adaptation to the heterogeneous mass of service
is applied.

3. Finally, the results are returned to the requesting device.

Since the adaptation to the heterogeneous service interfaces is handled by the mobile
agent, mobile devices are provided transparent access to a set of heterogeneous services,
thus successfully hiding the service heterogeneity from them.

2.7.3 Architectural Issues

After having decomposed the heterogeneity issue in mobile computing, and after having
presented approaches to address those issues in the precedent sections 2.7.1 and 2.7.2,
this section deals with aspects of realizing those approaches.

Communication Models and Middleware Application

The actual instantiation of the heterogeneity-addressing concepts are dependent on each
individual application case. However, most application cases can be projected onto the
four communication models depicted in section 2.7.1. Those can be further grouped into
the generic communication paradigms of client-server and peer-to-peer as follows:

• Client-server: unidirectional workflow activation and service provision

• Peer-to-Peer: direct communication and brokered communication

The realization approaches of heterogeneity-handling middleware can roughly be cat-
egorized by those four communication principles.

Client-server Model Communication takes place between a mobile device denoting
the client, and a server in the back-end. The heterogeneity-aware middleware may be
deployed on the client [24], the server [91] or both [35] depending on the particular use
cases. Those can be grouped by the communication models as follows:
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• Unidirectional workflow activation: Since the communication flow is unidirectional
in this case, the server simply needs to offer a set of common interfaces, which
clients access to trigger workflows on the server. Individual adaptation to the clients’
protocols is rudimentary and is limited to understanding the clients’ invocations.

• Service provision: Basically being an extension of the previously stated communi-
cation model, the addition of a server response makes this case more complex [91].
Since the communication is bidirectional, device detection occurs so that the server
is able to respond accordingly to the client. Subsequently, the requested service is
performed by the server’s application back-end and the results are committed to the
middleware where they are stored in an intermediary format. Since the device is
known, the middleware now adapts the service’s results to the client’s specification
and returns them to the requesting device. Hence, individual adaptation must not
only be used to understand the client’s requests, but also to tailor device-specific
responses, as illustrated earlier in figure 2.15.

The service-provisioning infrastructure can be optimized by adhering the princi-
ples of service-oriented architecture (SOA). The SOA paradigm features a service-
registry and corresponding lookup mechanisms for clients. It can easily be projected
on a scenario encompassing heterogeneous devices and services with a correspond-
ingly embedded middleware handling those heterogeneity aspects [24].

The communication models discussed here emphasize the deployment of the heterogeneity-
aware middleware on the server only. However, special use cases may require deploying
parts of the middleware onto the clients as well. Regarding this context it is to be noted
that decoupling the middleware from the client potentially increases the range of the cor-
respondent application since there is no need to deploy any middleware components on
the devices [91].

Peer-to-Peer Model Communication occurs among multiple distributed and generally
equally ranked peers. Two of our depicted communication models are applicable onto the
P2P-architecture:

• Direct communication: Pure P2P networks are characterized by the absence of cen-
tralized components. Middleware enabling interoperability among heterogeneous
peers is hence deployed on the peers themselves. Basically, this implies that commu-
nication partners always have to agree on common protocols prior to communicating
with each other. With the exception of the underlying hardware requirements, the
communication protocols are usually provided or complemented by the middleware.
Hence individual adaptation and thus the use of intermediate representations are
unnecessary since the middleware is the same on each client. This implies though,
that middleware on mobile peers has a strong emphasis on the presence of common
interfaces.

This approach forces the middleware to adhere hardware restrictions, which are nor-
mally existent on mobile peers. Such are, e.g., capabilities concerning computational
power, bandwidth and storage [97].
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• Brokered communication: Brokers allow inter-device communication enabled by a
centralized component, usually seen in hybrid P2P networks. The server-resident
middleware negotiates the communication between heterogeneous partners [73] as
it has been described in the software-bridging concept in section 2.7.2. Hence,
device detection, common interfaces and individual adaptation are of significant
importance.

Components

The discussion about approaches to face the heterogeneity issues allows the identification
of several components relevant to each heterogeneity-aware middleware [91, 73]:

• Device database: A database storing all available information about devices, espe-
cially including device capabilities and semantics (as discussed in section 2.7.2).

• Device detector : A component dedicated to the identification of devices communi-
cating with the middleware. It usually uses the device database for this purpose by
matching the identification attribute with the corresponding entry in the database.

• Intermediary storage: The intermediate space is used for the device-independent
representation of information. It has solely importance for the operation of the
middleware itself and is intended to reduce complexity during the adaptation of
information to specific devices (as discussed in section 2.7.2).

• Translation adapters : Those components translate device-specific information to the
device-independent intermediary representation and vice versa. Abstractly speak-
ing, there is an adapter for each device group sharing common capabilities (see
section 2.7.2).

• Common interfaces : Middlewares offer a set of interfaces, which are commonly
accessed by the heterogeneous communication partners. They are a simple approach
to leverage transparent access on heterogeneous technology, as described in the
common interface discussion in section 2.7.2.

• Configuration modules : The dynamic behavior of a middleware is dependent on
their configuration. In order to keep it scalable and maintainable it is advisable to
encapsulate its entire configuration in functional modules, which are dynamically
loaded and interpreted at runtime. This especially applies for the following ones:

– Templates for content and business logic

– Intermediate syntax and semantics

– Adaptation rules
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Workflow

From the discussion of the heterogeneity handling strategies in section 2.7.1 and the
derived generic components from the previous discussion, the following generic workflow
can be conceptualized for a heterogeneity-aware system:

1. Device detection: The first step consists of identifying the heterogeneous commu-
nication partners, i.e. detecting the devices used. This is done by matching the
devices’ identification attribute with the corresponding entry in the device database.

2. Interface selection: With the device capabilities known, its interfaces are known as
well. Hence, the next step consists of selecting the proper interface for the initiation
of the logical communication link.

3. Device-specific translation: The device-specific output is translated to the system’s
device-independent intermediary representation and vice versa by using the corre-
sponding translation adapters device-specifically. This translation occurs either uni-
directionally or in both directions depending on the communication models depicted
in section 2.7.1. E.g., for service provision only intermediary content is adapted to
the target’s specifications whereas direct and brokered communication both require
translations both to and from intermediary representations.

2.7.4 Application Cases

This section outlines a selection of solutions implementing heterogeneity-aware middle-
ware:

• Deployment of device-dependent data: At this point, the reader is reminded the
common-interface-based deployment principle presented in section 2.7.2 with a device-
independently utilizable gateway program enabling the operation of device-dependent
implementations. The Gaia Microserver, introduced by Chan et al. [35] enables
this principle by running such a program in any device’s J2ME [7] sandbox. This
program allows the installation of device-dependent code and enables uniform com-
munication with the back-end system, a platform for ubiquitous computing.

• Bridging device communication: The bridging framework developed by Nakazawa et
al. [73], which has been exemplary described in section 2.7.2 enables, is reminded to
the reader at this point as well. Device capabilities and semantics are abstracted in
a database, which is used to interpret incoming and adapt outgoing communication
of any supported device. The framework uses an intermediary representation of
all relevant data, which is adapted to the target’s supported format on-demand.
The bridging framework allows seamless interoperability among a wide spectrum of
heterogeneous devices.

• Dynamic content adaptation: Rather than enabling interoperability, the idea be-
hind [91] focuses on accurate content provision. It enables mobile devices to access
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content via the internet, thus content displayable by the devices’ web browsers
(XHTML, WAP, cHTML, etc.). The requesting device is identified using a device
database and the requested content is tailored to its specifications in two steps. First
the content is generated in a device-independent intermediate format by taking the
content from a static content definition and enriching it with dynamic data, which
is only available at runtime. Subsequently, the second step consists of adapting the
intermediate content to the requesting device using XSL-T transformation [16] and
finally sending it to the requester.

• Integration of heterogeneous mobile devices: The system developed by Bartelt et al.
[24] focuses on integrating heterogeneous devices into a SOA-based environment.
It features a common communication bus based on 802.11 to which heterogeneous
devices attach themselves using their individual service interfaces. Those interfaces
bridge the common communication bus and the device-dependent service implemen-
tation on the device, thus achieving seamless interoperability among heterogeneous
devices.

2.7.5 Summarizing Heterogeneity-Awareness

This survey has presented and evaluated techniques how to address heterogeneity as-
pects, which are present in mobile computing environments. From those approaches,
a general architecture implementing those approaches can be derived as illustrated in
figure 2.16. We have proceeded in the same manner as deriving the generalized context-
aware architecture from section 2.4.2. The concept in figure 2.16 represents our view on
heterogeneity-handling resulting from our survey.

The workflow to enable interoperability among heterogeneous devices and systems is
basically inspired by the steps depicted earlier in section 2.7.3. First, the device detector
identifies the partner device by matching the device’s identification attribute with the cor-
responding entry in the device database. With this information available the middleware
is able to negotiate communication between the heterogeneous device on the heterogeneity
layer and the parent application on the application layer, as illustrated in figure 2.16. On
the top, it provides a transparent device interface to applications, hiding all heterogeneity
issues from them. On the bottom, it utilizes native hardware interfaces to connect to the
communication partner. The middleware decomposes into two layers:

• Device adaptation: The core component on this level has been labeled the adap-
tation engine, which adapts all communication to the heterogeneous device. Each
of its translation adapters is bound to a common interface present on the deploy-
ment system. It utilizes the device information from the device database to query
information on how to actually adapt the communication to the partner device. For
reasons of modularity, the translation rules are kept separately and interpreted at
runtime. This approach allows the adaptation engine to handle heterogeneous de-
vices through the common interfaces (bottom) and to provide a device-independent
interface to the representation layer (top).
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Figure 2.16: General Architecture for heterogeneity-aware Middleware

• Data representation: This layer’s purpose is to make all information send through
the middleware uniform and device-independent. It therefore uses an intermediate
representation format.

The architecture presented here allows transparent communication with heterogeneous
devices. The application logic depicted on top of the transparent device interface in
figure 2.16 may be instantiated as applications in many domains, including the following
exemplary selection:

• Communication: Heterogeneous devices communicate seamlessly with each other
without caring for syntax, semantics or protocols.

• Services: Services may be offered to a wide spectrum of heterogeneous devices
allowing service providers to extend the range of their service, meaning the increase
of the amount of potential service users.

• Interoperability: Collaborative systems may include heterogeneous devices extend-
ing their range of potentially reachable devices.

2.8 Summary and Relevance

Concluding the chapter on related research, this section intends to bring all discussed
research domains together and explain their relevance to the contextual map.
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• Context awareness: The contextual map is a context model for representing and
exploiting contextual information of various entity types. Hence, context awareness
is the primary domain of our work. Understanding the functionality and workflows
of context-aware systems enables us to integrate the contextual map into this do-
main. Sections 2.2, 2.3 and 2.4 have extensively surveyed this domain in regard to
context definition, modeling and application. We have even depicted a placative
architecture depicting the general working principles of context-aware systems in
section 2.4.2 (see figure 2.5).

• Geographical proximity detection: This research branch of location-aware computing
depicts important mechanisms that we base our contextual proximity detection
on. The emphasis is put on maximizing the efficiency of those mechanisms, which
apply for our use case as well. We aim at leveraging those mechanisms into multi-
dimensional proximity detection applicable for our context. We have extensively
surveyed the domain of location-aware computing while particularly emphasizing
proximity detection in sections 2.5 and 2.6.

• Heterogeneity: Although not directly involved in the mechanisms for contextual
similarity handling and therefore not crucial for the conceptualization of the con-
textual map, the heterogeneity issue has large influence on the actual realization
of any context-aware system. Although the focus of this work is clearly put on
theoretical concepts rather than implementation issues, we peripherally discuss this
issue due to its impact on the context awareness domain. Section 2.7.1 has surveyed
the domain yielding a placative architecture on generalized heterogeneity handling
(see figure 2.16 in section 2.7.3).

With the background domains extensively discussed, the next chapters 3 and 4 provide
an in-depth discussion on the contextual map’s context model and application.
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Chapter 3

The Contextual Map Model

In this section we introduce the contextual map model for storing contextual information.
First of all, it needs to be clarified how the contextual map integrates into context-
aware systems. For this purpose, we regard the placative context-aware architecture
in figure 2.5 from section 2.4.2. The contextual map is a context model representing
the situation of respective entities. In figure 2.5 this is exactly the task of the context
repository. Concluding, the contextual map is a possible model for a context repository
on the reasoning level of context-aware systems.

This section is structured as follows. After presenting the model’s structural charac-
teristics we focus on how contextual information is mapped into this model. We conclude
this section with a survey of data models suitable for the contextual map. Further, to
improve the reader’s understanding, we are going to illustrate the working principle of
the contextual map by employing an example, which exploits the context of a weather
station.

3.1 Composition

The key idea of the contextual map model is to represent the context of entities in an
n-dimensional realm. The context of a single entity corresponds to a single entry in the
contextual map. We assume that the entity context is decomposed into n attributes.
Thus, the entity’s entry in the contextual map is composed of n coordinates and hence
can be interpreted as a position in the map. Referring to our example, the context of our
weather station denotes the current weather conditions at a specific location. Its context
represents a single position in the contextual map, whereas the context of another weather
station denotes another position in the map (since its context is different, i.e. it excels
different location and weather conditions).

An entity’s context, captured by various context sensors, is mapped into the n di-
mensions of the contextual map by employing a particular mapping function. Basically
speaking, this function represents an abstract converter translating heterogeneous con-
textual attributes to vectors represented as points in the contextual map. We are going
to sketch such a function in the subsequent section 3.2.
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After mapping the information into the contextual map, the entity’s current context
is represented by n coordinates inside the map. For this reason and for the sake of
simplicity, we call this n-dimensional point the context of its belonging entity. Thus, a
context is made up of the values on the n dimensions of the contextual map. With that,
each dimension represents a particular contextual attribute in the real-world context.
We do not dilute the definition of context by doing so, since the n-dimensional point
is a representation of an entity’s context, which is semantically equivalent to any other
context representation.

Analogously to the n-dimensional contextual map composition, one can imagine a 3-
dimensional map of space, which is employed to represent the location of entities in space.
We extend this 3-dimensional model by adding additional dimensions, in order to include
further contextual information other than location. Finally, each dimension corresponds
to an elementary contextual attribute of a complete piece of context. In the contextual
map, a single dimension is the smallest unit of context representation. E.g., a weather
station’s temperature readings can be mapped to one dimension whereas its humidity
measurement can be mapped to another. In this basic example, those two dimensions
represent a 2-dimensional context map. A weather station’s context is hence represented
by the two current measurements of temperature and humidity in the map.

To further augment our model, we allow the contextual map to be partitioned into
contextual ranges. A range is a subset of the map’s dimensions, thus partitioning the con-
textual map into multiple disjoint dimension sets. Since a range groups a subset of all the
map’s dimensions, it actually represents a d-dimensional subspace of the contextual map
(with d < n). Thus, ranges can be employed to group contextual information according
its type. Since each dimension corresponds to a particular context attribute, a contextual
range may group dimensions whose context attributes belong to a particular context type.
For instance, our weather station’s location is a piece of context, decomposing into three
subordinate building blocks corresponding to the location’s Cartesian coordinates. In the
contextual map, three dimensions can be dedicated for coordinate representation, group-
ing them to the range Rloc dedicated to the representation of locations. Since the weather
station’s context includes more than merely its location, additional ranges must be in-
cluded. E.g., an additional range Renv may include the station’s environmental readings
with a single dimension being dedicated to each sensor (e.g. temperature, humidity, etc.).
Practically speaking, ranges represent ”submaps” of the contextual map (corresponding
to the map’s according subspaces). Since they are grouping contextual attributes type-
specifically, positions of contexts in the contextual map are especially expressive on range
level. E.g., the representation of Renv shows the contextual position of the current weather.
Those range-level context representations are of particular importance for the contextual
map. We refer to those range-specific contextual positions as range contexts, depicting a
set of d dimensions that represent d contextual attributes of a particular context type.
Thus, range contexts represent complete contexts on a particular contextual range, which
groups those d dimensions.

With this definition we have enabled contexts to be decomposed completely and dis-
jointly into range contexts emphasizing and grouping contextual attributes on different
ranges. To associate a range context with its according parent context, we introduce the
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rcc-operator (range context to context). Given a range context Prange, its parent context
Pfull, which is the inter-range complete context in the contextual map, can be derived by
the rcc-operator:

Pfull = rcc(Prange) (3.1)

In addition to that, we also introduce the crc-operator (context to range context),
which represents the inverted function to rcc. It maps a full context Pfull to a range
context Prange on a specified contextual range R:

Prange = crc(Pfull, R) (3.2)

Another addition to the model is the definition of hierarchies among ranges, which
can be related to each other by means of specialization and generalization, resulting in
tree-like hierarchies. For example, our weather station may issue a warning level denoting
a single value for the current weather condition. This warning level may be assigned
a range Ralert, which is specialized to the individual measurements of Renv. With this
approach, we are able to inject causal dependencies into the contextual map, where range
contexts on one range are dependent on range contexts of another one. Modeling such
dependencies may be achieved by the definition of according rules that map values of a
range’s dimensions onto the dimensions of the dependent range. In summary, hierarchies
serve as a structuring tool for dimensions and facilitate the process of inferring new context
(see section 4.4).

The dimensions in the contextual map may be regarded as the axes of an n-dimensional
Cartesian map model. Hence, all axes require well defined units of representation. The
choice of an axis’ quantification unit is virtually unrestricted, as long as it fits the contex-
tual attribute, which it is supposed to represent (e.g. kilometers for location). However,
within ranges, units have to be uniform spawning a d-dimensional Cartesian coordinate
system for each range with d being the amount of the range’s dimensions. E.g., the dimen-
sions of the weather station’s location range Rloc are defined in kilometers, whereas all of
the environment range’s dimensions Renv have to be defined in a uniform way representing
the particular weather condition. For this example, we have chosen plain values between
0 and 100 to quantify Renv (see subsequent table 3.1). We will explain our motivation
behind this choice upon discussing the context mapping procedure in the next section 3.2.
Table 3.1 summarizes the ranges of the example introduced here.

Uniform quantification units on each range are necessary to enable efficient detection
of contextual affinity (detailed discussion follows in chapter 4), i.e. contextual proximity.
Since we are explicitly distinguishing between contextual ranges and the entire contextual
map from this point onward, we need to clarify the depiction of dimensional count: We use
d to refer to a range’s number of dimension, whereas n denotes the number of dimensions
of the entire context map.

The n-dimensional representation of an entity’s context in the map is exploitable
for further analysis. Changes of its context can alter the contextual correlation to other
entities in regard to contextual boundaries. Since contextual boundaries usually define the
degree of similar context, we can employ mechanisms known from 2- or 3-dimensional map
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Range # of dimensions Axis quantifica-
tion

Domain

Rloc (location) 3 (x, y, z) Cartesian coor-
dinates (kilome-
ters)

unbounded:
(−∞,∞)

Renv (environ-
mental measure-
ments)

4 (temperature,
barometric pres-
sure, humidity,
wind speed)

plain values: 0
(min) to 100
(max)

bounded: [0, 100]

Ralert (alert level) 1 (alert condi-
tion)

Binary (danger,
no danger)

bounded: {true,
false}

Table 3.1: Example Ranges

models to detect proximity among contexts inside the contextual map, hence identifying
contextual affinities by identifying proximate context, as explained later on in chapter 4.

3.2 Context Mapping

Based on the context model introduced in the previous section 3.1, it remains to be
clarified how contextual information is mapped into the contextual map, i.e. how data
acquired from context sources are mapped to the respective dimensions on the context
map. At this point, figure 3.2 from the introductory section 1.2 is recalled. Back then,
we have already sketched the mapping process. The figure shows that entity contexts are
mapped into a multi-dimensional map model - the contextual map. This depiction of the
mapping process can be extended to four steps as depicted in figure 3.1 (based on figure
1.1:

1. Typification of context: As stated in section 3.1, context needs to be typified in
order to be processed, i.e. contextual information needs to be grouped according to
type.

2. Identification of attributes: For each context type, distinct attributes are identified.
All together, the context attributes depict the context structure.

3. Quantification of attributes: The identified attributes are each quantified by a scalar
value according to the entity’s situation. All together, the quantified context at-
tributes depict the current entity situation, i.e. its context.

4. Attribute mapping: The quantified attributes are mapped into the contextual map’s
dimensions according to specific arithmetic rules.

The last step denotes the most significant step of all: How to map the attribute values
into the contextual map? Obviously, a 1:1 mapping is rarely feasible since the attribute
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Figure 3.1: Context Mapping Steps

values are not uniform, but the dimensional quantification requires them to be uniform
(see previous section 3.1 on quantifying dimensional units). The basic approach to tackle
the problem is to employ a mapping function, which inputs quantified contextual data
from according context sources and maps them to Cartesian coordinates of the diverse
ranges in the contextual map. Formally, given an entity, its context is mapped to the
contextual map as follows:

fmapping : s→


v1
v2
...
vn

 |s ∈ S,~v ∈ Vn (3.3)

where S is the set of quantified context source data and Vn the correspondent n-
dimensional realm in the contextual map. ~v represents a single context in the contextual
map with ~v corresponding to the entity’s real-world context. Due to the fragmentation
of Vn into ranges (as introduced in section 3.1), the definition of fmapping is basically
comprised of mapping individual contextual data to the correspondent ranges in Vn. It
is to be noted, that S may cover a very heterogeneous spectrum of contextual sources
(see section 2.7) implying heterogeneous definitions of fmapping as well. fmapping inputs
the quantified context data from the context capturing interface (see figure 2.5) and
transforms it to its correspondent Cartesian n-dimensional representation to be stored
in the context map. We are about to depict a general workflow of that mapping process
keeping in mind that heterogeneous application cases require to adapt the mapping process
case-specifically.

At first, fmapping inputs well-defined context data which has been gathered from context
sources throughout the system. Figure 3.2 illustrates this approach, where a context
sensor is attached to each source delivering the raw readings to the context capturing
interface, which corrects and quantifies those readings into well-defined context data. At
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this, fmapping distinguishes between the various ranges it needs to perform the mapping
to, and thus, fmapping may consider multiple context sources to provide data for a single
range as depicted in figure 3.2. For this reason, we need to determine the context sources’
influential aspects on fmapping. To determine which context sources are relevant for what
range, we conduct a 2-level typification on context sources. First, we typify a context
source according its origin:

• Environment: Contextual information is gathered from the environment, mainly by
physical sensors attached to a mobile device associated with the entity, which the
final context belongs to. E.g., a GPS sensor embedded in a mobile device reads
the current position in the environment. Further, in our running weather station
example, the environmental sensors gathering temperature, barometric pressure,
etc. provide context data of this dedicated type.

• Entity (e.g. user): This context type denotes information coming directly from the
entity. Given the circumstance that the entity is a physical user, this context source
type depicts the input given by the user.

• Databases: Contextual information may also come from data stored in a system’s
back-end. Dynamic data, such as user subscriptions, addresses, etc. represent
context data belonging to this context type.

• Infrastructure: The infrastructure of a context-aware system may provide valuable
contextual information, too. E.g., in a GSM-network, the location of a mobile host
known to the network (HLR-entry) may be provided by the infrastructure.

• Devices: Properties of mobile devices themselves comprise contextual information of
these types. It included both hardware and software characteristics (e.g. operating
system version, screen resolution, HTTP-user-agent tag, etc.) [91].
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With the first level of typification defined, the second typification step distinguishes
context sources according to their contextual characteristics. Context sources, which
belong to the same contextual domain, are grouped to a contextual type. E.g., the
environmental sensors in our weather station example can be grouped to sources providing
data of one context type, namely the weather. Generally speaking, context types can be
mapped bijectively to ranges, since ranges denote context consisting of similar contextual
attributes, which context types actually represent. Hence, multiple context sources of the
same context type may be mapped to the dimensions of the same contextual range (e.g.
temperature reading may be mapped to the temperature dimension of Renv).

With the context sources typified, we introduce a data structure associating context
sources to corresponding ranges. We call it the Context-Range-Table (CRT), which pos-
sesses the following columns:

• Context Sources specify a list of context sources, from which a range gathers its
information.

• Context Range depicts the range in question.

• Range Domain: defines the bounds of the range quantification. There are three
options to this aspect:

– Unbounded: The range is unbounded, hence spanning a domain ranging to
infinity bidirectionally: (−∞,∞). A point of origin (”0”) is needed to fix the
range quantification.

– Semi-bounded: The range is bounded at its quantification origin only, spanning
an unidirectionally bounded domain: (0,∞).

– Bounded: The range is bounded bidirectionally specifying a predefined mini-
mum and maximum: (min,max).

With the contextual data captured and quantified by the context capturing interface
(as seen in figures 2.5 and 3.2), and with the context sources related to ranges, fmapping may
be defined more specifically. Assume that the quantification yields vectors and scalars.
With the CRT given, it is known which of those values are to be mapped to which range.
Hence, it remains to be discussed how the mapping is processed generally. Scalars are
mapped straightforwardly to the correspondent range dimension considering the relation
between real world context and the target dimension inside the contextual range (e.g.
temperature to temperature dimension of Renv). Mapping of vectors, however, leaves us
two options:

• Direct mapping: The dimensions of the source vector are each mapped to one di-
mension in the contextual map.

fdirect :


s1
s2
...
sn

→


v1
v2
...
vn

 |~s ∈ S,~v ∈ Vn (3.4)
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• Arithmetic projection: The vector’s dimensions are mapped to less dimensions in
the contextual map. More precisely: i dimensions of a vector are mapped to j
dimension in the contextual map, with i < j. The most common variant of this
approach isto map all of the vector’s dimensions to a single one in the map.

fprojective :


s1
s2
...
sm

→


v1
v2
...
vn

 |~s ∈ S,~v ∈ Vn,m > n (3.5)

For reasons of completeness, it is to be noted, that both approaches are not mutually
exclusive, hence allowing hybrid approaches as well.

From here on we proceed with a mapping technique complying with the general mech-
anism introduced above. We assume that the context of an entity is typified and hence
given by a set of quantified scalars and vectors, each corresponding to its according type
of context. Given our weather station example, we demonstrate this mapping procedure.
We first define a representation for the station’s context in the contextual map model.
Subsequently, we define a mapping function, which defines how contextual data from
context sensors is mapped into that map. We proceed as follows. First, we define three
context types: location, environmental data, and the alert level. We assign each type a
range with an according amount of dimensions in the contextual map. Consequently, we
assign suitable quantification units to the dimensions of each range. Table 3.1 in the pre-
vious section 3.1 summarizes this setting. At this point, it is to be reminded that ranges
roughly represent ”submaps” with altogether comprising the entire contextual map.

With this setting, it is possible to individually define an example mapping function
fmapping, which transfers the weather station’s context into the contextual map. First of
all, we require fmapping to handle each context type and its corresponding range separately.
fmapping takes the quantified contextual data captured and derived from the weather sta-
tion’s context and calculates its position in the contextual map adhering both range and
axis definitions. Mapping location into the map’s range Rloc is quite straight forward:
The station’s coordinates are translated to Cartesian coordinates in the map1. The co-
ordinates for Renv are calculated by determining the relation of the current value to the
pre-defined extremes. We have set the extremes as 0 and 100 denoting the minimum
and maximum, respectively (see table 3.1). Let temperature to be read when adopting a
value between -50◦C and 50◦C resulting in 100 adoptable units. With the axes of Renv’s
dimensions ranging from 0 to 100, a currently measured temperature of 25◦C corresponds
to a coordinate of 75 for the temperature dimension. The mapping of the remaining
environmental measurements works analogously. Mapping the station’s currently issued
alert level simply consists of assigning it the correspondent binary value in the map, for
instance false for normal weather conditions and true for danger. Formally, we have
assigned the following domains to our ranges:

• Rloc = (−∞,∞)

1note, that a coordinate origin (0, 0, 0) needs to be defined
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• Renv = [0, 100]

• Ralert = {true, false}

Now, we can further formalize fmapping. Given a context source i with its source
ID (SIDi) providing a vector2 of quantified values ~si, fmapping maps this input to the
according dimensions of the contextual map. The resultant map context gets assigned a
value vj on each affected dimension dimj. The following definition is further generalized
to an arbitrary amount of context sources:

fmapping : (SIDi, ~si)
+ → (dimj, vj)

+ | ~s ∈ S, v ∈ Vn (3.6)

For our example, this definition yields a custom setting of fmapping. First, we identify
the variables depicted in equation 3.6 before deriving a custom mapping function for our
weather station use case:

• SIDi =
{
location sensor, temperature sensor, humitdity sensor, . . .

}
(for reasons

of simplicity we restrain to regarding only three of five context sources as depicted
in table 3.1)

• ~sloc, stemp and shum represent quantified context data corresponding to their accord-
ing SID

– ~sloc is given by two DMS-coordinates3 slat and slong, and the altitude salt in
meters.

– stemp is given by a temperature value in ◦C.

– shum is given by the ratio of partial pressure of water to vapor pressure of
water, hence shum < 1.

• dimi(R) identifies the dimension i, which is in range R.

• x, y, z, temp and hum represent contextual coordinates in the context map.

– x, y and z represent Cartesian location coordinates on Rloc, measured in kilo-
meters. We set the point of origin at the geographical crossing of the equator
and the zero meridian (which is a few hundred kilometers off the coast of Ghana
in the South Atlantic). Since slat and slong are given in DMS-coordinates, we
transfer them to the Cartesian coordinates x and y expressing the Cartesian
pendant to latitudes and longitudes, respectively. This is achieved by trans-
forming degrees (s(deg)), minutes (s(min)) and seconds (s(sec)) to kilometers
in decimal notation. One latitude degree corresponds to about 111.3 kilome-
ters of distance equidistantly whereas one longitude degree corresponds to the
same kilometer value only on the equator, where it is maximal. The distance

2this explicitly includes scalars, which have the form of 1-dimensional vectors
3Degrees, Minutes, Seconds - corresponding to latitude and longitude
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corresponding to longitudes decreases with increasing proximity to the poles.
For this reason, that distance is dependent on the cosine of the local latitude.
With x and y defined the distance from the coordinate origin corresponding to
latitude and longitude, respectively, z remains to be defined. Since salt is given
in meters, it is simply converted to kilometers. See the subsequent equation
3.7 for a formal definition of the mapping depicted above.

– temp and hum are unit-less Cartesian coordinates on Renv representing temperature
and humidity, respectively. Since stemp is expected to be between −50◦C and
50◦C, it is mapped accordingly to temp in Renv’s domain [0, 100]. Also, shum
is mapped accordingly to hum in that domain, keeping in mind that shum < 1
always holds.

With those prerequisites, fmapping may be defined as follows:

fmapping :



(
location sensor,

 slat
slong
salt

) →

{(
dimx(Rloc), x

)
,
(
dimy(Rloc), y

)
,
(
dimz(Rloc), z

) ∣∣∣
x = 111.3 ∗

(
slat(deg)± slat(min)

60 ± slat(sec)
3600

)
y = 111.3 ∗ cos(slat)

(
slong(deg)± slong(min)

60 ± slong(sec)
3600

)
z = salt/1000

}
(
temperature sensor, stemp

)
→
(
dimtemp(Renv), temp

) ∣∣∣ temp = (stemp + 50◦C) 1
◦C(

humidity sensor, shum

)
→
(
dimhum(Renv), hum

) ∣∣∣ hum = shum ∗ 100

. . .
(3.7)

with corresponding depictions for Cartesian location coordinates, temperature and
humidity. For reasons of simplicity, the definition in equation 3.7 represents an excerpt
of fmapping lacking the complete mapping rules for the environmental sensor sources.

The mapping function presented here covers a special use case, and must not be seen as
universally valid. The heterogeneous spectrum of context-aware application cases requires
fmapping to be adapted individually depending on the required application cases.

Since the context of entities is dynamic, the mapping must be employed iteratively
to ensure the most current context to be stored in the contextual map. Such context
actuality is achieved by frequent contextual updates. The according update semantics
are discussed later on in section 4.2.

3.3 Data Model

In this section, we briefly present the data structures suitable for the contextual map.
In doing so we revert to proven indexing techniques for n-dimensional data sets. The
following survey explicitly emphasizes the ”curse of dimensionality”, which refers to the
exponential degradation of performance with a linear increase of dimensions when query-
ing or updating multidimensional indexing structures.
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3.3.1 Indexing Structures in multi-dimensional Space

The task we are facing is to store an arbitrary amount of contexts into a suitable data
structure. Since every context is represented as an n-dimensional vector in the map, we
have surveyed several index-trees, which are capable of storing and - even more impor-
tantly - efficiently querying those vectors. Our focus is put on R-trees, kd-trees and its
derivatives, as surveyed in [101].

R-trees and its Derivates

This tree-based data structure represents a multidimensional representation of B-trees
[66]. Thus, they are height-balanced and ordered providing sophisticated and efficient
algorithms for updating and querying. Objects in n-dimensional space are represented in
an R-tree’s leaf nodes. A leaf node’s entry consists of a definition of a hyper-rectangular
minimum bounding rectangle (MBR) encompassing the object. A non-leaf node in an
R-tree consists of multiple entries of which each denotes an MBR definition and a child-
pointer to a child node. Thus, each child node has a correspondent entry in its parent
node. Further, all entries in a child node denote spatial definitions (MBRs) inside the
parent entry’s MBR. Practically speaking, a non-leaf node’s entry bounds the space of
all its corresponding child branch. Hence, the space defined by a non-leaf-node’s MBRs
encompasses all space defined by its children nodes. Figure 3.3 shows an example R-tree
definition. It represents points instead of spatial objects since we regard the contextual
map’s contexts, which are denoted by points in Rn. However, since points are spatial
objects with size 0 in Rn, there is no mentionable difference between R-tree representation
of spatial objects and points.

There have been numerous extensions and variants of R-trees. The following list briefly
surveys the most common ones:

• R+ trees and R* trees focus on minimizing the overlap of bounding boxes (as in
figure 3.3 R1 and R2 overlap with points p3 and p7) by employing more sophisticated
updating algorithms but preserving the R-tree structure as described [25, 93].

• X-trees represent a variant introducing an additional node type - the super node
- to overcome the phenomenon of exponentially degrading performance with linear
increase of dimensions (”dimensionality curse”) [28].

• The SS-tree (S imilarity Search tree) has a similar structure to that of an R-tree,
but instead of bounding boxes (MBRs) it uses bounding spheres [98]. Since the
bounding spheres are defined by a radius, they are insensitive against changes of
dimensionality. MBRs, on the other hand, are bound by two n-dimensional points.
An increase of n implies an exponential increase in coordinates necessary to define
an MBR.

• The SR-tree (Sphere/Rectangle-tree) [55] represents an improvement of the SS-
tree. Bounding spheres as used by the SS-tree occupy a much larger region of space
than rectangles do, which leads to performance drawbacks. The SR-tree combines
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Figure 3.3: R-tree Representation of Points in R2

spherical and rectangular bounding structures allowing space to be partitioned in
considerably smaller regions than the SS-tree.

kd-trees

A slightly different approach in indexing points and objects is given by the k-dimensional-
tree, also abbreviated as kd-tree [101]. k-dimensional space is partitioned completely
disjointly. Each level of the tree is designated to disjointly split a dimension of Rk. In
contrast to the R-tree, all of the kd-tree’s nodes represent points in Rk. Each point is
used to align a splitting plane on the correspondent tree-level and dimension, respectively.
Further, kd-trees are binary and ordered. Hence, given a node N in a kd-tree denoting a
point P and splitting dimension d, N ’s left neighbor denotes a point with a coordinate on
dimension d lighter than that of P . N ’s right neighbor denotes a point with a d-coordinate
greater than that of P . Figure 3.4 shows an example kd-tree in R2.
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Figure 3.4: kd-tree Representation of Points in R2

Hybrid-trees

The authors of [34] present a rather unconventional approach. They partition existing
indexing structures into two disjoint techniques: pure data partitioning (DP) index struc-
tures (e.g. R-tree, SS-tree, SR-tree) or pure space partitioning (SP) ones (e.g. kd-tree).
They identify relevant aspects to tackle the high dimensional indexing problem from both
techniques. Finally, the positive aspects of both index structure types are combined yield-
ing the hybrid tree. The basic approach is to take a kd-tree as a basis and extent it by
adding a corresponding bounding region to each its nodes. So the hybrid tree is actually
a SP-based kd-tree is extended by the DP-based region bounding principle. By defining a
mapping from the kd-tree based representation to an array of bounding regions, DP-based
search, insertion and deletion algorithms are applied directly to the hybrid tree.

According to the authors it scales well even at very high dimensionality and signif-
icantly outperforms the other index structures discussed here. Presented in 1999, the
hybrid tree is the most recent data structure in our survey.

3.3.2 Optimization Principles

Multi-dimensional indexing yields a problematic phenomenon when dimensionality in-
creases. A linear increase of the number of dimensions yields an exponential increase in
processing cost concerning the execution of queries and updates upon an index. Consid-
erable research has been conducted on breaking this ”curse of dimensionality”. The two
basic principles are listed below [101]:

• Dimensionality reduction: Neglecting dimensions representing less important data
allows the construction of indexes on reduced space. Although querying performance
is enhanced by this step, the result sets of queries may contain false positives,
i.e. points which match criteria in the reduced space, but not in the source space
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with its full number of dimensions. The criteria of picking important dimensions
and neglecting others are manifold. E.g., an illustrative criterion is the focus on
dimensions modeling important attributes.

• Filtering and refining: This 2-step querying approach focuses on quickly determining
a subset from which is known that it contains all results (filtering) and subsequently
examining this subset for points complying with the query (refining). The filtering
step is focused on speed rather than accuracy, so even that all points of the final
result are included, the existence of false positives cannot be excluded. The refining
step remedies this situation. Since being applied on a small subset only, it scales
well. Lots of different criteria for both filtering and refining exist here, too. An
illustrative example approach is the partitioning of space. First, all spatial parts
concerned by a query are identified. Second, all points inside those concerned parts
are checked on compliance with the query.

3.3.3 Contextual Map Indexing

With a brief survey on multi-dimensional indexing given, it remains to evaluate it against
the applicability on the contextual map model. We are facing an n-dimensional data space,
where n may be considerably high. Since each dimension represents a little contextual
attribute of the real world, which is mapped into the contextual map, many contextual
attributes imply a large quantity of dimensions and automatically the issues coming with
the ”dimensionality curse”.

The first straight-forward approach to tackle this issue is to break up the represen-
tation of contexts range-specifically. As we have argued earlier in section 3.1, ranges
represent context types. Context types, which are not related in the real world cause the
correspondent ranges not to be related in the contextual map, neither. Thus, separating
ranges and building an index for each range results in the following benefit. Logically,
d-dimensional contextual ranges have less dimensions than the entire n-dimensional con-
textual map. In addition, d� n usually holds. With only a few d dimensions indexed for
each range (d varies range-dependently), those indexes are efficient. Due to the exponen-
tial cost growth implied by the increase of dimensionality, many less-dimensional indexes
are more efficient than a single n-dimensional index. Regarding the weather station ex-
ample from the previous sections, the location and weather ranges are indexed separately
and expected to work more efficiently than an index covering both.

Concerning the choice of an adequate indexing structure from the survey in section
3.3.1, we have made the following evaluation in regard to the contextual map model:

• R+ tree and R* tree: Despite the efforts on minimizing overlap, those R-tree im-
provements do not scale well when it comes to very high dimensionality. However,
since indexes are built range-specifically, a considerably lower number of dimensions
is indexed individually. Thus, R-trees may offer a good trade-off between efficiency
and simplicity.
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• X-tree & Hybrid tree: Those trees are designed for very high dimensionality. For
ranges with many dimensions that have to be covered by an index, X-trees may
offer a reasonable choice.

• SS-tree & SR-tree: The spherical nature of space bounding discloses advantages
in contextual proximity detection. Since contextual proximity is distance based, it
manifests itself spherically in the contextual map (see subsequent chapter 4). Given
a context in the map, affine contexts are situated in its spherical proximity. Hence,
the SS-tree, and thus its outperforming cousin, the SR-tree, may be a reasonable
choice for indexing contexts.

• kd-tree: Despite the lack of spatial overlap implied by the structure of kd-trees,
we have not identified any advantages concerning the contextual map. kd-trees are
behaving especially well in nearest-neighbor searches, which have only peripheral
relevance for the contextual map (see subsequent section 4.4.2).

Table 3.2 summarizes the suitability of index structures for the contextual map.

Index struc-
ture

Practical characteristics Relevance to Contextual
map

R*tree, R+
tree

simple & efficient for simple context ranges

X-tree scales well with high di-
mensionality

high dimensional ranges

SS-tree / SR-
tree

spherical data model context proximity moni-
toring

Hybrid tree advanced, most recent in-
dex structure in the sur-
vey (1999), scales well with
high dimensionality

high dimensional ranges

kd-tree disjoint space partitioning none

Table 3.2: Index Structures

3.3.4 Space-partitioning Grids

An alternative to tree-based indexing is to partition a contextual range’s data space
into a grid of equally sized subspaces, so called cells. Each of those cells represents a
d-dimensional hypercube. Hence, each range context is positioned uniquely in one cell.
Following this argumentation, we can derive lists of included range contexts for each cell
as illustrated in figure 3.5. However, since no other structuring criterion applies on those
lists, the set of those included range contexts can be indexed using one of the indexes
presented in section 3.3.1.
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Figure 3.5: Contextual Range Grid

Querying a range context in the spatial grid basically means determining its current
parent call. Updating adds the necessity to determine its cells before and after the update,
respectively, and adjust those cells’ list structure (obviously skipped if range context stays
within its cell). The additional indexing of those lists can obviously speed up the access
on the spatial grid.

However, the scalability issues concerning the dimension count also apply for the
grid-based space-partitioning. With an increasing number of dimensions, it becomes
increasingly cumbersome to navigate in the grid. The choice whether to employ tree-
based indexes or spatial grids for multi-dimensional storage depends on the use case.
Research indicates that both data structures scale differently and specifically. To answer
what works best for the contextual map, we will return to this issue in chapter 4 when
discussing the applicability of the contextual map.

We can interpret the denoted spatial grid as a basic index for range contexts, such
as the sophisticated trees form the according range context indexes for the tree-based
techniques discussed in section 3.3.1. Concluding, both the spatial grid and tree-based
structures are suitable structures to index contextual ranges, thus allowing fast access to
the affected range contexts.
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Chapter 4

Application of the Contextual Map

So far, we have solely depicted the contextual map model in the previous chapter 3. In this
section we discuss its applicability. We assume a setting where autonomous entities issue
updates committing their individual local contextual information to a central contextual
map. The sum of all contexts, which the contextual map holds, represents the global
context. Figure 4.1 visualizes this argumentation.

Contextual Map

Global Context

Entity

Local Context

Figure 4.1: Global and local Context

According to changes in the global context contextual affinities between entities are
monitored and exploited. This section focuses on the basic working principles of the
contextual map handling contextual updates and identifying contextual proximity:

1. First, we discuss how to define affinity among contextual information and derive the
definition of context boundaries, which form the basis for enabling triggers based
on contextual proximity/affinity. With context boundaries defined, the principles
of measuring the proximity of contexts are introduced, hence allowing to determine
the affinity between those contexts (section 4.1).

2. Since the determination of contextual affinity requires current contextual informa-
tion, we subsequently reflect on efficient update semantics for entities providing
contextual updates. Those update semantics aim at maximizing the up-to-dateness
of the global context despite of a minimized amount of updates (section 4.2).
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3. After having determined when to commit an update, we discuss what to include
into the update before committing it. Section 4.3 discusses the procedure of update
composition by selecting appropriate data to be included in the update.

4. We proceed by presenting strategies to only apply contextual affinity checks on
contexts, which have actually been affected by an update (section 4.4). For this
purpose, we reflect on identifying contexts in the surrounding of an updated con-
texts, i.e. contexts that are close to the updated one, hence narrowing the set of
contexts to those actually affected by an update.

5. After having introduced the basic contextual proximity handling mechanisms for a
single contextual update, we extend those mechanisms to be applied on multiple
updates, thus enabling monitoring contextual affinities over time (section 4.5).

6. We close this chapter by explaining contextual boundaries management in a mon-
itored dynamically changing contextual map (section 4.6) and summarizing the
overall workflow of identifying contextual proximity among entities (section 4.7).

Figure 4.2 visualizes the relevant aspects from the enumeration above in relation to
a typical contextual proximity detection cycle. It illustrates the core functionality of the
contextual map by sketching how contextual proximity is detected. In the remainder of
this chapter, we will refer to exactly this sketch in figure 4.2 when discussing the individual
aspects from the enumeration above.

4.1 Contextual Affinities

At this point, it is to be emphasized that meanings of contextual similarity, contextual
affinity and contextual proximity are very similar, if not equal.

• Contextual similarity expresses entity contexts to be similar to each other.

• Contextual affinity expresses the same notion with emphasis on contexts being affine
to each other.

• Contextual proximity emphasizes the similarity notion is regard to the contextual
map in which contexts are proximate to each other in regard to the Euclidean
distance between each other.

In this section a metric for monitoring contextual proximity is introduced. We present
the concept of contextual boundaries, which represent the base for further applications of
the contextual map.
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Figure 4.2: Contextual Proximity Detection Workflow

4.1.1 Context Boundaries

Contextual boundaries represent the degree of similarity between contextual information.
More precisely, contextual boundaries may be defined between different entities to deter-
mine the affinity of their individual contexts. This affinity expresses how interesting or -
contrarily - uninteresting another entity’s context is. Basically, this may be interpreted
as contextual proximity, which has already been introduced in the previous chapters.
Concluding, context getting closer also raises its relevancy for the concerned entity [85].

For example, a car driver may be interested in proper weather conditions on his route,
hence taking action if a proximate weather station reports strong weather. We define the
contextual boundaries between the entities car driver and weather station on two ranges:
Rloc and Renv (compare table 3.1). Both ranges are part of the context of each entity. A
weather station’s physical position is represented in Rloc, its currently measured environ-
mental readings are iteratively mapped to Renv. The car driver’s context is represented
by mapping his current location to Rloc and his personal conception about not-agreeable
weather to Renv. We now aim at defining a context boundary, which delimits the driver’s
ability to drive from the situation of getting into extreme weather that keeps him from
driving. Basically, we want to bound the situation of driving in bad weather by a bound-
ary, so that the driver gets alerted when crossing this boundary. Obviously, we have to
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define the boundary on both ranges, Rloc and Renv, since both are relevant for modeling
the described use case. Concerning Rloc, the boundary expresses a weather station’s dis-
tance to the driver, so that it actually becomes of his interest. On Renv, the boundary
focuses on how close the current weather at a station may come to the weather conditions
regarded as critical by the driver. As it can be observed, the boundary on both Rloc

and Renv is represented by a proximity threshold defining proximity between two contexts
and setting the boundary on the specific range. The contextual boundary between the
entities driver and weather station gets crossed if the driver gets close to the weather
station, which reports conditions close the driver’s critical criteria. Figure 4.3 illustrates
the definition and crossing of this example boundary in the described scenario.

Location Weather

Contextual Range Boundary
Context of Weather Station 
Context of Driver

Figure 4.3: Crossing Context Boundary Example

In summary, a context boundary defines a specific degree of affinity between different
contexts. The boundary is composed of proximity thresholds defined individually on
relevant ranges. Each threshold defines range-specific degree of affinity concerning the
range-specific context. Concluding, a crossing of such a boundary is dependent on those
thresholds. Given this example, we can formally define contextual boundaries as follows:

• Contextual information is typified into ranges enabling contextual proximity. Each
range may be composed of several dimensions (e.g. location decomposes into its
three Cartesian planes x, y and z).

• A context boundary B may affect several ranges R1, ..., Rm with m ≤ o and r
denoting the total number of ranges in the contextual map. This reduces the number
of affected ranges to those, which are contextually relevant to B.
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• A proximity threshold ti is defined on each contextual range Ri, which is relevant to
B. Each ti is a single value dependent on all of the Ri’s dimensions, hence, defining
the degree of alikeness of Ri’s contexts. Basically speaking, the threshold represents
the distance, which delimits the range’s contextual information to be ”proximate”
or not.

• The set of thresholds ti of all ranges R1, ..., Ri, ..., Rm relevant to B defines the
contextual boundary:

B = (t1, ..., tm) (4.1)

It is to be noted that the ranges relevant to a context boundary have been enumerated,
i.e. Ri is part of such enumeration and does not represent a rage ID. This expresses the
fact that a context boundary affects a subset of all ranges, i.e. m ≤ r.

4.1.2 Detecting Affinity among Contexts

With the principle of contextual boundaries defined, this section focuses on how contex-
tual boundaries can be exploited using the contextual map model. As we have argued
earlier, range contexts that are close to each other on range level are contextually affine
in regard to the context attributes represented by that range. A context boundary may
erect concrete delimiters for that context affinity by the definition of its range-specific
thresholds. Hence crossing context boundaries corresponds to different entities’ contexts
getting either more or less affine (or rather contextually ”closer/farther” to/from each
other), thus crossing the affinity degree specified by the boundary.

With context boundaries defined in a contextual map, the next step is to determine
crossings of those boundaries indicating changes of contextual affinities. Each of a con-
text boundary’s thresholds is defined on a single range. For this reason the check for two
contexts having crossed the boundary by converging or separating from each other is per-
formed range-specifically. It is to be reminded that each range represents a d-dimensional
”submap” of the contextual map. Thus, we proceed by calculating the range-level dis-
tances between the two contexts, hence determining the Euclidean distances between their
range contexts on each range affected by the boundary. We proceed range by range, and
check, whether the Euclidean distance between the two correspondent range contexts has
fallen below or exceeded the threshold of the current range.

Given d dimensions on a range R, and two contexts, P and Q, the Euclidean distance
between the range contexts of P and Q on R is denoted by:

dPQ(R) =

√√√√ d∑
i=1

(pi − qi)2 (4.2)

with pi and qi being the coordinates of dimension i of the range contexts P and Q,
respectively: P = (p1, ..., pi, ..., pd) and Q = (q1, ..., qi, ..., qd).

95



4.1 Contextual Affinities 4 Application of the Contextual Map

With the distance dPQ(R) calculated, we employ proximity and separation detection to
determine, if the contexts of the two entities are ”closing” or ”separating” on range level.
This task may be conducted by applying the proximity detection mechanisms discussed
earlier in section 2.6 [61]. Consequently, the thresholds of a contextual boundary serve as
proximity/separation thresholds to enable proximity or separation alerts. Such an alert
is triggered when all of the boundary’s thresholds have been breached, i.e. when the
boundary has been crossed on each relevant range.

Formally: Let there be a context boundary B = (t1, ..., tm) affecting m distinct ranges
in the contextual map. Let ti be the threshold defined for range i with 0 < i ≤ m.
Further, let

A = (a1, ..., ai, ..., am) (4.3)

be the set of Boolean variables where each ai expresses proximity between P and Q
on range Ri. In this case, proximity - meaning that P and Q are within the boundary’s
extent on Ri - is given when P and Q are closer to each other than ti on Ri:

ai =

{
true if dPQ(Ri) ≤ ti
false else

(4.4)

On the other hand, contextual differentness - meaning the opposite of contextual
proximity so that P and Q are outside the boundary’s extent on at least one Ri - is given
when P and Q are farther from each other than ti on at least one Ri (the false case in
equation 4.4).

Concluding, P and Q are contextually proximate upon the entire set A being true:

a1 ∧ ... ∧ ai ∧ ... ∧ am = true (4.5)

Contextual differentness is given upon at least one value in A being false:

a1 ∧ ... ∧ ai ∧ ... ∧ am = false (4.6)

At this point, we can formally discuss the definition of proximity and separation alerts
in the contextual map. The detection of converging and separating context corresponds to
the geographical detection of proximity and separation in 3-space (section 2.6). For this
purpose, it helps to regard the ”direction” of exceeding a context boundary’s thresholds. If
dPQ(Ri) changes exceeding ti (from its lower to its upper bound), a separating crossing of
B is indicated (separation) on Ri. The opposite case, when dPQ(Ri) falls below ti (from its
upper to its lower bound), indicates a converging crossing of B on Ri (proximity). This
observation allows us to identify contextual convergence and separation on individual
contextual ranges.

In order to detect boundary crossings at all, we need to observe all ranges that the
boundary B affects. For this purpose, knowledge about dPQ(Ri) ∀i at two different times
is required. For this purpose, set A from equation 4.3 is replaced by Aold and Anew. Both
of the new sets represent the according Boolean variables (i.e. the state of contextual
proximity between P and Q) at those two times, where Aold precedes Anew. If both sets
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match the criteria of being alternately false and true, proximity or separation alerts are
triggered:

• A proximity alert is triggered upon Aold = false (equation 4.6) and Anew = true
(equation 4.5), i.e. P and Q have become contextually proximate in regard to B. It
is to be noted that it suffices that a single ai ∈ Aold becomes true in Anew. In fact,
dPQ(Ri) may all have dropped below ti on each range Ri in the past. But for the
actual event of contextual convergence (that triggers the proximity alert), we regard
the time frame between the point in time that Aold and Anew have been valid. It is
only required that Aold becomes true in regard to Anew.

• A separation alert is triggered upon the opposite condition: Aold = true (equation
4.5) and Anew = false (equation 4.6), i.e. P and Q have contextually separated
in regard to B. It is to be noted that a single ai ∈ Aold becoming false in Anew is
enough to trigger the separation alert, since the requirement for contextual proximity
regarding boundary B is not given anymore.

The triggering of such proximity or separation alerts corresponds to the contexts P
and Q getting either more or less affine, respectively, hence having crossed the boundary
B.

As stated, the detection of a context boundary crossing requires knowledge about
distances between P and Q at two different times (before and after the crossing). As with
the particular mechanism introduced in section 2.6, such determinations are made upon
receiving an update from an affected entity. In contrast to section 2.6, we are dealing
with contextual updates rather than with location updates. The corresponding update
semantics, which have been extended to work in d-dimensional space, are discussed in the
subsequent section 4.2.

Returning to our weather station example, we assume that the contexts of both the
car driver and surrounding weather stations are iteratively captured and mapped to the
contextual map. Hence, each weather station and the car driver get a constantly updated
contextual map position associated with their respective context. The car driver has
defined a contextual boundary defining dangerous weather, at which he is not willing to
drive (i.e. weather coming close to his critical weather definition). Hence this boundary
is decomposed into two ranges Rloc and Renv as depicted earlier in section 4.1.1 and figure
4.3: on Rloc expressing the driver’s tolerated distance to a weather station reporting bad
weather, and on Renv the tolerance interval to weather conditions, at which the driver
refuses driving. Let the boundary be further defined as 10 kilometers on Rloc and 15 units
on Renv (as depicted in table 3.1 in section 3). The distances between the contexts of
driver D and weather station W on each range are computed upon receiving a contextual
update using the Euclidean distance formula (equation 4.2). In this example, such an
update may yield changing weather conditions and/or changing driver’s location. As
soon as the driver gets closer than 10 kilometers to a weather station, which reports
weather less than 15 units distant to the driver’s critical weather definition, the defined
context boundary is crossed and a proximity alert is triggered. Hence, the driver may
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take action changing his route or stop driving. This corresponds the following Euclidean
distances between range contexts of D and W :

dDW (Rloc) = 10 (4.7)

dDW (Renv) = 15 (4.8)

When mapped onto thresholds of a context boundary B, that boundary is defined as
follows:

B = (tloc = 10, tenv = 15) (4.9)

4.2 Update Semantics

An obvious precondition for detecting proximity/separation of contexts in the contex-
tual map is the knowledge about the contexts’ most current positions in the map. This
context actuality is achieved by contextual updates, i.e. updates containing an entity’s
most current context information. The challenge is to define efficient update semantics,
i.e. when and how updates are to be committed, so that a minimal number of updates
deliver the most current context possible. E.g., frequent updates issued in short intervals
deliver very actual context information, but are highly inefficient, since most of them are
redundant due to missing context changes.

In section 2.6, we have outlined efficient semantics for issuing location updates to
detect geographical proximity among mobile hosts [61]. Those mechanisms allow the
acquisition of the most current context with a minimal number of location updates. With
little effort, we can transfer those principles on the contextual map. Both the geographical
setting in section 2.6 and the contextual map are settled in multi-dimensional Euclidean
space (with the geographical setting being 2-dimensional expressing width and depth).
The proximity and separation detection mechanisms from section 2.6 work zone-based
based on circles and strips. Recalling the statements from that section, those update
zones present a spatial controlling mechanism for entity updates in 2-dimensional space.
This means that an entity entering or leaving an update zone is eligible for issuing an
update containing its most current coordinates (see figure 2.10).

Before extending those mechanisms on the contextual map model, it is to be reminded
that entities have an n-dimensional representation of their respective context in the con-
text map. It is to be recalled that this n-dimensional context decomposes into multiple
d-dimensional range contexts. As stated earlier, d is range-specific depicting the number
of dimensions of a particular range whereas n denotes the contextual map’s total number
of dimensions.

The extension of the update zone definitions in 2-dimensional space requires to define
correspondent update zones in d-dimensional context ranges. The Euclidean distances
defining contextual proximity are defined range-specifically. Consequently, update zones
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need to be defined range-specifically, too. Hence, the extension of the circular and strip-
based update zones in 2-space to an arbitrary amount of dimensions concludes the defini-
tion of d-dimensional hyperspheres and hyperplanes, respectively. The following sections
present an in-depth discussion on both of these extensions.

4.2.1 Hyperspheres (extended 2-dimensional Circles Method)

In the 2-dimensional realm (R2), contextual updates are sent upon leaving the circular
zone spawned around the according entity’s position during the last update, which thus
has contained its last known position (see figure 2.10). Considering one additional di-
mension, thus the real-world-space (R3), the update zone gets sphere-shaped. Extending
this principle on the d-dimensional realm (Rd), we define an accordant hypersphere. Re-
garding the contextual map model, we center this hypersphere around the entity’s last
committed position of its context in the contextual map.

A d-dimensional hypersphere is called a (d − 1)-sphere1 Sd−1. The set points of such
a sphere, (x1, ..., xd), is defined by the following formula:

(x1, ..., xd) ∈ Sd−1 ⇔ r =

√√√√ d∑
i=1

(xi − ci)2 (4.10)

with C = (c1, ..., cd) being the hypersphere’s center point and r its radius.
In our case, we need to define a hypersphere bounding an update zone in Rd. For

this purpose, we interpret equation 4.10 as follows: the center point C is the position of
the range context committed last, and r stands for the radius of the update zone. This
definition allows us to determine, if the current range context P manifests itself at a
position outside the hypersphere, i.e. if the Euclidean distance (equation 4.2) between P
and C is greater than r.

Formally: Given the current range context P = (p1, ..., pd), the last committed range
context C = (c1, ..., cd) and the update zone bounded by a hypersphere centered around
C with radius r, if √√√√ d∑

i=1

(pi − ci)2 > r (4.11)

holds, a contextual update is triggered, since P has left the hyperspherical update
zone.

It is to noted that the bound of update zones, denoted by the radii of hyperspheres,
are to be set dynamically based on different criteria as depicted by Küpper and Treu
[61] for efficient proximity and separation detection in R2. Küpper and Treu aim at
minimizing the amount of updates by dynamically altering an update zone’s center and

1an n-sphere of radius r is defined as the set of points in (n + 1)-dimensional Euclidean space which
are at distance r from a central point
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radius. With the Euclidean distance definition (equation 4.2) given, those principles are
easily expandable on Rd.

4.2.2 Hyperplanes (extended 2-dimensional Strips Method)

For proximity detection in R2, strips are spawned orthogonally between two mobile nodes
eligible for proximity detection (again, see figure 2.10). Updates are sent by a mobile node
upon entering such a strip. Thus, the update zone is bounded by two lines. In R3, such an
update zone is bounded by two parallel planes. Thus, the d-dimensional analogy requires
the definition of two (d − 1)-dimensional hyperplanes, bounding the update-zone in Rd.
Since this approach is still settled in Euclidean space, we can formally define those two
hyperplanes as follows. Let there be two contexts, P and Q, with according coordinates
in the contextual map. The definition of hyperplanes in Rd works analogously as the
definition of 2-dimensional planes in R3. We employ a base point B on the plane and a
unit normal vector (aka surface vector) ~n0, which is orthogonal to the plane and has the
vector length | ~n0| = 1. The Hessian normal form for the definition of (hyper)planes has
the following form, then:

~b · ~n0 = db, (4.12)

with~b being the position vector of the base point B and db its distance to the coordinate
system’s point of origin.

Hence, to define the two hyperplanes for strip-based proximity detection, we first
define one unit normal vector ~n0 for both planes, since the hyperplanes need to be parallel.
Second, we define two base points R and S, which span up the two hyperplanes.

Formally: Given a unit normal vector ~n0 and two position vectors ~r and ~s (correspond-
ing to the base points R andS, respectively), two hyperplanes are defined as follows:

~r · ~n0 = dr, ~s · ~n0 = ds (4.13)

with dr and ds denoting the respective distances of R and S to the coordinate system’s
origin.

With this definition given, ~n0, R and S need to be specified more precisely. Since
both hyperplanes are parallel and bound the update zone exactly between P and Q, we
put our focus on the line connecting both contexts, i.e. PQ. To derive ~n0 we first define
a regular normal vector ~n. ~n expresses the direction of PQ and is therefore defined as
follows:

~n =

pi − qi
...

pd − qd

 (4.14)

The definition of ~n implies that both hyperplanes are orthogonal to PQ. Now, to
obtain the unit normal vector ~n0, we need to normalize ~n, i.e. shortening its length to 1.
This is achieved by dividing ~n by its length |~n|. The definition of |~n| is:
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|~n| =

√√√√ d∑
i=1

n2
i (4.15)

Hence, ~n0 is defined as follows:

~n0 =
~n

|~n|
=

 (pi − qi)/|~n|
...

(pd − qd)/|~n|

 (4.16)

With ~n0 ”aligning” the hyperplanes accordingly (parallel), they still need to be ”posi-
tioned” correctly, namely exactly between P and Q. For this reason, we regard the middle
point C of PQ, which is defined naturally:

C = (
pi + qi

2
, ...,

pd + qd
2

) (4.17)

For reasons of simplicity, we position the base points of both hyperplanes, R and
S, onto PQ2. At this setting, R and S denote the intersections of PQ with the two
hyperplanes. Given this assumption, both base points have to be equidistant from the
center point C, in order to position the update strip exactly in between P and Q.

Formally: Given an update strip of width w (the Euclidean distance between both
hyperplanes) and a middle point C = (c1, ..., cd) between two contexts (and also between
both hyperplanes), the hyperplanes’ base points R and S and their corresponding location
vectors ~r = (r1, ..., rd) and ~s = (s1, ..., sd) are restricted as follows:√√√√ d∑

i=1

(ci − ri)2 =
w

2
=

√√√√ d∑
i=1

(ci − si)2 (4.18)

and

~r · ~n0 − dr = 0 = ~s · ~n0 − ds (4.19)

with equation 4.18 defining the equidistance of both R and S to C (see Euclidian
distance from equation 4.2) and equation 4.19 requiring them to be included in the ac-
cording hyperplane (derived from equation 4.13 defining both hyperplanes in Hessian
normal form), respectively. Complementary speaking, equations 4.19 and 4.13 infer that
R and S are positioned on PQ, since those positions are the only ones on the hyperplanes
with a distance of w

2
from C.

With the bounding hyperplanes defined, it remains to elaborate the update condition,
i.e. detecting contexts within the strip-area. Assuming that a context P has changed
within the contextual map, the update condition can be determined by calculating its
distances to the two bounding hyperplanes. If both distances are lighter than w, P is
located within the update strip, triggering a contextual update.

2placing base point anywhere on the plane would denote a valid hyperplane definition
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Formally, given an update strip of width w bounded by two hyperplanes defined by
location vectors ~r and ~s and a unit normal vector ~n0, a context P = (p1, ..., pn) is positioned
inside the strip if

|~p · ~n0 − dr| < w > |~p · ~n0 − ds| (4.20)

holds, with w being the Euclidean distance between both planes and ~p denoting the
location vector corresponding to P . Assuming RS is orthogonal to both hyperplanes, w
corresponds to the distance between the base points:

w =

√√√√ d∑
i=1

(ri − si)2 (4.21)

Figure 4.4 illustrates the strip-based update technique for proximity detection in R2.
Since the strip is always bounded by (d − 1)-dimensional hyperplanes, the bounds are
simple lines in this case (1-dimensional hyperplanes). However, the illustrated principle
can easily be extended on an arbitrary dimensional realm.

w
R

S

C

P

Q

n0

Figure 4.4: Update Strip Definition

Finally, we can now trigger a contextual update, if one of both contexts enters the
strip-area bounded be the two defined hyperplanes. However, this method is only feasible
to conduct proximity detection between the two contexts.

For separation detection the strip-method cannot be applied, as argued in section
2.6. In order to conduct separation detection, we define an update zone bounded by a
hypersphere, centered at C (see equation 4.10). The contextual update is then triggered
upon a context ”leaving” the hypersphere, as defined by equation 4.11.

As with hyperspherical update zones in section 4.2.1, it is to noted that the bounds
of the update strips, denoted by the strips’ widths, are to be set dynamically based on
criteria depicted by Küpper and Treu [61] for efficient proximity and separation detection
in R2. Since the strip is repositioned and altered in width, the criteria can be easily
extended to Rd using the definitions above.
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4.2.3 Application of Update Semantics

To demonstrate the applicability of the update semantics presented here, we return to
the example with the driver and the weather station. We have two contexts, the driver
D and the station S. We further regard the two relevant ranges in the contextual map:
location Rloc and weather conditions Renv. However, the dynamic changes, which take
place here, are restricted to the weather station’s current weather and the driver’s location.
Concluding, we have to pay attention to D’s position in Rloc and S’s coordinates in Renv,
only. To proceed with this example we employ update zones bounded by hyperspheres.
Therefore, hyperspheres are defined around D and S on their respective ranges Rloc and
Renv. For D, it seems reasonable to select a radius of 10 on Rloc, denoting an update
necessity from the driver every 10 kilometers (neglecting the third dimension z as denoted
in table 3.1). For the update-sphere of S, we define a radius of 5 on Renv. This corresponds
to an update triggered when the weather conditions at the weather station change by 5
units corresponding to a change of 1

20
of the scale (see range’s axis definition in table 3.1).

4.3 Update Composition

With the update semantics discussed in the previous section, an entity is able to determine
a suitable moment when to commit an update. Now it needs determine what context
information to include in that update. Merging all contextual information available into
an update package would yield a large amount of unnecessary information. The recipient
of the update may already know a large portion of the entity’s context from the entity’s
preceding updates. Hence, the entity ought to select appropriate context information for
its update.

In an n-dimensional context map, each entity’s context consists of n values denoting
the context position in the map. Naturally, with changing context the position changes
as well. When committing an update, the entity propagates its changed context among
the network. However, not all of the entity’s n contextual coordinates may have changed
in between updates. In such a case, it is only feasible to include actually changed context
data in an update. Subsequently, we sketch a simple algorithm for controlled update
composition based on changed context.

First, we introduce an additional data structure to be employed in parallel with an
entity’s contextual map: an n-dimensional Boolean vector, which denotes the entity’s
context validity in the network. The validity vector expresses which portions of the
entity’s context have been committed at a certain point in time - and thus are known in
the network - and which parts of the context have not been propagated yet - thus unknown
to the network. Consequently, the vector consists of n Boolean entries of which each i-th
entry corresponds to the i-th entry in the contextual map denoting whether the map
entry has been propagated since its last change or not. The validity vector is significantly
smaller than the contextual map itself since it consists of 1-bit entries. Its main purpose
is to prepare the context update, which is transmitted in form of another data structure,
the update vector. We return to the validity vector first and use its definition to derive the
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update vector. Formally, the validity vector can be defined as follows. Given an entity’s
context P = (p1, ..., pi, ..., pn) in the contextual map, the validity vector V is defined as
follows:

V =


v1
...
vi
...
vn


∣∣∣∣ vi =

{
true if current pi committed by an update
false else

(4.22)

V is initialized together with P . All of its entries are set to false, since no update of
P have been committed yet. While the entity, keeps its own context stored and updated
locally, the update composition process is conducted as follows:

1. According to the entity’s update semantics an update is triggered. Thus, the update
composition is initiated.

2. All elements pi of P , for which vi = false are extracted and merged into the update
vector U .

U =


u1

...
ui

...
un


∣∣∣∣ ui =

{
pi if vi = false committed by an update
� else

(4.23)

Hence, an example update vector in an 8-dimensional setting corresponding to the
weather station example may look as follows:

U = (�,�,�, 75, 68, 55,�, true) (4.24)

assuming that p1 through p3 correspond to the weather station’s coordinates, p4
through p7 denoting its environmental measurements and p8 expressing its current
alert level (comparing U to table 3.1, it decomposes into the ranges Rloc, Renv,
Ralert). Here, the location context has remained unchanged, which seems logical,
since we have been regarding a stationary weather station. But three of the environ-
mental values have changed so that alert level must have been set to true indicating
strong weather.

3. The update is committed to the system by transferring U to the target (e.g. a
central server hosting the global contextual map).

4. The entire validity vector is set to true, since the current context of P is known by
the network:

vi = true ∀i ≤ n
∣∣ vi ∈ V (4.25)
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5. Every time when a contextual value pi changes due to the entity’s changing real-
world-context, the correspondent value vi in the validity vector is invalidated: vi =
false. This step is iterated until the next update is triggered according to the
update semantics. In that case, the workflow sketched here starts over.

4.4 Efficient Update Handling

In the previous sections 4.2 and 4.3, we have discussed the update preparation procedure.
We have presented the update semantics and update composition techniques for update-
sending entities committing their most current context information. This section focuses
on how those updates are handled by update-receiving entities. In order to determine
the adequate time for an update, every entity monitors its own context only. For this
reason, the focus of this section is put on how contextual updates are merged into the
global context and how this information is used to monitor individual entities’ contexts
in regard to context boundaries.

For reasons of simplicity, we assume that one contextual update originates at one
entity, which intends to update its own context in the contextual map. Concluding, the
entity’s context position in the map has potentially changed since the entity’s last update.
After having adjusted the context’s coordinates it has to be determined whether any other
contexts have converged to or separated from the updated context. Those converging and
separating contexts indicate changes of contextual affinity among each other. Hence,
contextual boundaries may have been crossed. However, since only map regions near the
updated context are concerned for context boundary checks, the contexts in this regions
- the context’s vicinity - have to be determined. Thus, the context’s vicinity represents
the spatial neighborhood of a particular context and it represents the spatial region that
is to be searched for boundary-crossing contexts. In summary, the update process can be
divided into three steps, executed consecutively:

1. Update the contextual map according to the contextual update. This especially
concerns the proper update on the map’s data model (section 4.4.1).

2. Determine all contexts in the vicinity of the updated context. The resultant contexts
have possibly crossed a context boundary to the updated context by converging to
or separating from it (section 4.4.2).

3. Perform proximity and separation detection on the most updated context and con-
texts in its vicinity. Crossing of context boundaries is detected by this procedure
(section 4.4.3).

The subsequent discussion in this section focuses on each of those three steps.

4.4.1 Updating the Contextual Map

Committing the contextual information contained by an entity’s contextual update to
the contextual map marks the first step in the receiver-sided update process. Before the
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actual update procedure on the data model is sketched, we take a look at some aspects
concerning this process:

• As we have stated in section 3.1, the definition of hierarchies enables a suitable way
of grouping and structuring ranges. Ranges can especially be utilized for typifying
contextual information. Thus, they are suitable for grouping contextual information
of the same type. E.g., location and weather conditions are context information
types in our running example, each dedicated a range in the contextual map.

• Concerning the update process, only the contextual ranges affected by the update are
updated. Hierarchies support this task since they provide rapid access to the ranges,
which have to be updated. Furthermore, dependencies inside hierarchies can be
exploited. If a parent range is dependent on its children and the contextual update
affects its children, the parent range needs to be updated additionally. Although
this seems to counteract the efficiency efforts, we will see the benefit of this approach
shortly.

• Another aspect in minimizing effort during the update process is the exploitation of
redundancies among ranges hierarchies. Given a parent range, which is dependent
on its child ranges. If the child ranges are composed of information that specialize
the parent and considered redundant according to the current proximity/separation-
detection task, they can be completely neglected. Proximity/separation detection
is only performed at the parent, even though the contextual update has explicitly
affected the child ranges. This is possible, since dependencies between parents and
children are subject for updating as stated before.

The actual step of updating the contextual map is closely related with the underlying
data model. A brief survey of employable indexing structures has been provided in section
3.3 we have identified two techniques: tree-based indexes (section 3.3.1) and equidistant
spatial grids (section 3.3.4). Each indexing technique comes with corresponding index-
manipulation algorithms. Those are commonly focused on efficiently updating, removing
and inserting nodes in their associated index-structure. As stated, efficiency is a high
priority due to its exponential degradation coming with the increase of dimensionality.

An atomic update committed by an entity contains its own most current context. More
precisely, it may contain the context changes of which the update’s recipient is unaware of,
as discussed previously in section 4.3. Basically speaking, given an n-dimensional context
map, a single entity’s update consist of at most n values of which each corresponds to a
piece of context information, as denoted in section 3.1. In summary, those values comprise
the entity’s current and changed context.

A single context usually corresponds to multiple entries in the range-specific indexes,
where there is one entry in each of contextual ranges’ indexes depicting the full context’s
respective range context. In a tree-based structure, a range context is a single node in an
index tree. In a spatial grid, it represents an element in a cell’s list. We distinguish the
following update operations performed on an index:
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• Regular Update: This update operation updates a single entity’s context repre-
sentation and the corresponding range contexts in the contextual map’s respective
indexes.

– Index trees: The corresponding node holding the range context data is identi-
fied in the tree (e.g. by a depth-first search) and its values are altered given the
update values. Depending on the index tree in use, the tree must be adapted
to fit its criteria. E.g., an update in an R-tree implies the tree to be reordered
and balanced.

– Spatial grid: The corresponding new parent cell is identified and the range
context is added to the cell’s inclusion list. In parallel, the range context is
removed from the list of its previously known parent cell (before the update).

• Insertion: This update applies if a completely new context is inserted into the
contextual map. This may occur if a new entity registers in the context map.
According range contexts are created and merged into the according indexes.

– Index trees: The index tree needs to be expanded by a new node associated
with the new range context. This implies inserting that new node at the
appropriate place in the tree and bringing the tree into its required shape. E.g.,
when inserting a new node into an R-tree, it must be inserted at the correct
position in the tree, and the tree may have to be rebalanced afterwards.

– Spatial grid: First, the according cell is identified in the grid, then the range
context is added to the cell’s inclusion list.

• Removal: In case that an entity exits the coverage of the contextual map, its corre-
sponding context needs to be removed from the range-specific index structures.

– Index tree: The node corresponding to the according range context must be
removed from the index tree. This requires identifying that node inside the
tree, deleting it from the tree and bringing the tree into a state fitting its
criteria. E.g., removing a node from an R-tree only requires to re-balance it
after deleting the affected node.

– Spatial grid: The removal of a range context works analogously to the insertion
case. The determination of its parent cell is followed by its removal from the
cell’s inclusion list.

The discussion about update operations is both theoretical and brief. A thorough
discussion is provided in [101] and thus out of scope at this point.

4.4.2 Context Vicinity Definition

In the previous section 4.4.1 we have identified the problem of defining the region affected
by a contextual update in regard to context boundaries. More precisely, given a freshly
updated context C, its coordinates in the contextual map may have changed. This change
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implies that its surrounding contexts in the contextual map may be eligible for proximity
or separation detection. In theory, all contexts encompassed in the contextual map may
have potentially come close to C crossing a defined context boundary. However, the
contexts ”near” C are the most likely ones to have crossed a context boundary by either
separating from or converging to C. Those contexts, which are all positioned in the
vicinity of C, are of special interest for us. Proximity and separation detection, and thus
context boundary checks, are performed on those contexts only, because only those are
eligible for having crossed a context boundary.

At this point, we have to examine the context model on range level once again. As
we have argued in section 4.1.2, proximity and separation detection is performed on
ranges, since the contextual boundaries dictating the triggering threshold are defined
range-specifically. For this reason we are concerned about C’s surrounding regions on
each range. We call those regions range vicinities denoting the d-dimensional Euclidean
space surrounding C’s range contexts.

Formally, given a range context C on range R, the range vicinity Vrange(C,R) groups
all range contexts near C:

Vrange(C,R) =
{
P = (p1, ..., pd)

∣∣ P is a range context ”near” C on R
}

(4.26)

This rather informal definition lacks a statement on exactly how ”near” to C a range
context P may be positioned. The answer crucially depends on the range vicinity’s spatial
definition, which is about to be discussed shortly. It is to be noted that we use the term
”range vicinity” when referring both to a range context C’s the neighboring space and the
set of other range contexts in that space. Further, given m ranges in the contextual map,
we call the set of full contexts3, which corresponds to the union of all m range vicinities,
the contextual vicinity of C:

Vcontext(C) =

{ ⋃
0<i≤m

rcc
(
Vrange(C,Ri)

)}
(4.27)

Hence, Vcontext(C) groups all full contexts together out of all range contexts, which are
listed in C’s range vicinities (for the rcc-operator, see section 3.1). Last but not least, we
define the superset of m different range vicinities denoting the contextual range vicinity
list of C:

Vlist(C) =
{(

Vrange(C,Ri)
)+}

=
{
Vrange(C,R1), ... , Vrange(C,Rm)

}
(4.28)

In the rest of this section, we put special emphasis on range vicinities. To efficiently
capture a context’s range vicinity, we have identified the following aspects, which we
consider relevant for defining range vicinities and identifying their encompassed contexts:

3as stated in section 3.1, full contexts are range-independent defined all n dimensions of the contextual
map
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• Spatial shape of the range vicinity in Rd: In the first place, it has to be determined
what the range vicinity is supposed to ”look like”, i.e. what shape it is supposed to
assume. This consideration allows us to express how the range vicinity is actually
bounded. In the forthcoming discussion, the most common shaping techniques,
i.e. spherical and cubical shapes, are taken into focus yielding the definition of
hyperspherical and hypercubical range vicinities.

• Space partitioning of Rd: With the spatial shape of a range vicinity chosen, the
portion of d-space belonging to the range vicinity needs to be determined. Obvi-
ously, this is needed to identify the proximate contexts lying inside that portion of
space. The naive approach to check all contexts in the contextual map on member-
ship of the range vicinity space is enormously elaborate and hence nonsensical. To
counteract the naive approach, the d-space is first partitioned according to specific
techniques. This leaves the entire space divided into numerous parts of space. The
next step is to determine those spatial parts, which are actually part of the range
vicinity (i.e. which overlap with the range vicinity space). Identifying contexts be-
longing to range vicinities is left to those spatial parts only. So in summary, space
partitioning greatly enhances the efficiency of identifying range vicinity contexts.

• Data model of the contextual map: Since all range contexts are indexed in the con-
textual map’s data model (see section 3.3), the data model itself plays a significant
role in defining range vicinities.

Regarding these aspect, we have identified two basic approaches on efficiently defining
range vicinities. Those two approaches are basically differentiated by the spatial shape
criterion, which provides us with the most differentiated strategies for each approach. In
the following discussion, focus is put on hyperspherical and hypercubical range vicinities.
In both cases, we consider a single range vicinity Vrange(C,R), thus the vicinity of a freshly
updated range context C on range R.

Bounding hypersphere

The natural approach of defining Vrange(C,R) is to define a hypersphere around it with all
other range contexts within that hypersphere belonging to Vrange(C,R). By centering this
hypersphere at C, the hypersphere then represents Vrange(C,R) with its surface bound-
ing Vrange(C,R) equidistantly. The extent of Vrange(C,R) - and thus the hypersphere’s
radius - is directly dependent on the contextual boundaries defined on the range. Since a
contextual boundary’s individual range characteristic is defined by a threshold delimiter
(see section 4.1.1) for converging and separating contexts, a contextual boundary can be
interpreted as a hyperspherical boundary on range level. It can be easily observed that
this range level context boundary definition (boundary threshold) is based on the same
setting as the hyperspherical range vicinity Vrange(C,R). For this reason, a hyperspher-
ical range vicinity’s extent must equal the maximum threshold tmax out of all context
boundaries defined R. Given k contextual boundaries B1, ...Bk, we define tmax as follows:
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tmax = max(tR)
∣∣ tR ∈ Bi, 0 < i ≤ k (4.29)

This constraint enables us to capture all range contexts, which potentially cross a
contextual boundary defined on the range. Thus, Vrange(C,R) is defined as follows:

Vrange(C,R) =
{

(P = (p1, ..., pd)
∣∣ dPC(R) ≤ tmax

}
(4.30)

Figure 4.5 visualizes the setting discussed above in R2 (bounding hypersphere with
radius tmax).

: max. threshold

bounding hypersphere
bounding hypercube

maxt

maxt
Updated context

max2 t
lowP

highP

C

Figure 4.5: Bounding Hypersphere and Hypercube in R2

It is to be noted, that there still may be contexts beyond Vrange(C,R), which may have
separated from C crossing a contextual boundary. Those contexts lie outside Vrange(C,R)
now, so one may assume that they are not be included in the boundary check. Shortly,
in section 4.4.3 we will explain why a radius of tmax suffices despite this observation.

Following this argumentation, a hypersphere with a radius of tmax offers a suitable
approach for defining range vicinities. To efficiently identify all range contexts within
Vrange(C,R), i.e. all P ∈ Vrange(C,R), we have identified two approaches:

• the hyperspherical range query

• the incremental nearest-neighbor search

Hyperspherical range queries This type of query focuses on the identification of
points and spatial objects inside of hyperspherical ranges4 in Rd. The general approach
on conducting those queries is to exploit space-partitioning for identifying spatial parts
overlapping with the queried hypersphere and then determining all points lying inside
that queried range:

1. The d-space is partitioned according to the specific querying technique.

4here, we are referring to spatial ranges, not ranges as defined by the contextual map
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2. The hyperspherical query determines a query point forming the center of the query
range (hypersphere).

3. All parts of space (according to space-partitioning) overlapping the query hyper-
sphere are identified.

4. All points contained by the resultant parts of space are extracted.

5. Using the Euclidean distance check (equation 4.2), the distances between all of those
resultant points and the query point (center of hyperspherical range) are determined.
The points yielding a distance below the range hypersphere’s radius are contained
in the query range, hence representing the result set.

The scheme presented here represents a brief strategy. The next step is to apply it
on a contextual range R in the contextual map. In order to determine Vrange(C,R), we
perform a hyperspherical range query on R using C as query point and tmax as radius. The
resultant points represent the range contexts of Vrange(C,R). There are numerous querying
techniques implementing the scheme above. Subsequently, two interesting representatives
are presented.

We begin with a basic hyperspherical range query scheme using R-trees. Although R-
trees are outperformed by many other index trees, the strategy presented in the following
is simple and thus illustrative. As we have discussed in section 3.3, an R-tree’s inner
nodes are comprised of entries, which denote hyper-rectangular spaces that are further
divided by the nodes’ children. This means that all spaces denoted by an R-tree non-leaf
node’s child nodes are encompassed by the space denoted by their parent node. Since
an R-tree reflects its space partitioning approach in its own structure, we can exploit
its space partitioning to identify spaces overlapping with an hyperspherical query range.
Employing a depth-first search on the tree, we can prune all branches, whose parent nodes
denote non-overlapping space. While conducting this searching scheme, we continuously
narrow the search space. Eventually, the search arrives at leaf nodes, which represents
points in regions overlapping the query range (parent nodes have not been pruned due
to overlapping query range). Those points are potential candidates for the query range
so that their distance to the query point, and hence membership in the query range,
are determined. For example, consider this technique being applied on an R-tree that
partitions space as shown in figure 4.6 (the R-tree is similar to the one in figure 3.3).
The query is centered at p8. It identifies the MBRs R2, R5 and R6 being affected by
the query while the remaining R1 and thus also R3 and R4 are pruned (compared to
figure 3.3(b), the entire left branch of the R-tree is pruned). The points in R5 and R6 are
checked whether they are included by the query. The results yields p4 and p9 (p3 and p7
are pruned). Note that we have applied the filtering and refining principle as introduced
in section 3.3.2.

The second and quite neat approach of partitioning space in Rd together with a hy-
perspherical querying technique corresponding to the scheme above is featured by Lee et
al. [62]. Their SPY-TEC approach stands for spherical pyramid technique partitioning
bounded d-dimensional space into an amount of 2d spherical pyramids. Figure 4.7 shows
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Figure 4.6: Hyperspheric Range Query on R-tree (R2)

this concept applied on bounded 2-dimensional space. A spherical pyramid (SP) is in-
spired by a regular hyperpyramid with the difference of possessing a spherical base. Just
as spheres and cubes, regular pyramids can be extended to hyperpyramids representing
their multi-dimensional counterparts. A hyperpyramid in R2 represents a triangle with
two edges and a base line. In R3, a hyperpyramid represents a real-world pyramid with
four edges and a base square. Consequently, a hyperpyramid in Rd consists of a top point,
d edges and an d−1-dimensional base hypercube. Altering hyperpyramids to SPY-TEC’s
d-dimensional SPs, the hypercubical base is replaces by a hyperspherical one. Figure 4.7
shows four SPs in 2-space. As this concept dictates, d-space is always partitioned into
an amount of 2d SPs. Further, the space needs to be bounded and encompassed by a
hypersphere whose center represents the top of each SP and whose surface denotes the
spherical bases of the SPs (as seen in figure 4.7). With the space partitioned into SPs,
each SP is further dividable into slices (each slice is a ”layer” of the SP as shown in figure
4.7). The SPY-TEC query also implements the filtering and refining technique. Given
a query point and radius, all slices of different SPs overlapping the query hyperspherical
range are determined in the first step. The points in all those slices represent the subset
eligible for the second refining step to determine which of the point are actually inside the
query range (false positive elimination using Euclidean distance check, see equation 4.2).
According to the authors of SPY-TEC [62], their method performs significantly better
than algorithms performed on indexing structures, which have been discussed before.

It is to be noted that the calculated distances between points in the query range
and the query point itself are usually determined in the final phase of a hyperspherical
querying algorithm. Those distances correspond to the contextual range distances between
an updated context (query point) and contexts in its vicinity (points in query range).
Since exactly those distances are needed for the subsequent context boundary check, it
is practicable to remember them and store them along with a context’s range vicinity
(section 4.4.3).
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Figure 4.7: SPY-TEC Space Partitioning and Querying in R2

Incremental nearest-neighbor search A slightly different approach from the bound-
ing strategies discussed so far is the application of nearest-neighbor algorithms. A k-
nearest-neighbor (k-NN) algorithm in Euclidean space delivers the k nearest neighbors
of a query point q. Since those algorithms have reached a mature state they work fast
and efficiently [50, 71, 86]. We exploit this characteristic for our purpose by iteratively
applying a k-NN algorithm at the query point C. It is to be reminded that C denotes the
updated context and hence the center of the range vicinity Vrange(C,R). We iteratively
execute a k-NN-algorithm incrementing k in each iteration.

We begin with k = 1. Subsequently, we continue with an iterative execution loop of
the k-NN algorithm. In each kth iteration the algorithm yields a set Nk of the k nearest
neighbors of C. Since we have defined a hyperspherical vicinity bound with radius tmax, it
is checked if the distance between the kth neighbor5 in Nk exceeds tmax. If so, Vrange(C,R)
has been determined comprising all range contexts in Nk except the kth one. Hence, the
iteration loop is terminated and Nk is rid of C’s kth neighbor P = (p1, ..., pd):

Vrange(C,R) = Nk \ {(p1, ..., pd)
} ∣∣∣∣∣

√√√√ d∑
j=1

(pj − cj)2 ≥ tmax (4.31)

Depending on the actual choice of a k-NN strategy, the algorithm itself most likely
works iteratively until delivering k neighboring range contexts. It may be practicable to
perform the boundary checks within the algorithms iterations, incrementing k as needed
and thus forcing the algorithm to terminate when all range contexts in Vrange(C,R) have
been determined and checked against defined context boundaries.

5the k-th neighbor is the farthest neighbor from the query point (in this case C)
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Bounding hypercube

Although a hyperspherical range vicinity represents the natural bound of a context’s sur-
rounding due to its exact representation of its extent tmax, its determination is somewhat
elaborate. For this reason, we may dilute this vicinity definition by bounding Vrange(C,R)
by a hypercube of the same extent. Since the data model indexes contexts efficiently
(see section 3.3) the range contexts inside a hypercubical Vrange(C,R) can be determined
quickly. See figure 4.5 for a visualization of this approach in R2.

The basic tool for determining a hypercubical Vrange(C,R) is the multi-dimensional
range query. Given a hyper-rectangular query range6 in multi-dimensional space denoted
by two bounding points Plow and Phigh, this type of query is performed upon the underlying
indexing structure yielding all points in the query range. We have discussed several
indexing structures for points in multi-dimensional space in section 3.3. The majority
of the subsequent analysis focuses on index trees (from the discussion in section 3.3.1.
After that, we take a look on how to apply bounding hypercubes on the spatial grid index
(discussion in section 3.3.4).

Index trees perform efficiently on accessing multi-dimensional data. Hence, multi-
dimensional range queries perform efficiently, too. In order to use the multi-dimensional
range query for hypercubical range vicinities, we employ the d-dimensional range query
with d being the amount of dimensions of the affected contextual range7 R. We define
an equidistant unidimensional query range on each of R’s d dimensions. The size of the
query range on each dimension implies the size of the hypercube bounding Vrange(C,R).
It can be derived from the discussion about the size of the bounding hypersphere. There,
we have identified the maximum threshold tmax of all contextual boundaries’ thresholds
defined on R. Since the bounding hypercube is supposed to be of the same extend as
the bounding hypersphere, the size of each dimensional query range must equal 2tmax

corresponding to the according hypersphere’s diameter. Figure 4.5 visualizes this setting
comparing a hyperspherical and hypercubical range vicinity in R2. In addition and as
shown by the figure, the range context C, which defines Vrange(C,R), is situated exactly
in the center of the hypercube.

Formally, given a d-dimensional contextual range R and a correspondent query range
in Rd bounded by Plow = (PL1, ..., PLd) and Phigh = (PH1, ..., PHd) with PHi > PLi,
and a query range size of 2tmax, a hypercubical query range of that extent is given if the
following equation holds:

PHi − PLi = 2tmax ∀ i ≤ d (4.32)

Vrange(C,R), bounded by such a hypercube, is then defined around C = (c1, ..., cd)
given Plow = (PL1, ..., PLd) and Phigh = (PH1, ..., PHd) with C being located in the
center of the bounding hypercube:

6we refer to ranges in multi-dimensional space, not ranges in connection with range vicinities and
range contexts

7here, we refer to contextual ranges as defined by the contextual map
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PLi = ci −
PHi − PLi

2
= ci − tmax ∀ i ≤ d, (4.33)

PHi = ci +
PHi − PLi

2
= ci + tmax ∀ i ≤ d (4.34)

Hence, Vrange(C,R) can be defined encompassing all range contexts within the range
of Plow and Phigh:

Vrange(C,R) =
{

(P = (p1, ..., pd)
∣∣ PLi ≤ pi ≤ PHi

}
(4.35)

The basic prerequisite for the d-dimensional range query is the space partitioning
strategy given by the index structure in use. For example, given the contextual map
indexed by an R-tree, a depth-first search can be applied upon it. This search works
similarly as querying hyperspherical ranges on an R-tree (see discussion above about
hyperspherical range queries). As we have argued earlier, all branches with parent nodes
denoting spaces not overlapping with the query range are pruned. As a result, all leaf
nodes which are reached by the search are either inside the query range or close to the
query range. The latter ones are pruned so that upon the search terminating the set of
all points within the query range has been found. The efficiency gained by this approach
is given by two aspects:

• The search prunes branches in the R-tree, which contain points of spaces outside
the query range.

• The R-tree is a balanced B-tree, optimizing search times of algorithms applied on
it.

Performing hypercubical range queries are also well suited to be applied on spatial grids
(section 3.3.4). However, it works best, if Vrange(C,R) is approximated even further. In the
discussion above, we have argued that Vrange(C,R) should have an exact extend of 2tmax.
Regarding the spatial grid, we may simply choose a query range encompassing exactly all
those cells overlapping with that space. Concluding, even that this query range is a little
bit larger than the one depicted above, the fact that query range is a set of complete cells
(the union of those cells yields the query range in return) allows us to simply determine
the query’s result by summing up all range contexts from the included cells’ inclusion
lists. Given a cell size of u with C located in its cell D bounded by Dlow = (DL1, ..., DLd)
and Dhigh = (DH1, ..., DHd), Plow = (PL1, ..., PLd) and Phigh = (PH1, ..., PHd) with
PHi > PLi are defined as follows:

PLi = DLi − viw ∀ i ≤ d
∣∣ vi ∈ N0 (4.36)

PHi = DHi + wiu ∀ i ≤ d
∣∣ wi ∈ N0 (4.37)

with vi and wi being the iterators counting how many of the surrounding cells as to
be included, so that the following equations holds:

115



4.4 Efficient Update Handling 4 Application of the Contextual Map

ci − PLi ≥ tmax ∧ ci − PLi − u < tmax ∀ i ≤ d
∣∣ vi ∈ N0 (4.38)

PHi − ci ≥ tmax ∧ PHi − ci − u < tmax ∀ i ≤ d
∣∣ vi ∈ N0 (4.39)

(PHi − PLi) mod u = 0 ∀ i ≤ d (4.40)

wit equations 4.38 and 4.39 defining the range’s extent and figure 4.40 expressing that
the range encompasses complete cells. Figure 4.8 shows an exemplary Vrange(C,R) in a
spatial grid.

Vrange (C, R)

Contextual Range R

tmaxC

lowP

highP

0

Figure 4.8: Hypercubical Range Vicinity in a spatial Grid

To the time being, lots of research has been conducted on this topic. Besides the
strategy sketched above, there are numerous variants and improvements on d-dimensional
range querying. These approaches are comprised of both indexing structures [30, 41, 66,
101, 80] and multidimensional querying strategies [33, 58, 80, 71]. Concerning indexing
trees, special emphasis is put on variants of the R-tree [25, 93], which is a wide-spread
structure for multidimensional indexing. All of the approaches focus on its performance
optimization to overcome the significant shortcomings of storing multi-dimensional data
(”curse of dimensionality”, section 3.3).

From the discussion so far, we can derive a general workflow of processing a hypercu-
bical query on the contextual map (i.e. a contextual range) yielding all contexts inside
the queried context’s range vicinity (i.e. the updated context):
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1. The d-space is partitioned according to the specific querying technique, i.e corre-
sponding to the indexing structure in use.

2. The hypercubical query determines a query point forming the center of the hyper-
cube and denoting the range context C, which the queried range vicinity belongs
to.

3. All parts of space (according to space-partitioning) overlapping the query hypercube
are identified.

4. All points/contexts contained by the resultant parts of space are extracted.

5. Each of the resultant contexts is checked on membership in the query hypercube.
The complying contexts represent the range vicinity Vrange(C,R).

4.4.3 Boundary Check

After determining contexts in the vicinity Vcontext(C) of a context C in the contextual map,
the next step is to determine whether any of those proximate contexts in Vcontext(C) have
crossed a contextual boundary to C. Recalling the discussion in section 4.1, contextual
boundaries define the degree of affinity between two contexts. In section 4.4.2, we have
argued that Vcontext(C) consists of multiple range vicinities Vrange(C,Ri) (with i enumer-
ating the contextual ranges). Since contextual ranges group contextual attributes of the
same type by mapping those onto the range’s dimensions, the contextual boundary check
is performed range-specifically on each Vrange(C,Ri) ∈ Vlist(C), as we have explained on
previous occasions.

The general picture of the contextual boundary check is to first analyze all ranges on
which the examined boundary applies to, i.e. on which it has defined any thresholds.
With all ranges examined knowing which pairs of contexts have exceeded threshold on
which range (i.e. range-specific boundary crossing), we can determine crossings of the
examined boundary. Such a crossing is detected for a pair of contexts, if all the boundary’s
thresholds have been exceeded between the two contexts. In the following discussion we
first focus on the range-specific aspects before concluding with the overall setting in the
contextual map.

Given a specific contextual range R and an updated context C, we proceed as fol-
lows. First, we determine if any range contexts in Vrange(C,R) have crossed a contextual
boundary on the examined range R. Recalling the definition of contextual boundaries, a
single boundary defines one threshold on each of the ranges, which concern the boundary.
Thus, regarding a single range, a contextual boundary is defined by a proximity threshold
t on that range, hence defining a delimiting distance between C and any other range
context. Further, multiple boundaries may result in multiple threshold definitions on a
single range (again, one threshold specific to R per boundary only). Let us assume that
there are three thresholds of three boundaries defined on R, as depicted in figure 4.9.
Figure 4.9 shows the range vicinity Vrange(C,R) of the updated context C with the three
boundary thresholds t1, t2 and t3 with the latter also denoting the maximum threshold
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tmax defined on R. Vrange(C,R) encompasses eight other range contexts P1, ..., P8, which
are logically contextually proximate to C (to a degree tmax) on R.

maxt

Updated
context

1t

2t

1P 2P

3P
4P 5P

6P 7P

8P

C

Figure 4.9: Boundary Thresholds in Range Vicinity (R2)

A crossing of a specific boundary on the examined range R is denoted by a range
context getting closer than t to C or farther than t from C, with t being the boundary’s
threshold defined on R. Actually, this approach corresponds closely to the principles of
proximity and separation detection [61] with t denoting both the separation and prox-
imity distance (see section 2.6). From here forth, we use the term range crossings when
referring to boundaries which have been ”crossed” range-specifically as explained here (i.e.
threshold values that have been exceeded positively or negatively in terms of separation
and convergence, respectively).

In order to determine a range crossing on range R we need to know the distances
between neighboring range contexts and C before and after an update on C (compare
discussion about proximity sets as defined in equation 4.3 denoting convergence and sep-
aration in section 4.1). For this reason, we calculate all distances dPC(R) between every
range context P in Vrange(C,R) and C before the incoming update is merged into the
context map. We use the Euclidean distance formula from equation 4.2 to determine the
distance between C and any other multi-dimensional point denoting a range context in
Vrange(C,R) (see section 4.1.2). We store the distances in a list Dpre(C) denoting the
distances of range contexts to C before the update. Hence, each list element is a tuple
denoting a range context P and its distance to C:

Dpre/post(C) =
{(

P, dPC(R)
)∗} ∣∣∣ P ∈ Vrange(C,R) (4.41)

After committing the update, the distances are all recalculated and stored analogously
in a new list Dpost(C) listing the distances between range contexts and C after the update.
With both Dpre(C) and Dpost(C) we can almost perform the range crossing check. For this
purpose another list is introduced: the threshold range list. It lists which range contexts
are closer than a threshold’s value to C. Thus, each list entry is a tuple depicting a
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threshold t defined on the range and a list of range contexts, which are all closer than t
to C:

Tpre/post(C) =

{(
t,
(
P | dPC(R) < t

)∗)∗} ∣∣∣ P ∈ Vrange(C,R) (4.42)

Regarding the example setting in figure 4.9 the threshold range list comprises three
entries, one for each threshold, i.e. t1, t2 and t3 (tmax). The range contexts, which are
associated with each entry are listed in table 4.1.

Threshold Range contexts

t1 P7

t2 P3, P4, P6, P7

t3 = tmax P1, P2, P3, P4, P5, P6, P7, P8

Table 4.1: Threshold Range List of Figure 4.9

As with the distance lists, we need two threshold range lists, Tpre(C) and Tpost(C)
stating the situation before and after the update, respectively. Both Tpre(C) and Tpost(C)
are defined analogously. With those two lists, range crossings can now be determined.
The number of entries in Tpre(C) and Tpost(C) is equal. Both denote the same number of
thresholds. The identification of range crossings is conducted by comparing the entries
from Tpre(C) and Tpost(C), which are associated with the same threshold. Let us consider
a single threshold t and its two corresponding list entries from Tpre(C) and Tpost(C),
respectively:

(t, Qpre), (t, Qpost)
∣∣∣ Qpre/post =

{(
P | dPC(R) < t

)∗}
(4.43)

with Qpre and Qpost denoting the set of range contexts closer than t to C before and
after the update, respectively. Because of the update occurring in between the generations
of Qpre and Qpost, it can be stated that Qpre is transformed into Qpost by the update
commitment. This transformation implies that range contexts may either disappear from
the set or new range contexts may show up in it. Those observations have the following
meaning regarding range crossings:

• Contexts disappearing: A range context P disappearing from Qpre and hence missing
in Qpost indicates that P has moved farther away from C and that the distance
between the two has just exceeded t during the update. This observation implies
a range crossing for t having occurred between C and P , since dPC(R) < t holds
before and dPC(R) ≥ t after the update (see section 4.1). Since P has moved farther
away from C, C and P have become less affine in terms of contextual proximity.

• Contexts emerging: A range context emerging in Qpost but having been missing in
Qpre indicates that P has moved closer to C and that the distance between the two
has just fallen below t during the update. This observation also implies a range
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crossing for t having occurred between C and P , since dPC(R) ≥ t holds before and
dPC(R) < t after the update (again, see section 4.1). Since P has come closer to C,
C and P have become more affine.

• No changes: If Qpre = Qpost holds no range crossing for t has occurred. The distances
between the included range contexts and C have not changed as significantly as to
affect t.

The procedure of comparing Qpre and Qpost is conducted on every threshold defined in
the range vicinity Vrange(C,R). To improve the readers understanding for the procedure
described above, we show a practical example. Returning to the setting in figure 4.9, there
are three thresholds to be examined. The threshold range list for Vrange(C,R) displayed
there has been listed in table 4.1. Assuming that an update is committed on context
C, this list can be regarded as Tpre(C) denoting the range vicinity’s initial state. Let us
assume further that the update causes C to ”move up” on the particular range in R2 as
depicted in figure 4.108. As a consequence Tpost(C) can be derived from the resultant
range vicinity - as shown on the right side of figure 4.10. Tpost(C) is listed in table 4.2.
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(a) Range vicinity with Tpre (b) Range vicinity with Tpost
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Figure 4.10: Range Crossings in R2

With Tpre(C) and Tpost(C) in tables 4.1 and 4.2, both can be checked for changes
inflicted by the update. The results indicated in table 4.3 show the following range
crossings in regard to C:

• P3 has become more affine causing a range crossing on t1

• P1 and P2 have become more affine causing 2 range crossings on t2

8note, that we have extended figure 4.9 by range context P9 for illustration purposes
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Threshold Range contexts

t1 P3, P7

t2 P1, P2, P3, P4, P6, P7

t3 = tmax P1, P2, P3, P4, P5, P6, P7, P9

Table 4.2: Threshold Range List after Update

• P9 has become more affine causing a range crossing on t3

• P8 has become less affine causing a range crossing on t3

Threshold Qpre (table 4.1) Qpost (table 4.2) removed inserted

t1 P7 P3, P7 ∅ P3

t2 P3, P4, P6, P7 P1, P2, P3, P4, P6, P7 ∅ P1, P2

t3 = tmax P1, P2, P3, P4, P1, P2, P3, P4, P8 P9

P5, P6, P7, P8 P5, P6, P7, P9

Table 4.3: Changes in Threshold Range List (figure 4.10)

At this point we have identified which thresholds have been exceeded and if the cor-
responding range crossings denote range context pairs getting more or less affine. This
range-specific boundary check for context C is performed on every range in the contextual
map. Basically, we have identified the range-local changes in contextual proximity caused
by a contextual update. After this procedure is finished, we can derive the crossing of
the complete contextual boundaries from the previously determined range crossings. For
any context pair including C and another context from Vcontext(C), all thresholds, which
exhibit range crossings, are known. Hence, we can determine which boundaries have been
crossed by checking all range crossings:

1. Given a range crossing between range contexts C (updated context C) and P on
range R, we identify the affected boundary B. The range crossing always denotes
an exceeding of a threshold t, which belongs to a particular boundary, hence B.
Formally: t ∈ B holds.

2. We fetch all threshold range lists of C’s range contexts on all other ranges than R.
Next, we extract the entry corresponding to t from each of the threshold range lists,
i.e. (t, Qpost). We now have to regard two cases:

• If the range crossing denotes that t has been exceeded from its upper to its
lower bound, a range-specific convergence on R occurred. Thus, we check if P
is included in all Qpost.
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– If so, C is contextually proximate to P on all ranges defined by B (equation
4.5 holds) and B has been crossed (because this has not been the case
before the update yet)

– If not, we have to check if there were converging range crossings on all
those ranges on which P was missing in Qpost. If so, C is contextually
proximate to P on all ranges defined by B and B has been crossed. If not,
B has not been crossed.

• If the range crossing denotes that t has been exceeded from its lower to its
upper bound, a range-specific separation on R occurred. Thus, we perform the
same check as with a converging range-crossing, i.e. we check if P is included
in all Qpost. If so, a contextual separation between C and P in regard to B has
occurred since C and P are not sufficiently contextually proximate to satisfy
the contextual similarity degree defined by B (equation 4.6 holds). If not, B
has not been crossed.

3. all range crossings on other ranges affecting both the boundary B and contexts C
and P , are pruned, since it has been determined if C and P have crossed B or
not. We proceed by applying this enumerated checking procedure on the remaining
unchecked range crossings.

A crossed context boundary is finally eligible to trigger any affinity alerts defined
on P or C. Closing, it is to be remarked that the boundary check procedure can be
compared to proximity and separation detection in Rn. Here, we exploit this approach
for context-aware computing for monitoring affinities among contexts.

4.5 Monitoring the Contextual Map

In the past sections 4.3 and 4.4 we have discussed how updates are composed and handled.
Both concerns are limited to a single point in time. In this section, we add a timely aspect,
thus presenting principles how to continuously observe multiple updates over a period of
time.

Monitoring the contextual map basically means monitoring its contextual ranges. Ob-
serving a range over time implies to regard all range contexts present in that range. So
far, we have always regarded a single updated range context. Thus, this section also ex-
tends the principles from the previous sections to an arbitrary number of updated range
contexts.

We proceed as follows: First, we identify the setting in which range monitoring occurs
(section 4.5.1). After that, we discuss how we employ the contexts’ range vicinities to
continuously monitor affinities between entities, i.e. contextual proximity among their
belonging contexts (section 4.5.2).
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4.5.1 Contextual Range Monitoring

In section 4.4 we have described how a single contextual update is processed to determine
contextual proximity in conjunction with contextual boundaries, i.e. we have shown how
a single update inflicts boundary crossings and how those are detected. In a contextual
range, however, we usually face an arbitrary number of range contexts that change dy-
namically at random times following contextual updates of their corresponding entities.
Hence, we extend the principles from section 4.4 to an arbitrary number of range contexts
that change their position in the contextual range dynamically over time. Hence, let C(t)
denote the range context C at time t on range R with d dimensions:

C(t) =
(
c1(t), ..., cd(t)

)
(4.44)

In order to perform contextual affinity detection on multiple entities, ideally, their
most current context should be known. This would require a continuous stream of updates
from each entity committing its actual context information. This is obviously impractical.
Since contextual updates are only committed from time to time according to the update
semantics in use (see section 4.2) the most current context is always an approximation of
an entity’s real-time context. Thus, a contextual range represents an approximation of
the overall situation regarding the context type which the range represents (e.g. weather
context from section 4.1).

Following this argumentation, the quality of the overall current state of a contextual
range depends on the quality of the individual contexts, which can be broken down to
two basic influencing factors

• Context actuality / freshness of data

• Context fluctuation

We reflect on both aspects in the subsequent discussion before closing this section with
sketching the monitoring mechanisms applied onto a contextual range. It is to be noted
that since we regard contextual ranges here, we always refer to range contexts (even if
not explicitly writing so), not to range-global contexts in the contextual map.

Context actuality

A range context’s actuality is a decisive criterion for the overall freshness of the contextual
range. It is primarily dependent on the update semantics in use. Zone based update
semantics as presented earlier in section 4.2 influence the context freshness by the proper
definition of their update zones. Smaller update zones cause more frequent updates, which
lead to more current context in turn. Distance-based update semantics behave equally.
On the other hand, when using periodic interval-based update semantics context freshness
is dependent on ”context velocity”. The context velocity can be regarded as a measure
how fast a context changes and how fast it ”moves” through the contextual range. Fast
moving contexts change significantly over time, hence reducing the correctness of the last
committed update accordingly.
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An option to enhance actuality of contexts is to predict their location in the context
range according to their location history [76]. A range context’s location history consists
of points in the contextual range that it updated in the past. For ”moving” contexts,
those points yield a trajectory, which allows the prediction of future locations. In terms
of context-awareness, we gain limited ability to predict an entity’s future context (see
figure 4.11). Of course, due to the inability to foresee the future, we explicitly declare
this ability as limited.

Context Trajectory

Context Prediction

t1

t2

t3

t4

Figure 4.11: Context Prediction based on Trajectory between Times t1 and t4

A simple example of predicting a range context’s C location is not to regard its tra-
jectory, but merrily its last known position9 C(t0), velocity v0 and direction10 ~d0 at a time
t0. Missing any subsequent update, we can predict its location at a time past t0, say t1,
by simply applying the laws of mechanical physics:

C(t1) = C(t0) + ~d0v0(t1 − t0) (4.45)

Prediction of range contexts can provide a more actual context location for entities,
which have not recently committed contextual updates and whose contexts may have
become obsolete in the real world. For this reason, predicting an entity’s range context
according to its trajectory for the current time may contribute to a more accurate context
range.

Context fluctuation

Another aspect impacting the quality of context is contextual fluctuation [77]. Appar-
ently unchanged context of an entity may change slightly over time due to imprecise
sensor readings. This causes the corresponding context representation on the according
contextual range to fluctuate, i.e. to ”move around”. Figure 4.12 illustrates a fluctuating
context.

Padovitz et al. [77] have approached this phenomenon by determining an ideal state
inside a fluctuation area. The ideal state is represented as a point in space (i.e. in the
contextual range) denoting an ideal context, which can be regarded as the actual position
of the concerned fluctuating range context. By neglecting the range context’s real position

9remember that C(t0) =
(
c1(t0), ...cd(t0)

)
is a vector depicting the location of context C at time t0

10normalized vector with length |~d0| = 1
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(determined by updates from the belonging entity) and using the ideal context instead
eliminates the impact of fluctuation. However, in order to determine the ideal context, the
fluctuating updates from the belonging entity require that ideal context to be calculated.
Multiple updates yield the context’s positions at different times allowing to calculate the
mean, which represents the ideal context, as approximated in figure 4.12.

Fluctuation Area

Ideal Context

Moving Context 

t1

t2

t3
t4

t5

Figure 4.12: Context Fluctuating in Timeframe between t1 and t5

At this, the fluctuation degree degfluct represents the quality metric for the fluctuation
aspect. Three basic approaches can be employed to determine it:

• The ideal state can also be employed to measure the fluctuation degree by iteratively
determining the Euclidean distance dCI(R) (see equation 4.2) between the real range
context C and the ideal context point I. Assuming that n updates yield n distances
d1, ..., dn between C and I at n points in time t1, ..., tn, the fluctuation degree degfluct
is the average of all distances:

degfluct =

∑n
i=1 di
n

∣∣∣ di = dC(ti)I
(R) (4.46)

• Alternatively, the fluctuation degree can be determined by summing up the context’s
total distance travelled during the timeframe [t1, tn] and determining its ”average
speed”. Hence, degfluct is defined as follows:

degfluct =

∑n
i=2 dC(ti)C(ti−1)

(R)

∆t

∣∣∣ ∆t = tn − t1 (4.47)

• A third option of measuring context fluctuation is to dynamically determine the
size of its fluctuation area (see figure 4.12) over particular periods of time. Since
a context may fluctuate erratically, it may yield a non-symmetric polygonal area,
which may be difficult to compute. A simple solution to remedy this issue is to
determine the minimal bounding rectangle M = (m1, ...,md) of the fluctuation area
with d depicting the number of dimensions of the concerned context range:
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M =
(
mi

∣∣ mi = min
(
ci(t)

)
∀t ∈ {t1, ..., tn},∀i ≤ d

)
(4.48)

with n depicting the number of points in time where a contextual update revealed
the context’s actual state and ti denoting such time point. Following, degfluct equals
the area of M:

degfluct =
n∏

i=1

mi (4.49)

Besides the fluctuation of stationary range contexts, fluctuations of moving contexts
can be regarded, too. In that case, an ideal trajectory is iteratively calculated instead of
an ideal context point. However, the detailed realization of this mechanism is out of the
scope of this work.

Monitoring Techniques

After making clear the impact of context actuality and fluctuation, the major remaining
question is: how to efficiently monitor numerous contexts in a contextual range over
time and detect proximity among them? The solution to this issue is the application of
continuous range monitoring mechanisms [33, 70, 80]. It is important to mention that
range is used in a different context here, namely monitoring ranges of Euclidean space.
This is not converging with the contextual map’s ranges in any way. Range monitoring is
applied on multi-dimensional space yielding which points are in which query ranges over
time. Basically, a query range is a subspace of the entirely monitored space, which is
associated with a result set of moving points currently inside that subspace.

We have to be careful not to confuse the meanings of the word ”range”. On the one
hand, we talk about query ranges, which define areas of interest inside multi-dimensional
space, on the other hand there are contextual ranges, which depict the contextual situation
of a particular context type in the contextual map.

Applying multi-dimensional range-monitoring on the contextual map, each range vicin-
ity (surrounding a range context on a contextual range) equals a query range (a part of
space with an associated result set of points). Hence, we deal with equally sized11 query
ranges with an extent of the maximum threshold tmax defined on the contextual range
(see section 4.4). The points inside the query range / range vicinity are the range con-
texts close to the context owning the range vicinity (located in its middle) and hence
represent the result set of the range query. Concluding, when monitoring a contextual
range, monitoring moving points and moving range queries is equivalent to monitoring
changing range contexts and changing range vicinities. Table 4.4 shows how general range
monitoring is applied on monitoring contextual ranges. In the following section 4.5.2, we
discuss this approach in more detail.

11equally sized query ranges on the particular contextual range in question

126



4.5 Monitoring the Contextual Map 4 Application of the Contextual Map

Query range monitoring Contextual range monitoring

multi-dimensional space Euclidean space with Cartesian coordinate system
moving point range context representing (partial) context of an entity
query range range vicinity of a range context

Table 4.4: Query Range Monitoring and contextual Range Monitoring

Another important aspect of continuously observing a contextual range is the dynamic
forming of context clusters. We have identified this aspect early in section 1.3 for deter-
mining a set of currently similar contexts in the contextual map. However, at this point
we postpone the clustering topic and focus on monitoring non-grouped contexts. Chapter
5.2 provides an in-depth discussion about clustering contexts.

4.5.2 Monitoring multiple Range Vicinities

In section 4.5.1 we have argued that range monitoring mechanisms as a basis for monitor-
ing range vicinities of contexts in contextual ranges. Although we have identified index
structures as efficient tools for quickly querying high-dimensional data (see discussions
in sections 3.3 and 4.4.2), monitoring a particular part of space over time by iteratively
performing range queries on the index has significant drawbacks. Although indices enable
queries to quickly locate high-dimensional data sets within a particular range of space,
they are still elaborate [80]. For this reason, research has been working on finding alterna-
tives for the monitoring use case. Prabhakar et al. have indexed the queries instead of the
points employing updates on point locations on their Query-Index [80]. Other approaches
focus on iterative mechanisms [33, 70] where each query is provided with its initial result
set upon initialization and where respective result sets are iteratively updated upon point
updates. In other words, there is only one huge effort to perform during the initialization
when it is necessary to determine which points are in which query range. Afterwards,
updating individual result sets concerned by point updates poses minimal effort. Parti-
tioning space, which is mostly grid-like for simplicity reasons, facilitate this approach of
dynamically managing query spaces, point locations and location updates [33, 70, 71].
This is strongly related to the spatial grid model introduced in section 3.3.4.

Following this short survey about range monitoring approaches, we discuss the ap-
plicability of selected principles on our contextual range setting. First, we present the
theoretical approach based on our discussion in previous sections of this work. Subse-
quently, we deduce practical improvements based on the surveyed approaches. We begin
our discussion with the approaches introduced in section 4.4, where we regard the update
of a single range context C. For C, the space of interest consists of the range vicinity12

Vrange(C,R) with the extent tmax (see section 4.4.2). First, we extend the scope of view
from a single range context to multiple range contexts by regarding the threshold range
list T (C) of the updated range context C. Any change in T (C) does not only concern

12for reasons of simplicity we regard C as the complete context as well
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C, but all other changed range contexts as well. E.g., in figure 4.10 and the belonging
table 4.3 we can observe the change of T (C) caused by an update. The range contexts
P1, P2, P3, P8 and P9 have changed in T (C) by appearing in a different set (t, Q) with t
denoting a threshold and Q the set of range contexts closer to C than the threshold t.
This means that all of those range contexts have possibly crossed a contextual boundary
by causing a range crossing (see section 4.4.3). The update in T (C) requires updates in
the threshold range lists of the respective changed range contexts, too. The following
cases apply:

• Range context added: This case occurs when a new range context P is inserted in
the set Q of an entry (t, Q) of the threshold range list T (C). P has come closer to C
than the threshold t. That is why we need to commit this change to the threshold
range list of P as well. Hence, we need to insert C into the set Q of the entry (t, Q)
in T (P ).

• Range context removed: This case works analogously to the insertion case. When a
range context P is removed from the set Q of an entry (t, Q) of the threshold range
list T (C), P has moved farther from C than the threshold t. Thus, we commit this
change to the threshold range list of P by removing C from the set Q of the entry
(t, Q) in T (P ).

In summary, a change to a threshold range list of a range context expressed by the
insertion or removal of a neighboring range context also concerns the threshold range list
of the inserted or removed range context.

At this point, we are able to satisfy an arbitrary number of contexts that are affected
by the update of a single context. All of the affected contexts’ range vicinities are up to
date with their respective threshold range lists denoting the current state of their range
vicinities. In summary, the following iterative process enables continuous monitoring of a
contextual range:

1. Upon receiving a contextual update for a context, determine its new range vicinity
Vrange(C,R) of its respective range context C by fetching all neighboring range
contexts within Vrange(C,R).

2. Update C’s threshold range list T (C) by comparing the stored version Tpre(C) with
the current distances to the determined neighboring range contexts in Vrange(C,R).
By doing so, derive an updated version of the threshold range list: Tpost(C).

3. All range contexts in T (C), which have been inserted or removed from one of the
tuple entries of T (C) require an equivalent update in their own respective threshold
range list (as discussed above). Further, those contexts have possibly crossed a
boundary defined on the contextual range R. Process this event adequately.

In regard to query range monitoring, satisfying affected range vicinities equals satis-
fying the corresponding query ranges. By storing a threshold range list for each range
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context and updating it iteratively we dynamically manage the current result set of our
query ranges (inspired by the approaches in [33, 70]).

The remaining issue poses the selection of contexts within the updated context’s vicin-
ity. Naturally, this depends on the choice of the underlying data structure that stores
contexts, i.e. the coordinates inside a contextual range. We have two options:

• Index on context points: Naturally, a proven approach is to index all range context
coordinates in an index structure as depicted in section 3.3. Each time when a
range context is updated, the index is updated instantly by the according UPDATE-
operation of the index structure in use. For the subsequent determination of the
range vicinity, we perform a range query on the index (with the new range context
position in the center of the query range) yielding all points, i.e. range contexts,
within the queried range of space (see section 4.4.2). The index represents the
master structure for a contextual range. We do not memorize context point positions
anywhere else but in the index. As discussed earlier, this approach comes with pros
and cons. Tree-like indices enable fast access to high-dimensional data. However,
despite that, the curse of dimensionality has a significant impact on that.

• Index on space partitions: The authors of [80] claim that point indices perform
poorly in query range monitoring. Hence, we can fall back on the alternative using
the spatial grid from section 3.3.4 to index range contexts. We partition the entire
contextual range’s space into a grid of equally sized parts of space. In this setting,
each of those cells has hypercubical shape. Each cell possesses a list of range contexts
currently included in its particular part of space [20, 70].

Upon receiving a contextual update, the affected range context may have either
moved inside its cell or moved to another cell. In the former case, the range context’s
new position is updated in its cell’s list. In the latter case, the range context
is removed from its former cell’s list, its new cell is determined and its current
coordinates are inserted in its new cell’s list. Cells can be indexed, so that they can
be determined quickly.

Capturing a range context’s range vicinity Vrange(C,R) means selecting a set of cells
as depicted in figure 4.13. Since rectangular regions are easy to query, we select the
hypercubical set of cells that encompasses Vrange(C,R) with its extent of tmax. This
approximation tolerates the inclusion of false positives, which are situated outside
of Vrange(C,R), but inside the hypercubical range query. However, those are pruned
by the following distance check, which is used to infer the new threshold range list
T (C) and the detection of possible contextual boundary crossings.

4.6 Contextual Boundary Management

As discussed, contextual boundaries serve as an important metric for determining contex-
tual proximity, i.e. affinity between contexts. For this reason, context boundaries are tied
in deeply into the contextual map, especially by the threshold range lists of which each is
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Figure 4.13: Range Vicinity Vrange(C,R) in grid-based Contextual Range R

stored with its belonging range contexts. Thus, inserting new boundaries and removing
existing ones is a cumbersome task, which gets more elaborate the more contexts and
ranges exist. In the following discussion, we regard the two operations of inserting and
deleting a contextual boundary:

• Insert: Inserting a new boundary equals updating all concerned threshold range
lists. A new contextual boundary has an arbitrary number of thresholds, which
concern a set of disjoint contextual ranges. Each threshold concerns one of those
ranges. To add the boundary to the contextual map, we need to update each of the
affected ranges by registering the according threshold. Assuming a threshold ti from
a new boundary B. ti is defined on Ri, which means that all range contexts in Ri

need to be updated. In particular, this means updating their threshold range lists13.
We distinguish three cases on how to update a single threshold range list T (C) with
C representing the range context whose threshold range list is being updated:

– ti is minimal: This means that there is no smaller threshold than ti defined on
Ri. For this case, the existing minimal threshold tmin is of concern. Concluding,
the corresponding tuple in each threshold range list is (tmin, Qmin) (see equation

13updating does not concern the range contexts’ coordinates here
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4.43). We now need to determine a new entry (ti, Qi) for the new threshold ti.
Since Qmin contains all range contexts for the new set Qi, all range contexts in
Qmin are checked against ti. This means that the distance between each range
context P from Qmin and the C is determined. If the distance is below ti, P is
inserted into Qi.

– ti is neither minimal nor maximal: This case describes the situation that ti is
in the mid-range of all thresholds defined on Ri. In this case, we are concerned
about the next larger and next smaller threshold, i.e. the two neighboring
threshold in terms of their values compared to ti. Let the next larger threshold
be t> and the next smaller one t< with their corresponding entries (t>, Q>)
and (t<, Q<). The difference between Q> and Q<, i.e. Q> ∩ Q< includes all
candidates for Qi. Checking all candidates’ distance to C yields the result set
for Qi by including all candidates with the that distance being smaller than ti.

– ti is maximal: This case occurs, if there is no larger threshold defined on Ri,
i.e. ti > tmax. In the former two discussed cases, we have taken advantage
of existing entries in T (C) since the range vicinity Vrange(C,R) has stayed
unchanged. This approach is insufficient in this case, since the Vrange(C,R)
needs to be extended and there may be new range contexts to be included. All
entries in T (C) remain, but the new entry (ti, Qi) needs to be determined by
a hyperspherical range query centered at C with extent ti. It yields the result
set Qi, allowing to complete T (C) with ti becoming the new maximum tmax.

• Delete: The deletion of a context boundary is comparatively easy. Deleting (ti, Qi)
from T (C) suffices, since all other tuples in T (C) remain unaffected.

As stated, the Insert and Delete Operations depicted above describe processes that
need to be conducted on every range context (we have denoted it as C in the discussion
above) of every context range affected by the new boundary.

4.7 Overall Workflow

With the basic working principle of the contextual map model discussed, we are now
about to summarize the general workflow of detecting affinities between contexts.

1. Context capturing : The first step consists of abstracting the environmental context
into the context model. The contextual map has to be set up according to this
context, i.e. ranges and dimensions are to be defined (section 3.1). Subsequently, the
initial context is mapped into the contextual map. This includes the identification of
entities possessing their own definable contexts, typifying that context, identifying
and quantifying distinct contextual attributes (by the context capturing interface as
depicted in figure 2.5), and finally mapping them into the contextual map (section
3.2). As a result, every entity possesses a position in the map, corresponding to its
initial context.
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2. Setting of contextual boundary: In the next step, the contextual boundaries have to
be defined, so that contextual affinity detection becomes possible. This includes the
identification of ranges affecting the according boundary and defining the delimiter
thresholds on those ranges (section 4.1.1). Contextual boundaries may change upon
a use-case-specific demand (section 4.6).

3. Definition of update semantics: The entities’ terms for committing updates about
their most current contexts must be defined. If adopting zone-based semantics, this
includes the selection of the appropriate bounding model for the update zones in
Rn, in particular hypersphere and hyperplane models (section 4.2). The size of the
update zones (hypersphere = diameter, hyperplanes = distance between each other)
is application-specific and subject to dynamic changes.

4. Monitoring current local context: It is assumed, that a mobile host is attached to
each entity. It keeps track of the entity’s current context. If zone-based update
semantics are applied, a contextual map representation of its entity is maintained
locally. The mobile host captures the most current context from its context sensors
and mapped into its local contextual map (section 3.2) as described in step 1. Thus,
the entity’s changing context corresponds to changing coordinates of its contextual
position in the map. Since local context monitoring is used for zone-based update
semantics, it is irrelevant if other than zone-based update semantics are in use.

5. Determine contextual update: If zone-based update semantics are in use, the con-
stant local monitoring of the entity’s context enables the determination to commit
a contextual update. This is exactly the case, when the entity’s context leaves the
update zone in its local contextual map (section 4.2). If other than zone-based
update semantics are employed, the time for a contextual update is determined ac-
cordingly. In either case, if considered necessary, a contextual update is committed
to the system by the entity’s mobile host.

6. Determine relevant vicinity: The global contextual map model receives the entity’s
update (see figure 4.1) and prepares to examine its impact on the global context,
i.e. if the entity’s context got more or less affine to other contextually proximate
contexts. First the affected context boundaries are identified, then the relevant
vicinity of the entity’s context in the global contextual map is determined (section
4.4). This vicinity, which is split up on the contextual map’s ranges, defines the
relevant space of proximity examinations.

7. Contextual affinity detection: The distances from the entity’s context to all contexts
in the entity’s relevant vicinity are determined using the Euclidean distance formula
(equation 4.2 in section 4.1.2). This process is conducted on each range affecting a
relevant context boundary.

8. Trigger contextual proximity and separation alerts: The calculated distances are
checked with the affected contextual boundaries. If a change of distance equals a
crossing of a boundary (section 4.1.1), a proximity or separation alert is triggered.
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9. Application-specific action: The proximity or separation alert is processed application-
specifically. This may include committing the recently identified context changes to
various entities, i.e. committing an inverse contextual update.

10. Global context monitoring: The changes in the global context, which are continu-
ously caused by incoming contextual updates sent from entities, are monitored and
processed accordingly (section 4.5). Upon receiving an update, the workflow from
step 4 to step 9 is iterated. Context boundaries managed upon demand (section
4.6).

Figure 4.14 illustrates the workflow described above as a UML activity diagram.
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Figure 4.14: Workflow
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Chapter 5

Exploiting contextual Similarity

So far, we have extensively explored the aspect of similarity between two contexts. In this
chapter, we explore the possibilities to utilize arbitrary sets of similar contexts. In section
1.3 we have identified two main application cases of the contextual map (see figure 1.2):

• the application of the contextual similarity query

• and the determination of context clusters

In section 5.1, we explain the working principle of the contextual similarity query. We
proceed with section 5.2 focusing on the determination of groups of similar contexts, the
context clusters. We close with an analysis of how to interpret clusters of similar contexts
as situation bounds in real-world-contexts in section 5.3. We present the notion of the
super situation (as introduced in section 1.3) derived from context clusters and depicting
a particular contextual realm, i.e. a state space for certain contexts (i.e. situations).

5.1 Contextual Similarity Queries

Given a query context C, the similarity query delivers a result set containing all contexts
that are similar to C. In this chapter, we focus on the actual application of the contextual
similarity query. We distinguish two variants, which differ by their definition of the
similarity degree, i.e. the metric for defining the query’s bound:

• similarity degree set by contextual boundaries, i.e. a contextual boundary is used as
query parameter and the bound of a similarity query is inferred from that boundary
(discussed in section 5.1.1)

• similarity degree set by a custom parameters, i.e. the bound of the similarity query
is set directly (discussed in section 5.1.2)
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5.1.1 Boundary-defined Similarity Query

Following our discussion so far, the contextual map’s metrics for bounding similarity are
grouped into contextual boundaries. Recalling, a boundary B defines thresholds on those
contextual ranges that are of semantic concern for B. Hence, assuming B = (t1, ..., tm)
defining m thresholds on m contextual ranges with ti denoting a threshold defined on
range Ri (see section 4.1.1).

We start with regarding the query context C, which depicts the query point for the
contextual similarity query. Since we regard multiple contextual ranges, we need to care-
fully distinguish between contexts and range contexts, with range contexts existing in a
particular contextual range only, whereas contexts comprise of multiple range contexts
on all (applicable) contextual ranges. In section 3.1, we have introduced this basic data
model. To perform a similarity query on C, we need to regard all range contexts of C on
the according ranges Ri that are affected by B. As stated, B defines a threshold ti on each
of those ranges. Since B is the query’s only parameter by defining the required similarity
degree, we need to identify all range contexts in the radius ti on each of the contextual
ranges Ri affected by B. Hence, we divide the similarity query in m sub-queries, with each
sub-query executed on a range Ri (i.e., each range that a threshold ti is defined on with
B = (t1, ..., ti, ..., tm)). With this approach we identify similar range contexts of C on each
affected range. So, we proceed as follows on each affected range by executing the accord-
ing sub-query: we regard the range context of C on the particular range Ri as the query
point. Using the crc-Operator, the corresponding range context is Crange = crc(C,Ri).
Now, we are interested in all range contexts that are similar to C on that range, i.e. the
range contexts that are contextually proximate to Crange. The similarity degree is defined
by the corresponding threshold ti in B. Hence, since ti is defined on Ri, it is included in
Crange’s threshold range list1 T (Crange). The corresponding entry in T (Crange) is the tuple
(ti, Qi) with Qi denoting all range contexts closer than ti to Crange. For the range Ri, Qi

almost depicts the result set for the sub-query responsible for Ri. Since the contextual
similarity query is performed on inter-range level, it aims at contexts, not only range
contexts. Thus, the corresponding contexts of all range contexts in Qi yields the result
set of the sub-query for Ri. We can express that with the rcc-Operator. Thus, the result
set for the sub-query on range Ri is the intersection of all m result sets yielded by the
sub-queries:

rcc(Qi) (5.1)

We conduct such a sub-query on each of the m ranges depicted by B. As a result,
we get m result sets rcc(Qi) with i ≤ m. Taken together, those result sets contain all
contexts similar to context C in any regard to boundary B. From this set, we need to
extract those contexts that are similar to context C entirely in regard to boundary B,
meaning that those contexts are similar to C in regard to all thresholds defined in B.
Hence, the result set of the contextual similarity query is:

1ti is actually included in every range context’s threshold range list
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CSQ(C,B) =
m⋂
i=1

(
rcc(Qi)

) ∣∣∣∣ B = (t1, ...., ti, ..., tm), (ti, Qi) ∈ T
(
crc(C,Ri)

)
, i ≤ m

(5.2)
In some cases it may be practical to determine a set of similar contexts in regard

to multiple existing context boundaries. In that case we have to regard all thresholds
(and ranges) defined in those boundaries and perform a sub-query on each corresponding
range. In this approach, it may occur that multiple thresholds are defined on a single
range. Ranges are only exclusive in a boundary definition, not across boundaries. In
that case, we employ the maximal threshold of all thresholds defined on a range by the
boundaries employed by the similarity query. This way, every boundary is satisfied by
the query. Formally:

CSQ
(
C, (B1, ..., Bm)

)
=
⋂(

rcc(Qi)
) ∣∣∣∣ ⋃m

j=1 Bj =
{
ti
}+

, j ≤ m,∀i :(
max(ti), Qi

)
∈ T

(
crc(C,Ri)

) (5.3)

5.1.2 Custom-parameter-defined Similarity Query

In the previous section, we have employed contextual boundaries as a bound for querying
similar contexts. Contextual boundaries are suitable for this purpose, because they are
deeply tied into individual contexts’ data structures (such as the threshold range lists).
However, in some cases it may be desirable to execute a contextual similarity query, which
is not described by any existing boundary. So far, the approach to solve the problem would
be to create a new boundary, which suits the desired similarity query. But since inserting
a new boundary into the contextual map is highly elaborate, it may not outweigh the
benefit of a custom similarity query that does not rely on any contextual boundaries.

To avoid employing a context boundary, we first need to specify our custom parameters
for the similarity query. We define the similarity degree ei for each range Ri that needs
to be considered. Grouped together, the array of those similarity degrees is actually no
different than a context boundary with its thresholds. However, in this case, the similarity
degrees are completely unknown to the contextual map. None of them appears in any
threshold range list. For this reason, we call them similarity degrees in the parameter
array and explicitly not thresholds in a contextual boundary. Thus, the parameter array
groups the similarity degrees and maps each similarity degree to its belonging range.

With the parameter array of similarity thresholds given, we execute a sub-query on
each considered contextual range (as already explained in section 5.1.1). Since the range
contexts’ threshold range lists are useless in this case, we need to extract the similar range
contexts from different data structures. Depending on the indexing structure employed
on range contexts, we conduct a range query either on the context range’s spatial-point-
index or on the context range’s spatial grid. In section 3.3 we have introduced both of
those options. Given a similarity degree ei (for range Ri) from the parameter array E =
(e1, ...., ei, ..., em), we perform one of the following according operations on the belonging
contextual range:
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• Index tree: In this case, all range contexts are stored in a high-performance index-
ing tree as discussed in section 3.3.1 (an index tree is always responsible for one
contextual range). We perform a hyperspherical range query with extent ei (radius)
on the index, so that all range contexts in the query range, the space of radius ei,
are determined.

A hypercubical range query of extent 2ei (edge length) may be less elaborate and
hence executed alternatively. However, this approach requires a post-processing
step for the elimination of false positives, which may be outside the hyperspherical
query range. We do this by a Euclidean distance check on the range contexts in the
result set and the query context.

• Spatial grid: In case a contextual range’s range contexts are stored in a spatial
grid, we select the set of cells that encompass the hyperspherical region of extent
ei, similarly as depicted in figure 4.13. Since this is a hypercubical range query, we
need to prune the false positives in a second post-processing step here, too.

Assuming that each sub-query yields a result set Si for its belonging range Ri, the
result for the whole similarity query is determined analogously to equation 5.2, namely
by the intersection of the result sets Si with i ≤ m:

CSQ(C,E) =
m⋂
i=1

(
rcc(Si)

) ∣∣∣∣ E = (e1, ...., ei, ..., em) (5.4)

5.2 Clustering Contexts in the Contextual Map

Contextual clustering depicts the second application case utilizing groups of similar con-
texts as depicted in section 1.3. Context clusters can be defined as sets of contexts sharing
contextual affinity, hence providing a grouping criterion for contexts in the contextual
map. There are two basic parameters for detecting clusters:

• The maximum distance, which may exist between any two contexts in the cluster.
We label it the inner cluster distance throughout this chapter.

• A selection of contextual ranges, which a cluster includes. The contexts’ coordinates
relevant for clustering are interpreted on range level, as with the other mechanisms
introduced so far. However, a cluster definition may span over multiple ranges. This
implies, that the clustering criterion (maximum distance) is applied on each range,
since the Euclidean distance metric is applicable on range level only (i.e. on a single
range at a time).

Returning to the example with the cautious driver in section 4.1.1, assume that there
are multiple drivers all concerned about the agreeable weather conditions along their
routes. They all individually define an individual (and fictional) weather condition, which
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they regard as critical. Since all of those weather conditions are positioned in the contex-
tual map, similar entries can be detected as clusters on the environmental measurement
range. With such a cluster detected, the contextual map can give recommendations about
defining a critical weather condition for new drivers, for example.

In this section, we describe the mechanisms of contextual clustering applied on the
contextual map. After surveying basic clustering algorithms in subsection 5.2.1, we ex-
plain how those can be applied on the contextual map in subsection 5.2.2. The focus is put
on how to cluster contexts, which span across multiple contextual ranges. We close with
a discussion about two important aspects that concern the detection of context clusters
in the contextual map: the aspects of dynamic changes and high dimensionality discussed
in subsections 5.2.3 and 5.2.4, respectively.

5.2.1 Clustering Algorithms

This section presents a brief review of three clustering algorithms that may be employed
for the contextual map. Clustering algorithms are applicable for any Euclidean space
with an arbitrary number of dimensions. In this section, we introduce three algorithms.

k-means Clustering

K-means clustering aims at identifying k clusters in a set of n multidimensional points [65].
The algorithm starts with randomly selecting k points, which serve as initial centroids
of the clusters. The clusters are determined by an iterative process by first adding all
remaining points to the cluster with the nearest centroid and recalculating each clusters
new centroid by calculating its mean. The iterations are conducted until convergence
is reached, i.e. until all means remain unchanged. In detail, the following steps are
conducted:

1. Given n multi-dimensional points, k initial points are selected for the k resultant
clusters. Each of the k points represents the initial mean of its belonging cluster.

2. Iteratively repeat the clustering procedure by assigning each point to its nearest
cluster:

(a) For each of the n points, determine the closest mean and assign the point to
the cluster that this particular mean belongs to.

(b) With all n points assigned to one of the k clusters, the mean of each cluster is
recalculated.

This procedure is iterated until no changes occur anymore. Upon recalculating a
cluster’s mean, it is possible that the mean moves (step 2b in iteration i). A moved
mean may imply that new points are added to the cluster from other clusters or that
points included in the cluster are assigned to other clusters with more proximate
means (step 2a in iteration i + 1). A different point constellation in a cluster
automatically implies a different mean (step 2a in iteration i + 1). Eventually,
all clusters’ means converge to a final position yielding the final clusters.
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Hierarchical Clustering

Hierarchical clustering focuses on representing all given points in a hierarchical tree of
clusters. The root represents a cluster encompassing all given points. The leaf nodes
represent individual points. All nodes in between root and leaves represent clusters on
different hierarchical levels in the tree. The hierarchical level of a cluster node depicts
its vertical position in the tree (as measured from the root to the leaves). The metric for
determining hierarchical levels of cluster nodes is the maximal distance dh between points
belonging to a cluster node (maximal inner cluster distance on a particular level in the
hierarchy)2. Thus, a cluster node depicts a group of points where no point in the cluster
is farther away from another point in the same cluster than dh, whereas dh defines the
hierarchical level inside the tree. Figure 5.1 depicts a hierarchical clustering example.
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(a) Setting (b) Hierarchy

Figure 5.1: Hierarchical Clustering

The hierarchical cluster tree can be constructed by two approaches:

• Agglomerative (bottom-up): In this approach the hierarchy is constructed from the
leaves to the root. We start regarding individual points and group them to clusters
subsequently. As stated, the hierarchy level of a cluster node is dependent on the
maximum distance dh between the points belonging to the cluster denoted by the
node. The bottom-up approach requires to start with the lowest hierarchy level
(the leaves) with dh = 0. Hence, only nodes depicting individual points populate
the lowest level. They can be interpreted as one-element clusters. Subsequently,
we move up the hierarchy, i.e. increasing dh. With dh increasing, we particularly
observe the neighborhood of identified clusters. This inevitably leads to finding other
clusters within the current maximal distance of clusters, i.e. the current value of dh.
In such a case, when another cluster is identified within the current distance dh, both
cluster nodes are merged into a shared parent node. Thus, a parent node always
represents a cluster consisting of its two merged child cluster nodes. The process

2here, dh is a dynamic depicting the maximal inner distance on a particular hierarchy level, thus
changing when regarding a different level
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terminates when all clusters have been merged to the root node encompassing all
existing points.

• Decisive (top-down): The opposite approach constructs the hierarchy from the root
to the leaves. dh is initialized as the maximum distance between two neighbors
(e.g., distance between C and D in figure 5.1a). Starting with the hierarchy’s
root node encompassing all points, dh is continuously decreased and cluster nodes
are consecutively broken up according to the current value of dh. Once the inner
distance between points in a cluster node exceeds dh, the cluster node is broken up
into several child nodes (usually two3) depicting clusters with an inner distance not
exceeding dh. This process terminates upon having determined all points as leaf
clusters at the bottom of the hierarchy tree.

Minimum-spanning-tree Clustering

This clustering approach identifies clusters among a minimal tree spanned along all ex-
isting points in the observed space [102, 43]. In the first step, a minimum spanning tree
(MST) along all points is created. Thus, this tree T = (V,E) consist of vertices V that
denote the points in the observed space and edges E spanned along them, whereas the
sum of all edge weights is minimal. There exist multiple algorithms for constructing an
MST [32, 60, 74, 82] of which the ones of Kruskal [60] and Prim [82] are the two most
common ones that serve as bases for most optimizations. An MST is a simple graph
with no spatial characteristics with only vertices and edge lengths known. The points’
coordinates are unconsidered. In Euclidean space, the MST’s vertices are points in space.
Hence, the MST manifests itself as a multi-dimensional structure with its nodes and con-
nections (i.e. vertices and edges) aligned at their according multi-dimensional positions,
hence having a spatial shape. It is called the Euclidean minimum spanning tree (EMST).
Thus, the EMST is an extension of MST, which represents the EMST as a traditional
graph T = (V,E), a plain tree with weighted edges that has no spatial characteristics.
This means that the actual coordinates of the EMST’s points represented by the vertices
in V are not preserved in the original MST. Contrarily, the edges’ lengths in the EMST
are preserved as edge weights in E, however. Figure 5.2 illustrates the coherence between
the MST and its spatial counterpart, the EMST, based on the same observed space as
introduced in figure 5.1.

For the clustering algorithm, both MST and EMST represent sufficient structures,
although the MST depicts the less complex structure of both. Given an MST spanned
between all existing points in the data set and a parameter d denoting the maximal
tolerated distance among points within a cluster, all edges with a length exceeding d are
erased. Thus, T collapses into multiple subtrees, whereas each subtree depicts a cluster.
Figure 5.3 illustrates this clustering procedure based on the setting from figure 5.2.

More sophisticated variants of the algorithm employ a different threshold parameter
to prune edges. E.g., the authors of [43] employ the deviation from the average edge

3if there is exactly one pair of points whose distance is dh; the number of children equals the number
of sub-clusters divided at pairs of points with exact distance dh
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Figure 5.2: Minimum Spanning Tree Representations

length4 in the entire MST as the threshold parameter. If an edge length deviates from
the average edge length more than the parameter, it is pruned.

For our forthcoming discussion, we focus on the EMST representing a spatial minimum-
spanning-tree among an arbitrary number of multi-dimensional points in Euclidean space
(as depicted in figure 5.2a).

5.2.2 Contexts and Range Contexts

After having surveyed common clustering algorithms, this section focuses on applying
them on the contextual map model. Similarly as with context monitoring (section 4.5),
context cluster detection is conducted in a bottom-up approach.

1. First, clustering algorithms are employed on range contexts on each of their respec-
tive contextual ranges.

2. After this, clustered range contexts are inferred to their respective range-global
complete contexts, so that range-global clusters can be determined.

Clustering Range Contexts

A contextual range is an Euclidean space with its n-dimensional vectors representing
range contexts depicting a dedicated context type in the real world (e.g. environment on
Renv as presented in chapter 3). We start the context cluster determination on contextual
ranges by clustering range contexts according to a traditional clustering algorithm, e.g. as
presented in section 5.2.1. Generally, we are looking for an arbitrary number of clusters in
the context range, leaving us the hierarchical and MST-based clustering approaches. For
more specific use cases, when a certain number of clusters is to be determined, k-means
clustering and its derivatives can be employed. Whatever case applies, the clustering
algorithm yields a set of clusters, of which each contains range contexts that are similar to
each other, i.e. contextually proximate. In the subsequent discussion we focus on finding

4here, the average edge length is the average distance between a point and its closest neighbor
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Figure 5.3: Minimum Spanning Tree Clustering with d = 8

an arbitrary number of clusters given a threshold t depicting the maximum distance among
range contexts in a cluster, thus briefly discussing hierarchical and MST-based clustering.

Hierarchical clustering As stated, hierarchical clustering decomposes into its agglom-
erative and decisive variants. Both construct a hierarchical tree of clusters with a cluster’s
inner distance defining the hierarchical level.

• Agglomerative: The bottom-up variant starts with individual range contexts and
iteratively groups them to clusters. In the beginning, each range context represents
a cluster for itself depicting a leaf in the hierarchy. The key activity in building
up the hierarchy is an iterative nearest surrounding search conducted on individual
range contexts. The surrounding of each range context belonging to a cluster is
searched for the closest range context that is part of another cluster. Upon finding
such a range context, both clusters are merged in their parent node, which is cre-
ated in this step. This parent node represents the cluster merged out of the two
child-clusters, thus consecutively constructing the hierarchy from the bottom up.
As stated, this search is conducted iteratively while the radius of the scanned sur-
rounding is continuously increased according to the current hierarchy level, i.e. the
maximum inner cluster distance dh, respectively. Eventually, a cluster encompassing
all range contexts will emerge as the hierarchy’s root node.

• Decisive: The top-down approach starts with the root cluster encompassing all range
contexts. The root cluster is iteratively split up into sub-clusters with decreasing
inner distance dh. The procedure is split into two phases:
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1. First, all distances between range contexts have to be determined. With m
range contexts this equals m2−m

2
distances to be calculated5. The resultant

distances are ordered yielding an ordered list of range context pairs. The top
of the list denotes the range context pair with the longest distance between
each other in the entire contextual range.

2. We initialize the parameter dh with the distance at the top of the list. The list’s
range context pairs are consecutively deleted from the top of the list proceeding
down the list. dh is continuously decreased and a range context pair is deleted
once the distance between them becomes larger than the current value of the
decreasing dh. To determine if the deleted pair’s range contexts denote a
cluster split, we need to find out if both range contexts belong to the same
parent cluster and if they belong to different clusters with an inner distance
not exceeding the current dh. If both of those conditions hold, there is a cluster
split. Assume, that a pair of range contexts (A,B) has been deleted and both
A and B belong to the same known cluster (the cluster node has already been
assigned to the hierarchical tree). Further, A now possibly belongs to cluster
XA and B possibly to a different cluster XB, where the inner distance in both
clusters does not exceed dh. To check this assumption, we create a symmetric
relation R from the remaining list and extend it to its reflexive transitive closure
R∗. If (A,B) ∈ R∗ holds, there is no cluster split. Otherwise A and B are in
different clusters with their inner distance not exceeding the current dh. The
two clusters are determined with the help of R∗. A range context C is assigned
to one of the two cluster splits XA or XB, respectively.

C ∈ XA ⇔ (A,C) ∈ R∗ (5.5)

C ∈ XB ⇔ (B,C) ∈ R∗ (5.6)

With all affected range contexts (those from the parent cluster) assigned to
either XA or XB, both clusters become child nodes of the regarded parent
cluster node in the hierarchical tree.

With the hierarchy constructed, we need to determine the range context clusters for
our given threshold d, which depicts the maximum inner distance we allow in a cluster.
Starting at the hierarchy root, we search the tree by using a depth-first-inspired search.
We descend the tree recursively. Every time upon finding a cluster node whose hierarchy
level dh satisfies the condition dh ≤ d, we remember this node and stop the recursive
descent. All of those remembered node depict our range context clusters, because they
are the largest clusters, which just about satisfy our condition dh ≤ d.

5every selection of two out of m range contexts: m!
2!(m−2)! = m(m−1)

2 = m2−m
2
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MST-based clustering This algorithm splits up into two parts: First, constructing
the Euclidean minimum spanning tree (EMST) among all known range contexts, and
second, using this tree-structure to determine clusters in the contextual range. It is to
be reminded that the EMST differs from the plain MST only by explicitly including
coordinates of vertices.

1. Constructing the EMST: In order to find the EMST of a set of range contexts, we
need to define a graph G = (V,E) to perform the MST-algorithm on. Obviously,
the range contexts represent the vertices V . The naive approach to define the edges
E is to define an edge between all pairs of range contexts, hence interconnecting all
range contexts, and perform an MST-algorithm on G. Since this approach handles a
potentially enormous number of edges (namely m2−m

2
, as explained earlier), we focus

on two ways on how to reduce the edge count. In the first approach, we define G
with a reduced number of edges with G containing the EMST of all range contexts.
The Delaunay triangulation represents such fast-computable graph, from which the
EMST can be extracted by using a standard MST-algorithm (e.g. Prim or Kruskal
as mentioned in section 5.2.1). The second approach builds up the EMST directly
from scratch using a nearest surrounding search.

• Delaunay triangulation: Since both Prim’s [82] and Kruskal’s [60] algorithms
require a graph as input, the key idea is to insert a pre-processing step by effi-
ciently reducing the number of edges in the graph containing all range contexts
(its vertices). A Delaunay graph DT (P ) is a triangulation of a point set P , so
that no more than three points are cocircular [103]. DT (P ) can be calculated
in n log n time [45]. With P denoting all range contexts of a contextual range
R, DT (P ) can be efficiently determined so that the EMST spanning the entire
range context set P can be determined by the algorithm of Prim [82] or Kruskal
[60], respectively.

• Incremental nearest surrounding search: Prim’s [82] and Kruskal’s [60] algo-
rithms (and many others) require a graph from which they determine its MST.
Our second approach is inspired by Prim’s algorithm [82], but the MST is
built from scratch (without a graph) and continuously extended by choosing
the shortest (i.e. least-weighted) outgoing edge, which does not yet belong to
the MST. Following this principle, the EMST is built up by iteratively extend-
ing it until all range contexts are covered. We start by randomly choosing a
single range context, which represents the EMST root (or more precisely, the
first vertex, since an MST does not need a dedicated root node). After that,
we iteratively extend the tree by finding the range context, which is nearest
to the EMST and adding it to the EMST by inserting a minimal edge. The
algorithm terminates upon all range contexts added to the EMST.

2. Perform clustering: Using the EMST, we cluster the contextual range according
to the clustering parameter d, which may represent the maximum inner cluster
distance or the maximum tolerated distance deviation between two range contexts
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in absolute or relative regard to the standard edge-length deviation in the EMST.
To do so, we iteratively remove edges that do not comply with d, i.e. which are too
long. The resultant forest, which is created by continuously splitting up the EMST,
represents the resultant clusters with each tree representing a single cluster.

Clusters may become large and irregular in shape. This implies that two range contexts
on opposite sides of a cluster’s rim may not be close, i.e. contextually proximate, at
all (figure 5.4 shows an example of an irregular cluster with two non-proximate range
contexts). For this reason, it is practical to subdivide a large cluster into multiple smaller
clusters in which range contexts are contextually proximate to each other. Hence, in
addition to the maximal tolerated distance among neighboring range contexts within a
cluster (inner distance), the maximum tolerated distance among all range contexts must
be introduced as an additional parameter.

Figure 5.4: Example of an irregular Context Cluster

Assuming, we are given those two parameters: the maximal inner distance d and the
maximal proximity p, we first identify clusters in the contextual range using d. Clustering
is conducted as discussed above by employing the hierarchical or MST-based clustering
technique. After that, each cluster is analyzed if it contains range contexts whose simi-
larity to each other exceeds p. This is done by iteratively performing the following two
consecutive steps on an individual cluster C:

1. Determine non-proximate range contexts: First of all, a pair of range contexts with
a similarity exceeding p has to be determined within the cluster. Formally speaking,
regarding a contextual range R, a pair of range contexts (P,Q) must be determined
that satisfies the following condition:

dPQ(R) > p
∣∣ P,Q ∈ C (5.7)

with dPQ(R) denoting the Euclidean distance between P and Q on range R as
defined in equation 4.2 In theory, all distances among range context pairs would need
to be known. If clustering was performed on the basis of the decisive hierarchical
approach all of those distances are already known since this clustering approach
requires them in advance (see the preceding discussion). Practically, we only need
to know distances between contexts at the rim of a cluster, since they are sufficiently
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meaningful to determine non-proximate range context pairs. If having employed
MST-based clustering, the leaves of the cluster’s MST (i.e. the MST of C, which is
a subtree of the MST spanned over the entire range) depict the range contexts at
the cluster rim, hence pairs of those may hold the condition 5.7.

2. Split cluster: Having found a non-proximate arbitrary range context pair (P,Q)
that satisfies condition 5.7, C is split into three new disjoint clusters. Beginning
at P and Q, a nearest surrounding search with radius p is conducted around each
of those range contexts. Both searches yield all range contexts in the ambit of P
and Q, respectively (vicinity of radius p). We denote those result sets SP and SQ,
respectively. The range contexts in both result sets denote two of the new clusters
that C is split up to. We denote the new clusters CP and CQ, respectively:

CP = SP ∩ C
CQ = SQ ∩ C

∣∣∣∣ ∀P,Q ∈ (SP ∪ SQ) : dPQ(R) ≤ p (5.8)

All remaining range contexts in C that are neither part of CP nor CQ are part of
the remaining cluster split:

Crest = C \ (SP ∪ SQ) (5.9)

Crest represents the cluster that still may contain non-proximate range contexts in
regard to p whereas CP and CQ do not. Thus, the process is iteratively repeated
on Crest (and each subsequent resultant Crest)

6 until no two range contexts exist in
Crest whose distance between each other does not exceed p.

After finishing, the initial cluster C is split up into multiple clusters, so that none of
the split sub-clusters contains non-proximate range contexts that satisfy condition 5.7.

Consider the exemplary cluster C from figure 5.4. The range contexts on the cluster’s
rim are not proximate to each other if facing opposite sides of the cluster - thus not con-
textually similar to each other. Therefore, we subdivide C into multiple smaller clusters
so that each range context is similar to its belonging cluster’s range contexts in a degree
not exceeding p. In the first step, we choose two range contexts A1 and B1 at opposite
sides of the cluster rim and determine two appropriately sized clusters that include A1

and B1. We denote those clusters CA 1 and CB 1, respectively, as depicted in figure 5.5.
Both are sub-clusters of C. The remaining range contexts in C, which are not contained
in neither sub-cluster, are grouped to the ”rest-cluster” Crest 1.

During the first step, we have determined two new clusters where no two range contexts
are less similar than p (in terms of similarity degree) to each other while being members
of the same cluster (logically, not Crest 1, since this is the ”rest-cluster”). We repeat this
step iteratively on the rest-cluster until the rest-cluster contains no two range contexts
that are less similar than p. In our example, one more step suffices. Crest 1 is split into
CA 2 and CB 2, but since Crest 1 is small enough, the algorithm terminates as depicted in
figure 5.6.

6with Crest becoming C in the next iteration
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Figure 5.5: Splitting an irregular Context Clusters - Step 1

Clustering range-global complete Contexts

Clustering contexts that consist of multiple range contexts on multiple contextual ranges is
inspired by the technique of mapping range contexts to complete contexts in a contextual
similarity query - as discussed in section 5.1.2. The initial setting consists of many clusters
of range contexts on many ranges. In order to derive range-global context clusters, we
need to identify those range-global contexts, which are clustered in contextual proximity
on range-level (hence, clustered in the given range context clusters).

First of all, we need an ordered representation of clusters, sorted by contextual range.
For this purpose, we introduce the following definition:

cluster(R) =
{
C1(R), ..., Ci(R), ..., Cn(R)

}
(5.10)

defines all n clusters Ci(R) of range contexts on contextual range R with i ≤ n.
Next, we need to specify a relevance array (similar to the parameter array introduced
in section 5.1.2) depicting the contextual ranges that are relevant for the current range-
global clustering process. The array E = (R1, ..., Rm) specifies m contextual ranges whose
clusters will be considered. With the relevance array given, range-global context clusters
are derived from range-specific context clusters by grouping contexts to clusters according
to the cluster memberships of their range contexts. Given two contexts P and Q together
with a relevance array E, they are part of a cluster if the following condition holds:

∃j : crc(P,Ri) ∈ Cj(Ri) ∧ crc(Q,Ri) ∈ Cj(Ri) ∀Ri ∈ E, i ≤ m (5.11)

depicting that the range contexts7 of P and Q are part of the same range context cluster
on each relevant contextual range defined by E. Determining the context cluster equals

7crc-operator derives range contexts from range-global contexts
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CA_1

CB_1

CB_2

CA_2

Crest_2

Crest_1

≤ p

≤ p ≤ p

≤ p

Figure 5.6: Splitting an irregular Context Clusters - Step 2 (final)

cross-combining all range context clusters on different ranges and derive the corresponding
range-global clusters. We conduct this operation with the help of the Cartesian product
of all cluster(Ri) sets:

m∏
i=1

cluster(Ri) 3
(
C(R1), ..., C(Ri), ..., C(Rm)

) ∣∣∣ C(Ri) ∈ cluster(Ri) ∧Ri ∈ E ∀i ≤ m

(5.12)
This Cartesian product contains all possible permutations of different ranges of which

each entry is an ordered tuple. As an example, consider three ranges with range context
clusters as depicted in figure 5.7 and the Cartesian product of those range context clusters
as derived in table 5.1. Each tuple element C(R) represents a cluster of range contexts
on range R.

Contextual
Range

Clusters in Range: cluster(R)

R1

{
C1(R1)

}
= {A,B,C,D,E}

R2

{
C1(R2), C2(R2)

}
=
{
{A,D}, {B,C,E}

}
R3

{
C1(R3), C2(R3)

}
=
{
{A,C,D}, {B,E}

}
∏3

i=1 cluster(Ri) =


(
C1(R1), C1(R2), C1(R3)

)
,
(
C1(R1), C1(R2), C2(R3)

)
,(

C1(R1), C2(R2), C1(R3)
)
,
(
C1(R1), C2(R2), C2(R3)

) 
Table 5.1: Example for Cartesian Product of Range Context Clusters
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Range 2

Range 1

A
B

C
D

E

A
B CD

E

A
B

C

D

E

Range 3

C  (R  )1 1

C  (R  )2 2

C  (R  )1 3 C  (R  )2 3

C  (R  )1 2

Figure 5.7: Example Context Clusters

We assume that the parameter array E = (R1, R2, R3) affects all three ranges. With
the Cartesian product given, each tuple depicts a possible range-global context cluster.
If a context appears in each of a tuple’s elements, it is part of each range-local cluster
depicted by the tuple. This argumentation implies that exactly those contexts that are
part of each of the tuple-denoted range cluster are clustered on each relevant range. Those
contexts compose the range-global context cluster.

However, we have neglected a neat separation between range contexts and complete
contexts during this argumentation. Since each tuple in the Cartesian product represents
a range-local cluster, we proceed as follows. First, we derive the range-global contexts8

from all range contexts in the Cartesian product. Each tuple now contains elements, of
which each depicts complete contexts clustered on a particular range. Second, regarding a
single tuple, we intersect all of the tuple’s elements (which still depict range-local clusters),
so that we get a single range-global context cluster:

Ccontext =
m⋂
i=1

rcc
(
C(Ri)

) ∣∣∣∣ (C(R1), ..., C(Ri), ..., C(Rm)
)
∈

m∏
i=1

cluster(Ri) (5.13)

Hence, the complete set of all range-global clusters can be inferred by applying this
procedure on all tuples of the Cartesian product:

(Ccontext)
∗

∣∣∣∣∣ Ccontext =
⋂m

i=1 rcc
(
C(Ri)

)
∀
(
C(R1), ..., C(Ri), ..., C(Rm)

)
∈
∏m

i=1 cluster(Ri)
∧ C(Ri) ∈ cluster(Ri)
∧ Ri ∈ E ∀i ≤ m

(5.14)

8rcc-operator derives range-global contexts from range contexts
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Applying this procedure on the example in figure 5.7 with table 5.1, we denote the
intersections taken in table 5.2. This table shows the intersections of the elements in each
of the Cartesian product’s tuples, thus the context clusters.

Tuple Context clusters(
C1(R1), C1(R2), C1(R3)

)
{A,D}(

C1(R1), C1(R2), C2(R3)
)
∅(

C1(R1), C2(R2), C1(R3)
)
{C}(

C1(R1), C2(R2), C2(R3)
)
{B, E}

Table 5.2: Example for Cartesian product of Range Context Clusters

It is to be noted that many of the intersections in equations 5.13 and 5.14 may yield
an empty set, which means that there is no cluster for the according Cartesian product
tuple. In our example in table 5.2, it occurs once. We also have a 1-element cluster {C}
in the result. Depending on the application case, this may not be contextually relevant.
For this reason, a context-aware application may only be interested in context clusters
with a minimum size or larger.

5.2.3 Dynamic Clustering

In section 4.5 we have outlined the mechanisms to dynamically monitor the context map
with its contextual ranges. We have described how to efficiently handle a potentially high
number of simultaneous contextual updates. At this point, we continue the discussion by
introducing cluster monitoring in a dynamically changing contextual map.

As argued, changes in the contextual map are caused by contextual updates affecting
contextual ranges. Contextual updates affect contexts and range contexts, which both
form clusters in the contextual map. Hence, dynamic changes in range contexts imply
dynamically changing context clusters. In this section, two disjoint approaches are pre-
sented: Iterative clustering and individual cluster updates.

Iterative Clustering

In section 5.2.2, we have sketched possible clustering algorithms applied on contextual
ranges. We have employed tree-based data structures to determine range context clusters,
namely minimum spanning trees and hierarchies. In theory, dynamical management of
those data structures enables dynamic cluster monitoring in turn. The data structures
are iteratively adapted according to incoming context updates. This approach yields the
following considerations in regard to hierarchical- and MST-based clustering:

• Hierarchical: Maintaining a cluster hierarchy dynamically means to rebuild its
branches locally. Recalling the hierarchical clustering algorithm from section 5.2.1,
the hierarchy is a binary tree with each node having its hierarchy level stored. Given
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a contextual update, it has to be determined from which node to rebuild the tree.
There is exactly one path between the leaf-node denoting an updated range context
C and the root node denoting the entire range context set. A contextual update on
C invalidates nodes on that path beginning at the leaf denoting C. Nodes on that
path are invalidated, if all clustered range contexts depicted by an affected node
depict an inner cluster distance exceeding the node’s hierarchy level (a contextual
update on C may cause C not to belong to clusters anymore, which are on the path
between theC-leaf and the hierarchy root). Since clusters are grouped together in
the hierarchy with increasing hierarchy level, we need to find the first node on the
described path for which the clustering condition still holds, i.e. which is not invali-
dated, assuming we begin searching from the C-leaf. The hierarchy tree needs to be
rebuilt beginning at this node (i.e. all of its child nodes need to be re-determined).
Analogously, the search for this node can be conducted from the opposite direction
of the path beginning at the hierarchy’s root.

• MST-based: Dynamically maintaining an EMST of a set of range contexts decom-
poses into dynamical determination of Delaunay triangulations and dynamic MST-
algorithms. As stated in section 5.2.2, a Delaunay triangulation greatly reduces
the graph among range contexts to determine the EMST from. Hence, dynamically
updating the Delaunay triangulation - as presented by the authors of [44] - may sig-
nificantly facilitate dynamically maintaining the according EMST. This approach
can be further enhanced by dynamic MST-algorithms, which have been studied
extensively [19].

It is to be noted that maintaining the support tree - both a hierarchy and an MST -
still requires the conduction of the clustering procedure both range-specifically and range-
globally, as depicted in the previous section 5.2.2.

Individual Cluster Update

Dynamically maintaining the according clustering algorithm’s support structure (hierar-
chy or MST) is an elaborate task, which gets more demanding the more contexts are
maintained in the contextual map. For single contextual updates, it is more practical to
pursue a different approach. Assuming that an initial set of contexts has been clustered
using an algorithm of choice initializing the monitoring process. Changes in clusters are
determined following individual contextual updates. Following this approach, a single
contextual update is regarded and checked if it has changed any cluster configuration.
The process can be decomposed as follows:

1. Initialization: The context clusters are initialized using a clustering algorithm of
choice.

2. Monitoring: Dynamically maintaining context clusters occurs contextual-range-
specifically. Upon receiving a contextual update, all affected ranges are checked
for range-specific context cluster changes before deriving range-global context clus-
ter changes. The following process is conducted continuously:
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(a) A received contextual update contains information about the changed context
C of an entity. The data may span across multiple contextual ranges.

(b) On each affected contextual range R: the new coordinates of the belonging
range context, say P = crc(C,R), are determined. It is checked, if P still
belongs to its cluster CP (R) by determining the distance dPQ(R) to its nearest
neighbor Q and checking if dPQ(R) against the maximum tolerated inner cluster
distance d. The following cases are possible9:

• dPQ(R) ≤ d ∧ Q ∈ CP (R): P still belongs to its cluster, to which it was
belonging before the update:

P ∈ CP (R) (5.15)

• dPQ(R) ≤ d∧Q /∈ CP (R)∧Q ∈ CQ(R): P does not belongs to the cluster,
to which it was belonging before the update, anymore. It belongs to the
cluster, to which its nearest neighbor belongs:

P /∈ CP (R) ∧ P ∈ CQ(R) (5.16)

• dPQ(R) > d: P does not belong to any existing cluster since it is too
far away from any neighboring range context: P /∈ Ci(R) ∀i : Ci(R) ∈
cluster(R). It represents a new one-element cluster Cnew that is added to
the range’s cluster set cluser(R):

P ∈ Cnew(R) ∧ Cnew(R) ∈ cluster(R) (5.17)

(c) The final step consists of partially performing range-global clustering (as dis-
cussed in the previous section 5.2.2) for all Cartesian product tuples (as de-
picted in definition 5.13) that include a range with a change of clusters (i.e.
the cases denoted by definitions 5.16 and 5.17).

Evaluation

At this point, we have identified two possible ways of updating cluster configurations in
the contextual map:

• Updating the support structure and perform the appropriate clustering algorithm
on it (iterative clustering)

• Individual update of known cluster configurations (individual cluster update)

Concluding the discussion of both mechanisms, iterative clustering is much more ex-
pensive than individual cluster updating. Since iterative clustering has global scope, i.e.
it is applied on the entire contextual range, all range contexts are clustered first range-
specifically and the range-globally as described previously in section 5.2.2. On the other

9it is to be noted that P ∈ CP (R) has been true before the contextual update
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hand, individual cluster updates are performed locally by pinpointing the ”location” of a
cluster change and committing it to the affected clusters. Range-specific clustering does
not occur and the range-global clustering steps can additionally be reduced to the affected
contextual ranges.

Thus, the individual cluster update approach clearly wins the cost-per-update eval-
uation. However, it is only capable of processing one single update at a time. Given
the circumstances of a high contextual updates emergence, processing those updates and
updating the cluster setting in the contextual map in real-time may become problematic.
In that case, storing contextual updates and process them jointly in a single update step
at certain time intervals may prove reasonable. Hence, applying iterative clustering in
such a scenario remains the better alternative, since that updating procedure is capa-
ble of handling an arbitrary amount of contextual updates. Table 5.3 summarizes the
applicability of both approaches.

Update Vari-
ant

Locality Drawbacks Benefits

Iterative
Clustering

global expensive: in each itera-
tion, both range-specific and
range-global clustering is con-
ducted over entire contextual
range

capable of processing multi-
ple contextual updates in a
single updating step, e.g. up-
dates at particular intervals

Individual
Cluster
Update

local each iteration handles only
one single contextual update

low cost per update, efficient
range-global update mecha-
nism

Table 5.3: Comparison of Context Cluster Update Mechanisms

5.2.4 High-dimensional Data Clustering

The range-specific clustering step may be complicated by a high dimensionality count.
Earlier in section 3.3, we have stated that high dimensional data causes their accessing
operations to scale poorly - a circumstance that is also called the ”curse of dimensionality”.
Clustering high dimensional data is no exception to this aspect. This means that context
clustering in the contextual map gets inevitably impeded by the dimensionality curse if the
number of dimensions is high. For context-aware applications that provide rich context
(meaning many contextual attributes are given) the contextual map must be declared with
a sufficient number of dimensions. In that case, scalability problems must be expected.

However, the issue has been studied and approaches to remedy the problem have been
devised. All approaches agree in preprocessing the full-dimensional search space prior to
cluster detection. Two approaches are presented in the following discussion:

• cluster-search in dimensional subspaces

• 2-pass clustering using cheap metric pre-selection
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Cluster-search in dimensional Subspaces

Kriegel et al. [59] provide an overview about a family of clustering techniques, which
focus on finding clusters in dimensional subspaces, i.e. spaces defined by a subset of
dimensions out of the full number of dimensions (not to be confused with hyperspatial
subspace of the full-dimensional space). This basically means that the search space is
reduced to hyperplanes in the full-dimensional space. Since the complexity increases
exponentially with a linear growth of dimensions, the individual examination of more
feasible subspaces counteracts the ”curse of dimensionality”. The final clustering result
for the complete search space is consolidated from the individual clustering results of the
subspaces. Hence, subspace clustering decomposes into three steps:

1. Find all relevant subspaces: This step aims at determining which dimensional sub-
spaces are to be selected for clustering.

2. Find clusters in subspaces: Clustering is performed on each subspace. Since each
of the subspaces has a significantly reduced search-space in comparison with the
full-dimensional search space, clustering is computationally far less demanding. In
addition, the number of subspaces scales linearly - not exponentially as dimensions
do.

3. Cluster determination: The final clustering result for the complete search space is
consolidated from the individual clustering results of the subspaces.

The determination of suitable subspaces is basically influenced by the orientation of
the according subspace’s hyperplane. Such subspaces are categorized into either axis-
parallel or arbitrarily oriented hyperplanes. In the following, we present a brief overview
on subspace clustering. For an in-depth discussion, we refer to the survey in [59] and the
research referenced there.

Clustering in axis-parallel subspaces Subspaces of this kind are oriented axially
parallel to axes denoting dimensions of the full-dimensional search space. Hence, the
number of axis-parallel subspaces is finite, albeit still large. Categorizing clustering tech-
niques based on axis-parallel subspaces needs to be conducted aspect-oriented. The first
aspect is the general approach to the problem, namely three in total:

• Projected clustering: All possible subspaces are determined. Each point is assigned
to exactly one subspace cluster.

• Soft projected clustering: A ”softer” variant of the former approach does not require
”hard” assignment of points to clusters. Further, the number of clusters is given in
advance (as with k-means clustering, compare section 5.2.1).

• Subspace clustering10: As the most straightforward approach, it requires the deter-
mination of all possible subspaces and checking them for clusters.

10this approach is confusingly named identically with this general clustering approach, since cluster
determination in dimensional subspaces is widely referred to subspace clustering as well
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The second aspect in categorizing axis-parallel clustering techniques is a more specific
fine-coarsed algorithmic view. It denotes whether clusters are determined from top-down
or bottom-up:

• Top-down: Subspaces are determined from full-dimensional space and clusters are
derived from local neighborhoods, meaning that local searches for neighbors are the
driving approach.

• Bottom-up: First, all 1-dimensional subspaces (smallest kind of all) are determined.
We now make use of the following observation: If subspace S contains a cluster,
then any subspace T ⊆ S must also contain a cluster. The reverse implication, if
a subspace T does not contain a cluster, then any superspace S ⊇ T also cannot
contain a cluster. Thus, this observation can be used for pruning superspaces, that
is, excluding specific subspaces from consideration, until convergence is reached.
Thus, actual clustering is performed on only a fraction of possible subspaces.

Clustering in arbitrarily aligned subspaces Since the orientation of those hyper-
planes is arbitrary, there is an infinite number of possible subspaces, so identifying and
searching all of them in infeasible. For this reason, clustering on those subspaces is also
called oriented clustering11. Further, it has been observed that attributes that points
accommodated on a common hyperplane appear to follow linear dependencies among the
attributes participating in the description of the hyperplane. Since linear dependencies
result in the observation of strong linear correlations among these attributes, we call this
type of clustering also correlation clustering. The general approach of determining arbi-
trarily oriented subspaces that are searched for clusters is to employ Principal Component
Analysis [59]. That, however, is out of the scope of this work.

Pattern-based clustering Another interesting approach in dimensional subspace clus-
tering is to represent all points in the search space as a point-attribute matrix A, where
rows usually depict the points in the data set and columns the attribute values of the
according points. Cluster detection is based on finding sub-matrices denoting patterns in
A. Thus, a sub-matrix J represents an identified subspace cluster. An in-depth discus-
sion about pattern-based clustering algorithm requires an extensive excursion into that
domain and thus out of scope of this work. For further reading, Kriegel’s survey on
subspace clustering [59] is emphasized.

Clustering using cheap Metric Pre-selection

McCallum et al. [68] propose a clustering technique, which reminds the filtering and
refining principle from section 3.3.2. It is a 2-phase clustering technique, which greatly
decreases the complexity of clustering a high-dimensional data set:

11The name comes from the arbitrary orientation of the subspaces
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1. In the first phase, a cheap approximation metric is defined to partition the data
set into multiple subsets, of which each includes elements similar to each other in
regard to the selected metric. Thus, this metric approximates clusters by quickly
partitioning the data set into overlapping subsets, called canopies. This is done by
applying the metric on all elements, and group those elements that are similar to
each other in regard to the metric. As a result, a canopy includes elements that
are candidates for a cluster. Since all of those cluster candidates are approximated,
canopies are not disjoint. The loss in accuracy accounts for an according gain in
performance. Thus, each canopy may include false positives, i.e. cluster candidates
that actually do not belong to the cluster represented by the canopy.

The important aspect about this pre-processing step is the cost of the metric, which
can be a cheap distance metric or classification metric. This enables quick (hence
inaccurate) pre-selection of data entries for according clusters.

2. The second phase conducts the actual clustering on individual canopies. This time,
the clustering metrics need to be accurate making the second phase more expensive.
However, clustering is performed on individual canopies, not on the entire data set.
This greatly reduces the effort by minimizing the number of cluster candidates.
False positives are pruned by the clustering process yielding a set of clusters after
processing each canopy. Each canopy yields one cluster at most.

This approach can unquestionably be applied to contextual range clustering. The
challenge here is to define an appropriate approximation metric for phase 1. Possible
choices include the Manhatten distance (another metric in Euclidean space, although
cheaper than Euclidean distance) or a context classification metric. Due to the impact of
heterogeneity in contextual attributes (which are eventually mapped to contextual range
dimensions), this remains an application-specific issue. Phase 2 is conducted using the
Euclidean distance metric.

5.3 Context Clusters and Contextual Realms

In the previous section we have explained how context clusters are determined. However,
the semantic meaning of context clusters remains to be clarified. This section discusses
the relevance of context clusters in regard to context-awareness. As we have outlined
in the introductory section 1.3, clusters of contexts define a situational realm in multi-
dimensional space depicting a bounded set of possible contexts. So this time, we are not
considering individual contexts that are collated with a possessing entity, but a particular
space that an entity context can exist in. Thus, in the contextual map this space represents
regions spanned by numeric ranges of the map’s dimensions. We have dubbed such a
region of space a contextual realm. It includes a particular set of possible situations, i.e.
contexts. The coherence of contexts, situations and context clusters are subject of this
section.
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5.3.1 Contexts, Situations and Contextual Realms

Throughout this work, we have defined a context as a single point in multi-dimensional
space. Since a context can basically manifest itself anywhere in the contextual map, it
is reasonable to introduce multi-dimensional regions as an additional spatial structuring
criterion to improve context classification. Such a region in the contextual map may be
considered as a contextual realm bounding possible context12. That way, contextual realms
define multi-dimensional areas in the contextual map, which depict specific contextual
characteristics. E.g., considering the weather station example from chapter 3, we can
define a region in the hyperspace of the environmental contextual range Renv depicting
bad weather by defining appropriate ranges of values on all four dimensions belonging to
Renv (see table 3.1). We can call this example region as the ”contextual realm depicting
bad weather”. An entity with its range context on Renv situated inside this realm expresses
bad weather as part of its overall context. From here on, we refer to contextual realms as
regions of spaces inside the contextual map.

As we have stated in sections 2.2 and 2.3, a single context represents the real-world
situation of an entity in an abstract way [21, 78]. Thus, extending this mapping on
contextual realms, each realm depicts a ”super-situation” encompassing all possible real-
world situations corresponding to it (much like an abstract set of acceptable situations
complying with specific contextual parameters depicted by the contextual realm, e.g. ”bad
weather”). Such contextual realms can be defined in two ways:

• Cluster-defined: On the one hand, contextual realms can be defined by contextual
range clusters. Clusters of range contexts occupy a particular region of space. This
space can be defined a contextual realm. Naturally, such a realm is derived from the
overall context situation of the observed environment, since the contexts included
in those clusters define the realm by the union of their respective situations.

• Arbitrarily defined: On the other hand, contextual realms can be defined freely.
Defining a range of values for each individual dimension of the contextual map yields
a single contextual realm. In contrast to cluster-defined realms, those realms are not
dependent on the current overall context situation of the environment, but rather
on arbitrarily defined parameters following particular contextual characteristics (e.g.
the ”bad weather” example).

It is to be noted that contexts inside a contextual realm are usually similar to each
other. Thus, contextual affinity can be exploited by using contextual realms accordingly.
As we have stated earlier, contextual affinity is examined on multiple contextual ranges.
For this reason, contextual realms can also exist on multiple ranges. In that case, we
face a set of spatial regions, i.e. ”sub-realms”, with each region defining a situational
space on a particular contextual range. Assuming that a contextual realm encompasses
m sub-realms and each sub-realm defines a space Ai on its range Ri. The contextual
realm C is then defined as the set of those sub-realms:

12see also the theory of context spaces introduced by Padovitz et al. [75] outlined in section 2.1
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C =
{
Ai ∀ i ≤ m

}+

(5.18)

Section 5.3.3 presents an in-depth discussion about an example realm encompassing
multiple ranges. In the remainder of this section, we refer to the term contextual realm
for both realm types: the singular contextual realm composed of a single space on one
contextual range, as well as the inter-range contextual realm, which decomposes into
multiple singular realms on individual contextual ranges (one per range). We do so,
because the latter case is a generalization of the former. A contextual realm defined as
one single space on one particular contextual range is a contextual realm with m = 1 in
regard to definition 5.18.

5.3.2 Cluster-defined Contextual Realms

As stated in the previous section 5.3.1, contextual realms can be derived from context
clusters. In this section, we give a detailed discussion about this type of contextual realm
including their relevance to high-level context-awareness.

Definition and Properties

As we have argued earlier in section 5.2.2, context clusters consist of contexts, which are
part of the same range context clusters on the contextual range level. Practically speaking,
the global contexts’ range contexts span the contextual realm on each range. However, the
actual shape of the contextual realm (on range level) is not necessarily trivial. Figure 5.8
shows possible forms of a contextual realm spanned by a context cluster on a particular
range. The actual shape is highly application-specific. Also, the illustrated variants differ
in computational complexity. While 5.8a and 5.8b can be determined fairly easily by
determining the minimums and maximums of the range contexts’ dimensional values,
5.8c consists of many connected hyper-cuboids. 5.8d is probably the least feasible option
of deriving the contextual realm from the cluster.

(a) (b) (c) (d)

Figure 5.8: Cluster-defined contextual Realm Shapes

Following this argumentation, two basic attributes can be associated with a cluster-
derived contextual realm:
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• Space: We have briefly discussed the possibilities on how to define the shape of a
cluster-defined realm. Complementary speaking, the size or volume of the realm is
another attribute. Naturally, the determination of the realm’s size is dependent on
its shape:

– Hyper-rectangular (figure 5.8a): Determining the minimum and maximum on
each relevant dimension of clustered contexts yields the bound of the hyper-
rectangle bounding the context realm. Its size can easily be determined.

– Hyper-elliptic (figure 5.8b): The minimum hyper-elliptic space encompassing
the cluster defines the contextual realm.

– Hyper-polygonal (figure 5.8c): In the given example, the context realm de-
composes into multiple hyper-rectangular subspaces. Hence, the overall size is
determined by summing up the subspaces’ individual sizes. Different hyper-
polygonal shapes, which may have application-specific origins, can be handled
analogously.

– Irregular (figure 5.8c): For reasons of completeness, this variant is listed here,
too. However, determining its size is highly application-specific and thus, out
of scope of this work.

• Context density: The realm’s context density is simply derived from the number of
contexts in the cluster and the size of the contextual realm. The size can be deter-
mined by geometrically calculating the volume of the realm’s shape (see enumeration
above).

Until now, we have been talking about clusters and contextual realms on contextual
range level, i.e. contextual realms derived from range context clusters. After the preceding
discussion, the reasons should be obvious: the determination of those realms is dependent
on a uniform axis unit, which is only guaranteed on intra-range level. Regarding a range-
global context cluster, we can observe that each of its range context clusters (i.e. a
cluster that groups range contexts on a particular range as part of a range-global cluster)
spans a single contextual realm on the particular range (the space that is occupied by
the particular range context cluster). Hence, all of those range-specific realms can be
grouped together and considered as part of an inter-range super-realm. Basically, we
regard each of the range-specific realms as a sub-realm of the inter-range super-realm.
For the global context cluster, this is the contextual realm, which is composed of its
individual sub-realms with each sub-realm depicting the space spanned by a range cluster
on its corresponding context range. Figure 5.9 shows an imaginary inter-range contextual
realm, which consists of three sub-realms on three correspondent contextual ranges, each
of them derived of a cluster on range level. In section 5.3.1 we have already discussed
such inter-range realms and defined them in equation 5.18.

Contextual Relevance

After having defined and discussed the physical specifics of cluster-derived contextual
realms, it remains to be discussed what they represent in terms of context-aware appli-
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Inter-range Contextual Realm

Sub-realm 1 Sub-realm 2 Sub-realm 3

Range 1 Range 2 Range 3

Figure 5.9: Range-global cluster-derived contextual Realm

cability. A cluster-derived contextual realm represents a set of particular contexts, which
are clustered, i.e. similar to each other in terms of clustering. For context-aware appli-
cations, such a contextual realm is of significant interest. It states that there are entities
with similar contexts and that their contexts exist in exactly the space defined by that
contextual realm. The space is bounded and since it is cluster-derived, it is densely popu-
lated by entity contexts. The context-aware application is given the ability to specifically
focus on adapting its services for entity situations in this specific context realm. The
context-density is an additional metric for the interest of a context-aware application for
the context realm in question. The higher it is the more contexts are present in smaller
space, enabling the context-aware application to conduct service adaption for a smaller
realm but serving a higher number of entities.

Following this argumentation, it is reasonable to define a ”focus point” for each con-
textual realm, which serves as a representative context for context-aware applications.
Such a representative context does not need to be a real context associated with an en-
tity. It can be a fictional context consisting of contextual attributes, which describe the
context cluster (i.e. the context realm) best. Consequently, for a singular context realm
on range-level the cluster’s mean represents a suitable point for a range-local represen-
tative context (comparable to the ideal context in section 4.5.1, e.g. figure 4.12). For
globally cluster-derived realms with multiple sub-realms, the range-global representative
context is composed of the range cluster means of the ranges belonging to the context
realm. Finally, context-sensitive application can use that representative context to adapt
to the entire associated context realm. Since all contexts in the realm are similar to each
other, adapting to the representative context (cluster mean) only instead adapting to all
individual contexts in the cluster is feasible.

With the representative context defined, we can enrich the contextual realm by intro-
ducing two additional metrics expressing its convergence to the representative context on
range-level. For now, we stick to the singular context realms on range-level:

• Individual context convergence: The convergence (or deviation) of an individual
range context in the context realm to the representative context can be defined by
determining the Euclidean distance between the two on range-level. Consequently,
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this metric states how well the ”cluster context” or ”realm context” fits an individual
range context, or how well context-aware applications adapt to that individual range
context when adapting to the representative context. Since context clusters can be
derived to contextual realms, membership in a cluster is to be regarded equivalently
with the inclusion in the corresponding context realm, hence making the convergence
metric equivalent for cluster membership, too.

• Contextual realm convergence: The convergence of the entire context realm to the
representative context can be described by the average deviation of range contexts
inside the realm to the representative context on range-level. It can be viewed
as a quality metric of the realm, since less deviation means that context-sensitive
application serve the realm’s range contexts better, i.e. they tailor their services
more fittingly to the entities with their contexts inside that realm. In other words,
this quality statement can be made for a set of clustered range contexts, since
context clusters can be derived to contextual realms on range-level.

Extending those convergence metrics from the enumeration above on inter-range realms
is not feasible, since the Euclidean distance metric is only applicable on contextual range
level. For this reason, convergence can only be stated in regard to a specific sub-realm.
For contexts in such inter-range realms, their convergence can only be stated for a particu-
lar sub-realm on a contextual range. The same principle applies for the contextual realms
themselves. Realm convergence can only be expressed individually for each sub-realm.

5.3.3 Arbitrarily defined Contextual Realms

In some cases it is reasonable to define regions arbitrarily in the contextual map. The
presence of contexts inside such contextual realms is irrelevant for their definition. Since
we do not use context clusters (which are strictly structured according to contextual
ranges) to define those realms, we can handle the context range separation less strictly.
Defining an arbitrary contextual realm requires the selection of m contextual ranges,
with an arbitrary number of coherent subspaces (i.e. subspaces compose a sub-realms on
range level) defined on each range. The spatial coherency constraint forces the realm to
be connected ”in one piece” on each of the m affected ranges. In regard to contextual
proximity it is reasonable not to spatially break up a contextual realm. In contrast to
cluster-derived realms discussed previously in section 5.3.2, arbitrary defined realms depict
inter-range contextual realms in the contextual map.

To formally define an arbitrary contextual realm, we introduce the set of subspaces
belonging to a inter-range realm C on contextual range R. We call this set range realm
encompassing r subspaces Ai on range R:

range realm(R,C) =
r⋃

i=1

Ai (5.19)

This leads us to the definition of the complete inter-range contextual realm C, which
is an ordered set of subspaces of all m ranges:
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C =
{
range realm(Ri, C) ∀ i ≤ m

}
(5.20)

The arbitrary definition of a contextual realm takes the opposite way of defining a
context realm by the presence of a context cluster, as described in section 5.3.2. The
latter approach derives a realm from an existent contextual setting whereas the arbitrary
approach depicts a possible contextual setting. This argumentation implies to foresee pos-
sible situations and describe them with an according contextual realm. In section 5.3.1
we have sketched an exemplary contextual realm depicting bad weather conditions. Con-
sider the contextual map example, which has been introduced in chapter 3 and specified
in table 3.1: a location range Rloc and environmental readings range Renv. To demon-
strate an arbitrary context realm we define it for the contextual setting ”bad weather
in Bavaria” (which is a state in Southern Germany). For Renv we define the contextual
space for ”bad weather conditions”, as depicted in table 5.4 (for reasons of simplicity we
use the mapping defined in the associated mapping function from definition 3.7). This
yields a (hyper-)rectangular sub-realm E on Renv with a size of 15 × 20 (as defined in
table 5.4). For Rloc, we define the contextual space that covers Bavaria. We do that by
defining seven rectangular sub-realms L1 through L7 for Rloc as depicted in figure 5.1013.
The single space defined on Renv and the seven spaces defined on Rloc define the context
realm:

Cweather =
{
range realm(Rloc, Cweather), range realm(Renv, Cweather)

}
=
{
L1 ∪ L2 ∪ L3 ∪ L4 ∪ L5 ∪ L6 ∪ L7, E

} (5.21)

Dimension Minimum value Maximum value

dimtemp 45 (−5◦C) 60 (−10◦C)
dimhum 80 (80%) 100 (100%)

Table 5.4: Example Realm on Renv

With arbitrarily defined context realms context-aware application can tailor their ser-
vices to situations that are known and identified beforehand. Entities with contexts in
such a realm can be served uniformly. In regard to the given example, entities in Bavaria
requesting weather warnings can be delivered a service, which is employed for the entire
context realm.

Generally speaking, space and context density (as discussed in section 5.3.2) are met-
rics that apply for arbitrary contextual realms, too. Further, the convergence metrics -
both for individual contexts and the entire realm - can be applied. The representative con-
text can be composed of each context range’s centroid of its coherent subspaces. However,
the quality statement associated with the convergence metrics, which we have mainly em-
ployed to evaluate automatic context-adaptation for cluster-derived realms does not have

13showing a map of Germany with Bavaria, the area to be covered by the sub-realm

163



5.3 Context Clusters and Contextual Realms 5 Exploiting contextual Similarity

Bavaria

Figure 5.10: Example Realm on Rloc

such a strong impact on arbitrary realms. Cluster-derived realms depict existing situa-
tional realms of existing entities. Context-aware applications need to dynamically adapt
to those as good as possible. Arbitrarily defined realms depict predefined situations, not
caring about existing entities, thus lacking the necessity to serve them adequately. For
this reason, the denoted quality metrics are of much larger importance for cluster-derived
realms, although they are applicable to arbitrarily defines realms, too.

5.3.4 Operations on Contextual Realms

In this section, we sketch operations that may be applied on contextual realms.

• Context inclusion: Given a context and a realm, this basic operation determines if
the context is included in the realm. Since context realms are split into sub-realms
on multiple contextual ranges, the inclusion operation is broken up into several
sub-operations of which every one checks the inclusion of the corresponding range
context in a sub-realm on the particular context range.

• Realm overlap: The amount of overlap between multiple contextual realms yields
an absolute amount of contextual convergence between those realms on contextual
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range-level, i.e. it is stated how similar the realms are to each other. However, this
does not include any statement on equivalency of the considered context realms.
Together with the knowledge about realm sizes, this operation can naturally be
used to determine whether a smaller context realm is completely included in a
larger one. The overlap volume of m multiple context realms C1 through Cm on
range R is denoted by Voverlap

(
{C1, ..., Ci, ..., Cm}, R

)
.

It is to be noted that Ci may also denote an inter-range contextual realm. In that
case the correspondent sub-realm on R is used for the overlap operation. Again, the
result yields a range-specific value, since only a particular range can be regarded
due to non-uniform axis definitions on inter-range level.

• Realm equivalence: The degree of equivalence is based on the proximity of repre-
sentative contexts on range-level. However, this only indicates that the according
realms are anchored at the same contextual setting. In addition, the size of the
realms matters accordingly. For this reason, we introduce two different equivalency
metrics: the punctual equivalency degree with no regard to realm size, and the gen-
eral equivalency degree depicting overall realm equivalency with regard to realm
size.

– the punctual equivalency degree for contextual realms where just the distance
between representative contexts matters. Given a set of contextual realms,
the average of the distances between all pairs of representative contexts on
range-level denotes this metric.

– A more expressive equivalency metric can be inferred by considering the size of
the regarded context realms. We regard the case on a single contextual range
first. On range R, the ratio between the overlap volume and total volume of
context realms yields the general equivalence degree:

degequiv(
{
C1, ..., Cm}, R

)
=

Voverlap

(
{C1, ..., Cm}, R

)∑m
i=1 V (Ci, R)

(5.22)

where there are m contextual realms involved and Vi(Ci, R) denotes the spatial
volume of the contextual realm Ci on range R. This equation denotes that the
range-specific general equivalence degree ranges from 0 (not equivalent) to 1
(totally equivalent). Extending this setting on the case covering multi-range
realms, we define the inter-range equivalence degree as the average of the range-
specific equivalence degrees:

degequiv({C1, ..., Cm}) =
1

n

n∑
i=1

degequiv

(
{C1, ..., Cm}, Ri

)
(5.23)

yielding the equivalence degree of the context realm set on all n ranges. As its
range-specific parts, it ranges from 0 to 1, too.
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5.3.5 Contextual Realm Monitoring

Monitoring contextual realms basically equals observing the realm characteristics over
time. We have provided a detailed discussion about those characteristics in the preceding
sections. Closing, they are summed up as follows:

• realm convergence on range level

• context density

• multiple-realm operation results

– realm overlap

– realm equivalence

Monitoring contextual realms basically leaves the two approaches that have been dis-
cussed in section 5.2.3. Either each of the metrics above is updated after each single
contextual update, or they are updated accumulatively in certain intervals. The advan-
tages and disadvantages remain the same as presented. In the remainder of this section,
we illuminate the monitoring mechanisms for cluster-derived and arbitrarily defined con-
textual realms in regard to the aspects of a realm’s size, position and context population.

Cluster-derived Realms The metrics above are of particular interest for those realms,
since the realms are constantly changing their position, size and context population.
Dynamic monitoring of clusters (as discussed in section 5.2.3) allows an efficient update
of the according metrics. In the case of the individual update approach, each metric
is adjusted after a contextual update, e.g. together with the individual cluster update.
Alternatively, the interval-based accumulative update procedure requires recalculating all
metrics according to the current state of the entire cluster.

Arbitrarily defined Realms Since those realms are predefined, size and position of
those realms do not change. Hence, the multi-realm operation results remain static, since
they take exactly those two parameters into account. However, since the context pop-
ulation is dynamic, context density and realm convergence represent dynamic metrics.
Updating the realm metrics after each contextual update results in the individual adjust-
ment of each metric - as with metrics in cluster-derived contextual realms. Accumulative
updates require performing range queries on the encompassed realm space in regular in-
tervals. The range queries deliver the contexts currently positioned inside the realm for
the determination of the realm’s convergence degree and context density.
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Chapter 6

System-specific Aspects

Throughout the preceding chapters we have presented the concept of the contextual map
model in an in-depth discussion. This chapter presents first thoughts on realization as-
pects by discussing the deployment of the contextual map in a distributed system (with
potentially mobile hosts) in a heterogeneous environment. The subsequent sections 6.1
and 6.2 handle the aspects of distribution and heterogeneity, respectively.

6.1 Distribution and Mobility

Since the contextual map model handles entities with dynamic contexts, it is clearly ap-
plicable to ubiquitous computing environments. Systems settled in this domain naturally
exhibit a high degree of distribution and mobility. This section discusses the applica-
bility of the contextual map in such distributed environments. We consider entities to
be equipped with mobile hosting devices that are used to commit and receive contex-
tual information. This enables a context-aware system that employs the contextual map
to be partially deployed on those numerously distributed devices. Thus, we regard an
environment with many entities that are mobile in terms of their geographical location.

6.1.1 Context Model Distribution

In a distributed system, the contextual map itself can be deployed differently on the vari-
ous distributed components. For this purpose, we have defined three specifications of the
context model, which basically differ in the scope of an entity’s contextual neighborhood
in the map.

• Local Map: In section 4.7, the contextual map has been employed to monitor a single
entity’s context, in order to determine the need to trigger a contextual update.
According to the zone-based update semantics (see section 4.2), such an update
would be triggered if the entity context has changed significantly enough to justify
an update. Thus, the local map only serves as a data structure to implement those
zone-based update semantics by the context-owning entity. Any information about
entity contexts other than its own is not present.
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• Vicinity Map: This specification is centered around an entity’s context and encom-
passes all of the other entities’ contexts, which are currently known to the entity
in its physical or logical neighborhood. This set of contexts literally defines the
entity’s known contextual vicinity within its physical or logical surrounding. It is
to be noted that we refer to the context’s physical and/or logical surrounding, thus
encompassing the contexts, from which updates have been received. It is not to be
mistaken for context vicinities as discussed in section 4.4.2.

• Global Map: The global contextual map is not centered around single entities,
but encompasses all contexts of entities known by the entire context-aware sys-
tem. Thus, a global map denotes a system’s global context that encompasses the
individual contexts of all known entities.

Figure 6.1 illustrates the three specifications with the local map missing any other con-
texts in contrast to the other map specifications. Comparing those three alternatives, they
all possess fundamentally different expressiveness. The local map depicts a single entity
context only, the vicinity map possesses context information about neighboring entities,
and the global map is omniscient with knowledge about all existent entity contexts.

One can observe a direct dependency between expressiveness of the map model and its
required capabilities concerning calculation and storage on its hosting device. The more
expressive a context model is the more capabilities it requires on its hosting device. The
spectrum of possible hosting devices is vast making capability requirements an important
aspect. Table 6.1 provides an overview about the dependency between expressiveness and
capability requirements.

Local Map

Global Map

Vicinity Map

Figure 6.1: Distribution of the Contextual Map

It is crucial to keep in mind that our discussion about distribution of entities focuses
on techniques related to communication, updating and deployment implied by distributed
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Map Model Expressiveness / Contextual Com-
pass

Capability Requirements

Global Map high, encompasses current context
of all entities known to the context-
aware system

high (store and analyze en-
tire global context)

Vicinity Map moderate, only contexts of neigh-
boring entities is visible and current

moderate (confined to
neighboring entity con-
texts)

Local Map low, none but own context available
to an entity

low (monitor own context
for update determination)

Table 6.1: Contextual Map Variants

systems. In our discussion, the location data implied by distribution has nothing to do
with entity contexts. The emphasis of this entire section is the focus on transportability
and deployment of context information in a distributed system. The importance of lo-
cation affecting entity contexts is completely irrelevant here. Any implication on entity
contexts caused by entity location is a matter of processing entity context and has already
been discussed previously in chapter 4.

6.1.2 Employable Architectures

This section discusses the applicability of the contextual map model on diverse distributed
architectures. In particular, we focus on the client-server paradigm, peer-to-peer networks,
hybrid peer-to-peer systems and wireless sensor networks (figure 6.2). We have identified
the following aspects being of importance:

• Map distribution: With the global map providing the richest amount of information
(including all known entity contexts), it is naturally not generally applicable to
distributed systems. According to the restrictions implied by distribution, the less
capable map specifications may have to be employed. E.g., in a resource-constrained
system, a vicinity map or even a local map may have to be used.

• Update Semantics: The contextual map complies with the deployment in highly
dynamic environments, requiring contextual updates to provide the overall system
with current contextual information. The semantics for the consequently required
contextual updates have already been discussed in section 4.2. They include polling,
periodic and zone-based mechanisms. We are about to enrich this discussion with
the applicability of update semantics to distributed system architectures.

• Capabilities: The presence of mobile hosts implies the existence of significant hard-
ware restrictions [97]. Since the contextual map model requires a certain level of
performance it may not be able to be deployed on any available host.
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Figure 6.2: Distributed Architectures

As stated before, we assume that entities are attached to a device committing their
contexts to the repository implementing the contextual map model. The entities are
explicitly thought to be mobile implying the usage of mobile devices with restricted ca-
pabilities.

Client-Server Paradigm

This scenario encompasses an omnipotent server, where all of the contextual information
from mobile clients converges. It corresponds to the first architecture depicted in figure
6.2 (far left).

Map distribution Since the context management occurs on the server, it is suitable to
employ a global map there. It provides a complete snapshot of the entire context situation
of the covered area. Clients may be equipped with a local map to enable efficient zone-
based updates (updates are triggered after sufficient change of context). However, if
required by application cases, any deployment on the clients can be avoided as well in
order to render the clients as lightweight as possible (see map configuration examples in
figure 6.2). This may be necessary when client devices have extreme hardware restrictions
unable to even support a local map.

Update Semantics The issue to determine when a contextual update is appropriate
has been discussed earlier. Given a local map on the client device, an update zone in
the contextual map can be defined as the metric for defining context being sufficiently
different to justify an update (see section 4.2). Alternatively, given a lightweight client
missing a local map, one must fall back on conventional methods, particularly polling
updates and periodic updates (see section 2.6).

Capabilities The omnipotent server allows any deployment thought necessary by cor-
responding use cases. Restrictions only apply to mobile clients, which may not be able to
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fully support the deployment of a local contextual map. However, those less potent client
devices may still be integrated into this architecture neglecting the zone-based update
semantics in Rn.

Peer-to-Peer Networks (P2P)

Pure P2P-networks lack any central components for coordinating interoperability and
context acquisition. Hence, in our discussion we focus on mobile peers roaming in wireless
networks. This setting is visualized by the second architecture in figure 6.2 (second from
the left).

Map distribution The lack of a central instance in a P2P-based system makes it impos-
sible to employ a global context representation, forcing the utilization of map specifications
other than the global map. Further, the lack of a global context representation requires
the peers to have information about other contexts. Hence, peers build up a contextual
map centered around their own context by exchanging information about other contexts
with neighboring peers (see figure 6.2). This process reflects the local maintenance of
a map about contexts inside a peer’s known physical/logical vicinity. Accordingly, the
vicinity context map is the map model of choice. As a consequence, the global context is
represented by the sum of all peers’ vicinity maps1. None of the peers is able to construct
a global and current context representation in its map model. As a consequence, no im-
plications on global context can be conducted in the entire network. Assuming that peers
exchange context information not only about themselves but about their neighborhood
as well, i.e. committing all known context from their entire vicinity in updates, each
peer receives context information from other non-neighboring peers over time. This may
occur, since context information from remote peers can ”dig through” to a peer by being
passed in multiple updates. Eventually, a peer may receive complete context information
covering an area, which is much larger than its neighborhood. However, it takes time
to receive remote context information due to the numerous update iterations. For this
reason, remote context may be outdated once it arrives. It seems reasonable to let a peer
decide when to prune outdated context, so that it is neither included in its vicinity map
nor committed further to neighboring peers.

Update Semantics The strategies of efficiently determining suitable times for issuing
contextual updates are only applicable, if the update’s recipient is always reachable. In
P2P-networks, this is not the case. For this reason, the update semantics have to be
restricted to exchanging updates between peers during their periods of interaction between
each other. Since those connections between peers are usually transient, updates are
committed upon establishing contact with another peer. Those ”initial updates” may
not only include the own context, but also a set of all relevant other contexts. This is
reasonable, since the update’s recipient may be unable to determine the other entity’s

1since vicinity maps are not disjoint, the global context is represented by the most current context
available in any vicinity map
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contexts included in the update. Finally, the update strategies encompassing polling,
periodic updates and the zone-based updates in Rn complement the update semantics for
peers during their interaction periods.

Capabilities In this setting, we face a set of mobile peers with restrained capabilities,
which comprise the entire system. However, the mobile devices need to provide sufficient
computational power and storage. Both are necessary for updating and hosting a vicinity
map. Devices, which do not excel the minimal requirements, cannot participate in this
system. Alternatively, they can be employed in a hybrid-P2P system (see forthcoming
discussion).

Hybrid Peer-to-peer Networks (H-P2P)

H-P2P-networks [46] share the same layout as their pure P2P-counterparts. The distin-
guishable difference is the existence of super-peers in H-P2P architectures as shown in
the third architecture in figure 6.2 (second from the right). Super peers are dedicated
mobile nodes, which function as regional coordinating components within the network.
Although slightly exhibiting client-server techniques, super-peers are only accessible by
peers in reach.

Map distribution The existence of super-peers allows applying a light-weight client-
server approach to the H-P2P architecture. Super-peers are deployed with a vicinity
map, as their regular counterparts in the pure P2P-architecture. With the super-peers
equipped with a vicinity map, it suffices to use local maps on the remaining peers (see
figure 6.2). The super-peers actually act as they were servers for all peers in reach. As
with pure P2P-networks, a global context representation is not available to any peer or
super peer. An approximation of larger areas beyond neighboring peers is only available
to super peers under the restrictions of context actuality as discussed previously in regard
to pure P2P-networks.

Update Semantics In H-P2P-networks, contextual updates are propagated analo-
gously to P2P-networks, except that regular peers do not receive contextual updates.
With a local map, they are unable to process other contexts but their own.

Capabilities Basically, the same restrictions impacting the design of P2P-networks are
applicable to H-P2P as well. However, since local maps are less resource-consuming,
capability requirements on regular peers are less demanding. As we have stated earlier
already, it is even possible to employ peers without any contextual map deployment,
hence minimizing the capability demands on those. However, the latter minimization
efforts come with the cost of neglecting the zone-based update semantics in Rn. Periodic
updates and polling are the remaining strategies of choice then.

172



6.1 Distribution and Mobility 6 System-specific Aspects

Wireless Sensor Networks (WSN)

In mobile WSNs, sensor nodes operate with minimal hardware capabilities. They are
usually small in size, deployed in the wild and supposed to gather data over long periods
of time. Hence, minimizing energy consumption is crucial. As a consequence, hardware
capabilities are minimal. Sensor nodes are usually capable of processing simple tasks,
storing several bytes of information and transmit them over-the-air to a server component,
namely the base station. Usually, the base station needs to be in reach of a sensor node
for transmission, since the node’s range is limited due to its hardware restrictions. WSNs
are a specialization of the more general client-server-architecture discussed earlier. In
contrast to the more general instance, WSNs focus on heavily restrained clients. The
fourth architecture in figure 6.2 (far right) denotes the WSN architecture.

Map distribution With the base station attached to a capable machine, it can main-
tain a global map for the entire system. The sensor nodes, however, do not have the
capability to host any context model (see figure 6.2).

Update Semantics and Capabilities Due to minimal hardware and transmission
range of the sensor nodes, updates can only be issued upon contact with the base station.
Given the case that sensor nodes are able to communicate among each other, updates can
also be exchanged upon contact between nodes. This approach implies that nodes are
capable of storing contextual information other than their own, which they forward to
other nodes upon contact. Hence, those foreign updates are not processed, but stored and
readied for transmission to the base station. Because of the limited storage capabilities,
the buffer for foreign updates may be full before reaching the base station. In this case,
it is prudent to erase the oldest updates, since they most likely contain the most obsolete
context information. However, dropping aged context information may result in some
nodes’ context data not reaching the base station at all. As a consequence, the global
map at the server may not have an encompassing representation of the global context.
In addition, the nodes’ context data may take a considerable time to get to the base
station and thus into the global map. The actuality of context is further degraded by
this circumstance. For this reason, the global map’s capabilities in WSNs have to be
diluted from the observation in table 6.1. Although the base station’s global map aims
at constructing current and all-encompassing context, it cannot be guaranteed due to the
discussed architectural restrictions.

Evaluation

In the foregoing discussion we have regarded four different architectures in respect to
three aspects: distribution of the contextual map, update semantics and capabilities. We
can sketch a summarizing statement as depicted in table 6.2.

In addition, this discussion allows us to infer architectural metrics that inherently
depend on each other:

173



6.1 Distribution and Mobility 6 System-specific Aspects

Architecture Map Distribution
(number)

Update Semantics Capabilities

Client-Server Global (1), Local (ar-
bitrary)

update zones, peri-
odic, polling

potent

P2P Vicinity (arbitrary), on contact limited
H-P2P Vicinity (arbitrary),

Local (arbitrary)
on contact limited

WSN Global (1), none (arbi-
trary)

on contact minimal

Table 6.2: Architectures of a distributed Contextual Map

• Context actuality: This aspect denotes how current the system’s knowledge about
the overall contextual situation is. It is directly dependent on the update semantics
and the underlying infrastructure. It may be quantified by determining on how
current and complete contextual information is at a specified entity or any context-
management component of the context-aware system. E.g., the server in a client-
server architecture has very current information bundled at one place whereas a
P2P node has only a few, incomplete and probably outdated context information.

• Deployment cost: The overall costs for deploying an architecture are depicted by
that aspect. Larger and more complex infrastructures logically require higher costs
of implementation and setup.

• Capabilities: The capabilities of the architecture in terms between minimal and
potent. Although this metric cannot be quantified as easily as the previous two, it
is still significant on the conceptual - non-numerical - level.

Those three metrics depend on each other as visualized in figure 6.3. As expected, the
basic statement of this observation is that context actuality is expensive. The lower the
capabilities are, the lower the context actuality is. The same relation generally applies
to the deployment costs. A potent (and thus expensive) infrastructure, which gener-
ally comes with relatively high deployment costs, enables higher context actuality. Low
deployment costs normally restrict the ability to provide current context.

High
Context Actuality

Low
Deployment Costs

Low
Capabilities

Figure 6.3: Dependencies among Distribution Metrics
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6.1.3 Distributed Updates of Context

The distribution of the contextual map model has a significant impact on keeping the
system-wide context current efficiently. Contextual updates are constructed and propa-
gated by mobile hosts contributing to the actuality of the system-wide context. In the
following discussion the composition of updates in a distributed system is given a closer
look. In section 4.3 we have introduced the data structures employed for exchanging
updates between two entities - the updating sender and the update receiver. Here, it is
necessary to extend those principles to an arbitrary number of entities. Recalling section
4.3, validity vectors control the data to be selected for an update whereas update vectors
denote the actual data included in an update (see equations 4.22 and 4.23). This section
discusses the application of this mechanism on the distributed architectures evaluated in
the previous section 6.1.2.

Client-server

Since every entity communicates with the server only, the management is reduced to
one validity vector per entity. Basically speaking, this architecture reflects the basic
communication principle introduced in section 4.3 since the entities’ updating efforts are
isolated and hence not interfering with each other. The entities commit updates while
the server manages the system-wide context. Recalling the update composing technique
from section 4.3, both update and validity vectors are managed only by the clients.

Peer-to-peer and Hybrid-P2P

In P2P networks, entities communicate with numerous other entities. In contrast to the
previously evaluated client-server paradigm, in this architecture entities are responsible
for system-wide context management in addition to just conduct contextual updating.
Since an entity may be in contact with multiple communication partners, it needs to
manage multiple validity vectors. One validity vector for each communication partner
allows to distinguish which data to include into an update for this particular partner once
an update is required. In addition to managing own updates, each entity may need to
manage foreign updates as stated in section 6.1.2. It is to be reminded that such updates
are passed throughout the system to maximize the system-wide actuality, i.e. providing
each entity with the most current system-wide context, which is available through its
neighbors. For this scenario, the mechanism from section 4.3 is extended by the following
aspects:

• A validity vector VP,Q stored at an entity E (see equation 4.22) denotes which context
data of entity P has been committed to Q by entity E. More precisely, P denotes
an entity present somewhere in the network that E is aware of, whereas Q is a
communication partner of E. This definition assumes that E and Q have possessed
a physical link between each other for an interaction period in the past (which may
well last to the present). This means that E stores a permutation of validity vectors
for each encountered communication partner and each (remote) entity, which E has
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received an originating foreign update from. E.g., figure 6.4 illustrates six entities
with transient connections among each other. Each entity hosts validity vectors
for its own contextual changes to be committed to its neighbors. E.g. A hosts
VA,C , VA,D and VA,E for committing updates of its own context. When receiving
a foreign update, there is a vector added for each communication partner (except
the one from which receiving the update) denoting the context of the entity where
the update information originated. E.g. the update vector UB including updates
about B’s context has been passed via C to A, so that A prepares to distribute this
information to its neighbors by adding VB,D and VB,E to its stored set of validity
vectors. A vector VB,C is intentionally neglected for an obvious reason: C has
committed B’s foreign update, thus knowing B’s context as well as A does. There
are no updates about B to be sent from A to C at this time2.

C

A

B

D E

UB

VA, E

VA, C
VA, D

VB, E

VB, D

VE, AVD, A

VB, A

VC, A
VC, B

F

UB

VB, C
VB, F

VF, B
VF, D
VB, D

VD, F

UB

Figure 6.4: Distributed Updates in P2P Networks

• An update vector UP (see equation 4.23) includes context data about an entity P
exchanged between any two entities in the network. It is basically constructed as
described in section 4.3. As stated and shown in figure 6.4, P can be any entity in
the network. Hence, UP can be distributed as a foreign update. Upon receiving an
update vector UP , the receiving entity merges the updated context data about P into
its locally stored vicinity map (see section 6.1.2). Since updates from P may arrive
from different directions, i.e. UP may have been distributed via different paths,
context data concerning the same contextual attribute (one element of UP ) may
arrive in different updates. Since we are facing a highly heterogeneous topology in
P2P-networks, the time of arrival does not allow any conclusion about the actuality
of arriving updates. For this reason, it is prudent to attach a timestamp to each
data element in UP denoting its time of creation. Hence, when P initially creates
and distributes UP , it attaches the current time to each element in UP . Hence, an
update vector UP depicts update-worthy context data about the context of an entity
P as follows:

2although this may change when UB is received from another direction, e.g. via F and D
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UP =


u1

...
ui

...
un


∣∣∣∣ ui =

{
(pi, timei) if vi = false
� else

(6.1)

with P = (p1, ..., pi, ..., pn) denoting the context entity P and timei depicting the
creation time of pi, i.e. the time when pi was committed into an update by P , and
V = (v1, ..., vi, ..., vn) being the affected update vector of P . After UP is first created
it is passed through the network as follows. When an entity receives UP , it compares
all ui with the context information about P in its locally stored vicinity map. If
timei is older than the correspondent data stored in the vicinity map, ui is pruned.
Otherwise, context P in the vicinity map is updated by pi. This reasoning implies
that timei is associated with contextual information in the vicinity map, too. For
further distributing the context information of P a foreign update is used. For this
purpose UP is newly constructed according to the remote context P in the vicinity
map before committed farther into the network. The validity vector concerning P
and the communication partner to which UP is sent influences the construction of
UP as denoted in equation 6.1. E.g., if sent to a neighboring entity Q, VP,Q is taken
into account. Binding UP to the vicinity map of the issuing entity ensures the most
current context information to be distributed, since the vicinity maps holds the most
current context information available to the issuing entity. Figure 6.5 illustrates the
principles discussed here.

Entity
Vicinity 

Map
incoming UP outgoing UP

Figure 6.5: Update Vector passing in P2P Architectures.

• Both validity and update vectors have local scopes. A validity vector is only feasible
at its hosting entity. E.g., in figure 6.4, both entities A and F each store a validity
vector VA,D. Although having the same description, they are not equal. Formally,
to ensure a system-wide unique ID, a validity vector would need to include its
hosting entity in its ID. For reasons of simplicity, this aspect has been neglected in
this discussion so far. A suitable ID for a globally feasible validity vector may be
VA,D(A) and VA,D(F ) for the previous example. Update vectors are only feasible for
the sending and receiving entity, since every update vector is reconstructed by the
sender and not passed through in the state in which it has been received. Globally
feasible update vectors may be augmented by their sending and receiving entities,
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e.g. UB(B,F ) for an update vector being transmitted between entities B and F , as
shown in figure 6.5.

Hybrid-P2P-networks employ a hybrid approach concerning the composition and dis-
tribution of updates. The distribution of updates among super peers functions analogously
to the P2P model. Concerning the communication between super peers and regular peers,
updates are only committed by regular peers. The communication between those basi-
cally works analogously to the client-server model reflecting the basic principles, which
have been introduced in section 4.3.

Wireless Sensor Networks

The update composition techniques in mobile wireless sensor networks are inspired by
the techniques presented for P2P models. However, due to a missing map model on
the nodes, foreign updates are forwarded to neighboring nodes (not reconstructed as in
P2P networks). Concluding, an update vector UP stays unchanged for the duration of
its lifetime ranging from its creation at P till its commitment to the base station. In
this case the timei entry can be substituted by a creation time for the entire vector, say
timeP . An update then consists of an update package including UP and timeP with UP

being constructed in its basic form as shown in equation 4.23. Foreign updates are stored
in a buffer, which is emptied upon committing all included updates to the base station.
Limited storage capabilities usually bound the buffer’s capacity. If an update is received
whose timeP is older than a correspondent update in the buffer, UP is pruned.

Due to significant resource constrains, some aspects may also need to be regarded:

• The use of a validity vectors may be neglected if it is impeded by calculation and
storage constraints applying to the sensor nodes. This measure results in update
overhead by including redundant information in update vectors, but it decreases
computation and storage requirements since validity vectors are neither calculated
nor stored.

• Since update packages are handled according to the ”store and forward” principle,
a node’s buffer for foreign updates may run full. In this case, there are two basic op-
tions to pursue: First, the oldest update is removed from the buffer and substituted
by the new one (regardless from which entity the oldest update originates). Second,
updates may be prioritized. In this case, the oldest update with the lowest priority
is removed from the buffer. This raises the chances of highly prioritized updates to
reach the base station. Concluding, such an approach requires a threesome update
package:

(UP , timeP , priorityP ) (6.2)
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6.1.4 Deployment

Concerning the architectures discussed in section 6.1.2, the issue of deployment primarily
concerns individual mobile devices, which employ one of the contextual map options, i.e.
either the vicinity map or its local counterpart. To run such a component on the mobile
device, the most suitable way is to deploy it as middleware, i.e. between the device’s
operating system and the user interface. There are two options to do this:

• make use of an existing middleware platform that is running on the device (e.g.
J2ME [7])

• deploy the appropriate map model as middleware itself by using the operating sys-
tem’s API

In both cases, the contextual map then acts as a middleware between context-aware
applications and the device’s enabling operating system. Considerations about hardware
are unnecessary since the operating system enables transparent access to the device’s
hardware. In order to function appropriately, the employment of such a middleware
needs to concur with the following aspects:

• The hardware capabilities of the carrier device need to comply with the middleware’s
hardware requirements. This aspect applies to the case when the contextual map
is employed as stand-alone middleware. If embedded into existing middleware, the
device usually possesses sufficient capabilities of supporting the hosted middleware.

• The access to context sources, which are controlled by the operating system, needs to
be enabled and maximized in terms of availability. This includes on-device sensors
as well as context sources outside the device (most likely connected wirelessly).
The more fine-grained access to context sources is available the more accurate the
context monitoring is.

Concerning server components as listed in the client-server architecture and WSNs,
we do elaborate further on the deployment issue due to the large degree of freedom and
lack of restrictions on server machines.

6.2 The Impact of Heterogeneity

Throughout this work, we have argued that heterogeneity has a tremendous impact on
context-aware computing and thus, on the contextual map. In the introduction (chapter
1) we have already emphasized the problem with heterogeneous context sources producing
error-prone low-level context information that is unusable for further utilization (unless
refined). We have outlined this issue in section 2.2.2 and proposed an approach in section
2.4.2 denoting the context capturing interface refining heterogeneous context data and thus
masking heterogeneity from the context management system (see figure 2.5). We have
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also provided a peripheral discussion about heterogeneous context models and context-
aware middleware systems in sections 2.3.3 and 2.4.4, respectively. In section 2.7, we
have provided an in depth discussion on the problem of handling cooperation among
heterogeneous technologies (see figure 2.16). In section 3.2, we have further argued that
the design of context-aware systems is highly application-specific. E.g., we have discovered
that mapping context into our contextual map does not follow any generalizable rules,
but rules dictated by the application case.

This chapter illuminates the impact of heterogeneity on the contextual map. We
describe several applicable heterogeneity aspects that apply on our context model. First of
all, we discuss the environment from which the contextual map (and any other application)
gathers its context data from. Subsequently, we illuminate the heterogeneity of context,
mainly focusing on the character of context answering the question: what makes up
context and how is context actually composed? The last section is dedicated to application
heterogeneity and how it influences a context-aware middleware system.

6.2.1 Heterogeneous Environment

In this section, we summarize the heterogeneity issues originating from the environment
containing the sources of context. If applied to the real-world-environment, context-aware
systems can collect an enormous amount of data from it, refining it to context, and make
it employable for high-level context-aware applications. We have depicted this workflow
in figure 2.5. The vast diversity of context sources makes gathering context information
an elaborate task, since each context source may require a different access approach. As
denoted earlier, we access context sources with context sensors. Such a context sensor can
be represented by anything capable of collecting the context information from the context
source. E.g., a temperature sensor (context sensor) may extract the temperature (context
data) from the air (context source). Or a system daemon (context sensor) may query
a distant database (context source) for a user’s social network subscriptions (context
information). Concluding, context sources, information and sensors are dependent on
each other, but this chain can be represented by virtually anything.

Besides handling heterogeneous context sources and sensors, context-aware systems
need to be able to communicate with a wide spectrum of diverse communication part-
ners. As the context sources, communication partners are scattered throughout the envi-
ronment that a context-aware system is deployed in. In section 2.7 we have discussed the
issue of heterogeneous communication, and we have derived a suggestion how to handle
it (section 2.7.3, visualized in figure 2.16). Communication partners have heterogeneous
attributes (system specification, middleware, etc.) and employ heterogeneous means of
communication (i.e., communication medium, protocols, etc.). However, enabling com-
munication among them is essential, in order to make context-awareness ubiquitously
available in a heterogeneous environment. Ubiquity requires information to be meshed
together, so that it is pervasively available.

In order to deal with the two issues discussed above - namely heterogeneous context
sources and communication partners - we unify both problems into a combined archi-
tectural sketch. As shown in figure 6.6, the heterogeneous environment is accessed by a
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two-tier architecture handling heterogeneous context acquisition and communication.

Environment

Adaptation Engine

Communication 
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Application Logic
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Application Layer
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Common Hardware Interfaces

Communication Context Application
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Context API

Context Sensors
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Figure 6.6: Environmental Heterogeneity Handling.

The context acquisition tier (right side) is inspired by our depiction in figure 2.5 and
handles heterogeneous context sources. Diverse context sensors acquire raw context in-
formation from context sources that are subsequently refined by the context capturing
interface. The data is highly error-prone and heterogeneous, since it comes from po-
tentially very different and unreliable sensors. The context capturing interface removes
possible errors and converts the data into a uniform representation, so that it can be used
for context management on the higher levels (i.e. storage in the context repository and
derivation of new context by the inference engine). There are plenty of possibilities to
correct faulty context information. E.g., we can correct fluctuation of gathered contextual
information as depicted by [77] (discussed in section 4.5.1) or we can check gathered con-
textual data against heuristics to identify obviously false information. The error-free data
is then transformed into a common representation and stored in the context repository.
For the contextual map, this generalization step corresponds to mapping contextual data
into the contextual map as dictated by the mapping functions. As depicted in section
3.2, we consider the function’s input to be error-free (hence preprocessed) and thus given
as vectors (including 1-dimensional vectors, i.e. scalars). We also need to know where
to map the data, i.e. how we map the input values to the dimensions of the contextual
map’s ranges. Hence, the mapping function serves as the bridge between the heteroge-
neous context sources and the homogeneous data in the contextual map. Regarding figure
6.6, the mapping function is situated in the context capturing interface mapping the data
into the context repository harboring the contextual map.

181



6.2 The Impact of Heterogeneity 6 System-specific Aspects

The communication tier in figure 6.6 (left side) is inspired by our architecture from
figure 2.16. It does not implement any core mechanisms required for context-aware com-
puting, but it enables ubiquity for context-awareness and thus, represents an important
peripheral building block for a context-aware system. As we have discussed in section
2.7.2, common interfaces represent the key communicating with heterogeneous partners.
Those enable the actual sending and reception of data. Received data from heterogeneous
communication partners may not be understood by the recipient at first. This requires
the recipient to adapt to the data. The adaptation engine in the architecture trans-
forms heterogeneous data into a common intermediary representation, hence bridging the
heterogeneity implied by the diversity of communication partners. For the contextual
map, the relevance here consists in the ability to commit and receive contextual updates
(extensively discussed in chapter 4) to or from any entity with arbitrary characteristics.

The architecture in figure 6.6 is layered according to specific purposes:

• Heterogeneity layer: This is where all the diversity of the environment is situated.
The context sources and communication endpoints are placed on this layer.

• Middleware layer: This layer handles the heterogeneity issues employing the two-
tier suggestion as discussed above. On its lower side, it provides interfaces for access
to the heterogeneous environment, in order to gather and commit data. Those inter-
faces are represented by common interfaces and context sensors, respectively. Since
data going through those interfaces is non-uniform, dedicated adaptation compo-
nents are attached right to them. They are represented by the adaptation engine
and the context capturing interface. They handle the heterogeneous data and repre-
sent the actual heterogeneity bridge to the system. The transparent device interface
(TDI) and context API on the layer’s top side provide transparent access to com-
munication and context data for context-aware applications.

• Application layer: Applications can transparently access contextual data and com-
municate throughout an entire distributed context-aware system by accessing the
TDI and context API, respectively.

6.2.2 Heterogeneity of Context Information

In the previous section we have discussed about where to get contextual data from. How-
ever, an important prerequisite is to define what is actually to be considered as context.
The amount of contextual data, which resembles entity contexts and which is available
from the environment, is vast. However, it is to be clarified which data contributes to a
specific context, i.e. the contextual information associated with a particular entity. E.g.,
the scenario in chapters 3 and 4 depicts weather stations, car drivers, weather conditions
and locations. So we are considering two entity types and two context types. However,
there is much more context data surrounding both weather stations and car drivers. E.g.,
the additional context of a car driver can be the type of car he is driving, his current
speed, level of fatigue, and much more. With a weather station, we can argue analo-
gously. Additionally, car drivers and weather stations are not the only existing entities in
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the real-world-environment. They do not even represent a closed system in terms of being
connected to other entities. In fact, they have relationships to many other entities that
have not been considered by the given scenario. E.g., cars, streets, station operators, etc.
are additional entities roaming close to the regarded ones. However, all the additional
available data is of no importance for the exemplary application case depicted above. We
confine entities and their context only to the data that is actually important to us: car
drivers, weather stations, locations and a selected set of weather conditions.

Using this example, it becomes clear how the abundance of context information is
utilized for the contextual map. Given a particular application scenario, the heterogeneous
and vastly available context data is circumvented to fit the application case. In particular,
this means selecting the appropriate entity types and context sources.

• Entity types: The application case dictates which entities are relevant for contextual
monitoring and notification. Determining the relevant entity types usually yields
the set of concerning entities.

• Context sources: In order to acquire contextual information about entities and
determined their contexts, the appropriate context sources need to be determined.
Usually, a particular context type consists of contextual data provided by a specific
set of context sources.

The example above is intentionally kept simple. All we need is two entity types (car
driver, weather station) and two context groups (weather conditions, location). This
selective context bounding procedure is driven by the underlying application case. The
general (and unusable) context given by the environment is specified by application case.
The resulting specific context is exploitable by the underlying application. Context-aware
application cases may differ greatly (see next section 6.2.3) making the regarded contexts
application-specific, hence heterogeneous. However, within a single application-specific
utilization of the contextual map, heterogeneity does not occur.

Closing, we regard the aspects relevant for determining contexts for the contextual
map. Table 6.3 shows how we map aspects from the heterogeneous environment to the
contextual map, i.e. how context in the contextual map is composed (and thus confined
from all available context data). Context sources provide data, thus they evaluate contex-
tual attributes, and the data is eventually mapped to the diverse dimensions of the contex-
tual map. Definable context types correspond to contextual ranges, since ranges group
attributes. Entities that actually possess context are represented as multi-dimensional
point in the contextual map and on the Cartesian contextual ranges, respectively. The
definition of specific contextual situations corresponds to the definition of arbitrary con-
textual realms in the contextual map (see section 5.3.3).

6.2.3 Application Heterogeneity

In the previous section we have already mentioned that the diversity of different appli-
cation cases influences the setting of the contextual map. For this reason, the setting of
the contextual map is completely application-dependent and thus, heterogeneous. Since
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Environment (heterogeneous) Contextual Map (homogeneous)

contextual attributes map dimensions
context sources values on dimensions
context types contextual ranges
entities contexts and range contexts (points in map)
specific situations contextual realms

Table 6.3: Aspects of Context and the Contextual Map

context-aware applications can implement virtually any imaginable use cases, the hetero-
geneity spectrum on adjusting the contextual map to application specifics is accordingly
wide. When adapting the contextual map to a particular context-aware application, we
consider four aspects: contextual attributes, contextual ranges, the mapping function and
the context API.

• Contextual attributes: The context-aware application, which is to be served, usually
expects a very specific subset of the overall available context information. Hence,
all relevant context sources that contribute to this particular context have to be
identified and mapped to the contextual attributes in question. Those attributes
should be quantifiable with discrete vector values.

• Contextual ranges: Given the application-specificity and the according contextual
attributes, the resulting context can be typified. For each resulting context type,
a contextual range may be created in the contextual map. Usually, the contextual
attributes depict the dimensions spanning the contextual ranges.

• Mapping function: With the quantified context attributes given, they need to be
inserted into the contextual map, i.e. they need to be mapped on the corresponding
dimensions of the contextual ranges. The mapping function is used to conduct
this task. There is no general directive how this can be done. The application
case dictates how contextual data is to be handled, i.e. hoe quantified contextual
attributes are mapped to the contextual ranges. Thus, the mapping function is
completely application-dependent.

• Context API: With the contextual ranges filled with contexts, it is to be determined
which data is needed by the context-aware application. Thus, the context API is to
be equipped with according interfaces that allow the application to query contextual
data and to be notified by the context modes (opposite direction), respectively.

See figure 6.6 for a visualization of those concepts. Summarizing the discussion above,
the entire context processing chain is required to bridge application-induced heterogeneity.
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Chapter 7

Prototypic System Design

With the theoretical background about the contextual map extensively discussed in the
foregoing chapters, we now focus on validating the context model. For this purpose,
we aim at utilizing the contextual map in a real-world scenario. This chapter presents
the design of a prototypic system for that utilization. The utilization procedure itself is
documented in the next chapter 8. It is to be noted that the scope of the prototype is very
basic. We aim at deploying a proof-of-concept prototype that is capable of determining
contextual proximity and separation for two different entities. Other utilization cases are
excluded.

In this chapter, we present the prototypic system as follows: After depicting the scope
and requirements applied on the prototype in sections 7.1, we present the static and
dynamic characteristics of the system design in sections 7.2 and 7.3. Strictly speaking,
we present the system’s static architecture and the most important workflows applied on
it.

7.1 Requirement Specification and Scope

The prototype implements the basic concepts that have been presented so far in this
work. However, realizing the contextual map model leaves us a wide range of level of
implementation detail, which depends on the amount of stated requirements. In this
section, we define the scope of the prototype and enumerate the requirements exacted on
it.

7.1.1 Requirements

We aim at demonstrating the contextual map’s core ability of detecting contextually
proximate entities and to provide this functionality to higher level applications. The
subsequent listing summarizes the core functionalities of the contextual map, which are
implemented by the prototype.

• Contextual range definition: Contextual ranges allow an entity’s context to be par-
titioned type-specifically. It can be represented as quantified scalar attributes. Each
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of those attributes represents a dimension on a contextual range. As a consequence,
both range contexts (range dependent representation) and full contexts (inter-range
representation) are supported. The contextual ranges form the basis of the contex-
tual map model.

• Context mapping: Utilizing the input from context sources, this data is mapped
into the contextual map. A mapping component implements the mapping function
projecting the contextual input data onto the contextual range’s dimensions.

• Contextual affinity definition: Contextual boundaries are applied on multiple con-
textual ranges to define contextual affinity. A threshold is defined on each affected
range depicting the degree of similarity of two entities’ contexts on the respective
range. The contextual boundary defines the contextual similarity degree on inter-
range level.

• Contextual affinity detection: Contextual affinity management is implemented by
using the Euclidean distance metric applied on contextual boundary thresholds.
Entity contexts are monitored and identified as contextually proximate, if the Eu-
clidean distances of their belonging range contexts on all relevant contextual ranges
are below the thresholds of the respective contextual boundary (see section 4.4.3).
The detection mechanism is applicable to two entities.

• Contextual vicinity utilization: Only the neighborhoods of range contexts are taken
into account when determining Euclidean distances to adjacent range contexts on a
contextual range (see section 4.4.2 for vicinity definitions).

• Update semantics: The contextual map is only updated if the contextual change is
adequately significant implementing the dynamic circles strategy (see section 2.6.1).

• Context API: The contextual affinity management system is transparently placed
behind a well-formed interface providing controlled access for context-aware appli-
cations. It provides the following functionality:

– create custom application-specific contextual maps with individual ranges and
boundaries.

– register entities for contextual affinity detection.

– notify the context-aware client system of contextual proximity and separation
between two registered entities.

We mainly focus on functional requirements to deliver a proof-of-concept prototype.
Non-functional aspects, such as scalability and performance have only influenced our
implementation in regard to demonstrating functional capabilities.
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7.1.2 Scope of Prototype

The purpose of the prototype is to deliver a proof-of-concept implementation by imple-
menting the basic functionality of the contextual map and make it applicable to a simple
real-world scenario.

• Contextual affinity management: The prototype allows the definition of the ba-
sic data structures for contextual affinity management, i.e. contextual ranges and
boundaries. It is capable of detecting contextual proximity between two registered
entities according to a defined boundary. This represents the basic functionality of
the contextual map. We do not manage any entities but their contexts. We represent
those contexts as multidimensional points and do not consider any other informa-
tion about the belonging entities but their entity type. We do not implement any
higher application cases, such as contextual similarity queries or contextual cluster-
ing, neither. However, we do provide the basis for that, i.e. the contextual proximity
detection mechanism for two different entities.

• Scenario and application: The prototype is applied on a real-world-inspired scenario
implementing a particular application case. A simulation emulates real-world enti-
ties committing their contexts to the contextual map. According to the application-
specifically defined boundaries, contextual proximity is detected and reported by
the prototypic model implementing the contextual map.

• Proof-of-concept: The proper functionality of the context model and the scenario
simulation utilizing that model demonstrates the contextual map’s applicability. It
is documented in the next chapter 8.

• Architecture: The prototype implements the client-server architecture as depicted
in section 6.1.2. We do not regard any other architecture that have been discussed
in section 6.1. We also exclude any heterogeneity issues that have been discussed in
section 6.2.

7.2 System Architecture

This section sketches the static architecture of the contextual map prototype. We in-
troduce the main system components and depict their alignment in the system model
subsequently.

7.2.1 Component Specification

The model is composed of the subsequently enumerated modules.

• Core model module: Contextual ranges and their assigned dimensions are managed
by this module providing the basic structure of the contextual map.
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– Contextual ranges: There are three types of contextual ranges differing in their
bounding as depicted in section 3.1: bounded, semi-bounded and unbounded
ranges. Ranges represent a particular domain of contextual data, which is
quantified uniformly in the contextual map.

– Range dimensions: A dimension is a range’s axis and represents a dedicated
contextual attribute. It is therefore statically assigned to its parents range and
quantified according to its given quantification unit. Thus, all of a range’s
dimensions are quantified using the same unit dictated by the range.

• Context module: This component delivers context management to the system. En-
tity contexts and their respective range contexts are managed here.

– Contexts: Contexts are associated with their belonging range contexts (one
per range) and possess an entity type denoting the type of the entity that they
belong to (e.g. ”car”, ”person”, ”place”, etc.).

– Range contexts: Each range context possesses multiple contextual values that
represent the quantification on the belonging contextual range’s dimensions,
thus depicting the multi-dimensional ”position” in that range.

• Contextual boundary module: Defining contextual proximity degrees is handled by
this component. It manages contextual boundaries with each boundary possessing
thresholds for the contextual ranges of relevance (see section 4.1.1). Boundaries
can be applied for all existing entities or to individual entities only. It can also
be constrained to certain entity types. Defining entity types applies to two cases:
on the one hand, entities that are regarded for a contextual proximity check can
be narrowed by entity types. On the other hand, entities that are reported to be
contextually proximate can be narrowed by entity types, too.

In either case, a boundary applies to entities’ range contexts on the relevant ranges
defined by the boundary.

• Contextual proximity detection: This module handles contextual affinity detection
and management using the contextual map’s core module (context ranges), the
context module (entity contexts) and the boundary module (affinity definitions).
It monitors contextual affinities among range contexts by determining contextual
changes following a context update committed by an entity. If boundaries have been
crossed, this event is propagated to the context-aware system using the contextual
map.

• Context API: The context API serves as the interface between the contextual map
and any context-aware system using the contextual map. It provides the following
functionality.

– Initialization: The API provides dedicated access for creating all necessary
data in the contextual map. This especially affects contextual ranges, context
mapping rules and contextual boundaries.
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– Contextual updates: Updates on contextual data sent by entities are committed
via the context API to the contextual map. The context API module imple-
ments the mapping rules responsible for mapping entity update data on the
dimensions of the contextual map. The mapping rules serve as the main access
point for entities to commit their context data. If an entity commits its data
to one or multiple mapping rules, each of the used mapping rules transforms
the data accordingly, so it can be mapped on the proper dimensions (and thus
contextual ranges) in the contextual map.

– Boundary crossing notifications: Notifications about boundary crossings are
sent through the context API in the opposite direction notifying the context-
aware system above. Such a notification includes the pair of entities that
have either contextually closed in to each other or separated from each other,
together with the contextual boundary under which this affinity change has
occurred.

• Indexing: This module stores the contextual data used by the contextual map. I.e.,
this includes applying an efficient data structure to permanently store and query
contexts efficiently (see section 3.3.1).

Figure 7.1 shows how those components are aligned to each other.

Core Model
(Ranges, Dimensions)

Boundaries
(Thresholds, Ranges)

Context API / 
Mapping

(Interface for Updates & 
Notifications)

Context
(Entity Contexts, Range 

Contexts)

Contextual 
Proximity

(Proximity management)

Index
(Persistent Storage, 

Index Structrues)

Figure 7.1: Components of the Contextual Map Prototype
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7.2.2 Model Specification

With the components introduced, we can finally provide a complete sketch of the archi-
tectural model. Figure 7.2 shows the static model as a UML class diagram [14]. Note that
figure 7.2 is a specialization of figure 7.1 where each package in figure 7.2 corresponds to
a component in figure 7.1. We briefly explain the functionality of each package in regard
to the component specification of the previous section 7.2.1:

• Core model: implements the basic map composition required to capture and handle
entity contexts

• Context: enables representation of entity contexts

• Index: enables persistent and efficient storage of entity contexts

• Boundary: allows definition of contextual similarity degrees

• Proximity: enables contextual proximity detection

• Mapping: provides an interface for utilizing the contextual map

Core Model Package (contextualmap.core.model)

This package implements the contextual map’s core structure. The ContextualMap class
aggregates all relevant contextual ranges that are represented by the ContextualRange

class. In addition, it is associated with the IndexController class (Index Package,
see below), which controls persistent context storage, and the BoundaryListener class
(Boundary package, see below), which is responsible for identifying crossings of contextual
boundaries.

The ContextualRange superclass is abstract and specialized by three subclasses de-
picting the different contextual ranges in the contextual map: bounded, semi-bounded
and unbounded. The ContextualDimension class aggregates here. It depicts that a
contextual range is composed of multiple contextual dimensions.

Context Package (contextualmap.core.model.context)

This package manages entity contexts in the contextual map. The Context class rep-
resents a complete entity context and is thus composed of range contexts, which are
represented by the RangeContext class. Each range context consists of multiple scalar
values (one per dimension on that particular contextual range) represented by the
ContextualValue class. The type of an entity is given by the EntityType class.
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Figure 7.2: Static Prototype Architecture

Index Package (contextualmap.core.model.index)

This package manages the data structure that provides persistent storage for contexts.
The IndexController class provides access to all index structure used in the contextual
map model. The index structures themselves must be implemented by a class imple-
menting the SpatialIndex interface that dictates proper access to a spatial indexing
structure. We use a very basic index structure realized by the SimpleIndex class. The
IndexNotifier interface is implemented by all classes that trigger an update on contexts
and thus, their respective representation in the index structure.
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Contextual Boundary Package (contextualmap.core.boundary)

Contextual boundary management is provided by this package. The abstract
ContextualBoundary class represents a boundary. It is a superclass to two specializations:

• The ContextualRangeBoundary class represents the boundary that is applicable to
all range contexts of affected ranges. It is thus associated to the ContextualRange

class. It is the boundary type that we have been talking about throughout this
work.

• The RangeContextBoundary class represents a boundary that is only applicable to
certain range contexts, not contextual ranges. It represents a range-independent
alternative if not all range contexts on a range are supposed to be affected by the
boundary.

It is to be noted that ContextualBoundary possesses an association to EntityType,
allowing to constrain its validity on particular entity types, as discussed earlier in section
7.2.1.

This package also enables detection of boundary crossings and thus contextual prox-
imity detection. An observer patterns causes the BoundaryListener class to observe the
ContextualRange class (Core package, see above). Contextual ranges notify the listener
when any changes to their included range contexts have occurred, so that boundary cross-
ings can be identified. The RangeContext class (Context package, see above) is embedded
in another observer pattern with the ContextualRange class in which the latter observes
the former. Since RangeContext implements the IndexNotifier interface, it is the class
that is detecting contextual changes first. In that case, the contextual values are up-
dated and the observing ContextualRange class is notified of the changes implementing
the first observer pattern. ContextualRange notifies the BoundaryListener class imple-
menting the other observer pattern. Figure 7.3 visualizes those two observer patterns in
our architecture.

ContextualRange

Observer

BoundaryListener RangeContext

<<interface>>
Observervable

Figure 7.3: Observer Pattern for contextual Update Management

Contextual Proximity Package(contextualmap.core.proximity)

The proximity package is rather small and dedicated to the identification of contextual
proximity among entity contexts. The ProximityDetection class implements this detec-
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tion logic. It is triggered by the BoundaryListener class each time when a contextual
update occurs (see the 2-tier observer pattern discussed above). ProximityDetection

itself is embedded into another observer pattern. It is observed by a notifier from the
mapping package, so that boundary crossings can be propagated outside the context
model (see discussion on mapping package below).

Context API and Context Mapping (contextualmap.core.mapping))

The mapping package is dominated by the Mapping interface, which dictates the access
to the contextual map. It provides initialization access for creating contextual ranges,
boundaries and mapping rules.

The Rule interface serves for definition of MappingRule classes implementing such
rules. Mapping rules consist of conversion rules (realized by the classes implementing the
ConversionRule interface) that translate the entity’s quantified context data (i.e. scalar
values) to units used by dimensions in the contextual map. Mapping rules align those
conversion rules to a mapping, so that each conversion rule is actually mapped to a par-
ticular dimension (note that a conversion rule may possess multiple input parameters).
Hence, a mapping rule enables entities to update their context by committing their con-
textual information to a mapping rule in the Mapping interface. An entity’s contextual
data is then translated to the contextual map’s dimensions according to the mapping
rule’s conversion rules. See figure 7.4 for a mapping rule’s composition and its role in the
update process.

Contextual Map
Mapping Rule

Conversion 
Rule

Conversion 
Rule

Conversion 
Rule

Entity

...

Contextual 
Map 

Dimension

Contextual 
Map 

Dimension

Contextual 
Map 

Dimension

Entity 
Context Data

UPDATE

Figure 7.4: Mapping Rule during Update

Last but not least, this package includes a notifier implementing the EnvironmentNotifier
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interface that notifies the outside-world of contextual proximity detected by the contex-
tual map model in regard to defined contextual boundaries. This particularly concerns the
context-aware system that utilizes the contextual map. It is being notified by this dedi-
cated notifier (implemented by GeneralEnvironmentNotifier class), which is embedded
into an observer pattern with the ProximityDetection class, as discussed above. Since
the contextual proximity detection logic is observed by the notifier, contextual proximity
alerts are propagated to the notifier.

7.3 Workflow Specifications

In this section, we focus on the dynamic aspects of the prototype design. The main
workflows of the prototypic context model - the initialization, contextual update and
contextual proximity detection - are described as follows. It is advised to consider the
graphical visualization of those workflows in the UML activity diagram provided in figure
7.5.

7.3.1 Initialization

This is the first sequence of actions, which are taken to get the contextual map up and
running. It basically instantiates all of the contextual map’s necessary data structures.

1. Create entity types: As stated in section 7.2.1, each entity is assigned an certain
type (e.g. ”person”, ”car”, ”place”, etc.). This is necessary to allow a fine-granular
definition of contextual boundaries. Those boundaries can be specified which entity
types they actually should affect.

2. Create contextual ranges: This step encompasses the definition of the contextual
map’s dimensions and thus, its contextual ranges grouping those dimensions dis-
jointly. A spatial index is created for each contextual range.

3. Create context mapping rules: Mapping rules, which serve as access points for enti-
ties to commit context data, are defined next. This works by first defining appro-
priate conversion rules for context data translation and aligning those conversion
rules to mapping rules accordingly.

4. Register contextual boundaries: With the basic structure of the contextual map as
well as context mapping set up, contextual boundaries can be defined next.

5. Register entities: At this point, the contextual map is initialized and ready to
perform contextual proximity detection. Hence, the next step consists of registering
entities that can begin committing their current context data.

Figure 7.5 visualizes this workflow as a UML activity diagram and shows dependencies
among the encompassed activities.
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7.3.2 Contextual Update

A contextual update that has been committed by an entity contains raw contextual data,
which - in their initial state - are of no use for the contextual map. The following workflow
describes how the entity’s context data is stored in the contextual map.

1. Identify entity context: An entity update must be uniquely traceable to its origi-
nator. This is usually done by the entity ID being included in the update. Once
the committing entity is identified, its context representation in the contextual map
(the multi-dimensional spatial point) must be determined. If the context does not
yet exist in the contextual map - meaning that the entity has never committed an
update before1 - a ”plain” context object is created, i.e. no coordinates are known
yet since the contextual data has not been mapped yet. In either case, a updatable
context is determined, which we can apply the update to.

2. Context mapping: The update has been committed by the entity naming a particular
mapping rule (reminder: mapping rules represent the ”gateway” to the contextual
map for entities committing their contextual updates). The mapping rule’s conver-
sion rules are applied on the contextual data supplied by the entity. The resultant
values from the mapping rule are mapped to the according dimensions (see figure
7.4). The data resulting from the context mapping procedure is clearly assigned to
the respective dimensions and quantified accordingly so that the context (the spatial
point) in the contextual map can be updated.

3. Update context: Updating the regarded context in the contextual map (point 1)
consists of applying the mapped context data (point 2) on it, so that it holds the
new contextual values corresponding to the entity update. If this is the first entity
update, this procedure generates a full context from the plain context mentioned
earlier. The affected spatial indexes are updated as well, i.e. the correspondent
entry in the index is either updated (updating existing context) or a new entry is
added (creating new context) to the index.

Figure 7.5 visualizes this workflow as a UML activity diagram and shows dependencies
among the encompassed activities.

7.3.3 Contextual Proximity Detection

A contextual update always qualifies for a contextual proximity check. The changed
context may have caused some contextual boundaries to be crossed. However, it is not
imperative to perform a contextual proximity check after each update. A contextual
update just qualifies its execution. Checking if and which boundaries have been crossed,
requires checking all updated contextual ranges for contextual proximity changes.

1hence, no data to represent the context is known
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1. Determine updated contextual ranges: The contextual update has affected a certain
number of dimensions. All contextual ranges that those dimensions belong to have
to be included in the boundary check. For each of those ranges, the following
procedure is conducted:

(a) Determine contextual vicinity: The according range context of the updated
context on the current contextual range is identified and its current range
vicinity, i.e. all relevant range contexts in its spatial neighborhood, is deter-
mined. We have discussed the range vicinity’s composition in section 4.4.2.
In section 4.4.3, we have stated that we require the ”old” range vicinity from
before the update as well, so that changes in contextual proximity can actually
be detected. In summary, we fetch the ”old” range vicinity (before the up-
date) from the repository associated with the range context, and we fetch the
”new” range vicinity2 (after the update) from the contextual range’s spatial
index. The context update has already been processed at this time, so the
index includes the most current range contexts.

(b) Perform contextual proximity detection: Since contextual boundaries can be
applied to entire contextual ranges, individual entities and individual entity
types, we have to check the updated context and all range contexts in the range
vicinity (both before and after the update). For this reason, all range contexts
in the current range vicinity are iterated and regarded in two additionally
nested iterations:

• iterate all boundaries regarding updated range context and detect proxim-
ity between updated range context and currently iterated range context
regarding current boundary

• iterate all boundaries regarding currently iterated range context and detect
proximity between currently iterated range context and updated range
context regarding current boundary

(c) Remember range-specific threshold crossings: If the detected contextual prox-
imity changes have exceeded thresholds of any checked boundaries, those thresh-
old crossings are remembered for the currently iterated contextual range.

2. Determine range-global boundary crossings: The remembered threshold crossings
that have been individually recorded for each range are used to determine crossings
of contextual boundaries. Contextual boundaries are regarded as crossed if all of
their range-specific thresholds have been exceeded in a common direction.

3. Communicate boundary checks: The detected boundary crossings are communicated
to the notifier in the context API using the observer pattern between the boundary
listener and the notifier explained in section 7.2.2.

Figure 7.5 visualizes this workflow as a UML activity diagram and shows dependencies
among the encompassed activities.

2this is actually one range vicinity at two different points in time
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Chapter 8

Realization and Validation

With the prototype design of the contextual map given, we are ready to put it to work.
This chapter documents a test case that utilizes the prototypic context model. In section
8.1, we illuminate some aspects concerning the implementation of the contextual map
model. Subsequently, we put the context model to a test in section 8.2.

8.1 Implementation Aspects

This section briefly discusses the implementation of the context model and evaluates
possible enhancements. We especially present a discussion about the performance of
indexing structures. We also provide a brief discussion about the application of context
clustering.

8.1.1 The Core Model

We have implemented the model from chapter 7 as a Java application running on JRE 1.6.
Besides the JRE system library, we only employ a dedicated external logging component,
namely log4j [3], to trace various aspects in the prototype during runtime. This yields a
light-weight easily deployable system.

The entire context model is shielded by the context API allowing transparent access to
the context model. The context-aware client system using the contextual map only needs
knowledge about the Mapping interface (see figure 7.2) to access the complete functionality
of the contextual map. As stated in section 7.2.2, this interface represents the context
API and thus, the main access point to the context model.

8.1.2 Index Structure Selection

We have employed a very basic indexing structure provided by the JRE library. For this
reason, we have neglected the focus on persistent storage and performance. All contexts
are stored and queried in a J2SE HashMap object at runtime only. This means that upon
shutdown of the context model, all data is lost. However, for our testing purposes this
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suffices. Our focus is put on a proof-of-concept scenario rather than on performance. This
means that our emphasis is put on validation of the mechanisms presented in this work,
i.e. which enable contextual proximity detection between entities. Performance is not
important at this point.

Despite that approach, we have evaluated suitable indexing structures employable as
persistent indexes for the contextual map. By doing so, we continue our initial discus-
sion from section 3.3.1. Figure 8.1 shows the evolution of indexes since the late 1980s.
The figure shows how newer indexes have evolved from existing ones and which indexes
have outperformed others in direct performance tests (note that evolved indexes usually
outperform their ancestors). This analysis is based on the publications of the respective
indexes [25, 27, 28, 34, 48, 47, 55, 84, 93, 98].
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Figure 8.1: Comparison of Index Structures

As indicated by the figure, we have grouped the index structures according to their
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approach how to manage their data. Data-partitioning indexes (R-tree and derivatives,
see figure 3.3) partition the points to be indexes according to their actual values. Space-
partitioning indexes (kdb-tree and derivatives, see figure 3.4) partition the index space
into disjoint parts according to the values of the points to be indexed. Pyramid-based
indexes implement a special case of space partitioning by dividing the index space into
pyramids (see SPY-TEC in figure 4.7).

To actually benchmark the performance of indexes, we have selected three index struc-
tures whose source-code is freely available [2, 1]:

• SR-tree [55]: As a quite recent index structure from the domain of data-partitioning
index structures, we have expected it to perform well.

• Hybrid-tree [34]: This index structure is inspired by both data-partitioning and
space-partitioning techniques, unifying the best of both worlds. Since it is one of
the most recent indexes available (1999), we have expected this index to perform
well, too.

• R*-tree [25]: Despite representing the most advanced index out of the R-tree family,
it is outdated and serves as a reference benchmark for our tests.

We have benchmarked those three indexes using test cases with various numbers of
data sets and dimensions. We have evaluated three basic operations:

• Initialization: Given a set of multidimensional points, this operation builds up the
index. It is performed only once at the beginning before the index commences
regular operation, i.e. before queries and insertions are enabled.

• Insertion/Update/Removal: This operation inserts, updates or removes a given data
set of points into, in or from an existing index.

• Query: We have evaluated two types of queries on the indexes:

– the k-nearest-neighbor-query yielding the k nearest neighbors of a given query
point.

– the range query yielding all points within a radius r of a given query point.

Our results in figures1 8.2 through 8.5 show that the Hybrid-tree clearly outperforms
the two other candidates. It therefore represents a suitable index for indexing contextual
ranges, i.e. it is capable of storing large amounts of high-dimensional range contexts.

The ”curse of dimensionality” has a significant impact on the R*-tree and at least a
noticeable impact on the SR-tree. However, in contrast to those two indexes, the Hybrid-
tree scales quite well with increasing dimensionality.

1please note that those are results of the denoted fabricated test cases, which do not reflect any
real-time scenario
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Figure 8.2: Index Construction Benchmark

Regarding the individual operations, index construction is clearly the most elaborate
operation (figure 8.2). Even the Hybrid-tree performs considerably worse at index initial-
ization than at its other operations. Inserting and querying data sets shows exponential
growth with increasing numbers of inserted or queried data sets (figure 8.3 for insertion
and figures 8.4, 8.5 for querying). While the exponential growth rate is extreme in case
of the R*-tree, it is considerably less sized in case of the SR-tree. The Hybrid-tree per-
forms best with a hardly noticeable exponential growth rate. Resembling figure 8.1, the
most advanced indexes that where spawned by the evolutionary development processes
are represented by the SR-tree (1997, data-partitioning), the Hybrid-tree (1999, hybrid),
the LSDh-tree (1998, space-partitioning) and SPY-TEC (1999, pyramid-based). All other
stated indexes are inferior leaving those four as the best performing indexes available and
qualifying them for utilization in the contextual map. We have proved that the Hybrid
tree clearly outperforms the SR-tree in any given test. This eliminates the SR-tree from
the result set of suitable contextual map index structures. Concluding, SPY-TEC and
LSDh-tree may also perform very well besides the Hybrid-tree. However, a detailed com-
parison is out of scope of this work, since we have identified an index - the Hybrid-tree -
that scales extremely well with large numbers of data sets and dimensions.

8.1.3 Application of Context Cluster Detection

As stated in section 5.2, clusters of similar entity contexts can be identified with the
help of the contextual map. With an efficient index structure in use, context clustering
can be implemented efficiently. We have provided a survey on clustering algorithms in
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Figure 8.3: Insertion into Index Benchmark

section 5.2.1, which can be employed for determining contextual-range-specific clusters.
All clustering algorithms require quickly acquirable knowledge about the exact positions
of the points to be clustered. A contextual map backed by a fast-accessible index for each
range can provide decently performing clustering of range contexts.

Consequently, contextual-range-specific clusters are used to derive inter-range clus-
ters (as described in section 5.2.2), which represent the final set of clustered entity con-
texts provided by the context API. If entity context encompasses rich context types with
many attributes (i.e. high-dimensional contextual ranges), clustering algorithms for high-
dimensional spaces should be employed (see section 5.2.4). Those especially include sub-
space clustering [59] and pre-determination of clusters using cheap metrics [68].

8.2 Experimental Results

Testing the contextual map in a real scenario requires some preparation. We need a real-
world scenario that provides context and a context-aware system utilizing it. We have
set up a scenario inspired by the setting in section 4.1: Car drivers roaming the streets
who want to be notified about extreme weather conditions. The subsequent subsections
present a brief introduction into the scenario setting and the results of putting the scenario
to work with the contextual map.
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8.2.1 Test Scenario Setting

As stated, the scenario mainly consists of vehicles driving on roads wanting to be notified
about extreme weather. Each driver defines a custom extreme weather condition that
he considers dangerous enough to be notified about. Weather stations provide current
weather readings. Basically, we can state that certain contexts of a driver and a weather
station get similar, if a driver approaches a weather station whose environmental readings
are quite close to the driver’s conception of extreme weather.

We employ the contextual map to realize this scenario. A contextual boundary enables
us exactly the contextual similarity definition that has been stated above. Since we plan
to perform a proof-of-concept test, the entire scenario runs as a simulation. However, we
make use of a real road network and real-time weather conditions whereas vehicles and
drivers are simulated.

In order to employ the contextual map model, we need to generate a proper way to ac-
cess its context API. We have to define entities, contextual boundaries and mapping rules
in regard to the environment that we capture the contextual data from. The remainder of
this section is dedicated to the proper setting of the scenario in regard to those aspects.

Environment

The environment can be broken down to two components: geographical location and
weather.
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Location Concerning location, the current position of vehicles and weather stations are
relevant. Vehicles move on predefined tracks. We have extracted 50.000 kilometers of
tracks in Southern Germany from freely accessible GPX tracks2. Those tracks correspond
to the real-world road network, since they have been generated by people driving on those
roads and using their GPS-devices. Vehicles move on the network spawned by the set of
GPX tracks.

Weather The weather in the scenario is location-specific and bound to the coordinates
of the according weather station. We employ real-time weather fetched from the YAHOO
weather API [17] for 20 weather stations that exist within the coverage of our regarded
road network. The weather read by a particular weather station is valid for all places to
which that weather station is the closest one.

Entities

The identification of entities is straight-forward: we regard vehicles and weather stations
(as we already did in section 4.1). Each entity has an ID and a set of context sensors
attached that are utilized to capture context data. The acquired sensor data is then
committed to the contextual map’s Mapping interface from where it is processed and
committed to the contextual map.

2GPX tracks are sequences of GPS-generated geographical points
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Moving vehicles Each vehicle moves on one of 128 tracks that are registered in the
system. The particular track corresponds to one of the GPX tracks that altogether spawn
the road network used in our scenario. The vehicle is moving at constant speed and
stores its current position on its assigned track as DMS coordinates. Concerning the set
of attached sensors, the moving vehicle has a location sensor and a weather sensor that
reports the weather condition at its location (thus, those conditions correspond to the
environmental readings of the closest weather stations). In addition to that, each vehicle
defines its individual perception of strong weather conditions. A vehicle entity considers
three weather readings as possibly critical: strong wind, extreme temperature and low
visibility. Thus, a vehicle’s relevant context is comprised of its location and its perception
about critical weather.

Weather stations A weather station stores the most recent weather conditions that
have been retrieved from the YAHOO weather API [17], as well as its location in DMS
coordinates. Since a weather station’s location is static, a weather station has only a
weather sensor reading the current weather conditions at the particular location. Hence,
the weather station’s relevant context is comprised of its static location and currently
read weather.

Contextual ranges

The relevant context types that we utilize in this scenario are also inspired by the appli-
cation case from section 4.1. Hence, we define two contextual ranges:

• An unbounded range Rloc depicting location.

• A bounded range Renv depicting environmental weather conditions. The context
range is bound within the numeric range [0..100].

Context Mapping

We have defined the following mapping rules to map raw contextual data to the contextual
map. We design the mapping function fmapping accordingly as defined in section 3.2. Data
from two sensors is regarded3:

• location: delivers geographical DMS coordinates (latitude and longitude): (slat, slong).

• weather: delivers weather conditions: (stemp, shum, swind, svis, sair)

– temperature stemp in ◦C in between -50 and 50◦C

– humidity shum in per cent

– wind speed shum in meters per second between 0 and 100 m/s

– visibility svis in kilometers between 0 and 50 km

3note that location and weather are sensor IDs
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– air pressure sair in millibar between 880 and 1080 mbar

Thus, we can define fmapping as follows:

fmapping :



(
location,

(
slat
slong

))
→

{(
dimx(Rloc), x

)
,
(
dimy(Rloc), y

) ∣∣∣
x = 111.3 ∗

(
slat(deg)± slat(min)

60
± slat(sec)

3600

)
,

y = 111.3 ∗ cos(slat)
(
slong(deg)± slong(min)

60
± slong(sec)

3600

)}

(
weather,


stemp

shum
swind

svis
sair


)
→

{(
dimt(Renv), t

)
,
(
dimh(Renv), h

)
,(

dimw(Renv), w
)
,
(
dimv(Renv), v

)
,
(
dima(Renv), a

) ∣∣∣
t = (stemp + 50◦C) 1

◦C
,

h = shum,
w = swind

s
m
,

v = (svis ∗ 2) 1
km

,
a = (sair − 880)/2 1

mbar}
(8.1)

Note that there are actually two different weather sensor types: one reading and
one reporting sensor. The former actually measures and reports weather (employed by
weather station entity) while the latter only reports weather based on the readings of the
closest weather station (used by moving vehicle entity).

Contextual Boundary Setting

We need a boundary that reports if vehicles enter areas with strong weather, i.e. if they
are approaching weather stations reporting such weather. Thus, we need a boundary
defined on the location and weather range as follows:

• location: The radius defining the area for which a weather station is supposed to
support its weather readings. In our scenario, we have defined it 30km equaling
30.000 units on Rloc.

• weather: The difference (in terms of contextual proximity, i.e. Euclidean distance
on Renv) between a vehicle’s critical weather perception and a weather station’s
weather readings. Sufficiently spaced, we choose 10 units on Renv, which denotes
10% of the value range of each of Renv’s dimensions.

Further, the boundary is only applicable to vehicles and only defines contextual prox-
imity of those to weather stations. Thus, the vehicle and weather station entity types are
regarded by the contextual proximity management procedures as follows:
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• regarded entity type of updating entities: vehicle

• entity type to be reported as contextually converging and separating: weather sta-
tion

Design and Implementation

The entire test setting is divided into three parts:

• Contextual map model: The core implementation of the context model as presented
in chapter 7 providing contextual affinity management.

• Scenario simulation: Responsible for emulating the environment surrounding the
context-aware system and thus, the contextual map. I.e., the simulation is re-
sponsible for providing entities that generate contextual data, which is dynamically
altered according to real-world specifics, such as the real road network and real-time
weather.

• Context-aware client system: This part serves as the mediator between the scenario
simulation and the contextual map model. It is responsible for initializing the
contextual map (contextual ranges, boundaries, mapping rules), forwarding entity
updates to the contextual map and reporting boundary crossings received from the
contextual map.

Scenario Simulation Context-aware Client 
System

Contextual 
Map

Environment

Entities
Entities

Entities
Entities

Context API

Contextual Map Control

update

notify

init

Figure 8.6: Scenario Setting

Figure 8.6 depicts this setting. At this point, we briefly discuss the architectural
design of the scenario simulation and the context-aware client system. Figure 8.7 re-
sembles the architectural sketch. The environment is driven by two controller classes:
LocationController and WeatherController. Both are static and accessible by the
entire system. The LocationController uses the TrackController that controls all
GPX tracks represented by the Track class. The WeatherController controls weather
stations and stores the measured WeatherConditions. The Entity class and its descen-
dants MovingVehicle and WeatherStation represent the system’s entities. They pos-
sess attached sensors represented by the Sensor class and its children LocationSensor,
WeatherReadingSensor and WeatherReportingSensor. Entities also make heavy use of
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the data holding classes employed by the above-explained controllers. Entities commit
their context data to the context-aware system represented by the
ContextualMapController class, that controls the contextual map and forwards all entity
updates to it.

Scenario Simulation

Context-aware Client System

Contextual 
Map

Entity

WeatherController

LocationController TrackController Track

WeatherConditions

WeatherStation MovingVehicle

LocationSensor

Sensor

WeatherReportingSensor

WeatherReadingSensor

ContextualMapController

Environment

*1

*

1

Context API

Mapping
controls

moves
on

has

has

Figure 8.7: Scenario Simulation Architecture

8.2.2 Simulation Results

With moving vehicles and weather stations present in our simulated environment, we
can perform a test run and observe how contextual proximity changes occur. Vehicles
and weather stations have their context represented as multi-dimensional points in the
contextual map. The weather station’s context representation in the contextual map
is straight-forward: its location and currently measured weather conditions are mapped
onto the dimensions as depicted in equation 8.1. Deriving the context representation
of moving vehicles is a little more elaborate. While the representation of its location
is straight-forward, the definition of its critical weather perception follows the subse-
quent mechanism. The critical weather perception is dependent on the currently reported
weather at the vehicle’s current location (provided by its weather sensor). If at least
one of the relevant readings (wind, temperature, visibility) gets close to a critical value,
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the vehicle defines its overall critical weather perception as follows. The currently re-
ported weather conditions are copied and defined as its critical weather conditions. The
problematic readings in the critical condition perception are then set extreme. E.g., the
wind is getting stronger at the weather station in the city of Ingolstadt. Other readings,
such as temperature and visibility remain relatively unchanged. A vehicle passes by the
city on the freeway and receives those weather conditions. It adapts its critical weather
perception by taking the reported weather conditions for Ingolstadt and replacing the
real strong wind readings with the extreme wind value that is regarded as dangerous by
the vehicle driver. Following this determination mechanism, the vehicle’s critical weather
perception is mapped adequately in the contextual map (as dictated by equation 8.1).

General observations

To make use of the depicted scenario setting, we have defined a contextual boundary that
denotes contextual proximity between vehicles and weather stations exactly then when a
vehicle approaches a station that is reporting extreme weather. Running the scenario at
days with normal weather, nothing occurs. Once a weather station starts reporting read-
ings that get closer to extreme values, large numbers of contextually converging boundary
crossings occur in a short period of time. Because of the worsening weather conditions,
all vehicles in the geographical vicinity suddenly become contextually proximate to the
weather station reporting the problematic weather. Contextual proximity regarding the
defined boundary is given (for the affected vehicles and the weather station), since the ve-
hicles are closer than 30 kilometers - 30.000 units on Rloc - to the weather station and the
measured weather conditions on Renv are no farther than 10 units from any of the affected
vehicles critical weather perceptions (note that the distance statements are affecting the
corresponding range contexts of vehicles and weather station). This observation validates
the statement made about contextual proximity in equation 4.5 in section 4.1. It is to
be noted that the change of weather usually isn’t a geographically local phenomenon.
It occurs in larger areas so that multiple weather stations and even more vehicles (ge-
ographically close to those weather stations) are affected. In summary, the changes on
Renv cause the contextually converging boundary crossings.

After those ”initial” boundary crossings, additional boundary crossings are rather
sporadic. They occur when vehicles geographically enter the area with bad weather (con-
textually converging boundary crossing), or if vehicles leave that region (contextually con-
verging boundary crossing). Those boundary crossings are triggered because of changes on
Rloc. A vehicle’s contextual (and in this case also geographical) approach to the weather
station on Rloc causes contextual proximity in regard to the defined boundary, thus trig-
gering a contextually converging boundary crossing. Separating from the weather station
on Rloc causes the contextual proximity not to be given anymore triggering a contextually
separating boundary crossing.

Once a weather station starts reporting better weather conditions, a large number of
contextually separating boundary crossings occurs. Logically, this is because the weather
conditions have improved so significantly, so that they do not exhibit contextual proximity
to any vehicles on Renv anymore. This means that the Euclidean distance between range
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contexts of vehicles and the weather station on Renv exceeds 10 units. The contextual
separations caused in this scenario validate equation 4.6 in section 4.1.

Performance and Scalability

We have found out that the scenario simulation controlling the simulated environment
requires only a marginal amount of resources. It scales very well in regard to the number
of employed entities. Updating several thousands of entities takes only a few seconds. The
contextual map’s performance, however, scales worse. It exhibits exponential cost with
increasing numbers of entities and contextual ranges. In the proof-of-concept prototype,
it takes several minutes to update entity contexts in the contextual map and to perform
boundary crossing checks, whereas it takes only a few seconds to just update contexts of
the same number of entities without utilizing the contextual map.

This observation shows clearly that utilization of the contextual map imperatively
requires efficient data structures and well performing platforms when being applied to
large-scaled systems. We have further observed that a large portion of the performance
drain comes from the utilization of the index structure. We have employed simple in-
dexing structures with no regards to performance, since it would have not contributed to
the contextual map’s functional validation. However, there is clearly lots of improvement
potential given when using well performing index trees (see section 8.1.2). However, al-
though efficient indexes may have decisive influence on the contextual map’s performance,
they are only one possible aspect of tackling the performance issue. However, further con-
siderations about improving performance (besides index selection) are out of scope of this
work.
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Chapter 9

Conclusion and Outlook

With the contextual map introduced both in theory and practical application, we close
the documentation on this context model in this section. We summarize our work and
outline the applicability options of the contextual map. We close by outlining the aspects
that have been covered by this work in theory, but which have not been put to practice
yet, and by sketching a few ideas for future work on contextual proximity management
using the contextual map.

9.1 Summarizing the Contextual Map Concept

With the contextual map, we have proposed a novel context model concept specializing
on determining contextual similarities among individual entities. Settling the model in
Euclidean space, we are able to exploit Euclidean distance calculations to make those
determinations.

Contextual proximity The notion of contextual proximity is borrowed from the location-
awareness domain. Geographical proximity denotes (at least) two entities being geo-
graphically close to each other. We have leveraged that perception into the domain of
context-awareness, where entities are contextually proximate, if their respective contexts
(or particular pieces of their respective contexts) are similar to each other. This approach
yielded the conceptual map, which is primarily conceptualized to handle such contextual
proximity.

Cartesian map model We have determined that mapping entity contexts into a Carte-
sian map model requires contextual information to be partitioned according to context
types, so that each piece of information belongs to a particular context type. Contextual
information of each context type is assigned a dedicated Euclidean space, where all con-
textual information of that type is mapped to in the form of scalar attributes. We call
those spaces contextual ranges on which each entity has its typified context represented as
a multi-dimensional point. The Euclidean distances between those points denote contex-
tual similarity, i.e. contextual proximity. The set of all contextual ranges comprises the
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contextual map, so that contextual ranges represent dimensional subspaces of the contex-
tual map in turn. In summary, as a context model, the contextual map represents the
contexts of all known entities and thus, a global view on the overall contextual situation.
Chapter 3 has documented the contextual map model.

Contextual similarity definition We have introduced the notion of contextual bound-
aries to enable the definition of contextual similarity degrees between different entity con-
texts. Contextual boundaries define a scalar similarity degree for each contextual range,
thus defining a similarity degree for each context type. Regarding all contextual ranges
affected by a boundary, we are able to track specific alikeness of contexts, as discussed in
chapter 4. Concluding, contextual boundaries allow the triggering of contextual proximity
and separation alert on application level, thus reporting which entities have been become
proximate (or the opposite) to any context-aware application using the contextual map.

Monitoring and updating We have discussed update semantics for entities commit-
ting their most current contextual information as rarely as possible but keeping their
context in the contextual map as current as possible at the same time. Monitoring entity
contexts and determining if they have become contextually proximate is done by checking
current entity contexts against contextual boundaries. Entities become contextually prox-
imate in regard to a particular boundary (i.e. the similarity definition), if the Euclidean
distances between their contexts fall below all the boundary’s thresholds defined on the
relevant contextual ranges (i.e. one threshold per range). Contextual separation exists if
this condition does not hold anymore. The context monitoring is conducted by employing
a suitable indexing structure that stores all multi-dimensional entity contexts. We have
discussed two fundamentally different structures: index trees, which are usually employed
to store high-dimensional data, and a spatial grid that partitions Euclidean space into
equally sized disjoint areal subspaces1 (see section 4.5).

Contextual proximity utilization With its contextual proximity management, the
contextual map enriches the context API (the interface for utilizing the contextual map,
see figure 2.5) for context-aware applications with four access options - two querying
methods, one notifier and one setter:

• The contextual similarity query yields a set of entities with similar contexts com-
pared to the context of a particular reference entity. The query is highly scalable
in terms of how similarity is actually quantified (i.e. specified), and in terms of
which contextual information is to be included in the similarity comparison. We
have described the contextual similarity query in section 5.1.

• Context clusters depict the second major query method for the context API. It
yields clusters of entities with similar contexts. Such a cluster corresponds to a
set of entities that a context-aware system can regard as one. Since all of those

1not to be confused with dimensional subspaces (defined by subset of dimensions)
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entity contexts are similar to each other, a context-aware system can concentrate
on serving a single contextual representation (the cluster’s ”mean context”) instead
of adapting to each single entity context. Hence, context clusters facilitate the
adaptation process for context-aware applications. The loss of accurately matching
an entity’s context remains low, since the context matched by the context-aware
system is always similar to the respective entity context. Context clusters are also
scalable in size. We have provided an extensive discussion on context clusters in
section 5.2.

• Contextual notifiers report that specified degrees of contextual proximity have been
reached between entity contexts. Those notifiers inform any context-aware applica-
tion on top of the contextual map about the proximity changes. The specification
of the ”similarity degrees” are directly defined by contextual boundaries. The noti-
fications can be used to trigger further application-specific actions.

• Contextual realms are areal subspaces in the contextual map, which can either be
derived from the space occupied by a context cluster, or defined arbitrarily. A
contextual realm defines a set of particular situations that an entity can be in. If
an entity context is included in a contextual realm, additional reasoning about the
entity context can be made (see section 5.3). This is because the context of the
entity fits a situation defined by the contextual realm.

Employable Architectures We have designed possible system architectures for dis-
tributed deployment of the contextual map based on multiple architectural paradigms,
including client-server systems, peer-to-peer networks and wireless sensor networks. We
have identified the problem that global context actuality (the ability to know every en-
tity’s current context) cannot always be guaranteed. In fact, only client-server systems
provide a satisfactory view on global context. All other architectures only allow approxi-
mation of global context. Section 6.1 has discussed the issues of a distributed contextual
map.

Heterogeneity As in the entire domain of context-awareness, heterogeneity has had a
tremendous impact on the conceptualization of the contextual map. Identifying relevant
entity context and mapping it to the contextual map is an application-specific task when
employing the contextual map. Although not being in our main focus, we have provided
a brief discussion about the issue in section 6.2.

Validation The basic idea of the contextual map - applying location-based proximity
management to context-aware computing - has been successfully validated. The client-
server-based prototype implementation from chapter 7 has been employed by a real-world
inspired scenario that employs both location and additional context. The proximity man-
agement mechanisms from the location awareness domain have been successfully applied
on non-location context, thus leveraging the notion of proximity to context awareness. We
have shown that contextual proximity is a suitable notion for identifying and managing
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entities with similar contexts, thus entities that are in similar situations at a particular
point in time. Euclidean distance in Rn has proved to be a good metric for expressing con-
textual proximity. We have validated contextual boundaries as a suitable data structure
for defining contextual proximity. Further, the contextual map is universally applicable.
Its mechanisms for detecting and exploiting contextual proximity can be applied to any
application case if context mapping and the contextual boundaries are set application-
specifically. Our test scenario demonstrates such a real-world-inspired application case
exploiting contextual proximity. It is documented in chapter 8.

9.2 Applicability of the Contextual Map

With our work summarized in the previous section, we briefly discuss two of the contextual
map’s applicability options.

9.2.1 Context Model Augmentation

As stated, the contextual map model turns out to be very suitable for tracking contex-
tual affinity. Our prototypic scenario from chapter 8 has demonstrates the contextual
map’s applicability as a stand-alone context model. However, its suitability concerning
context-aware systems, which provide other context-aware services than managing con-
textual similarity, is rather small. Out of many proposed context models (see section
2.3), recent research on context-aware systems has identified ontologies as most efficient
context models [39, 95]. Despite performing excellently in representing and inferring com-
plex contextual information, ontologies lack the ability to detect and manage contextual
similarity as simply as the contextual map.

This situation suggests a hybrid approach. Well proven context models can be aug-
mented by the contextual map model to extend their expressiveness. In order to realize
this approach, the contextual map needs to be tied in appropriately into existent archi-
tectures. We are going to base our argumentation on the generic architecture depicted in
figure 2.5. Being an auxiliary component to the core context model, the contextual map
needs to be connected to the context model of choice via a fine-granular interface. Since
the contextual map issues alerts upon detecting critical changes in contextual affinity,
a connection to the context API seems reasonable, too. This enables direct access to
those alerts for context-aware applications. Contextual proximity and separation alerts
may also be important for inferring new context from existing context. That is why the
contextual map should be linked to the context inference engine. This allows such alerts
(triggered by the contextual map) to infer new context immediately. Just as it seems
reasonable to establish links to the context API and the inference engine, it is intimating
laying a link to the information acquiring gateway, the context capturing interface, as
well. Contextual information gathered from context sources and refined by the context
capturing interface can be committed to both the context repository and the contextual
map where it is processed individually. To arrange the contextual map into the architec-
ture of context-aware systems, we recall figure 2.5 depicting an abstract context-aware
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system. As an implementation of a context model, the contextual map is to be situated
on the reasoning level, together with the context repository. In this setting, the context
repository implements a well-proven context model of choice, whereas the contextual map
provides contextual proximity management. Figure 9.1 visualizes the integration of the
contextual map into the generalized context-aware architecture depicted in figure 2.5.

Context Application

Context API

Context Repository

Inference Engine

Context Capturing Interface

Contextual 
Map

Planning Level

Application Level

Reasoning Level

Figure 9.1: Hybrid Context Model

9.2.2 Contextual Proximity Management in distributed Systems

It is to be noted, that the architectures in both figures 2.5 and 9.1 are general in na-
ture. However, many context-aware systems are based on a distributed system design
that includes mobile nodes. With mobile devices, there are much more possibilities to
acquire context. Generally, mobile devices allow versatile utilization to acquire contextual
information wherever necessary. This includes sensor readings on the one hand, and user
input on the other.

The sketches in both figures do not make any statement about distribution or mobility.
For this reason, we sketch the contextual map’s applicability on distributed and mobile
systems. In section 6.1, we have elicited how the contextual map can be deployed into
distributed architectures. As stated, a current global view on the overall contextual
situation is only possible with a centrally located server coordinating the context-aware
system. E.g., a cellular GSM network would qualify for that. In such a setting, the server
is provided with current data (via GPRS or an equivalent technology) that has been
acquired from the mobile device’s sensors and user input. Mobile devices do not need to
be equipped with a contextual map (they can be, however, to optimize update semantics).
This exemplary setting would theoretically allow a globally GSM-driven context-aware
system with billions of mobile devices and users.

In mobile peer-to-peer networks, mobile devices generally need to be equipped with
a contextual map (exception: H-P2P networks). E.g., mobile devices could be intercon-
nected with a local area wireless technology, such as 802.11 or Bluetooth. In this setting,
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each device manages its own view on the overall contextual situation while keeping it as
updated as possible by sending and receiving contextual updates top/from neighboring
devices in reach (again, data acquired from sensors and user input).

Concerning wireless sensor networks, employed mobile devices are usually very resource-
constrained and employed for environmental monitoring. Thus, transmission ranges are
small, transmission intervals long, and capabilities concerning storage and computation
minimal. Since the centrally located base station cannot expect its associated mobile
devices to regularly commit contextual updates, its view on the overall contextual setting
remains not current.

In summary, employing the contextual map to distributed systems results in drawbacks
regarding the view on the overall contextual situations.

9.3 Possible Future Work

The given concept and prototypic implementation of the contextual map leaves several
possible aspects for further enhancements.

High-level applicability In this work, we have provided a basic prototype that pro-
vides the contextual map’s core functionality: contextual proximity detection. Beyond
that, we have provided an in-depth discussion on possible application techniques for con-
textual proximity utilization: the contextual similarity query and context clustering. Be-
sides that, we have introduced contextual realms as an additional structuring criterion
for the contextual map. The basic prototype from chapter 7 model lacks support for
those three functionalities. Hence, the next reasonable step is to extend the prototype to
support those. This logically implies that the context API supports those mechanisms as
well: querying entity contexts that are sufficiently similar to a query context, determining
context clusters, and deriving or defining contextual realms, i.e. a particular state space of
possible entity contexts. As an example, the scenario from chapter 8 is to be regarded. A
suitable context cluster may be represented by a location-independent set of vehicles with
similar attributes, such as driving safety, driver characteristics, passengers, etc. (location
may be included as well, we have chosen to omit it to emphasize non-location context).
Defining contextual similarity queries and contextual realms may yield similar application
cases.

Index integration The basic prototype also neglects the utilization of a well perform-
ing indexing structure. Since the contextual map concept is potentially applicable to
large numbers of entities possessing high-dimensional context (in the contextual map),
integrating a well performing index represents another reasonably enhancement. We have
already performed a benchmark on suitable index trees in section 8.1.2. Besides the index
trees, however, the spatial grid approach represents a worthwhile candidate for an index.

Context mapping Throughout this work, we have accented that context-awareness ex-
cels heterogeneity in many aspects. For the contextual map, context mapping is of pivotal
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importance. So far, we have tailored the mapping function, which maps contextual data
onto the contextual map’s dimensions, application-specifically. Hence, the mapping func-
tion is application-dependent and heterogeneous. For this reason, identifying generally
applicable principles for context mapping remains an unsolved issue.

Real-world application So far, we have tested the contextual map in a simulation
using real-world data (road network, real-time weather). Using the contextual map in
a large-scale real-world context-aware application may yield valuable results. As stated
before, the contextual map is very specialized in nature by having a narrow focus on con-
textual proximity only (although it is universally applicable in this particular domain).
Thus, augmenting a large-scaled context-aware application, which uses a powerful context
model (in terms of encompassing many facets of context), with the contextual map as
an auxiliary component, would enrich the application with contextual proximity man-
agement. This especially accounts for a distributed architecture with mobile nodes. An
obvious option for such a setting is to embed such an application into existent cellular
GSM-networks, where many mobile devices are included, which capture large amounts
of contextual information. For this purpose, it is of decisive importance to employ a
well-scaling implementation with good performance. A rising number of both dimensions
and entities causes exponential computing costs. Such a largely scaled application would
provide additional experiences in the domain of contextual proximity management, as we
have focused on rather fundamental aspects in our documentation of the contextual map.
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Glossary

crc-Operator Function that maps a complete inter-range
Context in the Contextual Map to a partic-
ular contextual-range-specific Range Context
when given the particular contextual range to
map to.

77

k-Nearest-Neighbor Query A query yielding the k nearest neighbor of a
point in a multi-dimensional Cartesian space.

112

rcc-Operator Function that maps a contextual-range-
specific Range Context to its complete inter-
range Context in the Contextual Map.

76

Bounding Hypercube A spatial form for determining a context’s
Range Vicinity resembling a hypercube.

113

Bounding Hypersphere A spatial form for determining a context’s
Range Vicinity resembling a hypersphere.

109

Context In general, context is any information used to
characterize the situation of an Entity. Basi-
cally speaking, context is the information that
an entity’s surrounding situation is comprised
of.

19

Context In the Contextual Map, we use the term con-
text to depict an entity’s context represen-
tation in the n-dimensional Cartesian map
model as an n-dimensional point in the map.
Thus, a context is made up of the values on
the n dimensions of the contextual map.

75

Context Cluster Sets of Contexts sharing Contextual Similar-
ity. A context cluster is parameterized by a
set of Contextual Ranges, which should affect
the context cluster, and a maximum Euclidean
distance that defines contextual similarity on
each contextual range.

138, 150
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Glossary Glossary

Context Mapping The process of mapping unrefined contextual
information into the Contextual Map. Data
captured from context sources is mapped to
the respective dimensions in the contextual
map according to the rules of a Mapping Func-
tion.

78

Context Model A data structure that implements particular
mechanisms to represent Contexts of Enti-
ties. It thus provides persistent storage of
those contexts and allows applications to uti-
lize them.

28

Context Type A notion denoting a particular part of the
Context of an Entity, thus denoting contex-
tual information of a particular type (e.g. con-
textual information depicting weather condi-
tions). It is used to structure information cov-
ered by a context. In the Contextual Map, a
set of Dimensions may describe contextual at-
tributes of one context type and resemble a
Contextual Range.

21, 76

Context Updates The process of an Entity committing its most
current context data elsewhere for further pro-
cessing, i.e. to a context-aware system, such
as the Contextual Map.

103

Context Vicinity The set of Contexts in the spatial neighbor-
hood of a particular context C on inter-range
level. It is the union of all complete contexts
determined from all of C’s Range Vicinities
via the rcc-Operator.

105, 108

Contextual Affinity see Contextual Similarity 92
Contextual Boundary Defines the degree of Contextual similarity

among different entity contexts by defining
multiple thresholds of which each defines a
particular Euclidean distance that denotes
similarity on a particular Contextual Range.

92

Contextual Map A Context Model specialized on detecting sim-
ilarity among Contexts of Entities by mapping
contextual information into Euclidean space
and using Euclidean distance as a similarity
metric.

11
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Contextual Proximity see Contextual Similarity. The term proximity
is used to emphasize that contexts, which are
proximate to each other in the Contextual Map
in regard to the Euclidean distance between
each other, are actually similar to each other.

11, 92

Contextual Range A set of d Dimensions in the Contextual Map,
thus representing a subspace of the contex-
tual map. Those grouped dimensions usually
correspond to contextual attributes of a dedi-
cated Context Type.

76

Contextual Range Grid A partitioned Contextual Range, which is com-
pletely split up into disjoint, equally sized
subspaces. Serves efficient querying of Range
Contexts inside the affected contextual range.

89

Contextual Realm Spatial region in the Contextual Map. A con-
textual realm is either defined arbitrary or
by the space occupied by a Context Cluster.
Thus, a contextual realm is the union of sub-
spaces that are individually defined on multi-
ple Contextual Ranges.

158

Contextual Similarity Expresses the fact that entity contexts are
similar to each other. See Contextual Prox-
imity.

10, 92

Contextual Similarity Query Given a query context C, the similarity query
delivers a result set containing all Contexts
that are similar to C in terms of Contextual
Similarity. The contextual similarity query
can be defined using a Contextual Boundary
or arbitrary parameters.

135

Dimension Each dimension represents one particular con-
textual attribute in the real-world Context.
All dimensions together form span the Con-
textual Map enabling it to encompass all rele-
vant context attributes and thus, all possible
context.

11, 75

Entity Represents the context carrier, which can be
a person, place or physical or computational
object.

19

Global Map An instance of the Contextual Map encom-
passing all known entity contexts.

167
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Individual Cluster Updating A dynamic clustering procedure that deter-
mines changes in the current Context Cluster
configuration after each Context Update. It is
contrasted by the Iterative Clustering proce-
dure.

152

Iterative Clustering A dynamic clustering method that is based on
the iterative adaptation of the cluster’s sup-
porting data structures, i.e. minimum span-
ning trees and hierarchies. It is contrasted by
the Individual Cluster Updating procedure.

151

Local Map An instance of the Contextual Map stored lo-
cally at an Entity encompassing only its own
Context.

167

Mapping Function Defines the rules how unrefined context data
from context sources is mapped to the Con-
textual Map’s dimensions.

75, 78

Nearest-Neighbor Query see k-Nearest-Neighbor Query. 112

Range see Contextual Range. Not to be confused
with numeric and Euclidean spatial ranges.

76

Range Context d-dimensional representation of an n-
dimensional Context in the Contextual Map
on a particular Contextual Range (with
d < n). Thus, a sub-context of the complete
context on a particular range.

76

Range Query A query yielding the points in particular range
of a multi-dimensional Cartesian space. Thus,
the range defines a spatial part that the query
applies to.

110, 129, 137, 201

Range Vicinity The set of Range Contexts in the spatial neigh-
borhood of a particular range context C on a
particular Contextual Range.

108

Situation The currently state of an Entity at a particular
point in time. The information that is associ-
ated with the entity at that time resembles its
Context.

9, 19

Super Situation A set of multiple Situations (or Contexts) that
an Entity can be in. See Contextual Realm.

10, 158
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Update Semantics Define the mechanisms when and how Con-
text Updates are committed by an entity. The
process of an update makes an Entity send its
current contextual data elsewhere for further
processing.

98

Update Vector An n-dimensional vector constructed locally
at an Entity and used as carrier for Context
Updates sent by entities. Each of the vector’s
entries corresponds to one of the Contextual
Map’s n dimensions and includes the entity’s
most current context data for that dimension.

104, 176

Validity Vector An n-dimensional boolean vector stored lo-
cally at an Entity and used to construct Up-
date Vectors for Context Updates. Each en-
try defines if a current contextual attribute
has been committed by an update to the n-
dimensional Contextual Map. Each entry cor-
responds to one of the contextual map’s n di-
mensions.

103, 175

Vicinity Map An instance of the Contextual Map stored lo-
cally at an Entity encompassing Context of
entities in its logical and/or physical neigh-
borhoods.

167
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