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ABSTRACT

Motivated by a real-world application in the consolidation of farmland, we

approach the field of clustering by methods of combinatorial optimization: We

study two polytopes tied to the clustering of a geometric point set into clusters

of prescribed sizes. First, we characterize the vertices of the ’gravity polytope’

as belonging to clusterings for which there is a ’full cell decomposition’ of the

underlying space such that each cluster lies in its own cell. Hereby we obtain an

alternative characterization of power diagrams, a generalized class of Voronoi

diagrams. We show that a vertex of the gravity polytope (as well as a corre-

sponding full cell decomposition) can be computed by solving a linear program

over the ’partition polytope’. This leads to intuitive and efficient algorithms for

the classification of new data points and the prediction of data values. We then

study the edge-structure of the two polytopes and derive a tight upper bound

on the combinatorial diameter of the partition polytope. Finally, we use some

ideas inspired by our polytopal studies for a combinatorial optimization model

for our real-world problem.



ZUSAMMENFASSUNG

Ausgehend von einer Praxisanwendung in der Flurbereinigung betrachten wir

Clustering mit Hilfe von Methoden der kombinatorischen Optimierung: Wir

untersuchen zwei Polytope, die mit dem Partitionieren einer geometrischen

Punktmenge in Cluster vorgeschriebener Größen zusammenhängen. Zunächst

charakterisieren wir die Ecken des ’Schwerpunktpolytops’ als assoziiert zu Clus-

terings, für die es eine ’volle Zellzerlegung’ des zu Grunde liegenden Raums

gibt, so dass jeder Cluster in seiner eigenen Zelle liegt. Hierdurch erhalten wir

eine alternative Charakterisierung von Power-Diagrammen, einer verallgemei-

nerten Klasse von Voronoi-Diagrammen. Wir zeigen, dass eine Ecke des Schwer-

punktpolytops (und eine zugehörige volle Zellzerlegung) durch das Lösen eines

linearen Optimierungsproblems im ’Partitionspolytop’ berechnet werden kann.

Dies führt zu intuitiven und effizienten Algorithmen für die Klassifizierung

neuer Datenpunkte und die Vorhersage von Datenwerten. Anschließend unter-

suchen wir die Kantenstruktur der beiden Polytope und leiten eine scharfe obere

Schranke für den kombinatorischen Durchmesser des Partitionspolytops her.

Abschließend benutzen wir einige aus unseren polytopalen Studien abgeleitete

Ideen für ein kombinatorisches Optimierungsmodell für unser Problem aus der

Praxis.
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1 Introduction

1.1 Clustering

’We are living in a world full of data.’
unknown source

Every single day, we are surrounded by a lot of information. One of the primitive

human instincts is to devise some means to represent this information as data, to

store it and to categorize it [And73]. To understand a new piece of information

that we obtain, we always try to identify some features describing it, and com-

pare them to the features of things we already know. This is done by an intuitive

sense of similarity. By this, we derive a categorization of the information we

possess into classes of similar features [XW05].

It is not surprising that related questions about an efficient and useful classifi-

cation of data independently arose in a vast amount of fields of research such

as biology, zoology, genetics, medicine, psychiatry, sociology, criminology, an-

thropology, archaeology, geology, geography, remote sensing, machine learning,

information retrieval, pattern recognition, artifical intelligence, market research,

economics and more. See [Sco82; ELL01; Mir05] for short surveys of the early

history of this field.

The different starting points and criteria of these fields of research have lead to

different taxonomies for the objects and the algorithms involved in above process

[JD88; HJ97; JMF99; ELL01; Ber02]. The information investigated is denoted as

patterns, feature vectors, observations, instances, data vectors, data points, or

items [JMF99].

A commonly agreed on list of the steps necessary for the classification of data

looks as follows [JD88]:

1. Feature representation

2. Definition of a similarity measure

3. Clustering or grouping

The representation of the available data features involves a unification of the

information we have and the construction of data structures able to capture this

information. Additionally, we have to think about the number of classes, labels

or clusters that we want in the underlying data [JMF99].
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Figure 1: Humans intuitively group two- or three-dimensional data vectors
according to their Euclidean distance.

Typically, information is represented as a data set of multidimensional data

vectors (or points), where each dimension belongs to a single feature [DH73].

The components of such data vectors can be of two fundamentally different

types: They can describe quantitative features, either being continuous values

(e.g. when measuring the size of something) or discrete values (e.g. when

counting a number of objects), or they describe qualitative features like the

gender of people or color of objects.

The second step is the definition of a proximity, distance or similarity measure,

an answer to the question of what makes two data vectors similar to each other.

While this is usually a difficult task for qualitative features, quantitative measures

can often be directly represented as (normed) rational or irrational numbers. The

corresponding data vectors then are vectors in a high-dimensional geometric

space. When working in such a space, the Euclidean distance has a high appeal

as a similarity measure, being the intuitive way to measure distances in a two-

or three-dimensional space in everyday life [JMF99]. Figure 1 depicts this effect.

The third and final step in the above list is the grouping of data. There are two

general types of tasks that appear in this context:

1. Clustering (labeling /unsupervised classification)

2. Data classification (supervised classification)

A clustering process is the actual process of grouping the underlying data we

have into clusters, depending on its representation and the chosen similarity

measure. The term clustering is also used for the resulting assignment of data

vectors to clusters. We call the task of creating a clustering for a data set a

clustering problem.
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Figure 2: Linear separability of two clusters is an intuitive property of ’good’
clusterings.

One way of doing this is to create a hard clustering, where the data set is

partitioned such that each data vector belongs to exactly one cluster. In hard

geometric clustering, it is often desired to obtain some kind of separation for the

clusters, with the most common one being the linear separability of the clusters

[BHR92; Mir05]. See Figure 2.

Even if the structure of the underlying data is not prone to yield linearly separable

clusters, transformations of the geometric space containing the data vectors may

amend the situation. This is an active field of research [SS02; Bor07].

Alternatively, one can create a fuzzy clustering. Here, each data vector has a

variable degree of membership in each of the clusters [MTA08].

Coming from many different fields of research, there is a wide array of cluster-

ing algorithms, most tailored to work well for a special structure of data sets.

In [XW05], there is an extensive list of references to corresponding literature.

Generally speaking, there are two important types of such algorithms:

Hierarchical algorithms determine a hierarchical structure of clusterings based

on the similarity of data vectors. See e.g. [War63; Kin67; SS73] for some classical

algorithms. Typically, the results of such an algorithm are described using a

binary tree or a dendogram. The root node of such a structure describes a

top-level clustering, where the whole data set belongs to a single cluster. The

leaf-nodes are clusterings of the data set so that each data vector forms its own

cluster. The levels in between contain a hierarchy of nested clusterings, with their

position representing the level of similarity of data vectors in the same cluster.

See [JMF99; XW05] for a survey of the different concepts of such algorithms.

Partitioning algorithms (or partitional algorithms) usually determine only a

single clustering being optimal with respect to some criterion. The input for a

partitioning algorithm typically contains the number k of clusters to be created.
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A classical example for this type of algorithms is the k-means algorithm [Mac67].

See [Els97; JMF99; Ber02; KP04; Mir05; XW05] for surveys of the concepts of

partitioning algorithms.

The process of data classification or supervised learning starts with a given clus-

tering of a data set. A new data vector then is associated with one of the existing

clusters, depending on the similarity measure and given clustering. Closely

related to this are prediction or data imputation algorithms which are used to

complement a data vector which is ’missing’ one (or more) coefficients. It is

possible to perform these algorithms solely with the information of the data set,

but in many cases it has proven advantageous to use the information provided

by a given clustering of the data set as well [EE04; WM04; Mir05].

In this thesis, we are concerned with hard partitioning clustering of a data

set. Unless stated otherwise, we consider a set of data vectors X := {x1, . . . , xn}
which is represented as a set of vectors in the d-dimensional Euclidean space

(Rd, ‖·‖2), with the Euclidean distance being a viable similarity measure. Further,

we interpret the linear separability of two clusters to be a desirable differentiation

criterion of two clusters.

1.2 Constrained Clustering

Many clustering problems require the creation of clusters that satisfy some

constraints. This is commonly referred to as constrained clustering, an active

field of research which is not as well-explored as the general type of clustering.

See [BDW08] for a survey of different types of constraints and related methods

and [DB08] for a list of further references.

The two most important types of constraints applied to clustering are instance-

level constraints and balancing constraints.

Instance-level constraints are used to integrate a-priori knowledge about whether

two data vectors should belong to the same cluster or not into the clustering

process: Must-link constraints specify that two data vectors have to be in the

same cluster. Cannot-link constraints specify that two data vectors may not

belong to the same cluster [WC00; WCRS01].

This knowledge may come from some insight into the structure of the data set,

e.g. from partially clustered data or similar data sets that have been investigated

before. Instance-level constraints then are used to ’guide’ a clustering algorithm

to create a clustering of favorable properties. More complex constraints like
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cluster-level constraints, which ask for properties of whole clusters, can often

be reduced to instance-level constraints [BDW08].

The second important type of clustering constraints are balancing constraints.

These typically take the form of size restrictions on the clusters, which bound

the number of data vectors in the clusters in various ways [GBH98; ZG03; HK08].

For example, one could ask for all clusters to contain the same amount of data

vectors, or for clusters to satisfy certain lower and upper bounds on the number

of data vectors they contain.

Throughout Chapter 2, 3 and 4, we will consider clustering with size restrictions.

In our case, the constraints define the exact number of data vectors belonging to

each cluster.

In Chapter 5, we consider a clustering problem motivated by a real-world ap-

plication. As we will see, it contains a mathematically difficult type of size

restrictions. All data vectors have associated weights, and the size restrictions

are defined as lower and upper bounds on the sums of weights of the data

vectors in the clusters. Additionally, we will use both types of instance-level

constraints to obtain a clustering of the desired properties.

1.3 Polytopal Studies

We approach the constrained clustering problems in this thesis with methods of

combinatorial optimization and discrete geometry. In this approach, two poly-

topes take a central position, the ’gravity polytope’ and the ’partition polytope’.

The gravity polytope is defined as the convex hull of ’gravity vectors’ consisting

of the centers of gravity of each cluster. By this construction, it is closely tied

to the (bounded-shape) partition polytope investigated in [BHR92; HOR98].

Instead of the centers of gravity, the vectors which define a bounded-shape

partition polytope consist of the sums of vectors in each cluster, and clusters are

restricted by lower and upper bounds on their sizes.

In [BHR92] it was shown that the vertices of such a polytope belong to clusterings

for which each pair of clusters allows strict linear separation. On the other hand,

there are clusterings such that each pair of clusters is strictly linearly separable,

but which do not belong to a vertex of the bounded-shape partition polytope.

With this knowledge, we turn to a characterization of the vertices of the gravity

polytope in Chapter 2. We start by noting that the same separability result holds

for the gravity polytope. In fact, the clusterings belonging to vertices of the
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Figure 3: A (full) cell decomposition of R2 into 3 cells, with each cell containing
the data vectors of exactly one cluster.

gravity polytope allow ’cell decompositions’ such that each cluster lies in its

own cell [BG09]. A cell decomposition is defined by a special set of hyperplanes

partitioning the underlying geometric space into polyhedral cells. But even this

stronger property does not imply that the gravity vector of such a clustering

necessarily is a vertex of the gravity polytope.

We then show that the cell decompositions constructed as described in [BG09]

are of a special type, which we call ’full cell decompositions’. Full cell decom-

positions are cell decompositions for which the hyperplanes associated with any

subset of cells still define a cell decomposition. This property leads to the desired

characterization of the vertices. Figure 3 shows a (full) cell decomposition for

three clusters in R2.

Further, we see that the calculation of a vertex of the gravity polytope is equiv-

alent to the calculation of a certain least-squares assignment. This allows us

to identify the cell decompositions we construct for a vertex clustering of the

gravity polytope as an alternative characterization of power diagrams, a class of

generalized Voronoi diagrams [Aur87; AHA98].

In Chapter 3, the vertex characterization results of Chapter 2 are used for a com-

binatorial optimization approach to data classification and prediction. Having

a cell decomposition such that each cluster lies in its own cell, we devise basic

algorithms for data classification and prediction and investigate their running
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time in the arithmetic model of computation [AHU85; Cha03]. We then turn to

some further advantages of having a full cell decomposition for these algorithms.

The calculation of a vertex of the gravity polytope (with the associated clustering

then allowing such a full cell decomposition) can be done in a special transporta-

tion polytope, the partition polytope. With its matrix being totally unimodular

[KW68], it suffices to solve a linear program. Similarly, the calculation of a full

cell decomposition itself can be done by solving a linear program as well.

We then consider several ideas as to what makes a cell decomposition desirable

from a data classification point of view. We close the chapter with some thoughts

about the role of the underlying geometric information and the size restrictions.

In Chapter 4, we continue our polytopal studies by turning to the edge-structure

of both the partition and gravity polytope.

In the partition polytope, there is a one-to-one correspondence between the

vertices and the clusterings of a set of data vectors. The edges of the polytope are

in one-to-one correspondence to ’cyclical exchanges’ of data vectors between

the clusters.

We derive a new tight bound on the diameter of the partition polytope (in a

worst case) as the sum of the sizes of the two largest clusters. This result is a

direct generalization of the diameter bound for the Birkhoff polytope [BR74] and

is related to a diameter bound for permutation polytopes [GP06]. It is achieved

by a constructive graph-theoretical approach.

We start by showing that it is possible to cover the vertices of maximal degree

in a graph that decomposes into cycles by a set of vertex-disjoint cycles. The

’difference’ of two clusterings can be represented by a graph with this property.

The cover of its vertices of maximal degree then allows us to construct (at most)

two cyclical exchanges such that the maximal number of ’ill-assigned’ data

vectors in a cluster is reduced by at least one. We obtain a polynomial-time

algorithm for the construction of a small set of cyclical exchanges to transform a

clustering into another.

On the other hand, the edge-structure of the gravity polytope proves more

difficult to analyze. Only some clusterings belong to vertices of the gravity

polytope. We show that under some (mild) assumptions, its edges correspond to

cyclical exchanges. These assumptions are shown to be necessary. Further, we

explain how to add a geometric representation to a set of data vectors such that a

single specific cyclical exchange corresponds to an edge of the associated gravity

polytope.
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Figure 4: An agricultural region. Different colors represent different cultivating
farmers. The lots of the farmers are small and scattered.

1.4 Real-World Application

The methods described in Chapter 3 currently are applied in practice, in several

fields such as the creation of ’risk classes’ from the data of customers of an

insurance company, the prediction of the probability of suffering from severe

dementia depending on patient data over a time line or the derivation of a

categorization scheme for sediment samples in aquatic ecology.

In Chapter 5, we turn to a real-world application in the consolidation of farmland

which originally incited our interest in constrained clustering. Most of the results

and algorithms in this chapter have been published [BBG09].

In many rural communities, a small number of farmers cultivate a big number of

small lots which are scattered over an extended agricultural region. Due to this,

they have high driving costs, and heavy machinery cannot be used profitably.

Figure 4 shows such a region. This example will be used in Chapter 5 to depict

our methods.

In such a situation, often a classical land consolidation process is initiated. It

performs a complete restructuring of infrastructure and lot structure in the

agricultural region, making it a long-term and expensive process.
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Conversely to this, we devise a model for the consolidation of farmland as

a clustering problem, where the existing lot structure is kept as is. Thus no

extensive reassignment of legal property is necessary, so that our results are easy

to realize in practice.

Some of the lots are ’fixed’ by the farmers. The cultivation rights for the remain-

ing lots then are reassigned combinatorially. Of course, to each farmer a set of

lots has to be assigned that totals to about his original size and value. As the

lots differ with respect to these two measures, we obtain a constrained clustering

problem with non-uniform size restrictions, which makes it inherently difficult.

The goal is the minimization of the total driving and cultivation cost of the

farmers of the whole region. To understand how this can be achieved, we

perform an economic analysis of these two cost factors and discuss what makes

a distribution of farmland a ’good’ one.

The results are intuitively clear: The lots have to be swapped such that large

groups of connected lots are assigned to single farmers and such that the lots of

each single farmer are not too far from each other. We enforce the creation of

large connected lot groups belonging to single farmers by using instance-level

constraints.

The clustering problem can be modeled as an integer linear program. In the case

where all lots have identical size and bonity, the corresponding constraint matrix

is totally unimodular which allows an efficient solution of the problem as linear

program.

In the case of different lot sizes and bonities, an application of the Simplex

algorithm yields a provably low number of lots that are not uniquely assigned

to a single farmer. By this, it serves as an efficient approximation algorithm

when combined with a post-heuristic for these lots. Figure 5 shows one of the lot

redistributions calculated this way.

We also describe an alternative approach using an adaption of the k-means

algorithm. Finally, we close the chapter with some empirical results for the

practical performance of both our algorithms.
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Figure 5: One of the lot redistributions calculated in Chapter 5.
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2 Vertex Characterization of the Gravity Polytope

In this chapter, we consider the ’gravity polytope’ defined by the centers of

gravity of clusters of all possible clusterings of a given set of data points. We

investigate the connection between the ’gravity vectors’ of clusterings, the sepa-

rability of clusters and partitions of the underlying space into cells. Our results

will lead to some algorithmic ideas for data classification in the next chapter.

We refer the reader to an overview of our notational conventions and a list of the

most important symbols used in the Notation and Symbols appendix.

2.1 The Gravity Polytope

We start by providing the necessary terminology.

In the following, let d ∈ N be the dimension of a geometric space, let n ∈ N be

the number of data points we have, and let X := {x1, . . . , xn} ⊂ Rd with xi 6= xj

for all i 6= j; i, j ∈ {1, . . . , n} be our set of data points. Let further k ∈ N be the

number of clusters and κ1, . . . , κk ∈ N with
k∑
i=1

κi = n be the number of data

points in the clusters. We start by defining our basic clustering terms formally.

Definition 2.1 (k-Clustering)

A k-clustering C := (C1, . . . , Ck) of X is a partition of X into k non-empty sets
C1, . . . , Ck. Ci is the i-th cluster of C for i ∈ {1, . . . , k}.

Often, the size of the clusters created is important.

Definition 2.2 (Cluster Size and Clustering Shape)

Let C := (C1, . . . , Ck) be a k-clustering of X . For i ∈ {1, . . . , k}, the number of
elements in Ci is the size |Ci| of Ci. The tuple |C| := (|C1|, . . . , |Ck|) is the shape of
C.

The shape captures all information about the sizes of the clusters of a clustering.

Next, we consider clusterings for which the shape is fixed by the choice of

κ1, . . . , κk.

Definition 2.3 (k, (κ1, . . . , κk)-Clustering)

A k, (κ1, . . . , κk)-clustering C of X is a k-clustering of X with |C| = (κ1, . . . , κk).

For a given set of n points and a fixed number k of clusters, there is a polyno-

mial number (in n) of k-clusterings or k, (κ1, . . . , κk)-clusterings satisfying the

definitions above. We denote these sets of clusterings as follows.
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Definition 2.4 (Set of (Feasible) Clusterings)

C(X, k) := {C : C is a k-clustering of X} is the set of k-clusterings of X and

C(X, k, κ1, . . . , κk) := {C : C is a k, (κ1, . . . , κk)-clustering of X}

is the set of k, (κ1, . . . , κk)-clusterings of X .

With k and (κ1, . . . , κk) clear from the context and fixed, we use the informal term

prescribed-shape clustering (PSC) for a clustering respecting these numbers.

We also use the notationPSC(X) = PSC(X, k;κ1, . . . , κk) := C(X, k, κ1, . . . , κk).

If the fact that we consider a PSC is clear as well, we also simply use the term

clustering.

Now we turn to the definition of the polytope we want to investigate. To do so,

we need a formal definition of the center of gravity of a cluster as the arithmetic

mean of the points in the cluster.

Definition 2.5 (Center of Gravity)

The center of gravity of a cluster Ci is ci := 1
κi

∑
x∈Ci

x for i ∈ {1, . . . , k}.

Next, we move to Rd·k by combining all the centers of gravity of a clustering to a

single vector.

Definition 2.6 (Gravity Vector)

The gravity vector of a PSC C is v(C) := (cT1 , . . . , c
T
k )T ∈ Rd·k.

Each PSC of X defines a gravity vector. We denote the set of all these gravity

vectors as follows.
Definition 2.7 (Set of Gravity Vectors)

V = V (X, k;κ1, . . . , κk) := {v(C) : C ∈ PSC(X, k;κ1, . . . , κk)} is the set of

gravity vectors.

Now we are ready to define the polytope that we will analyze in this chapter. We

define it as the convex hull of the set of gravity vectors of PSCs for a point set X .

Definition 2.8 (Gravity Polytope (Q))

The gravity polytope is Q = Q(X, k;κ1, . . . , κk} := conv V .

When the parameters of Q(X, k;κ1, . . . , κk} are clear from the context, we will

simply use the term Q to refer to Q(X, k;κ1, . . . , κk}. Additionally, we will use

Q as an abbreviation for ’a gravity polytope, ’the gravity polytope’, or ’the

corresponding gravity polytope’.

We introduce the association of a clustering with a given gravity vector as follows.
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Figure 6: Two clusterings with the same associated gravity vector.

Definition 2.9 (Associated Clustering)

Let v ∈ Q. A PSC C with v(C) = v is a clustering associated with v.

Two PSCs C,C ′ may have the same associated gravity vector v(C) = v(C ′). Let

X :=

{ (
−1

−1

)
,

(
−1

1

)
,

(
0

0

)
,

(
1

1

)
,

(
1

−1

) }
⊂ R2.

Clustering these points into two clusters, we may obtain C = (C1, C2) with

C1 =

{ (
−1

−1

)
,

(
1

1

) }
, C2 =

{ (
−1

1

)
,

(
0

0

)
,

(
1

−1

) }

or C ′ = (C ′1, C
′
2) with

C ′1 =

{ (
−1

1

)
,

(
1

−1

) }
, C ′2 =

{ (
−1

−1

)
,

(
0

0

)
,

(
1

1

) }
.

Both C and C ′ are associated with the gravity vector v = (cT1 , c
T
2 )T = (0, 0, 0, 0)T .

Figure 6 shows the two clusterings.

In the following, we will need a definition that allows us to formally describe

the process of exchanging points in between clusters.

Definition 2.10 (Application of a Cyclical Exchange)

Let C := (C1, . . . , Ck) be a PSC, let I = {i1, . . . , it} ⊂ {1, . . . , k} be an index set, and
let xi ∈ Ci for i ∈ I . Applying a cyclical exchange CE := (xi1 , . . . , xit) to C means
deriving a PSC C ′ = (C ′1, . . . , C

′
k) from C by setting C ′il = (Cil ∪ {xil−1

})\{xil}
for all l ∈ {1, . . . , t}. The cyclical exchange CE′ inverse to CE is defined as
CE′ := (xit , . . . , xi1), and can analogously be applied to C ′ to derive C.
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Recall (from our notational conventions in the ’Notation and Symbols’ appendix)

that we use index sets in a ’modulo way’, implying that we also set C ′i1 =

(Ci1 ∪ {xit})\{xi1} for the choice of l = 1, as xi0 = xit .

Informally, we say that a cyclical exchange CE := (xi1 , . . . , xit) moves the points

xi1 , . . . , xit . Note that, by this definition, a single cyclical exchange moves at

most one point of each cluster.

Let C and C ′ be two PSCs. Clearly, it then is possible to derive C ′ from C by

applying a set of cyclical exchanges where each x ∈ X is moved at most once. In

this case, the order in which these cyclical exchanges are applied is arbitrary.

Lemma 2.11

Let C := (C1, . . . , Ck) and C ′ := (C ′1, . . . , C
′
k) be two PSCs of X := {x1, . . . , xn}.

Then there is a set of cyclical exchanges CE := {CE1, . . . , CEs} where all x ∈ X are
moved by at most a single CEi ∈ CE , such that C ′ can be derived from C by applying
the cyclical exchanges in CE to C.

Proof. We show that CE can be constructed greedily. If C = C ′, CE = ∅, and we

are done. Otherwise, there is an xi1 ∈ X such that xi1 ∈ Ci1 , but xi1 ∈ C ′i2 for

some i2 ∈ {1, . . . , k}\{i1}. With the cluster sizes fixed, there is an xi2 ∈ X with

xi2 ∈ Ci2 , but xi2 ∈ C ′i3 for i3 ∈ {1, . . . , k}\{i2}. We continue like this until we

move an item xit to an ir-th cluster from which we already ’took’ an item. This

yields a cyclical exchange CE1 := (xir , . . . , xit).

Applying CE1 to C, we obtain a PSC C ′′ for which the number of points x with

x ∈ C ′′i , but x /∈ C ′i for some i ∈ {1, . . . , k} is strictly lower than for C. We then

repeat our greedy construction of a cyclical exchange until the PSC derived is C ′.

By this construction, any item is only moved by at most one cyclical exchange.

This proves the claim.

Note that the set of cyclical exchanges to derive a PSC from another is not

uniquely defined, not even the number of cyclical exchanges is fixed. On the

other hand, the fact that such a set exists can be used to show that gravity vectors

that are vertices of the gravity polytope have the special property of necessarily

being associated with only a single PSC.

Lemma 2.12

Let v∗ be a vertex of Q. Then there is exactly one PSC C with v(C) = v∗. We call this
PSC the clustering of v∗.

Proof. We prove the claim by contradiction. By definition of Q there is a PSC

with v∗ = v(C) = (cT1 , . . . , c
T
k )T . Let v∗ be a vertex of Q and C := (C1, . . . , Ck),
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C ′ := (C ′1, . . . , C
′
k) be two clusterings with v(C) = v(C ′) = v∗. Then there is

a vector a := (aT1 , . . . , a
T
k )T ∈ Rd·k (with ai ∈ Rd for all i ∈ {1, ..., k}) with

aT v∗ > aT v for any v ∈ Q\{v∗}.
As the number of points in the clusters is fixed, we can find a set of cyclical

exchanges CE to derive C ′ from C such that no x ∈ X is moved twice (Lemma

2.11). Without loss of generality, we assume x1 ∈ C1, . . . , xt ∈ Ct and x1 ∈ C ′2,
. . . , xt−1 ∈ C ′t, xt ∈ C ′1 to represent the points of a cyclical exchange CE in CE .

As v∗ is maximal in Q with respect to aT v and

aT v∗ =
k∑
i=1

aTi ci =
k∑
i=1

ai
κi

T ∑
xl∈Ci

xl =
k∑
i=1

ai
κi

T ∑
xl∈C′i

xl,

we see that
a1
κ1

T
x1 + · · ·+ at

κt

T
xt =

a2
κ2

T
x1 + · · ·+ a1

κ1

T
xt,

as otherwise an application of CE to C (or the inverse one to C ′) yields another

PSC C ′′ with aT v(C ′′) > aT v∗. Equivalently, we can write above equality in the

form
a1
κ1

T
(xt − x1) + · · ·+ at

κt

T
(xt−1 − xt) = 0.

By applying CE to C, the centers of gravity are moved, as xi 6= xj for all

i 6= j; i, j ∈ {1, . . . , k}, and we get a new gravity vector v′′ 6= v∗ ∈ Q with

aT v′′ < aT v∗ by our choice of a. This implies that

a1
κ1

T
(xt − x1) + · · ·+ at

κt

T
(xt−1 − xt) < 0,

contradicting our assumption that there are two clusterings with the same vertex

as gravity vector.

We will also use the shorter term vertex clustering for a clustering associated

with a vertex in Q if the context is clear.

The gravity polytope is tied to polytopes that have been studied in the literature.

Rothblum et al. studied polytopes in Rd·k belonging to k-clusterings where,

instead of considering the centers of gravity of the clusters, they added up the

coordinates of the points contained in each cluster and considered a vector

containing these sums [BHR92; HOR98].

They investigated the vertices of these polytopes for both the case that the num-

ber of points is arbitrary in each cluster, implying that they are not necessarily
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non-empty, and the case that there are lower and upper bounds on the sizes

of the clusters. In the latter case, they talked about bounded-shape partition

polytopes. In [BHR92] it was shown that the vertices of these (latter) poly-

topes belong to clusterings for which each pair of clusters allows strict linear

separation.

In later work, Rothblum et al. also considered shaped partition polytopes where

the set of admissible shapes for the clusters is defined explicitly, see e.g. [HOR99;

HOR00].

Our gravity polytope can be interpreted as a scaled variant of a special case of

both these types of polytopes: It corresponds to the case where the lower bounds

on the cluster sizes are equal to the upper bounds, or to a shaped partition

polytope with a single feasible shape.

By this, the gravity polytope and these polytopes share some common properties.

We start by transferring the separability result for clusters in [BHR92] to the

gravity polytope, and then extend this known result by creating special ’cell de-

compositions’ of the underlying space such that each cell of these decompositions

contains exactly one of the clusters. As we will see, these cell decompositions

are closely related to a special class of generalized Voronoi diagrams [Aur87;

AHA98].

2.2 Separability

First, we recall some standard terminology for the separability of two sets.

Definition 2.13 (Linear Separability)

Let A,B ⊂ Rd. A and B allow (weak linear) separation (or are (weakly linearly)

separable) if there is a hyperplane Ha,β ⊂ Rd with a ∈ Rd\{0} and β ∈ R such that
A ⊂ H≥a,β and B ⊂ H≤a,β .
A and B allow strict (linear) separation (or are strictly (linearly) separable) if
there is a hyperplane Ha,β ⊂ Rd with a ∈ Rd\{0} and β ∈ R such that A ⊂ H>

a,β and
B ⊂ H<

a,β .

We call a clustering separable if all pairs of its clusters are separable.

Definition 2.14 (Separability of Clusterings)

Let C := (C1, ..., Ck) be a k-clustering ofX . C allows (weak, strict) linear separation

(or is (weakly, strictly) linearly separable) if Ci and Cj are (weakly, strictly) separable
for any i 6= j; i, j ∈ {1, ..., k}.
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Note that when considering the separability of clusters Ci and Cj of a finite point

set X , strict separation already implies strong separation, implying that the

hyperplane in between the two clusters can be moved slightly, and its direction

can be perturbed slightly while still keeping the strong separation property.

With these terms, we are capable of explaining the connection between vertices

of the gravity polytope and separability of the associated clustering. This result

first was proven by Barnes, Hoffman and Rothblum (for a related polytope)

[BHR92].

Theorem 2.15 (Barnes, Hoffman, Rothblum 92)

Let v∗ be a vertex of Q. Then the PSC C∗ associated with v∗ by v∗ = v(C∗) allows
strict linear separation.

Proof. Let v∗ be a vertex of Q and let C∗ := (C∗1 , . . . , C
∗
k) be the unique clustering

associated with v∗ = v(C∗) = ((c∗1)
T , . . . , (c∗k)

T )T (see Lemma 2.12).

Then there is a vector a = (aT1 , . . . , a
T
k )T ∈ Rd·k (with ai ∈ Rd for all i ∈ {1, . . . , k})

with

aT v∗ =
k∑
i=1

aTi c
∗
i >

k∑
i=1

aTi ci = aT v

for any v := v(C) = (cT1 , . . . , c
T
k )T ∈ Q\{v∗}.

It suffices to prove the strict separability of C∗1 and C∗2 . Let x1 ∈ C∗1 , and x2 ∈ C∗2 .

We consider the clustering C := (C1, ..., Ck) with C1 := (C∗1 ∪ {x2})\{x1}, C2 :=

(C∗2 ∪ {x1})\{x2} and Ci := C∗i for all i ∈ {3, ..., k}. Then c1 = c∗1 + 1
κ1

(x2 − x1),

c2 = c∗2 + 1
κ2

(x1 − x2) and ci = c∗i for all i ∈ {3, ..., k}. We know that

k∑
i=1

aTi c
∗
i >

k∑
i=1

aTi ci

and thus

aT1 c
∗
1 + aT2 c

∗
2 > aT1 c1 + aT2 c2.

We conclude

0 >
a1
κ1

T
(x2 − x1) +

a2
κ2

T
(x1 − x2),

and hence

0 >

(
a1
κ1
− a2
κ2

)T
(x2 − x1).



2 VERTEX CHARACTERIZATION OF THE GRAVITY POLYTOPE 20

By choosing a21 := a1
κ1
− a2

κ2
∈ Rd, we get aT21x1 > aT21x2. As x1 and x2 were

chosen arbitrarily from C∗1 respectively C∗2 , we get

min
x∈C∗1

aT21x > max
x∈C∗2

aT21x.

Thus C∗1 and C∗2 are strictly separable. Using the same construction for each pair

of clusters C∗i , C∗j , we get vectors aji 6= 0 ∈ Rd with

min
x∈C∗i

aTjix > max
x∈C∗j

aTjix

for all i 6= j; i, j ∈ {1, ..., k}, implying the pairwise strict separability of all

clusters.

Note that the vector a = (aT1 , . . . , a
T
k )T ∈ Rd·k with

aT v∗ =
k∑
i=1

aTi c
∗
i >

k∑
i=1

aTi ci = aT v

for any v := v(C) = (cT1 , . . . , c
T
k )T ∈ Q\{v∗} has to be from int(N(v∗)), where

N(v∗) denotes the cone of outer normals of v∗ with respect to Q. Note further

that a ∈ int(N(v∗)) already implies aji 6= 0 ∈ Rd for all i 6= j; i, j ∈ {1, . . . , k}
due to the unique association of a clustering with v∗.

Using an a ∈ bd(N(v∗)) with ai
κi
6= aj

κj
for all i 6= j; i, j ∈ {1, . . . , k}, i.e. an

a ∈ Rd·k with only aT v∗ ≥ aT v for any v ∈ Q\{v∗}, yields a system of hyperplane

directions allowing (at least) weak separation of the clusters of the clustering

associated with the vertex v∗, easily seen by just replacing all strict inequalities in

above proof by weak inequalities. The clustering may also be strictly separable

with respect to such an a, but we cannot guarantee this property.

Corollary 2.16

Let v∗ be a vertex of Q, let C := (C1, . . . , Ck) be the clustering of v∗, and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k. If a ∈ int(N(v∗)), C is strictly separable with respect to

separation directions aji := ai
κi
− aj

κj
for clusters Ci and Cj . If a ∈ bd(N(v∗)) and

ai
κi
6= aj

κj
for all i 6= j; i, j ∈ {1, . . . , k}, C is (at least) weakly separable with respect to

separation directions aji := ai
κi
− aj

κj
for clusters Ci and Cj .

Figure 7 shows a clustering that is a vertex of its respective gravity polytope,

and hyperplane directions such that in a), we only achieve weak separation, but

strict separation in b).
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(a) Hyperplane directions allowing
only weak separation.

(b) Hyperplane directions
allowing strict separation.

Figure 7: A 3-clustering in R2 belonging to a vertex of the corresponding gravity
polytope.
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If X ⊂ Rd does not have a full-dimensional convex hull, any clustering of X

clearly is weakly separable by using a ’separating’ hyperplaneH withX ⊂ H for

any pair of clusters. In the following, we assume X to have a full-dimensional

convex hull, unless noted otherwise.

With X having a full-dimensional convex hull, we cannot even guarantee weak

separability of a clustering C if v(C) ∈ relbd(Q) (but not a vertex). Note that

we talk about the relative boundary (and later interior) of Q, as Q is not full-

dimensional:

The coordinates of k − 1 cluster centers of gravity suffice to uniquely determine

the k-th cluster’s center of gravity.

Lemma 2.17

Q is not full-dimensional.

Proof. Let C := (C1, . . . , Ck) be any PSC with v = v(C) ∈ Q ⊂ Rd·k.

For a = (κ1, . . . , κ1, κ2, . . . , κ2, . . . , κk, . . . , κk)
T ∈ Rd·k, we have

aT v =

k∑
i=1

aTi ci =

k∑
i=1

1

κi
(κi, . . . , κi)

T (
∑
xl∈Ci

xl) =

n∑
l=1

(1, . . . , 1)Txl,

independently of C.

The problem case ai
κi

=
aj
κj

plays the central part in the following statement.

Lemma 2.18

Let C be a PSC with v = v(C) ∈ relbd(Q). Then C is not necessarily weakly separable.

Proof. Let v ∈ relbd(Q) and C be an associated clustering. Then there is a vector

a ∈ Rd·k such that aT v ≥ aT v′ for any v′ ∈ Q. We now construct a clustering

with gravity vector v that is not separable, but satisfies this property.

Consider two clusters C1 and C2 belonging to clustering C. If a1
κ1

= a2
κ2

, we know

that the value of aT v(C) does not change if we swap points internally between

C1 and C2.

Figure 8 a) shows a 3-clustering C in R2. The different colors associate the points

with a cluster (C1 being the green, C2 being the yellow and C3 being the red

cluster), yielding a clustering C = (C1, C2, C3) with gravity vector v. v is optimal

with respect to aT v for a = (1, 0, 0, 0, 0, 0)T .

We now exchange a pair of points between the red and yellow cluster to obtain

the clustering C ′ of Figure 8 b).
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(a) A strictly separable
clustering.

(b) A clustering that is not
separable, but lies on the
relative boundary of Q.

Figure 8: Two 3-clusterings of X ⊂ R2 with associated gravity vectors on the
same facet of Q.
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The gravity vector v′ = v(C ′) still is optimal with respect to a = (1, 0, 0, 0, 0, 0)T ,

yet C2 (yellow) and C3 (red) are not separable. By this, v′ cannot be a vertex of

Q, but v′ ∈ relbd(Q), without being separable. This proves the claim.

Let C be a clustering with associated gravity vector v. For any a ∈ Rd·k with
ai
κi

=
aj
κj

for some i 6= j; i, j ∈ {1, . . . , k}, the clusters Ci and Cj are treated as a

single cluster Ci ∪ Cj with respect to aT v. Due to this, it is a natural assumption

to use ai
κi
6= aj

κj
for any i 6= j; i, j ∈ {1, . . . , k}. We will do so, unless stated

otherwise.

If there is no pair of indices i 6= j; i, j ∈ {1, . . . , k}with ai
κi

=
aj
κj

, we immediately

see that we can apply the construction from Theorem 2.15 to obtain a system

of weakly separating hyperplanes for a clustering C with gravity vector v(C) ∈
relbd(Q), just like in Corollary 2.16.

Corollary 2.19

Let v∗ ∈ relbd(Q), let C := (C1, . . . , Ck) be a clustering associated with v∗, and let
a := (aT1 , . . . , a

T
k )T ∈ Rd·k with aT v∗ ≥ aT v for any v ∈ Q\{v∗}, and ai

κi
6= aj

κj
for

all i 6= j; i, j ∈ {1, . . . , k}. Then C is weakly separable with respect to separation
directions aji := ai

κi
− aj

κj
for clusters Ci and Cj .

On the other hand, having a strictly separable clustering does not imply that

its gravity vector v is on the relative boundary of Q. In the following lemma,

we construct a strictly separable clustering in the relative interior of its gravity

polytope Q.

Lemma 2.20

Let C be a PSC with v = v(C) ∈ relint(Q). Then C may be strictly separable.

Proof. We construct a set of points X ⊂ R2 and a strictly separable PSC C of

these points. The gravity vector v = v(C) will lie strictly in the convex hull of

the gravity vectors of three other PSCs of X , of which one is known to be in

relint(Q). This will prove the claim.

Consider the two-dimensional point set X in Figure 9. The lines represent a grid

of distance 1 in both coordinates, the central intersection of the grid lines is the

origin. The shown area consists of nine 4 × 4 squares. There are no points in

[−2, 2]2. The other 4× 4 squares contain the same pattern of points. Let c be the

center of such a square. Then the points in this square are

c+

(
1.9

0

)
, c−

(
1.9

0

)
, c+

(
0

1.9

)
, c+

(
0

−1.9

)
,
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0

0

Figure 9: A point-symmetric point set X ∈ R2.

c+

(
1.9

1.9

)
, c+

(
−1.9

1.9

)
, c+

(
1.9

−1.9

)
and c+

(
−1.9

−1.9

)
.

Note that X is point-symmetric with respect to the origin. The clustering C

we consider contains four clusters which are symmetrically placed in X , see

Figure 10 a). Figure 10 b) identifies their centers of gravity. C allows strict linear

separation. We now prove that its gravity vector lies in relint(Q).

First of all, due to the point-symmetry of X , there are (many) clusterings with

gravity vector 0. For a simple construction, one just always assigns the points

x ∈ X and −x ∈ X to the same cluster. This gravity vector certainly is in

relint(Q), as for any a 6= 0 ∈ R2·4 (that distinguishes the different clusters), there

is a clustering C ′ with aT v(C ′) > 0, and due to the point-symmetry of X also a

clustering C ′′ with aT v(C ′′) = −aT v(C ′) < 0.

We now choose b1, b2 ∈ R2 such that b1⊥b2 to construct 4-clusterings

C := (C1, C2, C3, C4) of X as follows:

C1 := {x ∈ X : x ∈ H≥b1,0 ∧ x ∈ H
≤
b2,0
}

C2 := {x ∈ X : x ∈ H≥b1,0 ∧ x ∈ H
≥
b2,0
}

C3 := {x ∈ X : x ∈ H≤b1,0 ∧ x ∈ H
≥
b2,0
}

C4 := {x ∈ X : x ∈ H≤b1,0 ∧ x ∈ H
≤
b2,0
}

Figure 11 depicts two such 4-clusterings (for pairs of orthogonal vectors b1 and

b2) and shows the centers of gravity of the clusters.
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(a) The colors represent the 4 different
clusters.

(b) The centers of gravity of the clustering.

Figure 10: The point set of Figure 9 partitioned into 4 strictly separable clusters.
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(a) A 4-clustering for b1 =
(

3
−1

)
and b2 =

(
1
3

)
.

(b) A 4-clustering for b1 =
(

2
−1

)
and b2 =

(
1
2

)
.

Figure 11: Two different 4-clusterings of X . The big dots are the centers of
gravity of the clusters.
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Figure 12: The centers of gravity of the clusters of Figure 10 lie strictly in the
convex hull of the origin and the centers of gravity of the clusters of Figure 11 a)

and b).

Finally, we look at the convex hull of
(
0
0

)
and the centers of gravity of the clusters

of the clusterings depicted in Figure 11. An easy calculation shows that the

centers of gravity lie strictly in this convex hull. Figure 12 depicts the situation.

Looking at this example, we see that the strict separability of a clustering does

not imply that the associated gravity vector is a vertex of the polytope. Hence

this property falls short of yielding a characterization of the vertices.

This is similar to the situation in a polytope without restrictions on the cluster

sizes considered by Barnes, Hoffmann and Rothblum in [BHR92]. While the

clusterings belonging to vertices of this polytope allow strict separation of their

clusters by hyperplanes containing the origin, this property can also be achieved

by clusterings that do not belong to such a vertex.

In the following, we discuss some extensions to the strict separability of a clus-

tering to derive a characterization for the vertices of the gravity polytope. While

we explained the above example numerically and pictographically, in the next

sections we will develop analytical arguments that can be used to directly see

that the clustering of Figure 10 is in the interior of the gravity polytope.

2.3 Cell Decompositions

Partitions of metric spaces and complexes in a metric space are a classical field

in topology, see e.g. [Bre93]. Here, we choose a geometric approach and inter-
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pretation for our results. We start by giving a fully geometric definition of cell

decompositions. To do so, we need the following term.

Definition 2.21 (k-Cell Arrangement)

Let H be a set of hyperplanes H := {Haij ,γij : i 6= j; i, j ∈ {1, . . . , k}} with
Haij ,γij := {x ∈ Rd : aTijx = γij}, where aij ∈ Rd, γij ∈ R, aji = −aij and
γji = −γij for all i 6= j; i, j ∈ {1, . . . , k}.
Let further P := (P1, . . . , Pk) with Pi := {x ∈ Rd : aTijx ≤ γij for all j ∈
{1, . . . , k}\{i}} for all i ∈ {1, . . . , k} be the set of k cells of H, and let Pi be the
i-th cell. H is a k−cell arrangement if int(Pi) 6= ∅ for all i ∈ {1, . . . , k}.

With aij and γij fixed and known, we will often identify the hyperplanes Haij ,γij

with Hij . Above definition describes a special set of hyperplanes creating cells

in a given geometric space Rd. A cell decomposition is the set of cells created by

such a system of hyperplanes if it satisfies some additional constraints.

Definition 2.22 (H-Cell Decomposition)

Let H be a k-cell arrangement. The cells P := (P1, . . . , Pk) of H are an H-cell

decomposition of Rd if

1.
k⋃
i=1

Pi = Rd

2. Pi ∩Hij = Pj ∩Hij for all i 6= j; i, j ∈ {1, . . . , k}

AnH-cell decomposition P := (P1, . . . , Pk) partitions Rd into k convex and full-

dimensional polyhedral cells such that each pair Pi, Pj of cells intersect their

(weakly) separating hyperplane Hij identically. Note that an H-cell decompo-

sition not only is a special kind of partition of Rd, but that it also has a special

geometric representation.

IfH is known from the context, we will use the shorter wording cell decomposi-

tion. Also, if we want to emphasize the number k of cells created, we will use

the term k-cell decomposition.

Figure 13 shows two k-cell arrangements that do not induce a cell decomposition

due to a violation of the first condition, respectively the second condition. Figure

13 a) shows cells that do not partition the Euclidean plane. Figure 13 b) shows

a k-cell arrangement that is no cell decomposition due to the (vertical, dashed)

hyperplane separating the red and green cells having a non-empty intersection

with the red cell, but an empty one with the green cell.

Note that the cells in Figure 13 a) also violate the second condition. As we see in

the following lemma, this is no coincidence.
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(a) A violation of condition 1 of a
cell decomposition

(b) A violation of condition 2 of a cell decomposition

Figure 13: Two k-cell arrangements in R2 whose cells do not form a cell
decomposition.
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Lemma 2.23

LetH be a k-cell arrangement inducing cellsP := (P1, . . . , Pk) withPi∩Hij = Pj∩Hij

for all i 6= j; i, j ∈ {1, . . . , k}. Then
k⋃
i=1

Pi = Rd.

Proof. We prove the claim by showing that if
k⋃
i=1

Pi 6= Rd, there are indices

i 6= j; i, j ∈ {1, . . . , k}with Pi ∩Hij 6= Pj ∩Hij .

By
k⋃
i=1

Pi 6= Rd, there is an x ∈ Rd with x /∈
k⋃
i=1

Pi. By our construction of the cells

P := (P1, . . . , Pk), there is an inclusion-maximal and full-dimensional convex

polyhedron defined by some of the hyperplanes in H such that x′ /∈
k⋃
i=1

Pi for

all interior points x′ of this polyhedron. Each facet of this polyhedron contains

a point in its relative interior. Let x′′ be such a point, then x′′ ∈ Hij for some

i 6= j; i, j ∈ {1, . . . , k} and without loss of generality x′′ ∈ Pi, and then x′′ /∈ Pj ,
as it is an interior point of the facet and as Pi and Pj are full-dimensional. Thus

x′′ ∈ Pj ∩Hij , but x′′ /∈ Pi ∩Hij .

Informally, Lemma 2.23 shows that the second condition of the definition of cell

decompositions implies the validity of the first one. For the sake of intuitivity of

the definition, we stick with the original formulation denoting two conditions.

We now turn to some special properties of 3-cell decompositions, as these play

an important role in the remainder of this chapter. Additionally, many of our

figures show 3 clusters, respectively a cell decomposition into 3 cells. We start by

identifying what the separation directions of such a 3-cell decomposition look

like.

Lemma 2.24

Let P := (P1, P2, P3) be anH-cell decomposition of Rd. Then a31 ∈ −cone{a12, a23},
a12 ∈ −cone{a23, a31}, a23 ∈ −cone{a31, a12}.

Proof. It suffices to show −a13 = a31 ∈ −cone{a12, a23}, the other statements

hold analogously. Suppose H12‖H23 and without loss of generality H≤12 ⊂ H
≤
23.

Then a12 = l · a23 for some l > 0. Now suppose a31 6= l′ · a12, then H≤12 ∩H
≥
13 6= ∅

and thus there is a x ∈ H≤12 ∩H
≤
23 ∩H

≤
31 ⇒ x /∈ P1 ∪P2 ∪P3, in contradiction to P

being a cell decomposition. Thus a31 = l′ · a12 = l · l′ · a23 for some l′ ∈ R. With

H≤12 ⊂ H
≤
23, we get l′ < 0, and thus a31 ∈ −cone{a12, a23}.

Now suppose a12, a23, a31 are not collinear and consider E := span{a13, a12} ⊂
Rd. There is an x ∈ E with aT31x < γ31 and aT12x < γ12, and thus x /∈ P1 ∪ P2. By

this, we necessarily have x ∈ P3 due to our cell decomposition.
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a12 a23

a31

(a) The cell decomposition for a
valid choice of a31.

a12 a23

a31

(b) No cell decomposition for an
invalid choice of a31 (1).

a12 a23

a31

(c) No cell decomposition for an
invalid choice of a31 (2).

a12 a23

a31

(d) No cell decomposition for an
invalid choice of a31 (3).

Figure 14: Only a choice of a31 ∈ −cone{a12, a23} can lead to a cell
decomposition.

Suppose a23 /∈ E. Note that this implies d ≥ 3 and that there then is a y with y⊥E,

aT23y 6= 0 and x′ = x + y ∈ H≤23. With y⊥E we know that aT12x
′ = aT12(x + y) =

aT12x+ aT12y = aT12x+ 0 = aT12x < γ12 and analogously aT31x
′ = aT31x < γ31. Thus

x′ /∈ P1 ∪ P2 ∪ P3, in contradiction to P being a cell decomposition.

Let now a23 ∈ E. P2 = H≤21 ∩ H
≤
23. Suppose a31 /∈ −cone{a12, a23}, then

a31 = l12a12 + l23a23 where at least one of l12, l23 is > 0. If l12 > 0, there is an

x ∈ H≤12∩H
≤
23∩H

≤
31. If l23 > 0 (and l12 ≤ 0), there again is an x ∈ H≤12∩H

≤
23∩H

≤
31.

Figure 14 depicts these different situations. This implies x /∈ P1∪P2∪P3, proving

the claim.

We get the following immediate corollary.
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Corollary 2.25

Let P := (P1, P2, P3) be anH-cell decomposition of Rd. If H12‖H23 then H12‖H31.

Informally this implies that a cell decomposition of 3 cells is either induced by

3 parallel hyperplanes, or that no two of the inducing hyperplanes are parallel,

but the span of their aij is two-dimensional. If we consider this statement in an

only two-dimensional space, we get the following interpretation.

Lemma 2.26

Let P := (P1, P2, P3) be anH-cell decomposition of R2. The hyperplanes ofH satisfy
one of the two following conditions:

• |H12 ∩H23 ∩H31| = 1

• H12‖H23‖H31

Proof. The second condition is satisfied if a12, a23 and a31 are pairwise collinear,

and by Corollary 2.25, we know that this is the case if any pair out of these

vectors is collinear. So let now no pair of a12, a23 and a31 be collinear.

With hyperplanes being lines in R2, there are unique y1 ∈ H31 ∩ H12, y2 ∈
H12 ∩H23, y3 ∈ H23 ∩H31. If y1 = y2, then y1 = y2 = y3, and we are done. So,

suppose that y1 6= y2, implying that y1, y2, y3 are pairwise different from each

other. This implies that there is no y ∈ P1 ∩ P2 ∩ P3.

We now show that y = 1
3(y1+y2+y3) /∈ P1∪P2∪P3. By y1 ∈ H31∩H12, we know

that y1 ∈ P1. Additionally, y1 /∈ H23, implying that either y1 /∈ P2 or y1 /∈ P3.

Without loss of generality, assume y1 /∈ P3. Then aT23y1 < γ23, and analogously

aT31y2 < γ31 and aT12y3 < γ12. By y2, y3 ∈ H23 we have aT12y2 = aT12y3 = γ23, and

thus aT12y = 1
3a

T
12(y1 + y2 + y3) < γ12. Analogously, we obtain aT23y < γ23 and

aT31y < γ31, proving the claim.

Lemma 2.24, Corollary 2.25 and Lemma 2.26 describe what 3-cell decompositions

look like. We either have three cells with separating hyperplanes parallel to each

other, or we obtain a partition of Rd by separating hyperplane directions being

in a two-dimensional subspace. In R2, the latter case results in a situation as

depicted in Figure 14 a).

We add another statement about 3-cell decompositions revealing an important

connection to general k-cell decompositions.

Lemma 2.27

Let H be a k-cell arrangement in Rd. If for all I = {i1, i2, i3} ⊂ {1, . . . , k}, PI :=

(P Ii1 , P
I
i2
, P Ii3) with P Ii := {x ∈ Rd : aTijx ≤ γij for all j ∈ I\{i}} is a cell decompo-



2 VERTEX CHARACTERIZATION OF THE GRAVITY POLYTOPE 34

sition of Rd, then PI′ := (P I
′

i1
, . . . , P I

′
it

) with P I′i = {x ∈ Rd : aTijx ≤ γij for all j ∈
I ′\{i}} is a cell decomposition of Rd for any I ′ := {i1, . . . , it} ⊂ {1, . . . , k}.

Proof. We prove the claim by induction on k. IfH induces a 3-cell decomposition,

the claim is trivial. So consider PK
′

for index set K ′ := {1, . . . , k + 1} and

suppose that PK is a cell decomposition for all K ⊂ K ′ with |K| = k. H is a

k-cell arrangement, and with int(PK
′

i ) 6= ∅ for all i ∈ K ′ and PK
′

i ⊂ P Ii for all

I ⊂ K ′, P Ii 6= ∅ for all I ⊂ K ′ and i ∈ I .

With PK being a cell decomposition for K ⊂ K ′ with |K| = k, int(PK
′

i ) ∩
int(PK

′
j ) ⊂ int(PKi ) ∩ int(PKj ) = ∅ for all i 6= j; i, j ∈ K ′.

By Lemma 2.23, we only have to show that PK
′

i ∩ Hij = PK
′

j ∩ Hij for all

i 6= j; i, j ∈ K ′. We know that PKi ∩Hij = PKj ∩Hij for all i 6= j; i, j ∈ K with

K ⊂ K ′, |K| = k. PK
′

i =
⋂

K:|K|=k
PKi , thus

PK
′

i ∩Hij = (
⋂

K:|K|=k

PKi ) ∩Hij =
⋂

K:|K|=k

(PKi ∩Hij) =

⋂
K:|K|=k

(PKj ∩Hij) = (
⋂

K:|K|=k

PKj ) ∩Hij = PK
′

j ∩Hij

for all i 6= j; i, j ∈ K ′. This proves the claim.

Note that Lemma 2.27 includes the case I ′ = {1, . . . , k}. Informally, Lemma 2.27

states that a k-cell arrangement for which all subset of 3 indices induce a cell

decomposition induces a k-cell decomposition. Equivalently, we know that if a

k-cell arrangement does not induce a cell decomposition, there is a system of 3

indices and corresponding hyperplanes that do not yield a 3-cell decomposition.

We informally say that a clustering C := (C1, . . . , Ck) allows a cell decompo-

sition if there is a cell decomposition P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for

i ∈ {1, . . . , k}. With our knowledge about the structure and importance of 3-cell

decompositions (see Lemmata 2.24, 2.26, 2.27), we get several hints as to how to

construct an example for a clustering that does not allow a cell decomposition,

and which is minimal with respect to all relevant measures.

Lemma 2.28

There is a strictly separable 3-clustering of a set of 6 points in R2 that does not allow a
cell decomposition. All of the given parameters are minimal for this example.

Proof. We prove the claim by constructing a point set and clustering with the

given properties, and then showing that there is no strictly separable clustering
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Figure 15: A minimal example for a strictly separable clustering that allows no
cell decomposition.

that does not allow a cell decomposition if we lower the dimension, the number

of clusters or the number of points.

Let 0 < ε ∈ R be arbitrarily small. Let

X :=

{ (
−2

ε− 1

)
,

(
−1

−ε

)
,

(
−ε
1

)
,

(
ε

ε

)
,

(
ε

2

)
,

(
1

−ε

) }
⊂ R2,

and let X be partitioned into 3 clusters

C1 =

{ (
−2

ε− 1

)
,

(
−ε
1

) }
, C2 =

{ (
−1

−ε

)
,

(
1

−ε

) }
, C3 =

{ (
ε

ε

)
,

(
ε

2

) }
.

Let finally P1, P2, P3 be the cells of C1, C2, C3 for any choice of separating hy-

perplanes. Figure 15 depicts an example. The center of gravity of the ’marked

triangle’ is not in P1 ∪ P2 ∪ P3 so that P := (P1, P2, P3) is no cell decomposition.

Clearly, such a triangle always exists.

In R, a strictly separable clustering directly induces a partition of R into intervals,

yielding a cell decomposition. If we only have two clusters C1, C2 in Rd, then the

two halfspaces created by the separating hyperplane between the two clusters

form a cell decomposition of Rd.
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By Lemma 2.27, if the cells P1, . . . , Pk do not form a cell decomposition of Rd,
then there is a subset of 3 indices in {1, . . . , k} for which the respective cells do

not form a 3-cell decomposition of Rd. Thus it suffices to only look at systems of

3 clusters C1, C2, C3 with cells P1, P2, P3.

Now suppose we have less than 6 points, without loss of generality C3 = {x3},
and thus |C3| = 1. Let H12 = {x ∈ Rd : aT12x = γ12} be the strictly separating

hyperplane between C1 and C2. If x3 ∈ H12, for any point y ∈ H12 with y 6=
x3 there is a hyperplane H13 and a hyperplane H23 separating C3 from C1,

respectively C2, strictly and intersecting H12 in y. Choosing two hyperplanes

intersecting H12 in the same y ∈ H12 yields the desired cell decomposition.

Let now, without loss of generality, aT12x3 < γ12. Thus H12 separates C1 ∪ C3

from C2. As C1 and C3 are strictly separable, there is an H13 separating the

clusters strictly with H13 ∩H12 = {y} 6= ∅. Further, H23 can be chosen as a slight

perturbation of H12 intersecting H12 in y and such that a23 ∈ −cone{a31, a12} (as

in Lemma 2.24). This yields the desired cell decomposition.

In the following, we are not only interested in any cell decompositions, but

in a special type of cell decompositions called ’a-induced cell decompositions’.

These have a representation by an underlying arrangement where the separation

directions are constructed using a vector a := (aT1 , . . . , a
T
k )T ∈ Rd·k as follows.

Definition 2.29 (a-induced Cell Decomposition)

Let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}. An

a-induced cell decomposition of Rd is anH-cell decomposition where aij := aj−ai
for all i 6= j; i, j ∈ {1, . . . , k}.

With the a-induction of a cell decomposition only being a restriction to the

directions of the hyperplanes of the inducing k-cell arrangement, we will also

talk about a-induced k-cell arrangements.

The vector a := (aT1 , . . . , a
T
k )T ∈ Rd·k can be interpreted as a number of k sites

in Rd, with one site for each cell. The separation directions of the cells then

are given by the vector differences between their respective sites. Using this

interpretation, and adding some restrictions on the positioning of the separating

hyperplanes, will lead us to a class of generalized Voronoi diagrams, called

power diagrams [Aur87; AHA98].

We complement our investigation of 3-cell decompositions by noting that any

3-cell decomposition of Rd is a-induced for some a := (aT1 , . . . , a
T
k )T ∈ Rd·k.
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Lemma 2.30

Let P := (P1, P2, P3) be an H-cell decomposition of Rd. Then P is an a-induced cell
decomposition for some a := (aT1 , . . . , a

T
k )T ∈ Rd·k.

Proof. We know that a31 ∈ −cone{a12, a23} by Lemma 2.24. Thus there are scalar

factors l12, l23, l31 > 0 with l31a31 = −l12a12−l23a23 ⇔ l31a31+l12a12+l23a23 = 0.

By this, we can choose a1 = 0 ∈ Rd, a2 = l12a12 and a3 = l13a13 such that H is

a-induced for a := (aT1 , a
T
2 , a

T
3 )T .

Of course, in the above construction it is not necessary to set a1 = 0. If a different

a1 is chosen, all other ai are translated by a1. Note further that fixing l12, we can

still choose l31, l23 appropriately. In this case, they are uniquely determined.

On the other hand, a k-cell decomposition with k > 3 is not necessarily a-induced.

Figure 16 shows two cell decompositions in R2. Due to the symmetry of the

example in Figure 16 a), the dashed hyperplane separating the red and the green

cluster has to be vertical in the figure for the cell decomposition to be a-induced,

but it is not. The dots indicate the relative positions that any possible sites of

the cells would have to have with respect to each other to induce the ’visible’

hyperplanes.

Figure 16 b) shows that even the ’visible’ parts of a cell decomposition do not

have to be a-induced. Suppose C := (C1, C2, C3, C4, C5), where C1 is the red cell,

C2 the green one, C3 the yellow one, C4 the blue one and C5 the orange one. We

now try to construct corresponding sites a1, a2, a3, a4, a5.

W.l.o.g. we assume a1 = 0 ∈ R2. Due to the separating hyperplanes of the

red cell to the other ones, their respective sites have to satisfy a2 = τ2 ·
(−1

1

)
,

a3 = τ3 ·
(−1
−1
)
, a4 = τ4 ·

(
1
−1
)

and a5 = τ5 ·
(
1
1

)
for some τ2, τ3, τ4, τ5 > 0. Further,

τ2 = τ3 = τ4 due to the directions of the separating hyperplanes of C2 and C3

(green and yellow) and C3 and C4 (yellow and blue). The hyperplane between

C2 and C5 implies that τ5 > τ2, but the hyperplane between C4 and C5 implies

that τ5 < τ4 = τ2. This yields a contradiction, and implies that we cannot choose

sites inducing the hyperplanes shown.

Note further that choosing the separating hyperplane directions of clusters

according to some sites does not even necessarily yield a partition of Rd. Figure

17 shows the ’cells’ of the clustering of Figure 10 with corresponding sites.

It is easy to see that any Voronoi diagram is an example for an a-induced cell

decomposition, with the sites ai being the centers used for the construction of the

Voronoi cells. Looking at these examples, we see that the notion of a-induced cell

decompositions is well-defined as a special case of general cell decompositions.
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(a) Not everyH-induced cell decomposition is an a-induced
cell decomposition.

(b) Even the ’visible’ parts of a cell decomposition are not
always a-induced.

Figure 16: Two examples for cell decompositions that are not a-induced.
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Figure 17: The separation directions of the clusters are induced by the sites
shown, yet the cells do not form a partition of R2.

In the following, we identify a connection between a-induced cell decompo-

sitions and the vertices of the gravity polytope. We start by following the

arguments in [BG09], as they are a fundamental basis to the remainder of this

section and the following chapter. First, we need some more terminology.

Definition 2.31 (Clustering Graph)

Let C be a PSC. A clustering graph G = G(C) = (V,E) is a complete digraph with
V := {v1, . . . , vk}. Let H := {Haij ,γij : i 6= j; i, j ∈ {1, . . . , k}}, and let aji = −aij
and γji = −γij such that max

x∈Ci
aTijx ≤ γij ≤ min

x∈Cj
aTijx for all i 6= j; i, j ∈ {1, . . . , k}.

A γ-clustering graph is a weighted clustering graph G = G(C) = (V,E,w) with
w : E → R, w((vi, vj)) = γij for all i 6= j; i, j ∈ {1, . . . , k}.
Let further max

x∈Ci
aTijx = γ∗ij for all i 6= j; i, j ∈ {1, . . . , k}. A γ∗-clustering graph is a

weighted clustering graph G = G(C) = (V,E,w) with w : E → R, w((vi, vj)) = γ∗ij

for all i 6= j; i, j ∈ {1, . . . , k}.

vi ∈ V is associated with Ci for all i ∈ {1, . . . , k}. The cycles of a clustering

graph correspond to cyclical exchanges. The cycles of γ- and γ∗-clustering

graphs correspond to ’optimal’ cyclical exchanges, depending on either the

actual positions of the hyperplanes, or bounds on the positions of the points in

the clusters.

Next, we require a simple graph theoretical statement [BG09].
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Lemma 2.32

Let G = (V,E,w) be a complete, weighted digraph without cycles of strictly positive
weight. Then there is a weight-function w′ : E → R+

0 such that all cycles of G′ =

(V,E,w + w′) have length 0.

Proof. We consider the set W of weight-functions w′ : E → R+
0 such that w + w′

does not create a positive-weight cycle in G′. As w′ with w′(e) = 0 for all e ∈ E
satisfies this property, W 6= ∅. We now choose w′ ∈ W such that the number

of strictly negative cycles in G′ is minimized and such that no single edge-

weight can be increased without creating a strictly positive cycle. Increasing a

single edge-weight does not increase the number of strictly negative cycles in G′,

implying that this assumption is no restriction.

If there are no cycles of strictly negative weight, we are done. Otherwise, let

CY = {e1, . . . , et} be a cycle in G′ with e1, . . . , et ∈ E and (w + w′)(CY ) < 0.

None of its edges may be increased without creating a cycle of strictly positive

weight in G′, which means that ei is on a cycle CYi with (w+w′)(CYi) = 0 for all

i ∈ {1, . . . , t}. Then CY ′ =
t⋃
i=1

(CYi\{ei}) is a closed walk in G′, i.e. a sequence

of cycles. Further

(w+w′)(CYi\{ei}) = (w+w′)(CYi)−(w+w′)(ei) = 0−(w+w′)(ei) = −(w+w′)(ei).

As 0 > (w + w′)(CY ) =
t∑
i=1

(w + w′)(ei), we have

0 < −(w+w′)(CY ) =

t∑
i=1

−(w+w′)(ei) =

l∑
i=1

(w+w′)(CYi\{ei}) = (w+w′)(CY ′),

implying that there is a cycle in G′ of strictly positive weight. This yields a

contradiction, proving the claim.

The γ∗-clustering graph G = (V,E,w) of a vertex v∗ of Q and a vector a ∈ Rd·k

with aT v∗ > aT v for any other v ∈ Q only contains cycles of strictly negative

weight, as each cyclical exchange applied to the clustering associated with v∗

leads to a clustering with gravity vector v of lower value aT v. Thus, we can

apply Lemma 2.32 and assume that w′((vi, vj)) > 0 for each edge (vi, vj) ∈ E.

We then only have cycles of length zero with respect to (w+w′). Doing so allows

us to prove a direct generalization of Theorem 2.15 [BG09]. As a service to the

reader, we adapt the proof to our notation.
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Theorem 2.33 (Brieden, Gritzmann 09)

Let v∗ be a vertex of Q, let C := (C1, . . . , Ck) be the PSC associated with v∗ and let
a := (aT1 , . . . , a

T
k )T ∈ Rd·k with aT v∗ > aT v for any v ∈ Q\{v∗}. Then there is an

aκ-induced cell decomposition P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for i ∈ {1, . . . , k},
where aκ := ( a1κ1

T , . . . , akκk
T )T .

Proof. Recalling 2.15, we only have to consider the positioning of the hyper-

planes.

Let v∗ be a vertex of Q and let a := (a1, . . . , ak)
T ∈ Rd·k be any vector in

int(N(v∗)), where N(v∗) is the cone of outer normals of v∗ with respect to Q.

We show that there is a viable choice of the γij , i 6= j; i, j ∈ {1, . . . , k} such

that H := {Haij ,γij : i 6= j; i, j ∈ {1, . . . , k}} using aij :=
aj
κj
− ai

κi
and γij for

all i 6= j; i, j ∈ {1, . . . , k} is a cell decomposition P := (P1, . . . , Pk) of Rd with

Ci ⊂ int(Pi) for i ∈ {1, . . . , k}.
Let G be the γ∗-clustering graph of C, then we choose γij := w + w′((vi, vj))

according to Lemma 2.32 and the remark following it, implying that γ∗ij < γij for

all i 6= j; i, j ∈ {1, . . . , k}. Thus Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}, which implies

that all Pi are full-dimensional. With aTijx ≤ γij for any x ∈ Pi, and aTijx ≥ γij for

any x ∈ Pj , int(Pi) ∩ int(Pj) = ∅ for all i 6= j; i, j ∈ {1, . . . , k}.
By Lemma 2.23, we only have to show that Pi∩Hij = Pj ∩Hij for all i 6= j; i, j ∈
{1, . . . , k}. We assume Pi ∩ Hij 6= Pj ∩ Hij for some i 6= j; i, j ∈ {1, . . . , k}.
Let, without loss of generality, y ∈ Hij with y ∈ Pi, but y /∈ Pj . Then there is a

t ∈ {1, . . . , k}\{i, j}with aTjty > γjt. Since y ∈ Pi, aTity ≤ γit. Together, we have

0 = 0T y = (aij + ajt + ati)
T y > γij + γjt + γti = 0,

yielding a contradiction, as, in the γ-clustering graph, any cycle (of γij-values)

sums up to 0. This proves the claim.

Informally, Theorem 2.33 shows that clusterings of vertices of the gravity poly-

tope allow aκ-induced cell decompositions. With the clustering in Figure 15 not

allowing any cell decomposition, we know that it is not a vertex of the respective

gravity polytope.

Additionally, we saw examples of cell decompositions that cannot be a-induced

(Figure 16). Thus, having a clustering that allows only a general cell decomposi-

tion, but not an a-induced cell decomposition, implies that the gravity vector of

the clustering is not a vertex of the gravity polytope.
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A slight refinement of the notion of a-induced cell decompositions will yield the

desired vertex characterization, in the next section.

2.4 Full Cell Decompositions

We begin by showing that Theorem 2.33 actually proves the existence of a special

type of a-induced cell decompositions for clusterings of vertices of the gravity

polytope. We need some formal terminology.

The construction in the proof is based on Lemma 2.32, and creates a system of

hyperplanes where, for any index set I := {i1, . . . , it} ⊂ {1, . . . , k}, γi1 + · · · +
γit = 0. The following lemma shows that this property is induced by all triples

summing up to zero.

Lemma 2.34

Let G = (V,E,w) be a complete weighted digraph with w((vi, vj)) = −w((vj , vi)) for
all vi 6= vj ∈ V .
Let G contain a cycle with positive edge-weight and at least 3 edges. Then there is a cycle
of positive edge-weight with exactly 3 edges in G.

Proof. Without loss of generality, let CY = (v1, v2, v3, . . . , vk, v1) be a cycle of

k > 3 edges and w(CY ) > 0. Then CY ′ := (v1, v2, v3, v1) is a cycle of 3 edges

such that (v1, v2), (v2, v3) ∈ CY and (v3, v1) /∈ CY .

If w((v1, v2)) + w((v2, v3)) + w((v3, v1)) > 0, we are done, as CY ′ satisfies the

claim. So suppose w((v1, v2)) + w((v2, v3)) + w((v3, v1)) ≤ 0. We derive CY ′′ =

(v1, v3, . . . , vk, v1) by replacing edges (v1, v2) and (v2, v3) by edge (v1, v3). It is a

cycle in G consisting of k − 1 edges. As

w((v1, v2))+w((v2, v3))+w((v3, v1)) ≤ 0⇔ w((v1, v2))+w((v2, v3)) ≤ w((v1, v3)),

we see that w(CY ′′) ≥ w(CY ) > 0. Thus, CY ′′ is a cycle with an edge less than

C and with higher total edge-weight than CY .

Repeating this contraction until the resulting cycle only has 3 edges, or until the

cycle used for the contraction has positive edge-weight, proves the claim.

Lemma 2.34 again underlines the importance of the triples of cells in the context

of cell decompositions. If there is no cycle of 2 or 3 edges with strictly positive

edge-weight, there is no such cycle in the whole graph. This statement is directly

related to Lemma 2.27, which showed that if all 3-subsets of indices of a k-cell
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arrangement induce a 3-cell decomposition, the arrangement must induce a

k-cell decomposition.

Looking at Lemma 2.34, we know that we can represent the special type of

cell decompositions constructed in Theorem 2.33 by only considering triples of

indices in {1, . . . , k}.

Definition 2.35 (Full a-induced Cell Decomposition)

Let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}. A full

a-induced cell decomposition of Rd is a cell decomposition where aij := aj − ai for
all i 6= j; i, j ∈ {1, . . . , k} and γi1i2 +γi2i3 +γi3i1 = 0 for all {i1, i2, i3} ⊂ {1, . . . , k}.

We obtain the following direct corollary to Theorem 2.33.

Corollary 2.36

Let v∗ be a vertex of Q, let C := (C1, . . . , Ck) be the PSC associated with v∗ and let
a := (aT1 , . . . , a

T
k )T ∈ Rd·k with aT v∗ > aT v for any v ∈ Q\{v∗}. Then there is a full

aκ-induced cell decomposition P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for i ∈ {1, . . . , k},
where aκ := ( a1κ1

T , . . . , akκk
T )T .

Note that aT v∗ > aT v for any v ∈ Q\{v∗} implies ai
κi
6= aj

κj
for all i 6= j; i, j ∈

{1, . . . , k}.
If the gravity vector v∗ = v(C) of a PSC C we consider only satisfies aT v∗ ≥ aT v
for each v ∈ Q\{v∗}, and if ai

κi
6= aj

κj
for all i 6= j; i, j ∈ {1, . . . , k}, we obtain a

slightly weaker result.

Corollary 2.37

Let v∗ ∈ Q, let C := (C1, . . . , Ck) be a PSC associated with v∗ and let a :=

(aT1 , . . . , a
T
k )T

∈ Rd·k with aT v∗ ≥ aT v for any v ∈ Q\{v∗}. Then there is a full aκ-induced
cell decomposition P := (P1, . . . , Pk) with Ci ⊂ Pi for i ∈ {1, . . . , k}, where
aκ := ( a1κ1

T , . . . , akκk
T )T .

Proof. The claim follows directly from the proof of Theorem 2.33, by replacing

the strict inequality aT v∗ > aT v with aT v∗ ≥ aT v. The only difference lies in the

fact that we cannot guarantee that we can choose γij > γ∗ij for all i 6= j; i, j ∈
{1, . . . , k}.

We note an important property of full a-induced cell decompositions.

Lemma 2.38

Let P := (P1, . . . , Pk) be a full aκ-induced cell decomposition of Rd and let, for any
index set I := {i1, . . . , it} ⊂ {1, . . . , k}, PI := (P Ii1 , . . . , P

I
it

) with P Ii := {x ∈ Rd :
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aTijx ≤ γij for all j ∈ I\{i}}. Then P I is a full aIκ-induced cell decomposition of Rd,
where aIκ := (

ai1
κi1

T
, . . . ,

ait
κit

T
)T . We call P Ii the i-th I-cell.

Proof. Let P := (P1, . . . , Pk) be a full aκ-induced cell decomposition of Rd and let

I ⊂ {1, . . . , k}with |I| = t, and P I := (P Ii1 , . . . , P
I
it

). We have Ci ⊂ int(Pi) ⊂ P Ii
for all i ∈ I and aTi1,i2x ≤ γi1,i2 for any x ∈ P Ii1 and aTi1,i2x ≥ γi1,i2 for any x ∈ P Ii2 ,

so that int(P Ii1) ∩ int(P Ii2) = ∅ for all i1 6= i2; i1, i2 ∈ I .

With aij :=
aj
κj
− ai

κi
for i 6= j; i, j ∈ {1, . . . , k} and the γij summing up to 0 for

any cycle of indices in {1, . . . , k}, the same holds for i 6= j; i, j ∈ I , respectively

cycles of indices in I . Thus, the proof of P Ii ∩Hij = P Ij ∩Hij for all i 6= j; i, j ∈ I
in Theorem 2.33 works analogously again, and we see that P I is a full aIκ-induced

cell decomposition.

Informally, having a full a-induced cell decomposition means that the underlying

arrangement still yields an aI -induced cell decomposition if we only use the

hyperplanes of any subset of indices I , respectively clusters. We will use this fact

in the following chapter to stabilize the data classification approach presented

there.

The notion of full a-induced cell decompositions is well-defined. Not every

a-induced cell decomposition is a full a-induced cell decomposition. Figure 18

shows a cell decomposition which is a-induced by the sites shown. The central,

vertical hyperplane separating the red and the green cluster is ’ill-positioned’.

We note this fact by recalling Lemma 2.38, and seeing that e.g. the subsystem of

hyperplanes of the red, green and blue clusters does not yield a cell decomposi-

tion.

On the other hand, there are examples for full a-induced cell decompositions.

Figure 19 shows a Voronoi diagram. The cells of a Voronoi diagram always are a

full a-induced cell decomposition. In the next section we turn to this intrinsic

connection in more detail.

Having an a-induced cell decomposition is not the only way to create a cell

decomposition with the property in Lemma 2.38, i.e. such that each subset of

indices still leads to a cell decomposition. We define this class of cell decomposi-

tions.
Definition 2.39 (Full H-Cell Decomposition)

AnH-cell decomposition P := (P1, . . . , Pk) is a fullH-cell decomposition if for all
I = {i1, i2, i3} ⊂ {1, . . . , k}, PI := (P Ii1 , P

I
i2
, P Ii3) with P Ii := {x ∈ Rd : aTijx ≤

γij for all j ∈ I\{i}} is anHI -cell decomposition of Rd, whereHI := {Hij ∈ H : i 6=
j; i, j ∈ I}.
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Figure 18: Not every a-induced cell decomposition is a full a-induced cell
decomposition.

Figure 19: A Voronoi diagram is a full a-induced cell decomposition.
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Figure 20: A 6-cell decomposition of R2. The visible system of hyperplanes can
both be complemented to obtain a full a-induced cell decomposition, as well as

a full cell decomposition which is not a-induced by any vector of sites a.

Again, we will use the simpler wording full cell decomposition if H is clear

from the context. Note that any 2- or 3-cell decomposition trivially is a full

cell decomposition, by this definition. Note further that the definition precisely

satisfies the prerequisites needed for an application of Lemma 2.27. By this, we

know that any subset of indices I ⊂ {1, . . . , k} yields a full cell decomposition

P I , not only the ones with |I| = 3.

Lemma 2.38 shows that full a-induced cell decompositions are full cell decom-

positions as well. After all, this was the intention of our definition. Figure 16

showed two examples for cell decompositions that are not a-induced for any

vector of sites a.

There also are full cell decompositions which are not a-induced by any vector of

sites a. Consider the cell decomposition in Figure 20. The ’invisible’ hyperplanes

Hij only have to satisfy |Hij ∩ Pi| = 1 for all i ∈ {1, . . . , k} to yield a full cell

decomposition. Of course, we can choose them in an a-induced way, but we

do not necessarily have to do so. Note that this example considers only the

representation of a full cell decomposition, with the ’top-level cells’ induced

remaining fixed.

It is possible to show that full cell decompositions can be defined equivalently as

full a-induced cell decomposition for some vector of sites a := (aT1 , . . . , a
T
k )T ∈

Rd·k if we place mild restrictions on the hyperplane directions and positions. We

sum up these restrictions.
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Definition 2.40 (Full Cell Decomposition in General Position)

A fullH-cell decomposition P := (P1, . . . , Pk) satisfying

• aij and ail are not collinear for all {i, j, l} ⊂ {1, . . . , k}

• Hjl ∩Hli 6= Hjt ∩Hti for all {i, j, l, t} ⊂ {1, . . . , k}

is in general position.

The first condition implies that a single cell is not separated from two different

cells by the same vector direction. As any subset of indices still yields a cell

decomposition, Hij ∩ Hjl ∩ Hli 6= ∅. The second condition implies that Hij ∩
Hjl ∩ Hli 6= Hij ∩ Hjt ∩ Hti for index sets {i, j, l}, {i, j, t}. This means that

the intersections of two triples of hyperplanes are not identical. Note that the

equality case is only possible if dim(span{ajl, ali, ati}) = 2.

We are now ready to prove the above claim.

Lemma 2.41

Any fullH-cell decomposition P := (P1, . . . , Pk) in general position is a full a-induced
cell decomposition for some a := (aT1 , . . . , a

T
k )T ∈ Rd·k.

Proof. LetH induce a full cell decomposition, i.e. a cell decomposition such that

for any I := {i1, i2, i3} ⊂ {1, . . . , k}, PI := (P Ii1 , P
I
i2
, P Ii3) with P Ii := {x ∈ Rd :

aTijx ≤ γij∀j ∈ I\{i}} is a cell decomposition of Rd. With P being in general

position, so is PI for all I .

Due to the first condition to H, this implies that each triple of respective hy-

perplanes has a common intersection, recall Corollary 2.25 and Lemma 2.26.

Additionally, by Lemma 2.30, for each triple of indices I := {i1, i2, i3}, there are

ai1 , ai2 , ai3 that satisfy the claim. It remains to show that the ai can be chosen

like that for the whole system of indices i ∈ {1, . . . , k} at once. We do so by

induction.

For k = 3, as stated above, we know that we can choose a1, a2, a3. Thus, suppose

the claim holds for k − 1, i.e. there are vectors a1, . . . , ak−1 such that aij‖aj − ai
for all i 6= j; i, j ∈ {1, . . . , k − 1}. We now prove the claim for k cells.

For any index set Iijk = {i, j, k}, an aijk can be chosen such that aik‖aijk − ai and

ajk‖aijk − aj . It is determined uniquely by the fixed ai and aj , as aik and ajk

are not collinear and as dim(span{aij , aik, ajk}) = 2, by Lemma 2.24. We now

prove the claim by showing that aijk = a12k for all i 6= j; i, j ∈ {1, . . . , k − 1}, by

contradiction. To do so, we assume without loss of generality that a13k 6= a12k .
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a1
a2

a3

a134

a124

Figure 21: A 3-dimensional span of a14, a24, a34 implies a 3-dimensional E234

(blue) if a124 6= a134 .

We consider the cell decompositions of index sets I12k = {1, 2, k}, I13k = {1, 3, k},
I23k = {2, 3, k}. For ease of notation, we use k = 4 in the following.

Suppose dim(span{a14, a24, a34}) = 3. With our claim satisfied for I123, I124 and

I134, a124 ∈ {a1 + Ra14} ∩ {a2 + Ra24} and a134 ∈ {a1 + Ra14} ∩ {a3 + Ra34}. Let

E234 := {a2 + span{a23, a24, a34}}.

We know that dim(E234) = 2, as I234 yields a cell decomposition, implying that

a23 ∈ −cone{a34, a42}. As {a2 + Ra24} ∪ {a3 + Ra34} ⊂ E234, we know that

a124 , a
13
4 ∈ E234. As a124 , a

13
4 ∈ {a1 + Ra14} and as a134 6= a124 , we conclude that

{a1 + Ra14} ⊂ E234 and obtain a contradiction of dim(span{a14, a24, a34}) = 3

and dim(E234) = 2. Figure 21 depicts the situation for a134 6= a124 .

Let now dim(span{a14, a24, a34}) 6= 3. We only have to consider the case

dim(span{a14, a24, a34}) = 2, as dim(span{a14, a24, a34}) > 1 due to a14, a24

and a34 not being pairwise collinear. Let

E123 := {a1 + span{a12, a13}}

be the affine plane containing a1, a2 and a3. If {a1+Ra14} 6⊂ E123, then a124 /∈ E123

and a134 /∈ E123 due to a12 and a14 not being collinear, and by this {a2 + Ra24} 6⊂
E123 and {a3 + Ra34} 6⊂ E123. As a1, a2, a3 are distinct and a12 and a23 are not
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collinear, then dim(span{a14, a24, a34}) = 3, in contradiction to our assumption.

Thus {a1 + Ra14} ⊂ E123, {a2 + Ra24} ⊂ E123 and {a3 + Ra34} ⊂ E123, and both

a124 and a134 are in E123.

We have E123 ∩ H12 ∩ H23 ∩ H31 = {x123} for a single, uniquely determined

point x123, as the corresponding separating hyperplanes are not parallel (recall

Lemma 2.26). Analogously, there are vectors x124, x134, x234 ∈ E123 for the other

hyperplane intersections. Due to the second condition toH, x123, x124, x134, x234
are distinct. Figure 22 shows these points. The line segments correspond to the

intersections of the hyperplanes with E123. A,A′, B,B′ denote the Euclidean

lengths of the line segments they are next to.

We now keep the points x123 and x134 of this construction fixed and change

the right-hand side values γ12 and γ34 of hyperplanes H12 and H34 such that

x123 ∈ H34 and x134 ∈ H12. It then is possible to change the right-hand side

value of the hyperplane H24 such that all triples of hyperplanes again intersect in

single points. This can be seen by some elementary geometric arguments, Figure

23 depicts the construction: We only have to check that X
Y = A

B′ . This follows

directly from the fact that A
A′ = B

Y and B
B′ = X

A′ .

By our induction hypothesis, we have a1, a2, a3 satisfying the claim. Due to the

orthogonality of aij to its hyperplaneHij , it is easy to see that the triangle formed

by a1, a2, a3 is congruent to the triangle formed by x123, x134 and the intersection

of H23 and the translated H12 and H24 in the construction of Figure 23.

a124 is the unique intersection of a1 + Ra14 and a2 + Ra24, and a134 is the unique

intersection of a1 + Ra14 and a3 + Ra34. With a14⊥H14, a24⊥H24 and a34⊥H34,

and the fact thatH14 and the translatedH24 andH34 intersect in our construction,

we know that a124 = a134 . Figure 24 shows the system of the ai, which is congruent

to the construction in Figure 23, just rotated by 90 degrees and scaled by a factor.

Our arguments hold for arbitrary indices, and thus ak = aijk = a12k for any

i 6= j; i, j ∈ {1, . . . , k}. This proves the claim.

The restrictions we imposed onH in the above lemma are unproblematic for a

cell decomposition with Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}. Due to the pairwise

strict separability of clusters it is easy to perturb the directions and positioning

of the hyperplanes slightly to satisfy the prerequisites while still keeping the

property Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}.
We close this section by explaining what happens if we try the construction of

Theorem 2.33 when we are not at a vertex of the gravity polytope. We then use

our result for a first characterization of the vertices of the gravity polytope.
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B′

B A

A′

x123

x124

x134

x234

Figure 22: Hyperplane system of indices {1, 2, 3, 4} with respective intersections
x123, x124, x134, x234.

Y

B X

A′

Figure 23: ’Swapping’ the positions of H12 and H34 yields another system of
intersecting hyperplanes.
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a3 + R · a34

a1 + R · a14

a2 + R · a24

a1

a2

a3

a4 = a124 = a134 = a234

Figure 24: In the orthogonal system of the hyperplane vectors, a1 + R · a14,
a2 + R · a24 and a3 + R · a34 intersect.

We show that applying the construction of a full a-induced cell decomposition

using an a for which a gravity vector v is not uniquely optimal with respect to

aT v in Q necessarily fails.

Lemma 2.42

Let C be a PSC and let a := (aT1 , . . . , a
T
k )T ∈ Rd·k such that there is a PSC C ′ with

aT v(C ′) ≥ aT v(C), and letH be an aκ-induced k-cell arrangement of Rd.
ThenH does not induce a full aκ-induced k-cell decomposition with Ci ⊂ int(Pi) for all
i ∈ {1, . . . , k}.

Proof. By Lemma 2.11, C and C ′ differ by a set of cyclical exchanges. A cyclical

exchange corresponds to a cycle in the γ-clustering graphG. AsC is not uniquely

maximal in Q with respect to aT v(C), there is at least one cycle in G not lowering

the objective function value. Among these, consider a cycle with a minimal

number of edges, and the corresponding cyclical exchange CE.

Suppose CE is a cyclical exchange between only two clusters, e.g. of xi ∈ Ci and

xj ∈ Cj to xi ∈ C ′j and xj ∈ C ′i for some i 6= j; i, j ∈ {1, . . . , k}. Thus
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ai
κi

T
xi +

aj
κj

T
xj ≤

ai
κi

T
xj +

aj
κj

T
xi ⇔

(
aj
κj

T
− ai
κi

T
)xi + (

ai
κi

T
− aj
κj

T
)xj ≥ 0 ⇔

(
aj
κj

T
− ai
κi

T
)(xi − xj) ≥ 0.

This implies Ci /∈ int(Pi) and Cj /∈ int(Pj) for the cells Pi and Pj induced byH.

Now suppose Ci ∈ int(Pi) for all i ∈ {1, . . . , k}, so any pair of clusters is strictly

separated by its hyperplane, thus max
x∈Ci

aTijx = γ∗ij < γij < −γ∗ji = min
x∈Cj

aTijx and

CE has to involve at least 3 clusters. Without loss of generality, let CE be a

cyclical exchange CE := (x1, . . . , xt), with xi ∈ Ci for all i ∈ {1, . . . , t} applied

to C. We have γ∗12 + · · ·+ γ∗t1 ≥ 0, and by γij > γ∗ij , γ12 + · · ·+ γt1 > 0.

In the γ-clustering graph G, CE corresponds to a cycle CY1 := (v1, . . . , vt, v1)

of at least 3 edges with positive total edge-weight. We satisfy all prerequisites

of Lemma 2.34, thus there is a cycle CY2 of only 3 edges in G with w(CY2) > 0.

Without loss of generality, let CY2 := (v1, v2, v3, v1), and then w(CY2) = γ12 +

γ23 + γ31 > 0. This proves the claim.

Note that above lemma shows that an aκ-induced k-cell arrangement for a

clustering C not being uniquely optimal with respect to aT v(C) in Q either does

not induce a full aκ-induced cell decomposition, or that the cells of the induced

full aκ-induced cell decomposition do not strictly contain the clusters. Compare

this to the example in Figure 18, where the positioning of the hyperplane between

the red and the green cluster could be changed to have a full aκ-induced cell

decomposition.

Recall further that a PSC C not being (uniquely) optimal in Q with respect to

aT v(C) does not imply that the clusters of C are not strictly separable. In contrast

to this, we observe that we then get at most weakly separating hyperplanes if

we construct a cell decomposition. Figure 25 shows an example.

Corollary 2.43

Let v∗ ∈ relbd(Q), let C := (C1, . . . , Ck) be a PSC associated with v∗ and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k with ai

κi
6= aj

κj
for all i 6= j; i, j ∈ {1, . . . , k} and aT v∗ ≥ aT v

for any v ∈ Q\{v∗}. Let further aT v∗ = aT v for some v ∈ Q\{v∗}.
Then there is a full aκ-induced cell decomposition P := (P1, . . . , Pk) with Ci ⊂ Pi for
i ∈ {1, . . . , k}. Additionally, there is a cluster Ci such that Ci ∩ bd(Pi) 6= ∅.
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Figure 25: A clustering where the clusters are strictly separable with respect to
the given hyperplane directions aj − ai, but for which there is no a-induced cell

decomposition with the clusters being in the interior of the cells.

Proof. The first part is valid due to Corollary 2.37. Due to the existence of a

v ∈ Q\{v∗} with aT v∗ = aT v, there is a cyclical exchange CE := (x1, . . . , xt)

with xi ∈ Ci for all i ∈ {1, . . . , t} such that aT v∗ = aT v(C ′), where C ′ is the

clustering derived by the application of CE to C.

In the γ∗-clustering graph G, CE corresponds to a cycle of total edge-length

0. Thus γ∗i(i+1) = γi(i+1) for all i ∈ {1, . . . , t}, and then Ci ∩ Hi(i+1) 6= ∅ for all

i ∈ {1, . . . , t}, proving the claim.

For any vertex v ofQ, a vector a for which v is uniquely optimal inQwith respect

to aT v yields a full aκ-induced cell decomposition of Rd with Ci ⊂ int(Pi) for all

i ∈ {1, . . . , k}. Full aκ-induced cell decompositions with Ci ⊂ int(Pi) can only

be constructed at such a vertex v. This leads to our first characterization of the

vertices of Q.

Theorem 2.44

Let C := (C1, . . . , Ck) be a PSC. Then v(C) is a vertex of Q if and only if there is a
full aκ-induced cell decomposition P := (P1, . . . , Pk) of Rd with Ci ⊂ int(Pi) for all
i ∈ {1, . . . , k}.

Recalling Lemma 2.41 and the remark about perturbation following it, as well as

Lemma 2.42, we obtain another characterization of the vertices of Q as a direct

corollary of Theorem 2.44.

Theorem 2.45

Let C := (C1, . . . , Ck) be a PSC. Then v(C) is a vertex of Q if and only if there is a full
cell decomposition P := (P1, . . . , Pk) of Rd with Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}.
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In the next section, we rephrase and interpret our ideas about full a-induced

cell decompositions in the terminology of power diagrams and hereby exhibit a

close relationship of the two fields.

2.5 Power Diagrams

In the following, we consider a special type of PSCs.

Definition 2.46 (Least-Squares Assignment (LSA))

Let C := (C1, . . . , Ck) be a PSC of X ⊂ Rd and let a := (aT1 , . . . , a
T
k )T ∈ Rd·k. C is

a (strict) least-squares assignment (LSA) of X to a with respect to κ1, . . . , κk if
and only if

k∑
i=1

∑
x∈Ci

δ2(x, ai)

is (strictly) minimal for all PSCs, where δ(x, ai) is the Euclidean distance of x and ai in
Rd.

Informally, a LSA of X to a with respect to κ1, . . . , κk associates a site ai ∈ Rd

with each cluster Ci and then assigns the x ∈ X to the clusters such that the sum

of the (squared) Euclidean distances of these points to the sites of their respective

clusters is minimized. Additionally, each cluster Ci is assigned exactly κi points.

When talking about LSAs, we only consider site vectors a := (aT1 , . . . , a
T
k )T ∈

Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}. Using the same sites for two

different clusters implies that an association of vectors with sites is not unique.

Aurenhammer, Hoffmann and Aronov established a strong connection of LSAs

to a class of generalized Voronoi diagrams called power diagrams [AHA98].

As it will turn out, power diagrams are intimately related to full a-induced

cell decompositions, allowing us to interpret Aurenhammer, Hoffmann and

Aronov’s results for LSAs in the context of the gravity polytope.

We start with a formal definition of power diagrams.

Definition 2.47 ((a,W )-Power Diagram)

Let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k} and let

W := {wi : i ∈ {1, . . . , k}} be a set of k weights. Let further P := (P1, . . . , Pk) with
Pi := {x ∈ Rd : δ2(x, ai) − wi ≤ δ2(x, aj) − wj for all j ∈ {1, . . . , k}\{i}} be the
set of k cells for (a,W ). The cells P := (P1, . . . , Pk) are an (a,W )-power diagram if
int(Pi) 6= ∅ for all i ∈ {1, . . . , k}.

Trivially, an (a,W )-power diagram is a partition of Rd into convex, polyhedral

cells. Each pair of cells is separated by a hyperplane consisting of all points
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equally far away from both sites with respect to the weighted distance. If the

context of a and W is clear, we use the shorter wording power diagram instead

of (a,W )-power diagram.

Power diagrams can be used to induce clusterings.

Definition 2.48 (Clustering induced by an (a,W )-Power Diagram)

Let P := (P1, . . . , Pk) be an (a,W )-power diagram in Rd with a := (aT1 , . . . , a
T
k )T ∈

Rd·k and let X := {x1, . . . , xn} ⊂ Rd. A clustering C := (C1, . . . , Ck) satisfying
xl ∈ Ci ⇒ xl ∈ Pi is a clustering induced by (a,W ), respectively by the (a,W )-

power diagram.

Note that the induction of a clustering from a power diagram is not uniquely

determined if there is an xi ∈ X such that xi ∈ bd(Pj) for some j ∈ {1, . . . , k}.
We now have the terminology to formally denote the known relation of LSAs

and power diagrams.

Theorem 2.49 (Aurenhammer, Hoffmann and Aronov 92)

1. Let C := (C1, . . . , Ck} be a clustering of X := {x1, . . . , xn} ⊂ Rd induced by
an (a,W )-power diagram P := (P1, . . . , Pk) for a := (aT1 , . . . , a

T
k )T ∈ Rd·k.

Then C is a LSA of X to a with respect to the induced cluster sizes.

2. Let κ1, . . . , κk ∈ N with
k∑
i=1

κi = n, let X := {x1, . . . , xn} ⊂ Rd and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k. Then there is a LSA C := (C1, . . . , Ck} of X to a with

respect to κ1, . . . , κk, and there is a set of weights W := {wi : i ∈ {1, . . . , k}}
such that C is the clustering induced by the (a,W )-power diagram.

It is easy to see the connection between LSAs and power diagrams denoted in

Theorem 2.49 1.): Assigning points that lie in a cell of a power diagram to the

cluster of the respective cell yields a LSA with respect to the induced cluster

sizes.

Lemma 2.50

Let C := (C1, . . . , Ck} be a clustering of X := {x1, . . . , xn} ⊂ Rd induced by an
(a,W )-power diagram P := (P1, . . . , Pk) for a := (aT1 , . . . , a

T
k )T ∈ Rd·k. Then C is a

LSA of X to a with respect to the induced cluster sizes.

Proof. With C being induced by (a,W ), we know that xl ∈ Ci ⇒ xl ∈ Pi.

Thus, whenever xl ∈ Ci, we have δ2(xl, ai) − wi ≤ δ2(xl, aj) − wj for all
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j ∈ {1, . . . , k}\{i}. By this,
k∑
i=1

∑
x∈Ci

(δ2(x, ai) − wi) is minimal for C among

all clusterings of X . Considering that

k∑
i=1

∑
x∈Ci

(δ2(x,
ai
κi

)− wi) =
k∑
i=1

∑
x∈Ci

δ2(x,
ai
κi

)−
k∑
i=1

∑
x∈Ci

wi

and noting that
k∑
i=1

∑
x∈Ci

wi =
k∑
i=1

κiwi is constant for fixed κ1, . . . , κk shows that

C is a LSA of X to a with respect to the induced cluster sizes.

Aurenhammer, Hoffmann and Aronov proved the second claim constructively,

by developing an algorithm that constructs a LSA and a corresponding inducing

power diagram satisfying the prerequisites.

In the following, we present an alternative, analytical proof for the second claim

of Theorem 2.49 in the context of the gravity polytope. By doing so, we are able

to connect LSAs with gravity vectors on the relative boundary of the gravity

polytope, and derive another characterization of its vertices.

We start by showing that full a-induced cell decompositions can be interpreted

as power diagrams, and vice versa.

Lemma 2.51

Let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}.

1. Any full a-induced cell decomposition of Rd is an (a,W )-power diagram for some
set of weights W .

2. Let W := {wi : i ∈ {1, . . . , k}} be a set of weights. The (a,W )-power diagram
then is a full a-induced cell decomposition of Rd.

Proof. 1.) LetH be a full a-induced cell decomposition for a := (aT1 , . . . , a
T
k )T ∈

Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}. We use the separation directions

aij := aj − ai. Such separating hyperplane directions are induced by using the

sites a1, . . . , ak in a power diagram. In the following, we prove the claim by

showing that there is a set of weights W := {w1, . . . , wk}, such that the cells

induced byH are the cells of the (a,W )-power diagram.

Consider the set of hyperplanes {H1j : j ∈ {1, . . . , k}} ⊂ H. It is easy to derive

weights w1, . . . , wk such that H1j := {x ∈ Rd : δ2(x, a1) − w1 = δ2(x, aj) − wj}:
E.g. we can choose w1 = 0 (arbitrarily), and set wj = δ2(x, aj) − δ2(x, a1) for

any x ∈ H1j ∈ H. It remains to show that δ2(x, ai)− wi = δ2(x, aj)− wj for all

x ∈ Hij ∈ H for all i 6= j; i, j ∈ {1, . . . , k}.
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Suppose a1i and aij are not collinear, then there is an x ∈ H1i ∩Hij ∩Hj1. By

our choice of W , we have δ2(x, a1) − w1 = δ2(x, ai) − wi and δ2(x, a1) − w1 =

δ2(x, aj)− wj , and, by this, δ2(x, ai)− wi = δ2(x, aj)− wj .
Any x′ ∈ Hij can be written as x′ = x+ x′′ with (aj − ai)Tx′′ = 0. We now show

that δ2(x′, ai)− wi = δ2(x′, aj)− wj :

δ2(x′, ai)− wi = δ2(x′, aj)− wj
⇔ δ2(x+ x′′, ai)− wi = δ2(x+ x′′, aj)− wj

⇔ −2(x+ x′′)Tai + aTi ai − wi = −2(x+ x′′)Taj + aTj aj − wj
⇔ 2(x+ x′′)T (aj − ai) + aTi ai − wi = aTj aj − wj

⇔ 2xT (aj − ai) + aTi ai − wi = aTj aj − wj
⇔ −2xTai + aTi ai − wi = −2xTaj + aTj aj − wj

⇔ xTx− 2xTai + aTi ai − wi = xTx− 2xTaj + aTj aj − wj
⇔ δ2(x, ai)− wi = δ2(x, aj)− wj

With the statement in the last line satisfied, we see the claim for this case.

Let now a1i and aij be collinear. By this, H1i, Hij and Hj1 are parallel. Let

xij ∈ Hij and x1i ∈ H1i, xj1 ∈ Hj1. We show that

δ2(xij , ai)− wi = δ2(xij , aj)− wj ⇔ δ2(xij , ai)− δ2(xij , aj) = wi − wj

by leading the assumption δ2(xij , ai)− δ2(xij , aj) 6= wi − wj to a contradiction.

We have

δ2(xij , ai)− δ2(xij , aj) 6= wi − wj
⇔ xTijxij − 2aTi xij + aTi ai − xTijxij + 2aTj xij − aTj aj 6= wi − wj

⇔ aTi ai − aTj aj − 2(ai − aj)Txij 6= wi − wj

and with ai − aj = aji and xij ∈ Hij , (ai − aj)Txij = aTjixij = γji. WithH being

a full a-induced cell decomposition, we know that γ1i + γij + γj1 = 0, and thus

γji = γ1i + γj1. Together, we derive

δ2(xij , ai)− δ2(xij , aj) 6= wi − wj
⇔ aTi ai − aTj aj − 2γ1i − 2γj1 6= wi − wj



2 VERTEX CHARACTERIZATION OF THE GRAVITY POLYTOPE 58

On the other hand wi − wj = (wi − w1) + (w1 − wj), and with x1i ∈ H1i and

xj1 ∈ Hj1, we see that

wi − wj = (wi − w1) + (w1 − wj)

= δ2(x1i, ai)− δ2(x1i, a1) + δ2(xj1, a1)− δ2(xj1, aj)

= xT1ix1i − 2aTi x1i + aTi ai − xT1ix1i + 2aT1 x1i − aT1 a1
+ xTj1xj1 − 2aT1 xj1 + aT1 a1 − xTj1xj1 + aTj xj1 − aTj aj
= aTi ai − aTj aj − 2(ai − a1)Tx1i − 2(a1 − aj)Txj1
= aTi ai − aTj aj − 2γ1i − 2γj1

leading to a contradiction. This proves the first claim.

2.) Let, for any pair of indices i 6= j ∈ {1, . . . , k}2, Hij := {x ∈ Rd : δ2(x, ai) −
wi = δ2(x, aj) − wj}. Clearly, Hij is a hyperplane in Rd, as ai 6= aj for all

i 6= j; i, j ∈ {1, . . . , k}, and as such can be written in the form Hij := {x ∈
Rd : aTijx = γij} for aij := aj − ai and some γij ∈ R. By the definition of full

a-induced cell decompositions, it remains to show that γi1i2 + γi2i3 + γi3i1 = 0

for any {i1, i2, i3} ⊂ {1, . . . , k}. For the sake of a simple notation, we assume

{i1, i2, i3} = {1, 2, 3}without loss of generality.

With the Hij being a-induced, if a12 and a23 are not collinear, neither are a12 and

a31, nor are a23 and a31, recall Corollary 2.25.

Then there is an x ∈ Rd with δ2(x, a1)−w1 = δ2(x, a2)−w2 = δ2(x, a3)−w3, and

this implies x ∈ H12∩H23∩H31. We then obtain 0 = 0Tx = (a12+a23+a31)
Tx =

γ12 + γ23 + γ31.

Finally, suppose a12, a23 and a31 are pairwise collinear. Let x31 ∈ H31, i.e.

δ2(x31, a3)− w3 = δ2(x31, a1)− w1 ⇔ δ2(x31, a3)− δ2(x31, a1) = w3 − w1

We derive

w3 − w1 = δ2(x31, a3)− δ2(x31, a1)

= xT31x31 − 2xT31a3 + aT3 a3 − xT31x31 + 2xT31a1 − aT1 a1
= aT3 a3 − aT1 a1 + 2xT31(a1 − a3)

= aT3 a3 − aT1 a1 + 2aT31x31

= aT3 a3 − aT1 a1 + 2γ31
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On the other hand, for x23 ∈ H23 and x12 ∈ H12 we have

w3 − w1 = (w3 − w2) + (w2 − w1)

= δ2(x23, a3)− δ2(x23, a2) + δ2(x12, a2)− δ2(x12, a1)

= xT23x23 − 2aT3 x23 + aT3 a3 − xT23x23 + 2aT2 x23 − aT2 a2
+ xT12x12 − 2aT2 x12 + aT2 a2 − xT12x12 + aT1 x12 − aT1 a1
= aT3 a3 − aT1 a1 − 2(a3 − a2)Tx23 − 2(a2 − a1)Tx12
= aT3 a3 − aT1 a1 − 2γ23 − 2γ12

and together

aT3 a3 − aT1 a1 + 2γ31 = aT3 a3 − aT1 a1 − 2γ23 − 2γ12

⇔ 2γ31 = −2γ23 − 2γ12

⇔ γ12 + γ23 + γ31 = 0

This proves the claim.

Lemma 2.51 shows that power diagrams and full a-induced cell decompositions

are different representations of the same topological kind of partition of Rd. This

yields another characterization of power diagrams in our terminology.

Recalling Theorem 2.44, we directly obtain a second characterization of the

vertices of the gravity polytope from Lemma 2.51.

Theorem 2.52

Let C := (C1, . . . , Ck) be a PSC. Then v(C) is a vertex of Q if and only if there is a
power diagram P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}.

Lemma 2.51 further allows us to establish a direct correlation between LSAs with

respect to κ1, . . . , κk and gravity vectors on the relative boundary of the gravity

polytope.

Theorem 2.53

Let C := (C1, . . . , Ck) be a PSC, and let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai

κi
6= aj

κj

for all i 6= j; i, j ∈ {1, . . . , k} and aκ := ( a1κ1
T , . . . , akκk

T )T . Then the following two
statements are equivalent:

1. v(C) ∈ relbd(Q) and a ∈ N(v(C))

2. C is a LSA of X to aκ with respect to κ1, . . . , κk
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Proof. 2) ⇒ 1): Let C := (C1, . . . , Ck) be a LSA of X to aκ with respect to

κ1, . . . , κk for some a. The LSA is associated with a minimal value of

k∑
i=1

∑
x∈Ci

δ2(x,
ai
κi

) =
k∑
i=1

∑
x∈Ci

(xTx− 2 · ai
κi

T
x+

ai
κi

T ai
κi

).

With
k∑
i=1

∑
x∈Ci

xTx =
∑
x∈X

xTx and
k∑
i=1

∑
x∈Ci

ai
κi
T ai
κi

=
k∑
i=1

aTi ai
κi

constant for fixed X ,

a and cluster sizes κ1, . . . , κk, we look for a PSC belonging to

arg min
PSC C

k∑
i=1

∑
x∈Ci

−2 · ai
κi

T
x = arg max

PSC C
2 ·

k∑
i=1

∑
x∈Ci

ai
κi

T
x = arg max

PSC C
2 ·

k∑
i=1

aTi ci,

where ci denotes the center of gravity of cluster Ci. This corresponds to a

PSC C = arg max
PSC C

k∑
i=1

aTi ci = arg max
PSC C

aT v(C), implying v(C) ∈ relbd(Q) and

a := (aT1 , . . . , a
T
k )T ∈ Rd·k ∈ N(v(C)).

1)⇒ 2): By Theorem 2.33 and Corollary 2.37, we can construct a full aκ-induced

cell decomposition P := (P1, . . . , Pk) of Rd with Ci ⊂ Pi. By Lemma 2.51, there

is a set of weights W := {w1, . . . , wk}, such that P is the (aκ,W )-power diagram.

With Ci ⊂ Pi, by Lemma 2.50, C is a LSA of X to aκ with respect to κ1, . . . , κk.

This proves the claim.

Informally, Theorem 2.53 tells us that the LSAs with respect to κ1, . . . , κk have

gravity vectors on the relative boundary of the gravity polytope. The second

claim of Theorem 2.49 follows (almost) immediately.

Lemma 2.54

Let κ1, . . . , κk ∈ N with
k∑
i=1

κi = n, let X := {x1, . . . , xn} ⊂ Rd and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k. Then there is a LSA C := (C1, . . . , Ck} of X to a with respect

to κ1, . . . , κk and there is a set of weights W := {wi : i ∈ {1, . . . , k}} such that C is
the clustering induced by the (a,W )-power diagram.

Proof. Let κ1, . . . , κk ∈ N and let a′ := (κ1 ·aT1 , . . . , κk ·aTk )T ∈ Rd·k. With Q being

a polytope, there always is a PSC C := (C1, . . . , Ck) with a′T v(C) ≥ a′T v′ for all

v′ ∈ Q\{v(C)}. By this, v(C) ∈ relbd(Q) and a′ ∈ N(v(C)) , and we can apply

Theorem 2.53 to see that C is a LSA of X to a′κ = a with respect to κ1, . . . , κk.

The rest of the claim follows analogously to the proof of 1) ⇒ 2) for Theorem

2.53.
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We obtain another characterization of the vertices of the gravity polytope from

the above results.
Theorem 2.55

Let C := (C1, . . . , Ck) be a PSC. Then v(C) is a vertex of Q if and only if C is a strict
LSA to some aκ := ( a1κ1

T , . . . , akκk
T )T ∈ Rd·k with respect to κ1, . . . , κk.

Proof. Recalling Theorem 2.53, we know that the clustering C := (C1, . . . , Ck)

associated with a vertex is a LSA to some aκ := ( a1κ1
T , . . . , akκk

T )T ∈ Rd·k with

respect to κ1, . . . , κk. We also see this from Lemma 2.50 and Theorem 2.52.

By Theorem 2.52, C is induced by an (aκ,W )-power diagram such that Ci ⊂
int(Pi) for all i ∈ {1, . . . , k}. For any x ∈ X associated with a cluster Ci, this

implies δ2(x, aiκi )− wi < δ2(x,
aj
κj

)− wj for any j ∈ {1, . . . , k}\{i}. By

k∑
i=1

∑
x∈Ci

(δ2(x,
ai
κi

)− wi) =
k∑
i=1

∑
x∈Ci

δ2(x,
ai
κi

)−
k∑
i=1

∑
x∈Ci

wi

and
k∑
i=1

∑
x∈Ci

wi being constant, this implies that
k∑
i=1

∑
x∈Ci

δ2(x, aiκi ) is strictly mini-

mal for C among all PSCs.

Conversely, let
k∑
i=1

∑
x∈Ci

δ2(x, aiκi ) be strictly minimal for C among all PSCs. Fol-

lowing the proof of Theorem 2.53 2) ⇒ 1), we see that C is the PSC uniquely

maximal in Q with respect to aT v(C), where a := (aT1 , . . . , a
T
k )T ∈ Rd·k. This is

only possible at a vertex of Q, for a ∈ N(v(C)), which proves the claim.

We close this section by taking a closer look at the connection between power

diagrams, LSAs and vertices of the gravity polytope. Our geometric approach

directly leads us to some simple statements for the sites of a power diagram,

respectively of strict LSAs.

Lemma 2.56

Let κ1, . . . , κk ∈ Nk with
k∑
i=1

κi = n, let X := {x1, . . . , xn} ⊂ Rd and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}.

Let further C := (C1, . . . , Ck) be a PSC induced by an (a,W )-power diagram for some
set of weights W := {wi : i ∈ {1, . . . , k}}. If Ci ⊂ int(Pi), then C is the only PSC
that can be induced by an (a,W ′)-power diagram using the site vector a and any set of
weights W ′. In this case, further

1. the site vectors a := (aT1 , . . . , a
T
k )T and ab := ((a1 + b)T , . . . , (ak + b)T )T , for

any b := (b1, . . . , bd)
T ∈ Rd, yield the same PSC C.
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2. the site vectors a := (aT1 , . . . , a
T
k )T and at := (t · aT1 , . . . , t · aTk )T , for any

0 < t ∈ R, yield the same PSC C.

Proof. By Theorem 2.44 and Lemma 2.51, we know that Ci ⊂ int(Pi) for all

i ∈ {1, . . . , k} can only be satisfied if v∗ := v(C) is a vertex of Q and a′ :=

(κ1 · aT1 , . . . , κk · aTk )T ∈ Rd·k ∈ int(N(v∗)). Then a′ /∈ N(v) for any v ∈ Q\{v∗},
and Lemma 2.42 and Lemma 2.51 prove the uniqueness of C as being the only

PSC which can be induced by an (a,W ′)-power diagram for any set of weights

W ′.

1.) With a′ = (κ1 ·aT1 , . . . , κk ·aTk )T ∈ N(v∗) for the vertex v∗ associated with PSC

C, we have

a′b := (κ1 · (a1 + b)T , . . . , κk · (ak + b)T )T ∈ N(v∗)

as well, due to

a′Tb v = (κ1 · (a1 + b)T , . . . , κk · (ak + b)T )v

= ((κ1 · aT1 , . . . , κk · aTk ) + (κ1 · bT , . . . , κk · bT ))v

= (a′T + (κ1 · bT , . . . , κk · bT ))v

= a′T v + (κ1b1, . . . , κ1bd, κ2b1, . . . , κ2bd, . . . , κkb1, . . . , κkbd)v

= a′T v +
k∑
i=1

(κib1, . . . , κibd)ci

= a′T v +
n∑
l=1

(b1, . . . , bd)xl

= a′T v + (b1, . . . , bd)(
n∑
l=1

xl),

as (b1, . . . , bd)(
n∑
l=1

xl) is constant for fixed b.

2.) We have at = t · a, and the claim follows from a′ ∈ N(v∗)⇔ t · a′ ∈ N(v∗) for

any vertex v∗ ∈ Q.

Informally, Lemma 2.56 shows that if the clusters of a PSC lie strictly in the

interior of the cells of a power diagram, then there is no other PSC that can be

induced by a power diagram using the same sites.
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Additionally, the construction of the power diagram is invariant under an identi-

cal translation of all sites in Rd and a scaling of all sites by the same scalar. Note

that 1.) implies that one of the sites can be chosen as 0 ∈ Rd, if we set b = −ai
for some i ∈ {1, . . . , k}. This invariance can be transferred directly to LSAs by

Lemma 2.50 and Lemma 2.54. See also [AHA98].

Corollary 2.57

Let κ1, . . . , κk ∈ N with
k∑
i=1

κi = n, let X := {x1, . . . , xn} ⊂ Rd and let a :=

(aT1 , . . . , a
T
k )T ∈ Rd·k be a vector of sites with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}.

Let further C := (C1, . . . , Ck) be a (strict) LSA of X to a with respect to κ1, . . . , κk.
Then

1. C is a (strict) LSA of X to ab := ((a1 + b)T , . . . , (ak + b)T )T with respect to
κ1, . . . , κk, for any b := (b1, . . . , bd)

T ∈ Rd.

2. C is a (strict) LSA of X to at := (t · aT1 , . . . , t · aTk )T with respect to κ1, . . . , κk,
for any 0 < t ∈ R.

2.6 Summary and Outlook

In this chapter, we investigated the gravity polytope defined by the gravity

vectors of prescribed-shape clusterings of an underlying point set, with our focus

on a characterization of the vertices of this polytope. We started by transferring

a result by Barners, Hoffman and Rothblum [BHR92] to our polytope, showing

that the clusters of clusterings belonging to vertices of the gravity polytope are

pairwise strictly linearly separable. On the other hand, there also are clusterings

associated with vectors in the interior of the polytope satisfying this property.

Next, we turned to a result by Brieden and Gritzmann [BG09], showing that the

clusterings of vertices allow cell decompositions of the space of the point set

such that each cluster lies strictly in its own cell. Yet even this property does

not suffice for a direct characterization of the vertices. We observed that the

construction used for this cell decomposition satisfies some special properties,

leading us to the notion of full a-induced cell decompositions, finally yielding the

desired characterization of the vertices. The most important feature of full cell

decompositions is that any subset of cells still yields a cell decomposition of the

underlying space. We also showed that asking for this feature alone, under mild

restrictions, directly leads to a full cell decomposition having a representation

as a full a-induced cell decomposition, yielding another characterization of the

vertices .
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Finally, we showed that full a-induced cell decompositions correspond to power

diagrams, a generalized class of Voronoi diagrams, and vice versa. Using this

fact, we gave an alternative proof of a theorem of Aurenhammer, Hoffmann

and Aronov [AHA98] in the context of the gravity polytope and hereby derived

two additional characterizations of the vertices. As a byproduct, we obtained

an alternative characterization of power diagrams, and observed that some

properties of power diagrams and LSAs follow naturally from the point of view

of our geometric approach.

There still are plenty of open questions concerning the gravity polytope and

related polytopes. Of course not only the vertex structure of the polytope is of

interest, but so are its edge-structure and its general facial structure. In Chapter

4, we will shortly turn to the edge-structure of the polytope.

The last section of this chapter also yields an interesting polytope to study, the

polytope of gravity vectors of clusterings induced by power diagrams. It is the

convex hull of gravity polytopes for all feasible combinations of cluster sizes and

thus differs from both our gravity polytope and the unrestricted polytope con-

sidered by Barnes, Hoffman and Rothblum [BHR92]. Certainly, many properties

of these two related polytopes can be transferred to this one.

In the next chapter, we turn to an application of the theoretical results of this

chapter in the field of data classification.
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3 Data Classification by Cell Decompositions

In the following, we use the characterization of the vertices of the gravity poly-

tope described in the last chapter for a combinatorial optimization approach to

data classification. As we see in the first section, vertex clusterings satisfy several

nice properties when used this way.

We refer the reader to the Notation and Symbols appendix for a list of the most

important symbols introduced in Chapter 2 and in this chapter.

3.1 Vertex Clusterings

In this section, we give some reasons as to why clusterings associated with

vertices of a gravity polytope are especially useful for data classification purposes.

First and foremost, such clusterings correspond to strict LSAs to some sites with

respect to the given cluster sizes, by Theorem 2.55. Looking for LSAs of data

vectors to clusters is an intuitively useful approach in many applications and thus

a widely accepted way of clustering geometric data, whenever the Euclidean

distance of data vectors is a suitable similarity measure [EE04; Mir05].

As we have seen, LSAs with respect to some cluster sizes satisfy a number of addi-

tional useful properties. Their clusters not only allow linear separation, but they

also allow full a-induced cell decompositions (Theorem 2.44), or equivalently

can be induced by power diagrams (Theorem 2.52, [AHA98]).

We hence obtain a geometric interpretation of the separating hyperplanes as

’differentiation criteria’ of the clusters. The fact that, for any subsystem of clusters,

we have a cell decomposition of space further emphasizes this interpretation.

If the structure of the underlying data does not adhere to linear separability of

clusters, the use of kernels may amend the situation, by a transformation of the

data such that linear separation of clusters is a valid approach. Kernel functions

and the choice of the ’right’ kernels for data sets are an active field of research in

machine learning. See [SS02; Bor07] for surveys of the topic.

We begin by analyzing one of the most influential and classical methods for clus-

tering without size restrictions, the k-means algorithm [Mac67], in the context of

the gravity polytope. With its basic idea being to calculate LSAs to a set of sites

in each iteration step, we only need a minimal adaption of the algorithm to relate

the clusterings of each iteration step to vertices of the gravity polytope. We start

by giving an informal description of the algorithm in pseudo-code (Algorithm

1).
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Input :d, k, n, X = {x1, . . . , xn} ⊂ Rd
Output :Clustering C := (C1, . . . , Ck), cluster sizes κ1, . . . , κk

Choose k cluster sites a1, . . . , ak (at random) in Rd;
(∗) Assign each x ∈ X to a cluster Ci for which δ2(x, ai) is minimal;
for 1 ≤ i ≤ k do

κi := |Ci|;
if κi > 0 then

ai := 1
κi

∑
x∈Ci

x;

end
else

Choose ai at random;
end

end
if the assignment of an x ∈ X changed during the last iteration then

Go to step (∗);
end
return C := (C1, . . . , Ck) and κ1, . . . , κk;

Algorithm 1: k-Means Algorithm

This basic version of the algorithm partitions a given point set X ⊂ Rd into

k (not necessarily non-empty) clusters C1, . . . , Ck. In each iteration, a current

set of cluster sites a1, . . . , ak is used to assign all x ∈ X to a cluster Ci with

δ2(x, ci) ≤ δ2(x, cj) for all j ∈ {1, . . . , k}\{i}. By this,
k∑
i=1

∑
x∈Ci

δ2(x, ai) is minimal

for the clustering C := (C1, . . . , Ck). This shows that C is a LSA of X to a :=

(aT1 , . . . , a
T
k )T for arbitrary cluster sizes, and thus certainly also with respect to

the induced cluster sizes. By Theorem 2.53, we know that its gravity vector is on

the relative boundary of the gravity polytope of the respective cluster sizes.

Lemma 3.1

Let C := (C1, . . . , Ck) be a clustering of X derived after step (∗) of any iteration of
Algorithm 1. Let k′ be the number of non-empty clusters, let C ′ := (C1, . . . , Ck′) be
derived from C by dropping all empty clusters (and reindexing), and let κi := |Ci| for
all i ∈ {1, . . . , k′}. Then v(C ′) ∈ relbd(Q(X, k′;κ1, . . . , κk′)).

Informally, in each step, the k-means algorithm decomposes Rd into a Voronoi

diagram with respect to a1, . . . , ak and induces a clustering C from it. With

power diagrams being a direct generalization of Voronoi diagrams, this is just a

simple special case of the clusterings induced by power diagrams described in

the last chapter.
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We now turn to the question of how to adapt Algorithm 1 to be able to guarantee

that the resulting clusterings are vertices of their corresponding gravity polytope.

Input :d, k, n, X = {x1, . . . , xn} ⊂ Rd
Output :Clustering C := (C1, . . . , Ck), cluster sizes κ1, . . . , κk

Choose k cluster sites a1, . . . , ak (at random) in Rd;
(∗) Assign each x ∈ X to the cluster Ci with minimal index i for which
δ2(x, ai) is minimal;
for 1 ≤ i ≤ k do

κi := |Ci|;
if κi > 0 then

ai := 1
κi

∑
x∈Ci

x;

end
else

Choose a random x ∈ X (with x 6= aj for all j 6= i) and set ai := x;
end

end
if the assignment of an x ∈ X or an ai changed during the last iteration then

Go to step (∗);
end
return C := (C1, . . . , Ck) and κ1, . . . , κk;

Algorithm 2: Deterministic k-Means Algorithm

First, we always assign x ∈ X to the cluster Ci of minimal index i with a closest

site. By doing so, each pair of clusters Ci, Cj can be separated strictly in direction

aj − ai after each iteration of the algorithm.

If desired, we can also force the algorithm to run until all k clusters are non-

empty by also checking whether any ai changed during the last iteration. If so,

either the assignment of an x ∈ X changed, or a cluster was empty, so that its

center was chosen differently at random. Instead of this random choice, we may

set ai = x for some x ∈ X with x 6= cj for all j ∈ {1, . . . , k}. In the next step of

the algorithm, x will then be assigned to Ci. Still, we impose no other restrictions

on the cluster sizes (except for them summing up to n). The pseudo-code of

Algorithm 2 adds the ideas mentioned. We obtain the following theorem.

Theorem 3.2

Let C := (C1, . . . , Ck) be a clustering of X returned by Algorithm 2, and let κi := |Ci|
for all i ∈ {1, . . . , k}. Then v(C) is a vertex of Q(X, k;κ1, . . . , κk).

Proof. With arbitrary starting sites, our k-means algorithm derives a clustering

C := (C1, . . . , Ck) ∈ Q(X, k;κ1, . . . , κk) of X with κi ≥ 1 for all 1 ≤ i ≤ k. It is a
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PSC for k and the induced κ1, . . . , κk. We prove the claim by showing that C is

a strict LSA to a := (aT1 , . . . , a
T
k ) with respect to κ1, . . . , κk, where a1, . . . , ak are

the final cluster centers.

By the deterministic assignment used, we know that

xl ∈ Ci ⇒ δ2(xl, ai) ≤ δ2(xl, aj) for all j ∈ {1, . . . , k}\{i}

and additionally that for

xl ∈ Ck ⇒ δ2(xl, ak) < δ2(xl, aj) for all j ∈ {1, . . . , k − 1}.

With Ck non-empty we obtain

k∑
i=1

∑
x∈Ci

δ2(x, ai) <

k∑
i=1

∑
x∈C′i

δ2(x, ai)

for any clustering C ′ := (C ′1, . . . , C
′
k) 6= C. This proves the claim.

Note that the cluster sites of the last iteration step are the centers of gravity of

the respective clusters after the termination of Algorithm 2. Note further that we

do not need exactly k non-empty clusters to see that we have a strict LSA. Using

xl ∈ Ck′ for the highest index k′ for which Ck′ is non-empty in the above proof

yields the claim analogously. Due to this, we get the following corollary.

Corollary 3.3

Let C := (C1, . . . , Ck) be a clustering of X derived after step (∗) of any iteration of
Algorithm 2. Let k′ be the number of non-empty clusters, let C ′ := (C1, . . . , Ck′) be
derived from C by dropping all empty clusters (and reindexing), and let κi := |Ci| for
all i ∈ {1, . . . , k′}. Then v(C ′) is a vertex of Q(X, k′;κ1, . . . , κk′).

Of course, not all vertices of a gravity polytope Q can be derived from an

application of Algorithm 2. The most obvious examples are clusterings where

a pair of clusters Ci, Cj cannot be separated in direction cj − ci for some i 6=
j; i, j ∈ {1, . . . , k}.
As we have seen, our vertex clusterings are strict LSAs with respect to some

cluster sizes, and they may be the clusterings returned by an application of the

k-means algorithm. It is known that such clusterings are ’optimal’ clusterings in

several geometric ways due to being induced by Voronoi diagrams, or power

diagrams respectively. See [AK99] for a short survey.
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The full aκ-induced cell decompositions we construct for vertex clusterings as

described in Theorem 2.33 are in a certain sense (Lemma 2.41 and the short

remark after it) the only way to create a cell decomposition such that all subsets

of indices still create cell decompositions. Later on, we will describe some advan-

tages of having a full cell decomposition, instead of only a cell decomposition,

for some stability measures for the classification and prediction algorithms we

propose.

We now turn to a special type of gravity polytopes, where the cluster sizes satisfy

κ1 = κ2 = · · · = κk. If we look for a clustering into clusters of equal size and

consider a vertex of the corresponding gravity polytope, we get an especially

nice geometric property.

Lemma 3.4

Let κ ∈ N and κi = κ for all i ∈ {1, . . . , k}, let C := (C1, ..., Ck) be a clustering with
gravity vector v := v(C) = (cT1 , . . . , c

T
k )T and let a := (aT1 , . . . , a

T
k )T ∈ Rd·k with

aT v ≥ aT v′ for any v′ ∈ Q\{v}.
Then v is optimal in Q for the objective function

max
PSC C

k∑
i=1

k∑
j=1

(ai − aj)T (ci − cj)

Proof. v is optimal in Q for

max aT v = max
k∑
i=1

aTi ci

We have

k∑
i=1

k∑
j=1

(ai − aj)T (ci − cj) =

k∑
i=1

k∑
j=1

(aTi ci + aTj cj − (aTj ci + aTi cj)) =

k∑
i=1

(2k · aTi ci)−
k∑
i=1

k∑
j=1

2 · aTj ci =
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2kaT v − 2

k∑
i=1

k∑
j=1

aTj ci =

2kaT v − 2

k∑
i=1

cTi (

k∑
j=1

aj)

As k and a are fixed, 2k and
k∑
j=1

aj are constant, and as κi = κ for all i ∈ {1, . . . , k},

k∑
i=1

cTi (
k∑
j=1

aj) also is constant. We get an objective function in the form

max const · aT v − const ,

proving the claim.

Lemma 3.4 shows that if all clusters have the same number of points, when

looking for a PSC C with optimal objective function value aT v(C), we ’push’ the

centers of gravity of each pair of clusters away from each other with respect to

the vectors ai − aj , so that the sum over these pairwise distances is maximized.

For the general case of different κi, similar arguments yield that the objective

function max aT v = max
k∑
i=1

aTi ci determines the same clustering as the objective

function

max
PSC C

k∑
i=1

k∑
j=1

(
ai
κi
− aj
κj

)T
(κici − κjcj).

In this case, the directions of the separating hyperplanes depend on the κi, and

the centers of gravity ci are scaled by their corresponding size.

Note that having cluster sizes such that κi
κj

is close to 1 for all i 6= j; i, j ∈
{1, . . . , k} implies that the clustering considered still is a close approximation of

the best case for the above measure. Note further that

κici = κi ·
1

κi

∑
x∈Ci

x =
∑
x∈Ci

x,

and these are the coordinates of the vectors of clusterings in the (bounded-shape)

partition polytopes investigated in [BHR92; HOR98; HOR99; HOR00].
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We close this section by turning to a special vertex (and vertex clustering) in a

gravity polytope for which κ1 = · · · = κk. It is tied to above measure for a ’good’

separability of clusterings. We consider the ’total inter-cluster distance’ [BG09]:

k−1∑
i=1

k∑
j=i+1

∑
xi∈Ci

∑
xj∈Cj

(
aj
κj
− ai
κi

)T (xj − xi)

Informally, it sums up the distances between all pairs of points of different

clusters with respect to the vectors ai
κi
− aj

κj
. Note that if x ∈ Ci, then x is put into

a relation to other vertices exactly n−κi times. Thus, in general, the contribution

of a vertex depends on the size of its cluster.

Let nowX satisfy
n∑
l=1

xl = 0. If necessary, an original point setX can be translated

(as a whole) to satisfy this condition. In [BG09] it was shown that then a clustering

C with maximal total inter-cluster distance (for ’normed’ site vectors) not only is

associated with a vertex v = v(C) ∈ Q, but also that ‖v‖ is maximal in Q. Thus,

this clustering can be determined by Euclidean norm maximization in Q, i.e. we

have vT v > v′T v′ for any v′ ∈ Q\{v}. With v = v(C) being maximal with respect

to the Euclidean norm in Q and κ1 = · · · = κk, we know that the respective

clustering is induced by a power diagram to sites c1, . . . , ck chosen as the centers

of gravity of the clusters.

In this section, we investigated and validated the idea of considering vertex

clusterings in the gravity polytope for the purpose of data classification from

several points of view: First, we recalled that they are LSAs with respect to fixed

cluster sizes. We showed that we only need to modify the classical k-means

algorithm slightly to derive clusterings belonging to vertices of some gravity

polytope. Both these facts relate the ideas following in this chapter to existing

partitioning clustering algorithms.

Additionally, we proved that, in the case of equal cluster sizes, we optimize a

geometric measure intuitively well-suited for data classification at the vertices of

the polytope. The clustering of a vertex of maximal Euclidean norm in such a

gravity polytope (with
n∑
l=1

xl = 0) allows its clusters to be separated in direction

of the difference of the centers of gravity of the clusters.

In the next section, we describe how we can use a cell decomposition of some

geometric space such that each cell contains the data vectors of a single cluster

for the two basic algorithms in the field of data classification. With our approach

using purely geometric arguments, we do not rely on any knowledge about the
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data, like cause-effect models or cross validation dependencies. Notationally

easier in many cases, and closer to typical notation in the field of combinatorial

optimization, we will talk about full a-induced cell decompositions (instead of

the equivalent power diagrams) and full cell decompositions for the remainder

of this chapter.

3.2 Data Classification by Cell Decompositions

Suppose we have a set of data vectors X := {x1, . . . , xn} ⊂ Rd that are parti-

tioned into k clusters such that there is a k-cell decomposition of Rd, where the

interior of each cell contains the points of exactly one cluster.

If we consider our clustered set of points as our ’training set’, we now have an

immediate approach to assigning a new vector to one of the existing clusters: We

simply check which cell the vector lies in, and assign it to the respective cluster.

To do so, we only have to check the position of the new point x in relation to the

hyperplanes of the hyperplane arrangementH inducing the cell decomposition.

If x lies on the boundary of more than one cell, we choose the one of lowest index.

Algorithm 3 describes this procedure, Figure 26 shows a simple application. It is

easy to see that we only need k − 1 comparisons:

Lemma 3.5

LetH induce a k-cell decomposition of Rd and let x ∈ Rd. Algorithm 3 requires exactly
k − 1 comparisons to determine the cell of lowest index that x lies in. This can be done
with O(d · (k − 1)) elementary operations and assignments.

Proof. With each comparison, one of the cells is ruled out. As we have a cell

decomposition, i.e. a partition of Rd, the last remaining cell will certainly contain

x. If x ∈ Pi ∩ Pj for two cells Pi, Pj induced byH, then x will be assigned to the

one of lower index.

Each comparison contains a d-dimensional scalar product and leads to a single

assignment. This yields the running time of O(d · (k − 1)).

In the arithmetic model of computation, based on a hypothetical single-processor

random-access machine, elementary arithmetic operations are assumed to re-

quire (constant) unit time. Thus only the number of operations performed is

counted, see e.g. [AHU85; Cha03]. Using this model, we interpret Lemma 3.5 as

follows.
Corollary 3.6

In the arithmetic model of computation, Algorithm 3 has a running time ofO(d ·(k−1)).
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Input :H inducing a cell decomposition, vector x to be inserted
Output : Index i of the cell x lies in

i := 1;
j := 2;
while j ≤ k do

if aTijx > γij then
i = j;

end
j = j + 1;

end
return i;

Algorithm 3: Cell of a Vector

(a) A 3-cell decomposition in
R2, and a point to be inserted.

(b) The first comparison rules
out a membership in the green

cell.

(c) The second comparison
rules out a membership in the

blue cell.

Figure 26: An application of Algorithm 3 for inserting a point into a 3-cell
decomposition of R2. P1 is marked red, P2 is marked green and P3 is marked

blue.
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low2

up2

L

Figure 27: A 3-cell decomposition P1 (red), P2 (green), P3 (blue) for of a point set
X in R2. The big point represents the first coordinate of a new data vector x,
which we want to complete to a vector on the line segment L by predicting a

value for the second coordinate.

Another approach to using a cell decomposition arises from the desire to predict

an ’expected’ value for a data vector for which we only have incomplete infor-

mation. Suppose x ∈ Rd is a data vector for which we only know the values of

d− 1 of its d parameters. We are interested in a prediction for the last, unknown

parameter. This process is also called data imputation in the literature. See

[WM04] for a short survey of commonly used imputation rules.

In the following, we describe how to use a cell decomposition for X for an ap-

proach to data imputation. Without loss of generality, let x = (ξ1, . . . , ξd−1, ξd)
T

with ξ1, . . . , ξd−1 already known and ξd to be derived. Let further lowd := min
x∈X

ξd

and upd := max
x∈X

ξd be lower and upper bounds on the value range of the d-th

coefficients of points in X . If we know the possible data range to be different

from the minima or maxima taken by data vectors in X , or if we only want to

consider a narrower range, we, of course, are free to do so.

Let us now consider the line segment

L := {(ξ1, . . . , ξd−1, lowd)T + λ(0, . . . , 0, upd − lowd)T : λ ∈ [0, 1]}.

It corresponds to the set of vectors where x is complemented with a value

ξd ∈ [lowd, upd].
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The idea is to look at the length of the intersection of this line with the cells of

our cell decomposition. Each cell Pi contains exactly the points of a single cluster

Ci with gravity vector ci. Taking the d-th entry (ci)d of ci for each cluster means

taking the average d-th coefficient of all points in the cluster. If we weigh these

average values according to the length of the intersection of Lwith the respective

cell, we obtain a ’natural’ prediction for ξd. Figure 27 and 28 depict this process.

We now turn to an algorithmic description of this process. We need lowd, upd
and (ci)d for all i ∈ {1, . . . , k} as input. As L is a line segment, L ∩ Hij = ∅,
|L ∩Hij | = 1 or L ⊂ Hij for all hyperplanes Hij .

For an x′ ∈ L to be in cell Pi, we need aTijx
′ ≤ γij for all j ∈ {1, . . . , k}. Knowing

this, we introduce values lowij , upij ∈ [0, 1] for all i 6= j; i, j ∈ {1, . . . , k} defined

as follows. Let

lowij := argλ[ min
λ∈[0,1]

aTij((ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd − lowd)T ) ≤ γij ].

If there is no λ ∈ [0, 1] satisfying this inequality, we set lowij = 1. This can

happen if L ∩Hij = ∅. Analogously, we define

upij := argλ[ max
λ∈[0,1]

aTij((ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd − lowd)T ) ≤ γij ].

If there is no λ ∈ [0, 1] satisfying this inequality, we set upij = lowij . Again, this

can happen if L ∩Hij = ∅. By these definitions, we always have lowij ≤ upij ,

and lowij = upij if and only if there is no λ ∈ [0, 1] with

aTij((ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd − lowd)T ) ≤ γij .

In the end, [lowij , upij ] describes the range of λs for which the respective vector

in L is in H≤ij . Algorithm 4 describes this preprocessing step. Therein, we avoid

the calculation of minima or maxima with the knowledge that each Hij separates

Rd linearly into two halfspaces.

Defining vectors

li := max
j∈{1,...,k}\{i}

lowij and ui := min
j∈{1,...,k}\{i}

upij for i ∈ {1, . . . , k},

we know that, if li 6= ui,

λ ∈ [li, ui]⇒ (ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd − lowd) ∈ Pi.
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c1

c2

0 = l1

4
13 = u1 = l2

1 = u2

(a) L intersects with P1 (red) and P2 (green). (c1)2
and (c2)2 are weighted according to the relative

lengths of these intersections for a prediction of ξ2.

c1

c2

x =
(
ξ1
ξ2

)

0 = l1

4
13 = u1 = l2

1 = u2

(b) The expected value ξ2 for the incomplete data
vector x =

(
ξ1
ξ2

)
is calculated as

(u1 − l1) · (c1)2 + (u2 − l2) · (c2)2.

Figure 28: An example for data value prediction using the cells of the cell
decomposition of Figure 27.
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Input :H inducing a cell decomposition, ξ1, . . . , ξd−1, lowd, upd
Output : lowij , upij for all i 6= j; i, j ∈ {1, . . . , k}

for 1 ≤ i ≤ k do
for 1 ≤ j ≤ k; j 6= i do

if aTij(ξ1, . . . , ξd−1, lowd)
T ≤ γij then

lowij = 0;
end
else

if aTij((ξ1, . . . , ξd−1, upd)
T > γij then

lowij = 1;
end
else

lowij = argλ[aTij((ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd −

lowd)
T ) = γij ];

end
end

end
for 1 ≤ j ≤ k; j 6= i do

if aTij(ξ1, . . . , ξd−1, upd)
T ≤ γij then

upij = 1;
end
else

if aTij((ξ1, . . . , ξd−1, lowd)
T > γij then

upij = lowij ;
end
else

upij = argλ[aTij((ξ1, . . . , ξd−1, lowd)
T + λ(0, . . . , 0, upd −

lowd)
T ) = γij ];

end
end

end
end
return lowij , upij for all i 6= j; i, j ∈ {1, . . . , k};

Algorithm 4: Calculation of lowij and upij
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c1

c2
c3

c2+c3
2

0 = l1

7
13 = u1 = l2 = l3

1 = u2 = u3

Figure 29: The cell decomposition of Figure 27, and an incomplete x with
L ⊂ H23. Here 1

2(c2 + c3) is weighted with the length of the common
intersection of P2 and P3 with L.

We use these intervals as weights for our prediction, namely we set wi :=

(ui − li) · (ci)d and ξd :=
k∑
i=1

wi, unless L ⊂ Hij .

We can avoid the case of L ⊂ Hij either by using a (possibly slightly perturbed)

cell decomposition for which aTij(0, . . . , 0, 1)T 6= 0 for i 6= j; i, j ∈ {1, . . . , k},
or we consider it during the algorithm as follows: We check whether there

are intervals [li, ui] = [lj , uj ] with i 6= j; i, j ∈ {1, . . . , k}. If so, we identify

the number s of clusters that share such an interval. Their respective weight

contribution value is then just divided by s, i.e.

wi :=
1

s
(ui − li) · (ci)d

Figure 29 depicts this approach. This can be done easily if we sort the li and ui
by ascending values.

Algorithm 5 sums up the whole prediction process (without a sorting routine for

the li and ui). Its running time is as follows.

Lemma 3.7

Let H induce a k-cell decomposition of Rd and let x ∈ Rd. Then Algorithm 5 can be
performed with O(d · k · (k − 1)) elementary operations and assignments.

Proof. We start by analyzing Algorithm 4, used as a subroutine of Algorithm

5. For any of the k · (k − 1) combinations of i 6= j, we determine lowij and
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Input :H inducing the cell decomposition, ξ1, . . . , ξd−1, lowd, upd, (ci)d
for all i ∈ {1, . . . , k}

Output :Predicted value ξd

Calculate upij and lowij with Algorithm 4;
for 1 ≤ i ≤ k do

li := max
j∈{1,...,k}\{i}

lowij ;

ui := min
j∈{1,...,k}\{i}

upij ;

wi := (ui − li) · (ci)d;
end
Index set I := {1, . . . , k};
for i ∈ I do

I = I\{i};
s := 1;
Index set I ′ := {i};
for j ∈ I do

if li = lj and ui = uj then
s = s+ 1;
I = I\{j};
I ′ = I ′ ∪ {j};

end
end
for j ∈ I ′ do

wj = 1
swj ;

end
end

return ξd :=
k∑
i=1

wi;

Algorithm 5: Prediction
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upij . Both calculations work analogously, we turn to the one for lowij . In a

worst case, we have to check the conditions in both if-statements and solve the

equality in the last else-case. For this, the two d-dimensional scalar products and

γij − aTij(ξ1, . . . , ξd−1, lowd)T have to be calculated. The latter has to be set equal

to λaTij(0, . . . , 0, upd − lowd)T . This is an equation in R, which can be solved by a

single division. Further, there is exactly one assignment for each combination of

i 6= j. This results in a total of at most 2k ·(k−1) comparisons andO(d ·k ·(k−1))

elementary operations and assignments.

In Algorithm 5, we then continue with the calculation of li, ui and wi for all

i ∈ {1, . . . , k}. For li and ui we need to consider the values lowij and upij for all

j ∈ {1, . . . , k}\{i}, and thus require 2k ·(k−1) comparisons (and up to that many

assignments) for this step. The wi are then derived by 2k arithmetic operations.

In the second for-loop, each index i ∈ {1, . . . , k} is removed from I and added

to I ′ exactly once. By this, we have 2k set operations. We perform both compar-

isons of the if-statement at most k·(k−1)
2 times, for a total of at most k · (k − 1)

comparisons. We have O(k) assignments and increments of s in total. The sec-

ond interior for-loop is again entered exactly once for each index in {1, . . . , k},
yielding another k arithmetic operations. Finally, the return-part yields another

k arithmetic operations.

This results in a total of at most 3(k ·(k−1)) comparisons andO(k) set operations,

elementary arithmetic operations and assignments for Algorithm 5 without the

operations in Algorithm 4. The running time is dominated by theO(d ·k ·(k−1))-

term from Algorithm 4, yielding the claim.

Corollary 3.8

In the arithmetic model of computation, Algorithm 5 has a running time of O(d · k ·
(k − 1)).

We described the process for a single incomplete criterion. Similar ideas can

be used if we have more than one ’missing’ data entry. In this case L will be

higher-dimensional, so that it is necessary to calculate areas or volumina instead

of line segment lengths. Such calculations are considerably more difficult.

Additionally, if we are willing to increase our computational effort in our original

case of only one single incomplete criterion, we may increase the stability of our

prediction as follows: Instead of using a line segment L, we choose a (small)

ε ∈ R and use a box
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Figure 30: An application of Algorithm 5 with a problematic position of x. Even
though the first d− 1 coefficients of x put it close to a membership in the blue

cluster, the prediction is done entirely with information from the red and green
one.

L′ := {(ξ1 + ε1, . . . , ξd−1 + εd−1, 0)T + λ(0, . . . , 0, upd − lowd) :

λ ∈ [0, 1], εi ∈ [−ε, ε] for all i ∈ {1, . . . , d− 1}}.

Again, this means that we have to calculate volumina instead of a line segment.

Doing so is especially useful if our situation is similar to the one depicted in

Figure 30. Without this addition, we will solely predict the value of ξd according

to the red and green cluster, neglecting how close the variables ξ1, . . . , ξd−1 put it

to a membership in the blue cluster.

In the next section, we turn to further options and advantages that we have

for data classification if we have a full cell decomposition instead of only a cell

decomposition.

3.3 Data Classification by Full a-induced Cell Decompositions

Constructing a clustering of a data set X ⊂ Rd and a corresponding cell decom-

position as described in the previous chapter not only yields a cell decomposition,

but a full a-induced cell decomposition of Rd, see Corollary 2.36. This fact means

some good news and some bad news. The bad news is that we restrict our

investigations to this special type of cell decompositions. The good news is
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that the nice structure of full a-induced cell decompositions yields several ideas

to improve our data classification methods. Also, it yields an approach to a

visualization due to the importance of the subsystems of three cells. We turn to

both these advantages and disadvantages of our approach in the following.

We consider a PSC C := (C1, . . . , Ck) and a full a-induced cell decomposition

P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for all i ∈ {1, . . . , k} for some

a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ai 6= aj for all i 6= j; i, j ∈ {1, . . . , k}. v := v(C)

is optimal in Q with respect to a′T v, where a′ = (κ1 · aT1 , . . . , κk · aTk )T .

Recalling the construction of the a-induced separating hyperplane directions

aij := aj −ai in Theorem 2.33, we see that these k·(k−1)
2 vectors (recall aij = −aji)

are defined by the k sites a1, . . . , ak ∈ Rd, or rather by only k − 1 sites a2, . . . , ak,

if we (without loss of generality) set a1 = 0. (Recall Lemma 2.56.)

Thus choosing the system of separation directions by our a-induction is a restric-

tion due to our self-imposed reduced number of degrees of freedom. Consider

the example in Figure 20. It is a cell decomposition, and the cells P1, . . . , Pk can

be a-induced. Each cell is the intersection of only two halfspaces, only k = 6

hyperplanes are needed for the definition of the cells.

If we only are interested in any cell decomposition, the other 6·5
2 − 6 = 9 hyper-

planes could be chosen ’arbitrarily’ (such that they do not intersect the interior

of the respective cells). If we want a full cell decomposition, we only have to

choose them within the respective cones, see Lemma 2.24. But if we derive the

directions from an a-induction, they are fixed to specific values.

Yet this specific structure is also a big advantage in that all subsets of indices

also yield cell decompositions of the respective data space. We now turn to the

question how we can use this fact profitably in our data classification efforts.

The algorithms we described in the last section for inserting a new point into

an existing cluster and predicting a data entry only require a cell decomposi-

tion of the data space. If we have a full cell decomposition, we have several

opportunities to extend this basic approach.

First, assume we want to complete a missing variable of a data vector according

to Algorithm 5, in a situation like depicted in Figure 30 (compare Figures 28, 29).

Even though a large part of L is very close to the blue cell, the prediction value

is generated entirely with the information of the green and red clusters.

It is easy to construct an example for which the prediction result differs greatly if

the known data entries of the x to be complemented are only slightly different.

Consider the example in Figure 31. It depicts the high sensitivity of our approach.
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c1

c2

c3

x =
(
ξ1
ξ2

)
(a) Prediction with L intersecting the red and

green cells.

c1

c2

c3

x =
(
ξ1
ξ2

)

(b) Prediction with L intersecting the red and
blue cells.

Figure 31: An application of Algorithm 5 in a ’worst case’ example. The
prediction is very sensitive to small changes in the x to be complemented.

Mostly, it results from an intuitively ’bad’ cell decomposition we are working

with - we will turn to this in detail later on. A first idea of reducing this sensitivity

was mentioned earlier: Integrating a whole area around the incomplete vector x

yields a less sensitive approach, yet it is computationally expensive.

We now turn to how a full cell decomposition helps us with measuring and

reducing the sensitivity of the prediction. Recall that the cells of any subset of

indices still form a cell decomposition of Rd. As our algorithm is sensitive to L

being close to, but not in a specific cell, we choose the following approach:

First, we apply the algorithm normally, and derive a prediction in the usual

way. We note which cells had a non-empty intersection with L. For each index

i identifying such a cell, we perform our algorithm for the cell decomposition

P I1 , . . . , P
I
i−1, P

I
i+1, . . . , P

I
k , where I := {1, . . . , k}\{i}. We get a prediction result

for each of these special cases, and can now add these up with appropriate

weights to derive a prediction value. If we have no further information, we may

try so with e.g. equal weights for all indices. If we have further information on

the original cell decomposition and the original performance of the algorithm, we

may choose more sophisticated ones: E.g. if we know that a long line segment

of L is very close to the separating hyperplane between two clusters in the
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original cell decomposition, we can assign a higher weight to the respective cell

decomposition without the index of this cell.

Figure 32 depicts the procedure. We have a non-empty intersection of L with the

red and green cells and thus also look at the cell decompositions only consisting

of the red and blue, and of the green and blue cluster. In c), we sum up the

predicted values of ξ2 with equal weights for the original and both subsystem

values.

From a closer look at the original cell decomposition, we may know that a long

section of L lies in the green cell, very close to the blue cell, in the original

cell decomposition. By this, we know that we can reduce the sensitivity with

respect to that hyperplane by increasing the weight of the cell decomposition

subsystem where we leave out the green cell. In d), we show the prediction

for this subsystem having double its usual weight (and thus yielding (a rather

extreme) 50% of the total information in our example).

Even if we do not want to influence the prediction for the unknown coefficient

of x in our cell decomposition directly, we obtain a number of prediction values

that we can compare the one using the full original system to. By this, we get an

intuitive measure for the stability of the prediction done. Checking how much

our prediction value changes if the factors of the contributing cell decomposition

subsystems are adjusted slightly yields another measure for the sensitivity and

stability of our prediction.

Another useful property of full cell decompositions arises with respect to the

additional classification possibilities we have. As every subsystem of indices is

a cell decomposition by itself, we may introduce ’secondary’ classifications for

new data points as follows.

Suppose a new data vector x lies in cell Pi and thus is associated with cluster Ci.

If we consider the cell decomposition of index set I := {1, . . . , k}\{i}, x lies in

some cell P Ij with j ∈ I . This information can be interpreted as x being most

similar to the data vectors in Ci, but also being rather similar to the ones in Cj .

Naturally, this idea can be continued to add a ’tertiary’ classification or more for

such a point.

Doing so might lead to some deeper insight into the underlying data structure:

Suppose we have clusters Ci and Cj , and in the subsystem for indices I :=

{1, . . . , k}\{i}, almost all data vectors of Ci now are in P Ij . Additionally for the

subsystem I ′ := {1, . . . , k}\{j}, almost all data vectors ofC ′j now are in P Ii . Then

it is clear that the two clusters differ almost only by the combination of data
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c1

c2

c3

x

(a) Dropping the red cell yields an intersection
of L only with the green cell.

c1

c2

c3

x

(b) Dropping the green cell yields an
intersection of L with the red and blue cell.

c1

c2

c3

x

(c) The prediction for even weights of the
original cell decomposition and both subsystem

cell decompositions.

c1

c2

c3

x

(d) The prediction for the cell decomposition
skipping the (critical) green cell having double

the normal weight factor.

Figure 32: How to use full cell decompositions for a sensitivity reduction of
Algorithm 5 for the example of Figure 31 a).
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entries induced by the separating hyperplane Hij . Figure 33 shows an example

for such a dependency.

The fact that we consider a full cell decomposition further allows us to visualize

our high-dimensional cell decompositions by two-dimensional projections. Each

triple I := {i, j, t} of indices still yields a cell decomposition.

By Lemma 2.24, their separating vectors have a two-dimensional span. By this,

we can depict our data set in the plane

Eijt := {λitait+λijaij +λjtajt : λit, λjt, λij ∈ R} = {λitait+λijaij : λit, λij ∈ R}.

Therein the intersection of the hyperplanes Hij , Hjt, Hti is a single point, if the

hyperplanes are not parallel to each other (see Corollary 2.25 and Lemma 2.26).

We know that these triples of indices describe our full cell decompositions fully,

by definition and Lemma 2.27 . Thus the respective figures suffice to understand

the structure of the full cell decomposition at hand. Almost all figures throughout

Chapter 2 and 3 are two-dimensional examples, to be pictographically intelligible.

Interpreting them as the two-dimensional projections of higher-dimensional cell

decompositions, we know that they do not describe special cases, but depict all

of the necessary information.

We will describe another advantage of our full cell decompositions when turning

to the choice of size restrictions κ1, . . . , κk for the clusters. Next, we discuss the

construction of a PSC and a corresponding full a-induced cell decomposition

according to Theorem 2.33 algorithmically.

3.4 Calculation of a Full a-induced Cell Decomposition

If we have a clustering of a point set X ⊂ Rd and a cell decomposition such that

each cell contains the points of exactly one cluster, we get a natural, intuitive and

efficient approach to data classification and prediction by using the algorithms

described in Section 3.2.

Suppose that in our application the number of desired clusters k is predeter-

mined, as are the sizes κ1, . . . , κk of the clusters. Theorem 2.33 and Corollary

2.36 explain that, by calculating a vertex of Q(X, k, κ1, . . . , κk), we get a PSC that

allows a full a-induced cell decomposition. Analogously, it is induced by an

(a,W )- power diagram for some set of weights W (Theorem 2.52), and is a (strict)

LSA to a with respect to κ1, . . . , κk (Theorem 2.55).
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(a) The cell decomposition for all four clusters.

(b) In the cell decomposition ’skipping’ the blue cluster,
the points of the blue cluster now lie in the cell of the green

one.

(c) In the cell decomposition ’skipping’ the green cluster, the points of the
green cluster now lie in the cell of the blue one.

Figure 33: A full cell decomposition for which the green and blue clusters are
separated similarly from all other clusters.
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On one hand, this allows us to use existing algorithms for the calculation of

power diagrams, respectively LSAs. Aurenhammer, Hoffman and Aronov gave a

constructive proof of Theorem 2.49 2.) in the form of an algorithm that constructs

the weights of a power diagram inducing a clustering respecting the given cluster

size constraints [AHA98]. Their algorithm is strongly polynomial, and runs in

time O(k2n log n+ kn log2 n).

In an alternative approach, Balzer and Heck gave an iterative algorithm for the

calculation of a LSA with respect to given cluster sizes. Each iteration step runs

in time O(k2 + kn log n
k ) [BH08], with empirical results showing that only a low

number of such steps usually is required.

In the following, we will show that the calculation of a vertex of Q can be

modeled as a 0, 1-integer linear program which can be solved in the form of

a linear program. Further, having a vertex of Q and the associated PSC, the

(separate) calculation of the hyperplane positions for a full cell decomposition

belonging to this PSC can be modeled by a linear program, as well. We here

cover the basis for an algorithm, by constructing the associated linear programs.

There are many advantages of using this approach, with the most important ones

being a simple implementation, the wide availability of efficient and powerful

solvers for linear programs and the favorable running time of the algorithms

used by these solvers. (See e.g. [Bor82; Bor87] for an analysis of the expected

running time of the Simplex algorithm.)

We start by modeling the constraints to derive a PSC. We introduce decision

variables yij ∈ {0, 1} for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , n}, indicating

whether Ci contains xj (yij = 1) or not (yij = 0). As each xj lies in exactly one

cluster, we need the constraints

k∑
i=1

yij = 1 (j ≤ n).

Additionally, cluster Ci has to contain exactly κi vertices. We can denote this in

the form
n∑
j=1

yij = κi (i ≤ k)

Summed up, we obtain the following set of constraints for the decision variables

in Rk·n:
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n∑
j=1

yij = κi (i ≤ k)

k∑
i=1

yij = 1 (j ≤ n)

yij ∈ {0, 1} (i ≤ k, j ≤ n)

A relaxation of the yij ∈ {0, 1} to 0 ≤ yij ≤ 1, and noting that
k∑
i=1

yij = 1 and

0 ≤ yij for all i ≤ k and j ≤ n already implies yij ≤ 1 for all i ≤ k, j ≤ n, yields

the following polytope in Rk·n. As we will see, no information is lost due to this

relaxation.

Definition 3.9 (Partition Polytope (PP))

Let k, κ1, ..., κk ∈ N with
k∑
i=1

κi = n. We call the polytope constructed above the

partition polytope PP (k, κ1, . . . , κk):

n∑
j=1

yij = κi (i ≤ k)

k∑
i=1

yij = 1 (j ≤ n)

yij ≥ 0 (i ≤ k, j ≤ n)

If the context is clear, we will only use the term PP instead of PP (k, κ1, . . . , κk),

and use it as an abbreviation for ’a partition polytope’, ’the partition polytope’,

or ’the corresponding partition polytope’. We note that the partition polytope

and the gravity polytope are connected by a linear transformation adding the

geometric information.

Lemma 3.10

Let X := {x1, . . . , xn} ⊂ Rd. Then there is a linear transformation that, applied to the
partition polytope, derives the corresponding gravity polytope.

Proof. The partition polytope lies in Rn·k, as we have a 0, 1-decision variable for

each item and cluster. The gravity polytope lies in Rd·k with its defining vectors

listing the centers of gravity of each cluster. In the partition polytope, the items

have no geometric interpretation, it is added during the transformation.

Let yij again denote the decision variable whether item j belongs to cluster Ci,

and let xj ∈ Rd be the geometric vector associated with item j. Suppose we have

a PSC of our data set, from which we obtain the values of the yij and the gravity

vector v. From this, we can identify the linear transformation used. We prove the
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claim by denoting it in the form v = Ay, where y = (y11, . . . , y1n, y21, . . . , ykn)T .

We have

A =



x1
κ1

x2
κ1

. . . xn
κ1

0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 x1
κ2

x2
κ2

. . . xn
κ2

. . . 0 0 . . . 0

. . .

. . .

0 0 . . . 0 0 0 . . . 0 . . . x1
κk

x2
κk

. . . xn
κk


Each of the lines in this notation of A is actually d-dimensional due to the xj
being d-dimensional. A consists of k blocks of dimensions (d · k)× n, put side to

side.

Note that the partition polytope does not use any geometric information. By

Lemma 3.10, we may try to construct an X corresponding to a set of n (non-

geometric) items to investigate the structure of both polytopes further. A basic

approach to doing so will be described towards the end of Chapter 4.

The partition polytope defines equalities that represent that we need to assign

κi items to the i-th cluster and that each item must be assigned to exactly one

cluster. The yij-values capture this information. This informal interpretation is

just a special case of the constraints of the general transportation problem, a

classical problem in the field of operations research:

Informally, we have m suppliers and n demanders of a resource. Each supplier i

has some quantity ai > 0, each demander j asks for some quantity bj > 0. The

sum of available quantities equals the sum of demanded quantities. The goal

is to minimize the costs of transporting these items from the suppliers to the

demanders, where cij denotes the cost of sending one unit from supplier i to

demander j.

Transportation problems arise in many fields of operational research and eco-

nomics, see [KW68; KYK84; Loe06] for surveys of the field. Modeled in the

same way, we note that the partition polytope is a special transportation poly-

tope. These are well-studied and understood, and are the basis for efficient

algorithms for transportation problems due to their constraint matrix being

totally unimodular, which implies that all vertices are integral [KW68].

With our 0, 1-decision variables, they only consist of coefficients 0 and 1, and thus

directly correspond to a PSC. By this, no information is lost due to the relaxation

used. This allows a calculation of vertices of Q optimal with respect to a linear

objective function by optimizing a linear objective function over PP , as follows:
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Theorem 3.11

Let X := {x1, . . . , xn} ⊂ Rd, and let k, κ1, ..., κk ∈ N with
k∑
i=1

κi = n. Let Q be the

corresponding gravity polytope, and a := (aT1 , . . . , a
T
k )T ∈ Rd·k.

Then we can find a vertex v of Q with aT v ≥ aT v′ for any v′ ∈ Q by solving a linear
program.

Proof. LetC := (C1, . . . , Ck) be a PSC and v := (cT1 , . . . , c
T
k )T . We prove the claim

by showing that we only need to optimize a linear objective function over the

corresponding PP.

To do so, we first look at the objective function aT v =
k∑
i=1

aTi ci. The ci are

constructed as the arithmetic mean of the points of cluster Ci. We see that

ci = 1
κi

n∑
j=1

yijxj for all i ∈ {1, . . . , k} and thus

aT v =
k∑
i=1

aTi ci =
k∑
i=1

1

κi
aTi (

n∑
j=1

yijxj) =
k∑
i=1

n∑
j=1

1

κi
yija

T
i xj

Being a special transportation polytope, we know that the coefficient matrix of

PP is totally unimodular. With κi ∈ N for all i ∈ {1, . . . , k}, we know that any

vertex of PP is integral, and thus is a 0, 1-vector identifying a PSC directly. Thus,

it suffices to optimize the following relaxed linear program.

max
k∑
i=1

n∑
j=1

yij
1
κi
aTi xj

n∑
j=1

yij = κi (i ≤ k)

k∑
i=1

yij = 1 (j ≤ n)

yij ≥ 0 (i ≤ k, j ≤ n)

The clustering associated with the values yij of the optimal solution of this

linear program is the PSC with optimal aT v in Q, by construction of PP and the

objective function. This proves the claim.

We note that the linear program in Theorem 3.11 has k · n+ 2k + 2n constraints

(if we consider each constraint with = as two constraints with ≤ and ≥). By this

linear program, we calculate a PSC belonging to a vertex of Q, or respectively a

LSA to some set of sites a = (aT1 , . . . , a
T
k )T . We are now also able to calculate a

full a-induced cell decomposition inducing this PSC using a linear program.
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Theorem 3.12

Let X := {x1, . . . , xn} ⊂ Rd, and let k, κ1, ..., κk ∈ N with
k∑
i=1

κi = n. Let C :=

(C1, . . . , Ck) be a clustering such that v := v(C) is a vertex of Q and a ∈ Rd·k such
that aT v > aT v′ for any v′ ∈ Q.
Then we can calculate a full a-induced cell decomposition P := (P1, . . . , Pk) with
Ci ⊂ int(Pi) by solving a linear program.

Proof. The directions of the separating hyperplanes are trivially given as aij :=
aj
κj
− ai

κi
. We prove the claim by constructing a linear program to calculate the

positions γij of the hyperplanes Hij based on the given clustering.

Again, we use yij ∈ {0, 1} for all i ∈ {1, . . . , k} and all j ∈ {1, . . . , n}, indicating

whether Ci contains xj (yij = 1) or not (yij = 0). Note that these are not variables

in our linear program, but the fixed values corresponding to our clustering.

By Corollary 2.36, we know that we are able to choose the γij such that any

cycle of γij sums up to 0. Using the relations γij = γi1 − γj1 (equivalent to

γ1i + γij + γj1 = 0) represents the positioning of the hyperplanes fully, by the

definition of full a-induced cell decompositions.

The positions of the hyperplanes must be according to the conditions Ci ⊂ Pi,

thus we add constraints yil · (aTijxl) ≤ yil · γij for all i 6= j; i, j ∈ {1, . . . , k} and

all l ∈ {1, . . . , n}. With yil = 0 if xl /∈ Ci, in this case, the constraint is satisfied

automatically by 0 ≤ 0.

For ease of notation, we complement the system of γij with γii for all i ∈
{1, . . . , k}. They will automatically be set to γii = 0. With the constraints

mentioned above, we have the following linear feasibility problem:

yil · (aTijxl) ≤ yil · γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

With γij = −γji, it suffices to only use j > i. As C is associated with a vertex v

of Q, and aT v > aT v′ for any v′ ∈ Q\{v}, we know that the clustering is strictly

separable. For a cell decomposition, we have Ci ⊂ int(Pi). Thus, we know that

above system is solvable such that aTijxl < γij for all i 6= j; i, j ∈ {1, . . . , k} and

l ∈ {1, . . . , n}with xl ∈ Ci.
Such a solution for the system of γij can be found by maximizing the mini-

mal (normed) distance of a hyperplane to the closest vectors of the clusters it

separates.
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To do so, we compute the values maxAij := max
l:yil=1

aTijxl for all i 6= j; i, j ∈

{1, . . . , k}. We then add the constraints γij = maxAij + δij for all i 6= j; i, j ∈
{1, . . . , k} to our linear program. Recalling the remark after Lemma 2.32, we

know that we can choose all δij > 0 at the same time. We guarantee that we do

so by using a lower bound δ ≤ δij for all i 6= j; i, j ∈ {1, . . . , k}, and maximizing

δ in our objective function.

In the resulting linear program, the conditions yil · (aTijxl) ≤ yil · γij can be

replaced by the conditions γij = maxAij + δij . This time, we need to consider

all i 6= j, as the distances of Hij to both clusters are important.

max δ

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)
δij
‖aij‖ ≥ δ (i 6= j, i ≤ k, j ≤ k)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

By the objective function, δ will certainly be chosen as δ > 0, yielding Ci ⊂
int(Pi) for the a-induced system of hyperplanes using the calculated γij . Note

that the ‖aij‖ do not necessarily have a finite bit-representation. Note further

that dividing δij by ‖aij‖ is not necessary to find a δ > 0. Thus, to avoid

computational problems, we can also use δij ≥ δ in the above linear program.

This proves the claim.

Depending on the a ∈ Rd·k used, the linear program of Theorem 3.11 returns a

PSC optimal with respect to the objective function, but not necessarily uniquely

optimal. Recall Corollary 2.43 and Figure 25.

Intuitively, a cell decomposition without strict separation of the clusters is ’bad’

for our data classification purposes. We can identify this problem case by ob-

serving an objective function value of δ = 0 in the linear program of Theorem

3.12.

A randomly chosen vector a := (aT1 , . . . , a
T
k )T ∈ Rd·k will generally satisfy

ai
κi
6= aj

κj
for all i, j ∈ {1, . . . , k}, avoiding the problem described in Lemma 2.18.

Due to the finite number of facets of Q, respectively PP , we will also almost

certainly find a vertex v uniquely optimal with respect to aT v.

On the other hand, with the geometric interpretation of our boundary clusterings

as LSAs, and with our separating hyperplane directions as linear differentiation

criteria of the clusters, such a random choice of a may not be viable: We might
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have a fixed a for which several vertices are (not uniquely) optimal, i.e. several

PSCs with weakly separating cell decompositions.

In this case, the algorithm in [AHA98] converges to a single ’arbitrary’ one of

these multiple PSCs. To identify all optimal PSCs, we then have to identify

the x ∈ X on the boundary of any cell and investigate all PSCs derived by an

application of one or more cyclical exchanges of these items to the original PSC.

With our polytopal approach, we not only obtain a direct criterion for the ex-

istence of multiple optimal PSCs by observing δ = 0 for the linear program of

Theorem 3.12 (see above), but we also have an alternate way to identify these

PSCs by enumerating the vertices of PP ∩H (see e.g. [AF92] for a short survey

on vertex enumeration algorithms), where H is the hyperplane of the objective

function vector with v ∈ H for an optimal vertex v ∈ PP .

We close this section with a description of our approach for random vectors

a := (aT1 , . . . , a
T
k )T ∈ Rd·k. Calculating a fixed number of PSCs allowing full

a-induced cell decompositions for different randomly chosen a and choosing the

one with the highest δ-value out of a fixed number of these ’tries’, we obtain a cell

decomposition intuitively useful for our data classification purposes. Algorithm

6 describes these steps in pseudo-code.

Input :d, k, n, κ1, . . . , κk ∈ N, X := {x1, . . . , xn} ⊂ Rd, t ∈ N
Output :Clustering C := (C1, . . . , Ck) and Cell Decomposition

P := (P1, . . . , Pk) with Ci ⊂ int(Pi) for all i ∈ {1, . . . , k}

z := 0;
δ := 0;
while δ = 0 or z < t do

z = z + 1;
Choose a(z) := (aT1 , . . . , a

T
k )T ∈ Rd·k;

Calculate a vertex v∗ := v∗(z) of Q with aT v∗ ≥ aT v for all v 6= v∗ ∈ Q
and corresponding clustering C(z) according to Theorem 3.11;
Calculate a cell decomposition P(z) and corresponding δ(z) for the
clustering associated with v∗ according to Theorem 3.12;
if δ(z) > δ then

C := C(z);
P := P (z);

end
end
return C and P ;

Algorithm 6: Full a-induced Cell Decomposition
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In the next section, we turn to some possible criteria and characterizations of

’good’ cell decompositions for our data classification purposes.

3.5 Good Cell Decompositions

Up to this point, we described how to use a full cell decomposition for the

basic algorithms in data classification and how to calculate a clustering and

cell decomposition by identifying a vertex of the gravity polytope optimal with

respect to some linear objective function. For the positions of the hyperplanes

of this cell decomposition, we solve the LP constructed in the proof of Theorem

3.12:

max δ

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)
δij
‖aij‖ ≥ δ (i 6= j, i ≤ k, j ≤ k)

In its objective function max δ, we maximize the minimal Euclidean distance δij
between a point in a cluster Ci and a separating hyperplane Hij . The above is

but one of many ideas of what could be a ’nice’ property of a cell decomposition.

In the following we discuss different ideas for what a ’good’ cell decomposition

could look like.

We start with a fixed vector of sites a := (aT1 , . . . , a
T
k )T ∈ Rd·k and turn to the

positioning of the hyperplanes of an a-induced cell decomposition. Assume

we have a given k-clustering C := (C1, . . . , Ck) of X ⊂ Rd. Let the associated

gravity vector v := v(C) be a vertex of Q such that v is uniquely optimal in

Q with respect to aT v. By the choice of a, the directions of our aκ-induced

hyperplanes are fixed. We now evaluate different options for the construction of

our cell decomposition with these hyperplane directions.

Intuitively, we want our hyperplanes to separate the clusters ’well’, i.e. a cell

decomposition is the better the further the points of the clusters are ’away’ from

the separating hyperplanes. There are many ideas as to how to measure this,

yet they all have something in common: With v being a vertex uniquely optimal

with respect to aT v, C allows strict separation, and by this, the positioning of

the cell decomposition hyperplanes can be adjusted (at least slightly) while still

keeping the strict separation property. Any translation of a hyperplane Hij

directly affects both clusters Ci and Cj (and indirectly all others if we have a full
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Figure 34: A cell decomposition optimal for all linear objective functions
discussed in this section.

cell decomposition). When Hij is moved further away from the points in Ci, it is

simultaneously moved closer to the ones in Cj , and vice versa. Thus, for each

hyperplane, we have to respect the distances to both its separated clusters.

We start by describing some straightforward ideas that can be realized in a

linear program. First, consider the objective function described in Theorem

3.12. We maximize the minimal distance of the cluster points to the separating

hyperplanes of their clusters.

Figure 34 shows an example where this works well. On the other hand, it

is easy to find examples where this approach can lead to an undesirable cell

decomposition. Suppose there are two clusters Ci, Cj with xi ∈ Ci, xj ∈ Cj

very close to each other. Then δ ≤ 1
2‖xi − xj‖, and thus δ is forced to a very

small value. With our objective function, the positions of the other separating

hyperplanes then are pretty arbitrary. Figure 35 shows two cell decompositions

yielding the same objective function value, yet, in many applications, we desire

the positioning of the left one over the one to the right.

This raises two ideas about how to extend this first objective function: First,

measuring distances to the points of the clusters may not be a good approach.

As our clustering is fixed, we have no control about the absolute distances

between points of the different clusters and thus using an objective function that

is ’independent’ from these distances may be preferable.
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(a) The red-blue and
red-green separating

hyperplanes are equally far
away from the closest points

in the respective clusters.

(b) The red-blue and red-green
separating hyperplanes are very

close to the blue, respectively green
cluster.

Figure 35: Two cell decompositions showing that only considering the minimal
distance of a hyperplane to one of its respective clusters can yield an

undesirable positioning of the hyperplanes.

Informally, we could ask for our hyperplanesHij to be ’in the middle’ in between

clusters Ci and Cj . We can account for this property by punishing the objective

function value whenever a hyperplane is not exactly equally far away from the

closest points of both clusters. To do so, we introduce a variable ν that is an

upper bound on δij−δji
‖aij‖ and δji−δij

‖aij‖ and minimize it in the objective function. The

optimal objective function value is achieved if ν is chosen as a tight bound. The

corresponding linear program looks as follows:

min ν

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

ν ≥ δij−δji
‖aij‖ (i ≤ k, j ≤ k)

ν ≥ δji−δij
‖aij‖ (i ≤ k, j ≤ k)

Note that, in this model, we still measure the quality of separation achieved using

an absolute (Euclidean) distance, but this distance does not (directly) depend

on the absolute distance between points of the clusters. Figure 34 again is an

example where this approach works well, but the example of Figure 35 b) shows

that we may want to consider not only a single (extremal) distance for a pair of

clusters, but instead the positions of more or of all of the hyperplanes.
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A viable approach would be to only look at the positions of the hyperplanes with

non-empty intersections with their respective cells. The identification of this

property requires additional computational effort. Conversely, as we have full

cell decompositions, we may turn to subsystems of cells for our data classification

algorithms, so all of our hyperplanes can be important. Due to this, we follow

the latter case where we consider all hyperplanes.

For the sake of simplicity, we describe how to do this with respect to our original

measure: For each hyperplane Hij , its ’quality of separation’ is tied to the lower

one of the distances δij
‖aij‖ to the nearest point in Ci and δji

‖aij‖ to the nearest

point in Cj . Within a linear model, we can now sum up these lower values

for each combination of i < j ∈ {1, . . . , k}. The example of Figure 34 again is

optimal with respect to this objective function, and thus again is an example

where this approach works well. Constructing a linear program such that dij :=

min{ δij
‖aij‖ ,

δji
‖aij‖} for i < j; i, j ∈ {1, . . . , k} and such that these dij are summed

up in the objective function yields the following description:

max
k−1∑
i=1

k∑
j=i+1

dij

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

dij ≤ δij
‖aij‖ (i < j ≤ k)

dij ≤ δji
‖aij‖ (i < j ≤ k)

On the other hand, such an objective function again greatly favors a good po-

sitioning of hyperplanes where the respective clusters are far away from each

other above the positioning of hyperplanes where δij
‖aij‖ ,

δji
‖aij‖ cannot be very

large due to the structure of the underlying clustering. It may be useful to turn

to the relative positions of hyperplanes to fight this effect.

For this purpose, let

mij := | min
x∈Cj

aTijx−max
x∈Ci

aTijx| = | −maxAji −maxAij | = |maxAij +maxAji|.

We then identify 0 ≤ δij
mij
≤ 1 as the relative distance of Ci to Hij (see Figure 36).

Summing up min{ δijmij
,
δji
mij
} for all i < j; i, j ∈ {1, . . . , k} yields the following

linear program.
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Ci

Cj

maxAij

−maxAji

aij

Hij

Figure 36: The construction of dij = min{ δijmij
,
δji
mij
}. In this example, dij = 1

3 .

max
k−1∑
i=1

k∑
j=i+1

dij

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

dij ≤ δij
mij

(i < j ≤ k)

dij ≤ δji
mij

(i < j ≤ k)

A combination of the measures described above in the objective function is a use-

ful approach within the power of a linear model. For a given cell decomposition,

we can measure its ’quality’ with respect to several of the measures described by

introducing a ’hierarchy’ of the measures:

E.g we could combine the search for a big δ, and a punishing factor for hyper-

planes not being in the middle in between their clusters. We use δ as our primary

measure and subtract the secondary measure ν, divided by a very big factor, e.g.

1010 · const if const is the biggest absolute of a number appearing in the input, to

respect the hierarchy. By this, we informally look for a cell decomposition for

which the minimal distance between a hyperplane and one of its clusters is big

and, among these, for one with central hyperplane positions whenever possible.
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max δ − 1
1010·constν

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)
δij
‖aij‖ ≥ δ (i 6= j, i ≤ k, j ≤ k)

ν ≥ δij−δji
‖aij‖ (i ≤ k, j ≤ k)

ν ≥ δji−δij
‖aij‖ (i ≤ k, j ≤ k)

In our models up to this point, we always used linear punishing factors for a

non-central positioning of the hyperplanes between their clusters. In practice,

it may be useful to use a more extreme, e.g. quadratic punishing factor, such

that only hyperplanes that lie far from a central position contribute significantly.

Such a quadratic objective function was introduced in this context in [BG09]

under the name ’quadratic best fit’:

min
k−1∑
i=1

k∑
j=i+1

(dij − 1
2)2

maxAij + δij = γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

dij ≤ δij
mij

(i < j ≤ k)

dij ≤ δji
mij

(i < j ≤ k)

The fixed clustering being the basis for the calculation of a cell decomposition,

we can try to improve the quality of a cell decomposition by choosing different

clusterings as starting points. This can be done by a random choice of vectors a

and the computation of the corresponding optimal vertices of Q (recall Theorem

3.11). Algorithm 6 describes this procedure for the original criterion, looking for

a big δ. The resulting cell decompositions for these vertex clusterings can then

be compared with respect to the above measures.

As we have seen, the sites a ∈ Rd·k used for a full a-induced cell decomposition

play a fundamental role in the ’quality’ of the cell decomposition. In this section,

up to now, we considered a fixed a, and only optimized the positioning of the

hyperplanes separating the clusters according to the directions fixed by the a-

induction. In general, with a fixed, so is the PSC C := (C1, . . . , Ck) which allows

a full aκ-induced cell decomposition.

On the other hand, having a vertex v := v(C) of Q means that any a ∈ N(v)

can be used for a full aκ-induced cell decomposition. First, we note that we
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can calculate such a vector a for a vertex v using a linear program. This linear

program can also be interpreted as a corollary of Theorem 5 in [BHR92].

Lemma 3.13

Let C := (C1, . . . , Ck) be a PSC and let v := v(C) be a vertex in Q. A vector
a := (a1, . . . , ak)

T ∈ Rd·k with aT v > aT v′ for any v′ ∈ Q\{v} can be identified by
solving a linear program.

Proof. We only look for any viable a ∈ Rd·k and thus only have a feasibility

problem. Recall the constraints of the problem for the computation of a cell

decomposition from Theorem 3.12:

yil · ((
aj
κj
− ai

κi
)Txl) ≤ yil · γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

Everything but the aij and γij is fixed. We want strict separation, which we

enforce by introducing a small ε > 0 to make the first type of constraints ’strict’.

We get our feasibility problem as

yil · ((
aj
κj
− ai

κi
)Txl) ≤ yil · ((1− ε)γij) (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

This proves the claim.

Note that we have d ·k+k ·k variables and a total of k(k−1) ·n+k2 constraints in

above LP. With some (linear-time) preprocessing to remove the inequalities that

are trivially satisfied due to yil = 0, we can cut the latter number to (k−1) ·n+k2

constraints.

In general, if we calculate a vertex of Q using a nonlinear model, e.g. by using

a quasi-convex program, we (still) need to identify a vector in its outer cone of

normals before we can apply our construction of a cell decomposition. Lemma

3.13 shows that we can do so by solving a linear program. Only in special cases,

like if we use some k-means variant to derive a vertex of some gravity polytope

(see Theorem 3.2), we already know a corresponding vector in the outer cone of

normals.

Additionally, we can use the feasibility problem in Lemma 3.13 as a basis for

finding a ’good’ vector for the separation directions of a fixed vertex clustering.

If we calculate a vertex v to be optimal with respect to aT v for some random

a ∈ Rd·k, a is just one of all the options we have fromN(v). If we add an objective

function, we may actively search for a site vector of ’nice’ properties.
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Note that this is not as simple as just using the objective functions described

in the beginning of this section: With a1, . . . , ak ∈ Rd·k being variables, in all

models, we would obtain nonlinear constraints, due to the fractions using ‖aij‖
or mij being put in relation to decision variables. This makes the corresponding

problems difficult to solve for large k.

Thus, it is natural to take a close look at some explicit vectors a ∈ N(v) satisfy-

ing interesting geometric properties, and to examine whether these geometric

properties transfer to nice properties for the corresponding full aκ-induced cell

decomposition. We here give two examples that will be investigated in detail in

upcoming work:

Let v be a vertex of Q, and let b1, . . . , bt ∈ Rd·k with ‖bi‖ = 1 be the normals of

all facets of Q containing v. Recall that Q is not full-dimensional (Lemma 2.17),

which implies that we consider the facets of Q in the affine hull space of Q.

Let a := (aT1 , . . . , a
T
k )T ∈ Rd·k with ‖a‖ = 1 be such that maxi∈{1,...,t} a

T bi is

minimal. In a certain sense, such an a is maximally different from the vectors

defining the cone of outer normals of v. Further, looking at a :=
t∑
i=1

bi, we get

another interesting choice of a in the cone.

For both of these choices of a, we require an explicit description of the outer cone

of normals. It remains to explore how to best obtain this description. Both the

fact that the gravity polytope is derived from the partition polytope by a linear

transformation (Lemma 3.10), as well as the knowledge about the edges of the

gravity polytope presented towards the end of the next chapter may help with

this.

In this section, up to now, we first considered cell decompositions with the

separating hyperplane directions fixed, and then cell decompositions for a fixed

vertex of Q. Both of these fixations have a great impact on the possible quality of

the cell decomposition to be constructed.

It would be a great advantage to be able to leave this two-step approach of first

calculating some arbitrary PSC, and then a good cell decomposition for this

fixed clustering, for a combined optimization of both the clustering and the

separating hyperplane directions and positions. A direct modeling approach for

this yields not much hope for performing such a computation in practice. We

use the notation of Theorems 3.11 and 3.12.
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For the sake of simplicity, we only turn to the constraints of such a model. First,

we need to make sure that each vertex in X is assigned to exactly one cluster,

and that each cluster size is correct. We again obtain the constraints

n∑
j=1

yij = κi (i ≤ k)

k∑
i=1

yij = 1 (j ≤ n)

yij ∈ {0, 1} (i ≤ k, j ≤ n)

As both the assignments of vertices to clusters as well as the hyperplane direc-

tions and positions are variables to be optimized, we need to directly work with

the constraints

yil · (aTijxl) ≤ yil · γij (i 6= j, i ≤ k, j ≤ k, l ≤ n)

γij = γi1 − γj1 (i ≤ k, j ≤ k)

The first type of constraints is problematic. Rephrasing it to

yil · (
aj
κj

T
xl −

ai
κi

T
xl − γij) ≤ 0,

we see that these are quadratic constraints and, without any further knowledge

about the vectors ai, in general the problem unfortunately is neither all convex

nor all concave. Additionally, the yil are 0, 1-decision variables. Due to this

inherent difficulty, it is unlikely that it is possible to construct an efficient (exact)

algorithm for the combination of the two steps.

We close this section by turning to the site vectors a := (aT1 , . . . , a
T
k )T ∈ Rd·k a

final time, without the context of a PSC allowing a full a-induced cell decompo-

sition.

Interpreting the directions of the separating hyperplanes as differentiation cri-

teria, one may ask for these criteria to be ’maximally’ different from each other.

Consider the two cell decompositions in Figure 37. The cell decomposition in

a) has a small angle between the hyperplane separating the blue and red, and

the red and green clusters. The cell decomposition in b) is, by a pictographical

impression, better with the lowest angle of two hyperplanes still being the one

between the same hyperplanes as in Figure a), but being a lot bigger.

If we are not restricted to some fixed set of sites, we could try to define our sites

such that the minimal angle between two hyperplanes Hli, Hij is large. Recalling



3 DATA CLASSIFICATION BY CELL DECOMPOSITIONS 104

(a) A small angle between
the blue-red and red-green

separating hyperplanes.

(b) A big angle between the
blue-red and red-green
separating hyperplanes.

Figure 37: A big size of the smallest angle between some hyperplanes Hli and
Hij may be a criterion for a ’good’ cell decomposition.

our a-induction, this is equivalent to asking for the biggest angle between some

ali and aij to be small. Figure 38 depicts this connection.

In this section, we discussed several ideas about what could make a cell de-

composition desirable from a data classification point of view. We started by

considering only the positioning of the hyperplanes for a fixed PSC and fixed

separating hyperplanes. Then we turned to the more difficult search for useful

separating hyperplane directions for a fixed PSC.

Both of these cases have in common that they are a two-step approach of first

calculating a PSC, and then a good cell decomposition for this fixed clustering.

We showed that a direct modeling approach falls short of being viable for a

combined optimization of both the clustering and the separating hyperplane

directions and positions. Finally, we considered the separating hyperplanes of a

cell decomposition as differentiation criteria, and gave an example as to how this

might affect our choice of the sites for the construction of a cell decomposition.

In the following, we consolidate our data classification approach by turning to

the role that the geometric information of the data vectors and the fixed size

restrictions take in our model.

3.6 Geometric Information and Size Restrictions

The data classification ideas described in this chapter use a set of geometric data

vectors X := {x1, . . . , xn} ⊂ Rd as basis. From the geometric information, we
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Figure 38: Big angles between hyperplanes Hli and Hij correspond to small ones
between ali and aij .

compute a cell decomposition of Rd which then is used for the algorithms for

data classification and prediction described in Section 2.

Each data vector xi identifies d features, which are encoded as the coefficients of

xi ∈ Rd. This feature representation is central to our whole data classification

approach.

If all of the features of the data vectors are of a common ’number type’, or at least

of similar ones, a mapping of these attributes to geometric coordinates often can

be done easily. In many applications though, the types of the features of each

data vector are very heterogenous. Some of them may be continuous values, like

percentiles. Some of them may be discrete, but ordered, values that still can be

mapped to geometric values, like the age of patients. Other attributes can be

difficult to transfer, e.g. binary ones like the gender of a patient or an indicator

whether a patient suffered from a specific disease before. In a ’worst case’, a

feature does not allow a (direct) geometric interpretation, like a categorization of

objects according to different colors.

Additionally, we work in a Euclidean space Rd, and thus we rely on the Eu-

clidean distance as a valid similarity measure of the data vectors. Further, we

interpret separating hyperplanes as differentiation criteria between clusters. If

the structure of the underlying data is known, the use of kernel functions may

help with deriving a geometric representation of X where linear separation is

useful [SS02; Bor07].

Even if the features of the data vectors allow a geometric interpretation, a differ-

ent scaling of the corresponding data ranges for the geometric representation
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(a) An intuitive association of points
with two clusters according to their

Euclidean distance.

(b) A different data range scaling changes the
relative distances of the points (and their

association).

Figure 39: A different geometric representation of the same data set yields a
different notion on which data entries are similar. The two representations only

differ by the scaling of the second data vector entry.

of the data vectors will yield different cell decompositions that we use for our

algorithms. Figure 39 shows how a different representation can artificially induce

structure into a data set. Note that in some cases, this may be desired. Similarly

to instance-level constraints, we can use this effect to ’guide’ our algorithms to

find PSCs and cell decompositions of some desired properties.

Outliers with respect to the rest of the data set will influence the centers of gravity

of their corresponding clusters greatly. While the characterization of what makes

a data vector an outlier in a given data set already is a difficult statistical question

[Haw80], some way to identify them and ’deal’ with them is necessary. For a

survey of outlier detection methods, see [HA04].

Finally, real-world data recordings will often be incomplete, to a degree where

our prediction algorithm may not be readily usable anymore. Finding a way

to deal with this problem, as well, is an important step to the consolidation of

our approach. All of the issues described are common for the application of

clustering and data classification algorithms in practice, and will not be described

here in further detail.

Another very important aspect is the choice of the number of clusters k, and of

their sizes κ1, . . . , κk. The ideas described in this chapter were designed for the
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case where these parameters are given, and clearly they work best in this case.

There are many applications for constrained clustering for which the parameters

are given, but even many more where the number of clusters, and especially the

cluster sizes, are not given explicitly. In the following, we discuss some ideas

about how to apply our algorithms if we only have partial information about the

parameters beforehand, and some problems that arise when doing so.

Our data classification algorithms (Algorithm 3 and 5) can be used for any

clustering induced by a power diagram, respectively a full cell decomposition,

and are not tied to any size restrictions, or the number of clusters. On the

other hand, the calculation of a full a-induced cell decomposition (Algorithm

6) relies on this information. Dropping the size restrictions on the clusters and

calculating a vertex of the corresponding polytope yields a clustering where

all clusters lie in disjoint cones in the geometric space [BHR92]. In most data

classification applications, such a structure of a clustering or cell decomposition

is too restrictive.

Often, the choice of k is not problematic, as there is a lot of information on what

could be a useful number of clusters to generate. When considering patient data

in medicine, like in the example of dementia prediction, each cluster defines

a center of gravity, interpreted as a ’virtual patient’. Clearly, we do not want

too few of these, but not too many either. Additional information from past

data analysis processes gives us a good estimate of what k could look like. With

our data classification algorithms being efficient, and the calculation of a full

a-induced cell decomposition (Algorithm 6) being possible by means of two

linear programs, we have the opportunity of calculating cell decompositions for

different values of k.

When choosing κ1, . . . , κk, we have to be especially careful. While we have some

information about acceptable values, e.g. by wanting each ’virtual patient’ to

be constructed from not too few, and not too many data vectors, we restrict

ourselves to specific values of sizes. This may influence our results greatly, as

we can see in Figure 40, and thus it is very important to use a ’good’ choice for

κ1, . . . , κk. Suppose we only know about some lower bound κ on κ1, . . . , κk, and

let k be fixed. This corresponds to the example where any virtual patient should

be constructed from the data of at least κ patients.

By calculating a vertex of a gravity polytope Q, we derive a k-clustering which

allows a full cell decomposition. Thus any subset of clusters still yields a cell

decomposition, recall Lemma 2.38. For an index set I ⊂ {1, . . . , k}, we obtain an
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(a) With all clusters having exactly 3 points, we
are able to find a desirable cell decomposition

for some fixed hyperplane directions.

(b) With the blue cluster having only 2, and the
green cluster having 4 vertices, we are not

capable of finding a cell decomposition as ’good’
as in a).

Figure 40: The fixed cluster sizes have a great impact on the obtainable ’quality’
of a cell decomposition.

|I|-cell decomposition which induces an |I|-clustering canonically by the data

vectors being in the respective cells of the subsystem.

For the sake of simplicity, and without loss of generality, let nκ = k′ be integral.

We have k′ ≥ k and in non-trivial cases k′ > k. Let us now calculate a full a-

induced k′-cell decomposition of Rd like described in Algorithm 6, using cluster

sizes equal to κ.

As a byproduct of this calculation, we obtain
(
k′

|I|
)
|I|-cell decompositions for

index sets I := {i1, . . . , it} ⊂ {1, . . . , k′}. For all of these, the respective numbers

κIi1 , . . . , κ
I
it

satisfy κIi ≥ κ for all i ∈ I . The membership of data vectors with

respect to a subsystem of indices |I| is easily calculated: First, if x ∈ Ci in the

original cell decomposition, and i ∈ I , then x ∈ CIi . Otherwise, the cell of an x

can be calculated using Algorithm 3.

Thus, with each randomized algorithm step, we obtain
(
k′

k

)
cell decompositions

that have exactly k clusters and satisfy the given lower bound on the cluster

sizes. We can use one of the measures described in the last section to identify

their ’quality’, and choose one of these cell decompositions. Using this approach,

we are capable of guaranteeing lower bounds on the cluster sizes.
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We close this section with a comment on the case where we have no knowl-

edge about κ1, . . . , κk at all. We might combine the classical k-means algorithm

and our polytopal approach to find a good cell decomposition. Performing

the k-means algorithm as denoted in Algorithm 2 yields k non-empty clusters

C1, . . . , Ck of sizes κ1 := |C1|, . . . , κk := |Ck|, and a vertex v of the corresponding

gravity polytope Q = Q(X, k;κ1, . . . , κk), recall Theorem 3.2. We can then mea-

sure the ’quality’ of the a-induced cell decomposition belonging to this solution,

where a := (cT1 , . . . , c
T
k )T . With the ideas of the last section, we can then try to

construct another vector a′ in N(v) to obtain a ’better’ cell decomposition for

the same clustering, or relate it to the cell decompositions constructed for other

vertices in Q.

3.7 Summary and Outlook

In this chapter, we described how to use the results of our polytopal studies of the

gravity polytope in Chapter 2 for data classification. The clusterings belonging to

vertices of the gravity polytope satisfy a number of geometric properties which

make them desirable from a data classification point of view.

Most importantly, they allow cell decompositions such that each cell contains

the data vectors of exactly one cluster. We showed how such cell decompositions

can be used for efficient data classification and prediction algorithms. Further,

we related our approach to existing data classification methods by showing that

the classical k-means algorithm, in each step, calculates a clustering which is a

vertex of the gravity polytope corresponding to the induced cluster sizes.

In fact, the clusterings of vertices of a gravity polytope allow special cell de-

compositions, namely full a-induced cell decompositions. We described some

advantages of having a full cell decomposition instead of only a cell decomposi-

tion for the stability of our algorithms. In future work, we will investigate how

to further increase the stability of our prediction value by using a box or cylinder

instead of a line segment in Algorithm 5.

We showed that the calculation of a vertex of the gravity polytope can be done

by means of a linear program, as the constraints that have to be satisfied form a

special transportation polytope, the partition polytope. Similarly, the calculation

of the hyperplane positions of a corresponding full a-induced cell decomposition

can be done by solving a linear program.

The question as to what makes a cell decomposition a ’good’ one for our data

classification purposes is difficult. We gave some absolute and relative measures
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obtainable by linear programs and turned to some ideas as to how to extend

these measuring ideas by nonlinear programming. In this context, we will

investigate the geometric meaning and possible advantage of using vectors that,

in a certain sense, lie in the ’center’ of the cone of outer normals of a vertex for

the construction of the cell decompositions for our algorithms.

We will also turn to the construction of site vectors yielding big angles between

the separating hyperplane directions. With the interpretation of these directions

as differentiation criteria, we hereby obtain cell decompositions where pairs of

clusters are separated by ’maximally’ different criteria.

For the sake of simplicity and efficient algorithms, we chose a two-step approach

of first identifying a clustering allowing a cell decomposition, and then finding a

good cell decomposition for it. It seems to be difficult to deterministically find a

clustering that allows a cell decomposition that is optimal with respect to some

measure. An investigation as to whether our two-step approach can be unified

to an efficient one-step approximation algorithm with a good approximation

factor with respect to any of our measures is of high interest.

All of the geometric interpretation we give and use in this chapter heavily relies

on the representation of the features of our data vectors as a set X ⊂ Rd. A

different geometric representation will result in a different structure of the point

set, and thus in very different clusterings and cell decompositions. We have to

be careful about an induction of artificial structure into a data set.

On the other hand, with our purely geometric approach, the possibility of in-

tentionally inducing geometric structure into a data set might help us to ’guide’

our algorithms to find clusterings and cell decompositions of desired properties,

similarly to the use of instance-level constraints. Some of these possibilities will

be explored in future work.

Finally, our approach is designed for the case that we have fixed values for the

number of clusters and the sizes of the clusters. As there are many applications

in which the cluster sizes are not given explicitly, we closed this chapter by

discussing some ideas about how to handle this case.

Many of the theoretical results of Chapter 2, as well as the ideas about data

classification presented in this chapter, can be transferred to clustering with

different types of size restrictions. This will be discussed in upcoming work.
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4 Edge-Structure of the Partition and Gravity Polytope

In many applications, not only the PSC optimal with respect to some objective

function is of interest, but so are its relation to other PSCs, and the means by

which it is derived.

We noted that two PSCs differ by a set of cyclical exchanges that share no

items (Lemma 2.11). The special structure of the partition polytope, being a

transportation polytope, implies that we are able to associate its edges with

such cyclical exchanges between PSCs. The calculation of a vertex of the gravity

polytope can be done by an application of the Simplex algorithm for the system

of constraints defining the partition polytope (Theorem 3.11). This allows us to

interpret an edge-walk (determined by the Simplex algorithm) as a sequence of

applications of cyclical exchanges to PSCs. From this, the desire for a deeper

understanding of the edge-structure of the partition polytope and the gravity

polytope arises naturally.

While the edge-structure of the gravity polytope will prove tough to analyze,

we will be able to derive a tight bound on the combinatorial diameter of the

partition polytope (in a worst case). We first turn to the partition polytope.

4.1 Skeleton of the Partition Polytope

We begin with the terminology required for our purposes. For some basic

notation and a survey of the elementary graph theoretic arguments we use in this

chapter, see e.g. [Die06]. When talking about a graph with no further information,

we consider an undirected graph without loops and without multiple edges.

Further, we refer the reader to the Notation and Symbols appendix for a list of

the symbols used in Chapter 2, 3 and in this chapter. In the following, we will

also often use the abbreviation PP introduced in Definition 3.9, if the parameters

of the considered polytope are clear from the context.

The partition polytope is a special transportation polytope, recall the remark after

Lemma 3.10. Transportation polytopes are well-studied objects in operations

research and statistics, see e.g. [KW68; KYK84; Loe06; LKOS09] and references

therein. We require only some basic facts about its polytopal structure in the

following, established in [KW68]. As a service to the reader, we summarize these

results.

For the remainder of this chapter, letX := {x1, . . . , xn} be a set of (non-geometric)

items, and consider a PSC of X into k clusters C := (C1, . . . , Ck) of sizes
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κ1, . . . , κk. Let further in the following Kk,n(C,X) be the complete bipartite

graph on two sets of (graph) vertices C := {c1, . . . , ck} and X := {x1, . . . , xn}.
The ambiguous use of C and the ci, as well as X and the xi is intentional: In the

following, we assume that vertex ci corresponds to cluster Ci and vertex xi to

the equivalently-named item. When C and X are clear from the context, we use

the shorter notation Kk,n for Kk,n(C,X).

We first turn to a classical graph-theoretical representation of PSCs.

Lemma 4.1

There is a set E of subsets of edges in Kk,n(C,X) such that a PSC C := (C1, . . . , Ck)

of X := {x1, . . . , xn} corresponds bijectively to an E ∈ E .

Proof. We obtain the desired one-to-one correspondence by creating a subset E

of edges by
{ci, xj} ∈ E ⇔ xj ∈ Ci

By the construction in Lemma 4.1, we obtain exactly one edge for each vertex xj ,

yielding |E| = n. Each ci is connected to κi vertices in X . Each xj is connected

to exactly one ci. We denote this edge-subset E of Kk,n as follows

Definition 4.2 (Assignment ofX to C)

Let C := {c1, . . . , ck}, X := {x1, . . . , xn} and κ1, . . . , κk ∈ N. We call a set of edges
E ⊂ E(Kk,n(C,X)) a (κ1, . . . , κk)-assignment of X to C if it satisfies the following
criteria:

• deg(xj)|E = 1 for all j ∈ {1, . . . , n}

• deg(ci)|E = κi for all i ∈ {1, . . . , k}

Here deg(y)|E denotes the degree of y ∈ C ∪ X with respect to edge-set E. If

κ1, . . . , κk are clear from the context, we also use the term assignment of X to

C. Whenever we talk about an assignment in the following, we think of the

corresponding assignment of X to C as a subset of Kk,n(C,X), if the context is

clear. Figure 41 shows an assignment of 5 items to 3 clusters.

By Definition 3.9 and the fact that PP is a 0, 1-polytope with a totally unimodu-

lar constraint matrix, PSCs bijectively correspond to vertices of the associated

partition polytope. We obtain the following immediate corollary.

Corollary 4.3

A vertex of the partition polytope corresponds bijectively to a (κ1, . . . , κk)-assignment
of X := (x1, . . . , xn) to C := (c1, . . . , ck).
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Figure 41: A (3, 1, 1)-assignment of 5 items to 3 clusters.

Next, we turn to the edge-structure of the partition polytope. By Lemma 2.11,

two PSCs differ by a set of cyclical exchanges CE that do not move any item twice.

It is easy to see that a cyclical exchange corresponds to a cycle in Kk,n(C,X) and

that CE is a set of edge-disjoint cycles such that cycles may only share vertices in

C. We use the notation E∆E′ := (E∪E′)\(E∩E′) for the symmetric difference

of assignments E and E′.

Lemma 4.4

Let C := (C1, . . . , Ck) be a PSC, and let C ′ := (C ′1, . . . , C
′
k) be derived from C by

an application of a cyclical exchange CE := (xi1 , . . . , xit), where xij ∈ Cij for all
j ∈ {1, . . . , t}. Then CE corresponds bijectively to a cycle in E∆E′, where E and E′

are the assignments corresponding to C, respectively C ′.

Proof. E andE′ differ only by the edges corresponding toCE. These clearly form

a cycle in Kk,n, as {cij , xij} ∈ E\E′ and {xij , cij+1} ∈ E′\E for all j ∈ {1, . . . , t}.
Such a cycle identifies both a cyclical exchange to derive C ′ from C, as well as

the inverse one to derive C from C’.

Knowing this, we can transfer Lemma 2.11 directly to the assignments in Kk,n
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Lemma 4.5

Let C and C ′ be two PSCs, and let E and E′ be the corresponding assignments in Kk,n.
Then E∆E′ is a set of edge-disjoint cycles CY = {CY1, . . . , CYr} that may only share
vertices in C.

Proof. By Lemma 4.4 and Lemma 2.11, E∆E′ is a set of cycles in Kk,n. The rest of

the claim follows directly from deg(xj)|E = deg(xj)|E′ = 1 for all j ∈ {1, . . . , n}.

Note that this also implies that we can use the greedy construction of cyclical

exchanges described in Lemma 2.11 to obtain corresponding cycles in Kk,n.

Figure 42 shows two assignments E and E′ and their corresponding symmetric

difference E∆E′.

We are now able to identify the edge-structure of the partition polytope.

Lemma 4.6

Let C and C ′ be two PSCs, let v, v′ be the corresponding vertices in PP and let E,E′ be
the corresponding assignments. Then v and v′ are connected by an edge in PP if and
only if E∆E′ contains exactly one cycle.

Proof. To show that two vertices v and v′ in PP are connected by an edge, it

suffices to find a hyperplane touching the polytope in v and v′, but ’cutting off’

all other vertices strictly.

To do so, we introduce a labeling function f : E(Kk,n) → {0, 1} by setting

f(e) = 0 for e ∈ E ∪ E′, and f(e) = 1 otherwise. We obtain f(E) = f(E′) = 0.

By Lemma 4.5, assignments differ by cycles.

Suppose E and E′ differ by only one cycle, and suppose we have another

v′′ ∈ PP with f(E′′) = 0, v′′ 6= v and v′′ 6= v′. By Corollary 4.3, E 6= E′′ 6= E′,

and by f(E′′) = 0, we know that E′′ ⊂ E ∪ E′. As E′′ 6= E, we have an edge

e = {ci, vj} ∈ E′′\E. Then e ∈ E′, as E′′ ⊂ E ∪ E′, implying that e lies in the

single cycle by which E and E′ differ. Using the same argument for all e ∈ E′′\E
yields E = E′, in contradiction to v 6= v′.

Conversely, let now E ∪E′ contain at least two cycles CY1 and CY2. Suppose we

have a labeling function f ′ : E(Kk,n)→ R such that f ′(E) = f ′(E′) > f ′(E′′) for

all v′′ ∈ PP with v 6= v′′ 6= v′. Note that this implies f ′(E ∩ CYi) = f ′(E′ ∩ CYi)
for i ∈ {1, 2}.
If we choose v′′ such that e ∈ E ∩ E′ ⇒ e ∈ E′′, and E′′ ∩ CY1 = E ∩ CY1,

E′′∩CY2 = E′∩CY2, then f ′(E′′) = f ′(E) = f ′(E′), a contradiction. This proves

that v and v′ are not connected by an edge in PP .
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(a) An assignment E in K5,5.
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(b) An assignment E′ in K5,5.
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(c) (E ∪ E′)\(E ∩ E′).

Figure 42: Two assignments E, E′ of 5 items to 5 clusters, and their symmetric
difference E∆E′.
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Note that E ∪ E′ contains exactly one cycle if and only if E∆E′ contains exactly

one cycle, as such a cycle cannot lie in E ∩ E′.
With the above lemmata, we know both the vertex-structure, as well as the

edge-structure of the partition polytope: By Corollary 4.3, each assignment is

a vertex in PP (and vice versa), and two vertices in PP are connected by an

edge if and only if the assignments differ by exactly one cycle, by Lemma 4.6,

respectively if the associated PSCs differ by exactly one cyclical exchange, by

Lemma 4.4. With this correspondence, we will also talk about an application of

cyclical exchanges to vertices of PP or assignments in the following.

We now are ready to investigate the combinatorial diameter of the partition

polytope. First, we give a formal definition of the skeleton and the combinatorial

diameter of a polytope.

Definition 4.7 (Skeleton of a Polytope)

Let P ⊂ Rd be a polytope defined as the convex hull of vectors v1, . . . , vn ∈ Rd. We
call the graph G(P ) := (V,E) derived from P by V := {v1, . . . , vn} and E containing
an edge between vi, vj ∈ V if and only if vi and vj are connected by an edge in P the
skeleton of P .

In the literature the above graph often is called the 1-skeleton of P . There

are other ways of creating a skeleton-structure for a polytope, from its higher-

dimensional faces.
Definition 4.8 (Diameter)

Let G = (V,E) be a graph with V = {v1, . . . , vn} and let lij denote the length of a
shortest path from vi to vj in G. The diameter of G then is defined as

max
i 6=j; i,j∈{1,...,n}

lij .

The (combinatorial) diameter of a polytope P is the diameter of the corresponding
skeleton G(P ).

Let G = (V,E) be a graph. We call the length lij of a shortest path from vi to vj
the (combinatorial diametral) distance of vi and vj . We use the same term for

two vertices of a polytope P if G = G(P ) is the corresponding skeleton.

With these definitions, we can now state the main result of this chapter.

Theorem 4.9

PP (k, κ1, . . . , κk) has a diameter of at most

min
{
κi1 + κi2 , b

n

2
c
}
,
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where i1 := arg max
i∈{1,...,k}

κi and i2 := arg max
i∈{1,...,k}\{i1}

κi.

Informally, the first part of the bound in Theorem 4.9 is the sum of the sizes of

the two biggest clusters.

For the proof of this claim in this chapter, we introduce a graph representing the

difference of two PSCs. We derive it from the classical representation of PSCs as

assignments in Kk,n (see Lemma 4.1) as follows.

Consider two PSCs C and C ′ of X := {x1, . . . , xn} and their assignments E and

E′, and E∆E′. Whenever there is an edge {ci, xl} ∈ E\E′, there is an edge

{xl, cj} ∈ E′\E for some j 6= i.

We construct a labeled digraph G = (V,E′′, w) with vertex set V ⊂ {c1, . . . , ck},
edge-set E′′ and a labeling function w : E′′ → X . We start with V := ∅ and

E′′ := ∅.
Then E′′ and V are constructed using a single rule:

{ci, xl} ∈ E\E′ ∧ {xl, cj} ∈ E′\E ⇒ V := V ∪ {ci, cj} ∧ E′′ := E′′ ∪ {(ci, cj)}.

The labeling function w then is defined for such an edge e := (ci, cj) by w(e) = xl.

Note that we may derive multiple edges of type (ci, cj) (with different labels)

like this, yielding a multigraph.

Informally, this construction can be interpreted as moving an item xl from cluster

Ci to Cj , whenever there is an edge e = (ci, cj) with label w(e) = xl between the

corresponding vertices.

Let us assign a formal name to this construction.

Definition 4.10 (Clustering Difference Graph (CDG))

Let C and C ′ be two PSCs, and E and E′ be the corresponding assignments inKk,n. We
call the labeled digraph G = (V,E′′, w) constructed as explained above the clustering

difference graph CDG = CDG(C,C ′) from C to C ′ (or of C and C ′).

With vertices of PP being in one-to-one correspondence with PSCs, we will also

use the notation CDG(v, v′) if v is the vertex of C and v′ the vertex of C ′ in PP ,

or CDG(E,E′) for the corresponding assignments. Note that CDG(C ′, C) can

be derived from CDG(C,C ′) by switching the direction of all edges in E′′.

Figure 43 shows an example for the construction of a CDG. The figure shows

an auxiliary step where the edges of E∆E′ are oriented in the ’direction’ of the

item movement desired. We informally say that they are oriented from E to E′.

With E∆E′ being the symmetric difference between the PSCs C and C ′, by

Lemma 2.11, Lemma 4.4 and Lemma 4.5, the cycles in G describe the cyclical
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(e) CDG(E,E′)

Figure 43: The construction of a CDG from assignment E to assignment E′.
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exchanges required to derive C ′ from C. By this, we obtain an immediate

corollary.

Corollary 4.11

A CDG decomposes into cycles. Each of these cycles corresponds bijectively to a cyclical
exchange.

Proof. Let C, C ′ be two PSCs with corresponding assignments E and E′. They

differ by a set of cyclical exchanges, by Lemma 2.11. These cyclical exchanges cor-

respond directly to the cycles in E∆E′, by Lemma 4.4. Thus E∆E′ decomposes

into cycles.

It remains to prove that each cycle in E∆E′ corresponds bijectively to a cycle

in CDG(C,C ′) = (V,E′′, w). By construction, for any e = (ci, cj) ∈ E′′ with

w(e) = xl, there are two edges {ci, xl} ∈ E\E′ and {xl, cj} ∈ E′\E, and vice

versa. Further, the cycles in E∆E′ do not share any items in X , by Lemma 4.5.

This proves the claim.

Analogously to the remark after Lemma 2.11, note that a cycle decomposition

of a CDG is not necessarily uniquely defined, not even the number of cycles

of a decomposition is fixed. Such a set of cyclical exchanges can be identified

greedily, following the proof of Lemma 2.11.

Note further that there is an inherent relationship between clustering difference

graphs and clustering graphs (see Definition 2.31). If two clusteringsC,C ′ belong

to neighbouring vertices v, v′ in PP , they differ by a single cyclical exchange, by

Lemma 4.6. Then the CDG from C to C ′ contains a single cycle, and its edges

yield a subgraph of the clustering graph for C.

Informally, if we do not consider the labeling function w, a CDG for PSCs C

and C ′ identifies how many items need to be changed from which cluster to

which cluster to derive C ′ from C. The only information lost is which items

have to be changed. Due to this loss of information, without w, the same CDG

can correspond to multiple pairs of PSCs or vertices of PP . On the other hand,

the property of two PSCs belonging to neighbouring vertices in PP can be

investigated without considering w.

Corollary 4.12

Let C and C ′ be two PSCs, and let v, v′ be the corresponding vertices in PP . Then v
and v′ are connected by an edge in PP if and only if CDG(C,C ′) contains exactly one
cycle.
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Proof. Let E,E′ be the assignments corresponding to C,C ′. The claim is a direct

corollary of Lemma 4.6 and the one-to-one association of cycles in CDG(C,C ′)

and E∆E′ (Lemma 4.4, Corollary 4.11).

In the next section, we turn to a graph theoretical question. Its solution is our first

step to an investigation of the diameter of the skeleton of the partition polytope.

We will be able to apply the results to our CDGs.

4.2 Vertex-Disjoint Cycle Covering

Covering graphs with cycles is a well-studied problem in the literature, for a

survey see e.g. [Zha97]. Common questions involve finding the minimal number

of edge-disjoint or vertex-disjoint cycles required to cover graphs or subgraphs

of specific properties [IJ03]. We here use the following understanding of the term

’cover’.

Definition 4.13 ((Edge) Cover)

Let G = (V,E) be a graph. A set of edges E′ ⊂ E is an (edge) cover of V if for all
v ∈ V there is an edge e ∈ E′ such that v is incident to e.

Informally, we also say that E covers V or that E is covering V . The term is

transferred canonically to subsets of vertices V ′ ⊂ V of a graph.

In this section, we investigate the existence of a set of vertex-disjoint cycles

covering a given set of vertices in a digraph. We state the problem as follows.

Problem 4.14 (Vertex-Disjoint Cycle Covering)

Let G = (V,E) be a digraph (not necessarily without loops or without multiple edges)
and let M ⊂ V .
Question: Is there a set of (pairwise) vertex-disjoint cycles in E covering M?

For a certain class of graphs, including clustering difference graphs, and a certain

kind of vertex sets M , we can answer the question posed positively. In the

following, we assume our graphs to have at least two vertices.

Theorem 4.15

Let G = (V,E) be a digraph (not necessarily without loops or multiple edges) with
deg−(v) = deg+(v) ≥ 1 for all v ∈ V . Let Dmax = max

v∈V
deg−(v) and let M ⊂ V with∑

v∈M
deg−(v) ≥ (|M | − 1)Dmax + 1. Then M can be covered by a set of vertex-disjoint

cycles.
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Here deg−(v) and deg+(v) denote the indegree and outdegree of a vertex v. Note

that any CDG satisfies deg−(v) = deg+(v) ≥ 1 for all v ∈ V by Corollary 4.11,

and the fact that the CDG only contains vertices for which there is at least one

edge.

In the next section, we will only need the following immediate corollary.

Corollary 4.16

Let G = (V,E) be a digraph (not necessarily without loops or multiple edges) with
deg−(v) = deg+(v) ≥ 1 for all v ∈ V . Then the set M of vertices of maximal deg−(v)

can be covered by a set of vertex-disjoint cycles.

Proof. The setM of vertices of maximal deg−(v) satisfies
∑
v∈M

deg−(v) = |M |Dmax

≥ (|M | − 1)Dmax + 1. The claim then follows directly from Theorem 4.15.

The remainder of this section is dedicated to proving Theorem 4.15. Suppose

G = (V,E) is a digraph (not necessarily without loops or multiple edges) with

deg−(v) = deg+(v) ≥ 1 for all v ∈ V , and let M ⊂ V with
∑
v∈M

deg−(v) ≥

(|M | − 1)Dmax + 1.

Figure 44 shows a graph G = (V,E) and a set M ⊂ V to be covered. Clearly,

both G and M satisfy the required prerequisites: G is connected and deg−(v) =

deg+(v) for all v ∈ V , and M consists of three (of the four) vertices of maximal

degree.

With G satisfying deg−(v) = deg+(v) for all v ∈ V , we know that G decomposes

into (edge-disjoint) cycles, as removing the edges of any cycle in G yields a

subgraph H = (V,E′) satisfying deg−(v)|E′ = deg+(v)|E′ for all v ∈ V , as well.

By this, G clearly has a cover by edge-disjoint cycles, and if it is connected, even

a Eulerian cycle, see [Die06].

To identify a cover by vertex-disjoint cycles, we have to take a different approach.

We start by constructing a network G′ := (V ′, E′, s, t) from G = (V,E) using the

following rules:

• Split up all vertices v ∈ V into two vertices vin and vout. For each edge

(v, w) ∈ E, add an edge (vout, win) to E′.

• For each v ∈ V \M , add (vin, vout) to E′.

• Add a start vertex s and a target vertex t to V ′, and add deg−(v) edges

(s, vout) to E′ for all v ∈M and deg+(v) edges (vin, t) to E′ for all v ∈M .
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v1 v2 v3

v4

v5

(a) A connected graph G = (V,E) with
deg−(v) = deg+(v) for all v ∈ V .

v1 v2 v3

v4

v5

(b) The set M = {v2, v3, v4} of vertices to be covered.

Figure 44: A graph G = (V,E) and M ⊂ V satisfying the prerequisites of
Theorem 4.15.



4 EDGE-STRUCTURE OF THE PARTITION AND GRAVITY POLYTOPE 123

Note that we do not consider a capacity measure for the edges in E′. Figure 45

a) shows the network G′ for the graph G of Figure 44. We avoid using double

subscripts by writing iin and iout instead of viin and viout .

We obtain an interesting lower bound on the size of the maximal flow in G′.

Lemma 4.17

G′ := (V ′, E′, s, t) has a maximal flow f of size at least (|M | − 1)Dmax + 1.

Proof. By construction, we have deg−(v) = deg+(v) for all v ∈ V ′\{s, t} and

deg+(s) = deg−(t) ≥ (|M | − 1)Dmax + 1. Any (s, t)-cut in G′ then is at least of

size (|M | − 1)Dmax + 1, and we get the claim by the well-known max flow-min

cut Theorem [FF56].

We continue by constructing another network G′′ := (V ′, E′′, s, t) from G′ =

(V ′, E′, s, t) using a single rule:

• Multiple edges of type (s, vout), (vin, vout), (vin, t) are replaced by a single

edge.

Figure 45 b) shows the network G′′ for the graph G of Figure 44.

We obtain an exact value for the size of a maximal flow in G′′.
Lemma 4.18

G′′ := (V ′, E′′, s, t) has a maximal flow f of size |M |.

Proof. As deg+(s) = deg−(t) = |M |, |f | ≤ |M |. Let (V1, V2) with V1 ∪ V2 = V ′,

V1 ∩ V2 = ∅ and s ∈ V1, t ∈ V2, be an arbitrary (s, t)-cut in G′′.

By Lemma 4.17, we have at least (|M | − 1)Dmax + 1 edge-disjoint (s, t)-paths in

G′. In G′′, the corresponding (s, t)-paths are edge-disjoint except for the use of

the contracted multiple edges of types (s, vout), (vin, vout) or (vin, t).

We choose such a path P in G′′. P ’crosses’ from V1 to V2 for a final time at a

vertex v ∈ V1, using an edge e = (v, w) ∈ E′′ with w ∈ V2. Thus there is at least

one edge e = (v, w) with v ∈ V1 and w ∈ V2, i.e. the capacity of the cut (V1, V2) is

at least one.

We remove v (and all incident edges) from G′′ and know that, by this, we

lose at most Dmax (s, t)-paths from G′′, as deg−(v) = deg+(v) ≤ Dmax, by our

construction. We now iteratively choose a new path in the remaining network,

and count the edges found.

As we started with at least (|M |−1)Dmax+ 1 (s, t)-paths, after |M −1| iterations,

we still have at least one (s, t)-path remaining, so we can do so at least |M | times.

By this, the capacity of the (V1, V2)-cut is at least |M |. As (V1, V2) is an arbitrary

(s, t)-cut in G′′, by the max flow-min cut Theorem, we get |f | = |M |.
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(a) The network G′ for the graph of Figure 44.
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(b) The network G′′ for the graph of Figure 44.

Figure 45: The networks G′ and G′′ for the graph G of Figure 44.
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The flow identified in G′′ = (V ′, E′′, s, t) has a special interpretation in the

original graph G.

Lemma 4.19

A flow of size |M | in G′′ corresponds bijectively to a cover of M in G by a set of
vertex-disjoint cycles.

Proof. Let f be a flow of size |M | in G′′. All edges in G′′ except for the ones of

type (s, vout), (vin, vout) or (vin, t) correspond bijectively to edges in G. Of these,

the ones used by f are a cover f ′ ⊂ E of M by vertex-disjoint cycles. This can be

seen as follows:

Due to our construction of G′ and G′′, where we split up all vertices v into two

vertices vin, vout, we have deg−(v)|f ′ = deg+(v)|f ′ ≤ 1.

In G′′, we connect each vout of a v ∈ M to a v′in of a v′ ∈ M by a path in f . For

v = v′, the vout, vin-path corresponds to a cycle in G covering v that does not

contain any other vertices in M .

If v 6= v′, the vout, v′in-path corresponds to a cycle-part in G. In this case, there are

more cycle-parts in G, or respectively paths in G′′ connecting v′ to some v′′, and

so on, until some vl−1 is connected to v. Together, the edges used form a cycle in

G which covers v, v′, . . . , vl−1 ∈M . Thus, we get a set of cycles f ′ in G covering

M . With deg−(v)|f ′ = deg+(v)|f ′ ≤ 1, no vertex lies on two different cycles. By

this, f ′ is a set of pairwise vertex-disjoint cycles.

Conversely, the association of a maximal flow f in G′′ with a given set of vertex-

disjoint cycles f ′ in G is canonical: Apart from the edges of type (vout, win) if

(v, w) ∈ f ′, we just need to add all edges of type (s, vout) and (vin, t) and all edges

(vin, vout) for all v ∈ V \M covered by f ′ to obtain f .

Figure 46 a) shows the maximal flow of size |M | = 3 in G′′ of Figure 45 b), and

Figure 46 b) the corresponding vertex-disjoint cycle cover of M in the original

graph G of Figure 44.

We close this section by noting that, due to the contraction of multiple edges

of types (s, vout), (vin, vout), (vin, t) to single edges, there is no structural change

to the flow f in G′′ if we replace all multiple edges of type (vout, win) by single

ones as well, as each vertex can be used only once anyway. If we do so, when

translating the flow f in G′′ to f ′ in G, we then choose an arbitrary edge of the

contracted multiple edges.

In this section, we saw that for a certain type of graphs G = (V,E) and certain

subsetsM ⊂ V of vertices inG, it is possible to coverM by a set of vertex-disjoint
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(a) A flow of size |M | = 3 in G′′ of Figure 45 b).

v1 v2 v3

v4

v5

(b) The vertex-disjoint cycle cover corresponding to the
maximal flow in a).

Figure 46: The construction of a vertex-disjoint cycle cover of M in G of Figure
44 from a maximal flow in G′′ of Figure 45.
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cycles. In the next section, we use this fact for CDGs to derive an upper bound

on the diameter of partition polytopes.

4.3 Diameter of the Partition Polytope

Before using the results of the last section to derive a tight bound on the diameter

of the partition polytope (in a worst case), let us turn to some known diameter

statements.

First of all, the partition polytope is a special transportation polytope. This allows

us to transfer the diameter bounds established for the general transportation

polytope [BHS02; HS02; BHS03], yielding a diameter bound of 8(k + n− 2) for

the partition polytope. Using unpublished work, this bound can be reduced to

4(k + n− 1) [LKOS09] or even 3(k + n− 2) [Loe06].

Additionally, the partition polytope is a 0, 1-polytope, and by this the famous

Hirsch Conjecture [Dan63] holds for it [Nad89]. It states that its diameter can be

no higher than fac− dim, where dim is the dimension of the polytope and fac

its number of facets.

Recalling Definition 3.9, and noting that yin = κi−
∑n−1

j=1 yij for all i ∈ {1, . . . , k},
as well as ykj = 1 −

∑k−1
i=1 yij for all j ∈ {1, . . . , n}, it is easy to see that dim =

(k − 1) · (n− 1) (as the remaining yij are chosen ’freely’).

With this direct dependence of the yin and ykj from the yij with i < k, j < n,

it suffices to use (k − 1) + (n − 1) of the ’equality’ constraints (in the form∑n−1
j=1 yij ≤ κi, respectively

∑k−1
i=1 yij ≤ 1) and (k − 1) · (n− 1) of the inequality

constraints yij ≥ 0 to describe all of the facets of the polytope. Each of these

constraints can induce at most a single facet of the polytope, thus fac ≤ (k −
1) + (n− 1) + (k − 1) · (n− 1). By this, the partition polytope has a diameter of

at most fac− dim ≤ k + n− 2.

In the following, we derive a much tighter bound on the diameter of the partition

polytope by exploiting its special structure.

We start by examining the graph theoretical result of the last section in the context

of the partition polytope and CDGs. Let C and C ′ be two PSCs. By Theorem 4.15

and Corollary 4.16, we know that we can cover the set M of vertices of maximal

degree in CDG(C,C ′) by a set of vertex-disjoint cycles.

Corollary 4.20

LetC andC ′ be two PSCs. LetM be the set of vertices of maximal degree inCDG(C,C ′).
Then M can be covered by a set of pairwise vertex-disjoint cycles in CDG(C,C ′).
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Proof. We already noted that CDGs satisfy the prerequisites of Theorem 4.15.

The statement then is a direct rewording of Corollary 4.16.

As we will see (in Lemma 4.22 and Corollary 4.24), having a set of vertex-disjoint

cycles in CDG(C,C ′) covering the vertices of maximal degree allows us to

identify at most two cyclical exchanges that, applied to C, yield a PSC C ′′ such

that the vertices of maximal degree in CDG(C ′′, C ′) have indegree one less than

in CDG(C,C ′). This corresponds to ’walking along’ the edges associated with

these cyclical exchanges (recall Lemma 4.6, Corollary 4.12) in PP , which allows

us to talk about the diameter of PP .

The construction we describe first was used in [BR74] to prove the diameter of the

Birkhoff polytope to be two. The Birkhoff polytope is a special transportation

polytope, and a special case of our partition polytope, satisfying κ1 = · · · = κk =

1. Informally, k items are assigned to k clusters.

In algebraic terminology, the construction we will use also corresponds to the

decomposition of a permutation into two indecomposable permutations, used

to derive a bound on the diameter of permutation polytopes for permutation

groups of the form min{2 · t, bn2 c} in [GP06], where t is the number of the non-

trivial orbits of the permutation group.

The close relationship of this bound to the results of this section can be seen

by using the Young representation [Jam78; Onn93] of the symmetric group to

identify a permutation group underlying the combinatorial structure of the

partition polytope.

With our graph-theoretical terminology and our constructive approach, it is

not difficult to derive the diameter bound as denoted in Theorem 4.9. We first

establish the trivial bound of bn2 c.
Lemma 4.21

PP (k, κ1, . . . , κk) has a diameter of at most bn2 c.

Proof. Two PSCsC andC ′ differ by a set of cyclical exchanges which do not move

any x ∈ X more than once, by Lemma 2.11. At most (all) n items participate in

these cyclical exchanges, and each cyclical exchange contains at least two items.

Thus, the number of cyclical exchanges to derive C ′ from C is bounded by bn2 c.
The claim follows from the correspondence of cyclical exchanges and edges in

PP , by Corollary 4.11 and Corollary 4.12.

Let us now turn to the construction used in [BR74] and [GP06]. We describe it

using cluster difference graphs. Recall that its edges are all labeled with the
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specific items to be moved. For the sake of a simple representation, most of the

time, we will not denote these labels and refer to a CDG in the form G = (V,E).

Lemma 4.22

Let C and C ′ be two PSCs such that CDG(C,C ′) decomposes into a set of vertex-
disjoint cycles. Applying at most two cyclical exchanges to C, we can then transform C

into C ′.

Proof. Note that the fact that CDG(C,C ′) decomposes into a set of cycles follows

from Corollary 4.11. The special assumption is that these cycles do not share any

vertices in CDG(C,C ′).

We prove the claim constructively. Let CDG(C,C ′) = G(V,E) and let CY :=

{CY1, . . . , CYt} be the given set of vertex-disjoint cycles. If CY consists of a single

cycle CY , we use this cycle in the following. Otherwise, we define a cyclical

exchange as follows:

• Start with the cycle decomposition {CY1, . . . , CYt}.

• Remove an edge ei = (csi , cui) from CYi for all i ∈ {1, . . . , t}.

• Add an edge e′i = (csi , cui+1) for all i ∈ {1, . . . , t} to CYi. We assume

t+ 1 = 1 with respect to the indices i.

The result of this construction is that CY := CY1 ∪ CY2 ∪ · · · ∪ CYt is a single

cycle through all vertices of the CDG. By applying this cyclical exchange to C,

we obtain a PSC C ′′. Let us now consider CDG(C ′′, C ′). If CY consisted of only

a single cycle CY , C ′′ = C ′ and we are done.

Otherwise, by our construction, all item movements but the ones associated

with edges ei and e′i were ’performed correctly’ by the application of CY . The

remaining difference lies in the items that should have been moved from csi

to cui , but have been moved to cui+1 instead. Thus CDG(C ′′, C ′) only consists

of edges of type (cui+1 , cui) for all i ∈ {1, . . . , t}. Clearly, these edges form a

single cycle in CDG(C ′′, C ′). Applying the corresponding cyclical exchange, i.e.

moving the items xi that were associated with the edge (csi , cui) in CDG(C,C ′)

now from cluster Cui+1 to Cui yields the PSC C ′.

We informally said that we ’apply at most two cyclical exchanges to C’. Note that

the order of the two cyclical exchanges constructed is important, as they share

items. We actually have to talk about a sequence of these cyclical exchanges

being applied.
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Note that the prerequisites of Lemma 4.22 are always satisfied in the Birkhoff

polytope, due to κi = 1 for all i ∈ {1, . . . , k}, i.e. each cluster having only a single

item.

Let us now consider the two PSCs C and C ′ with corresponding assignments E

and E′ depicted in Figure 42. They assign 5 items to 5 clusters, and thus yield

vertices of the Birkhoff polytope. There must be two cyclical exchanges to derive

C ′ from C. We construct CDG(C,C ′) in Figure 47.

Figure 48 depicts the construction of a first cyclical exchange according to Lemma

4.22 to derive a PSC C ′′ with corresponding assignment E′′. Figure 49 shows the

resulting assignment E′′ and the difference of E′′ to E′.

We then construct CDG(E′′, E′) in Figure 50. Recall that the proof of Lemma

4.22 describes its direct construction from the information in Figure 48 without

using the information depicted in Figure 49. As expected, it only contains a

single cycle. Applying this single cyclical exchange to E′′ yields E′.

Recall that applying a cyclical exchange to a PSC (or the corresponding assign-

ment) is equivalent to walking from the associated vertex in PP along an edge

to a neighbouring vertex. We get the following immediate corollary.

Corollary 4.23

Let C and C ′ be two PSCs such that CDG(C,C ′) decomposes into a set of vertex-
disjoint cycles CY , and let v and v′ be the corresponding vertices in PP .
If CY only contains a single cycle, v and v′ are connected by an edge in PP . If CY
contains more than one cycle, v and v′ have a combinatorial distance of exactly two in
PP .

Proof. The construction described in Lemma 4.22 explains that we have to apply

one, or respectively two cyclical exchanges to derive C ′ from C. Corollary 4.11

and Corollary 4.12 establish the connection of this fact to the combinatorial

distance, as explained above.

We get another immediate corollary.

Corollary 4.24

Let C and C ′ be two PSCs. By applying at most two cyclical exchanges we can derive a
PSC C ′′ such that max

ci∈CDG(C′′,C′)
deg−(ci) = max

ci∈CDG(C,C′)
deg−(ci)− 1.

Proof. We know that the set M of vertices of maximal degree in CDG(C,C ′) has

a cover by vertex-disjoint cycles, by Corollary 4.20. With the construction from

Lemma 4.22, we can ’delete’ this set of cycles from CDG(C,C ′), reducing the in-

and outdegree of all vertices covered by exactly one. This proves the claim.
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(a) The ’orientated’ difference of E and E′.
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(b) The corresponding CDG(E,E′).

Figure 47: Construction of CDG(E,E′) for the assignments of Figure 42. Here,
it is a set of vertex-disjoint cycles.
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(a) One edge in every cycle of CDG(E,E′) of
Figure 47 marked blue.

1 2 3

4

5

(b) The cyclical exchange that we apply to derive a
PSC C′′ from C.

Figure 48: Construction of a first cyclical exchange according to Lemma 4.22 for
CDG(E,E′) of Figure 47.



4 EDGE-STRUCTURE OF THE PARTITION AND GRAVITY POLYTOPE 133

c1

c2

c3

c4

c5

v1

v2

v3

v4

v5

(a) The assignment E′′ derived from an
application of the cyclical exchange in

Figure 48 to E.
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(b) The ’orientated’ difference of E′′ and
E′.

Figure 49: The assignment E′′ derived from E by an application of the cyclical
exchange of Figure 48 to E.
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(a) The CDG(E′′, E)
corresponding to Figure 49 b).

The CDG consists only of a
single cycle.
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(b) The application of the cyclical
exchange in a) to E′′ yields E′. The blue
assignments were ’corrected’ by the first
cyclical exchange, the red assignment by

the second one.

Figure 50: The application of the single cyclical exchange in CDG(E′′, E′) to E′′

yields E′
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Informally, Corollary 4.24 states that for PSCs C and C ′, we can reduce the maxi-

mal indegree in CDG(C,C ′) by one by applying at most two cyclical exchanges

to C, and considering the resulting PSC C ′′ and CDG(C ′′, C ′).

We now are ready to prove the diameter bound of the partition polytope of

Theorem 4.9:
Theorem 4.25

PP (k, κ1, . . . , κk) has a diameter of at most

min
{
κi1 + κi2 , b

n

2
c
}
,

where i1 := arg max
i∈{1,...,k}

κi and i2 := arg max
i∈{1,...,k}\{i1}

κi.

Proof. Let C and C ′ be two PSCs, and consider CDG(C,C ′). We know that

deg−(ci) ≤ κi ≤ κi1 for all ci ∈ CDG(C,C ′). The case deg−(ci) = κi corresponds

to the ’worst case’ that there is no x ∈ Ci with x ∈ C ′i.
By Corollary 4.24, by applying at most two cyclical exchanges to C, we are able

to reduce this maximal indegree by one. Doing so iteratively, we can derive C ′

from C by applying a sequence of at most 2 ·maxi∈{1,...,k} κi cyclical exchanges,

each representing the transition from a vertex of PP to a neighbouring vertex

along an edge.

Additionally, if the set M of vertices of maximal degree in CDG(C,C ′) only

consists of a single vertex, we can clearly cover M with a single cycle, and

thus can reduce the maximal indegree in CDG(C,C ′) by applying only a single

cyclical exchange.

We can do so κi1 − κi2 times, before M contains at least two vertices. This results

in a total of at most (κi1 − κi2) + 2κi2 = κi1 + κi2 cyclical exchanges needed.

The other part of the given bound is proven in Lemma 4.21.

We formally note that the diameter result for the Birkhoff polytope is a special

case of this result.
Corollary 4.26

The Birkhoff polytope has diameter at most 2.

Proof. We have κ1 = · · · = κk = 1 for the Birkhoff polytope, so, by Theorem 4.9,

its diameter is at most κi1 + κi2 = 2.

It is easy to see that the bound of Corollary 4.26 becomes tight for n ≥ 4. We now

turn to a more general example showing that the bound given in Theorem 4.9

can be tight for any κi1 .



4 EDGE-STRUCTURE OF THE PARTITION AND GRAVITY POLYTOPE 136

c1

c2 c3

c4

n
4

n
4

n
4

n
4

Figure 51: The CDG for a tight bound example for Theorem 4.9.

Lemma 4.27

The bound given in Theorem 4.9 can be tight for any value of κi1 .

Proof. We prove the claim by constructing a tight example. Let k = 4 be arbitrary

and κ1 = κ2 = κ3 = κ4. Thus, each of the 4 clusters contains n
4 points. Consider

C := (C1, C2, C3, C4), where

x1, . . . , xn
4
∈ C1, xn

4
+1, . . . , xn

2
∈ C2, xn

2
+1, . . . , x 3n

4
∈ C3, x 3n

4
+1, . . . , xn ∈ C4.

Additionally, let C ′ := (C ′1, C
′
2, C

′
3, C

′
4) be defined by

xn
4
+1, . . . , xn

2
∈ C ′1, x1 . . . , xn4 ∈ C

′
2, x 3n

4
+1, . . . , xn ∈ C

′
3, xn2+1, . . . , x 3n

4
∈ C ′4.

Informally, C and C ′ have no item-assignment in common. Instead, all n4 items

that are in C1 are in C ′2, and vice versa. The same holds for C3 and C ′4. The

corresponding CDG(C,C ′) is depicted in Figure 51. CDG(C,C ′) decomposes

into n
2 = bn2 c = 2 · κi1 cyclical exchanges, yielding a combinatorial distance of

the two clusterings in PP of at most this value. We now show that C cannot

be transferred to C ′ with less applications of cyclical exchanges: By induction,

we prove that we can at most reduce the number of (edge-disjoint) cycles in the

remaining CDG by n
2 by applying n

2 cyclical exchanges.

It is easy to see that the claim holds for n = 4 or κi = 1 for i ∈ {1, . . . , 4}. In this

case, the graph consists of two vertex-disjoint cycles. With the construction from

Lemma 4.22, we need at least two cyclical exchanges to ’delete’ the two cycles of

the original CDG. Figure 52 shows that we have no advantage by using different,
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longer cyclical exchanges than the two canonical ones. So let the claim now hold

for n, and consider the graph with n+ 4 vertices or κ′i := κi + 1.

Using our induction hypothesis, we know that by applying n
2 cyclical exchanges

we can only reduce the number of (edge-disjoint) cycles in the remaining CDG

by at most n2 . Thus, after doing so, we still have at least 2 cycles. We need at least

2 more cyclical exchanges to ’delete’ these. This proves the claim.

Note that in the example of Lemma 4.27, κi1 = κi2 . This is not necessary for the

bound of Theorem 4.9 to be tight.

We derived our diameter bound by considering the maximally possible indegree

of a vertex of the CDG of two PSCs. By this approach, for two given PSCs, we

obtain a direct corollary to their combinatorial distance.

Corollary 4.28

Let C := (C1, . . . , Ck) and C ′ := (C ′1, . . . , C
′
k) be two PSCs of X , let v and v′ be the

corresponding vertices in PP , and let η1, . . . , ηk ∈ N, where ηi is the number of items
x ∈ X with x ∈ Ci ∧ x /∈ C ′i.
The combinatorial distance of v and v′ then is at most min{ηi1 + ηi2 , bn2 c}, where
i1 := arg max

i∈{1,...,k}
ηi and i2 := arg max

i∈{1,...,k}\{i1}
ηi.

Proof. The indegrees of the vertices of CDG(C,C ′) correspond to the values of

η1, . . . , ηk rather than to the worst-case bounds κ1, . . . , κk. The claim then follows

analogously to the proof of Theorem 4.9.

Note that trivially ηi1 ≤ bn2 c.
In this section, we derived a bound on the diameter of the partition polytope. The

bound is tight with respect to ’worst-case’ examples for max
i∈{1,...,k}

κi. In the next

section, we finish our discussion of the edge-structure of the partition polytope

by summarizing the steps necessary to construct a corresponding edge-walk,

and by showing that this can be done in polynomial time in the arithmetic model

of computation.

4.4 Algorithmic Application

Our constructive algorithms in the last sections explain algorithmic means for

transitions between clusterings. This section is dedicated to summarizing these

algorithms and investigating their efficiency.

Assume we have PSCs C := (C1, . . . , Ck) and C ′ := (C ′1, . . . , C
′
k) and that we

want to derive C ′ from C. To do so, we iteratively transform C to new clusterings
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c1

c2 c3

c4

(a) A cyclical exchange of length 3
’corrects’ only one (the blue) assignment.

c1

c2 c3

c4

(b) It leads to another CDG with a cyclical
exchange of length 3 ’correcting’ 3 item

assignments.

c1

c2 c3

c4

(c) A cyclical exchange of length 4
’corrects’ two (the blue) assignments.

c1

c2 c3

c4

(d) It leads to another CDG with a cyclical
exchange of length 2 ’correcting’ two item

assignments.

Figure 52: Cyclical exchanges of length 3 and 4 applied to the CDG of Figure 51.
By using two cyclical exchanges, in both examples, the number of cycles in the

remaining CDG is reduced by exactly two.
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that are ’less different’ fromC ′, until we are done. This can be done in polynomial

time.

Theorem 4.29

Let C and C ′ be two PSCs of X := {x1, . . . , xn}. A sequence T of at most min{ηi1 +

ηi2 , bn2 c} cyclical exchanges to derive C ′ from C can be determined in polynomial time
in n in the arithmetic model of computation. (The ηi are defined as in Corollary 4.28.)

Proof. We start by calculating CDG(C,C ′). The description of the construction

for Definition 4.10 is based on the transformation of E∆E′ corresponding to C

and C ′ to CDG(C,C ′). Here, we will not create E∆E′ for C and C ′ explicitly,

but instead describe how to create CDG(C,C ′) directly: We start with an empty

digraph G = (V,E,w) with labeling function w. For each x1, . . . , xn, we test

whether xl ∈ Ci and xl ∈ C ′j for i 6= j. If so, we add ci and ci to V , e := (ci, cj) to

E and set w(e) := xl. We need to look at each vertex exactly once, and obtain a

graph with |E| ≤ n and |V | ≤ k. Clearly, the calculation of the CDG can be done

by performing n comparisons and a constant number of graph and set operations

belonging to each comparison result. We here assume that it takes constant time

to identify the cluster of a vertex, and use the notation Ci(xl) for the index of the

cluster Ci with xl ∈ Ci. Algorithm 7 lists the steps in pseudo-code.

Input :PSCs C := (C1, . . . , Ck), C
′ := (C ′1, . . . , C

′
k) of point set

X := (x1, . . . , xn)
Output :CDG(C,C ′) = G(V,E,w)

V := ∅, E := ∅;
for 1 ≤ l ≤ n do

if Ci(xl) 6= C ′j(xl) then
V = V ∪ {ci, cj};
e := (ci, cj);
E = E ∪ {e};
w(e) = xl;

end
end
return CDG(C,C ′) = G(V,E,w);

Algorithm 7: Construction of a CDG

A cycle decomposition of CDG(C,C ′) can be calculated greedily as seen in the

proof of Lemma 2.11. CDG(C,C ′) has at most n edges. It is easy to describe

an implementation for this where we only need to look at each edge up to two

times, yielding polynomial running time for this step.
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Specifically, when closing a cycle CY during our greedy collection of edges in

the CDG, we remove the corresponding edges from E, and, at the same time,

record that we removed an edge for each ci ∈ CY so that we know deg−(ci) for

each ci ∈ V (as well as ηi1 and ηi2) as soon as E = ∅.
In the end, we then can identify the set M ⊂ V of vertices of maximal degree by

performing k comparisons and at most k set operations. Algorithm 8 describes

this procedure in pseudo-code.

Input :CDG(C,C ′) = G(V,E,w)
Output :Cycle decomposition T ′ of E; deg−(ci) for all ci ∈ V , ηi1 and set

M ⊂ V of vertices of maximal deg−

T ′ := ∅;
deg−(ci) := 0 for all ci ∈ V ;
while E 6= ∅ do

Greedily identify a cycle CY in E (Lemma 2.11);
E = E\CY ;
deg−(ci) = deg−(ci) + 1 for all ci ∈ CY ;
T ′ = T ′ ∪ {CY };

end
ηi1 := 0;
M := ∅;
for ci ∈ V do

if deg−(ci) = ηi1 then
M = M ∪ {ci};

end
if deg−(ci) > ηi1 then

M = {ci};
ηi1 = deg−(ci);

end
end
return T ′, deg−(ci) for all ci ∈ V , ηi1 and M ;

Algorithm 8: Greedy Decomposition of CDG

For the sake of simplicity, we only denoted the calculation of ηi1 in the pseudo-

code. Clearly, the value of ηi2 can be determined at the same time, without losing

the polynomial running time of this step.

If we obtain a decomposition T ′ of the CDG into at most min{ηi1 + ηi2 , bn2 c}
cycles this way, we set T to be (an arbitrarily ordered) sequence of corresponding

cyclical exchanges, and are done. Otherwise we apply the construction of Lemma

4.22 to reduce deg−(v) of all vertices v ∈ M by one by applying at most two

cyclical exchanges. The first step to do so is to find a vertex-disjoint cycle
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cover of M in CDG(C,C ′). We start with the construction of the network G′′ =

(V ′, E′′, s, t) used for the calculation of a max flow to do so (see Lemma 4.18 and

Lemma 4.19).

Starting with CDG(C,C ′), we follow the construction described in Section 4.2

and denote it in pseudo-code in Algorithm 9. We simplify the description by

contracting it to one step. For each edge of type (vout, win), we have a label

identifying the x ∈ X belonging to the corresponding movement. Recalling the

comment after Lemma 4.19, it would suffice to have single edges between all of

the vertices of the network.

Input :CDG(C,C ′) = G(V,E,w), set M of vertices of maximal deg−
Output :Network G′′ = (V ′, E′′, s, t), (partial) labeling function

w′ : E′′ → X

V ′ := {s, t}, where s, t /∈ V ;
E′′ := ∅;
For each v ∈ V , V ′ = V ′ ∪ {vin, vout};
For each (v, w) ∈ E, e := (vout, win), E′′ = E′′ ∪ {e} and w′(e) = w((v, w));
For each v ∈ V \M , E′′ = E′′ ∪ {(vin, vout)};
For each v ∈M , E′′ = E′′ ∪ {(s, vout), (vin, t)};
return G′′ = (V ′, E′′, s, t), w′;

Algorithm 9: max flow Network Construction

We know that |V | ≤ k, so we create a set of vertices V ′ with |V ′| ≤ 2k + 2.

Trivially |M | ≤ |V | and |E| ≤ n. We add at most n edges of type (vout, win) to the

graph, and additionally either one edge (vin, vout) or two edges (s, vout), (vin, t),

depending on whether v ∈ V \M or v ∈M . This yields at most another 2n edges,

so that E′′ ≤ 3n. We again obtain a polynomial running time for this step.

We can use e.g. the algorithm of Dinic [Din70] to solve the max flow problem

in G′′ = (V ′, E′′, s, t). A straightforward implementation of the algorithm, as

described by Dinic, yields a running time of O(|V ′2||E′′|) ⊂ O((2k + 2)2 · 3n) ⊂
O(n3). We derive a flow f which corresponds bijectively to a vertex-disjoint

cycle cover of CDG(C,C ′), see Lemma 4.19.

This correspondence can be established by collecting all (at most n) edges of

type (vout, win) used for f . We identify the different cycles of the cover like in

the proof of Lemma 4.19: Starting at a vertex vout ∈M , we follow the s, t-path in

f to a vertex v′in ∈M . If v = v′, we have one of the cycles of the cover, and start

over again at a w ∈M we did not ’use’ yet. Otherwise, we follow the s, t-path in

f through v′out, until we hit another v′′in. If v′′ = v, we are done with this cycle.

Otherwise, we continue with another path until we hit vin. In total, we need to
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consider each edge in f at most once, and |f | ≤ |E′′| ≤ 3n yields a running time

bound of O(n). We obtain a set of at most bn2 c cycles CY . Algorithm 10 describes

these steps in pseudo-code.

Input :Network G′′ = (V ′, E′′, s, t), M , flow f in G′′

Output :Vertex-disjoint cycle cover CY = {CY1, . . . , CYt} of M in
CDG(C,C ′)

CY := ∅;
s := 0;
while M 6= ∅ do

s = s+ 1;
Pick a random v ∈M , M = M\{v};
v′′ := v, set v′ to a dummy value;
while v′ 6= v do

Follow the s, t-path in f through v′′out to a v′in ∈M , identify all
edges of type (wout, w

′
in) used and add them to CYs;

v′′ = v′;
M = M\{v′};

end
CY = CY ∪ {CYs};

end
return CY ;

Algorithm 10: Vertex-Disjoint Cycle Covering

If CY contains only a single cycle, we can apply the respective cyclical exchange

directly, and, in one step, reduce the maximal deg− in CDG(C,C ′) by one. Other-

wise we have to perform the construction of Lemma 4.22 to identify two cyclical

exchanges CE1, CE2 that achieve the same reduction.

First, we define CE1 by removing an edge ei = (csi , cui) from each cycle CYi for

all i ∈ {1, . . . , t}, and instead adding an edge e′i = (csi , cui+1) connecting it to the

’next’ cycle. This requires 2t set operations.

Second, we define CE2 as the collection of edges of type (cui+1 , cui) for all i ∈
{1, . . . , t}. This requires t set operations. We get a running time of O(t) ⊂ O(n).

Algorithm 11 describes these steps in pseudo-code. Note that the labels of all

edges but those of type (csi , cui+1) and (cui+1 , cui) are clear from w.

These two cyclical exchanges CE1, CE2 (or just the single one CE1) then have

to be applied to CDG(C,C ′) to reduce the maximal deg− of the vertices by one.

Note that the application of these two cyclical exchanges has the same effect as

the application of the set of cyclical exchanges associated with the cycle cover

CY . We know the specific items to move due to the labeling function w.
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Input :Vertex-disjoint cycle cover CY = {CY1, . . . , CYt} of M in
CDG(C,C ′), labeling function w

Output :Cyclical exchange CE1 or cyclical exchanges CE1, CE2

CE1 := ∅, CE2 := ∅;
if t = 1 then

return CE1 = CY1;
end
Choose indices s1 6= u1, . . . , st 6= ut such that (csi , cui) ∈ CYi for all
i ∈ {1, . . . , t};
for 1 ≤ i ≤ t do

Add all edges but ei := (csi , cui) from CYi to CE1;
Add e′i := (csi , cui+1) to CE1 and set w(e′i) := w(ei);

end
for 1 ≤ i ≤ t do

Add e′i := (cui+1 , cui) to CE2 and set w(e′i) := w(ei);
end
return CE1 and CE2;

Algorithm 11: Construction of Cyclical Exchanges

The result of an application of CE1 and then CE2 to C is a new clustering C ′′

derived from C by at most 2 · 2k set operations in the form of item transfers

(deletions and additions of items). Algorithm 12 describes this step in pseudo-

code.

Input :PSC C of X := {x1, . . . , xn}, cyclical exchanges CE1, CE2

Output :PSC C ′′ := (C ′′1 , . . . , C
′′
k ) derived from C by an application of

CE1, CE2

C ′′ := C;
For each xl associated with an edge (ci, cj) ∈ CE1, remove xl from C ′′i and
add xl to C ′′j ;
For each xl associated with an edge (ci, cj) ∈ CE2, remove xl from C ′′i and
add xl to C ′′j ;
return C ′′;

Algorithm 12: Application of Cyclical Exchanges

Using the terminology of Corollary 4.28, we now have a PSC C ′′ such that ηi1
for the new CDG(C ′′, C ′) is one less than for CDG(C,C ′). If the new ηi1 > 0,

we are not done yet. Instead, in a straightforward implementation, we now set

C = C ′′ and perform all the algorithms described in this proof for the updated

C. As the original ηi1 ≤ bn2 c, and as we reduce it by one in each iteration step,

we need to perform our algorithms at most bn2 c times. With all of the algorithms
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used having a polynomial running time, it thus is clear that the total running

time is polynomial in n.

Input :PSCs C := (C1, . . . , Ck), C
′ := (C ′1, . . . , C

′
k) of point set

X := (x1, . . . , xn)
Output : Sequence of cyclical exchanges T to derive C ′ from C

T := ∅;
Construct CDG(C,C ′) (Algorithm 7);
Decompose CDG(C,C ′) into a set of cycles T ′ and identify the set of
vertices of maximal deg− M in CDG(C,C ′) (Algorithm 8);
while C 6= C ′ do

if the number of cyclical exchanges in T ∪ T ′ is ≤ min{ηi1 + ηi2 , bn2 c} then
add the set T ′ (arbitrarily ordered) to the end of T ;
return T ;

end
else

Construct network G′′ = (V ′, E′′, s, t) (Algorithm 9);
Use the algorithm of Dinic for a max flow f in G′′;
Derive a vertex-disjoint cycle cover CY ⊂ E(CDG(C,C ′′)) of M
from f (Algorithm 10);
Construct cyclical exchanges CE1, CE2 for CY (Algorithm 11);
if CE2 = ∅ then

Apply CE1 to C to derive a PSC C ′′ (Algorithm 12);
C = C ′′, add CE1 to the end of T ;

end
else

Apply CE1 and CE2 to C to derive a PSC C ′′ (Algorithm 12);
C = C ′′, add CE1, and then CE2, to the end of T ;

end
Construct CDG(C,C ′) (Algorithm 7);
Decompose CDG(C,C ′) into cycles T ′ and identify the set of
vertices of maximal deg− M in CDG(C,C ′) (Algorithm 8);

end
end

Algorithm 13: Derivation of C ′ from C by Cyclical Exchanges

Note that, as long as the current ηi1 > ηi2 , we find only one cyclical exchange

CE1 to apply to the current PSC C. Thus, we satisfy the desired bound on the

number of cyclical exchanges in T . We close the proof by summarizing the

complete Algorithm 13 in pseudo-code. Note that the return-part in the if-clause

is necessarily reached as soon as T ′ = ∅.
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Throughout the proof of Theorem 4.29, we used a high-level description of the

algorithms in pseudo-code. We did not consider any underlying data structures

and used some assumptions for operations being possible in constant time. As

we only wanted to prove the polynomial running time of the whole algorithm,

these assumptions are unproblematic, as all these operations trivially can be

implemented in at least polynomial time in n. For an efficient implementation in

practice, a good choice of these data structures and operations is necessary.

Our constructive approach to the calculation of a small set of cyclical exchanges

to derive a PSC from another PSC allows us to apply some constraints to the

construction, like avoiding item movements between specific clusters. In our

graph-theoretical terminology, it is easy to model these constraints, e.g. by

deleting edges from graphs and networks we use. Some of these possibilities

will be explored in future work.

We close this chapter with a short look at the edge-structure of the gravity

polytope.

4.5 Edge-Structure of the Gravity Polytope

Up to this point in this chapter, we investigated the edge-structure and diameter

of the partition polytope. We were able to derive a tight upper bound on its

diameter (in a worst case). An analysis of the edge-structure of the gravity

polytope is equally interesting, but, as we will see, quickly proves to be difficult.

With the main difference between the polytopes being the addition of geometric

information, it is clear that the set of vectors X = {x1, . . . , xn} ⊂ Rd clustered

takes a central role in our investigation.

Recall that our gravity polytope is based on having fixed values for the cluster

sizes κ1, . . . , κk. In the (bounded-shape) partition polytope without size restric-

tions as considered in [BHR92], walking in direction of an edge of the polytope

(starting from a vertex v) is associated with moving an item x ∈ X from some

cluster Ci to another cluster Cj for i 6= j; i, j ∈ {1, . . . , k} [FOR03]. Clearly, not

all item movements of this type belong to an edge, e.g. if we move an x ∈ int(Ci)
to another cluster Cj . Additionally, it is not clear that we arrive at a new vertex

of the polytope like this, we just know that the new clustering derived lies on

the respective edge.

In the gravity polytope, the situation is even more difficult. Instead of simply

moving an item from one cluster to another, we always have to apply cyclical

exchanges to satisfy the cluster size restrictions, see Lemma 2.11.
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Nonetheless, under mild assumptions on X , we will be able to associate the

transition of one vertex of the gravity polytope to a neighbouring vertex of the

polytope with the application of a single cyclical exchange. We formulate our

main result as follows.

Theorem 4.30

Let C, C ′ be two PSCs, v = v(C), v′ = v(C ′) be two vertices of Q connected by an edge
and X be a point set in general position. Then C ′ can be derived from C by applying a
single cyclical exchange.

We here use the following definition of the term ’general position’ for X .

Definition 4.31 (General Position ofX)

A set X := {x1, . . . , xn} ⊂ Rd of points is in general position if xi 6= xj for all
i 6= j; i, j ∈ {1, . . . , n} and if no four points lie on a single line in Rd.

In the following, we will informally say that we apply a cyclical exchange to a

vertex v ∈ Q when the PSC C with v = v(C) is clear from the context. We split

the proof into several subclaims. First, we need to complement our terminology.

Definition 4.32 (Vector of a Cyclical Exchange)

Let v ∈ Q and let CE be a cyclical exchange applied to v to derive v′ = v+ y. Then y is
the vector of the cyclical exchange CE.

Note that a cyclical exchange contains information about the original and derived

assignment, and so does the vector belonging to it. We informally call a cyclical

exchange CEi to have weight 0 with respect to a = (aT1 , . . . , a
T
k )T if and only if

the vector yi of CEi satisfies aT yi = 0.

If two vertices v, v′ of Q are connected by an edge, there is an a ∈ Rd·k, such that

aT v = aT v′ > aT v′′ for any vertex v′′ ∈ Q\{v, v′}. The clusterings associated

with these two vertices differ by a set of cyclical exchanges, by Lemma 2.11.

Their clustering difference graph contains only cycles of an interesting property.

In the following, we denote such cycles as CE instead of CY , and sets of cycles

as CE instead of CY , to emphasize their interpretation as cyclical exchanges.

Lemma 4.33

Let C := (C1, . . . , Ck), C ′ := (C ′1, . . . , C
′
k) be two PSCs with v = v(C), v′ = v(C ′)

being vertices of Q connected by an edge, and let a be a vector with aT v = aT v′ >

aT v′′ for any vertex v′′ ∈ Q\{v, v′}. Let further CE := (CE1, . . . , CEt) be a cycle
decomposition of CDG(C,C ′), and let yi be the vector of CEi for all i ∈ {1, . . . , t}.
Then aT yi = 0 for all i ∈ {1, . . . , t} .
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Proof. By Corollary 4.11, we know that C and C ′ differ by a set of cyclical

exchanges CE := (CE1, . . . , CEt) bijectively corresponding to the given cycle

decomposition of CDG(C,C ′). We have v′ = v + y for y =
t∑
i=1

yi.

There is a vector a = (aT1 , . . . , a
T
k )T such that aT v = aT v′ > aT v′′ for any other

vertex v′′ ∈ Q. We have

aT y =
t∑
i=1

aT yi = 0 ⇔
t∑
i=2

aT yi = −aT y1

Suppose aT y1 < 0. Then
r∑
i=2

aT yi > 0. Thus there is a j ∈ {2, . . . , r} with

aT yj > 0. Applying only the cyclical exchange CEj to v yields a v′′ ∈ Q with

aT v′′ = aT (v + yj) > aT v = aT v′, a contradiction to v and v′ being optimal with

respect to aT v = aT v′. If aT y1 > 0, we obtain the same contradiction. Thus

aT y1 = 0, and the claim follows analogously for all i ∈ {1, . . . , t}. This proves

the claim.

Any cycle in a CDG can be greedily completed to a cycle decomposition of the

CDG (see the proof of Lemma 2.11), so the weight of any cycle in the CDG of

neighbouring vertices in Q is 0, by Lemma 4.33.

Next, we show that the cyclical exchanges (in the CDG) to derive a vertex from

a neighbouring vertex move items of the same clusters in the same ’order’. We

use this informal term as follows:

Let Ci → Cj denote that we move some item x ∈ Ci to cluster Cj . Two cyclical

exchanges have a different order if in one of them we have an item movement of

type Ci → Cj and in the other Ci → Cl for j 6= l; j, l ∈ {1, . . . , k}\{i}.
Lemma 4.34

Let C := (C1, . . . , Ck), C ′ := (C ′1, . . . , C
′
k) be two PSCs with v = v(C), v′ = v(C ′)

being vertices of Q connected by an edge, and let a be a vector with aT v = aT v′ > aT v′′

for any vertex v′′ ∈ Q\{v, v′}. Let further X := {x1, . . . , xn} be a point set with
xi 6= xj for all i 6= j; i, j ∈ {1, . . . , n}, and let CE := (CE1, . . . , CEt) be a cycle
decomposition of CDG(C,C ′). Then all CEi move items of the same clusters in the
same order.

Proof. We have v′ = v+y for some vector y ∈ Rd·k. AsCDG(C,C ′) only contains

cyclical exchanges of weight 0 with respect to a by Lemma 4.33, all gravity vectors

of clusterings that are derived from applying any subset of cyclical exchanges in

CE to v (or their inverse to v′) must be on the edge between v and v′. This implies
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that all cyclical exchanges between v and v′ have to move the centers of gravity

of the clusters componentwisely in direction of y.

Suppose that there are two cyclical exchanges CE1 6= CE2 in CDG(C,C ′). CE1

and CE2 have to move items between the same subset of clusters. Otherwise,

as xi 6= xj for i 6= j, the vectors of CE1 and CE2 leave different cluster centers

unchanged, and thus cannot be collinear. Due to this, CE1 and CE2 move items

between the same clusters, and respectively between the same associated vertices

in CDG(C,C ′), w.l.o.g. c1, . . . , cr.

Suppose w.l.o.g. that CE1 is of type C1 → C2 → ... → Cr → C1 and that CE2

contains a movement of type Ci → Cj with j 6= i+ 1 and not both i = r, j = 1.

If i < j − 1, we get a cyclical exchange C1 → ...Ci → Cj(→ ...)→ C1 ’skipping’

at least one Cl for i < l < j. If j < i, we get a cyclical exchange of type

Cj → ...→ Ci → Cj skipping all clusters Cl with l < j or l > i.

Thus there is a cyclical exchange CE3 in CDG(C,C ′) that leaves different cluster

centers unchanged. As we have seen, its vector cannot be collinear to the vector

of CE1. This is a contradiction to all cyclical exchanges yielding clusterings on

the edge between v and v′.

By this, all cyclical exchanges of any cycle decomposition CE of CDG(C,C ′)

move items of the same clusters in the same order. This proves the claim.

Finally, we use the general position of X to complete the proof of Theorem 4.30.

Lemma 4.35

Let C := (C1, . . . , Ck), C ′ := (C ′1, . . . , C
′
k) be two PSCs with v = v(C), v′ = v(C ′)

being vertices of Q connected by an edge, and let a be a vector with aT v = aT v′ > aT v′′

for any vertex v′′ ∈ Q\{v, v′}. Let further X be a point set in general position. Then
v and v′ differ by only a single cyclical exchange, i.e. CDG(C,C ′) contains only one
cycle.

Proof. In Lemma 4.33 and Lemma 4.34, we showed that v and v′ differ by a set of

cyclical exchanges that w.l.o.g. all are of type C1 → C2 → ...→ Cr → C1. Recall

that these cyclical exchanges do not move any item twice (Lemma 2.11), and

thus, if such a cyclical exchange contains a cluster of size κi = 1, CDG(C,C ′)

only contains a single cyclical exchange.

So suppose now that κ1, . . . , κr > 1, and suppose that CE1 swaps items x1 →
x2 → ...→ xr → x1 where xi ∈ Ci and CE2 swaps items x′1 → x′2 → ...→ x′r →
x′1 where x′i ∈ Ci.
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Thus, the CDG(C,C ′) contains all cycles of type C1 → C2 → ... → Cr → C1

that use any combination of edges in CDG(C,C ′) with which either xi or x′i is

associated for all i ∈ {1, . . . , r}.
The vectors of all of these cyclical exchanges must be collinear. Only looking at

cluster C1, we see that

1

κ1
(xr − x1),

1

κ1
(xr − x′1),

1

κ1
(x′r − x1) and

1

κ1
(x′r − x′1)

are collinear. This can only be the case if x1, x′1, xr, x
′
r ∈ X are on a line, which

is a contradiction, as we assumed X to be in general position. This proves the

claim.

Theorem 4.30 follows directly from Lemma 4.35. Figure 53 shows two vertex

clusterings connected by an edge in the gravity polytope. Both PSCs are optimal

with respect to the a := (aT1 , a
T
2 , a

T
3 , a

T
4 )T ∈ Rd·k depicted in the figure. The filled

rectangles contain all but the explicitly shown vertices of the respective clusters.

Note that X in general position rules out the trivial case of being in dimension

d = 1. The restrictions xi 6= xj for i 6= j are necessary to guarantee that a vertex

of Q is in one-to-one correspondence to a PSC, see Lemma 2.12. Also, they are

necessary for the proof of Lemma 4.34.

The prerequisite of X having no four points on a line is necessary, as well. Figure

54 shows an example of what may happen if this condition is not satisfied. The

PSCs C and C ′ of the two-dimensional X are vertices of the respective Q, as C

is uniquely optimal with respect to b =
(
b1
b2

)
, and C ′ is uniquely optimal with

respect to b′ =
(b′1
b′2

)
in Q. The corresponding vertices are neighbours in Q, as both

C and C ′ are optimal with respect to a :=
(
a1
a2

)
in Q.

Any PSC C ′′ of equivalent objective function value aT v(C ′′) = aT v(C) = aT v(C ′)

has a gravity vector v(C) lieing between v(C) and v(C ′). Thus v(C) and v(C ′)

are connected by an edge, but they differ by two cyclical exchanges. Examples

for higher-dimensional X can be constructed analogously.

Unfortunately, the edge-structure of the gravity polytope is not as simple as the

edge-structure of the partition polytope, where edges corresponded bijectively

to cyclical exchanges. In the gravity polytope, edges are associated with certain

cyclical exchanges under the assumption that we cluster a set of vectors X in

general position, but only some cyclical exchanges belong to edges.

A next step to understanding the edge-structure of the gravity polytope might

be to be able to construct a set X associated with a set of non-geometric items
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a1

a2

a3

a4

(a) A PSC connected by an edge to the PSC in b).

a1

a2

a3

a4

(b) A PSC connected by an edge to the PSC in a).

Figure 53: Two PSCs belonging to vertices in the gravity polytope that are
connected by an edge.
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a1

a2

b1

b2

(a) A PSC C optimal with respect
to a =

(
a1
a2

)
and uniquely optimal

with respect to b =
(
b1
b2

)
in Q.

a1

a2

b′1

b′2

(b) Another PSC C′ optimal with
respect to a =

(
a1
a2

)
and uniquely

optimal with respect to b′ =
(b′1
b′2

)
in Q.

a1

a2

(c) A PSC C′′ optimal with
respect to a =

(
a1
a2

)
, but not

uniquely optimal with respect
to any vector in Rd·k.

Figure 54: X being in general position may be necessary for edges to correspond
bijectively to certain cyclical exchanges. The PSCs C and C ′ are neighbouring

vertices in the gravity polytope, but C ′′ lies in the interior of the corresponding
edge.
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such that a specific cyclical exchange (or edge in the partition polytope) also

belongs to an edge in the gravity polytope. By Lemma 3.10, we know how we

can transform the partition polytope to the gravity polytope, and that this linear

transformation depends on the choice of X . The above remarks tell us that we

should use an X in general position to avoid unnecessary complications. We

have to create X such that the two PSCs associated with the edge in the partition

polytope are neighbouring vertices in the gravity polytope as well.

We close this section by showing that this is possible by only using a two-

dimensional set X , as follows.

Lemma 4.36

Let C,C ′ be two PSCs of a non-geometric set I of n items, let v, v′ ∈ PP be the
respective vertices and let them be connected by an edge e′ = (v, v′). There is a mapping
of I to a two-dimensional geometric set X := {x1, . . . , xn} such that v(C) and v(C ′)

are vertices in Q, and such that they are connected by an edge e corresponding to the
same cyclical exchange as e′.

Proof. We prove the claim constructively. C and C ′ differ by a single cyclical

exchange CE. For now, assume that CE := (x1, . . . , xk) with xi ∈ Ci for all

i ∈ {1, . . . , k} involves all k clusters.

Figure 55 shows the construction of a cell decomposition P := (P1, . . . , Pk) of R2,

with Ci ⊂ (Pi) for all i ∈ {1, . . . , k}. In the figure, we have k = 8 clusters, each

having its own cell.

The cells are constructed by choosing k points a1, . . . , ak on the unit sphere in R2,

and then creating a full a-induced cell decomposition by calculating a Voronoi

diagram for these vectors. We choose the ai by walking along the unit-sphere

clockwise, such that the pairs of cells Pi, Pi+1 have a common one-dimensional

intersection for all i ∈ {1, . . . , k}.
We put all of the geometric points of each cluster Ci in the interior of their

respective cell Pi (and in the interior of the unit ball), except for the vertices

x1, . . . , xk. xi is chosen as the intersection of the line from ai to ai+1 and the line

Pi ∩ Pi+1.

It is clear that both C and C ′ then are optimal with respect to aT v(C) = aT v(C ′),

where a = (aT1 , . . . , a
T
k )T , and that aT v(C ′′) < aT v(C) for any other PSC C ′′.

Finally, let us consider the case where the cyclical exchange does not involve all

k clusters of the clustering. Then we perform above construction analogously for

the clusters of the cyclical exchange. For all other clusters Ci, we choose arbitrary

sites ai ∈ R2 with ‖ai‖ > 2, and complement the Voronoi diagram analogously,
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a1

a2

a3a4

a5

a6

a7 a8

x1

x2

x3
x4

x5

x6

x7 x8

Figure 55: A cyclical exchange (x1, . . . , xk) corresponds to walking along an
edge in Q. The different colors represent different cells.

putting the respective items into the interior of the cells created. By ‖ai‖ > 2,

the items x ∈ X lieing in a Ci ’participating’ in the cyclical exchange still satisfy

x ∈ Pi (due to being in the unit ball), and the xi of the cyclical exchange still are

in the common intersection of their respective cells after ’finishing’ the Voronoi

diagram, as they also lie in the interior of the unit ball. We again obtain a vector

a being optimal for both C and C ′, but for no other PSC. This yields the claim.

Note that the construction of Lemma 4.36 is valid independently of having fixed

cluster sizes.

4.6 Summary and Outlook

In this chapter, we turned to the edge-structure of both the partition polytope

and the gravity polytope. In both polytopes, there is a relation of edges to cyclical

exchanges. Still, their edge-structure is quite different.

In the partition polytope, every vertex is bijectively associated with a PSC, and

edges bijectively belong to cyclical exchanges. This simple structure allowed us

to identify an upper bound on the diameter of the partition polytope as the sum

of sizes of the two biggest clusters. This bound can be tight. It can be interpreted
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as a direct generalization of the diameter bound of the Birkhoff polytope [BR74],

and is related to a diameter bound for permutation polytopes [GP06].

The bound was derived by considering a graph-theoretic problem of covering

the set of vertices of maximal degree by vertex-disjoint cycles in graphs that

decompose into cycles. The constructive proof of this approach yields an efficient

algorithm for the calculation of a small set of cyclical exchanges deriving one

PSC from another.

It remains to investigate the ’best’ data structures (and corresponding operations)

for an implementation of this algorithm in practice, and a corresponding ’optimal’

running time. Further, the constructive approach can be exploited to satisfy some

additional constraints on the transition from one PSC to another. An example

for this would be to avoid item movements of specific types by dropping certain

edges during the construction of the utility networks used.

The edge-structure of the gravity polytope is more difficult to analyze: First of

all, not all PSCs are vertices in the gravity polytope. Only under some (mild)

assumptions, edges correspond to certain cyclical exchanges. On the other hand,

only some cyclical exchanges correspond to edges. An efficient identification of

these cyclical exchanges in the gravity polytope is of high interest with respect

to diameter questions, and might contribute to an approach of some of the open

problems described in Chapter 3.

Finally, we showed how to transform the partition polytope to the gravity poly-

tope by choosing a vertex set X in R2 for the items such that a single specified

edge is transformed to an edge in the gravity polytope. This is a small step to

understanding the transformation connecting the two polytopes. Future work

will resolve whether a set of edges in the partition polytope can be transformed to

a set of edges in the gravity polytope. A first impression indicates that choosing

X in a higher-dimensional space allows us to do so.
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5 The Consolidation of Farmland

This chapter is based on [BBG09], a joint work with Prof. A. Brieden and Prof. P.

Gritzmann. We extend its contents to a more complete view of the field.

In the first section, a typical problem situation of many agricultural regions is

described. In the second section, we turn to the advantages and disadvantages of

the classical land consolidation often initiated in such a situation and propose an

alternative approach that can be applied individually in practice or can be used to

complement the classical methods of land consolidation. Then we turn to some

ideas for an economic analysis of the value-added process in an agricultural

area, in Section 3. In Section 4, we identify how to transfer these economic

measuring ideas to an algorithmic model. In Section 5, we derive a formal

problem statement and investigate an integer linear programming approach to it.

We further describe how to adapt this approach to derive an efficient near-feasible

algorithm. In Section 6, we modify the classical k-means algorithm [Mac67] (see

Algorithm 1) to another algorithm for our real-world problem. Finally, we turn

to an evaluation of the empirical results of both algorithmic ideas. As we will

see, our model leads to flexible and efficient algorithms performing favorably

with respect to all relevant economic objective functions given by the Bavarian

State Institute for Agriculture.

For earlier work on this real-world problem from a combinatorial optimization

point of view, see [Bri03; BG04; BG06]. We refer the reader to an overview of

our notational conventions and a list of the symbols used in this chapter in the

Notation and Symbols appendix.

5.1 Real-World Situation

In many rural communities, farmers cultivate a large number of small-sized lots

that are scattered over an extended region. A lot is an individually registered

piece of land used for agricultural purposes. For many agricultural regions, the

geographical information is available in the form of a shapefile [ESR98] used by

many geographical information systems (GIS). We refer to these shapefiles as

GIS data. They are databases that, among other things, capture the geographical

location and geometric shape of the lots of a region, their attributes like size or

bonity, i.e. quality of soil, and their cultivators. With this information, a visual

representation is possible. Figure 56 shows an example. The small bounded

areas are the lots of the region, the different colors represent different cultivating
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Figure 56: A typical agricultural region. Different colors represent different
cultivating farmers.

farmers. To keep data privacy, it is an artifically altered region, yet it closely

resembles the situation of many regions in Northern Bavaria.

The problem situation is pictographically clear. The farmers face two main dis-

advantages. First, their single separate lots are small. When cultivating lots,

farming machines need space to turn around. This is why typically there is a

small strip of headland along the border of the lots where no crop is cultivated.

Additionally, the machines consume fuel and may lose dung when turning

around. These negative effects are called headland effects and turning effects.

Of course, they are especially bad when the lots have long borders relative to

their total size. This is the case if they are small or not of rectangular shape.

Then modern heavy machinery cannot be used profitably, and this is why the

cost of cultivation of such lots is much higher than it would be for fewer, larger

lots of the same total size and bonity. The second main issue is that the farmers’

lots are scattered all over the area. Due to this, there is considerable overhead

driving. This directly implies additional transportation cost and time. Calcula-

tions of the Bavarian State Institute for Agriculture show that the two factors

mentioned often add up to more than 30% of the farmers’ income coming from

their agricultural production.
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5.2 Classical Approach and Algorithmic Idea

In a situation like in Figure 56, typically a classical land consolidation process

is initiated. Once it is decided on, the farmers of the region are obliged to

participate. The process consists of a complete restructuring of the agricultural

area. This includes discarding the current lot structure and creating a new one.

The process involves extensive legal reassignments of ownership. Additionally,

the existing infrastructure may be extended.

While a complete restructuring of the area offers the opportunity to create good

solutions for the farmers, there are several disadvantages. Due to the extended

surveying and planning needed, it is a lengthy and costly process. Many years

may pass before the farmers benefit from the process. There are reports of land

consolidation processes of ten or more years. If the process takes such a long

time, the results of the replanning vary a lot in quality. Information used may

become outdated during the process, and may severely hamper the quality of

the resulting agricultural structure.

A further disadvantage is the focus of the classical land consolidation on legal

assignments and reassignments of ownership. In agricultural areas where the

majority of lots is cultivated by farmers with lend-lease agreements instead

of by the owners, any reassignment of the ownership of lots does not directly

improve the farmers’ cultivation situation. Additionally, lend-lease contracts

are more prone to change than the ownership of lots. During a year-long land

consolidation process, the cultivation rights might change greatly. Hence, a

scattered agricultural structure may remain in regions which undergo a classical

kind of land consolidation. Figure 57 shows an agricultural region in Northern

Bavaria after a classical land consolidation process. An advantage over the

original structure is neither pictographically intelligible, nor appears in the cost

structure of the value-added process of the region.

In the following sections we develop an algorithmic approach using the lend-

lease agreement-structure to an advantage: A farmer who cultivates a lot that he

does not own is generally rather willing to ’trade’ his leasing contract. Keeping

the existing lot structure, the efficiency of the agricultural production in the area

can be improved on by reassigning the cultivators of the lots. A further advantage

of this approach is that each farmer of the region can decide individually whether

he wants to participate in the process, and if so, can ’fix’ some of the lots most

important to him, e.g. those close to his home.
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Figure 57: The structure of an agricultural region in Northern Bavaria after a
classical land consolidation process. The lots of the farmers still are scattered

over the region.
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Of course, no farmer will accept more than a marginal decrease in total farm

size or bonity. Under these constraints, the two algorithms proposed later in this

chapter yield ’good’ redistributions of the lots. We will examine what a good

redistribution of lots looks like in the next two sections, where we first turn to an

economic analysis of agricultural regions and then talk about our direct goals for

the redistribution.

The running time of the proposed algorithms is less than a minute for typical

input sizes, on a typical laptop. The design of these algorithms is accompanied

by the development of a software tool called Agriopt providing a simple-to-use

calculation, editing and visualization platform. Due to the short running time of

the algorithms, the possibility of editing lot distributions manually in the tool,

and due to the pictographically intelligible visualization, it is easy to demonstrate

possible redistributions of the existing lots to the farmers of a community in

a meeting. In fact, a series of such meetings was held in two communities in

Northern Bavaria. As it turned out, the discussions, propositions by farmers and

redistribution tweaking during these meetings greatly improve the quality and

reception of the results. For one, farmers sceptical of the methods used often fix

most, if not all, of their lots at first. But when they get to see the fairness and

power of the methods they decide to participate with more and more lots. Also,

special constraints and personal preferences can be respected that are not easily

representable abstractly.

5.3 Economic Analysis

A profound understanding of the economic value-added process in an agricul-

tural region is central to the improvement of its cost structure. This section is

dedicated to summarizing such an economic analysis. The ideas presented here

were established in a cooperation of Prof. Andreas Brieden and Dr. Paul Rintelen

of the Bavarian State Institute for Agriculture. They are implemented in the

Agriopt tool.

We are only concerned about the total cost and time required for a fixed plan of

crop-growing. Each crop has different properties, and cultivation processes may

differ greatly. Lots of higher bonity may be used for different crops than those of

low bonity. They may require different machinery and work scheduling. The

decision which crop to use a certain lot for may be influenced by which other

lots a farmer cultivates. In the following we reduce and simplify the complex

processes involved to mathematically analyzable and approximable ones.
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Our focus is on two factors: The driving cost and time and the cultivation cost

and time.

5.3.1 Driving

We use reference points in the Euclidean plane for each lot. A possible measure

for the total driving distance of a farmer could be a tour of minimal length

through all of his lots. Such a measure would be based on the assumption that

the farmer has to inspect all of his lots in a single tour. The Traveling Salesman

Problem however is NP-hard [Kar72], as is the Euclidean Traveling Salesman

Problem [GGJ76] [Pap77].

Another extreme would be to add up the lengths of the shortest paths from

a farmer’s base to all of his lots. This would reflect a scenario where each lot

requires a full day’s work, so there is no synergy in driving from one lot to

the other. Another possible measure would be to sum up all distances of a

farmer’s lots to the closest ’center lot’, and to add the distances of a minimum

spanning tree of the center lots. This would model the assumption that material

is deposited at each center lot and that it then is distributed to all other nearby

lots one by one.

In practice each of these scenarios may be realistic, and all of them may represent

some of the actual tours done. A good compromise is to relate the driving

distance with the length of a minimum spanning tree (MST) for the lots of each

farmer: A minimum spanning tree is a lower bound on the lengths of the second

and third proposition, and twice its length is an upper bound on the length of a

minimal tour. Figure 58 depicts the proposed measures.

An MST of the lots of a farmer Ci can be calculated inO(κ2i ), where κi is the num-

ber of lots of farmer Ci, by considering the complete graph of lot distances (see

e.g. [CT76]). See [Bor06] for a survey of MST algorithms on graphs. Computing

a Delaunay triangulation of the reference points of the lots in the Euclidean plane

and applying Prim’s algorithm to its edges yields a running time of O(κi log(κi))

[SH75].

Depending on the cultivated crop, a farmer has to visit his lots a certain number

of times per year. We will not distinguish which crop is cultivated on which

lot. Taking an average value for the mix of cultivated crops in the agricultural

region, we multiply the length of the minimum spanning tree by the average

number of tours needed. We assume the driving cost and time to be linear in the
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(a) A minimal tour through the lots of a
farmer.

(b) The red base lot connected to all other lots.

(c) An MST of the red center lots (a single
edge), and stars to the other lots.

(d) An MST of the lots.

Figure 58: The lots of a farmer connected by the four presented measures for the
driving distance. The MST in d) is a lower bound on the measures in b) and c)

and twice its length is an upper bound on the one in a).
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driving distance, allowing several parameters like cost of fuel, machinery aging

or driving speed to be adjusted.

5.3.2 Cultivation

The second important measure is the cultivation cost and time. As was men-

tioned briefly in the starting section of this chapter, bigger lots are less cost- and

time-intensive to cultivate than smaller lots of the same total size. This is due to

the headland and turning effects, as, in general, the bigger a lot is, the shorter the

border is relative to its size. By this, connected lots belonging to the same farmer

are a great advantage. The shapes of lots also are important. They usually are

polyhedral, but identifying the exact shape of a lot or of several lots connected to

each other that can be cultivated together is difficult. Thus, we assume all lots

or sets of connected lots of single farmers to have a relation of size and border

length as if they were rectangular with a 4 to 1 ratio of length to width. Headland

and turning effects then are modeled as regressions based on the size of the lots

or total size of connected lots belonging to a single farmer. The regressions differ

considerably for different crops. Like with the driving cost and time, we use

an average number derived from the mix of cultivated crops in the agricultural

region.

5.4 Good Farmland Distributions

We start with some more formal terminology. The lot data is given as part of the

GIS data for the region. Therein, the shape of the lots is represented by a set of

edges (and vertices) in the Euclidean plane. Each of these edges identifies either

one or two lots it belongs to. If an edge identifies two lots, they share the edge

as a common border. This means that there is no natural or artifical obstacle

between them like a road, hedgerow, or a river. We call such lots connected or

adjacent. See Figure 59 for an example.

From this representation it is easy to calculate a contiguity graph identifying

connected components of lots. We call a set of lots that forms an inclusion-

maximal connected subgraph of this graph a (connected) lot group. When we

additionally talk about the assignments of lots, we use the term (connected) lot

component for an inclusion-maximal set of lots cultivated by the same farmer

forming a connected subgraph in the contiguity graph.
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Figure 59: A contiguity graph of connected lots is identified from the
edge-structure in the GIS data for the region.

Additionally, lots identify their size in hectare and a bonity measure, which is a

positive integral number up to 100. We define the value of a lot as the product of

its size and bonity, which is quite common in agriculture. The center of a lot is

the arithmetic mean point of the vertices of its representation in the Euclidean

plane. We then approximate the distance of two lots by the air-line distance of

their respective centers.

Farmers will be able to designate fixed lots, i.e. lots that are not subject to redis-

tribution. These will play a major role in the algorithms of the following sections

as center lots which should be integrated into significantly bigger connected lot

components after the redistribution.

Let us now turn to our goals for a combinatorial redistribution of lots. As seen in

the sections before, the two main characteristics of a good farmland distribution

are short driving distances and big lot component sizes. Equivalently to the

latter criterion, we can aim for a low number of connected lot components. This

directly leads to a large average size of the connected lot components for each

farmer.

The driving distances between fixed lots are unavoidable and not subject to any

optimization. By minimizing the distances of the farmers’ free lots to the center

lots, we get a good and easily computable measure for the driving distance (see

the previous section).
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A redistribution of the lots is only viable if it respects any fixations of lots, and

the total size and value of each farmer’s lots stays within some attribute bounds,

as, of course, no farmer will accept more than a marginal decrease. As the

following lemma and corollary show, it generally is NP-hard to decide whether

there is another feasible distribution of lots but the original one even if we restrict

ourselves to a single attribute and two farmers.

Problem 5.1 (Feasible Lot Distribution)

Given two farmers, a set S of n lots with attributes s1, . . . , sn ∈ N, κ1, κ2 ∈ N with

κ1 + κ2 =
n∑
i=1

si and ε−1 , ε
+
1 , ε
−
2 , ε

+
2 ∈]0, 1[, decide whether there is a partition (S1, S2)

of S, such that

(1− ε−1 )κ1 ≤
∑
s∈S1

s ≤ (1 + ε+1 )κ1

(1− ε−2 )κ2 ≤
∑
s∈S2

s ≤ (1 + ε+2 )κ2

Lemma 5.2

Feasible Lot Distribution is NP -hard.

Proof. We show that Subset Sum (Given a set S of positive integers and σ ∈ N,

decide whether there is a subset of S which sums up to σ), can be polynomially

transformed to the given problem. Since, by [Kar72], the former is NP-hard, so is

the latter.

To do so, we set

κ1 := σ, κ2 := −σ +
∑
s∈S

s, ε−1 = ε+1 = ε−2 = ε+2 :=
1

σ + 1
.

By using the set S as attributes of the lots to be distributed among the two

farmers, the constructed instance of the given problem then clearly is a ‘yes’-

instance (i.e. there is a feasible solution) if and only if the given instance of Subset

Sum is a ’yes’-instance.

Our claim follows from a variant of the above problem.

Problem 5.3 (Feasible Lot Redistribution)

Given two farmers, a set S of n lots with attributes s1, . . . , sn ∈ N, a partition S1, S2
of S with κ1 =

∑
s∈S1

s, κ2 =
∑
s∈S2

s and ε−1 , ε
+
1 , ε
−
2 , ε

+
2 ∈]0, 1[, decide whether there is a

partition (S′1, S
′
2) 6= (S1, S2) of S, such that
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(1− ε−1 )κ1 ≤
∑
s∈S∗1

s ≤ (1 + ε+1 )κ1

(1− ε−2 )κ2 ≤
∑
s∈S∗2

s ≤ (1 + ε+2 )κ2

Corollary 5.4

Feasible Lot Redistribution is NP -hard.

Proof. We prove the claim by performing a polynomial transformation of Subset

Sum (Given a set S of positive integers and σ ∈ N, decide whether there is a

subset of S which sums up to σ) to the given problem analogously to the proof

of Lemma 5.2.

To do so, we set

κ1 := σ, κ2 :=
∑
s∈S

s, ε−1 = ε+1 = ε−2 = ε+2 :=
1

σ + 1
.

By using a lot s∗ with attribute κ1 and S′ := S ∪ {κ1} as the vector of attributes

of the lots to be distributed among the two farmers, (S1, S2) with S1 = {s∗} and

S2 = S is clearly a feasible partition of S′. By our construction, another feasible

partition (S′1, S
′
2) satisfies s∗ ∈ S′2, so S′1 only contains values in S, and thus our

constructed instance is a ’yes’-instance if and only if the given instance of Subset

Sum is a ’yes’-instance.

Due to the general difficulty of finding feasible redistributions of lots even when

only considering a single attribute, and due to the fact that the given bounds

are only soft bounds of acceptance by the participating farmers, in the following

sections, we will be content with only near-feasible solutions.

Further, if we directly try to optimize both driving distances and the number of

lot components, we end up with a multi-criteria optimization problem and, in

general, such problems are hard to solve. Thus, we tackle the problem by using

a hierarchical approach. We account for the second criterion by not splitting up

connected lot groups unless absolutely necessary, and then determine a redis-

tribution of the preprocessed connected lot groups that is nearly optimal with

respect to the first criterion. Doing so allows us to construct quick algorithms

yielding good results.

In the following two sections, we discuss two algorithmic approaches for calcu-

lating good redistributions. We first turn to the core algorithm of the chapter,
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where we model the problem as an integer linear program and exploit its ’nice’

properties. Thereafter we adapt a classical clustering algorithm to our real-world

problem, and finally compare some empirical results of the two algorithms.

5.5 A 0, 1-Integer Programming Approach

In this section, we follow the construction of a 0, 1-integer program in [BBG09].

To obtain a formal, general problem statement, we gather our basic information

in an (undirected) weighted graph G := (V,E,wV , wE).

For the geographical location of each lot, we calculate a reference point in the

Euclidean plane by taking the arithmetic mean of the vertices of its GIS repre-

sentation. The resulting reference points v1, ..., vn ∈ R2 constitute the vertices

of G. A vector-valued weight function wV : V → (R+)d with d ∈ N models the

attributes of the lots. In our real-world application we have d = 2, using the size

and value of lots as attributes. For a subset C ⊂ V , wV (C) is defined to denote

the componentwise sum of the weights of all vertices contained in C.

The graph G is complete, i.e. E is the set of all two-element subsets of V . We use

the function wE : E → R+ to represent the distances between the respective lots.

In the simplest case, it just identifies the Euclidean distance of the respective

reference points, i.e. wE(e) = ‖v − w‖ for e = {v, w}. If we have more detailed

information about the ’real’ distances, like from the border of one lot to the

border of another lot, or that natural obstacles between two lots result in longer

driving distances, we define wE according to this information.

Referring to the wording and notation of the earlier chapters, the parts of a

partition P of V will be called clusters, P itself is a clustering. Let k denote

the number of participating farmers, and suppose that the i-th farmer fixes

µi ∈ N center lots. We assume that each farmer designates a non-empty set of

center lots that are not subject to redistribution. If, in practice, a farmer does not

designate such a lot, we identify his most valuable one, and use it as his only

center lot. All other lots of the same farmer should be close to one of his center

lots. Conceptually, this does not only imply small driving distances, but also

rewards adjacent lots being assigned to the same farmer.

We represent the center lots of the i-th farmer by a set {ci1, . . . , ciµi}, where

cil = vl′ for some l′ ∈ {1, . . . , n}. For each lot cij , we create a cluster Cij . We

call Ci :=
⋃
j∈{1,...,µi}Cij the i-th cluster group. It contains all clusters of the i-th

farmer.



5 THE CONSOLIDATION OF FARMLAND 167

Let κi ∈ (R+)2 denote the vector that contains the original farm size and value of

the i-th farmer as components. Let further ε−i and ε+i ∈ (R+)2 denote lower and

upper bounds on the relative tolerance that the i-th farmer accepts with respect

to these two measures.

Using the notation 1 = (1, . . . , 1)T ∈ Zd and (a1, . . . , ad)
T ◦ (b1, . . . , bd)

T →
(a1b1, . . . , adbd)

T , we can write these (vector-valued) tolerance constraints as

(1− ε−i ) ◦ κi ≤
µi∑
j=1

wV (Cij) ≤ (1 + ε+i ) ◦ κi.

Our goal is to minimize the driving distances in our objective function. Recall

that for an approximation of the driving distances in an economic evaluation, we

choose the MST of all lots of a farmer. At this point, this measure is too difficult

and indirect, so we turn to the simple-to-model measure depicted in Figure 58

c). Note that the minimum spanning tree of the center lots are unavoidable

distances. Thus, it suffices to only look at the sum of distances of a farmer’s lots

to their respective center lot.

For a center lot cij = v, we call the set of edges {{cij , w} : w ∈ Cij , w 6= cij} the

star of cij . We minimize the sum of edge-weights
k∑
i=1

µi∑
j=1

∑
w∈Cij

wE({cij , w}) in

these stars of all fixed vertices cij , respecting the above balancing constraints.

The following problem statement summarizes all necessary information.

Problem 5.5 (Constrained Minimum-k-Star Clustering (CSC))

Let G = (V,E,wV , wE) be a complete weighted graph with V := {v1, ..., vn} and
wE : E → R+ with wE({v, v}) = 0 for v ∈ V . Let κ1, . . . , κk ∈ (R+)d with

d ∈ N and wV : V → (R+)d with
k∑
i=1

κi = wV (V ). Let further µ1, ..., µk ∈ N and

{c11, . . . , c1µ1 , . . . , ck1, . . . , ckµk} ⊂ V . Finally, let ε±1 , . . . , ε
±
k ∈ (R+)d.

Then the problem is to compute a partition P = (C11, . . . , C1µ1 ,. . . ,Ck1, . . . , Ckµk) of
V into clusters with cij ∈ Cij for i ∈ {1, . . . , k}, j ∈ {1, . . . , µi}, and

(1− ε−i ) ◦ κi ≤
µi∑
j=1

wV (Cij) ≤ (1 + ε+i ) ◦ κi (i ∈ {1, . . . , k})

such that

val(P ) :=

k∑
i=1

µi∑
j=1

∑
w∈Cij

wE({cij , w})

is minimal among all such partitions.

With our notation, it is possible to model CSC as an integer linear program, as

follows.
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Lemma 5.6

CSC can be modeled as an integer linear program.

Proof. The decision variables

xijl ∈ {0, 1} (i ≤ k, j ≤ µi, l ≤ n)

are used to identify whether the vertex vl belongs to Cij (xijl = 1), or not

(xijl = 0). Since each vertex must be assigned to exactly one cluster, we have the

constraints
k∑
i=1

µi∑
j=1

xijl = 1 (l ≤ n).

Each cluster Cij is associated with a single center vertex cij = vl. Naturally,

cij ∈ Cij . We model these restrictions by fixing the corresponding variables, i.e.

xijl = 1 (i ≤ k, j ≤ µi, l ≤ n : cij = vl).

Finally, the vector-valued size restrictions read

(1− ε−i ) ◦ κi ≤
µi∑
j=1

n∑
l=1

xijlwV (vl) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

while the objective function becomes

min

k∑
i=1

µi∑
j=1

n∑
l=1

xijlwE({cij , vl}).

Summed up, we have the following 0-1-integer linear program (ILP):

min
k∑
i=1

µi∑
j=1

n∑
l=1

xijlwE({cij , vl})

(1− ε−i ) ◦ κi ≤
µi∑
j=1

n∑
l=1

xijlwV (vl) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

k∑
i=1

µi∑
j=1

xijl = 1 (l ≤ n)
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xijl = 1 (i ≤ k, j ≤ µi, l ≤ n

s.t. cij = vl)

xijl ∈ {0, 1} (i ≤ k, j ≤ µi, l ≤ n).

As a direct corollary of Lemma 5.2 and Corollary 5.4, we know that CSC is

NP-complete.

Corollary 5.7

When restricted to all rational instances, CSC is NP-hard. The hardness persists if the
instances are restricted to those with k = 2 and d = 1.

Proof. We only need to reword the proof of Lemma 5.2 slightly.

On the other hand, CSC is related to the following problem SSP, which allows an

exact polynomial-time algorithm for fixed k. It was studied in [GBH98].

Problem 5.8 (Size-restricted Minimum-k-Star Partition (SSP))

Let G = (V,E,wE) be a complete weighted graph with V := {v1, ..., vn} and wE :

E → R+ with wE({v, v}) = 0 for v ∈ V . Let κ1, ..., κk ∈ N with
k∑
i=1

κi = n.

Then the problem is to compute k vertices c1, ..., ck ∈ V and a partitionP = (C1, . . . , Ck)

of V with |Ci| = κi and ci ∈ Ci for i ∈ {1, . . . , k}, such that

val(P, c1, . . . , ck) :=

k∑
i=1

κi
∑
v∈Ci

wE({ci, v})

is minimal among all such partitions and choices of c1, ..., ck.

While related, there are several obvious and significant differences between CSC

and SSP. In SSP, we do not consider any vertex-weights, and thus only have

cardinality constraints. Further, we do not have cluster groups, but instead just

single clusters, to which these cardinality constraints apply.

On the other hand, while we fix the center vertices beforehand in CSC, an optimal

choice for the center vertices is part of the output of SSP. The key observation

of the proof of the polynomial running time of an exact algorithm is that once

the center vertices c1, . . . , ck of the k stars are chosen, the remaining problem is a

transportation problem, hence can be solved in polynomial time as an LP. There

are
(
n
k

)
choices for c1, ..., ck. Thus, the number of transportation problems that

have to be solved is O(nk) yielding a polynomial-time algorithm for fixed k.
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Due to its running time being exponential in k, this algorithm is, however, not

practical for even moderate problem sizes. Additionally, its assumptions are too

restrictive for an application to our real-world problem.

Noting that SSP can be solved in polynomial time for any fixed k, and recalling

that CSC is NP-hard, we know that the differences between CSC and SSP have to

create this tractability gap. From Corollary 5.7 (and the proofs of Lemma 5.2 and

Corollary 5.4), we know that the numerical weights alone already are a reason

for CSC to be NP-hard.

We now extend SSP to use cluster groups instead of single clusters to investigate

their role in the running time. The following problem is such a generalization

of SSP, and by this already much closer to our practical application, yet it still

avoids numerical weights. It also accounts for the fact that some vertices may be

fixed to be in certain cluster groups. We have one cluster for each fixed vertex,

but we still choose the center vertices of the clusters ’freely’.

As it turns out, this combinatorial problem with all vertices having uniform

weight is as close as we can get to practical land consolidation before the prob-

lem becomes NP-hard. This ties the NP-hardness of CSC exactly to the use of

numerical weights for the vertices.

Problem 5.9 (Size-restricted Minimum-k-Star Group Partition (SGP))

Let G = (V,E,wE) be a complete weighted graph with V := {v1, ..., vn} and

wE : E → R+ with wE({v, v}) = 0 for v ∈ V . Let κ1, ..., κk ∈ N with
k∑
i=1

κi = n.

Let further µ ∈ N, µ1, . . . , µk ∈ N with µ =
k∑
i=1

µi, and {v11, . . . , v1µ1 , . . . ,

vk1, . . . , vkµk} ⊂ V . Finally, let ε±1 , . . . , ε
±
k ∈ R+.

Then the problem is to compute vertices c11, . . . , ckµk ∈ V , subcluster sizes σ11, . . . , σkµk
with

(1− ε−i )κi ≤
µi∑
j=1

σij ≤ (1 + ε+i )κi (i ∈ {1, . . . , k})

and
k∑
i=1

µi∑
j=1

σij = n, and a partition P = (C11, . . . , C1µ1 ,. . . ,Ck1, . . . , Ckµk) of V with

|Cij | = σij and cij , vij ∈ Cij for i ∈ {1, . . . , k} and j ∈ {1, . . . , µi}, such that

val(P, c11, . . . , ckµk , σ11, . . . , σkµk) :=

k∑
i=1

µi∑
j=1

σij
∑
v∈Cij

wE({v, cij})

is minimal among all such partitions, choices of c11, . . . , ckµk , and choices of σ11, . . . , σkµk .
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Indeed, SGP can still be solved in polynomial time.

Lemma 5.10

For fixed µ, all feasible combinations of cluster sizes σ11, ..., σkµk in SGP can be detected
in polynomial time.

Proof. We trivially have 1 ≤ σij ≤ n, so nµ is an upper bound on the number of

feasible combinations of cluster sizes.

The subcluster sizes σ11, ..., σkµk are feasible if and only if
k∑
i=1

µi∑
j=1

σij = n and

(1 − ε−i )κi ≤
µi∑
j=1

σij ≤ (1 + ε+i )κi for i ∈ {1, . . . , k}. Hence, feasibility can be

decided by means of 2k + 1 arithmetic tests per combination.

Theorem 5.11

SGP is solvable in polynomial time for fixed µ.

Proof. By Lemma 5.10, there is a polynomial number of feasible subcluster sizes

σ11, ..., σkµk . Also, there are at most
(
n
µ

)
different combinations of subcluster

center choices. Thus, it suffices to solve a polynomial number of problems where

the σij and cij are fixed, and we proceed by showing that each of these problems

can be solved in polynomial time. Of course, each problem with fixed σij and cij
can be formulated as an ILP.

min

k∑
i=1

µi∑
j=1

σij

n∑
l=1

xijlwE({vl, cij})

n∑
l=1

xijl = σij (i ≤ k, j ≤ µi)

k∑
i=1

µi∑
j=1

xijl = 1 (l ≤ n)

xijl = 1 (i ≤ k, j ≤ µi, l ≤ n s.t. vij = vl)

xijl = 1 (i ≤ k, j ≤ µi, l ≤ n s.t. cij = vl)

xijl ∈ {0, 1} (i ≤ k, j ≤ µi, l ≤ n)

Let A denote the coefficient matrix, so that the ILP reads

min cTx s.t. Ax = b, x ∈ {0, 1}µn.
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We show that A is totally unimodular, so that we know that it suffices to solve

its LP-relaxation, where the 0, 1-condition is replaced by 0 ≤ x (see e.g. [Sch98]).

Due to the constraints of type
k∑
i=1

µi∑
j=1

xijl = 1 and due to xijl ≥ 0, the constraint

x ≤ 1 is redundant and can be omitted.

The matrix A = (AT1 , A
T
2 , A

T
3 )T decomposes into three parts. A1 fixes the size of

each Cij to σij , A2 forces all vertices to be assigned to exactly one cluster and A3

fixes some individual vertices to a corresponding cluster.

A matrix M is totally unimodular if and only if
(
M
E

)
is totally unimodular, where

E denotes the unit matrix of appropriate size. SinceA3 is just a subset of the rows

of the unit matrix, it thus suffices to only consider A′ :=
(
A1

A2

)
. In the 0, 1-matrix

A′, each column has exactly two 1-entries, one in A1 and one in A2. Thus A1 and

A2 provide a partition of the rows of A′ satisfying a well-known criterion [HT56]

for total unimodularity of A′.

We get the following direct corollary.

Corollary 5.12

When restricted to instances with µ =
k∑
i=1

µi fixed and uniform vertex-weights, CSC is

solvable in polynomial time.

Informally, in the case of uniform-weight vertices, i.e. lots of equal size, and a

fixed number of center vertices, i.e. fixed lots, CSC can be solved in polynomial

time. Still, the running time of the algorithm described in the proof of Theorem

5.11 is prohibitive for all relevant real-world problem sizes. Additionally, the

assumption of having lots of equal size is much too restrictive for an application

in practice.

However, the above results show the way to a practical algorithm for the consol-

idation of farmland described in the general CSC. The main idea is a trade-off

of running time and feasibility of the redistribution: The relative tolerances ε±i
of the farmers’ original attributes provide only soft constraints. In practice, it

is enough to only aim for near-feasibility of our solution. Knowing this, we

will obtain a fast algorithm that performs very well in practice and achieves

all relevant goals in the consolidation of farmland, namely a reduction of the

driving distances for the farmers, and a reduction of the cost of cultivation of

lots by creating larger connected lot components.

We begin with some ‘preprocessing’ to simplify the underlying ILP. The con-

ditions xijl = 1 or respectively xij′l = 1 both mean that the vertex vl belongs

to Cij or respectively Cij′ . However, Cij and Cij′ are subclusters of the same
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cluster group Ci. The balancing constraints do not distinguish in which of the

two subclusters vl lies. An optimal solution with respect to our objective function

only considers its distance to the closest of the centers cij with j ∈ {1, ..., µi}.
This implies that our problem can be modeled by only considering these lowest

edge-weights to some cluster center in Ci. Thus it suffices to only use two-

index decision variables xil ∈ {0, 1} with i ∈ {1, . . . , k}, l ∈ {1, . . . , n} that

identify whether vertex vl belongs to cluster Ci. The new weight function

w′ : (V × {1, ..., k})→ R+ then is defined by

w′(vl, i) := min
j∈{1,...,µi}

wE({cij , vl}).

This preprocessing can be performed in O(n2) time, as it suffices to consider the

distance wE(vi, vj) only once for i 6= j; i, j ∈ {1, . . . , n}. We obtain the following

ILP.

min

k∑
i=1

n∑
l=1

xilw
′(vl, i)

(1− ε−i ) ◦ κi ≤
n∑
l=1

xilwV (vl) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

k∑
i=1

xil = 1 (l ≤ n)

xil = 1 (i ≤ k, l ≤ n s.t. cij = vl)

xil ∈ {0, 1} (i ≤ k, l ≤ n)

In this model, the goal of minimizing driving distances is represented directly

in the objective function. Since the distances between the fixed (center) lots of a

farmer are unavoidable and not subject to any optimization, we minimize the

distances of the farmers’ free lots to their closest center lots. Our second goal of

generating a low number of connected lot components for each farmer is only

represented indirectly by this objective function. While it is obvious that looking

for low driving distances will usually lead to many adjacent lots being assigned

to the same farmer, we want to reward such assignments further. To do so, we

use some instance-level constraints and modified lot distances in our hierarchical

approach.
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Suppose there is a center lot vl that is connected to a lot vl′ . Additionally, there

is a lot vl′′ of size equal to that of vl′ , not connected to vl, e.g. on the other side

of a road, but with slightly smaller geographical distance to vl. Of course, we

would then like to assign lot vl′ to the cultivator of vl with priority. Above model

would prefer vl′′ over vl′ . We modify our model by introducing distance weights

that prefer lots in the same connected lot group.

Another, rather extreme, idea is to only assign connected lot groups to farmers as

a whole. This certainly reduces the problem size dramatically. However, it means

that if one of the lots of the connected lot group is fixed by a farmer, the whole

group has to be assigned to that farmer. Naturally, there is a conflict whenever

two farmers fix lots in the same connected lot group that can only be resolved by

somehow breaking up the respective group. But even if no such conflicts occur,

such a radical approach generally leads to a prohibitive imbalance.

In practice, we obtain the best results from combining the two ideas above: We

reward the assignment of lots belonging to the connected lot group of a center

lot of a farmer to this farmer by a distance factor less than 1. In addition, we try

to assign connected lots to single farmers. However, rather than working with

complete connected lot groups, we split them into several connected components

that can be assigned individually. In particular, each fixed lot becomes an indi-

vidual component to avoid the ’hard’ conflicts mentioned above. Additionally,

components consisting of inclusion-maximal sets of connected non-fixed lots are

created. We then always assign all lots of a component to the same farmer. Note

that this is the coarsest possible partition of the lots into such components, and

that it is not difficult to realize this partition in a more sophisticated way. Other

ways of creating these components have different effects on our optimization

goals. Algorithm 14 describes the steps taken in pseudo-code.

We denoted Algorithm 14 using the same variables as before. However, except

for one, each variable referring to the same farmer and the same connected lot

component is redundant. In practical computations, these are left out.

For typical smaller problem sizes, the reduced ILP has about 5000 decision

variables, and can be solved very quickly to optimality with the aid of a state of

the art branch-and-cut approach.

Of course, in its basic form, Algorithm 14 may still create a too large deviation in

the balancing constraints. We now turn to this issue in more detail. Additionally,

we address the issue of how to proceed if the instances are too large to solve the

ILP directly.



5 THE CONSOLIDATION OF FARMLAND 175

Input : GIS data for the lots of an agricultural region, original distribution
of lots to cultivators, partition into connected lot groups

Output :Near-feasible ’optimal’ redistribution of lots

Preprocess w′:

• Compute the Euclidean distances between the lot coordinates

• Scale distances that belong to the same connected lot group by a factor
less than one, yielding the distance function wE

• Set w′(vl, i) := min
j∈{1,...,µi}

wE({cij , vl}) for all l ≤ n, i ≤ k

Determine the partition C = {comp1, . . . , compu} of lots into connected lot
components:

• Fixed lots create a component on their own

• Inclusion-maximal sets of non-fixed connected lots form a component

Solve the following ILP:

min
k∑
i=1

n∑
l=1

xilw
′(vl, i)

(1− ε−i ) ◦ κi ≤
n∑
l=1

xilwV (vl) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

k∑
i=1

xil = 1 (l ≤ n)

xil = 1 (i ≤ k, l ≤ n s.t. cij = vl)

xil = xil′ (l, l′, c ≤ u s.t. vl, vl′ ∈ compc)
xil ∈ {0, 1} (i ≤ k, l ≤ n)

return partition P associated with the lowest objective function value;
Algorithm 14: Consolidation of Farmland (ILP)
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A useful approach for the latter problem is to work with the LP-relaxation. In

the reduced formulation where the decision variables yic signify the assignment

of connected lot components and the corresponding distances are

w′′(compc, i) :=
∑

vl∈compc
w′(vl, i),

the LP-relaxation takes the following form:

min
k∑
i=1

u∑
c=1

yicw
′′(compc, i)

(1− ε−i ) ◦ κi ≤
u∑
c=1

yicwV (compc) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

k∑
i=1

yic = 1 (c ≤ u)

yic = 1 (i ≤ k, c ≤ u, l ≤ n

s.t. cij = vl ∈ compc)

yic ≥ 0 (i ≤ k, c ≤ u)

Using this relaxation, we will in general obtain only fractional solutions. Frac-

tional variables 0 < yic < 1, respectively 0 < xil < 1 signify assignments of

fractional parts of lots to farmers. In practice, it may be ok to split the cultivation

rights of some lots, and drawing new lot boundaries, yet this is in conflict with

our purely combinatorial approach to keep the original lot structure chosen as a

foundation of our algorithm.

The good news is that we can keep the number of such fractional assignments so

small that they can be handled in a suitable postprocessing step [Bri03].

Lemma 5.13

Let y∗ be an optimal vertex of the polytope P of feasible points of the LP-relaxation. Then
at most 2k connected lot components are not assigned integrally by y∗.

Proof. In each vertex of P at least k · u constraints are active. Of course, the u

constraints
k∑
i=1

yic = 1 are active, by definition. Also, each fixation constraint

yi′c = 1 for some i′ ≤ k already implies
k∑
i=1

yic = 1.



5 THE CONSOLIDATION OF FARMLAND 177

Further at most half of the 4k componentwise constraints

(1− ε−i ) ◦ κi ≤
u∑
c=1

yicwV (compc),

u∑
c=1

yicwV (compc) ≤ (1 + ε+i ) ◦ κi,

can be active if (ε+i )j + (ε−i )j > 0 for i ≤ k and j ≤ 2, where (ε±i )j denotes the

j-th component of ε±i . Otherwise, for each i and j with (ε±i )j = 0, one of the

constraints is redundant.

All other active constraints are of the type yic ≥ 0. This implies that at most

u+ 2k of the yic are not 0 since otherwise the number of active constraints is less

than k · u.

Now, let us show that at most 4k of them are less than 1, hence fractional. For this,

let s denote the number of fractional assignments i.e. 0 < yic < 1, and let t be the

number of assignments yic = 1. Suppose that s > 4k. Since it takes at least 2 of

the s fractional variables to satisfy an equality
k∑
i=1

yic = 1 that involves a fractional

variable we have t ≥ u− s
2 . Hence u+ 2k ≥ s+ t ≥ s+ u− s

2 = u+ s
2 > u+ 2k,

a contradiction. So there are at most 4k fractional decision variable assignments

yic, and thus at most 2k connected lot components not assigned uniquely to a

farmer.

In general, rounding fractional variables optimally to integrality is an NP-hard

task. Since we have only very few fractionally assigned lots, and since we

are content with a near-feasible solution, we can use the following conceptual

strategy. We solve the LP-relaxation and fix all integral lot assignments. Then we

distribute the fractionally assigned lots by solving a suitable ILP to optimality

(or by means of some heuristic). The design of the method used depends on

the goals we want to optimize. Figure 60 shows the connected lot components

that are assigned fractionally in one of the LP-relaxations we calculated for the

agricultural region shown in Figure 56.

An example for a very simple heuristic is based on the relative loss of value for

each farmer in the partial assignment given by the integral components of the

solution produced by the LP-relaxation. Successively, a farmer with the greatest

relative loss then gets a lot of the not-yet assigned ones that puts his value as

close as possible to his original value.

Algorithm 15 sums up the steps taken. As we only solve a single LP, and then

either solve a very small ILP or apply a heuristic to a very low number of lots,

this algorithm runs very quickly, in a couple of seconds for typical input sizes.
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Input : GIS data for the lots of an agricultural region, original distribution
of lots to cultivators, partition into connected lot groups

Output :Near-feasible ’optimal’ redistribution of lots

Preprocess w′:

• Compute the Euclidean distances between the lot coordinates

• Scale distances that belong to the same connected lot group by a factor
less than one, yielding the distance function wE

• Set w′(vl, i) := min
j∈{1,...,µi}

wE({cij , vl}) for all l ≤ n, i ≤ k

Determine the partition C = {comp1, . . . , compu} of lots into connected lot
components:

• Fixed lots create a component on their own

• Inclusion-maximal sets of non-fixed connected lots form a component

Solve the following LP:

min

k∑
i=1

u∑
c=1

yicw
′′(compc, i)

(1− ε−i ) ◦ κi ≤
u∑
c=1

yicwV (compc) ≤ (1 + ε+i ) ◦ κi (i ≤ k)

k∑
i=1

yic = 1 (c ≤ u)

yic = 1 (i ≤ k, c ≤ u, l ≤ n
s.t. cij = vl ∈ compc)

yic ≥ 0 (i ≤ k, c ≤ u)

Let P be the partition associated with the lowest objective function value;
Fix all integrally assigned lot components in P (for a partition P ′);
Distribute the remaining lot components assigned fractionally in P using
some heuristic to derive P ′ and return P ′;

Algorithm 15: Consolidation of Farmland (Relaxed)
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Figure 60: Connected lot components assigned fractionally by a LP-relaxation.

In practice, it returns a farmland redistribution that keeps farmer values about

the same, but typically yields a considerable reduction in driving and cultivation

cost. We will perform an economic evaluation of some empirical results towards

the end of this chapter.

5.6 A k-means Approach

In this section, we discuss an approach to the clustering problem explained in

Sections 5.4 and 5.5 using an adaption of the k-means algorithm [Mac67], see

Algorithm 1.

The fundamental idea of each iteration of the k-means algorithm is to assign

the lots closest to a virtual center to this center, and by that to the same cluster.

Intuitively it is clear that, in our application, this will lead to clusterings where

lots close to each other are likely to be put in the same cluster. By this, we derive

a clustering which will be favorable both with respect to the driving distances of

the farmers as well as the creation of large lot components for the farmers. Due

to this, k-means is a valid approach to our real-world problem.

Note that k-means is a deterministic algorithm, but the output clustering de-

pends on the starting centers chosen. Instead of doing so randomly, we choose

one starting center for each center lot, with the geometric coordinates of the
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center lot. In the first iteration of the algorithm, we thus directly measure the

distances of the lots to these center lots. By this, we emphasize that we want to

integrate the center lots into big lot components. Additionally, like in our integer

programming approach, we further emphasize our desire for large connected lot

components by assigning inclusion-maximal sets of non-fixed connected lots as

a whole. Note that we cannot apply a scaling factor to the distances of the lot

components in a lot group in the same way as in the 0, 1-integer approach.

Note further that in a basic version (Algorithm 1, Algorithm 2), k-means does

not consider any size constraints on the clusters. To do so, instead of simply cal-

culating which center a lot component is closest to and performing the canonical

association, we now iteratively add the lot components to the clusters. First, we

order the lot components descendingly by their value. Before a lot component is

added to a cluster, we then perform multiple layers of checks as follows.

We start by assigning the fixed center lots to the respective farmers. We track the

total ’current possession’ of all farmers with respect to the different attributes

of the lots that were assigned to them. When looking for the farmer to assign

a lot component to, we at first only consider all farmers whose current total lot

attributes neither sum up to their lower accepted bound of total value nor to

their lower accepted bound of size yet. Additionally, we only consider those

farmers for which the total lot value and size does not rise above any of their

upper accepted bounds of deviation if we assign the lot component to them. We

then assign the lot component to the closest center of such a farmer.

After distributing most of the lot components, we cannot guarantee that there is

such a farmer anymore. We first drop the restriction that we do not want a farmer

to get significantly more lot value or size than he originally had, and choose the

one whose upper deviation in an attribute is smallest after the assignment. If we

still find no farmer we can assign the current lot component to, this means that

all farmers are above the lower deviation bounds for at least one lot attribute.

We then try to assign the lot component to a farmer who already has ’enough’

lots, but whose upper possession deviation in an attribute is smallest after

the assignment. Note that the farmer might still have less than his original

possession with respect to each attribute after the assignment, so that these types

of assignments still may yield feasible redistributions of the lots.

On the other hand, we cannot guarantee the feasibility of the resulting clustering.

The assignment of whole lot components together may imply that there actually

is no feasible redistribution. Additionally, another problem arises if the bonity
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of the lots varies greatly: Recall that the value of a lot is defined as its size

times its bonity measure. If the bonity of the lots differs a lot, the two measures

for size and value are not directly (linearly) correlated to another. Then many

assignments will be feasible with respect to only one of the two measures, while

being infeasible with respect to the other. Still, problems will only arise during

the assignment of the last few lots at the end of the process. Recall that we

ordered the lot components by descending value, so, especially with respect to

this measure, the last lots to be assigned are rather small. This fact, together

with the choices of the assignment restrictions and the order in which they are

dropped lead to near-feasibility with respect to the soft bounds of deviation in

practice. Algorithm 16 sums up the steps taken in pseudo-code.

We investigate the performance of this approach with an example in the next

section, and compare it with our 0, 1-integer approach.

5.7 Empirical Results

Let us now give an impression of the practical performance of our two algorithms.

While we have performed our computations for many real-world data sets and

have worked together with farmers on successfully implementing our approach

in practice, we will here restrict ourselves to artificially altered input to keep

data privacy. The example region depicted in Figure 56 does, however, represent

a situation that is typical for many Bavarian communities. It is further small

enough to be pictographically intelligible in the available resolution. In this

example, we have 7 farmers cultivating a total of 651 lots, which are scattered

over a large area.

We use (rather restrictive) 3% as the accepted soft bounds of deviation for each

farmer in our calculations. This results in our solutions ’trying’ to be very

close to the original possession of the farmers. By this approach, even if we

have only near-feasible solutions, we will have deviations that, in practice,

generally will be accepted by the farmers. In the following, we will show a

number of lot distributions calculated and investigate the feasibility or near-

feasibility of our solutions. Further, we will estimate the economic advantages

of our redistributions in Table 1 and 2 towards the end of this section. The cost

measures in the tables are derived according to the ideas described in Section

5.3.

We start by applying our two algorithms with 32% fixed lots. We begin with such

a high percentage for various reasons. First, we want to indicate how the quality
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Input : GIS data for the lots of an agricultural region, original distribution
of lots to cultivators, partition into connected lot groups

Output :Near-feasible ’optimal’ redistribution of lots

Choose µ centers c11, . . . , ckµk as the coordinates of the center lots of the
farmers;
Order the free lot components by descending value to derive
C = {comp1, . . . , compu} and calculate their representing coordinates in R2

as an arithmetic mean of the lots in the component;
while Lot component assignment changed during the last iteration and a fixed
number of iterations is not reached yet do

Define a vector σ := (σT1 , . . . , σ
T
k )T ∈ R2·k of current size σi1 and value

σi2 of each farmer as the sum of sizes and values of their fixed lots;
for 1 ≤ c ≤ u do

Calculate distance w′(compc, cij) of compc to each center;
Find the farmer Ci with the closest center cij with respect to
w′(compc, cij), with Ci satisfying σi ≤ (1− ε−i ) ◦ κi and
σi + wv(compc) ≤ (1 + ε+i ) ◦ κi;
if such a farmer Ci exists then

Assign compc to the j-th cluster of Ci;
σi = σi + wv(compc);

end
else

Find the farmer Ci satisfying σi ≤ (1− ε−i ) ◦ κi and for which
σi + wv(compc) ≤ (1 + ε) ◦ κi holds for minimal ε;
if such a farmer Ci exists then

Assign compc to the j-th cluster of Ci, if w′(compc, cij) is
minimal for Ci;
σi = σi + wv(compc);

end
else

Find the farmer Ci for which σi + wv(compc) ≤ (1 + ε) ◦ κi
holds for minimal ε;
Assign compc to the j-th cluster of Ci, if w′(compc, cij) is
minimal for Ci ;
σi = σi + wv(compc);

end
end

end
Recalculate the centers c11, . . . , ckµk as arithmetic means of the lots
associated with the respective clusters;

end
return redistribution of lots according to the assignment of the lots to the
farmers’ centers;

Algorithm 16: Consolidation of Farmland (k-means)
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of the reassignment depends on the degree of freedom one allows. Second, we

want to show that even with only little flexibility, one can already obtain some

improvement in the cost structure. This is an important feature since, in practice,

farmers at first tend to fix many lots, while later, when they are confident in the

fairness of the method and its performance, many additional lots will be subject

to redistribution.

Figure 61 a) shows the redistribution of lots returned by our 0, 1-integer approach.

Note that all farmers participate in the redistribution process. Of course, with

such a high number of fixations there is no wide margin for improvement. Also,

with many of his lots fixed, a farmer has a large number of center lots. These

create many small clusters scattered over the area. The same effect is visible in

the resulting distribution of our k-means approach, see Figure 61 b). But while

the lots still look pretty scattered, both Table 1 and Table 2 already show some

significant economic improvement over the original assignment.

A similar, slightly better effect is recognizable if we only have 24% fixed lots, see

Figure 62. The lots already are a bit less scattered, and the economic measures

indicate an even greater improvement than before.

Figure 63 shows redistributions for 16% fixed lots, and Figure 64 redistributions

for 8% fixed lots. Even on a first visual impression, the lots look substantially

less scattered than in the version with 32% fixed lots. Tables 1 and 2 confirm this

impression, which is not surprising due to the increased number of ’tradeable’

lots.

Finally, Figure 65 shows two calculated redistributions of lots for 4% fixed lots,

and Figure 66 shows the calculated redistributions where only a single lot is

fixed for each farmer. The pictographical impression and economic measures

improve even further.

Let us now relate our results for our two algorithms. Especially in the examples

with a low percentage of fixations, the k-means algorithm yields redistributions

of lots that leave a slightly better visual impression than the ones of our 0, 1-

integer approach. This is due to two reasons: First, the main idea of k-means is to

associate fields with centers that are close to them in the Euclidean plane. Doing

so directly creates large areas of lots assigned to single farmers, and these are the

ones that intuitively induce the good visual impression. Second, our k-means

approach is significantly worse with respect to the deviations of farmer size than

our 0, 1-integer approach, thus ’allowing’ itself better-looking solutions.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 61: The redistribution of lots returned by our two algorithms for 32%
fixed lots. Fixed lots are shaded.

.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 62: The redistribution of lots returned by our two algorithms for 24%
fixed lots. Fixed lots are shaded.

.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 63: The redistribution of lots returned by our two algorithms for 16%
fixed lots. Fixed lots are shaded.

.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 64: The redistribution of lots returned by our two algorithms for 8% fixed
lots. Fixed lots are shaded.

.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 65: The redistribution of lots returned by our two algorithms for 4% fixed
lots. Fixed lots are shaded.

.
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(a) 0, 1-Integer Program

(b) Constrained k-means

Figure 66: The redistribution of lots returned by our two algorithms for only one
single fixed lot per farmer (about 1%). Fixed lots are shaded.

.
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Note that the quality of our two algorithms with respect to the feasibility or

near-feasibility of the solutions is not correlated to the percentage of fixations. In

our 0, 1-integer model, it only depends on the number of farmers (see Lemma

5.13). Similarly, our k-means heuristic does not consider this information either.

Let us take a look at the farmer value deviations of the solutions of our algorithms,

not distinguishing the different fixations. In the six examples calculated, our 0, 1-

integer approach yields a feasible solution two times. The worst-case example

has a deviation of −5, 2% for a very small farmer’s value. Typically, deviations

are less than −4%, and (in five out of the six examples) at most a single farmer is

below the lower threshold of −3% with respect to his total size or value in each

example. More often than not, these numbers are accompanied by an increase in

the respective other measure for the farmer’s possession. These are very good

numbers with respect to an application in practice. Other data sets confirm the

impression gained that the 0, 1-integer approach returns redistributions of the

lots ’good enough’ (with respect to the near-feasibility) to be applied in practice.

The deviations of the k-means approach are somewhat worse. Out of the six

calculations, no redistribution satisfies hard feasibility with respect to our soft

bounds of deviation. Between one and three farmers usually are below the

lower threshold of deviation, with worst-case deviations being around −9%.

Again, more often than not, farmers that have a loss of total lot value higher than

the accepted deviation gained in total lot size. Performing our heuristic only

considering a single attribute (like the value) yields significantly better results

with respect to feasibility. Still, this approach has to be improved on with respect

to the feasibility of the returned redistributions of lots before an application in

practice is realistic.

The most important aspect of quality of our redistribution next to the realiz-

ability of our solutions in practice is the advantage we obtain with respect to

the economic measures. Table 1 lists some of the measures for our 0, 1-integer

solutions, Table 2 lists them for the k-means approach.

The columns ‘total cost’, ‘cultivation cost’ and ‘driving cost’ list the percentage of

reduction in the respective cost measure (approximated like described in section

5.3) from our original lot assignment. The column ‘number of lot components’

contains the percentage of reduction in the total number of connected lot compo-

nents of all farmers. For the entries in the column titled ‘possible reduction in lot

components’, we first calculate the minimal number of lot components that our

region must contain due to its structure. It depends on the number of connected
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fixed total cultivation driving number of poss. reduction

lots cost cost cost lot components in lot comp.

32% −8, 76% −8, 06% −27, 07% −32, 08% 86, 31%

24% −9, 73% −8, 95% −30, 25% −35, 40% 92, 49%

16% −10, 84% −9, 83% −37, 15% −38, 50% 95, 08%

8% −11, 53% −10, 26% −44, 50% −40, 27% 96, 30%

4% −11, 65% −10, 27% −47, 81% −40, 27% 96, 30%

1% −12, 26% −10, 77% −50, 91% −42, 04% 100%

Table 1: Measures for the quality of the LP-method redistributions for different
percentages of lot fixations. (See Algorithm 15.)

fixed total cultivation driving number of poss. reduction

lots cost cost cost lot components in lot comp.

32% −8, 34% −7, 72% −24, 45% −29, 65% 79, 76%

24% −8, 87% −8, 09% −29, 18% −30, 97% 80, 92%

16% −9, 00% −9, 01% −34, 87% −31, 20% 77, 05%

8% −10, 27% −9, 05% −42, 14% −35, 40% 84, 66%

4% −11, 09% −9, 76% −45, 76% −38, 27% 91, 53%

1% −12, 12% −10, 58% −52, 31% −41, 37% 98, 43%

Table 2: Measures for the quality of the k-means redistributions for different
percentages of lot fixations. (See Algorithm 16.)

lot groups and on the chosen fixations. Then we compare the reduction in the

number of lot components we achieve to the (theoretically) maximally possible

reduction to this lower bound.

Note how lowering the number of fixed lots affects the quality of our solution

positively. Note also that even with the highest degree of fixations, we already

achieve significant improvements over the original assignment. Note further

that the 0, 1-integer results are generally slightly better than the ones of the

(sometimes pictographically better) k-means approach. We observed the same

effect for different agricultural regions. The most significant differences are in

the number of connected lot components created. For the biggest part, this is

due to the advantage of the 0, 1-integer approach being able to assign a scaling

factor to decrease the distance of lot components in the same lot group, which

we cannot do in the k-means approach.
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It is clear why our 0, 1-integer approach does so well with respect to our economic

measures, recalling that we transferred our economic measuring ideas directly

to derive the algorithmic model. Interestingly, the numbers favor the 0, 1-integer

results over the k-means results, in contrast to the first visual impression gained

and to the fact that it performs better with respect to the farmers’ size and value

deviations. As an example, reconsider the lot distribution calculated by the

k-means approach in Figure 66 b). While most of a farmer’s lots are very close to

each other, some of the fixed center lots lie very far from the rest of the farmer’s

lots. During the k-means iterations, the coordinates of the centers moved further

and further away from the coordinates of the center lots.

The running time of our algorithms for these examples was less than a couple of

seconds on a typical laptop. Similar results were obtained for a large number

of practical instances. Generally, the 0, 1-integer approach yields lower farmer

size and value deviations and better economic measures, and as such, it is our

approach of choice in practice.

With a view towards future applications of even larger problem sizes, let us point

out again that the proposed algorithm decomposes into a large LP and (e.g.)

a small subsequent ILP. The LP can be solved efficiently within the standard

running time of state-of-the-art LP-algorithms and is hence capable of handling

instances of millions of variables and restrictions. As to the ILP, recall that only 2k

lot components are fractionally assigned by the LP, where k denotes the number

of participating farmers. Hence the ILP is small and can also be solved quickly

for all relevant practical problem sizes.

5.8 Summary and Outlook

In this chapter, we investigated the economic cost structure of agricultural re-

gions. Based on this model, we developed two algorithms for the consolidation

of farmland based on a combinatorial redistribution of the lots in a fixed, exist-

ing lot structure. The main algorithm of the chapter is a 0, 1-integer approach,

where we use the power of relaxation and heuristic rounding to obtain near-

feasible solutions of significantly better economic measures, ready to be applied

in practice.

The main open questions concerning this approach center around the rounding

used. Generally, rounding a fractional solution to a ’good’ integer solution is

a NP-hard task. It remains to investigate whether the special structure of our

problem allows us to do so efficiently. A possible first step might be to consider
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whether defixing some of the lots assigned fractionally by the LP step allows us

to achieve better results with our rounding routine. Near-feasibility instead of

feasibility most often appears when the farmers involved in the consolidation

process have lots of vastly different total value. Especially the smallest farmers

are prone to lose or gain significantly more than their desired lower or upper

bound of deviation. Due to this, we are working on a multi-step approach, where

we first calculate a redistribution of lots for the farmers of low total value. Only

then we fix these farmers’ lots and continue with the farmers of higher total

value.

The second algorithm of this chapter is a sophisticated adaption of the classical k-

means algorithm. While the results of this second algorithm are pictographically

impressing, problems with farmer size and value deviations and worse economic

measures make it less useful in practice than our 0, 1-integer approach. Open

questions include whether it is possible to adapt the heuristic constraints of the

k-means approach to get closer to feasible redistributions of the lots and to obtain

better economic measures for the redistributions.

Land consolidation is a wide field, and is not only of interest in the context of the

consolidation of farmland, but also in the forest and similar areas. Different types

of lots imply different types of constraints. With our abstract underlying model,

we are investigating its applicability to some related fields. Additionally, we

consider an application of our algorithmic approach to other clustering problems

outside of the field of consolidation, like to the scheduling of room planning in a

facility. All of these ideas are accompanied by extensions of the Agriopt software

tool which unifies and visualizes our algorithmic results.
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Notation and Symbols

Whenever we want to emphasize that we define a data structure A to be equiva-

lent to some B, we write A := B. When this fact is clear, we just use the ’normal’

notation A = B.

When considering an index set I := {i1, . . . , ip}, for the sake of simplicity, we use

i0 = ip and ip+1 = i1. Additionally, we denote an index range of i ∈ {1, . . . , t}
as i ≤ t, and i ∈ {t, . . . , t′} as t ≤ i ≤ t′ for a simple-to-read description of the

constraints of (linear) programs.

The following paragraphs contain an informal (non-exhaustive) list of the most

important symbols used in this thesis. We start with general ones, and then list

the symbols according to the chapter in which they are defined. Note that

Chapters 3 and 4 use a lot of the symbols defined in Chapter 2, while Chapter 5

mostly is a stand-alone chapter with respect to the notation used.

General Symbols

N the set of natural numbers

R, R+ the set of real numbers, respectively strictly pos-

itive real numbers

[a, b] the closed interval of real numbers between a

and b

d ∈ N the dimension of a vector space

Rd the d-dimensional Euclidean vector space over

the real numbers

v a vector in a vector space

‖v‖ the Euclidean norm of v

δ(v, v′) the Euclidean distance of v and v′

Ha,β the hyperplane of vectors x ∈ Rd with aTx = β

for a ∈ Rd and β ∈ R
H≤a,β, H

≥
a,β the halfspace of vectors x ∈ Rd with aTx ≤ β,

respectively aTx ≥ β
H<
a,β, H

>
a,β the strict halfspace of vectors x ∈ Rd with aTx <

β, respectively aTx > β

N(v) the cone of outer normals for v with respect to

some geometric body
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int, bd the interior, respectively boundary of a geomet-

ric body

relint, relbd the relative interior, respectively relative bound-

ary of a geometric body

dim the dimension of a geometric body

span the span of a set of vectors

G = (V,E) a graph with vertex set V and edge set E

CY a cycle in a graph

O(·) the Landau-symbol

const a constant value in R

Symbols of Chapter 2

n ∈ N the number of data vectors

X = {x1, . . . , xn} a set of (geometric) data vectors in Rd

k the number of clusters

C = (C1, . . . , Ck) a k-clustering of X

Ci the i-th cluster of C

|Ci| the size, i.e. the number of items of Ci
|C| = (|C1|, . . . , |Ck|) the shape of C

κ1, . . . , κk the prescribed-number of items in clusters

C1, . . . , Ck

PSC C a prescribed-shape clustering C, i.e. a

k-clustering of prescribed shape (κ1, . . . , κk)

v = v(C) the gravity vector of clustering C

C the set of gravity vectors of PSCs

C = C(X, k, κ1, . . . , κk)
Q the gravity polytope Q = Q(X, k, κ1, . . . , κk)

a = (aT1 , . . . , a
T
k )T a vector in Rd·k with ai ∈ Rd for all i ∈ {1, . . . , k}

aκ = ( a1κ1
T , . . . , akκk

T )T a vector in Rd·k with ai ∈ Rd for all i ∈ {1, . . . , k}
|I| the number of indices of an index set I

CE a cyclical exchange CE = (xi1 , . . . , xit) for an

index set I = {i1, . . . , it} and xij ∈ Cij for all

ij ∈ I
CE = (CE1, . . . , CEt) a set of cyclical exchanges

a⊥b symbolic notation of two vectors a, b being or-

thogonal
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a‖b symbolic notation of two vectors a, b being

collinear

H1‖H2 symbolic notation of two hyperplanes H1, H2

being parallel to each other, i.e. having collinear

normal vectors

H a k-cell arrangement

aij the vector aij = aj −ai or aij =
aj
κj
− ai

κi
, depend-

ing on a construction from a or aκ
γij the (right-hand side)-value of a hyperplane in

direction aij separating clusters Ci and Cj
Hij the hyperplane Haij ,γij

P = (P1, . . . , Pk) a cell decomposition

Pi the i-th cell of P
LSA a least-squares assignment ofX to awith respect

to κ1, . . . , κk
(a,W )-power diagram a power diagram for vector of sites a and set of

weights W

W a set of weights W = {wi : i ∈ {1, . . . , k}}

Symbols of Chapter 3

x a data vector x = (ξ1, . . . , ξd)
T ∈ Rd or an

’incomplete’ data vector with only ξ1, . . . , ξd−1

known

ξd the d-th coefficient predicted for an incomplete

data vector x

lowd,upd a tight lower bound, respectively upper bound

to ξd for all x ∈ X
L the line segment L = L(x) =

{(ξ1, . . . , ξd−1, lowd) +λ(0, . . . , 0,upd− lowd)
T :

λ ∈ [0, 1]} for an incomplete x

PP the partition polytope

PP = PP (X, k, κ1, . . . , κk)
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Symbols of Chapter 4

X = {x1, . . . , xn} a set of (non-geometric) items

Kk,n the complete bipartite graph Kk,n = Kk,n(C,X)

of vertex sets C = (c1, . . . , ck), X = (x1, . . . , xn)

E,E′ the assignments in Kk,n corresponding to clus-

terings C,C ′

v, v′ the vertices in PP corresponding to clusterings

C,C ′

E∆E′ the symmetric differenceE∆E′ = (E∪E′)\(E′∩
E) = (E\E′) ∪ (E′\E) of assignments E,E′

i1, i2 the indices of the clusters of biggest, respectively

second biggest size

CDG(C,C ′) the cluster difference graph corresponding to

clusterings C and C ′

CDG(E,E′), CDG(v, v′) the equivalent of CDG(C,C ′) with v and E as-

sociated with C, and v′ and E′ associated with

C ′

M a set of vertices to be covered by a set of vertex-

disjoint cycles

CY a set of cycles in a graph

f, f ′, f ′′ a maximal flow in a network or a cycle covering

in a graph

deg(v) the degree of a vertex v in a graph

deg|E(v) the degree of a vertex v with respect to edge set

E

deg−(v), deg+(v) the indegree, respectively outdegree of a vertex

v in a digraph

Dmax the maximal indegree Dmax = max
v∈V

deg−(v) of a

vertex in a graph

ηi the number of items x with x ∈ Ci, but x /∈ C ′i
for some clustering C ′ = (C ′1, . . . , C

′
k) 6= C

Ci → Cj a movement of an item x ∈ Ci to cluster Cj
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Symbols of Chapter 5

n the number of lots

v1, . . . , vn reference points for lots in the Euclidean plane

k the number of farmers

d the number of attributes of lots

wV (vi) the attribute vector wV (vi) ∈ (R+)d for the i-th

lot

κi the vector of total attributes of the i-th farmer’s

original lots

ε−i , ε
+
i lower bounds ε−i ∈ (R+)d, respectively upper

bounds ε+i ∈ (R+)d to the allowed relative devi-

ation from the i-th farmers original possession

with respect to wV
wE(vi, vj) the distance of the i-th and j-th lot

µi the number of center lots of the i-th farmer

µ the total number of center lots µ =
k∑
i=1

µi

P a partition (or clustering) P = (C11, . . . , C1µ1 ,

. . . , Ck1, . . . , Ckµk) of the lots

Cij the j-th cluster of the i-th farmer

cij j-th center lot of the i-th farmer

Ci the cluster group of the i-th farmer

Ci =
⋃
j∈{1,...,µi}Cij

1 the vector 1 = (1, . . . , 1)T ∈ Zd

(a1, . . . , ad)
T ◦ (b1, . . . , bd)

T the operation on the d-dimensional vec-

tors (a1, . . . , ad)
T and (b1, . . . , bd)

T defined by

(a1, . . . , ad)
T ◦ (b1, . . . , bd)

T → (a1b1, . . . , adbd)

compc the c-th connected lot component

u the number of connected lot components

C = {comp1, . . . , compu} a partition of lots into connected lot components

GIS a geographical information system

MST Minimum Spanning Tree

TSP Traveling Salesman Problem

CSC Constrained Minimum-k-Star Clustering

SSP Size-restricted Minimum-k-Star Partition

SGP Size-restricted Minimum-k-Star Group Partition
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