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Dejan Arsić, Atanas Lyutskanov, Gerhard Rigoll Bogdan Kwolek
Institute for Man Machine Communication Computer and Control Engineering Chair

Technische Universität München Rzeszow University of Technology
arsic@tum.de bkwolek@prz.rzeszow.pl

Abstract
Reliable tracking of objects is an inevitable prerequisite
for automated video surveillance systems. As most object
detection methods, which are based on machine learning,
require adequate data for the application scenario, fore-
ground segmentation is a popular method to find possible
regions of interest. These usually require a specific learn-
ing phase and adaptation over time. In this work we will
present a novel approach based on graph cuts, which out-
performs most standard algorithms. It is commonly agreed
that occlusions can only be resolved in multi camera en-
vironments. Applying multi layer homography will enable
us to robustly detect and track objects applying only fore-
ground data, resulting in a high tracking performance.

1. Introduction
One of the major aspects of automated visual surveillance

systems is to detect objects in the scene and track these over

time. The most challenging problem herein is to segment

people in complex scenes, where high object density leads

to occlusions. To model individual behaviors these have to

be resolved robustly. Tracking techniques based on a sin-

gle view, such as the mean shift algorithm [1], are able to

track objects robustly, but require an initialization of sin-

gle objects prior to the group formation and the subsequent

handling of merge and split events [2]. However, in some

cases a single view seems not sufficient to detect and track

objects due to severe occlusion, which as a fact requires the

utilization of multiple camera views.

Camera networks are frequently applied to extend the lim-

ited field of view of a camera, performing tracking in each

sensor separately and fusing this information [3]. In order

to deal with dense crowds, the cameras should be mounted

to view defined regions from different perspectives. Within

these, corresponding objects now have to be located. Ap-

proaches based on geometrical information rely on geomet-

rical constraints between views using calibrated data [4] or

homography between uncalibrated views, which e.g. Khan

[5] used to localize feet positions. This approach, though

very simple and effective, localizes feet and consequently

tends to segment persons into further parts. This can be

avoided by applying multi layer homography, as proposed

in [6], which is capable to create a 3D representation of the

scene. Up to now such tracking systems do not incorpo-

rate contextual knowledge about the scene [7], and there-

fore frequent failures can be observed. As the homogra-

phy framework relies on the fusion of foreground regions

visible in multiple views, it is not capable to detect a per-

son behind a stationary object in case only one camera is

observing the object. This problem will be addressed by

incorporating prior knowledge into the homography frame-

work, where obstacles will be incorporated into the fusion

process.

As it is commonly agreed, the homography framework en-

tirely relies on a stable foreground segmentation and its

performance rises and falls with the reliability of the used

method. Adaptive methods, such as Gaussian Mixture

Models [8], have shown reliable results in indoor scenar-

ios [9] but are frequently failing in outdoor scenes. Fur-

thermore these require an initialization phase, where only

the empty background image should be provided. To cope

with this problem, we will present a novel foreground seg-

mentation method which is based on so called graph cuts.

Although it also requires a short initialization phase, we will

show a huge difference in performance compared to GMMs

and Eigenbackgrounds. Our approach is based on an ini-

tial reference image, which we extract automatically in ad-

vance, given images with moving targets. Afterwards we

employ both region and pixel cues, which handle the illumi-

nation variations. In addition to this, we accommodate on-

line the reference image against the illumination and scene

changes.

In this work we will demonstrate the advantages of this new

foreground segmentation method and the resulting reliabil-

ity of a multi layer homography approach. Although finally

only Kalman filtering is applied for tracking, we will show

a high ID maintenance throughout the sequence. This paper

is structured as follows: We will first introduce and eval-

uate a novel foreground segmentation technique in sec.2.
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The extracted foreground is further used by the multi layer

homography approach described in sec.3. Thereby we will

also focus on the common problem of tracking and false

positive handling in the ground plane. After a short evalu-

ation of the presented tracking framework in sec.4, we will

conclude our work with a short summary and outlook in

sec.5.

2. Utilizing Graph Cuts for Fore-
ground Segmentation

2.1 Relevant approaches

In case of absence of any a priori information about the

objects of interest the most widely employed approach to

extract moving targets is to use static cameras and a back-

ground subtraction technique. The idea of background sub-

traction is to identify non-stationary or new objects given a

reference background model.

Moving or new objects are then detected by taking the dif-

ference between the current frame and the reference back-

ground model. In the most common paradigm, the back-

ground model is not fixed and it should adapt to illumination

changes both sudden and gradual, as well as motion changes

arising both due to camera jitter and high-frequency back-

ground fluctuations (such as tree brunches, sea waves). Typ-

ically, background subtraction is utilized in vision systems

with static cameras. It is a first step in a sequence of im-

age tasks, making it a critical part of the system. After-

wards, a post-processing is employed in order to enhance

the subtraction results. The results of post-processing can

be then utilized to get better the segmentation mask. This is

achieved through feedback into the background subtraction

algorithm in order to facilitate better updating of the model.

Because of many practical applications, a variety of

background estimation algorithms have been studied exten-

sively by various research groups. Among many algorithms

being in disposal, none of them can really operate 24 hours

a day and seven days a week in almost every conditions.

Existing algorithms can be classified as either predictive or

non-predictive. The predictive methods are based on dy-

namical models of time series. However, even recently pro-

posed predictive methods cannot cope with multiple modal-

ities [10]. The non-predictive methods neglect the order of

the observations and build a probabilistic representation of

the distribution of pixel intensities. The method [11] as-

sumes that each image pixel is a realization of random vari-

able with a single Gaussian distribution. Grimson [12] ex-

tended this algorithm by using multiple Gaussians and a fast

approximate method for model updates. Backgrounds with

fast variations might not be easily modeled using just a few

Gaussians [13]. Thus a non-parametric kernel estimation

technique was employed for building a statistical represen-

tation of the background.

In outdoor scenes a background subtraction must be in-

variant to illumination change that might arise due to sun,

moving clouds, or even to moving background, such as

waves on a lake. In such conditions spatial gradients or

texture features might be utilized for achieving some invari-

ance to illumination [14]. In outdoor environment a code-

book model, which originates from the video compression

can be used since it employs a collection of different pixel

values for each image coordinate. In such a non-parametric

model the background is encoded pixel by pixel, where in a

learning stage the intensities at each location are clustered

into a set of codewords [15].

2.2 Foreground Subtraction

The use of linear combinations of Gaussian functions for

modeling the probability of background pixels is the most

common approach to background subtraction. In such an

approach pixels are analyzed independently from the oth-

ers and the only observed values are colors [11, 12]. Our

approach is based on an initial reference image, which we

extract automatically in advance, given images with moving

targets. Afterwards we employ both region and pixel cues,

which handle the illumination variations. In addition to this,

we accommodate on-line the reference image against the il-

lumination and scene changes.

In [16], a running median of the image sequence has

been employed in the segmentation process. The segmenta-

tion was done through differencing the pixels from the cur-

rent frame and the reference image. In our approach the

median of pixel values is also used to compose the reference

images. In our algorithm we do not only compare images

pixel by pixel, but additionally utilize region cues that are

tolerant against illumination and scene changes. The ini-

tial reference images were composed as medians of pixel

values at each background location. Medians were calcu-

lated using quick sort algorithm. For PETS 2009 datasets

the number of images needed to extract foreground free im-

ages ranges from 40 to 350 depending on the crowd and

motion. In the current implementation we employ pixel

intensities in the extraction of the color reference images.

The extraction of the initial reference image can be assisted

by object masks, which are extracted via one of the simple

background subtraction algorithms. In such an approach

the object pixels are not considered in the calculation of the

median value.

The brightness invariant similarity between a reference

template and the image can be obtained via cross covari-

ance. In order to achieve also the insensibility to contrast

the normalized cross-correlation can be employed instead.

This is achieved by subtracting the mean and dividing by the

standard deviation. That means that the cross-correlation of
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a reference template t(x, y) with a current subimage f(x, y)
can be expressed as follows:

NCC =
1

n− 1

∑
x,y

(f(x, y)− f)(t(x, y)− t)
σfσt

(1)

where n denotes the number of pixels in t(x, y) and f(x, y),
t and f are mean values, whereas σt and σf stand for stan-

dard deviations of t(x, y) and f(x, y), respectively. The

normalized cross-correlation was computed very efficiently

using the so called integral images. In our approach we uti-

lize the normalized cross-correlation to generate the proba-

bility images between the reference images and the current

image, see Fig. 1. Such a probability image is employed

next in a classifier, which decides if pixel is a background,

shadow or foreground. For shadowed pixels the normalized

cross-correlation assumes values near to one.

Figure 1: a) Input image. b) Reference image. c) NCC-

based probability image between the reference image and

the input image.

Gevers [17] employed following color ratios between

two image locations x1 and x2:

Ci
x1C

j
x2

Ci
x2C

j
x1

, Ci �= Cj (2)

whereC stands for a color channel of theRGB color space.

Such color ratios are independent of the illumination, a

change in viewpoint, and object geometry. Motivated by the

discussed approach, we construct an image of color ratios

between the reference image and the current image, where

the color of each pixel is given by the following equation:

[
Rc

x1

Rr
x1

Gc
x1

Gr
x1

Bc
x1

Br
x1

]T

(3)

where c and r denote the current and reference image, re-

spectively, whereas R, G, B stand for color components of

the RGB color space. In the practical implementation the

color of each pixel in such a color ratio image was calcu-

lated as follows:

[
arctan

(
Rc

x1

Rr
x1

)
arctan

(
Gc

x1

Gr
x1

)
arctan

(
Bc

x1

Br
x1

)]T

(4)

Figure 2 depicts an example image of color ratios. We

can observe that for the pixels belonging to the background

the background the color assumes grey values. This hap-

pens because the color channels in the RGB color space

are highly are correlated. Moreover, the color ratios are

far smaller in comparison to ratios between foreground and

background. However, as we might observe in the color ra-

tio image there are noisy pixels. The majority of such noisy

pixels can be excluded from the image using the probability

images of the normalized cross-correlation, which can also

be seen in fig. 1c.

Figure 2: Color ratios between reference and current image.

In our algorithm we compute on-line a reference image

using the running median. Afterwards, given such an image

we compute the difference image. The difference image is

then employed in a classifier, which extracts the foreground

objects. In the classifier we utilize also the probability im-

age extracted via normalized cross-correlation, as well as

color ratios. Optionally, in the final stage we use the graph-

cut optimization algorithm [18] in order to fill small holes

in the foreground objects.

In graph-based segmentation an image is mapped onto a

weighted undirected graphG =< V; E >, where each pixel

is represented as a node v ∈ V and each pair of neighbor-

ing pixels is connected by an edge e ∈ E called an n-link.

Two additional terminal nodes, namely the source s and the

sink t, stand for the object and the background. Each non-

terminal node is connected to s and t through edges called

t-links. A cut on the graph splits the nodes into two sets,

where one on them is connected to the source s and the sec-

ond one is connected to the sink t. The cost of a cut is the

sum of weights of all the edges at the cut. The energy func-

tion undergoing minimization has the following form:

E(f) =
∑
p∈V

Ep(fp) +
∑

(p,q)∈E
Ep,q(fp, fq) (5)

where fp ∈ {0, 1} is the segmentation label of pixel p,

where 0 and 1 correspond to the background and fore-

ground, respectively. In Eq. 5 the first term is called the

regional or data term as it incorporates regional constraints.

In particular, it measures how well pixels fit into the object

or background models. Ep(fp) is the penalty for assign-

ing label fp to pixel p. The more likely fp is for p, the

smaller should be Ep(fp). In our approach we utilize 4-

neighborhood and Ep,q assumes value 1 if two pixels are

neighbors, and value 0 otherwise. Ep decreases at the ex-

ponential rate. For background we used the probabilities
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generated by the classifier, whereas for the foreground the

outcomes of NCC. Figure 3 depicts some segmentation

Figure 3: a) Input image. b) background probability image.

c) Background refined by graph-cut

results. We can observe that owing to the use of graph-cut

some separated patches were connected into the objects.

2.3 Evaluation

% dr fp acc

gmm 39.7 0.14 94.7

eig 38.4 0.15 94.5

gc 78.3 0.07 97.8

Table 1: Evaluation of the propose graph (gc) cuts based

foreground segmentation method. Both Eigenbackgrounds

(eig) and Gaussian mixture models (gmm) are outper-

formed by far.

In order to evaluate the proposed foreground segmen-

tation method, we decided to manually annotate 140 im-

ages from the PETS 2009 S2L1 sequence, resulting in 20

images from each available views. Thereby binary masks

containing the foreground have been manually created us-

ing the Gimp. The automatically created foreground im-

ages were subsequently compared to the ground truth. In

order to create a meaningful set of metrics, we decided to

use the detection rate (dr), denoting correctly assigned fore-

ground pixels, false positive rate (fp), denoting background

pixels being assigned to the foreground, and the overall ac-

curacy (acc). The computed numbers of the graph cuts (gc)

based method are illustrated in tab. 1. Furthermore the re-

sults are compared to a background model applying Gaus-

sian Mixtures (gmm) and so called Eigenbackgrounds (eig)

[19]. While the accuracy of all approaches is considerably

high, here in the high nineties, and differs by a maximum of

3%, the detection rates differ significantly. It is remarkably

that the graph cuts based method outperforms the remain-

ing approaches by apx. 30%. The small difference in accu-

racy can nevertheless be explained by the small amount of

positive pixels, compared to the over all amount of pixels,

in the randomly chosen evaluation set. We also managed

to lower the already considerably low false positive rates,

which results in just some additional Gaussian noise in the

foreground image.

Fig. 4 illustrates the results of a GMM and the proposed

method, where frame 15 of camera 4 in scene S2-L1 has

been chosen as example. It is obviously that the objects are

all detected with little to none error. Further it can be seen

that even with only 15 frames the segmentation is already

possible, while the GMM still needs training, as the initial

frame has not been entirely empty.

Figure 4: a) Input image. b) GMM based foreground seg-

mentation c) Output of the proposed method.

3. Multi Camera Tracking
3.1 Person Localization Applying Multi

Layer Homography
In the first stage a synchronized image acquisition is

needed, in order to compute the correspondences of moving

objects in the corresponding views C1, C2, . . . , Cn. Addi-

tionally the sensors should be set up keeping in mind that

the observed region should be as large as possible and di-

rect occlusions of the sensor should be avoided. Therefore

a field of view looking down on the scene from an elevated

point would be preferable.

Subsequently a foreground segmentation is performed in all

available smart sensors to detect changes from the empty

background BG [5] :

FGn(x, y, t) = In(x, y, t)−BGn(x, y) (6)

where a Gaussian Mixture Model is applied for foreground

segmentation. Now the homography Hi between a pixel
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pi in the view Ci and the corresponding location on the

ground plane π can be determined. In all views the ob-

servations x1, x2, . . . , xn can be made at the pixel positions

p1, p2, . . . , pn. Let X resemble the event that a foreground

pixel pi has a piercing point within a foreground object with

the probability P (X|x1, x2, . . . , xn). With Bayes’ law

P (X|x1, x2, . . . , xn) ∝ P (x1, x2, . . . , xn|X)P (X) (7)

the first term on the right side is the likelihood of making an

observation x1, x2, ..., xn given an event X happens. As-

suming conditional independence, the term can be rewritten

to

P (x1, . . . , xn|X) = P (x1|X)× . . .× P (xn|X) (8)

According to the homography constraint, a pixel within an

object will be part of the foreground object in every view

P (xi|X) ∝ L(xi) (9)

where L(xi) is the probability of xi belonging to the fore-

ground. An object is then detected in the ground plane when

P (X|x1, x2, . . . , xn) ∝
n∏

i=1

L(xi) (10)

exceeds a threshold θ. In order to keep computational ef-

fort low it is feasible to transform only regions of interest.

These are determined by thresholding the entire image, re-

sulting in a binary image, before the transformation and the

detection of blobs with a simple connected component anal-

ysis. This way only the binary blobs are transformed into

the ground plane instead of probabilities. Therefore eq. 10

can be simplified to

P (X|x1, x2, . . . , xn) ∝
n∑

i=1

L(xi) (11)

without any influence on the performance. The value of

theta θ is usually set dependent on the number n of camera

sensors to θ = n − 1, in order to provide some additional

robustness in case one of the views accidentally fails. The

thresholding on sensor level has a further advantage com-

pared to the so called soft threshold [5], where the entire

probability map is transformed and probabilities are actu-

ally multiplied as in eq. 10. A small probability or even

xi = 0 would result in a small overall probability, whereas

the thresholded sum is not affected that dramatically. Us-

ing the homography constraint hence solves the correspon-

dence problem in the views C1, C2, . . . , Cn, as illustrated

in fig 5a) for a cubic object. In case the object is human,

only the feet of the person touching the ground plane will be

detected. The homography constraint additionally resolves

occlusions, as can be seen in fig. 5a). Pixel regions located
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Figure 5: a) Planar homography for object detection.b) Re-

solving occlusions by adding further views.

within the detected foreground areas, indicated in gray on

white ground and representing the feet, will be transformed

to a piercing point within the object volume. Foreground

pixels not satisfying the homography constraint are located

off the plane, and are being warped into background regions

of other views. The piercing point is located outside the

object volume. All outliers indicate regions with high un-

certainty, as there is no depth information available. This

limitation can now be used to detect occluded objects. As

visualized in fig. 5b) the smaller cuboid is occluded by the

large one in view C1, as apparently foreground blobs are

merged. The smaller object’s bottom side is occluded by

the larger object’s body. In contrast both objects are visible

in view C2, resulting in two detected foreground regions. A

second set of foreground pixel, located off the ground plane

π, in view C1 will now satisfy the homography constraint

and localize the occluded object. This process allows the

localization of feet positions, although they are entirely oc-

cluded, by creating a kind of see through effect.

The implemented algorithm can be described as following:

• Foreground objects ψin are detected in all n views and

a binary map is created. Subsequently n object bound-

aries can be extracted utilizing connected components

analysis in the binary image

• Object boundaries are then being transformed into a

predefined reference view

Ψin = Hψin. (12)

Though any of the views can be chosen, the most con-

venient one is a top view on the ground plane, visual-

izing spatial relationships between objects.

• Next the intersections of the polygons are computed.

These can be calculated by a plane-sweep algorithm

within the reference view. The binary represented re-

gions Bn

Bn(x, y) =
{

1 if Pn(x, y) ∈ Ψin

0 else

}
(13)

located within detected foreground, are now trans-

formed into the ground plane. In a subsequent step
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Figure 6: Exemplary object detection utilizing multiple lay-

ers.

these values are summed up to

B(x, y) =
n∑

i=1

Bi(x, y). (14)

• The resulting map B(x,y) is subsequently thresholded

with the previously defined parameter θ to encounter

possible object regions

S(x, y) =
{

1 if B(x, y) ≥ θ
0 else

(15)

This has been frequently computed with θ = n − 1
to obtain higher reliability in the tracking process [20].

Experience has shown that this fixed threshold should

only be applied in regions which are covered by all

available cameras. As this region is usually rather

small and cannot be granted due to camera position-

ing, the threshold can be set to a lower value. In or-

der to keep the false positive rate at a considerably low

level, exhaustive experiments have shown that three in-

tersecting blobs are sufficient and should be preferred

to the minimum amount of two intersections.

• Finally coherent regions indicating feet positions are

indexed applying a simple connected component anal-

ysis.

Although the approach of Khan et al. localizes feet

positions quite exactly, the performance is not sufficient in

crowded situations. As only the feet are detected and these

are not necessarily located next to each other, most persons

are split into at least two parts. In order to combine the

single feet it has been suggested to transform the detected

foreground regions in multiple layers [6]. Fig. 6 illustrates

this process. As can be seen the upper body parts of the

object are drawn above the original feet position. By

stacking the layers into the ground plane it is possible to

align the feet. Furthermore it is possible to approximate the

object position in 3D.
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Figure 7: Creation of false positive regions in case multiple

objects are located in a scene: Example for the creation of

false positives in the ground plane and floating ghost objects

due to multi layer homography.

3.2 Including Prior Knowledge
The presented approach obviously requires a robust detec-

tion of foreground regions, which can be provided by apply-

ing adaptive models. These of course cannot cope with the

problem of static objects, such as trees, traffic signs, build-

ings, etc, which are occluding the scenery. Some of these

objects have been identified in the PETS2009 data set. In

order to incorporate the static obstacles, experiments have

shown that it is sufficient to label the object position man-

ually and include these as a foreground object. It can be

transformed as any other object and be considered during

the fusion process. In case further intersections, which are

created by other fields of view, appear in the region behind

the obstacle, it can be assumed that an occluded object is

present in the scene.

3.3 False Positive Detection
The ability to detect partially occluded objects applying ho-

mography with high accuracy comes at the cost of a pos-

sibly large number of false positives [5] or so called ghost

objects [21]. In case only one single object is present in

the scene no errors will occur. As soon as there are two or

more objects visible additional post processing steps have

to be performed. Depending on the constellation of objects

and cameras the boundaries of the transformed blobs may

create additional intersections. These usually appear in re-

gions covered by all objects and are hence not being visible

in all views, as illustrated in fig. 7. Ambiguities like these

can be resolved by adding further fields of view. It has thus

been commonly agreed to use more cameras to reduce the

number of false positives and increase the number of true

positives [5, 22]. In real world applications the amount of

hardware and the computational effort are supposed to be

held as low as possible. All possible object locations are

further examined in the field of view of each camera ap-

plying geometrical constraints [21, 20]. In order to detect

a false positive we first analyze their creation and appear-

ance in each camera view independently. Our experience

has shown, that the upper part of an extracted foreground

6
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Figure 8: Tracking result at frame 45 of S2-L1. 2 bounding boxes could not be created in the sixth frame, as these were

projected outside the image boundaries

region is usually responsible for most of the false positives.

Cutting these parts off is misleading, as partially occluded

objects can not be detected anymore. This also shows the

dilemma: is the detected object occluded, even only par-

tially, or not? In order to answer this question, we propose

to transform detected object positions in world coordinates

Owi back into the 2D domain in each camera view. This

procedure will provide detailed information on the object

arrangement in each view. Using the spatial arrangement

of the transformed blobs in 2D and their approximated dis-

tance from the camera it is possible to determine whether

an object is occluded by another one or not. Thereby it is

important to determine the degree of occlusion. In case an

object is entirely occluded by another one, the detected re-

gion located further away from the camera will be entirely

located within the region of the occluding object. Partially

occluded objects in contrast are not entirely located within

other object regions. Therefore it can be assumed that an

object, which is partially visible in at least one view, is a

real object. If it is not visible in any of the available views

it is probably a false positive candidate. Such a candidate

should be incorporated into the tracking process neverthe-

less, as it could actually be a real object.

The presented approach is unfortunately only capable to lo-

calize objects without the capability of associating single

detections. Therefore it is required to combine the localiza-

tion procedure with a tracking algorithm. As only the object

position and the approximated occupied area are known, it

is not possible to rely on highly sophisticated methods that

rely on textural information. In order to cope with this prob-

lem, it has been decided to apply simple Kalman filtering,

although commonly only linear motion can be modeled.

4 Tracking Evaluation
Quantitative results of the PETS2009 evaluation are given

in tab. 2, while a typical detection result is illustrated in

fig. 8. As proposed in the PETS2009 evaluation methodol-

ogy, MODA and MODP have been chosen as metrics. The

homography approach obviously performs weaker than al-

ready reported results. One of the reasons is the bad esti-

mation of the bounding box position in the real image, al-

though the centroid seems to fit. A possible explanation

could be errors in the calibration, as the views with low re-

sults were usually not considered in the localization task be-

cause the transformed blobs would not create intersections

with other blobs. As the bounding box position has usu-

ally not been further analyzed, which resulted in frequent

misalignments.

5 Conclusion and Outlook
We have presented an integrated approach for object track-

ing in multi camera surveillance systems applying an exten-

sion of the common homography approach. The system’s

reliability can be easily enhanced by transformation of fore-

ground blobs in further layers. As the entire localization

system solely relies on the extracted foreground, we intro-

duced a robust method based on graph cuts. As we showed

it easily outperforms common algorithms such as GMMs

and Eigenbackgrounds. Utilizing the foreground maps we

have been able to track the persons in the PETS2009 data

set reliably.

Although the system has a high localization accuracy, ID

changes appear frequently, as only the objects’ positions in

the ground plane are used for tracking. Therefore we pro-

pose to incorporate the texture into the tracking process, in

order to avoid mix ups. Furthermore a more reliable cal-

7

36



camera 1 3 4 5 6 7 8

MODA 0.25 0.20 0.29 0.11 0.13 -0.01 0.13

MODP 0.32 0.32 0.38 0.35 0.35 0.25 0.33

Table 2: Evaluation of the proposed homography approach.

ibration method seems to be necessary, as even the back

projected positions do not necessarily correspond.
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