
A Formal Approach to

Software Product Families

Alexander M. Gruler

TECHNISCHE UNIVERSITÄT MÜNCHEN

INSTITUT FÜR INFORMATIK

A Formal Approach to

Software Product Families

Alexander M. Gruler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Burkhard Rost

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Christian Lengauer, Ph.D.
Universität Passau

Die Dissertation wurde am 17.05.2010 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 16.10.2010 angenommen.

Abstract

Software-intensive systems pervade our daily lives. Regarding the product range of
organizations which develop software-intensive systems, many organizations do not
produce unrelated systems, but rather produce families of similar systems that share
certain commonalities. Prominent examples of such families of software-intensive
systems can be found in a multitude of different application domains, comprising
embedded as well as business information systems. For example the model variants
of the same model series of a car manufacturer, e.g. the variants of the 7-series
BMW, or the various variants of an operating system, e.g. the various editions of
the operating system Microsoft Windows 7, constitute such families.

In order to increase the efficiency in the development of such system families a reuse
strategy seems sensible. The integrated development of a family of software-intensive
systems by explicitly making use of their commonalities in a strategic and planned
way is the subject of software product line engineering.

Despite its obvious motivation, the way of constructing a family of systems by taking
advantage of commonalities is not sufficiently explored—in particular with respect
to its theoretical foundation. How can reuse based on commonalities between system
variants take place in a systematic way? What are the fundamental concepts behind
commonalities and differences of related systems? How can commonalities between
family members be determined? How can the relation between family members
be modeled, and how are commonalities integrated into the construction of the
individual family members? What are the fundamental concepts that constitute a
software product family, and when can we speak of a software product family at all?

i

In this thesis we address these and similar questions from the point of view of an un-
derlying modeling theory, and introduce a theoretical framework for the construction
of, and the reasoning about software product families and their products.

On the one hand we do this for a very specific kind of software product families,
where a product family represents the integrated, implementation-platform inde-
pendent, operational behavior of a set of software-intensive systems. We provide
a process algebraic framework for the development of such product families, which
allows to benefit from behavioral commonalities for the development of individual
family members. The framework comprises (i) the process algebra PF-CCS for the
specification of the behavior of a set of software-intensive, reactive systems in an
integrated and systematically planned way as a product family, (ii) a multi-valued,
modal logic (a multi-valued version of the µ-calculus), which is tailored to the specifi-
cation and verification of behavioral properties which arise when considering a large
variety of similar systems, and (iii) a restructuring concept that constitutes the the-
oretical basis to determine behavioral commonalities in the operational behavior of
family members.

On the other hand we consider software product family concepts in general, and
in particular the general construction concept behind any software product family,
abstracting from the concrete kind, realization and implementation of the software
product family, and the kind of products which the family comprises. We formalize
the conceptual construction idea behind any software product family by elaborating
an axiomatization of software product family concepts. The axiomatization repre-
sents a theoretical basis to manipulate and to reason about software product families
in general. In addition, it characterizes the class of software product families.

Note that this thesis does not present a practical approach in the sense that the
introduced concepts and methods can directly be applied overnight for the practi-
cal development of large software-intensive systems. Essential aspects of bringing a
software product line to life, such as the definition of a suitable methodological ap-
plication of the introduced concepts, or the detailed embedding into a development
process, are not covered in this thesis. Our approach serves as a theoretical under-
pinning for the construction of and the reasoning about software product families,
which may guide the creation of practical frameworks.

ii

Acknowledgements

This thesis would not have been possible without the encouragement, the support,
and the understanding of many people. To all of them I am deeply grateful.

First and foremost I want to thank my doctoral advisor Prof. Manfred Broy. The
conditions and the unique research environment that he has managed to create at
the Chair of Software & Systems Engineering at the TUM have made the time in
his group an outstanding experience with excellent work and research opportunities,
and I consider myself privileged to have been a part of it. I am very grateful for
the freedom and the time he has granted me to find and pursue the topic of this
thesis, and for his patience with me during that time. I also want to thank Prof.
Christian Lengauer, who agreeged to act as second supervisor, and who provided
very constructive and helpful suggestions to improve this thesis.

During the course of creating this thesis I had to undergo some situations that
gnawed at my motivation. The encouragement that I received in these situations,
especially from my colleagues Martin Leucker and Makarius Wenzel, was most wel-
come, and I want to thank you for that.

Undoubtedly I owe Martin Leucker a dept of gratitude. In his position as an expe-
rienced researcher and post-doc in our group it was him who taught me the ABC of
scientific work and who introduced me to many interesting research areas. I am very
happy to call him both my teacher and my friend. Special thanks to our secretary
Silke Müller, the heart of the entire group. It is certainly no exaggeration to say
that whenever she happened to be out of office, everyone immediately wished her

iii

back. I also want to thank my colleague Judith Thyssen for being a wonderful office
mate during the last years.

I am very grateful to Stefan Berghofer, David Cruz, Peter Höfner, Martin Leucker,
Christian Leuxner, Daniel Ratiu, Martin Sachenbacher, Daniel Thoma, and Makar-
ius Wenzel for reading parts of my thesis and for providing me very valuable feedback.

Finally, I want to thank my family, in particular my mother and my father. Ulti-
mately, it was their care, their love, and their way of raising and educating me, that
has set the course for what and where I can be today.

Munich, May 2010

iv

Contents

1. Introduction 1
1.1. Software Product Line Engineering 2
1.2. Challenges and Their Backgrounds 6

1.2.1. Requirements for an Improved Engineering Approach 11
1.3. Contributions . 12
1.4. Related Work . 17

1.5. Thesis Outline . 18

2. Formalization of Characteristic Software Product Family Concepts 21
2.1. Software Product Families and Lines: An Informal View 23
2.2. Axiomatization of Software Product Family Concepts 30

2.2.1. Preliminaries: Algebraic Specification 31
2.2.2. Operations for Constructing a Software Product Family . . . 32

2.2.2.1. Core Assets and Neutral Element 33

2.2.2.2. Composition . 35
2.2.2.3. Variation Points and Variants 35
2.2.2.4. Example: A Product Family of Stickmen Drawings 39

2.2.3. Axioms, Properties and Auxiliary Operations 43
2.2.3.1. Axioms for Constructors 43
2.2.3.2. Term Normal Form of Product Families 46
2.2.3.3. Configuration: Derivation of Products 60

2.2.3.4. Properties of the Variants Operator 65
2.2.3.5. Sub-Families . 67
2.2.3.6. Products . 70
2.2.3.7. Common Parts . 72

v

2.2.3.8. Optional and Mandatory Parts 75

2.2.3.9. Evolution of Software Product Families 81

2.2.3.10. A General Variants Operator for n Variants 85

2.2.4. Complete Algebraic Specification of the Sort SPF α 88

2.3. Modeling Dependencies in Software Product Families 92

2.4. Discussion . 97

2.4.1. On the Choice of an Algebraic Specification 97

2.4.2. Structural Similarity to an AND/OR-Tree 99

2.4.3. Combining the Axiomatization with a Type System 100

2.5. Related Work . 101

3. PF-CCS: Product Family CCS 109

3.1. Syntax of PF-CCS . 111

3.1.1. Well-formed PF-CCS programs. 116

3.2. Semantics of a PF-CCS Program . 121

3.2.1. Flat Semantics . 121

3.2.2. Unfolded Semantics . 125

3.2.3. Configured-transitions Semantics 139

3.3. Design Decisions for PF-CCS . 147

3.4. Practicability of PF-CCS . 150

3.4.1. Value-Passing PF-CCS . 150

3.4.2. Placing PF-CCS in the Development Process 151

3.5. Related Work . 155

4. Verifying Properties of PF-CCS Software Product Families 159

4.1. The Multi-Valued Modal µ-calculus 162

4.1.1. Syntax of the Multi-Valued Modal µ-Calculus 163

4.1.2. Semantics of the Multi-Valued Modal µ-Calculus 164

4.1.3. Correctness of the Provided Semantics 172

4.2. Model Checking . 177

4.3. Example: Verifying a Family of Windscreen Wipers 180

4.3.1. Specification of the Product Family of Windscreen Wipers . . 180

4.3.2. Verification . 182

4.4. Related Work . 185

5. Restructuring PF-CCS Software Product Families 191

5.1. Algebraic Laws . 194

5.1.1. Distributivity of Action Prefixing over ⊕ 195

5.1.2. Distributivity of Non-Deterministic Choice over ⊕ 198

5.1.3. Distributivity of Parallel Composition over ⊕ 202

5.1.4. Miscellaneous Laws . 204

5.2. Calculating Commonalities: A Detailed Example 206

5.3. Common Parts . 214

vi

6. Conclusion and Future Work 221
6.1. Discussion . 225
6.2. Future and Ongoing Work . 228

A. Selected Algebraic Specifications 231

B. Uniqueness of the Normal Form: Proofs 239
B.1. Auxiliary Lemmata . 264

C. Lattices 267

D. The Modal µ-Calculus 269

Bibliography 287

vii

List of Figures

2.1. Algebraic specification of the sort Stickman. 39

2.2. Basic graphical shapes of stickmen drawings. 40
2.3. Term representation of a software product family of sort SPF Stickman. 41
2.4. An example of a concrete product family: A family of stickmen. . . . 42
2.5. A term of sort SPF α and its normal form. 58
2.6. Derivation of a sub-family of the product family Spf 69

2.7. A sub-family of the product family Spf 69
2.8. Graphical illustration of the distributive law of ⊕ over ‖. 73
2.9. Core assets of the Σ-algebraStickmanShapesII. 76
2.10. Restructuring a product family with the distributive law. 76
2.11. Algebraic specification of a software product family of sort SPF α. . 90

3.1. A program dependency graph. 118
3.2. Two ways of understanding alternative variants and variation points. 119
3.3. SOS rules for CCS as defined by Milner [Mil95]. 124
3.4. PF-CCS SOS rules for the unfolded semantics. 128

3.5. An example of a PF-LTS and a corresponding deduction. 130

3.6. PF-LTS for the PF-CCS term P
def
= γ.(α.P ⊕1 β.P) 131

3.7. A PF-LTS representing the unfolded semantics and its projections. . 133
3.8. Transitions systems of products derived by projection. 136
3.9. Constructing of the configured-transitions semantics. 143
3.10. Configured-transitions Semantics for a simple recursive process. . . . 144

3.11. Layer framework for a seamless model-based development process. . 153

4.1. Syntax of mv -Lµ. 163
4.2. Semantics of mv -Lµ formulae. 168

ix

5.1. PF-LTS illustrating the distributivity of action prefixing. 197
5.2. Action prefixing does not distribute over CCS’s +. 199
5.3. PF-LTSs illustration the distributivity of + over ⊕. 201
5.4. Specification of a front screen wiper FWS , standard version. 207
5.5. Specification of a front screen wiper FWC with comfort features. . . 208
5.6. PF-CCS program (E ,FWFam) specifying a family of front wipers. . 210
5.7. Calculation of the commonalities of FWS and FWC 211
5.8. Restructured version of the front wiper product family. 213

A.1. Algebraic specification of the sort Bool. 232
A.2. Algebraic specification of the sort If-then-else. 232
A.3. Algebraic specification of the sort Nat. 233
A.4. Algebraic specification of the sort Seq α. 234
A.5. Algebraic specification of the sort Set α. 235
A.6. Algebraic specification of the sort MSet α. 236
A.7. Extension of the algebraic specification of sort MSet. 237

x

List of Definitions

2.1. Software Product Line [CN01] . 23

2.2. Program Family [Par76] . 24

2.3. Software Product Family (Informal Characterization) 26

2.4. Complete and Atomic Configuration 60

2.5. Equivalence of Complete Configurations 66

2.6. Sub-Family . 68

2.7. Set of Derivable Products . 72

2.8. Product Equivalence of Software Product Families 72

2.9. Common Part of Variants . 73

2.10. Software Product Family . 89

2.11. Dependency Model . 93

2.12. Normal Form of a Dependency Model 94

2.13. Valid Configuration . 96

3.1. Syntax of PF-CCS Process Expressions 112

3.2. PF-CCS Program . 114

3.3. Complete PF-CCS Program . 116

3.4. Program Dependency Graph . 117

3.5. Finitely Configurable PF-CCS Program 118

3.6. Fully Expanded PF-CCS Program 120

3.7. Well-formed PF-CCS Program . 120

3.8. Variation Point in PF-CCS . 120

3.9. Configuration Vector . 121

3.10. Fully Configured Configuration Vector 122

3.11. Flat Semantics of a PF-CCS Program 124

3.12. PF-LTS for the Unfolded Semantics 125

3.13. Conformance of Configuration Vectors 126

xi

3.14. Concretization of a Configuration Vector 127
3.15. Unfolded Semantics of a PF-CCS Program 129
3.16. Projection of a PF-LTS (Unfolded Semantics) 132
3.17. Bisimulation . 134
3.18. PF-LTS for the Configured-Transitions Semantics 140
3.19. Configured-transitions Semantics of a PF-CCS Program 141
3.20. Projection of a PF-LTS (Configured-transitions Semantics) 142
4.1. Multi-Valued Modal Kripke Structure (MMKS) 165
4.2. Consistency of Variable Environments 173
5.1. Projection of a PF-LTS According to a Set of Configurations 215
5.2. Common Part of a Set of Configurations 215
5.3. Representation Showing the Greatest Common Part 218

xii

CHAPTER 1

Introduction

The aim of software product line engineering is to increase the efficiency in the de-
velopment of a set of software-intensive systems by applying a strategic and planned
form of reusing the commonalities between the products. In this chapter we provide
a general, informal introduction into the field of software product line engineering,
and discuss the benefits compared to independent system development. Motivated
by the state of the art in the development of reactive, software-intensive systems
in the automotive sector, we outline current challenges which arise from the huge
product variety within automotive systems, and motivate how the adaption of soft-
ware product line engineering techniques can help to master them. In this context,
we list and discuss our contributions. At the end of the chapter we provide a brief
road map for reading this thesis.

Contents

1.1. Software Product Line Engineering 2

1.2. Challenges and Their Backgrounds 6

1.3. Contributions . 12

1.4. Related Work . 17

1.5. Thesis Outline . 18

1

1. Introduction

1.1. Software Product Line Engineering: From an Ad-hoc
to a Planned Form of Reusing Commonalities

The importance and influence of software in our every days life is undisputable. The
vast majority of electronic devices with which we interact during a day is mainly
controlled by software — in fact, software-based systems pervade our daily life. Ob-
viously, this starts with systems such as personal computers, mobile phones, but also
includes systems of which we do not expect it at first glance, such as for example ar-
tificial knee joints [Cam88, Boc09] which compute in real-time their resistance level
according to the current environmental factors in order to smooth and optimize the
movement. Taking some examples of systems from a more complex order of magni-
tude, we can see an airplane or a premium class automobile as two prime examples
for very complex, software-based systems. For example, Boeing’s new 787 Dream-
liner, scheduled to be delivered in 2010, requires about 6.5 million lines of code to
operate its avionics and on board support systems [Cha09]. However, this number is
still exceeded by modern premium class cars which consist of up to 70 electronic con-
trol units (ECUs) carrying up to 100 million lines of code [Cha09, BKPS07]. In such
highly complex systems, basically the entire functionality is exclusively controlled
and realized by software. In this context we speak of software-intensive systems.

For the development of software-intensive systems the importance of software is still
increasing. A main reason for this trend is the fact that new features1 and functions
which are offered by such systems can be realized to a steadily increasing degree
by software. Innovation becomes more and more software driven. A study con-
ducted in 2005 for the European Commission [BDG+05] revealed that in contrast
to the increasing importance of software, especially in the area of embedded sys-
tems, advantages in the development of new hardware technologies gradually lose
their immediate impact on the success of a new product. For example for automo-
tive systems, 80% of the innovations in a car come from software-intensive systems
[BKPS07]. This makes software—especially from an economical point of view—a
key factor for the return on investment of many products. Consequently, against the
background of achieving universal business goals such as high quality of the product,
a quick time to market, low cost production and maintenance, and mass customiza-
tion, improving the efficiency and productivity in the area of software development
is a more and more decisive factor.

With software being a key production factor, also the efficiency of the software
development process moves in the focus of economic and commercial interest. There
are various ways of realizing a more efficient software development: improvement
of the development process, the utilization of new, innovative technologies, or the

1For us a feature is any observable property which a system exhibits. This can be a functional or
a non-functional property, i.e. a feature itself can have a behavior or simply be an object property,
e.g. leather upholstery in the car.

2

1.1. Software Product Line Engineering

increase of reuse of existing artifacts are just some examples. For software—being
an intangible good which can easily be replicated—in particular the increase of
the degree of reuse [Kru92, HM84, Sta84] is a very promising possibility. In fact,
improving the efficiency by reusing existing software artifacts or software components
for the development of new systems is a key concern since the software crisis in the
late 1960s, when the idea of reusing mass-produced software components [McI69] was
coined by Douglas McIllroy and first discussed at the NATO (Software Engineering)
Conference in Garmisch in 1968 [NR69].

However, a problem with a longstanding tradition is how to realize an applicable
way of reuse. Since the software crisis, many paradigms and concepts have come up
which strive for a more efficient software development process by providing—directly
or indirectly—improved ways of reuse:

• During the 1960s and 1970s, structuring a program (especially its source code)
into logical parts was in the center of interest. The so-called Goto statements—
leading inevitably to unstructured programs [Dij68]—were replaced by con-
cepts such as subroutines (1960s) or modules (1970s). These ideas led to the
paradigm of procedural programming comprising concepts such as separation
of concerns [DDH72] or modularity [Par72], being essential fundamentals for
reuse.

• With programs becoming larger and more complex, procedure calls became the
dominating programming statement. Data structures and the operations on
them were combined more closely, realized by the concept of objects [Mey97]
which is pioneered in the languages Simula67 [DMN68] and Smalltalk [Kay93].
In general, the focus was less on lists of commands/tasks and more on a
structure of communicating objects. Object-oriented concepts [Mey87] allowed
reusable entities to be adapted more easily, leading to larger reusable entities.
Simultaneously, the concept of libraries (of procedures/classes) was promoted.

• In the 1990s, the concept of constructing complex systems by assembling units
of composition, so-called components [Szy98], with a well defined interface,
moved in the focus of interest. In contrast to objects, which were designed
to match a specific (mental) model and which were not explicitly designed for
multiple use in other contexts, the distinguished idea of a component is to
encapsulate an independently deployable behavior together with the necessary
data structures. This allows components to be reused more easily in multiple
contexts/programs.

• In the service-oriented paradigm, pieces of functionality—usually structured
according to business processes—are grouped as interoperable services which
are made available over a network in order to be used in the development
and integration of business applications. Service-oriented design [Bel08] and

3

1. Introduction

in particular Service-Oriented Architecture (SOA) [Erl05] got ahead of the
component idea, coming with improved concepts of how components can be
combined, offered, searched and remotely executed. Services are being cut
according to the (business) process, which increases their reusability compared
to components, in general.

Although these traditional reuse strategies gradually raised the degree of reuse, they
have had not the expected economic benefit [Kru92, BBM96]. Reasons therefore are
complex and manifold, and we refer to [Kru92, Sch99] for a more comprehensive
discussion. In summary, the most important reasons were that

• Reuse was accomplished in an ad-hoc or even opportunistic way, in general.
Even though reusable entities such as algorithms, modules, classes, or compo-
nents were collected in libraries, they were not explicitly designed for future
reuse in a specific context or architecture in a pre-planned way. Although,
many developers have successfully applied reuse opportunistically, e.g. by copy-
ing and pasting pieces of code from existing programs into new programs, such
a form of opportunistic reuse only works fine in small groups but does not scale
up to larger business units or entire enterprises [Sch99]. In summary, there
was no strategic plan for future reuse.

• All traditional reuse strategies envisioned the idea of general-purpose reuse.
Here, the reusable entities were not tailored to be reused in a specific, future
environment or context in a pre-planned way, but were rather developed to be
reused “somehow” in an (at the design time) unknown, future situation. In
particular, the reuse environment/context was not taken into account during
the development of the reusable entity.

In contrast to traditional reuse strategies and their aims, software product line engi-
neering realizes a different reuse concept, which acts on the assumption of a different
basic situation. Regarding the product range, we observe that companies across the
entire software industry very often do not produce isolated/unrelated (software)
systems, but rather produce a family of similar systems which exhibit certain com-
monalities. For example, the operating system Windows Vista is available in 6
different versions, ranging from Home Basic, Home Premium, Business, Ultimate to
an Enterprise edition and 64-Bit Version. The free, Linux-based operating system
Ubuntu even comes in a potentially unlimited number of variants due to a packet
management concept which allows to freely add or remove software components. In
both cases we can identify many commonalities between the versions.

Compared to general-purpose, ad-hoc reuse, in software product line engineering
the commonalities between systems in such a situation are exploited in a strategic
way, by developing the systems in common, i.e. in a integrated and planned way,
instead of developing the systems independently from each other and ignoring their

4

1.1. Software Product Line Engineering

commonalities. Already 40 years ago, Dijkstra described a vision [DDH72]—at that
time still in the context of programs rather than entire systems—which perfectly
expresses the fundamental principle of modern software product line engineering:

If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the
other. It would be much more attractive if the two different programs
could, in some sense or another, be viewed as, say, different children
from a common ancestor, where the ancestor represents a more or less
abstract program, embodying what the two versions have in common.

In accordance to Dijkstra’s vision, in software product line engineering, several sys-
tems are developed in common by modeling the variable and common parts of the
systems in a consolidated way. This allows to reuse parts of one system for the con-
struction of other systems, and thus maximizes the degree of reuse by systematically
exploiting commonalities.

Fundamental to such an approach is a common architecture or construction plan
which describes how the systems are constructed from the common set of atomic
components, the so-called core assets. In this context we also speak of the product
family2. In particular, the software product family represents a set of derivable
systems in its entirety, emphasizing how the systems are actually constructed from
the common set of core assets. An individual system—in the context of software
product line engineering also called product—can be obtained by deriving it system-
atically from the product family. Such a derivation process is called configuration
(configuration process), and we usually speak of configuring a product family in this
context.

By implementing a strategic way of reuse, software product line engineering differs
fundamentally from other development techniques. In particular, software product
line engineering is not single-system development with reuse, since building a soft-
ware product line means planning a plurality of products which will exist and be
maintained quasi simultaneously—in contrast to single systems that evolve over time
in an uncoordinated way. Moreover, single-system development with reuse usually
starts with the latest version of a system, duplicates the code and adjusts the dupli-
cated version to the new requirements. Thus, each new version of a system is build
on its own, loosing the connection to earlier versions. As a result, knowledge of
commonalities is not preserved and common parts cannot be systematically reused.

By making use of inter-product commonalities in a strategic way, software product
line engineering reaches a high degree of efficiency. The fact that the application

2We call a set of software-intensive systems a software product family when the systems are built
by explicitly making use of commonalities for their construction. In contrast, the term software

product line emphasizes the economic aspect and the general concept of efficient design rather than
the constructional aspect. For a more detailed differentiation we refer to Chapter 2.1, Page 27.

5

1. Introduction

of software product line engineering techniques actually has a dramatic economic
impact—which manifests itself for example in an increase in productivity, reduction
of costs, or an improvement of the quality of the product—is supported by some very
successful real-life industry projects. Many of these software product line success
stories are gathered in the so-called Software Product Line Hall of Fame [SEI], from
which we want to mention two quite successful examples:

• In 1993, Cummins Inc., a manufacturer of large diesel engines, faced the situ-
ation to produce new systems with a too little amount of staff and resources.
By changing to a software product line approach [CN01], today, the product
line contains more than 1000 separate engine applications, where (i) prod-
uct cycle time was slashed from 250 person-months to a few person-months,
(ii) the build and integration time was reduced from one year to one week,
and (iii) the quality goals are exceeded which manifests in a very high degree
of customer satisfaction.

• CelsiusTech AB, a Swedish naval defense contractor, successfully adopted a
product line approach—called ShipSystem 2000—to building a family of 55
ship systems [BCKB03, BC96]. As a result (i) the need for developers dropped
from 210 to roughly 30, (ii) the time to field decreased from about 9 years to
about 3 years, (iii) the integration test of 1-1.5 million lines of code requires
only 1-2 people, (iv) and rehosting to a new platform/OS reduced to 3 months.

After this general survey on software product line engineering, we study the current
situation and the corresponding challenges in a concrete domain, which is perfectly
suitable for the application of software product line engineering techniques, the au-
tomotive domain. Our approach together with our contributions, which are mainly
motivated from concrete challenges of the automotive domain, are introduced in
Section 1.3.

1.2. Challenges and Their Backgrounds

The automotive domain is predestinated for the application of software product
line engineering techniques due to (i) the huge product variety in the product range
of a car manufacturer (also called an OEM in the automotive terminology), (ii) the
continuously increasing complexity of the software-intensive system “car” in com-
bination with the intense cost and time pressure, and (iii) the large quantities in
which cars and its software-intensive subsystems are produced. Certainly, there are
similar situations in other domains, for example the avionics, telecommunication, or
automation industry, but usually not in such a distinct kind as we encounter them
in the automotive domain. For this reason we use the automotive domain as an
example in place of similar application domains, and describe partially the current

6

1.2. Challenges and Their Backgrounds

situation together with the software product line specific challenges in the engi-
neering process of software-intensive automotive systems. However, we emphasize
that our theory is not exclusively tailored for automotive systems, and is likewise
applicable for families of reactive systems in general.

The application of software product line engineering techniques allows for an eco-
nomically more efficient development and production process, and is the basis to
deal with the increasing complexity effectively. However, despite its suitability the
application of software product line engineering techniques in the automotive sector
is still very low. The exploitation of commonalities by reusing artifacts is usually
done in an ad-hoc way without a strategic plan as suggested by software product
line engineering concepts. As we will see in the following, many reasons for this
situation are of a fundamental nature, i.e. not the application of existing methods
and techniques in the industrial practice is the problem, but rather the lack of a fun-
damental theory and principles of how to deal with certain questions in the context
of engineering a family of similar systems in an integrated way. In the following,
we describe this situation and the currently relevant challenges in the automotive
domain in more detail.

Challenges Related to the Functionality in Combination with the Huge Product
Variety

In the automotive domain we observe a huge variety within the product range of
a car manufacturer. Modern car models, e.g. the 7-series BMW, usually come in
a multitude of different model variants [Sch08] which differ in the extra equipment
they provide, especially in the amount and kind of features. For example, for a
modern premium class car around 80 optional electronic features can be ordered,
which already implies the existence of 280 combinatorially possible configurations.
Main drivers for this huge variety are:

• The automotive market requires individuality, and the request for customiz-
ability is high. Every customer desires its own, individually configured version
of a car which is tailored to his needs. Consequently, in order to serve the
demands of the market an OEM offers a car in a variety of model variants.

• An OEM usually serves an international market delivering its good on a global
scale. Beside the diversity in the language and culture of different regions and
countries, also the diversity in the national markets and the statutory situation
requires a car model to exist in various country-specific variants.

A modern car is a prime example of a software-intensive, reactive system. For
a modern car, most of its features directly determine the functionality of the car
and are thus directly software-relevant. We also speak of functions or functional

7

1. Introduction

features, e.g. simple ones such as operating the power windows, but also complex
ones, such as the Adaptive Cruise Control (ACC) [Gmb02], in contrast to non-
functional features, e.g. exterior color or optional leather upholstery. Regarding the
functionality, a modern premium class car implements around 2000 basic software
functions, from which 270 so-called user functions are composed [BKPS07]. In this
context, user functions are those functions which are directly accessible by the user
(driver and passenger), and which consequently strongly influence the market value
of a modern car.

Specification of the Functionality of a Set of Model Variants

The implementation-platform independent functionality is of particular interest for
the development of software-intensive, reactive systems, especially for such complex
systems as we find them for example in the automotive domain. The overall func-
tionality of a modern car is determined by its individual functions and features, and
thus directly depends on the respective configuration of the car. The functionality of
an individual car can be represented in many ways. Depending on whether the focus
is on a more interface centric, black-box view, or on a more operational, glass-box
view of the functionality of a system, possible representation techniques are for ex-
ample stream-processing functions [Bro05], message sequence charts (MSC) [IT96],
various kinds of automata (e.g. I/O-automata [LT89], Interface-automata [dAH01]),
modal transition systems [LT88], Petri nets [Pet62], or process algebraic calculi (e.g.
ACP [BKT84], CCS [Mil95], or CSP [Hoa85]). While all these techniques allow a
more or less implementation-platform independent representation of functionality,
they do not explicitly support the notion of behavioral variability [CHW98, SD07]
in a deterministic sense, as it is needed to represent the concept of different config-
urations. In particular in the presence of the huge product variety which an OEM
has to face, the set of possible model variants is too big as that the functionality of
each model variant could be specified separately using one of the techniques men-
tioned above. New techniques which support the notion of (behavioral) variability
are required to model the behavior of a set of model variants in an combined way.

Detection of Undesired Behavior in the Presence of Many Variants

While traditionally the functions in cars were largely independent and not related
with each other, e.g. the engine control was independent of braking and steering,
in modern cars previously unrelated functions start to interact and become related
to one another. The main reason for this development is the technological advance
which offers new possibilities (advanced electronics and programmable software) for
the implementation of functions and their interaction in a car. Some of these combi-
nations lead to an undesired or even dangerous system behavior which only results
from the integration of functions, and which cannot be predicted by inspecting the
modular specifications of the functions separately. Such a kind of undesired be-
havior is usually referred to as feature interaction [Zav93]. While the detection of
erroneous behavior due to feature interaction is already problematic for the integra-
tion of standalone systems, it becomes even more complicated in connection with

8

1.2. Challenges and Their Backgrounds

the huge variety of possible combinations of functions in a car. Here, the challenge
for an OEM is to assure that none of the possible combinations of functional features
leads to an undesired or erroneous behavior or system state. Essentially, this reduces
to the question to find out and to verify that a behavioral property holds for a set
of model variants. For safety-critical functions the detection of erroneous and unde-
sired behavior becomes an even more severe issue. For safety-critical features it is
not sufficient to test only the most likely configurations, but it is essential to assure
that certain errors never occur, independently of how a model variant is configured.
For example with the introduction of X-by-Wire [WNSSL05, Jur09] technologies for
safety-critical systems in a car, this question became very important. How can an
OEM guarantee that all possible model variants which are equipped with Break-by-
Wire technology (i.e. the break is not controlled mechanically but electronically)
always break whenever the break pedal is pushed, independently of other functional
features, e.g. driver assistance systems like ACC, or break energy reconversion sys-
tems, which might also exist in the car and influence the breaking process.

While such questions are typically addressed in the context of single system devel-
opment by various logics (e.g. LTL [Pnu77], CTL [CE81a], CTL∗ [EL86], the modal
µ-calculus [Koz83], or TLA [Lam94]) and the corresponding verification techniques
(e.g. model checking [CGP99]) there are no particular logics, theories, or techniques
that allow to address the same questions in the context of a huge amount of different
model variants in an adequate way. Moreover, due to the huge variety the naive way
of constructing all possible model variants and checking each variant individually
is not feasible—in particular not with the steadily increasing time and cost pres-
sure which the automotive market is currently facing. This makes the detection of
undesired behavior, and the verification of behavioral properties in the presence of
a highly variable system an essential but also very challenging task for an OEM,
whose role in these days has become that of a system integrator rather than that of
a mere system assembler.

Challenges Related to Reuse

Due to the similarity within the product range of automotive systems, the automo-
tive domain affords many opportunities which would benefit from reuse, and where
reuse is explicitly desired but not systematically implemented so far. We separate
between different reuse scenarios, which mainly reflect an OEM’s point of view.

1. Reuse between successive generations of the same model series.

2. Reuse between the model variants of the same model series.

3. Reuse between different model series, by offering a feature or a function in car
models of different model series.

9

1. Introduction

In these scenarios the kind of artifacts which are reused are different, but as we will
discuss in the following, in particular the abstraction level where the operational
functionality of the model variants is considered, is very important to organize,
structure and specify reusable entities.

An OEM usually releases approximately every 4.5 years a new generation of a model
series. Comparing consecutive model generations, functionality typically differs only
marginally. In fact, according to [BKPS07] differences in the functionality are not
more than 10% between consecutive model generations. While the functionality
is fairly “stable”, the software itself differs much more between consecutive model
generations. In this light, platform-independent functionality seems to be a suitable
quantity to specify and structure entities of reuse. In particular in combination
with generative approaches [CE00], where the platform-specific, deployable code is
generated from high-level models, reusing functionality is very attractive. Here,
functionality refers in particular to an operational representation of functionality,
since the focus is on implementation in this context. However, currently in the
automotive sector the operational functionality which is realized by a set of model
variants (e.g. of the same series) is not adequately represented. In particular, the
entire functionality which is offered by a set of variants, e.g. by the model variants
of the same series, is not represented as an integrated whole. In this context a
main challenge for an OEM is to model the operational functionality of a set of
model variants in a combined way, and to relate such a model to the functionality
of individual model variants, as an integrated representation of the behaviors of the
various model variants is the basis to determine and specify behavioral differences
and commonalities between the model variants.

With respect to reuse within a model series, for example the 7-series BMW, all
models of the same series come in a standard equipment, which is characterized by
the minimal set of features which exist in all model variants of this model series.
Regarding the functional features, this means that all model variants within a series
have a common “standard” functionality, and especially a common (operational)
behavior. Think for example of the various windshield wiper systems which exist
in a model series. Some model variants are equipped with a rain sensor which af-
fects the wiping speed of the wiper arm, other models variants are equipped with a
start/stop automatic for the engine which causes the wiper to stop if the engine is
stopped at red lights, while other model variants have both or even none of these
features. But what is the common functionality of the windshield wiper system, that
is offered in all model variants? With respect to an implementation this common
operational functionality can be used to guide the development of a basic imple-
mentation that is part of the every wiper system variant. While the question to
determine the common behavior of a set of variants might still be answered for this
simple sub-system without the usage of formal methods, determining the common
functionality of some more complex systems, for example entire model variants of

10

1.2. Challenges and Their Backgrounds

a car series, is unlike harder and requires an integrated representation of the func-
tionality of all model variants supported by the corresponding formal methods and
techniques. In summary, the ability to determine the standard functionality on an
operational level would be very beneficial for an OEM, since the models within one
series use the same implementation platform, and an implementation of this stan-
dard functionality can be reused in every model variant. However, currently this
remains a challenging task in the automotive sector which cannot be solved with the
state-of-the-art development techniques.

Regarding new features, a typical procedure in the automotive domain is to intro-
duce new features with the release of a new model generation, since new features
increase the product value for the customer, and serve as valuable sales arguments.
Once a new feature has been introduced in a model series it is taken over to other
model series. For example, the first radar based Adaptive Cruise Control called Dis-
tronic was introduced with the release of the 1998 Mercedes S-Class (W220), and
subsequently taken over to the 1999 generation of the E-class and other model se-
ries. However, with the introduction of new functions to a model series, the standard
functionality of the model series is usually changed, and consequently the common-
alities between all model variants are affected, too. Here—similarly to the situation
described above—the ability to determine the common part of the (operational)
functionality is again very useful and desirable. In particular, if it is supported by
formal models and methods. Then, the functionality can become a central role not
only for the specification, but also for the construction and verification of model
variants.

1.2.1. Requirements for an Improved Engineering Approach

Based on the previously introduced challenges we derive the following requirements
for an improved engineering approach for families of software-intensive, reactive
systems as they exist for example in the automotive domain. Here, with systems we
mean the software-relevant part of systems that are produced by OEMS, e.g. entire
automobiles, as well as systems that are produced by suppliers, and that exist as
subsystems of automobiles. In our opinion the automotive industry would greatly
benefit from:

• A standardization and a formal definition of the fundamental concepts and
techniques which are necessary to develop a family of similar systems in an
integrated way that allows to benefit from the commonalities between the
systems.

• Concepts for the representation and modeling of the operational functionality
of automotive systems in a platform-independent way. Due to the large variety

11

1. Introduction

in which automotive systems exist, such a representation technique has to
support the notion of behavioral variability, i.e. it has to provide the concepts
to represent the behavior of entire families of “behaviorally similar” systems
in an integrated and coordinated way.

• A formalism that allows to represent the connection between the operational
behaviors of similar systems, and that facilitates to develop the behavior of
similar systems in an coordinated way.

• A formalism and the corresponding concepts to determine the common behav-
ior of a set of similar (functional) features, systems, or model variants.

• The concepts to determine those model variants that exhibit certain behavioral
properties, and the concepts to verify the validity of such properties for the
corresponding model variants formally.

• The possibility to inspect all possible combinations of functional features, and
to determine those combinations (and the corresponding systems) which ex-
hibit undesired or erroneous behavior, without having to construct and inspect
each feature-combination, i.e. each system, “manually”.

• The concepts to determine the differences in the operational functionality be-
tween successive model generations or even different model series.

• A formalism to determine an operational representation of the standard func-
tionality which is realized by every model variant of the same model series.
This is equivalent to the concepts to determine the “greatest” common behav-
ior that is implemented by every member of a family of systems.

Certainly, from the point of view of the automotive industry, the primary interest
is ultimately in the practical implementation of all of these requirements. However,
practical solutions require the corresponding theoretical and conceptual foundation
on which they can built. For all concepts which we introduce in this thesis, the
creation of such a conceptual foundation is our declared goal.

1.3. Contributions

In Section 1.1 (Page 5) we have already introduced the distinct idea which is embod-
ied by a software product family. It is to construct systems not independently but
in an integrated way as members of a family by systematically making use of com-
monalities which exist between the systems. But what does it conceptually mean
to construct the family members in an integrated way? How is the construction of

12

1.3. Contributions

individual systems related and coordinated? What does it mean for the construction
of the systems to develop them by using their commonalities? What does it mean
that products have common parts, and how can a common part itself be specified?
How are the commonalities (re-)used? How can the commonalities of the family
members be determined?

As these questions demonstrate, while the general idea and rationals of software
product line engineering seem to be clear, a corresponding theoretical foundation
which addresses the construction of a software product family is not sufficiently un-
derstood. With this thesis we contribute to the theoretical foundation of software
product line engineering and introduce a theoretical framework that deals with the
construction, manipulation and verification of software product families. We ad-
dress two aspects: In a first part we consider software product families in general.
We abstract from the kinds of products which are constructed, as well as from real-
ization and implementation-specific details of product families, and investigate the
fundamental construction concepts which are common to software product families
in general. We do this by elaborating an axiomatization of software product family
concepts. In a second part, we focus on product families for a very specific purpose:
we consider product families that capture the operational functionality of a set of
software-intensive, reactive systems. Products of such families are representations
of the operational behavior of individual reactive systems. To this end we introduce
a process algebraic framework that allows to model the operational functionality of
a set of software-intensive systems as a product family. In particular, we introduce
the concepts of how to specify the integrated behavior of a set of systems as a prod-
uct family, how to reason about behavioral properties of the product family and its
members by means of a modal fixpoint-logic, and how to manipulate and restructure
such product families in order to determine behavioral commonalities of the family
members. Regarding these topics some of the results have already been published in
[GLS08b, GLS08a, GHH07]. In the following we describe the contributions in more
detail, and discuss them in the light of the challenges which we have described in
the previous section.

Note that even though the framework which we elaborate in this thesis is moti-
vated by challenges from the industrial practice, we contribute to the theory and
conceptual development, and not to the practical development of software product
families. In particular, our framework does not make a direct contribution to the
development of large-scale, reactive systems, as they are encountered in the current
industrial practice. However, with our theory we solve conceptually fundamental
problems and create the theoretical basis on which a practically applicable system
engineering method has ultimately to be based.

Formalization of General Software Product Family Concepts

• We axiomatize the general notion of a software product family (cf. Chapter
2.2). The axiomatization comprises the definition of the fundamental opera-
tions and axioms which capture the laws that hold in software product families

13

1. Introduction

in general. With the axiomatization we provide a theoretical foundation for
the construction and the handling of software product families. In particu-
lar, the axiomatization allows to reason about software product family specific
concepts by means of formal methods, e.g. interactive theorem provers like
Isabelle [Pau94]), and allows to derive new properties.

• As part of the axiomatization (cf. Chapter 2.2.3) we identify and precisely
characterize typical concepts of software product families, such as variation
points, variants, optional, alternative and mandatory parts, commonality, con-
figuration, etc., which lack a precise, formal definition, so far.

• We define a unique normal form for software product families (cf. Chapter
2.2.3.2). The normal form is a representation of a product family which ex-
plicitly shows the commonalities between alternative variants, which is free
of trivial variation points, and which fulfills other well-formedness properties.
Based on the normal form we define the notion of equality between software
product families. The axioms which characterize the normal form can directly
be turned into a functional program, and thus represent an executable algo-
rithm to transform arbitrary product families into their normal form.

• We define the notion of commonalities between products of a software product
family (cf. Chapters 2.2.3.7 and 2.2.3.8). Common parts of products are
defined indirectly based on the differences between products of the family
which are specified explicitly. We establish the formal connection between
common and variable parts, and describe how to work with commonalities in
software product families in an operational way.

• We introduce a dependency model for software product family specifications
(cf. Chapter 2.3). Unlike to the representation of a software product family
itself, the dependency model does not describe how products are constructed
but rather restricts the set of possible configurations (and thus products) of a
product family, and characterizes those ones which shall be constructed. The
dependency model uses propositional logic and allows to express dependencies
based on the configurations of individual variation points. Thus, it allows to
specify a multitude of different kinds of dependencies, also those ones which
typically [Bat05] exist in the context of variable parts, for example requires,
and excludes relations. A dependency model is especially essential for the
realistic application since it allows to filter out those configurations of a soft-
ware product family which must not exist due to non-functional reasons, e.g.
marketing decisions.

Modeling the Operational Functionality of a Set of Systems as a Software
Product Family

• We introduce Product Family CCS (PF-CCS), a process algebraic framework
for the specification of the operational functionality of a set of systems as a

14

1.3. Contributions

software product family (cf. Chapter 3). The PF-CCS framework allows (i) the
specification of the operational functionality of an entire family of systems in
an integrated way, and (ii) the derivation of sub-families (partially configured
systems) and products from a PF-CCS representation of a software product
family. PF-CCS gives the formal relation between the operational behavior
of one system and the operational behavior of all other systems which are
developed as part of the same product family. From an economic point of
view, PF-CCS is the basis to realize a strategic way of reuse at the abstraction
level of the operational functionality. More precisely, parts of the behavior
of one product are reused in the behavior of other products. As we have
pointed out in the last section, especially in the automotive domain the oper-
ational functionality is appropriate in order to characterize and form reusable
entities. With PF-CCS the desired reuse scenarios between model generations
and model series can be realized and addressed. Parts of PF-CCS have already
been published in [GLS08b].

• For PF-CCS we give a structural operational semantics (SOS) (cf. Chap-
ter 3.2). The SOS semantics defines for every PF-CCS specification a corre-
sponding multi-valued modal labeled transition system, which represents the
operational behavior of an entire software product family in a single (multi-
valued) transition system. For the purpose of constructing individual systems
we show how to derive labeled transition systems which represent the opera-
tional behavior of individual products from the multi-valued transition system
representing the entire product family. This gives an integrated view on the
behavior of all products and allows to reason about the behavior of single
derivable systems in the context of the entire product family. In particular,
we can precisely express how the behavior of an individual system is related
to the behaviors of other products of the product family. Due to its opera-
tional semantics, the PF-CCS framework is very close to an implementation
and can be seen as an abstract implementation language which is suitable for
the specification of the operational functionality of software-intensive, reactive
systems.

• We define a restructuring concept for PF-CCS specifications and show is cor-
rectness (cf. Chapter 5). The concept allows to restructure the PF-CCS rep-
resentation of a software product family in a way that individual products or
sub-families are represented with a higher or lower degree of behavioral com-
monalities. In particular for alternative behavior (variation points) this means
that we can restructure a PF-CCS specification into a form where its corre-
sponding multi-valued labeled transition system explicitly shows their greatest
(maximal bisimilar) common part and their differences. Seen in another con-
text, this equals to compute the greatest common part of the behavior of a
set of systems. We show the correctness of the calculation of the greatest
common part using fundamental algebraic laws which we introduce, too. The

15

1. Introduction

restructuring concept is a new contribution which addresses the reuse chal-
lenges found for automotive systems. It has already been partially published
in [GLS08a].

In summary, PF-CCS allows to specify the behavior of a set of systems in an in-
tegrated way as a product family. A PF-CCS specification is independent of a
concrete implementation-platform, but due to its operational semantics still very
close to an implementation—and thus very useful to guide the implementation of
software-intensive automotive systems. PF-CCS differs from approaches such as fea-
ture models and traditional process algebras such as CCS or CSP, as it combines the
modeling aspects which are essential for the specification of the operational func-
tionality of a family of systems in an integrated way in a single theory. Typically,
feature models allow the specification of variability, with the restriction that they
lack a precise (operational) semantics. On the other hand, process algebras come
with a precise semantical foundation but usually treat variability as a kind of non-
determinism. In particular, the concept of variability as it is required by a software
product line can not be implemented by such a kind of non-deterministic variability,
as we will motivate in Chapter 3. Here, the PF-CCS theory addresses this situa-
tion by providing a mechanism to specify (behavioral) variability as it occurs in a
software product family.

Verification of Software Product Line Specific Properties

Formal verification methods are of great interest in the area of reactive systems in
general, but especially for the verification of the behavior of safety-critical systems as
we find them for example in the automotive domain. For standalone systems with-
out variable behavior there is already variety of logics and methods which support
formal verification, e.g. CTL [EL86] and model checking [CGP99] being a common
combination. However, in the context of software product families we typically have
to deal with a large variety of systems, and thus with questions which do not arise
during the construction of stand-alone systems. Typical questions are for example
the existence of a configuration (representing a derivable product) fulfilling certain
properties, the set of all such configurations, or the minimal amount of configura-
tion steps which have to be taken in order to guarantee certain properties for the
configured systems. With this thesis we contribute to the solution of such questions
in the following way:

• We introduce a multi-valued version of the modal µ-calculus [Koz83] which is
tailored to reason about PF-CCS product families. In particular, it allows to
reason about the behavior of a product in the context of the behaviors of the
other family members.

16

1.4. Related Work

• We define a corresponding semantics (cf. Chapter 4.1.2). Formulae of the
multi-valued µ-calculus are interpreted over multi-valued labeled transition
systems, which we use to define the semantics of PF-CCS specifications. We
call our version of the µ-calculus “multi-valued” since the interpretation of a
formula over a given product family yields no longer a two-valued true/false
result, but yields a set of configurations. This set characterizes exactly those
products of the corresponding product family which obey the specified behav-
ioral property.

• We prove that the result of evaluating a multi-valued µ-calculus formula over
a PF-CCS product family coincides with the results of checking the same
property on each of the systems individually (cf. Chapter 4.1.3). This means
that the set of configurations which is the result of interpreting a multi-valued
µ-calculus formula over a PF-CCS product family represents exactly those
products for which the same formula evaluates to true when checking on the
concrete representation of each product directly.

• We establish the connection between our multi-valued µ-calculus version and
existing multi-valued model checking techniques (cf. Chapter 4.2). Thus,
for the evaluation of formulae specified in our multi-valued version of the µ-
calculus we can resort to existing, game-based model checking techniques.

1.4. Related Work

In the past years software product line engineering has gained notably attention in
the academic community, and software product line concepts have been investigated
in various areas of research and by various researchers and groups. Due to the
practical relevance of software product line engineering the visibility in the industrial
context has also constantly been increasing. Consequently, there is a large body of
literature and publications in the area of software product line engineering on various
kinds of topics.

In this thesis we consider on the one hand product families and the underlying
construction principle in general, but on the other hand also the application of this
general construction principle for a very specific kind of product families, where we
are interested in the modeling and the verification of the behavior of a set of reactive,
software-intensive systems as a product family. Instead of collecting the related
approaches here—in a self-contained chapter outside an appropriate context—we
discuss the related approaches within the appropriate context at the end of the
respective chapters in the Sections 2.5, 3.5, and 4.4.

17

1. Introduction

1.5. Thesis Outline

In Chapter 2, we elaborate characteristic properties and concepts of software product
families. We define the concepts precisely in a rigorous mathematical way and
axiomatize the notion of a software product family. The axiomatization represents
the “essence” of any software product family and is the basis for a precise terminology
for the successive chapters. As a counterpart to the axiomatization we illustrate all
concepts informally using the example of a family of stickman drawings. In general,
by skipping the mathematical definitions and just following the explanations and
the running example, Chapter 2 is suitable for a reader who is not yet familiar
with software product family concepts and who seeks an introduction. On the
other hand, the axiomatization gives a mathematically formal view unto a software
product family, which will be of interest in particular for the reader who seeks a
basis for the application of formal methods in software product line engineering.

In Chapter 3 we introduce PF-CCS (Product Family CCS), a process algebraic frame-
work for the specification of the operational functionality of similar systems as soft-
ware product families. PF-CCS product families agree with the operations and
postulates of the axiomatization of Chapter 2. PF-CCS is based on Milner’s process
algebra CCS [Mil80], and extends it with the concept of variability as it is required
for software product families. In particular, PF-CCS allows to model variable, al-
ternative, optional and mandatory behavior. We define the syntax of PF-CCS (cf.
Section 3.1) and develop an operational semantics (cf. Section 3.2) based on multi-
valued labeled transition systems in an intuitive way. The specification framework
PF-CCS is essential for the understanding of the successive Chapters 4 and 5.

Due to the semantics of PF-CCS, which is given in terms of multi-valued, modal
transition systems, PF-CCS is well suited for the verification of behavioral proper-
ties. In Chapter 4, we introduce a multi-valued version of the modal µ-calculus as a
property specification language for system families specified in PF-CCS. We intro-
duce the semantics of our multi-valued modal µ-calculus, justify its “correctness”,
and briefly show how adjusted multi-valued model checking techniques can be used
for the evaluation of multi-valued modal µ-calculus formulae. PF-CCS is suitable to
verify behavioral properties of an entire software product family, and to point out
which variants of a software product family do not meet given behavioral properties.
The discussion of all aspects related to the verification of PF-CCS product families
is deliberately sourced out into an individual chapter, Chapter 4, however, the study
of Chapter 3 is a prerequisite for understanding Chapter 4.

Chapter 4 requires fundamental knowledge of lattices and the modal µ-calculus
[Koz83]. For readers which are not familiar with these topics we provide the relevant
prerequisites in the Appendices C and D.

18

1.5. Thesis Outline

Due to the algebraic nature of a PF-CCS specification we identify certain calcu-
lation rules which allow to re-arrange a PF-CCS specification while preserving its
semantics. Some of this rules are of particular interest for determining the common-
alities of products. In Chapter 5, we will focus on the algebraic laws which allow to
restructure a software product family in order to model its derivable products with
a higher or lower degree of common behavior. We will show the application of these
algebraic laws and illustrate an exemplary calculation with a brief example.

Finally, in Chapter 6 we recall all contributions of this thesis and discuss some
concrete design decisions of the PF-CCS framework. This chapter explains why we
have designed PF-CCS in the way we did. In addition, as part of our future work,
we describe abstraction techniques for PF-CCS software product families, which we
have already developed but which we will not introduce in the scope of this thesis.

The concepts and formalisms which we introduce in this thesis span several areas
of research, for example algebraic specification, process algebras, labeled transitions
systems, multi-valued modal logics, model-checking, lattices, etc. For some selected
topics we briefly introduce the relevant prerequisites—as far as we require them for
the scope of this thesis—in single chapters in the appendix, starting at Page 231.
Note that we do not provide any new research results in these chapters, but merely
recall existing fundamental knowledge.

Roadmap through the Thesis

In Chapter 3 we introduce the framework PF-CCS. For those readers who are in-
terested in the specification of the operational functionality of a set of systems as a
software product family, Chapter 3 is the right point to start with.

Knowledge of Chapter 3 is an essential prerequisite for Chapters 4 and 5. However,
Chapters 4 and 5 are not related themselves, and can be read independently. The
reader who is interested in the integrated verification of the behavior of a set of
systems should read Chapters 3 and 4, while the reader who is interested in restruc-
turing a software product family, and in the calculation of behavioral commonalities
between the products, should consult Chapters 3 and 5.

In Chapter 2 we describe software product family concepts uncoupled of concrete
formalisms or application areas both in a formal and an illustrative way. Chapter 2
can be read independently from all other chapters, however, we suggest to read it
in connection with Chapter 3, since PF-CCS is an example of a concrete formalism
that implements the axiomatization of Chapter 2. For the reader who is new to the
area of software product families, by skipping the formal parts and just following
the example and the intuitive explanations, Chapter 2 provides an illustrative, self-
contained introduction to the area of software product families, which can be read
independently.

19

CHAPTER 2

Formalization of Characteristic Software Product Family Concepts:

What Constitutes a Software Product Family?

Due to a wide range of application areas in which software-intensive systems are
developed in the framework of a software product line engineering process, there is a
magnitude of different notions of what a software product family precisely is. In this
chapter we introduce fundamental concepts, operations, and properties of software
product families which are independent of a concrete realization of the respective
families. These operations embody a universal design/construction concept and
represent the essential ingredients for dealing and reasoning about software product
families, their products, and their commonalities from a constructional point of view.
We define this universal design concept in a precise mathematical and axiomatic way
by means of an algebraic specification. The resulting axiomatization gives a general
characterization of the notion of a software product family. Moreover, it represents a
standardization that establishes the formal basis to determine whether an approach
is a valid realization of a software product family.

Contents

2.1. Software Product Families and Lines: An Informal View 23

2.2. Axiomatization of Software Product Family Concepts . 30

2.3. Modeling Dependencies in Software Product Families . 92

2.4. Discussion . 97

2.5. Related Work . 101

21

2. Formalization of Characteristic Software Product Family Concepts

Up to today, many companies have already successfully adopted a software product
line engineering approach. Some prime examples, which we have already briefly
described in Section 1.1, are the software product line1 approaches realized by the
companies CelsiusTech AB [BCKB03], and Cummins, Inc. [CN01], in which the
software for a family of ships and diesel engines was developed as a software product
line, respectively. A more recent example is a software product line approach for
imaging equipment by Philips Healthcare [Pro99, SEI] where the software product
line comprises systems that support medical diagnosis and interventions. These, and
many other examples of successful software product line approaches, are documented
as part of the Software Product Line Hall of Fame [SEI], to which new examples of
successful, industrial scale software product line approaches are added every year.

Although the software product line community accepts all of these approaches as
instances of software product lines, they exhibit fundamental differences: They differ
for example in

• the kind of products that actually constitute the software product line,

• the kind of commonalities between the products,

• the kind and size of assets from which the products are assembled,

• the implementation platform on which the software product line is based,

• the abstraction level the software product line concepts actually applies to,

• the aims and the application area of the software product line,

• and the process in which the product line and the products are constructed.

In fact, the specific realizations of the concept software product line vary from com-
pany to company, span various abstraction layers in the development process, and
make a comparison between the different approaches very difficult. Nevertheless,
the software product line community considers all these different approaches as “re-
alizations” of software product lines. In this light, the following questions arise
naturally: Why are the approaches of these companies accepted to be realizations
of software product lines? What actually are the software product line specific con-
cepts these companies used in their approaches? Ultimately, these questions reduce
to the more fundamental question: what actually makes a software product line a
software product line?

1In compliance with the terminology used in the respective examples we also speak of a software
product line instead of a software product family. However, note that this imprecise terminology
is only used for the beginning of this section up to Section 2.1, where we explain the difference
between both terms in detail.

22

2.1. Software Product Families and Lines: An Informal View

In the remainder of this chapter we discuss this question and characterize the no-
tion of a software product family formally. Based on common definitions of a
software product line and a software product family, we (informally) collect and
discuss the important concepts behind the constructional aspects of software prod-
uct line engineering, make a distinction between a software product family and a
software product line, but most importantly provide a comprehensive axiomatiza-
tion (cf. Section 2.2) that defines a software product family and its concepts in
an implementation-platform independent, mathematically precise way. The axiom-
atization is a property-oriented specification which gives a rather operational than
denotational characterization of software product families. In particular with respect
to (i) the construction from products by explicitly using commonalities, (ii) the op-
erational handling of the commonalities of products, and (iii) the formal derivation
of other laws that hold for product families, such a property-oriented characteriza-
tion is the basis to reason about software product family concepts on a formal level
independently from the concrete realization of the software product family.

In addition, the axiomatization provides a formal basis to determine whether an
approach is a valid realization of a software product family. In particular with
respect to Chapter 3, where we introduce a framework based on the process algebra
CCS [Mil80] for the specific purpose of specifying the behavior of a family of similar
systems, the axiomatization is the basis to show that this particular CCS-based
realization indeed allows the specification of software product families that fulfill
the axioms. Moreover, the axiomatization gives us the formal basis to reason that
the CCS-specific realization of Chapter 3 is only one possible choice, that the CCS-
specific concepts and mechanisms are not essential in order to realize the product
family concepts, and that other realizations (for example based on other process
algebras like CSP or ACP) are equally possible.

2.1. Software Product Families and Lines: An Informal View

Despite their different realizations, the initially mentioned examples of successful
software product line approaches are based on a common philosophy. At its heart
is the idea that a set of similar systems can be constructed more efficiently if these
systems are developed in combination rather than independently from each other,
taking advantage of the commonalities among the systems in a planned way. This
idea is fundamental to all popular characterizations of software product lines. It is
for example expressed in the well-established definition of a software product line
given by Paul Clements and Linda Northrop:

Definition 2.1 (Software Product Line [CN01]). A software product line is a set of
software intensive systems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or mission and that are developed
from a common set of core assets (in a prescribed way).

23

2. Formalization of Characteristic Software Product Family Concepts

A similar characterization of program families—coined already in the 1980s and
therefore related more closely to programs rather than to systems—which also em-
bodies this fundamental idea of commonality is given by David L. Parnas:

Definition 2.2 (Program Family [Par76]). We consider a set of programs to con-
stitute a family, whenever it is worthwhile to study programs from the set by first
studying the common properties of the set and then determining the special properties
of the individual family members.

Commonalities within a Set of Systems

Central to both definitions, Definition 2.1 and Definition 2.2, is the aspect of com-
monalities between systems (respectively programs). In particular for software-
intensive systems we observe many kinds of commonalities, some examples are:

• A trivial—and for most people probably not very important—commonality
between systems is the number of lines of code, or the space in terms of memory
which is necessary to store or execute the program code of individual systems.

• A more interesting commonality is whether systems with completely different
functionalities and different implementations have the same conceptual com-
ponent structure or architecture. For example, an online-banking system and
a system realizing a webshop, which both operate in a distributed way via the
Internet, can share the same client-server architecture, although they are used
for different purposes and exhibit different functionalities.

• Systems have commonalities with respect to their realization, comprising for
example the choice of a specific software/hardware platform, middleware, pro-
gramming language, or program library. A typical example of such a kind of
commonality is that different systems use the Java Enterprise Edition [Ort09]
as their realization platform.

• Systems have commonalities regarding their functionality, i.e. their black-box
functionality, but especially also their operational behavior. For example, two
systems that produce a sorted sequence can use different sorting algorithms,
e.g. Quicksort and Mergesort, to actually sort the sequence. Another example
is the eCall-function [Com09], which is a function that is (compulsorarily) com-
mon to all modern cars produced in certain EU countries. It is implemented
differently across different car models, but exhibits the same observable be-
havior that an automatic emergency call is always initiated in a specific way
in the case of a crash. As we will see in the Chapters 3–5, in particular the
commonalities in the (operational) behavior of systems will be central to this
thesis, and in the remainder of this thesis we will introduce a framework for
the specification of the operational functionality of set of systems as a product
family, which allows to model and to reason about behavioral commonalities.

24

2.1. Software Product Families and Lines: An Informal View

• Another commonality between systems is the way, e.g. the development process
or the methodology, in which they are developed. For example, systems may
be developed according to the V-Model XT [BR05], Extreme Programming
[Bec00], and may for example also comprise the methodical concept of applying
unit-tests.

• Systems have commonalities with respect to non-functional aspects such as
quality attributes, e.g. the degree of maintainability, or the fact that systems
are developed by the same company or even the same team of developers. Such
kinds of commonalities are for example interesting with respect to the product
costs, the estimated makespan of a system, or even the quality of the systems.

• From a marketing point of view, an important commonality of systems is
the market segment together with the target group, at which the systems
aim. Such economic commonalities are for example important for the sales or
administration process which is associated with the production process.

• Finally, an important commonality between the systems produced by the same
company is the branding of all systems with the company’s corporate identity.
For software-intensive systems a prominent example is the uniform look and
feel throughout the product range of Apple products, especially within the
series of Mac OS operating systems [App10]. Car manufacturers also strive
for branding their products with a distinctive company image by designing for
example the user interface in a company-specific way which creates a uniform
usability experience throughout the entire model range of the manufacturer.

Regarding the integrated development of a set of similar systems, commonalities be-
tween the systems can incorporate into the system development process to different
degrees, at different stages, and for different purposes. At a first level, consider a
company which develops a set of products which happen to have certain commonal-
ities. Here, the commonalities between the systems are neither initially planned nor
systematically exploited, and the systems are developed independently from each
other with respect to the commonalities. Such a scenario is typical for systems
which are originally planned as single systems only, and from which several variants
are derived in the course of time in an ad-hoc way, e.g. by “copy-paste” operations.

At a second level, a company realizes that there are certain commonalities within the
set of systems the company produces. In order to increase the efficiency in the actual
production process, the company takes explicitly advantage of the commonalities
between the systems in a planned way right from the beginning of the development
process. Thereby, the commonalities can contribute differently to increase the overall
development efficiency. For example, some commonalities are used to increase the
efficiency of the sales process, some are beneficial to decrease the production costs,
and some increase the efficiency of the actual construction of the products. For

25

2. Formalization of Characteristic Software Product Family Concepts

software-intensive systems, especially those commonalities are interesting which can
be used to increase the efficiency in the construction of the systems. More precisely,
for the construction of each system, those parts which the system has in common
with other systems, are explicitly determined and used in the assembly of each
system. Compared to the first level, this represents a methodological exploitation
of the commonalities between systems. In this context, i.e. if we consider a set
of systems from the point of view of constructing each system by making use of
common parts, we also speak of a family of systems.

At a third level, the methodological exploitation of commonalities for the construc-
tion of the family members—and the resulting efficiency increase—can even affect
the development of new systems, which are no family members so far. For example,
imagine a company X which produces a family of engine control units for differ-
ent types of car engine systems, by explicitly making use of commonalities for the
construction. In the situation where company X gets an order by customer Y to
produce a new system which happens to be similar to one of X’s existing family
members, company X might even offer its customer Y to slightly modify its original
requirements for the new system in a way that it can basically be realized as a mem-
ber of the existing family. In this case, company X can produce the new product
more efficiently with little additional effort (by making use of the commonalities
with other family members), and thus offer it to a lower price to customer Y .

Software Product Families

Based on this consideration of the kinds of commonalities and the way in which
commonalities are used for the development of a set of systems, we characterize a
software product family (informally) as shown in the following definition. A formal,
precise definition is based on the axiomatization and will be given in Definition 2.10
in Section 2.2.4 on Page 89.

Definition 2.3 (Software Product Family (Informal Characterization)). We call
a set of systems a software product family if the systems are constructed in an
integrated way as members of the family by explicitly making use of the commonalities
between the members in a systematic manner.

With this definition we take over main ideas of the prominent definitions of Clements/
Northrop and Parnas (Def. 2.1 and 2.2), but highlight the aspect of being constructed
in an integrated way, based on the exploitation of inter-product commonalities. In
particular, for a software product family it is essential that commonalities between
systems not only exist, but that these commonalities are explicitly used in a sys-
tematic way for the construction of each system. This makes a software product
family a methodical concept, i.e. a software product family emphasizes the method-
ical exploitation of commonalities for the construction of the products of a software
product family.

26

2.1. Software Product Families and Lines: An Informal View

But how can commonalities explicitly be used for the construction of individual
products? How has the notion of commonality to be understood at the level of
constructional units from which each system is assembled? How are such common-
alities actually modeled? These questions address the architecture and structure of
the software product family and its members, and have to be answered at the level
of the construction units from which the products are assembled. For our approach
we take a constructive view on a product family and its products, and characterize
a product family by means of atomic construction units and functions that describe
how the respective products are constructed. At this level, constructing a set of
systems in an integrated way means to explicitly handle the commonalities and dif-
ferences between the systems. Rather than specifying common parts, we specify the
points in which the systems differ, and use these differences to indirectly define the
commonalities, and to reason about them.

From this point of view, a software product family is more than just a set of (un-
related) products. It is a set of products represented in an integrated, combined
way, which exactly defines how each product is constructed from a set of construc-
tion units and (composition) functions. This integrated representation is basically a
kind of construction plan of the software product family and its products. Since such
a construction plan is essential for a product family, we usually do not distinguish
between the software product family itself, i.e. the set of products, and the construc-
tion blueprint/representation and refer to both by the term software product family.
As we will see in Section 2.2, we specify constructional units, the operations to as-
semble the family members from constructional units, and the operations to derive
individual family members from the representation of a software product family in
a mathematical way by means of an axiomatization. This formalism allows us to
define the concepts of a software product family in a systematic way, as well as to
reason about properties of a software product family and its products.

Software Product Line vs Software Product Family

Recall the different kinds of commonalities which we have identified at the beginning
of this chapter (Page 24). While many of them can be used to increase the efficiency
in the construction of a set of products, some of them rather improve the efficiency
of other aspects which are associated with the commercial production of software-
intensive systems. For example, the commonality of addressing the same target
group in the market rather increases the efficiency of the sales process than the
efficiency in the product construction. In this light, many commonalities which are
irrelevant for the construction of the products can be used to increase the efficiency
of the entire product development. In particular, beside the constructional aspect,
increasing the efficiency by exploiting such commonalities is an essential factor for
the success of a software product line as a commercial/marketing concept.

In this thesis we only consider to increase the efficiency in the construction of prod-
ucts. According to the software product line community [CN01], this is only one

27

2. Formalization of Characteristic Software Product Family Concepts

specific aspect which is usually considered in the context of a software product line.
For the differentiation from our notion of a software product family which we have
given in Definition 2.3, and the general idea of a software product line, as it is
for example emphasized in the definition of Clements/Northrop (Definition 2.1), we
follow Parnas. At his keynote talk at the Software Product Line Conference 2008
in Limerick [Par08] he drew a clear distinction between the engineering concept of
a program family, which he has coined in the 1970s, and the economic/commercial
concept of a software product line. He pointed out that (i) a program family actually
is intended to be an engineering concept which deals with the constructional aspect
of software product line engineering, (ii) and that an explicit differentiation between
the economic aspect of software product line engineering, and the technical aspect
of how each product is constructed, is essential. For the scope of this thesis, we
take over this differentiation in the same way to distinguish between our notion of a
software product family and the wider concept of a software product line. Thereby,
we do not want to give a precise definition of a software product line. We merely
want to separate between the two notions in order to restrict the scope of this thesis
clearly to the constructional aspect, i.e. to software product families.

Both terms, software product line and software product family refer to a set of
software-intensive systems which are developed as part of a software product line en-
gineering process. Software product line engineering denotes a software development
paradigm which is directed to the efficient construction of a set of software products
for a particular market segment or mission. However, the terms software prod-
uct line and software product family highlight different aspects of software product
line engineering: an economical/holistic and a constructional/engineering aspect.

When speaking of a software product line, we emphasize the economic/commercial
aspect of software product line engineering. The term software product line denotes
a set of (software) products which are offered to a customer. Here, product actually
refers to a commercial product, i.e. a commodity, and product lining denotes the
marketing strategy of offering several products with commonalities to a customer
for sale. With the marketing concept of a product line a company seeks more than
just to improve the efficiency in the production process. As the example of a unique
product branding within the product range of a company shows, the advantages of
offering a set of products as a product line can be beyond constructional efficiency
reasons. In particular, the definition of a software product line given by Clements
and Northrop (Def. 2.1) emphasizes these kinds of economic aspects.

The scope of the software product line and the choice of products which are offered
as part of a product line are driven by economic aspects based on a market analysis.
Typically, such economic aspects are for example the quantitative improvement in
productivity, time to market, product quality, higher customizability, and customer
satisfaction. Beside these aspects, bringing a software product line successfully to
market strongly depends on other entrepreneurial and organizational factors such as

28

2.1. Software Product Families and Lines: An Informal View

• the initial cost overhead for developing and establishing the software product
line and the corresponding risk analysis,

• the realizability within a given organizational structure,

• an adequate production and development management which allows to plan
and keep track of the products and variable parts (, in particular concerning the
question of how the reusable assets are made available within the company),

• the system landscape and infrastructure,

• training costs, and finally

• an adaption of the entire company philosophy.

Thus, building a successful software product line and establishing it in the market
requires more than the technical expertise to actually construct a set of products as
part of a software product family, it also requires skillful economic and organizational
management. A major share of the entire research carried out in industry and
academia is dealing with the economic aspects of software product line engineering.

However, both aspects, the economic and the constructional one, are frequently
confused and mixed. After the preceding discussion, we fix the following picture
for the scope of this thesis: In general, the products offered as part of a software
product line do not necessarily have to have any commonalities concerning their
constructional/technical realization. Actually, they can be constructed as part of
different software product families, or even as independent systems. Vice versa,
systems which are constructed from the same software product family can be offered
as products by several software product lines. However, ideally, for an efficient
construction of the products of a software product line, they should be part of the
same software product family. Thus, the degree of efficiency in which a software
product line can be realized depends strongly on the degree to which the products
of the software product line are actually members of the same product family.

The remainder of this thesis is devoted exclusively to the engineering aspect of how
to construct a set of systems as a software product family. In particular, we will not
deal with economic, marketing or “non-constructive” aspects of software product
line engineering and questions related to software product lines. In the light of
the preceding discussion this means that we investigate and precisely define what a
software product family is.

29

2. Formalization of Characteristic Software Product Family Concepts

2.2. Axiomatization of Software Product Family Concepts

The aim of a software product family is to guide the construction of a set of sys-
tems by describing how each system can be constructed in a systematic way that
explicitly makes use of the commonalities with the other systems. Thereby, it is not
important whether we consider a product family of code fragments, conceptual com-
ponent structures, functions, or processes, since the basic concepts of constructing
systems as part of a software product family are always the same and independent
of its specific realization. In particular, the act of constructing the systems can be
described by certain realization-independent operations and laws which characterize
the way in which the operations work. Thus, from a mathematical point of view we
can see a software product family as an algebraic structure, i.e. an algebra. Since we
emphasize in particular the laws, i.e. the axioms, which define the interplay between
the operations of such an algebraic structure, we also speak of an axiomatization.

We formalize software product family concepts as an axiomatization since we are
interested in a property-oriented, formal specification of the conceptual idea behind
software product families, which is independent of the specific implementation and
realization of a concrete software product family, and which characterizes the entire
class of software product families. Such an axiomatization is the formal basis to
reason about properties that universally hold in the class of product families. In
particular, it comes with a profound body of proof and derivation techniques, that
allow to conclude new laws and theorems. In addition, an axiomatization speci-
fies the product family concepts in terms of the characteristic operations and laws
that are typical for any software product family. Further reasons for an axiomatiza-
tion/algebraic specification are given at the end of this chapter in Section 2.4.1.

We introduce the axiomatization, i.e. its sorts, operations and axioms, step-by-step
and explain every concept in detail. Finally, this results in an exhaustive algebraic
specification of the abstract computation structure of software product families,
which is shown in Figure 2.11 on Page 90.

As a counterpart to the formal specification we illustrate the operations and axioms
in an intuitive way using the example of a family of stickmen drawings. Figure 2.4a
(Page 42) shows some examples of stickmen. We construct the stickmen drawings
as a product family, i.e. we assemble each stickman from a set of atomic shapes
according to the construction blueprint which is specified by the product family.
Although stickmen drawings are not software artifacts at all, technically, the product
family of stickmen is one example of a computation structure for the sort SPF α.

Before we introduce the algebraic specification of software product families in Sec-
tions 2.2.2–2.2.4 we briefly recapitulate the preliminaries on algebraic specifications
in the following section.

30

2.2. Axiomatization of Software Product Family Concepts

2.2.1. Preliminaries: Algebraic Specification

The axiomatization itself will be given by means of an algebraic specification. With
an algebraic specification we have chosen a specification technique that allows to
(formally) characterize a class of computation structures, i.e. in our case the class of
software product families. Following mainly [Wir90], we sketch the main concepts
of algebraic specifications very briefly in this section. For a detailed introduction of
the necessary concepts and the general idea of algebraic specifications we refer to
[Wir90, EM85]. Note that syntactically we follow [Bro98, BFG+93a, BFG+93b] to
denote the algebraic specification.

With the algebraic specification of a software product family we specify the sort
SPF α which axiomatizes the operations and laws which are characteristic of software
product families. In general, an algebraic specification (Σ,Eq) consists of a syntactic
signature Σ and a set Eq of equational axioms. The (syntactic) signature Σ = (S,F)
consists of a set S of sorts (sort names) and a set F of many-sorted function symbols
together with a mapping type : F → S∗ × S which associates sorts to the function
symbols. Given the signature Σ = (S,F) we call any algebra A a Σ-algebra if
it consists of a family {MA

s }s∈S of non-empty carrier sets MA
s , and a family of

functions fA, such that A associates a carrier set MA
s to every sort s ∈ S, and a

function fA : MA
s1 × · · · ×MA

sn → MA
sn+1

to every function symbol f ∈ F , where
type(f) = (s1s2 . . . sn, sn+1). We denote the class of all Σ-algebras by ALG(Σ).
Every Σ′-algebra with a conformant signature Σ = Σ′ which fulfills the equations Eq
of an algebraic specification is called a model of the algebraic specification (Σ,Eq).

A Σ-homomorphism relates the sorts and functions of two Σ-algebras, which usually
operate on different carrier sets, in a way that the operations are preserved. Formally,
a Σ-homomorphism h : A → B between two Σ-algebras A and B is a family of
maps {hs : As → Bs}s∈S such that for each f : s1, . . . , sn → sn+1 ∈ F and each
a1 ∈ As1 , . . . , an ∈ Asn we have hs(f

A(a1, . . . , an))) = fB(hs1(a1), . . . , hsn(an)).

Every signature Σ induces a set of terms Terms(Σ,X) which can be formed from
the function symbols and a family X of S-sorted, free variables. Terms without
variables of X are called ground terms and will be denoted by Terms(Σ). For
any signature Σ, a fundamental Σ-algebra is the so-called term algebra T (Σ,X)
which has as carrier sets for each sort s ∈ S the set of terms Terms(Σ,X)s, and
in which we associate every function symbol f ∈ F with a corresponding function
fT (Σ)(t1, . . . , tn) =def f(t1, . . . , tn) for each f : s1, . . . , sn → sn+1 ∈ F and t1 ∈
Terms(Σ,X)s1 , . . . , tn ∈ Terms(Σ,X)sn , with the meaning that the evaluation of
fT (Σ) at (t1, . . . , tn) is the term “f(t1, . . . , tn)” ∈ Terms(Σ,X). Thus, the functions
in the term algebra represent the (syntactic) construction of terms over signature
Σ. If the terms are ground terms only, we call the term algebra the ground term
algebra and write Terms(Σ).

31

2. Formalization of Characteristic Software Product Family Concepts

For every Σ-algebra A, there exists a Σ-homomorphism v : T (Σ,X) → A which
associates terms with the elements of A, which is called interpretation. For the
ground term algebra, this Σ-homomorphism is uniquely defined, and is called term
interpretation. Every Σ-algebra A for which all elements of its carrier sets can
be denoted by terms over T (Σ), i.e. where the corresponding Σ-homomorphism v :
T (Σ) → A is surjective, is called a Σ-computation structure, or computation structure
for short. In this case, we also say that the Σ-algebra A is term-generated. Since the
homomorphism is surjective, the term interpretation induces an equivalence relation
on the set of terms. Every Σ-computation structure is isomorphic to the ground term
algebra modulo this equivalence relation on the set of ground terms. Practically, for
the scope of this thesis, computation structures for the sort SPF α represent software
product families for specific purposes in a form which we can actually use to work
with.

The relation “there exists a Σ-homomorphism from Σ-computation structure A to
B” defines a partial order on the set of all computation structures. A so-called
abstract computation structure is a class of Σ-computation structures which are
isomorphic w. r. t. this relation. Classes of isomorphic computation structures form
a lattice under this partial order. In summary, with the algebraic specification
of the sort SPF α we characterize the abstract computation structure of software
product families, i.e. the class of all Σ-computations structures which fulfill the
axioms required by the algebraic specification.

2.2.2. Operations for Constructing a Software Product Family

In Definition 2.3 we have already given an informal characterization of a software
product family. Central to this definition is the idea that a software product family
represents the entirety of a set of similar systems, and at the same time incorporates
the knowledge of how every single product is precisely constructed. In order to
achieve this, the representation of a product family has to comprise the information
of

• the common parts of the products,

• the product-specific, variable parts, and

• the information of how these parts have to be combined in order to construct
each of the products.

We realize this by representing an entire software product family as a single term
of sort SPF α. The sort SPF α is a parameterized sort whose elements represent
software product families defined over the generic sort α. A parameterized sort

32

2.2. Axiomatization of Software Product Family Concepts

specification offers an abbreviatory notation technique which allows to represent a
set of concrete specifications in a comfortable way. In order to obtain a concrete
sort (specification) we have to replace the generic placeholder α with a suitable ac-
tualization, i.e. a concrete sort such as for example a sort representing Java software
components. Depending on the choice of α, the parameterized sort SPF α repre-
sents many kinds of actual software product family sorts, e.g. the sort of software
product families of Java software components, the sort of software product families
of AUTOSAR components [GBR08] running on ECUs (electronic control units) in
an automobile, the sort of software product families of functional units represented
by Simulink [Inc09] models, or the sort of software product families of implementa-
tion independent components specified by I/O-automata or process algebraic terms.
However, the product family concepts are independent of the concrete choice of α.

Every element of sort SPF α can be represented by means of four functions: asset,
‖, ⊕, and ntrl. In particular, nesting and combining these four functions in a alge-
braically correct way always yields an element of sort SPF α. In the context of an
algebraic specification such functions are called constructors. We introduce these
four constructors in the following Sections 2.2.2.1–2.2.2.3.

Note that the (term) structure which we can built by composing these constructors
is basically that of a binary AND/OR tree [LS93, Sch01], if we interpret the com-
position operations as AND -nodes, and the variants operators as OR-nodes. While
an AND/OR-tree is a structure that is commonly known, we have not simply used
this structure for the specification of software product families, since (i) there is no
set of commonly accepted laws for AND/OR-trees which allow a restructuring of
such a tree, similarly to the way in which we use the axioms for the constructors to
restructure the term representation of an element of sort SPF α, and (ii) since we
are in particular interested for our considerations in the operations such as selection,
determination of mandatory parts, etc., which are not predefined in the context of
an AND/OR-tree, either.

2.2.2.1. Core Assets and Neutral Element

Core Assets

All systems which are defined by the product family are assembled from a common
set of components/constructional entities. The atomic components are the basic
building blocks of a product family, which are not decomposed further in the con-
text of the product family. In the context of a software product family we call
such basic components (core) assets. The common set or pool of all core assets
is called the universe. Since the core assets are the smallest entities of composi-
tion, commonalities between the products are expressed in terms of common assets
and asset-structures. Thus, in a component-based approach where we can associate

33

2. Formalization of Characteristic Software Product Family Concepts

commonalities to atomic assets, we can reason about commonalities at the level of
asset structures. In particular, with knowledge of the construction blueprint of each
product, we can reason how certain commonalities are present in each product on
basis of the assets that exist in the product (cf. Section 2.2.3.7).

We represent a core asset by a parameterized function asset with the following sig-
nature, where α is a placeholder for an arbitrary sort:

asset : α → SPF α (2.1)

The function basically wraps an element of the generic sort α and yields an element
of sort SPF α. Illustratively, for an a ∈ α, the term asset(a) represents an elementary
building block with the name a. While technically, such a wrapping is necessary in
order to realize a set of type-compatible functions, semantically the wrapping means
to abstract from all sort-specific properties and laws that hold for elements of sort
α. This means that we use elements of the sort α simply to distinguish between
different kinds of assets in a more comfortable way, rather than to define several
different (constant) asset functions directly for the sort SPF α.

Note that with a single atomic asset we can already construct a software product
family. Formally, for any a ∈ α the term asset(a) represents already a software
product family. Obviously, a single asset represents a quite trivial software product
family—as it only allows to derive the single product asset(a)—but it is still a valid
product family in our sense.

Neutral Element

Beside atomic assets, there is another constructor for the sort SPF α, called ntrl.
Similarly to the constructor asset, which has the character of a constant as it does
not have an argument of sort SPF α, the function ntrl is a constant with the signature

ntrl : SPF α (2.2)

The constructor ntrl is a special kind of element which is used to explicitly model
the empty product family . As we will see in Section 2.2.3.8, the neutral element and
its meaning is essential to model the idea of optional parts.

34

2.2. Axiomatization of Software Product Family Concepts

2.2.2.2. Composition

Every single product of a product family is constructed by assembling the necessary
subset of core assets in an appropriate way. This immediately requires that we have
a notion of composition. We model the composition in the context of a product
family as a function

‖ : SPF α, SPF α → SPF α (infix) (2.3)

The operation ‖ is a binary function which allows to compose two elements of type
SPF α, yielding again an element of the same type, i.e. a product family. We call ‖
the composition operation and usually denote it using an infix notation. An element
which is the result of a composition is called a compound element. Note that every
product of a product family is a compound element in the sense that it can be
represented by a term which is a composition of core assets, only. As we will see
in the following Section 2.2.2.3, variation points themselves are also of sort SPF α.
For the composition this means, that we can combine assets, variation points, and
compound elements in a hierarchical way yielding composed objects of sort SPF α.

The composition operation—as we define it for the sort SPF α—abstracts from the
information of how the composition is actually realized by the underlying compu-
tation structure, and even by the specific sort α. It just defines the elements of
sort SPF α which are combined, forming a compound, more complex element which
again is of the same type SPF α. The actual meaning of the composition operation
is specific for the individual computation structure. For example, the composition
for a product family SPF JAVA of Java [GJSB05] code structures (of sort JAVA)
could be realized by superimposition [ALMK10], or the standard Java-inheritance
mechanism [GJSB05], while the composition in a product family SPF CSP of CSP
processes [Hoa85] can be realized as a parallel execution of processes.

2.2.2.3. Variation Points and Variants

As we have already stated in the introduction, a software product family is always
a component-based system. The two functions asset and ‖ are essential for every
component-based system since they realize the concept of assembling a product from
smaller parts. However, in contrast to the “traditional” idea of component-based
systems (cf. Section 1.1), a software product family additionally comprises the
notion of variability, realized by the concept of alternative and optional parts. It is
only by this apparently little extension that a software product family achieves the

35

2. Formalization of Characteristic Software Product Family Concepts

kind of reuse which was striven for (but not achieved) by all preceding component-
based approaches.

In general, variability denotes the changeableness and the diversity in a set of distin-
guishable entities. Especially in the context of a software product family, variability
denotes the variation between individual products. Since we are interested in the
construction of the products, i.e. in how the products are actually assembled, mod-
eling variability in a software product family essentially means to specify

• the points in which individual products differ,

• and the actual differences, i.e. the concrete instances/values for the different
choices.

The function ⊕ realizes these two requirements. It makes the variability in a software
product family explicit by introducing the notion of variation points and variants.

⊕ : SPF α, SPF α, NAT → SPF α (2.4)

We call the function ⊕ the variants operator. It is a function that represents a point
(in the specification of a product) which requires the alternative selection between
its two arguments of type SPF α. We call such a point a variation point and its
arguments variants. If both variants of a variation point are equivalent (with respect
to a certain equivalence relation), we call the variation point trivial. We use a mixfix
notation for the variants operator, i.e. usually we write

V1 ⊕n V2

instead of
⊕(V1, V2, n)

to denote a variation point with the variants V1 and V2.

Since a variation point is of sort SPF α, variation points can be used like assets or
composed objects as “regular” construction entities. Illustratively, a variation point
represents a kind of placeholder or “hole” in the blueprint of a product which is
“filled” with exactly one of its variants when constructing any product of the software
product family. The meaning of a variation point V1⊕nV2 is that in any product only
one of its two variants V1 or V2 will be present. In particular, no product of the entire
product family will contain both variants simultaneously. The selection between the
variants is made deterministically according to a predefined configuration. For the
term representation this means that the entire term representing a variation point
(in the software product family) will be replaced by the subterm which represents

36

2.2. Axiomatization of Software Product Family Concepts

the selected variant (in one of the concrete products). We discuss the concept of
configuration and the meaning for the term representation in more detail in Section
2.2.3.3.

Compared to traditional component based approaches, the explicit representation
of variation points as constructional entities is a key idea of strategic reuse: in a
software product family we not only collect the reusable elements (as also done in
a traditional component based approach), but we also specify exactly the way how
and the position where an element has to be integrated into the respective product,
if the element will be actually present in the product.

The respective act of selecting for a variation point the variant which shall exist
in the final product is called configuration process. In order to keep track of the
information which variants are chosen for which variation points we use the concept
of a configuration: A configuration is any mapping which represents the information
which variants are chosen for which variation points. If a configuration associates
one variant to every variation point of the software product family, it identifies
exactly one product in a unique way.

We require that the configuration decision can be taken separately for every unre-
lated, individual variation point. This implies to have a unique reference for every
variation point. Thus, whenever a new variation point is added to a product family,
it is labeled with a fresh identifier. Here—similarly to the idea of a fresh variable
in a logical formula—fresh means that the identifier is not used so far as the label
of any other variation point which is already included in the product family. In
order to check the freshness we provide a function has ntVP which is also precisely
defined in an algebraic way by means of axioms. However, for didactic reasons we
will defer the corresponding discussion of the function has ntVP together with the
introduction of the corresponding axioms to Section 2.2.3.9.

Further, note that due to the distributive law (Axiom A-3, Page 90) we can transform
the term representing a product family in a way that the same variation point (with
the same identifier) may appear multiple times within the term. In such a situation,
the term representation can actually contain multiple variation points with the same
name. However, this is not problematic as we will precisely discuss in Section 2.2.3.9,
and can be ignored for now.

The (fresh) identifier represents the third argument of the respective variants oper-
ator. It is of of type Nat (representing the natural numbers). We have chosen the
labels to be of sort Nat for the sake of simplicity, since it (i) provides a sufficient
amount of different elements in order to label the variation points consecutively, and
(ii) it eases the technical treatment of dealing with variation points in an algebraic
specification. However, any other sort which provides a sufficient amount of different
elements, e.g. a sort representing sequences of characters, is suitable, too. Note that

37

2. Formalization of Characteristic Software Product Family Concepts

similarly to the sort SPF α, also the sort Nat is specified by means of an algebraic
specification which can be found in Appendix A (cf. Page 233).

The variants operator—as it is introduced in Equation 2.4—allows to model the
direct choice between (only) two alternative variants. Certainly, in a realistic context
we can easily think of situations which require to express a choice between more
than two, say n, variants. However, important for modeling a software product
family is only the fact that a corresponding variants operator models the choice
of exactly one variant out of a (well-defined) set of (countably) many variants. In
fact, conceptually there is no difference between a variants operator which provides
the choice between two alternative variants and a general version which offers a
direct choice between another (finite) number of alternative variants. Nevertheless,
a general variants operator— offering a choice between more than two variants—
comes with some technical overhead concerning its algebraic specification. Thus, for
the sake of simplicity we will defer a precise definition of a general variants operator
and the corresponding discussion to Section 2.2.3.10, and introduce the following
axiomatization with a binary variants operator, only.

However, in some of the examples we will use the general version of the variants
operator already prior to its formal definition. We denote it in an mixfix-style
where the possible variants are represented as a finite sequence (denoted by 〈. . . 〉-
brackets), and the unique identifier of the variation point is denoted as a subscript
to the operator symbol. We write for example

⊕42

(

〈V1, V2, V3, V4〉
)

to represent a general variation point with the unique identifier 42 that offers an
alternative choice between the four variants V1, V2, V3 ,and V4.

Since a variation point gives reason to different products, i.e. one product which
contains the one variant, and another product which contains the other variant,
every software product family naturally induces a set of products, given by all com-
binatorially choices for its variation points.

Note that for the entire axiomatization we do not provide a (sub-) typing concept,
i.e. we do not sub-divide the elements of sort SPF α into sub-sorts, as it is com-
monly done [LW94] for example for the data types of object-oriented programming
languages. This means that the kind of the variants of a variation point cannot be
further restricted in the sense that both its variants must be elements of the same
subtype. Although this does not affect the conceptual construction principle behind
a variation point, it still has effects for some practical questions with respect to
the notion of mandatory parts of a software product family. Since a more detailed
discussion of this topic requires the definition of functions that are still to be intro-
duced in the following, we defer a detailed discussion to Section 2.4.3, and the end
of Section 2.2.3.8.

38

2.2. Axiomatization of Software Product Family Concepts

2.2.2.4. Example: A Product Family of Stickmen Drawings

As a running example, we describe the software product family concepts which we
introduce in this chapter with an illustrative example of a concrete product family.
We use a slightly unconventional running example: we illustrate the concepts with a
computation structure of stickmen drawings, which are no software-artifacts at all.
Although the example might not seem to be appropriate at a first glance, it is very
suitable to visualize the concepts and axioms in a graphical way, which greatly eases
the understanding of the concepts, especially for someone who is not yet familiar
with algebraic techniques and methods. In addition, it underlines the fact that a
product family constitutes a construction concept which is independent of the kind
of its assets (i.e. the sort α) and the way how its assets are actually constructed.

Formally, we introduce the sort Stickman in order to represent stickmen drawings
by terms. The algebraic specification of sort Stickman is shown in Figure 2.1. For
the scope of this example it is sufficient that the sort Stickman consists merely of a
set of constants (nullary functions), as we use these constants only to represent the
graphical shapes with the same name. Technically, by instantiating the parameter-
ized sort SPF α with the sort Stickman we can represent product families of stickman
drawings of sort SPF Stickman.

SPEC StickmanSpecification = {
defines sort Stickman

Face : Stickman

Legs : Stickman

Smiling : Stickman

Sad : Stickman

Normal : Stickman

Female Torso : Stickman

Male Torso : Stickman

Coffee : Stickman

Left Hand : Stickman

Stickman generated by Face, Legs, Smiling, Sad, Normal, Female Torso

Male Torso, Coffee, Left Hand

}

Figure 2.1.: Algebraic specification of the sort Stickman.

Computation Structure of Stickmen Drawings

In order to illustrate the terms of sort SPF Stickman graphically, we use the concrete
computation structure of stickmen drawings as an interpretation of the terms of sort

39

2. Formalization of Characteristic Software Product Family Concepts

Figure 2.2.: Basic graphical shapes in the computation structure of stickmen draw-
ings. Each shape is represented by the corresponding constant with the
same name shown in Figure 2.1.

SPF Stickman. Some examples of such stickmen drawings are shown in Figure 2.4a
on Page 42. Every stickman is assembled from primitive, graphical shapes which
are shown in Figure 2.2. We interpret each element of sort SPF Stickman with the
respective shape of Figure 2.2 that has the same name.

In the computation structure of stickmen drawings, we interpret the composition
function ‖ by the graphical combination of primitive shapes, i.e. by putting two
shapes together in an intuitively correct way, respecting for example the points where
we combine two primitive shapes, and the orientation/rotation of both shapes with
respect to each other. Certainly, this does not prevent the creation of irrational
compound elements, i.e. it does not prevent to combine for example the shape Legs

directly with the shape Face. While from the point of view of the computation
structure of stickman shapes, such an irrational combination is not desired and can
be prevented by respective axioms within the sort α, from the point of view of the
software product family of sort SPF Stickman, such combinations are not restricted
and represent valid product families.

Regarding the interpretation of variation points, we interpret the operation ⊕ in the
computation structure of stickman drawings as empty (white) rectangles surrounded
with a dashed frame. The name n of the variation points is given by a label “VPn”
which is attached to the rectangle with a solid arrow which originates at the label
and points into the rectangle. The variants of every variation point are represented
by shapes surrounded by dashed rectangles that have the same size as the rectangle
of the variation point, and that are connected to the corresponding variation point
by dashed lines. In order to derive a concrete stickman drawing a dashed rectangle

40

2.2. Axiomatization of Software Product Family Concepts

Spf :=
(

(

(asset(Coffee)⊕3 asset(Left Hand)) ‖ Male Torso
)

⊕2 asset(Female Torso)
)

‖
((

(

asset(Smiling) ⊕1 asset(Sad)
)

‖ asset(Face)
)

‖ asset(Legs)
)

Figure 2.3.: Term representation of a software product family of sort SPF Stickman.

will be replaced by exactly one of its associated alternative variants. This is done in
a way that the rectangles of the variation point and the respective variant overlap.

A very simple example of a product family of sort SPF Stickman is given by the
following term

asset(Coffee)

As it does not contain any variation point, it corresponds to a single product only,
which is represented by the same term. Another example of a software product
family of sort SPF Stickman is given by the slightly larger term Spf shown in Figure
2.3. It represents a product family of stickmen which comprise complete figures with
male and female torsos. All of them have either a smiling or sad facial expression.
The male stickmen variants can additionally hold a coffee cup in their left hand.
Figure 2.4a shows three examples of stickmen drawings in the concrete computation
structure of stickman shapes, which can be derived from the product family Spf .

The term shown in Figure 2.3 actually represents an entire product family. It
specifies the structural relation between concrete parts and variation points, i.e.
it determines a kind of architecture. In order to illustrate this idea more clearly
we consider Figure 2.4c which shows the realization of this term in the concrete
computation structure of stickman shapes.

The graphical illustration of a software product family given in Figure 2.4c illustrates
the idea behind our characterization of a software product family given in Definition
2.3 (cf. Page 26) more clearly: A software product family represents a structural
relation between construction entities. It defines an architecture and contains the
exact information how every product can be assembled from the core assets by
integrating all variation points together with their variants as construction units
into the construction plan of the products. Due to its variability it induces a set
of products. However, compared to a “plain” set of products, a software product
family inevitably also models the information of how individual products are related.
This again is the basis for defining so called mandatory and optional parts (cf.
Section 2.2.3.8) and the indispensable foundation to reason about commonalities
and differences between the set of similar products.

41

2. Formalization of Characteristic Software Product Family Concepts

(a) Graphical illustration of some products of a family of stickmen.

(b) The names of the selected variants which have to be chosen for the family shown in Figure (c)
to derive the corresponding products shown in Figure (a).

(c) The actualization of the corresponding model of the product family Spf (cf. Figure 2.3) in the
concrete computation structure of stickman drawings.

Figure 2.4.: An example of a concrete product family: A concrete computation struc-
ture for the sort SPF Stickman, which realizes the sort by means of
graphical shapes. The stickman drawings shown in Figure (a) are prod-
ucts of the product family shown in Figure (c). They can be derived
by configuring the product family with the variants as indicated below
every product in Figure (b).

42

2.2. Axiomatization of Software Product Family Concepts

2.2.3. Axioms, Properties and Auxiliary Operations

The constructors as introduced in the preceding section allow to specify individual
software product families as a composition of assets and variation points. In order
to be a software product family of sort SPF α, the elements of the sort not only
have to be built by means of these constructor operations, they also have to exhibit
certain properties and fulfill certain laws. These properties and laws basically re-
flect the interplay of the constructors and additional auxiliary functions, and thus
characterize the semantics of the sort. We precisely define these properties and laws
by means of axioms, which are given as equations using the constructor functions,
auxiliary functions and many-sorted variables, in the following. For the remainder
of this section, let capital latin letters like P,Q,R,A,B denote variables of sort SPF
α, the letters a, x denote variables of sort α, and the letters i, j, n,m denote vari-
ables of sort Nat. As usual, we adopt the convention that variables without explicit
quantifier shall be universally quantified.

2.2.3.1. Axioms for Constructors

Every element of sort SPF α can be assembled from the constructors only. For
the constructors we observe several laws which characterize the relation and the
interplay between them. In the following we introduce these laws.

Recall from Section 2.2.1 that since the laws are given as equalities, they induce an
equivalence relation on the set of terms, which means that different terms (elements
of the corresponding term-algebra) can actually represent the same element in the
concrete computation structure, that is the sort SPF α in our example. In Section
2.2.3.2 we address this situation and introduce a term normal form which allows to
deal with such an equivalence relation.

Associativity and Commutativity of the Composition Operation

The composition is a commutative and associative operation for which we observe
the following laws

P ‖ Q = Q ‖ P (A-1)

P ‖ (Q ‖ R) = (P ‖ Q) ‖ R (A-2)

Allowing commutativity and associativity for the composition operator means that
neither the order nor the nesting structure of how we compose elements by means
of the composition operation are relevant. In particular, this means that for our

43

2. Formalization of Characteristic Software Product Family Concepts

kind of composition, a compound element merely represents the same structural
information as a plain set containing the same elements.

Distributivity of the Composition over the Variants Operator

The connection between the composition and the variants operator is given by the
following distributive law:

(P ‖ Q)⊕i (P ‖ R) = P ‖ (Q⊕i R) (A-3)

It defines a left-distributivity, stating that whenever an element P is included in both
variants of the same variation point, it can be factored out, thereby reducing the
alternative selection to the “remaining” parts Q and R of the original variants. For
the application of a configuration selection this means that if such an element P can
be factored out for a certain variation point it is always included in the final product,
independently from the configuration choice for this variation point. In particular
with respect to determining the common parts of products the distributive law is
very important, as we will describe in detail in Section 2.2.3.7.

Since the composition is commutative (Axiom A-1), we can derive right-distributivity
from left-distributivity (and vice versa) as a theorem, i.e. from A-1 and A-3 we can
conclude

(Q ‖ P)⊕i (R ‖ P) = (Q⊕i R) ‖ P (T-1)

The distributive law alters the term representation of a product family in a way
which requires a more detailed consideration. We observe two interesting situations.

Firstly, the application of the distributive law allows to introduce several variation
points with the same identifier. Consider for example the distributive law (Axiom
A-3) from right to left: If the common part P either is a variation point itself or
contains variation points, these variation points appear twice in the resulting term of
the product family, since the element P gets “duplicated” by the law. In particular,
this means that identifiers for variation points are not necessarily unique anymore
within the representation of a product family. However, this does neither affect the
configuration process nor the set of products defined by the product family, as we
will show in Section 2.2.3.3. For more details we refer to the introduction of the
function has ntVP in the remainder of this section on Page 81.

Secondly, regarding the term representation of a product family, the distributive law
actually alters the variants of a variation point since it factors out their common
part. Consider the distributive law (Axiom A-3) from left to right: After applying

44

2.2. Axiomatization of Software Product Family Concepts

the law the former variants (P ‖ Q) and (P ‖ R) have become Q and R, respec-
tively. However, this is not in conflict to the essential property we required for the
configuration process, i.e. that the outcome of a configuration of the product family
always has to be fixed and precisely defined. As we will show in Section 2.2.3.3,
although the distributive law changes the outcome of an atomic configuration it
does not change the overall result of the respective variation point with respect to
the configuration process, since the common part which was factored out is always
composed to the selected variant subsequently.

Neutral Element for the Composition

We motivated the constructor ntrl as a special element which represents the empty
product family, i.e. the notion of nothing. Algebraically, we can characterize this
property more precisely by defining the constant ntrl as the neutral element (identity
element) for the composition function, i.e.

P ‖ ntrl = P (A-4)

While the axiom defines a right-identity we can directly derive a left-identity

ntrl ‖ P = P (T-2)

from the right-identity since the composition is commutative. As we will see in
Section 2.2.3.8, the properties of the element ntrl to be the left- and right-identity
for the composition operation is essential to model the idea of optional parts.

In combination with the distributive law (Axiom A-3), the neutral element allows
to factor out common parts also from term structures like

P ⊕i (P ‖ R) = P ‖ (ntrl⊕i R) (T-3)

(P ‖ R)⊕i P = P ‖ (R ⊕i ntrl) (T-4)

as the following simple derivation exemplarily shows for Theorem T-3.

P ⊕i (P ‖ R)
A−4
= (P ‖ ntrl)⊕i (P ‖ R)

A−3
= P ‖ (ntrl⊕i R)

The resulting representation is in particular useful to define and to determine op-
tional parts, as we will discuss in detail in Section 2.2.3.8.

Idempotence of the Variants Operator

A variation point that offers a choice between identical variants always results in

45

2. Formalization of Characteristic Software Product Family Concepts

the same product with respect to this particular variation point. For example, the
variation point P ⊕i P always represents the element P , no matter which of its
variants is selected. We call such a variation point a trivial variation point. A trivial
variation point P ⊕i P can always be replaced by its variant P . Algebraically, this
means that the variants operator is idempotent, which is expressed by the law

P ⊕i P = P (A-5)

Applying the idempotence law for a given element of sort SPF α from right to left
allows to introduce “new” variation points with an arbitrary label i at any time. In
particular, since we do not restrict the label i, it can also take values which already
exist as the label of a variation point in the considered element. We call variation
points with identical labels clashing. However, introducing clashing variation points
by means of applying Axiom A-5 does not alter the result of any selection operation
since in the case of clashing variation point labels (i) the configuration selection of
clashing variation points is not influenced, and (ii) any configuration choice for the
term P ⊕i P always results in the element P , since both variants are equivalent to
P . We discuss these cases in more detail in Section 2.2.3.3, where we formalize the
notion of configuration selection.

2.2.3.2. Term Normal Form of Product Families

Let the (syntactic) signature for the sort SPF α be defined as the tuple

ΣSPF =
(

{α,SPF α} ,

{asset, ntrl, ‖,⊕, selR, selL, is product, is mand, has ntVP,Assets,modify}
)

with the following type association of sorts to the function symbols

asset : α → SPF α
ntrl : SPF α
‖ : SPF α, SPF α → SPF α
⊕ : SPF α, SPF α, Nat→ SPF α

selR , selL : Nat, SPF α → SPF α
is product : SPF α → Bool

is mand : SPF α, SPF α → Bool

has ntVP : Nat, SPF α → Bool

Assets : SPF α → Set SPF α
modify : SPF α, SPF α, SPF α → SPF α

46

2.2. Axiomatization of Software Product Family Concepts

Let ΣSPFC =
(

{α,SPF α}, {asset, ntrl, ‖,⊕}
)

denote the sub-signature of ΣSPF that
comprises only the constructor function symbols. With Terms(ΣSPFC) (respectively
Terms(ΣSPF)) we denote the set of ground terms that can be constructed over the
signature ΣSPFC (respectively ΣSPF). The way in which the terms of Terms(ΣSPFC)
(respectively Terms(ΣSPF)) are constructed is characterized algebraically by the
term algebra T (ΣSPFC) (respectively T (ΣSPF)), that provides an inductive definition
of the set Terms(ΣSPFC) (respectively Terms(ΣSPF)). For details we refer to Section
2.2.1, Page 31.

The Axioms A-1–A-5 have a direct impact on the way in which we represent elements
of sort SPF α. All of these axioms are equalities and thus imply that there exist
several different ways to assemble a software product family—being an element of
sort SPF α—from the set of constructors of sort SPF α. For example, due to the
commutative law (Axiom A-1) and the existence of a neutral element (Axiom A-4),
the following two ways of assembly

asset(a) ‖ asset(b) and asset(b) ‖ (asset(a) ‖ ntrl)

are equivalent, and result in the same element of the underlying computation struc-
ture/algebra.

Each of these ways of assembly can be represented by a term t ∈ Terms(ΣSPF) which
is constructed in a corresponding way over the signature ΣSPF according to the term-
algebra T (ΣSPF). In consequence, this implies that regarding the term representation
of elements of sort SPF α there are different terms that actually represent the same
underlying element of sort SPF α. In this light, the axioms A-1–A-5 induce an
equivalence relation on the set of (constructor) terms, which partitions the set of
terms in subsets of equivalent terms.

For the term algebra T (ΣSPF) we can represent each of these subsets of equivalent
terms in a unique way by a distinguished element of that subset. For software
product families this means that we can represent any element of sort SPF α by
a unique term. Such a unique term is called a term normal form. The function
NF returns for any element of sort SPF α its unique term normal form. It has the
signature

NF : SPF α→ Terms(ΣSPFC) (2.5)

Due to the unique term normal form that is realized by the function NF we can
represent every element of the underlying computation structure in a unique way by
a unique term. Consequently, the term normal form is one possible basis (and also
a practically relevant one) to define the notion of equivalence of elements of sort

47

2. Formalization of Characteristic Software Product Family Concepts

SPF α. We consider two product families to be equivalent if their corresponding
term normal forms are identical (with respect to term equivalence). We write =NF

to denote the equality of elements of sort SPF α modulo the term normal form. For
our algebraic considerations, and for the remainder of this chapter, we consider the
notion of equality of elements of sort SPF α always modulo the equivalence relation
induced by the normal form, unless otherwise noted.

The function NF itself is composed of the two functions term and norm in the fol-
lowing way

NF(x) = norm
(

term(x)
)

(2.6)

where term and norm have the signatures

term : SPF α→ Terms(ΣSPFC) (2.7)

norm : Terms(ΣSPFC) → Terms(ΣSPFC) (2.8)

The function term constructs for a given element x ∈ SPF α a structure equivalent
term t ∈ Terms(ΣSPFC) by simply traversing the structure of x and reproducing
the same structure in t by applying corresponding functions from the ground term
algebra T (ΣSPFC), respectively. We use the same function symbols to denote the
functions in T (ΣSPFC) and in SPF α. Since this is a standard procedure for obtaining
the term representation of an element of a Σ-algebra we do not explain it in more
detail here. Since every element of sort SPF α can be built using the constructors
only, it is sufficient to define the term normal form on the subset Terms(ΣSPFC) ⊂
Terms(ΣSPF) of constructor terms for the sub-signature ΣSPFC and the corresponding
term algebra T (ΣSPFC) (instead of defining it on the set Terms(ΣSPF) of all terms
and the corresponding algebra T (ΣSPF)).

The function norm realizes the reduction of a term t ∈ Terms(ΣSPFC) to its unique
normal form, and thus represents the crucial part of NF. It is specified in detail by
the equations 2.10–2.13 on Page 50. Before we give a precise, algebraic definition
of the term normal form realized by the function NF and its sub-function norm, we
will describe it informally. Intuitively, the term normal form respects the following
properties.

1. Regarding Axiom A-4 (and the corresponding Theorem T-2), all “unnecessary”
(with respect to Axioms A-4 and A-2) neutral elements are ”stripped off”. This
means, that the element ntrl appears in no normal form as a direct argument
to any composition operator. It only appears as a direct argument of a variants
operator, or in the ground term ntrl, representing the neutral element itself. For
example, the term P ‖ ntrl is reduced to its normal form norm(P ‖ ntrl) = P ,
and the term P ‖ (ntrl ‖ Q) to norm

(

P ‖ (ntrl ‖ Q)
)

= P ‖ Q.

48

2.2. Axiomatization of Software Product Family Concepts

2. Regarding Axiom A-5, all trivial variation points of the kind P⊕iP are reduced
to the normal form norm(P ⊕i P) = P according to the application of Axiom
A-5 from right to left. Thus, the normal form is free of such trivial variation
points, and contains only variation points which offer a true alternative choice
between different variants.

3. Regarding Axiom A-3, the distributive laws are always applied from right to
left. For the term normal form this means that common parts are always
factored out and variation points are pushed inwards the term hierarchy as
far as possible. For example, the term (P ‖ Q) ⊕i (P ‖ R) is normalized to
norm

(

(P ‖ Q)⊕i (P ‖ R)
)

= P ‖ (Q⊕i R).

4. Due to the commutativity (Axiom A-1) and associativity (Axiom A-2), the
composition operation becomes independent of the order and the nesting struc-
ture in which its arguments are specified, and the composition merely charac-
terizes a flat set of assets, variation points, or neutral elements. This means
that the way how we (hierarchically) compose assets, variation points and neu-
tral elements is irrelevant. For a unique normal form, all elements which are
combined by the same nested structure of composition operators are ordered,
based on a lexicographical comparison of their corresponding tree representa-
tion. The lexicographical comparison itself is based on a linear order relation
<Symbα of the operator symbols, which we informally describe by (a formal
definition will be given on Page 55):

ntrl <Symbα asset(a1) <Symbα . . . <Symbα asset(an) (2.9)

<Symbα ⊕1 <Symbα . . . <Symbα ⊕m <Symbα ‖

Using this lexicographical order allows to arrange all elements which are at
the same level of a (nested) composition in a unique way, which is represented
as a unique term representation (cf. Figure 2.5b).

Formally, the function norm is characterized by the following laws, which specify the
transformation of any term into is unique term normal form. In order to improve
the comprehensibility we have encapsulated the individual steps in the auxiliary
functions coll, sort, reconv, cmn, and diff, which are specified after the definition of
norm. Note that the equals signs in the case differentiations actually mean term
equality.

49

2. Formalization of Characteristic Software Product Family Concepts

norm(ntrl) = ntrl (2.10)

norm(asset(a)) = asset(a) (2.11)

norm(P ‖ Q) =



















































ntrl ,
(norm(P) = ntrl) ∧
(norm(Q) = ntrl)

reconv (sort (coll (P))) ,
(norm(Q) = ntrl) ∧
(norm(P) 6= ntrl)

reconv (sort (coll (Q))) ,
(norm(P) = ntrl) ∧
(norm(Q) 6= ntrl)

reconv (sort (coll (P ‖ Q))) , else

(2.12)

norm(P ⊕i Q) =



































norm(P) , norm(P) = norm(Q)

norm(P)⊕i norm(Q) ,

(

norm(P) 6= norm(Q)
)

∧
(

cmn
(

coll(P), coll(Q)
)

= ∅
)

reconv
(

sort
(

X ∪ Y
)

)

,

(

norm(P) 6= norm(Q)
)

∧
(

cmn
(

coll(P), coll(Q)
)

6= ∅
)

(2.13)

where X and Y (appearing in Law 2.13) are abbreviations for the sake of readability

X := cmn
(

coll(P), coll(Q)
)

Y :=
{

reconv
(

sort
(

diff
(

coll(P), coll(Q)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(Q), coll(P)
))

) }

The Laws 2.10 and 2.11 state that terms representing the neutral element and atomic
assets are already in term normal form.

Regarding Law 2.12, for a compound element it is necessary to collect all sub-
elements which belong to this composition, and transform them into an ordered term
structure. The different cases are necessary to strip off all possible combinations
of trivial neutral elements. The collecting, sorting, and transformation of these
arguments is encapsulated by the three auxiliary functions coll, sort and reconv,
where coll collects the relevant elements in a list, sort sorts the list, and reconv

reconverts the list into a term. The order in which these auxiliary functions are
composed by the function norm, and the effects of the functions themselves guarantee
that the resulting term is a composed term which respects the sorting order, and
whose arguments are normalized terms, themselves.

50

2.2. Axiomatization of Software Product Family Concepts

Regarding Law 2.13, the term representation of a variation point is in normal
form if (i) it is not a trivial variation point (item 3 in the property list on Page
48), and (ii) the common parts of its two variants are factored out according to
Axiom A-3, and (iii) its variants are in normal form, themselves. Trivial varia-
tion points are reduced directly. If both variants actually have common factors
(cmn

(

coll(P), coll(Q)
)

6= 〈〉), these common parts are factored out by combining the
auxiliary functions coll, cmn, and diff, which we will introduce in the following. The
factorization is achieved by collecting all relevant elements of both variants (function
coll) in two lists, determining their common elements (function cmn), and factoring
them out. The remaining variation point is reconstructed from the variant specific
elements of each variant, which are additionally sorted (function diff in combination
with sort), respectively. The common elements of both variants P and Q are repre-
sented as a multiset abbreviated by the variable X, while the variable Y abbreviates
the multiset which contains the ”reduced” variation point as its single element. Here,
“reduced” means that the common parts of its variants are factored out and only
the variant-specific parts are preserved in the respective variants. Since the common
parts and the remaining variation point will form a compound element in the end,
the set of common parts together with the “reduced” variation point itself has to
be ordered (function sort) prior to reconstructing them into a compound term. This
guarantees that the factors of the resulting compound element are ordered (accord-
ing to property 4 in the property list on Page 48), and that the compound element
is in term normal form, itself. If both variants of a variation point do not have
common parts, the entire variation point is in term normal form if both its variants
are in normal form, respectively. We introduce all auxiliary functions in the follow-
ing. Note that the recursive call of norm in Law 2.12 is made indirectly within the
function coll. The remaining operations are all primitive recursive, and in particular
not involved in a mutual recursion with norm or other functions.

Collecting the Relevant Assets and Variation Points

The function

coll : Terms(ΣSPFC) → MSet Terms(ΣSPFC) (2.14)

is initially called by the function norm on the terms of compound elements (Law
2.12), or the terms of variants of variation points (Law 2.13). It traverses recur-
sively the term structure of a compound element along the respective composition
operators (in pre-order), collects all assets and variation points which are combined
in this (possibly nested) compound element, and returns them as a multiset of sort
Seq Terms(ΣSPFC). Thus, for compound elements it returns the set of all assets and
variation points which are at the same level with respect to a nested structure of
composition operators. In particular, these represent those elements which have to
be sorted (in Law 2.12) in the subsequent step by the function sort, or the elements
from which common elements have to be factored out (Law 2.12). The function coll

is formally characterized by the following laws.

51

2. Formalization of Characteristic Software Product Family Concepts

coll(ntrl) = ∅ (2.15)

coll(asset(a)) =
{

asset(a)
}

(2.16)

coll(P ‖ Q) =











coll(P) , Q = ntrl

coll(Q) , P = ntrl

coll(P) ∪ coll(Q) , else

(2.17)

coll(P ⊕i Q) =



































coll (P) , norm(P) = norm(Q)

{

norm(P)⊕i norm(Q)
}

,

(

norm(P) 6= norm(Q)
)

∧
(

cmn
(

coll(P), coll(Q)
)

= ∅
)

coll
(

norm(P ⊕i Q)
)

,

(

norm(P) 6= norm(Q)
)

∧
(

cmn
(

coll(P), coll(Q)
)

6= ∅
)

(2.18)

The symbols ∅,
{

a
}

, and ∪ denote the empty multiset, the multiset containing the
single element a, and the set union of multisets. For a precise definition of the sort
MSet α of multisets see Figure A.6 in the Appendix A on Page 236.

Regarding Laws 2.15 and 2.16, since a neutral element and an atomic asset are
already in normal form, their corresponding terms can simply be collected. Law
2.17 traverses along the arguments of a composition, and collects them, unless they
are trivial neutral elements. Neutral elements are discarded directly (cf. the first
two cases of the axiom). Since the arguments can represent compound elements,
themselves, the function coll traverses the entire ‖-structure recursively, until it
reaches a term representing an asset or a variation point. These two kinds of elements
are collected in the multiset which is returned.

Law 2.18 specifies the situation of collecting variation points. Due to the distributive
law (Axiom A-3), a variation point itself is equivalent to a compound element, if
its variants contain common parts that can be factored out. In such a case the
representation of a variation point as a compound element is essential for coll. Thus,
if the variants of a variation point still contain common parts (i.e. if NF(P ⊕iQ) has
not the general term structure A⊕i B, where A is the term normal form of P , and
B is one of Q), we represent the variation point as a compound element by applying
the distributive law. This is done in the second case of the axiom by applying NF on
the entire variation point. Then, after normalization in a subsequent recursive call
of coll the common parts and the remaining variation point are added as separate
elements to the multiset that is returned by coll. Otherwise, if no common parts
exist (first case of the axiom), the term representation of the variation point can be
added to the multiset directly, where its variants are further normalized.

52

2.2. Axiomatization of Software Product Family Concepts

Termination of norm: Mutual Recursion between the Functions norm and coll

The functions coll and norm are mutually recursive, i.e. coll, which is called within
norm (in the case where its argument represents a compound element, cf. Law
2.12), calls norm, itself. With this mutual recursion, the actual recursion of the
function norm is realized, which guarantees that all elements (assets and variation
points) which are collected by coll are also transformed into normal forms, them-
selves. However, applying the function norm to any term of sort Terms(ΣSPFC)
always terminates yielding the unique term normal form. The following theorem
makes this more precise.

Theorem 2.1 (Termination of the Function norm). The reduction system which
is obtained by applying the axioms defined for the function norm from left to right
always terminates for any term of sort Terms(ΣSPFC).

Proof. The mutual recursion between norm and coll follows the construction scheme
of primitive recursion, which basically means that recursive calls are always per-
formed on subterms of the original term. This means that:

• In the specification of function norm (Laws 2.10–2.13), all arguments—except for
one—of the direct recursive calls of norm, and the mutually recursive calls of coll
on the right-hand sides of the equations are subterms of the arguments of calls of
norm and coll on the left-hand sides of the equations. The only exception is the
last case where norm(P ‖ Q) triggers a call coll(P ‖ Q) with the same arguments.
However, the argument (P ‖ Q) is always taken apart in its subterms P and Q in
the successive call of coll (cf. Law 2.17).

• For the specification of function coll the arguments get also broken down in its
sub-elements in recursive calls, except for Law 2.18. Here, the call coll(P ⊕i Q)
triggers mutually recursive calls of the kind norm(P ⊕i Q), which have the same
arguments (P ⊕i Q). However, in the following mutually recursive calls of coll
and norm, the arguments are again sub-elements of the recursively preceding calls
of coll, i.e. the call norm(P ⊕i Q) triggers only calls of norm and coll with the
arguments P and Q (cf. Equation 2.13). Thus, considering the entire mutual
recursion, mutually recursive calls of norm and coll are performed on sub-elements
of the initial arguments, only.

Regarding the auxiliary functions reconv, cmn, and diff, which are used within the
laws of norm and coll, all of them are also defined according to the primitive recursion
scheme, as we will still see in the remainder of this section. Consequently, these
auxiliary functions always terminate, too. Certainly, we can also assume termination
for the auxiliary function sort. In summary, this means that the arguments of norm
and coll are always broken up into its sub-elements the latest after an entire mutually
recursive cycle norm → coll → norm, respectively coll → norm → coll. Thus, the
mutual recursion between norm and coll follows the construction scheme of primitive
recursion, and is consequently guaranteed to terminate.

53

2. Formalization of Characteristic Software Product Family Concepts

Auxiliary Operations cmn and diff: Determining the Common and the Variant-
specific Parts of the Variants of a Variation Point

Law 2.13 factors out common parts of variants, which requires to determine the
common and the variant-specific parts of the two variants of a variation point, be-
fore. For this purpose the relevant elements (assets and normalized variation points)
of both variants are collected by preceding calls of function coll. This results in two
multisets, for which the common elements are determined by means of the function

cmn : MSet α, MSet α → MSet α (2.19)

The function cmn (common) returns a multiset of those elements which appear
in both of its arguments. Being a multiset, multiple occurences of elements are
respected, e.g. the result of cmn(

{

a, b, a, c
}

,
{

b, a, a
}

) is the multiset
{

a, b, a
}

. As
the function cmn is a standard operation on multisets, and not specific for our normal
form, we have deferred its specification to Figure A.7 (Page 237) in Appendix A.

While the function cmn determines the common elements of two multisets, we also
have to determine the different elements of two multisets, i.e. those elements which
are in one multiset, but not in another. This is realized by the function

diff : MSet α, MSet α → MSet α (2.20)

The function diff(A,B) determines those elements of the multiset A which are not in
the multiset B. For example, diff(

{

a, b, d, a
}

,
{

b, a, c
}

) yields the set
{

d, a
}

. Thus,
for every element of B one instance of an identical element is removed from A, if A
contains an instance of such an element at all. The complete specification of diff is
shown in Figure A.7 (Page 237) in Appendix A.

In Law 2.13, the functions cmn and diff are combined in order to determine the
common elements and the variant specific elements of both variants. More precisely,
the variables X and Y which we use in Law 2.13 are just abbreviations, where
X represents the multiset of common elements of the variants A and B, and Y
represents the multiset of “remaining” variation point whose variants are free of
common parts and only comprise the sorted variant specific parts anymore. Since the
common part and the “remaining” variation point itself form a compound element,
the normal form requires that these elements have to be sorted, which is why the
multisets X and Y are combined and sorted, before they are finally re-transformed
into a term representing the normal form.

54

2.2. Axiomatization of Software Product Family Concepts

Sorting the Collected Elements

Regarding Law 2.12, the elements—only assets and variation points—which have
been collected by coll have to be sorted. This requires to compare assets with assets,
variation points with variation points, but also assets and variation points with each
other. The function sort realizes this by comparing the pre-order sequences of the
corresponding operator trees of each element in the collected sequence lexicograph-
ically. For the lexicographical order we introduce (for every sort α) the set Symbα
of operator symbols.

Symbα := {asset(a) | a ∈ α} ∪ {ntrl, ‖} ∪ {⊕i | i ∈ Nat}

Each symbol denotes the element of sort SPF α with the same name. We define a
linear order <Symbα on the elements of Symbα in the following way:

∀a ∈ α, i ∈ Nat : ntrl <Symbα asset(a) <Symbα ⊕i <Symbα ‖ (2.21)

∀i, j ∈ Nat : (⊕i <Symbα ⊕j) ⇔ (i < j) (2.22)

∀a, b ∈ α : (asset(a) <Symbα asset(a′)) ⇔ (a <α a
′) (2.23)

where <α realizes a linear order on the elements of sort α, which has to be defined
separately for each sort α.

The elements which we have collected are compared based on their operator symbols.
The function Ops traverses a term of sort Terms(ΣSPFC) in pre-order and constructs
the corresponding sequence of operator symbols. The symbols 〈〉, and ◦ denote the
empty sequence, and the concatenation of sequences. For a precise definition of the
sort Seq α of sequences see Appendix A, Page 234.

Ops : Terms(ΣSPFC) → Seq Symbα (2.24)

Ops(ntrl) = 〈ntrl〉 (2.25)

Ops(asset(a)) = 〈asset(a)〉 (2.26)

Ops(P ‖ Q) = 〈‖〉 ◦ Ops(P) ◦Ops(Q) (2.27)

Ops(P ⊕i Q) = 〈⊕i〉 ◦Ops(P) ◦ Ops(Q) (2.28)

55

2. Formalization of Characteristic Software Product Family Concepts

Based on the operation Ops which returns the sequence of operator symbols and the
order <Symbα defined on the set of symbols, we can define an order on entire terms
of sort Terms(ΣSPFC) by comparing their operator sequences lexicographically. We
represent the lexicographical comparison by the function

<lex : Seq Symbα, Seq Symbα → Bool (infix) (2.29)

with the following laws

〈〉 <lex X = true (2.30)

〈s1〉 ◦ r1 <lex 〈s2〉 ◦ r2 ⇔
(

(s1) <Symbα (s2)
)

∨
(

r1 <lex r2
)

(2.31)

Based on such a lexicographical order we define an order relation < on terms of sort
Terms(ΣSPFC).

< : Terms(ΣSPFC), Terms(ΣSPFC) → Bool (infix) (2.32)

with the following law

(s < s′) ⇔ Ops(s) <lex Ops(s
′) (2.33)

With the linear order < on terms representing elements of sort SPF α we can sort
a sequence of assets and variation points in a unique way, using a standard sorting
algorithm. We represent the sorting of a sequence of terms representing elements of
sort SPF α by the function

sort : MSet Terms(ΣSPFC) → Seq Terms(ΣSPFC) (2.34)

For the scope of this thesis we do not specify the function sort in more detail, as
we can use any standard sorting algorithm which is based on the comparison of two
elements, e.g. Quicksort [Hoa62].

Reconstructing a Compound Element from a Sorted Sequence of Individual Elements

After the arguments of a compound element have been sorted, or the common ele-
ments of two variants have been factored out, the corresponding representation as
a sequence of elements has to be transformed back into a single compound term of
sort Terms(ΣSPFC). For this purpose we use the function reconv

56

2.2. Axiomatization of Software Product Family Concepts

reconv : Seq Terms(ΣSPFC) → Terms(ΣSPFC) (2.35)

which reconverts a sequence of terms of sort Terms(ΣSPFC) into a degenerated com-
pound term. The function reconv is specified by the following laws

reconv(〈〉) = ntrl (2.36)

reconv(〈a〉) = a (2.37)

reconv(〈a〉 ◦ s) = a ‖ reconv(s) (2.38)

It iterates through the given sequence and appends every element on the right side
of a nested term. Thereby, it constructs a degenerated tree representation (of sort
Terms(ΣSPFC)) from the elements of the sequence supplied as its argument.

Example

Figure 2.5a shows an example of a term Ex ∈ Terms(ΣSPFC) and its corresponding
unique term normal form (Figure 2.5b). Since Ex is a compound element, the
transformation into its normal form results in applying Rule 2.12

norm(Ex) = reconv (sort (coll (Ex)))

The innermost operation coll(Ex) is equivalent to the following multiset

coll (Ex) = . . .

=
{

asset(a), asset(b), ⊕2

(

norm(. . .), norm(. . .)
)

, asset(a),

⊕1

(

norm(. . .), norm(. . .)
)

}

Sorting this set by comparing the elements by means of < brings the assets to the
front, and the two variation points to the end, and results in the following sequence:

sort (coll (Ex)) = . . .

=
〈

asset(a), asset(a), asset(b), ⊕1

(

norm(. . .), norm(. . .)
)

,

⊕2

(

norm(. . .), norm(. . .)
)

〉

Finally, applying reconv on this sorted list, i.e. calling reconv (sort (coll (Ex))) results
in the desired term normal form, whose tree representation is shown in Fig. 2.5b.

57

2. Formalization of Characteristic Software Product Family Concepts

‖

‖‖

‖ asset(b) ‖ ⊕1

asset(a) ntrl ⊕2 asset(a)

‖

asset(d) asset(c)

asset(a)

ntrl ⊕3

‖

asset(g) asset(f)

‖

⊕4asset(f)

asset(h)asset(h)

(a) Tree representation of a term of sort Terms(ΣSPFC). The asset, ntrl and ⊕ nodes above the
dashed line represent those elements which are combined by the nested composition operators
starting in the root. In particular, these elements are composed in a unique order in the normal
form shown in Figure (b).

‖

asset(a) ‖

‖

‖

asset(a)

asset(b)

⊕2

‖

asset(d)asset(c)

asset(a)

⊕1

ntrl ‖

asset(f) ⊕3

asset(h) asset(g)

(b) Tree representation of the unique term normal form of the term shown in (a).

Figure 2.5.: The tree representations of a term of sort Terms(ΣSPFC) and its normal
form.We assume that a, b, c, . . . are elements of sort α equipped with an
alphabetical order.

58

2.2. Axiomatization of Software Product Family Concepts

Uniqueness of the Term Normal Form

The term normal form represented by the function NF is unique. This means that
any software product family P ∈ SPF α which fulfills the axiomatization can be
represented by a unique term of sort Terms(ΣSPFC). More precisely, for any two
software product families P,Q ∈ SPF α that are equivalent according to the con-
structor Axioms A-1–A-5, their corresponding term representations NF(P),NF(Q) ∈
Terms(ΣSPFC) are identical, i.e. NF(P) = NF(Q). Regarding the constructor axioms
this means that the application of NF to the left-hand and right-hand side of each of
the constructor Axioms A-1–A-5 yields the same (with respect to term equivalence)
result. The following Theorem 2.2 states this more precisely.

Theorem 2.2 (Uniqueness of the Normal Form). The normal form realized by
the function NF is unique, i.e. it reduces any two elements of sort SPF α to the
same unique term iff they can be transformed into one another using the constructor
Axioms A-1–A-5. In particular, we observe the following identities, where P,Q,R ∈
Terms(ΣSPFC), and each equation reflects the identity represented by one constructor
axiom.

NF(P ‖ ntrl) = NF(P)

NF(P ⊕i P) = NF(P)

NF(P ‖ Q) = NF(Q ‖ P)

NF
(

P ‖ (Q ‖ R)
)

= NF
(

(P ‖ Q) ‖ R
)

NF
(

(P ‖ Q)⊕i (P ‖ R)
)

= NF
(

P ‖ (Q⊕i R)
)

Proof. The only ways in which two elements of sort Terms(ΣSPFC) can be trans-
formed in each other is by applying one of the constructor Axioms A-1–A-5. For
each of these axioms the application of the function NF(x) = norm

(

term(x)
)

to the
left-hand (lhs) and right-hand (rhs) side of each constructor axiom yields the same
term, since norm(lhs) = norm(rhs) for each of the constructor axioms holds. We
show this in five corresponding proofs (one for each axiom, respectively) by estab-
lishing the equalities for norm. As these five proofs are long standard structural
inductions we have sourced them out to the Appendix B (Pages 239–266). The five
equalities for the constructor axioms imply that the reduction system which bases
on the constructor axioms and the function norm has the Church-Rosser property
[BN98]. As a consequence of the Church-Rosser property the term normal form
(of terms build from constructors only) realized by the function norm is unique. In
particular, the function norm yields already this unique normal form since a second
application of norm does not change the initial result anymore. In consequence, this
implies that also the function NF yields a unique term representation of its argu-
ment, as the function term only implements a structure-preserving transformation
from elemtens of sort SPF α to their corresponding term representations of sort
Terms(ΣSPFC).

59

2. Formalization of Characteristic Software Product Family Concepts

2.2.3.3. Configuration: Derivation of Products

A fundamental construction concept of a software product family is that the (specifi-
cations of the) products can be derived from the corresponding (specification of the)
product family. This process is called configuration process. It requires to select for
every variation point in the representation of the product family one of its variants.
This particular variant will take the place of the corresponding variation point in
the resulting product. We call such a selection a configuration, i.e. a configuration
assigns to some variation points one of their variants, respectively. The following
kinds of configurations are of particular interest.

Definition 2.4 (Complete and Atomic Configuration). With respect to a concrete
product family we call a configuration complete if it associates to every variation
point that exists in the normal form of the product family one of its variants. A
configuration is called atomic if it configures a single variation point only.

Atomic configurations affect single variation points. Since the variants operator (as
introduced so far) does only allow to model the choice between two variants, we
represent the act of selecting one of either variants of a specific variation point by
two functions

selL : Nat, SPF α → SPF α (2.39)

selR : Nat, SPF α → SPF α (2.40)

We call the functions selection operators. The arguments of both functions represent
the identifier (number) of the variation point for which the respective variant will be
selected, and an element of sort SPF α which represents the entire software product
family in which the configuration has to be performed. The function selL (abbrevi-
ation for “select Left variant”) selects the left variant for the variants operator with
the corresponding identifier, and the function selR (abbreviation for “select Right
variant”) selects the right variant, respectively. The corresponding axioms which
characterize the way in which a configuration takes place in detail are given in the
following on Page 62. The single application of a selection operator corresponds to
performing an atomic configuration.

Configurations can be denoted in many ways, e.g. as a function associating variants
to variation points, or in a set-like form consisting of tuples of identifiers for variation
points and variants. In our setting—in order to match the selection operators—we
denote the configuration choice for a single variation point as a tuple

(VP ,Var) ∈ Nat× {L,R}

60

2.2. Axiomatization of Software Product Family Concepts

which consists of an identifier VP ∈ Nat for the variation point and an identifier
Var ∈ {L,R} for the concrete variant, where L denotes the left and R the right
variant, respectively. We call the configuration choice for a single variation point
elementary or atomic. Accordingly, we denote an (arbitrary) configuration as an
(unordered) set

{

(VP i,Var i), . . . , (VPn,Varn)
}

of elementary configuration choices. With CONFIGS we denote the set of all (ar-
bitrary) configurations. With respect to a product family with a fixed number n of
non-trivial variation points, we denote the set of all complete configurations for such
a product family by CONFSn ⊂ CONFIGS . In particular, every configuration in
CONFSn contains exactly n atomic configuration choices, a single one for each (non-
trivial) variation point 1, . . . , n. For the sake of simplicity we usually omit the curly
set brackets around an atomic configuration and denote it as a tuple (VP i,Var i)
instead of the precise notation {(VP i,Var i)}.

In order to denote the application of an entire configuration in our setting we use
the function

configure : CONFIGS × SPF α → SPF α (2.41)

It simply performs an entire configuration on the representation of a product family,
i.e. it applies the selection operators selL and selR according to the corresponding
configuration {(i,Var i) : i ≤ n} ∈ CONFSn in the following way:

configure
(

{(i,Var i) : i ≤ n}, PF
)

= f1

(

1, f2
(

2, . . . fn(n,PF) . . .
)

)

where fi =

{

selL ,Var i = L
selR ,Var i = R

The result of applying a configuration and in particular the corresponding selection
operators to a software product family is again an element of sort SPF α, representing
the software product family where the respective variation points are replaced by the
selected variants, respectively, while the remaining structure of the product family
is not changed. The way in which the configuration takes place is well-defined. A
single selection operator affects only the corresponding variation point, but leaves
the remaining variation points and the higher-level structure of the product family
unchanged. The laws which characterize the behavior of the selection operators are
given by the following axioms:

61

2. Formalization of Characteristic Software Product Family Concepts

selR
(

n, ntrl
)

= ntrl (A-6)

selL
(

n, ntrl
)

= ntrl (A-7)

selR
(

n, asset(a)
)

= asset(a) (A-8)

selL
(

n, asset(a)
)

= asset(a) (A-9)

selR(n, P ‖ Q) = selR(n, P) ‖ selR(n,Q) (A-10)

selL(n, P ‖ Q) = selL(n, P) ‖ selL(n,Q) (A-11)

selR(n, P ⊕m Q) =

{

selR(n,Q) ,m = n

selR(n, P) ⊕m selR(n,Q) , else
(A-12)

selL(n, P ⊕m Q) =

{

selL(n, P) ,m = n

selL(n, P) ⊕m selL(n,Q) , else
(A-13)

The Axioms A-12 and A-13 express that all intended variations points (where the
number of the variation point matches the first argument of the selection operator)
are replaced by the respective variant (the left one in the case of selL, and the right
one in the case of selR), while all variation points with non-matching numbers are
ignored in the sense that these variation points are preserved and the configuration
is continued recursively on its variants. Since due to the distributivity and the
idempotence (Axioms A-3 and A-5) variation point identifiers can (legally) exist
several times in an element of sort SPF α, the selection operators are still recursively
applied to the variants in the case where a variation point is actually replaced by one
of its variants. In particular this means that the upper line in the case differentiation
of Axiom A-12 (resp. A-13) is selR(n,Q) (resp. selL(n, P)) and not only Q (resp. P).
Thus, any configuration decision represented by a corresponding selection operator
only affects the variation point for which it was intended, i.e. the one labeled with
the same number as the first argument of the selection operator.

The remaining axioms realize an recursive traversal preserving the structure of the
element as a result of the selection operator. In particular, the Axioms A-10–A-11
guarantee that performing a configuration does not affect the structure of compound
elements. If the product family consists of atomic assets or the neutral element only,
the application of any configuration will always yield these assets/neutral element
(cf. A-8–A-7). In summary, the Axioms A-6–A-13 guarantee that the effect of the
selection operators is to replace all occurrences of variation points with a matching
number by the selected variant.

The Equivalence Relation Induced by the Constructor Axioms is a Congruence for
the Variants Operators

62

2.2. Axiomatization of Software Product Family Concepts

The selection operators have input and result arguments of sort SPF α. In the
light of the preceding Sections 2.2.3.1 and 2.2.3.2, we have to guarantee that for
equivalent elements of sort SPF α, i.e. elements which have the same term normal
form and thus represent the same element of the underlying computation structure,
the respective results of the selection operators are again equivalent and also have
the same term normal form. This means that the equivalence relation induced by
the constructor axioms (cf. Section 2.2.3.1) is indeed a congruence with respect to
the selection operators. Thus, we have to show for both selection operators and for
every constructor axiom (Axioms A-1–A-5) laws of the kind

(

NF(Y) = NF(Z)
)

⇒
(

NF
(

selX(n, Y)
)

= NF
(

selX(n,Z)
)

)

(2.42)

where (i) selX represents one of selection operators selR, selL, respectively, and (ii) Y
and Z represent the left-hand and the right-hand side of one of the Constructor
Axioms A-1–A-5, respectively.

Proof Sketch. We check for every constructor axiom separately whether it specifies
a congruence relation with respect to both selection operators. For the constructor
Axioms A-1, A-2, and A-4, this is easy to see: Since the application of the selection
operators results in term-equivalent elements in these cases (cf. Axioms A-6–A-11),
the conclusion of Equation 2.42 also holds since term-equivalent elements always
have the same term normal form.

For the constructor axioms involving the variants operator (Axioms A-3 and A-
5) this also holds but is not directly obvious, as the corresponding laws of the
selection operators (Axioms A-12 and A-13) not necessarily result in equivalent
terms. As a representative for both of these axioms we consider the situation for
the distributive law (Axiom A-3) in more detail. In the case of the distributive law
the left-hand and the right-hand side of the equality in the conclusion of Equation
2.42 are NF

(

selL(n, (P ‖ Q)⊕i (P ‖ R))
)

and NF
(

selL(n, P ‖ (Q⊕i R)
)

, where we
exemplarily consider only the selection operator selL. In the case of n = i both sides
actually represent the same term, as the following equations show:

selL
(

n, (P ‖ Q)⊕i (P ‖ R)
)

A−13
= selL

(

n, P ‖ Q
)

(2.43)

A−11
= selL(n, P) ‖ selL(n,Q)

selL
(

n, P ‖ (Q⊕i R)
)

A−11
= selL(n, P) ‖ selL

(

n, (Q⊕i R)
)

(2.44)

A−13
= selL(n, P) ‖ selL(n,Q)

63

2. Formalization of Characteristic Software Product Family Concepts

Since both results are term-equivalent, they also have the same normal form, which
makes the conclusion of Equation 2.42 true. The case for n 6= i can be shown
analogously. Also, the situation for the selection operator selR is similar. Thus,
the equivalence induced by the distributive law is a congruence with respect to
the selection operators. The situation for the idempotence law (Axiom A-5) is
analogous.

In summary, this means that the equivalence relation induced by the constructor
Axioms A-1–A-5 is indeed a congruence for the selection operators.

Order of the application of the variants operators

The configuration processes of different variation points are independent. More
precisely, the (temporal) order in which selection operations concerning different
variation points are performed is irrelevant for the configured product. This property
of the configuration process is expressed by the following laws:

selL(m, selL(n, P)
)

= selL
(

n, selL(m,P)
)

(T-5)

selR
(

m, selR(n, P)
)

= selR
(

n, selR(m,P)
)

(T-6)

(

selL
(

m, selR(n, P)
)

= selR
(

n, selL(m,P)
)

)

⇐ (m 6= n) (T-7)

These laws do not have to be required as axioms as we can derive them from the
existing laws.

Proof. Since the functions selL and selR are axiomized according to primitive re-
cursive scheme, we prove the respective Theorems T-5–T-7 via induction over the
term structure. The base cases for the constructors ntrl and asset(a) follow directly
from the respective definitions of the functions selL and selR (Axioms A-8–A-9 and
A-6–A-7). The case for the composition operator follows from the definition (Ax-
ioms A-10–A-11) and the induction hypothesis. The same holds for the variation
operation, which follows from the definition (Axioms A-12–A-13; where only the
case m 6= n has to be considered) and the induction hypothesis.

The laws T-5–T-7 allow to interchange the application of atomic selection operators
in an arbitrary way. In particular, this is also the reason why a (non-atomic) con-
figuration can be denoted as a set which does not imply an order of the elements,
and does not have to be denoted as e.g. a sequence which comes with a clear order
of its elements.

64

2.2. Axiomatization of Software Product Family Concepts

In contrast to the configuration of different variation points, multiple occurrences of
selection operators concerning the same variation point must not be interchanged.
More precisely, the (temporal) order in which selection operators referring to the
same variation point are applied is essential for the resulting product. This means
that in general we have the following inequality:

selL
(

i, selR (i, P)
)

6= selR
(

i, selL(i, P)
)

The reason for this is that once we have selected a certain variant—i.e. once we have
applied either selL or selR for a variation point—the resulting product family is fixed
with respect to this variation point. In particular, we cannot undo our configuration
selection for this particular variation point once it is performed. This reflects our
intuitive understanding of how a (realistic) configuration process takes place: Once
we have configured a variation point, any preceding configuration decision for the
same variation points is irrelevant. Seen from a more theoretical point of view,
if we would allow that the order of selection operations could be changed, i.e. if
selL

(

i, selR (i, P)
)

= selR
(

i, selL(i, P)
)

would hold, then the process of configuration
would not yield a unique product anymore, as we could prove the existence of at
least two different products by applying the equality.

After applying a complete configuration to a product family, the product family
contains no variation points anymore since every variation point is replaced by the
selected variant. In particular, configuring a product family with a complete config-
uration always yields a product in a unique way.

2.2.3.4. Properties of the Variants Operator

(Non-) Associativity

An essential property for the configuration process of a software product family is
that a specific configuration always yields the same product or sub-family. In order
to guarantee this we cannot allow that the variants operator is associative since an
associative variants operator would introduce an ambiguity in the mapping between
variants and variation points. More precisely, consider the product family, where
we assume that i 6= j.

P ⊕i (Q⊕j R)

Here, the variants of each variation point are precisely specified: The variants of the
variation point i are the product families P and (Q ⊕j R), respectively, while the
variants of variation point j are the product families Q and R. Now, imagine an
associative variants operator, i.e. where the law P ⊕i (Q ⊕j R) = (P ⊕i Q) ⊕j R
would hold. For such an associative variants operator, by applying the associative

65

2. Formalization of Characteristic Software Product Family Concepts

law, the association between the variants and the variation points is altered: After
applying the law, the variants of variation point i would be P and Q, while the
variants of the variation point j would then be (P ⊕i Q) and R. In particular, the
same configuration {(i, L), (j,R)} would result in different products, depending on
whether we apply the associative law or not:

selL
(

i, selR
(

j, P ⊕i (Q⊕j R)
)

)

selL
(

i, selR
(

j, (P ⊕i Q)⊕j R
)

)

=

= selL(i, selR(j, P)) 6= selL(i, selR(j,R))

The last line is an inequality since in general we cannot assume that P = R. Cer-
tainly, the property that the same configuration can result in different products is
not desired, which is why we do not allow the variants operator to be associative.

Due to the non-existence of an associative law for the variants operator, the nesting
of variation points induces a hierarchical structure, i.e. variants may again contain
variation points, themselves. In particular, without associativity, it is precisely
defined to which variation point a variant belongs. The hierarchy induced by the
variants operator causes that the configuration decision of some variation points
has no effect on the resulting product. To give an example, revisit the product
family Spf shown in Figure 2.6: Here, the left variant of the variation point 2
contains the variation point 3. This implies, that for every configuration which does
not select the left variant, e.g. the configuration {(2, R)}, also the variation point
3 will not be included in the final product. In particular, in such a situation the
atomic configuration of the (contained) variation point 3 is irrelevant for the resulting
product. We can see this easily if we consider every possible atomic configuration of
the variation point 3 in combination with selecting the atomic configuration {(2, R)}.
For the product family Spf , both configurations, {(2, R), (3, L)} and {(2, R), (3, R)},
result in the same product family SpfFem, i.e.

configure
(

{

(2, R), (3, L)
}

, Spf
)

= SpfFem = configure
(

{

(2, R), (3, R)
}

, Spf
)

which follows from applying the respective laws A-12–A-7.

This gives reasons for an equivalence relation ∼ on the set of all possible complete
configurations of a product family: two complete configurations c1, c2 ∈ CONFSn

are equivalent for a given product family if they result in an identical product (Recall,
that CONFSn denotes the set of all complete configurations for a product family
with n variation points).

Definition 2.5 (Equivalence of Complete Configurations). Let PF ∈ SPF α be a
product family with n ∈ Nat non-trivial variation points, and c1, c2 ∈ CONFSn be
complete configurations for PF. We call c1 and c2 equivalent iff they result in the
same product when applied to PF, i.e. if

configure(c1,PF) = configure(c2,PF)

66

2.2. Axiomatization of Software Product Family Concepts

All (complete) configurations which are equivalent according to Definition 2.5 form
an equivalence class, which we denote by

[c] := {c′ ∈ CONFSn|c′ ∼ c}

Let us summarize the connection between products and configurations. We observe
that (i) any complete configuration corresponds to exactly one product, but (ii) a
product can be represented by many (complete) configurations. Thus any product
corresponds to an equivalence class of complete configurations.

(Non-) Commutativity

Since the selection operators selL and selR identify the variants according to the
side of the respective variants operator on which they appear, (only) our variants
operator is not commutative. If we would allow commutativity for our version of the
variants operator, i.e. if P ⊕i Q = Q⊕i P would hold, then the selection operators
selL and selR would not yield the desired result—the desired variant in a unique
way—as the following example illustrates:

selL(i, P ⊕i Q) = selL(i, P) 6= selL(i,Q) = selL(i,Q⊕i P)

Certainly, in general the sequence in which the variants of a variation point are
specified, is not important. Thus, in general a variants operator is commutative, as
it only models the choice between variants, and not an ordered on them. However, a
commutative version of a variants operator comes with some overhead concerning the
identification of the respective variants. Thus—for the sake of simplicity—we have
preferred to abandon commutativity and decided to introduce a variants operator
which identifies its variants according to the side of the operator on which they
appear, being aware about the non-commutativity.

2.2.3.5. Sub-Families

The selection operators allow to configure an entire software product family suc-
cessively by configuring variation points independently in an arbitrary order. This
gives reasons for the notion of a sub-family. Intuitively, a sub-family is a product
family—and thus an element of sort SPF α—which was derived from another prod-
uct family that contains a superset of (non-trivial) variation points, by configuring
some of the variation points of the original product family. More precisely, we say
that a product family PF ′ is a sub-family of another product family PF if there
exists a composition of selection operators—represented by a configuration—which
yields the product family PF ′ when applied to the original product family PF .

67

2. Formalization of Characteristic Software Product Family Concepts

Definition 2.6 (Sub-Family). Let PF ′,PF ∈ SPF α be two product families. We
call PF ′ a sub-family of PF if

∃c ∈ CONFIGS : NF
(

configure
(

c, PF
)

)

= NF
(

PF ′
)

We say that the sub-family PF ′ is a partially configured version of PF. A sub-family
that still contains non-trivial variation points is called a true sub-family.

Compared to the “original” family PF (where not all variation points have been
configured yet), a sub-family PF ′ represents only a certain subset of products, as not
all products which could be derived from the original one can still be derived from the
sub-family product family. By comparing the normal forms of both product families
we abstract from their concrete term representation, respectively. According to
Definition 2.6 a sub-family itself does not necessarily have to contain variation points,
anymore. In particular, completely configured products also fulfill the definition of
sub-families. However, usually we assume that a sub-family still contains (non-
trivial) variation points, and is not yet a product.

Consider for example the product family Spf given in Figure 2.3 together with its
realization in the computation structure of stickmen drawings (cf. Figure 2.4). Imag-
ine we are only interested in stickman drawings with female torsos. This requires
to select the variant Female Torso for the variation point 2, and results in a product
family SpfFem of stickmen with female torsos. We can represent this family easily
by deriving it as a sub-family of the original product family Spf . The corresponding
configuration consists of the single atomic configuration (R, 2) only. The derivation
of the sub-family SpfFem is shown in Figure 2.6.

Figure 2.7 shows the actualization of SpfFem in the computation structure of stick-
men drawings. The product family SpfFem has only one variation point and thus
represents only two products. Note that SpfFem is a self-contained product family
which can be considered independently from other product families. However, due
to deriving it as a sub-family from Spf the formal connection to Spf is precisely
given, which allows to reason about SpfFem also in the context of Spf .

For the application of software product family concepts in a realistic context the
concept of a sub-family is very important. Although it is essential that the software
product family “covers” the set of all derivable products in their entirety, sometimes
the full model of a software product family is too complex to be considered in its full
extent for specific situations (e.g. in an automotive OEM/supplier scenario). In order
to cope with the complexity of real-life software product families, the capability to
consider only relevant parts of a software product family is essential. In a software
product family, this manifests very often in the situation that only a subset of all
derivable products has to be considered. Here, the notion of a sub-family gives the
necessary conceptual foundation in order to define an abstraction mechanism as a
methodological concept.

68

2.2. Axiomatization of Software Product Family Concepts

SpfFem := configure
(

{(R, 2)}, Spf
)

= selR(2,Spf)

A-10= selR
(

2,
(

(asset(Coffee)⊕3 asset(Left Hand)) ‖ Male Torso
)

⊕2 asset(Female Torso)
)

‖ selR
(

2,
(

asset(Smiling) ⊕1 asset(Sad)
)

‖ asset(Face)
)

‖ selR(2, asset(Legs))

A-8,
A-10,
A-12= selR

(

2, asset(Female Torso)
)

‖
(

selR
(

2, asset(Smiling)⊕1 asset(Sad)
)

‖ selR
(

2, asset(Face)
)

)

‖ asset(Legs)

A-8,
A-12= asset(Female Torso)

‖
(

(

selR
(

2, asset(Smiling)
)

⊕1 selR
(

2, asset(Sad)
))

‖ asset(Face)
)

‖ asset(Legs)

A-8= asset(Female Torso)

‖
(

(

asset(Smiling)⊕1 asset(Sad)
)

‖ asset(Face)
)

‖ asset(Legs)

Figure 2.6.: The product family SpfFem is derived as a sub-family of Spf .

Figure 2.7.: The actualization of the product family SpfFem (cf. Figure 2.6) in
the concrete computation structure of stickmen drawings. The product
family SpfFem is a true sub-family of the original product family Spf .
It contains only stickman drawings with female torsos.

69

2. Formalization of Characteristic Software Product Family Concepts

2.2.3.6. Products

The representations of individual products can be derived from the representation
of a software product family by configuration. Intuitively, products are those config-
ured instances of a software product family which have no variable parts and which
thus can exist in reality. Compared to an arbitrary element of sort SPF α, the dis-
tinctive property of a product is that it does not contain any more choices between
(non-trivial) variants.

However, not only complete configurations yield products. For example, consider
the incomplete configuration {(2, R), (1, L)} for the product family Spf :

configure
(

{

(2, R), (1, L)
}

, Spf
)

= selR
(

2, selL(1,Spf)
)

= asset(Female Torso) ‖
(

asset(Smiling) ‖ asset(Face)
)

‖ asset(Legs)

Although being incomplete—the atomic configuration for the variation point 3 is
missing—the configuration still yields a product which does not contain any variation
points anymore. This is possible since the variation operators induce a hierarchic
structure (due to the missing of an associative law for ⊕). In particular, a variant
P of a variation point P ⊕iQ may again contain variation points, itself. This means
that by not selecting P , the contained variation point will not be included in the
final product, either, and does therefore also not require to be configured. Thus,
while a complete configuration always yields a product, there are also incomplete
configurations which already yield products.

Another issue is that some variation points do not offer a true choice, i.e. if an element
of sort SPF α contains trivial variation points of the kind P ⊕i P , according to the
idempotence law (Axiom A-4) configuring this particular variation point always
results in the same variant P . In this light, trivial variation points actually do not
represent variability. Thus, a product can contain variation points—as long as all
of them are trivial—and still fulfill our initial property of not containing variability
any more. Note that performing the configuration on the normal form of an element
avoids such trivial variation points, as we have mentioned before in Section 2.2.3.2.

In a realistic application scenario the ability to determine whether a (partially) con-
figured product family is already a product or whether it still contains unconfigured,
non-trivial variation points, is essential. For such a situation we provide a function
is product which characterizes products in general, i.e. it returns the answer whether
a given product family of sort SPF α is actually a product or not by testing for
variable parts.

70

2.2. Axiomatization of Software Product Family Concepts

is product : SPF α → Bool (2.45)

The result of the function is product is a boolean value true or false. We represent
the Boolean values by the sort Bool, which is defined by means of an algebraic
specification that can be found in Appendix A.1 on Page 232. The function is product

precisely defines our notion of a product: While every product itself is also an element
of sort SPF α, it still is a special kind of a product family since a product does not
contain any non-trivial variation points anymore. This is expressed by the following
axioms:

is product
(

ntrl
)

= true (A-14)

is product
(

asset(a)
)

= true (A-15)

is product(P ‖ Q) = is product(P) ∧ is product(Q) (A-16)

is product(P ⊕i Q) =

{

false ,NF(P) 6= NF(Q)
is product(P) ,NF(P) = NF(Q)

(A-17)

The function recursively checks if an element of sort SPF α, e.g. a sub-family, con-
tains non-trivial variation points. Any element, which contains such non-trivial
variation points is not a product. Regarding Axiom A-14, although representing
the concept of the empty product family , the element ntrl in its own rights is still
a product in the sense that it does not contain any variability and requires no fur-
ther configuration decisions. Regarding Axiom A-17, we distinguish between trivial
and non-trivial variation points by checking for every variation point if its variants
are equivalent or not. For this check we use the function NF, which represents the
normal form of an element of sort SPF α. Thus, an element P⊕iQ is actually a prod-
uct if the normal form of both variants is the same, and if the variants themselves,
w. l. o. g. represented by the left variant P , are products, too.

In summary, the function is product checks whether an element of sort SPF α contains
variability. Only those elements which do not contain any variable parts are called
products. Technically, the check is performed by testing for non-trivial variation
points. In particular, this means that we consider an element such as for example
P ⊕1 P to be a product, even though its term representation contains a (trivial)
variation point.

Set of Derivable Products

Characteristic for any software product family is its set of derivable products.

71

2. Formalization of Characteristic Software Product Family Concepts

Definition 2.7 (Set of Derivable Products). The set PRODUCTSPF is the set of
all products which are derivable from a software product family PF containing n
non-trivial variation points, i.e.

PRODUCTSPF := {NF(P) ∈ SPF α | ∃c ∈ CONFSn : configure(c,PF) = P}

A set PRODUCTSPF only contains completely configured products of PF , since we
only consider complete configurations in CONFSn which (by construction) always
yield products. Since some of the possible products may be equivalent with respect to
the equivalence relation (cf. Section 2.2.3.2) induced by the constructor axioms (cf.
Section 2.2.3.1), we consider the set of normal forms of all possible configurations
in Definition 2.7. Further, the set PRODUCTSPF is constructed by applying all
combinatorially possible configurations to the respective product family PF . Since
by definition there are only finitely many non-trivial variation points (with finitely
many variants, respectively) the set PRODUCTSPF is actually constructible for any
product family PF in finite time.

Beside the notion of equivalence of software product families of sort SPF α which
is based on their normal form (cf. Section 2.2.3.2), we define another notion of
equivalence based on the set of derivable products. For a given element of sort SPF
α, we consider two elements P,Q of sort SPF α equal if both allow to derive the
same set of products.

Definition 2.8 (Product Equivalence of Software Product Families). Let P,Q ∈
SPF α be two software product families. We consider both software product families
equal iff both represent the same set of derivable products, i.e.

PRODUCTSP = PRODUCTSQ

2.2.3.7. Common Parts

The explicit representation of common parts is at the heart of a software product
family. The distributivity of the composition over the variants operator (Axiom
A-3) is the conceptual key to deal with commonalities within a software product
family, and in particular to define the notion of a common part of two variants.
Recall the distributive law

(P ‖ Q)⊕i (P ‖ R) = P ‖ (Q⊕i R) (A-3)

The distributive laws give reason to the concept of common parts of variants.

72

2.2. Axiomatization of Software Product Family Concepts

Figure 2.8.: Graphical illustration of the distributive law of ⊕ over ‖. It shows
the effect of Axiom A-3 for the tree representation. The element P
represents the direct common part of both variants.

Definition 2.9 (Common Part of Variants). Let Q,R ∈ SPF α be arbitrary product
families. We call any element P ∈ SPF α, P 6= ntrl, a common part of the variants
of variation point A⊕iB, if P exists in both variants A and B in such a way that P
can be factored out by means of the distributive laws (Axiom A-3, Thm. T-1–T-4).

Figure 2.8 illustrates the distributive law and the idea of common parts. It shows
the effect of applying the distributive law for the tree representation of Axiom A-3.
After applying the law, the common element P is factored out and the configuration
selection has to be performed only between the variant-specific parts Q and R. Note
that the common part is an arbitrary element (except for the neutral element) of
sort SPF α, which means that it does not necessarily have to be an asset. Thus,
even sub-families can be common parts of two variants.

Although it is not a special law from an algebraic point of view, the distributive law
is of immense importance for the realistic applicability of software product line engi-
neering: It describes (i) how we can represent two variants as a composition of their
common and their variant-specific parts, and (ii) gives a restructuring/rewriting rule
how to factor out their common part. In order to emphasize the practical impor-
tance of this law we want to make one step back from our technical treatment and
recall Dijkstra’s vision [DDH72], we have already given in the introduction:

If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the
other. It would be much more attractive if the two different programs
could, in some sense or another, be viewed as, say, different children
from a common ancestor, where the ancestor represents a more or less
abstract program, embodying what the two versions have in common.

If we understand two similar systems (programs) as variants of a common variation
point, the distributive law represents a restructuring rule that allows us to factor out

73

2. Formalization of Characteristic Software Product Family Concepts

the common part and push the variation point deeper (towards the leaves) in the
term hierarchy. The resulting representation (right-hand side of the distributivity
axiom) represents Dijkstra’s idea of an “abstract program”, where the common part
is explicitly represented and the configuration selection has only to be performed
between the different parts of both variants.

Example: Common Parts of the Stickmen Drawings

In order to illustrate the extraction of common parts by applying the distributive
law we consider the product family SpfII .

SpfII :=
(

(

(asset(Coffee)⊕3 asset(Left Hand))

‖ asset(Male Torso II) ‖ asset(Right Hand)
)

⊕2

(

asset(Female Torso II) ‖ asset(Right Hand)
)

)

‖
(

asset(Smiling) ⊕1 asset(Sad)
)

‖ asset(Face) ‖ asset(Legs)

The product family SpfII is a slight modification of the product family Spf . It uses
most of the assets known from Spf , and the three new assets named Female Torso II,
Male Torso II, and Right Hand, for which we assume the sort Stickman to contain the
respective constants. Note that compared to Spf , the asset asset(Right Hand) is now
an independent asset and forms no longer an atomic asset together with the torsos.
Since the asset asset(Right Hand) is contained in both variants of the variation point
2, we can apply the distributive law to factor out this common part as shown in the
following calculation. This results in a restructured version of the product family
SpfII which we denote with SpfIII .

SpfII =
(

(

(asset(Coffee)⊕3 asset(Left Hand))

‖ asset(Male Torso II) ‖ asset(Right Hand)
)

⊕2

(

asset(Female Torso II) ‖ asset(Right Hand)
)

)

‖
(

asset(Smiling) ⊕1 asset(Sad)
)

‖ asset(Face) ‖ asset(Legs)

A−3
=

(

(

(asset(Coffee)⊕3 asset(Left Hand)) ‖ asset(Male Torso II)
)

⊕2 asset(Female Torso II)

‖ asset(Right Hand)
)

‖
(

asset(Smiling) ⊕1 asset(Sad)
)

‖ asset(Face) ‖ asset(Legs)

=: SpfIII

Let StickmanShapesII be a concrete computation structure that realizes the three new
shapes and the remaining constants from the sort Stickman as concrete graphical

74

2.2. Axiomatization of Software Product Family Concepts

shapes as shown in Figure 2.9. Figure 2.10a shows the product family SpfII as
realized in StickmanShapesII. We see the effect of the distributive law in Figure
2.10b, which shows the product family SpfII in its restructured form SpfIII , as it
is realized in StickmanShapesII. After the restructuring (Figure 2.10b) the common
part Right Hand is now explicitly included in every product, since it is composed to
the variation point 2 directly, and does not appear as part of both variants anymore.

2.2.3.8. Optional and Mandatory Parts

Typical for a software product family is the concept of optional and mandatory
parts. Intuitively, a part is called optional if there are at least two variants that
themselves differ only by the optional part, i.e. one variant comprises the entire
other variant and additionally the optional part. The idea is that an optional part is
not essentially required for every variant and can be added if desired. In contrast, we
call a part mandatory if its existence is not depending on any configuration choice,
i.e. if it is present in every possible variant.

Optional Parts

Optionality of variants is a special case of alternative existence of variants. We
model an optional part, i.e. an optional variant, as a special case of a variation point
where one variant represents an “empty” product family. For this purpose we use
the neutral element, which allows to represent an optional element O ∈ SPF α by
means of a variation point of the following kind

O ⊕i ntrl

Depending on the atomic configuration of the corresponding variation point i this
means that either (i) the element O is selected and thus present in the resulting
product family, or (ii) the neutral element ntrl is selected which means that the
resulting product family effectively remains unchanged as described by Axiom A-
4. Consider for example the following product family (We assume that P and O
themselves do not contain a variation point with label i).

P ‖ (O ⊕i ntrl)

For the atomic configuration (i, L) the product family becomes

selL
(

i,
(

P ‖ (O ⊕i ntrl)
)

)

A−11
= selL(i, P) ‖ selL

(

i, (O ⊕i ntrl)
)

A−13
= selL(i, P) ‖ selL(i, O)

T−8
= P ‖ O

75

2. Formalization of Characteristic Software Product Family Concepts

Figure 2.9.: The actualization of core assets of sort SPF Stickman in the computation
structure StickmanShapesII.

(a) The family SpfII as realized in the computation structure Stick-

manShapesII.

(b) The product family SpfII . Compared to (a), the common part (asset
Right Hand) was factored out by means of the distributive law.

Figure 2.10.: Illustration of the product family SpfII before and after the application
of the distributive law.

76

2.2. Axiomatization of Software Product Family Concepts

while for the atomic configuration (i, R) it becomes

selR
(

i,
(

P ‖ (O ⊕i ntrl)
)

)

A−10
= selR(i, P) ‖ selR (i, (O ⊕i ntrl))

A−12
= selR(i, P) ‖ selR(i, ntrl)

A−6, T−9
= P ‖ ntrl

A−4
= P

Thus, the difference between both versions is only the element O, which is either
completely included or not. Regarding the variants, the variant P ‖ O comprises
exactly the other variant P and additionally the optional part O.

Note that defining the optional part as the left-hand side argument of the variation
point is an arbitrary choice. Switching the positions of the optional part and the
element ntrl, i.e. specifying an optional part O as ntrl ⊕i O instead of O ⊕i ntrl, is
equally possible. Whatever version is used, the configuration of corresponding varia-
tion point i has to be adjusted accordingly. In order to abstract from this irrelevant
detail—and as a kind of syntactic sugar—we introduce the function optional which
is just a more comfortable way of denoting the corresponding variation point:

optional : SPF α, Nat → SPF α (2.46)

Like a variation point, an optional part has also a unique name (represented by the
argument of sort Nat). Since this name is basically a reference to the name of a
variation point, this name has to be unique in the set of identifiers for all variation
points in the respective product family. The function optional simply wraps an
optional part O, essentially abbreviating the specification of an variation point as
the corresponding axiom points out:

optional(O, i) = (O ⊕i ntrl) (2.47)

For example, the following product family has the optional element O:

P ‖ optional(O, i)

According to Equation 2.47 this is just an abbreviation for the following specification
representing the optionality of the part O by means of a variation point:

P ‖ (O ⊕i ntrl)

77

2. Formalization of Characteristic Software Product Family Concepts

For technical reasons, the optional operator requires a special configuration operator
which takes the product family to be configured, the number of the corresponding
optional asset, and a boolean value which states whether the optional element will
be included (indicated by true) or not (indicated by false):

select : SPF α, Nat, Bool → SPF α

The axiom of this special configuration operator expresses the translation into the
configuration for the corresponding variation point:

select(P, i, choice) =

{

selL(i, P) , choice = true
selR(i, P) , choice = false

Since the function optional and the associated selection operator select are merely
an abbreviatory notation for the special case of an alternative variation point, we
do not include them in the algebraic specification of a software product family (cf.
Page 90).

Mandatory Assets and Mandatory Parts

Some core assets are included in every derivable product of a given product family.
We call them mandatory. Mandatory assets represent the commonality among the
products of a product family on the level of basic construction units, and can be
used as a measure for reuse. The more mandatory assets exist in a product family,
the higher is the degree of reuse. Other assets are not necessarily present in every
product, i.e. they exist only in some products. In particular, they are not mandatory.
We call such assets variable. Note that an optional asset is a special case of a variable
one.

Consider for example Figure 2.10b (Page 76) which shows the actualization of the
product family SpfIII : The asset asset(Right Hand) actually is a mandatory asset
of SpfIII , since it is part of any derivable product, as the configuration of SpfIII
according to all six possible configurations shows.

So far, we pursued the idea of being mandatory only for assets. Now, we extend
this idea to a more general setting. We consider the question whether arbitrary
elements of sort SPF α are part of all products which can be derived from a certain
software product family. This allows to express that compound objects, or even
entire subfamilies are mandatory parts with respect to a larger product family. For
this purpose we introduce the function

is mand : SPF α, SPF α→ Bool (2.48)

78

2.2. Axiomatization of Software Product Family Concepts

The operation is mand(Z,X) expresses that a general element X ∈ SPF α is con-
tained as a mandatory part/sub-family in the product family Z ∈ SPF α. Anal-
ogously to the notion of mandatory and variable assets we call an element X a
mandatory part of Z, if X is part of every product that can be derived from Z.
Otherwise, we call X a variable part with respect to Z.

Using our running example of stickman drawings, we might for example not only be
interested in whether a concrete asset such as a smiling or sad mouth occurs in every
product, but rather whether every product actually has a mouth. In the example of
the product family SpfIII this is equivalent to the question whether every product
actually contains the variation point asset(Smiling) ⊕1 asset(Sad) as a mandatory
part. The function is mand provides the means to specify such properties. Note that
we express such properties without an explicit type-mechanism. A type mechanism
is orthogonal to software product family concepts and can be added additionally.

An element X ∈ SPF α, X 6= ntrl, is mandatory in a product family Z if the
product family Z is actually the part X itself, or if X is composed to every product
independently from any configuration choice, or if X appears as a mandatory part
of both variants, in the case where Z itself is a direct variation point. These ideas
are reflected by the following axioms. Note that in order to check whether two
elements are actually equal, we compare them on basis of their normal forms (cf.
Section 2.2.3.2). In this way, the specification of is mand becomes independent of
the concrete term representation which is used to denote the elements.

is mand(ntrl, X) = false (A-18)

is mand
(

asset(a), X
)

=
(

NF(X) = asset(a)
)

(A-19)

is mand
(

P ‖ Q, X
)

=



















false ,NF(P ‖ Q) = ntrl
(

NF(P ‖ Q) = NF(X)
)

∨ is mand(P, X)
∨ is mand(Q, X)

, else

(A-20)

is mand
(

P ⊕i Q, X
)

=



















false ,NF(P ⊕i Q) = ntrl
(

NF(P ⊕i Q) = NF(X)
)

∨

(

is mand(P,X)
∧ is mand(Q,X)

)

, else

(A-21)

For example, by applying the Axioms A-18–A-21 from left to right we can conclude
that the compound element

(

asset(Face) ‖ asset(Legs)
)

is a mandatory part of the
software product family SpfIII , i.e.

79

2. Formalization of Characteristic Software Product Family Concepts

is mand
(

SpfIII , asset(Face) ‖ asset(Legs)
)

= . . . = true

Examining the example of the software product family SpfIII more closely we see
that the compound element

(

asset(Face) ‖ asset(Legs)
)

is not the “largest” manda-
tory part of the product family SpfIII , yet. We can still add the elements Right Hand
and

(

asset(Smiling)⊕1 asset(Sad)
)

, thus considering the compound element

asset(Right Hand) ‖
(

asset(Smiling)⊕1 asset(Sad)
)

‖ asset(Face) ‖ asset(Legs)

This element is also a mandatory part of the product family SpfIII . However, it is
different to the former one as it represents a true sub-family, i.e. it not only contains
assets but also a variation point. However, also such general elements are recognized
as mandatory parts by the function is mand.

Expressiveness of the Function is mand

The previous example has shown that the function is mand allows to check whether
arbitrary elements of sort SPF α occur as mandatory parts of a product family of
sort SPF α. For example, by evaluating

is mand
(

Z, asset(Smiling)⊕1 asset(Sad)
)

we can check whether every stickman drawing which is derivable from the family
Z has either a smiling or a sad face. However, we cannot check whether every
stickman drawing actually has a “face”. Simply, because the concept “having a
face” is not expressible in the axiomatization. The reason for this is the lack of a
type system which allows to specify concepts such as “having a face”, for example
by grouping the three assets asset(Smiling), asset(Sad) and asset(Normal) together to
form the subtype Faces. Certainly, the theory of type systems is well understood
in the context of programming languages [CW85, LZ74, LW94], and we can easily
extend our axiomatization with a type system, that allows to specify such questions.

However, we introduced the axiomatization without a type system since in our
opinion a type system represents an orthogonal concept that can be additionally
added to the axiomatization if desired, but that is not an essential part which is
necessary to define the conceptual construction principle behind a software product
family. Therefore, we have not added a type system on top of the axiomatization,
being aware that questions such as the one before are not directly expressible within
our theory. We will pick up this discussion again at the end of this chapter in Section
2.4.3.

80

2.2. Axiomatization of Software Product Family Concepts

2.2.3.9. Evolution of Software Product Families

As experience from realistic scenarios shows, a software product family constantly
evolves [Bos00, TBK09, AGM+06] due to various reasons such as changing cus-
tomer’s needs, market development, or emerging technology trends. Often new
assets are added, existing assets are modified, or the structure of the product fam-
ily is changed. We also speak of software product line evolution [Bos00]. In our
axiomatization we can also represent evolution of software product families, which
facilitates further reasoning about the change within software product families.

Uniqueness of Variation Point Identifiers

In the situation where new assets are added by extending the specification of a
product family P with new variation points, these variation points have not to be
confused with existing variation points of P . In particular, there must not be a name
clash with the identifiers of new variation and the identifiers of existing ones, since
the selection choices represented by existing variation points have conceptually be
made independently from the choices offered by new variation points. Therefore, we
name new variation points with identifiers which are fresh in the set of identifiers of
P . In order to realize this requirement, and to reason about the existence of certain
variation points, a product family has to provide a mechanism that allows to keep
track of the variation points included in the product family so far. This is realized
by the function has ntVP (has non-trivial variation point):

has ntVP : NAT, SPF α → Bool (2.49)

has ntVP(n, ntrl) = false (A-22)

has ntVP
(

n, asset(a)
)

= false (A-23)

has ntVP(n, P ‖ Q) = has ntVP(n, P) ∨ has ntVP(n,Q) (A-24)

has ntVP(n, P ⊕i Q) =





(

(n =Nat i) ∧ (NF(P) 6= NF(Q))
)

∨ has ntVP(n, P)
∨ has ntVP(n,Q)



 (A-25)

The operation has ntVP(i, P) returns the result whether a given software product
family P contains a variation point with the given label i. For core assets and the
neutral element the result is always false since both are atomic units which can
not contain any other elements of sort SPF α. For composed elements the result
depends on whether the composition units contain a variation point with such a

81

2. Formalization of Characteristic Software Product Family Concepts

label. Regarding Axiom A-25, for variation points, either the variation point itself
has such a label, or the result depends on the result of its variants. Thereby, trivial
variation points are ignored, i.e. the function has ntVP only respects identifiers of
existing non-trivial variation points (realized by the check NF(P) 6= NF(Q) in the
side condition of Axiom A-25).

Knowledge of the variation points which exist in a software product family can be
exploited to simplify the configuration process. The following two laws express the
fact that any application of a selection operator for a variation point i on a product
family which does not contain a variation point with such an identifier, has no effect.
In particular when reasoning about the effects of configurations for sub-families such
laws are useful.

¬has ntVP(n, P) ⇒
(

selL(n, P) = P
)

(T-8)

¬has ntVP(n, P) ⇒
(

selR(n, P) = P
)

(T-9)

Both laws can be derived from the specifications of has ntVP and the selection oper-
ators by means of term induction. Exemplarily we consider the proof for Law T-8,
as the proof for Law T-9 is analogous.

Proof Sketch. The inductive base cases for the constructors ntrl and asset(a) follow
directly from the respective definitions of the function selL (Axioms A-9 and A-
7), and function has ntVP (Axioms A-22 and A-23). Regarding the composition
operator, the case ¬has ntVP(n,A ‖ B) ⇒

(

selL(n,A ‖ B) = A ‖ B
)

follows
when applying the definition (Axioms A-24 and A-11) and the respective induction
hypotheses. For the case of the variation operation, we apply the definition for the
respective cases (Axioms A-25 and A-13). Since we only have to consider the case
(n 6= i), the definition of selL (Axiom A-13) reduces to the second case. The resulting
proposition

((

(n 6=Nat i) ∨ (NF(A) = NF(B))
)

∧ ¬has ntVP(n,A) ∧ ¬has ntVP(n,B)

)

⇒ selL(n,A) ⊕i selL(n,B)

follows from the respective inductive hypotheses.

Basically, there are two ways to add a new variation point ⊕i to an existing product
family P of sort SPF α. Firstly, the variation point introduces an alternative to the
entire existing product family P , resulting for example in a new product family of
the kind P ′ ⊕i P , where the alternative variant P ′ has to be provided as well. In

82

2.2. Axiomatization of Software Product Family Concepts

such a case the variation point identifier n must be fresh in the set of identifiers of
P , i.e. has ntVP(n, P) = false , and the set of variation point identifiers of P and
P ′ must be disjoint. A second way of introducing a new variation point (S ⊕i T)
is by adding it to an existing product family P ∈ SPF α by composition, e.g. by
composing it directly to P :

P ‖ (S ⊕i T)

This can be done only if we require for the composition (P ‖ Q) of two arbitrary
elements P,Q of sort SPF α, that they do not contain variation points with identical
identifiers.

Identifiers are not necessarily unique within the term representing a product family.
The reason is that the distributive law (Axiom A-3)

(P ‖ Q)⊕i (P ‖ R) = P ‖ (Q⊕i R)

allows to “duplicate” variation points. When applying it from right to left, if the
common part P either is a variation point itself or contains variation points, these
variation points appear twice in the resulting term of the product family, since the
element P gets “duplicated” by the law. Note, this is just a consequence of applying
an axiom on an existing product family, and does not affect the consistency of our
axiomatization as we have shown in Section 2.2.3.3 in the context of the selection
operators. In particular, it is essential to realize that the situation of producing
duplicated variation point identifiers by applying the distributive law should not
be mistaken with the (forbidden) situation of labeling a variation point with an
(already) existing identifier when adding it to a product family.

Modification of Core Assets

The entire philosophy of a software product family is based on the idea to assemble
all products from the same set of core assets. Thus, the core assets (resp. the
elements of sort α which are wrapped by the core assets) represent those artifacts
which actually have to be implemented. Once all assets exist, any product can be
assembled following the “blue print” which is given by the corresponding configured
product family. Thus, in a realistic scenario it is interesting to know what assets are
actually used in the products of a software product family, in order to reason about
a product family based on the information of its assets. The set of all core assets
which are used for the products of a specific software product family is characterized
by the function

83

2. Formalization of Characteristic Software Product Family Concepts

Assets : SPF α→ Set SPF α (2.50)

Given a concrete element of sort SPF α, any core asset which appears in at least
one derivable product of the product family PF is added to the set Assets(PF) of
all core assets. This idea is precisely expressed by the following axioms:

Assets(ntrl) = ∅ (A-26)

Assets
(

asset(a)
)

=
{

asset(a)
}

(A-27)

Assets(P ‖ Q) = Assets(P) ∪ Assets(Q) (A-28)

Assets(P ⊕m Q) = Assets(P) ∪ Assets(Q) (A-29)

Since the assets are the atomic units for the composition operator, the set Assets(PF)
is necessarily complete in the sense that it contains exactly the required core assets.
More precisely, it does neither contain more nor fewer assets, since (i) except for the
assets (and the special element ntrl) no other parts are contained in PF on the one
hand, while on the other hand, (ii) every asset which appears in the representation
of a product family is actually used in at least one product.

We have already seen that the fact that all products of the same product family are
constructed from a common set of core assets is an essential prerequisite in order to
achieve an efficient kind of reuse. In particular, with respect to modifications of core
assets this means that whenever one core asset is modified, the change is propagated
to all products of the software product family. Thus, the set of core assets can only
evolve for all products simultaneously and not for individual products differently.
From this point of view, this is one of the major differences between software product
line engineering and single systems engineering with unplanned reuse. In [New05],
Paul Clements has summarized this difference nicely:

. . . single-system development with reuse usually begins by taking the
latest version of whatever other systems happen to exist, copying the
code, and starting to make product-specific changes to it. The result
is that each version of each product launches on its own maintenance
and change trajectory, which soon overwhelms the organization trying
to keep all of the versions under control and staffing the effort. In a
software product line, the core assets follow a single evolution path, and
all versions of all products are built from those.

84

2.2. Axiomatization of Software Product Family Concepts

Due to software product line evolution [Bos00] it is very often the situation that assets
evolve over time, i.e. after a software product family has been constructed some of
its core assets may be modified. This means that all products which contain this
asset have to be modified, too. In our setting this can simply be done by modifying
the assets directly in the representation of the product family itself. We represent
the act of modifying an asset which is part of the universe of assets Assets(PF) of
an existing product family PF by the function

modify : SPF α, SPF α, SPF α→ SPF α (2.51)

Applying the function modify
(

PF , A,A′
)

yields a modified product family which
is identical to the product family PF , except that all assets A are replaced by a
variation point A ⊕n A

′ which has the original asset A and the modified asset A′

as its variants. Thereby, the identifier of the new variation point has to be fresh in
the set of existing identifiers, i.e. has ntVP(n,PF) = false. More precisely, this is
specified by the following axioms

modify
(

ntrl, A, A′
)

= ntrl (A-30)

modify
(

asset(a), A, A′
)

=

{

asset(a)⊕i A
′ , asset(a) = NF(A)

asset(a) , else
(A-31)

modify(P ‖ Q, A, A′) = modify(P, A, A′) ‖ modify(Q, A, A′) (A-32)

modify(P ⊕i Q, A, A
′) = modify(P, A, A′) ⊕i modify(Q, A, A′) (A-33)

Note that it is essential to apply a modification of core assets directly to the product
family and not only in some of the products after they have been derived from the
product family.

2.2.3.10. A General Variants Operator for n Variants

The variants operator which we have introduced so far (cf. Section 2.2.3.3) offers
only a choice between two variants. With an appropriate nesting of binary variation
points and a corresponding configuration we can simulate a general n-ary choice
between n variants. For example, a choice between three variants can be simulated
by nesting two binary variation points as in

P ⊕i (Q⊕j R) , i 6= j

85

2. Formalization of Characteristic Software Product Family Concepts

For such a nesting we can obtain the element P with the configuration {(i, L)},
while the elements Q and R are the result of the configurations {(i, R), (j, L)} and
{(i, R), (j,R)}, respectively. Nevertheless, nesting binary variation points is just
a work-around for the application in a realistic scenario. In particular, without
requiring an associative law for the variants operator, the way in which we nest
the variation points in order to simulate a general variants operator is crucial, since
different ways of nesting represent different product families.

Thus—especially for a realistic scenario—a general variants operator offering multi-
ple variants is a much more attractive and conceptually clean solution. We introduce
such a general variants operator by means of the function

⊕ : Seq SPF α, Nat → SPF α (2.52)

It represents a variation point which offers the choice between multiple (finitely
many) variants. In contrast to the variants operator introduced so far, we call such
an n-ary variation point a general variation point, and an n-ary variants operator
a general variants operator, accordingly. For a better differentiation we speak of a
binary2 variants operator when referring to the regular variants operator as intro-
duced in Section 2.2.2.3. We “overload” the symbol ⊕ and represent both kinds of
variants operators by ⊕. However, since both versions of the variants operator can
easily be distinguished by the number and the types of its arguments, it is always
clear which variants operator is meant. Similarly to the binary variants operator,
we also use an mixfix notation for the general variants operator and usually write
⊕i(Vars) to denote the variation point with the name i offering the variants Vars .

The general variants operator represents a natural generalization of the binary vari-
ants operator. The general variants operator is a more comfortable version, but does
not give more expressiveness. Thus, we decided to include only the binary version
of the variants operator in the algebraic specification of sort SPF α and restrict
ourselves with the presentation of the general variants operator to this section.

The general variants operator is also of sort SPF α, which means that it can be
included like the binary variants operator as a regular argument for the composition
operator. Like the binary variants operator, also every general variants operator
is identified by a (unique) name, which is represented by the second argument of
sort Nat. The first argument of sort Seq SPF α is a sequence of elements which
represent the variants offered by this variation point. The corresponding algebraic

2Although the variants operator (cf. Equation 2.4) is not a binary function—it takes three
arguments: an identifier and two variants—we call it binary emphasizing the fact that it offers a
choice between two variants.

86

2.2. Axiomatization of Software Product Family Concepts

specification of the sort Seq α—representing arbitrary sequences of elements of the
sort α—can be found in the Appendix A.4 on Page 234. For the sake of simplicity
we identify the variants according to their position in the sequence, similarly to the
indexed access of elements in an array.

Usually, associativity and commutativity do not really apply for a non-binary oper-
ator as our general variants operator. However, the general variants operator has a
commutative character since the order in which the variants are specified is in prin-
ciple not relevant for the result of the configuration. Since we identify the variants
according to the position in the sequence, this is not true for our general variants
operator, however, when identifying the variants in a different way—not according
to their position in the sequence—the general variants operator is indeed commu-
tative. Regarding the associativity, similarly to the binary variants operator, the
general variants operator has a non-associative character. Thus, nesting the general
variants operator induces a hierarchy in which every variant is precisely associated
to one specific general variation point.

Since the general variants operator uses the data structure Seq α to manage its vari-
ants, it requires a special (configuration) selection operation. The selection operation
for the general variants operator is represented by the function

select : SPF α,Nat,Nat → SPF α (2.53)

Its first argument represents the product family which has to be configured, the
second argument represents the identifier of the affected variation point, and the
third argument is the identifier for the chosen variant. More precisely, the function
select

(

PF , i,m
)

returns the configured version of the product family PF where the
variation point i has been replaced by its variant identified by the number m. Since
we identify the variants according to the position where they appear in the sequence,
the identifiers for the variants are of sort Nat. The variant identifiers are of sort Nat
for the sake of simplicity, only. In general, this is not compulsory.

The behavior of the configuration process using the function select is characterized
by the following axioms.

select (ntrl, i, j) = ntrl (2.54)

select
(

asset(a), i, j
)

= asset(a) (2.55)

select
(

P ‖ Q, i, j
)

= select(P, i, j) ‖ select(Q, i, j) (2.56)

select
(

⊕i(V ars), j,m
)

=

{

select
(

get(m,V ars), j,m
)

, i = j

⊕i

(

map select(V ars, j,m)
)

, else
(2.57)

87

2. Formalization of Characteristic Software Product Family Concepts

Similarly to the selection operators selR and selL for the binary variants operator, if
the product family consists of a single asset or the neutral element, no configuration
selection has any effect. For a composed element, selecting a certain variant means
to perform the selection in both parts of the compound element. Performing a
selection on a variation point either means to configure the variation point to the
selected variant and continue the selection recursively in this variant, if the selection
operation is intended for this particular variation point, or to push the configuration
through all its variants. For the latter situation, in order to apply a configuration
to all variants of a general variation point, we use the following auxiliary function

map select : Seq SPF α,Nat,Nat → Seq SPF α (2.58)

The function map select processes a sequence of elements of sort SPF α and applies
the respective configuration to each element. Finally, this results in a sequence of
configured elements, as the following axioms describe

map select(V ars, j,m) = select
(

head(V ars), j,m
)

(2.59)

◦ map select
(

rest(V ars), j,m
)

map select(〈〉, j,m) = 〈〉 (2.60)

Note that the functions head, rest and get return the first element, the remainder of
a sequence without the first element, and the nth element of a given sequence. The
exact behavior of these functions is specified in the algebraic specification of sort
Seq α which can be found in Appendix A.4 (Page 234). Further note that instead
of specifying an auxiliary function like map select we could also have introduced the
operation select as an higher-order function.

2.2.4. Complete Algebraic Specification of the Sort SPF α

In the preceding Sections 2.2.2 and 2.2.3 we have collected and described the es-
sential properties and concepts which constitute a software product family. These
properties and concepts are expressed using a set of sorts, many-sorted functions
operating on these sorts, and a set of axioms which are stated as equalities between
these functions. Together, this forms an axiomatization which describes a software
product family in a general, implementation independent, though formal way.

88

2.2. Axiomatization of Software Product Family Concepts

Figure 2.11 shows the entire axiomatization, denoted as an algebraic specification
[Wir90] defining the sort SPF α of software product families. By means of this alge-
braic specification we can now precisely define what a software product family is. In
particular, we can now finally render the characterizing, rather general definition of
a software product family (Definition 2.3), which we have provided in the beginning
of this Chapter, more precisely.

Definition 2.10 (Software Product Family). We call any computation structure for
the algebraic specification of sort SPF α (cf. Figure 2.11) a software product family.

More illustratively, Definition 2.10 states that every concrete computation structure
which (i) provides a concrete sort for every sort defined in the algebraic specification
of sort SPF α, and (ii) which provides concrete realizations of the specified func-
tions in a way that all axioms are respected represents a realization of a software
product family according to our definition. From this point of view, a computation
structure is any realization of the axiomatization using an arbitrary mechanism of
the real world, which we happen to know and understand, already. With the com-
putation structure of stickmen drawings for sort SPF Stickman, we have provided a
first toy-example of such a concrete computation structure, although this was just
to illustrate the concepts and axioms. In the following chapter we provide a spec-
ification framework called PF-CCS which allows to model a very specific kind of
product families (in a process algebra context) that are realizations of the algebraic
specification for sort SPF α, too.

Note that in the axiomatization, the equality between elements of sort SPF α is
based on the normal form which we have introduced in Section 2.2.3.2. In the
side conditions of some axioms we have to check whether elements of sort SPF α
are equal. Such checks are based on the normal form of the elements, where two
elements of sort SPF α are considered equal, if their corresponding normal forms are
equal (with respect to term equivalence). Due to the number of additional axioms
specifying the normal form, we have not included these axioms in the following
algebraic specification. The specification of the function NF can be found in Section
2.2.3.2, starting on Page 50.

89

2. Formalization of Characteristic Software Product Family Concepts

SPEC SOFTWAREPRODUCTFAMILY = {
defines sort SPF α
based on specifications BOOL, NAT, SET

functions
asset : α → SPF α
ntrl : SPF α
‖ : SPF α, SPF α → SPF α
⊕ : SPF α, SPF α, Nat→ SPF α

selR , selL : Nat, SPF α → SPF α
is product : SPF α → Bool

is mand : SPF α, SPF α → Bool

has ntVP : Nat, SPF α → Bool

Assets : SPF α → Set SPF α
modify : SPF α, SPF α, SPF α → SPF α

SPF α generated by ntrl , asset , ‖ , ⊕

axioms
(A-1) P ‖ Q = Q ‖ P
(A-2) P ‖ (Q ‖ R) = (P ‖ Q) ‖ R
(A-3) (P ‖ Q)⊕i (P ‖ R) = P ‖ (Q⊕i R)
(A-4) P ‖ ntrl = P
(A-5) P ⊕i P = P

(A-6) selR
(

n, ntrl
)

= ntrl

(A-7) selL
(

n, ntrl
)

= ntrl

(A-8) selR
(

n, asset(a)
)

= asset(a)
(A-9) selL

(

n, asset(a)
)

= asset(a)
(A-10) selR(n, P ‖ Q) = selR(n, P) ‖ selR(n,Q)
(A-11) selL(n, P ‖ Q) = selL(n, P) ‖ selL(n,Q)

(A-12) selR(n, P ⊕i Q) =

{

selR(n,Q) , i =Nat n
selR(n, P) ⊕i selR(n,Q) , else

(A-13) selL(n, P ⊕i Q) =

{

selL(n, P) , i =Nat n
selL(n, P) ⊕i selL(n,Q) , else

(A-14) is product
(

ntrl
)

= true
(A-15) is product

(

asset(a)
)

= true
(A-16) is product(P ‖ Q) = is product(P) ∧ is product(Q)

(A-17) is product(P ⊕i Q) =

{

false ,NF(P) 6= NF(Q)
is product(P) ,NF(P) = NF(Q)

Figure 2.11.: Algebraic specification of sort SPF α representing a software product
family. To be continued on the next page. Note that the function
NF realizes a unique normal form for elements of sort SPF α. Its
specification can be found in Section 2.2.3.2 on Page 50.

90

2.2. Axiomatization of Software Product Family Concepts

(A-18) is mand(ntrl, X) = false
(A-19) is mand

(

asset(a), X
)

=
(

NF(X) = asset(a)
)

(A-20) is mand
(

P ‖ Q, X
)

=



















false ,NF(P ‖ Q) = ntrl
(

NF(P ‖ Q) = NF(X)
)

∨ is mand(P, X)
∨ is mand(Q, X)

, else

(A-21) is mand
(

P ⊕i Q, X
)

=























false ,NF(P ⊕i Q)
= ntrl

(

NF(P ⊕i Q) = NF(X)
)

∨

(

is mand(P,X)
∧ is mand(Q,X)

)

, else

(A-22) has ntVP(n, ntrl) = false
(A-23) has ntVP

(

n, asset(a)
)

= false
(A-24) has ntVP(n, P ‖ Q) = has ntVP(n, P) ∨ has ntVP(n,Q)

(A-25) has ntVP(n, P ⊕i Q) =





(

(n =Nat i) ∧ (NF(P) 6= NF(Q))
)

∨ has ntVP(n, P)
∨ has ntVP(n,Q)





(A-26) Assets(ntrl) = ∅
(A-27) Assets

(

asset(a)
)

=
{

asset(a)
}

(A-28) Assets(P ‖ Q) = Assets(P) ∪ Assets(Q)
(A-29) Assets(P ⊕i Q) = Assets(P) ∪ Assets(Q)

(A-30) modify
(

ntrl, A, A′
)

= ntrl

(A-31) modify
(

asset(a), A, A′
)

=

{

asset(a)⊕i A
′ , asset(a) = NF(A)

asset(a) , else
(A-32) modify(P ‖ Q, A, A′) = modify(P, A, A′) ‖ modify(Q, A, A′)
(A-33) modify(P ⊕i Q, A, A

′) = modify(P, A, A′) ⊕i modify(Q, A, A′)

Figure 2.11. CONTINUED: Algebraic specification of a software product family.
Note that the function NF realizes a unique normal form for elements of sort SPF

α. Its specification can be found in Section 2.2.3.2 on Page 50.

91

2. Formalization of Characteristic Software Product Family Concepts

theorems
(T-1) (Q ‖ P)⊕i (R ‖ P) = (Q⊕i R) ‖ P
(T-2) ntrl ‖ P = P
(T-3) P ⊕i (P ‖ R) = P ‖ (ntrl⊕i R)
(T-4) (P ‖ R)⊕i P = P ‖ (R⊕i ntrl)

(T-5) selL(m, selL(n, P)
)

= selL
(

n, selL(m,P)
)

(T-6) selR
(

m, selR(n, P)
)

= selR
(

n, selR(m,P)
)

(T-7)

(

selL
(

m, selR(n, P)
)

= selR
(

n, selL(m,P)
)

)

⇐ ¬(m =Nat n)

(T-8) ¬has ntVP(n, P) ⇒
(

selL(n, P) = P
)

(T-9) ¬has ntVP(n, P) ⇒
(

selR(n, P) = P
)

}

Figure 2.11. CONTINUED: Algebraic specification of a software product family.

2.3. Modeling Dependencies in Software Product Families

So far we have seen that a software product family is an essential part of a software
product line, since the product family corresponds to the blueprint of how the assets
have to be combined in order to construct the respective products. However, in order
to establish a software product line some other purposes and models have to be taken
into account. One of these purposes is to restrict the set of “constructible” products
of a software product family, and to characterize a subset of products which actually
are intended to exist as real systems. According to literature, so-called feature models
[KHNP90] are very often used for this purpose. However, as feature models are also
used for other purposes (cf. the discussion in Section 2.5), we will not take over
this name and call our model (that restricts the set of possible configurations) a
dependency model. The model is represented as a formula in propositional logic. We
will motivate and introduce it in the following.

In general, a product family has a large number of configurations. In Section 2.2.3.4
we have seen that each complete configuration describes a single product. However,
not all combinatorially possible configurations of a software product family are de-
sired and shall be “allowed”. Speaking in terms of constructible products, not all
products shall actually become constructed and exist in the field. For the purpose
of controlling the set of possible configurations we introduce a dependency model,
which has a similar intention as a so-called feature model [KHNP90]. In combination
with a dependency model a software product family becomes applicable for realistic
scenarios. While the model of the software product family represents the construc-
tion blueprint for each product—i.e. it specifies how every product is constructed
from the set of core assets—a dependency model specifies what products are allowed
to be constructed.

92

2.3. Modeling Dependencies in Software Product Families

Reasons for restricting the set of configurations are usually non-functional, e.g.
implementation-specific reasons, platform restrictions, market decisions, but also
country-specific requirements and statutory regulations. For example, due to mar-
keting reasons selecting the keyless-entry option in a software product family for
automobiles might require that also the comfort version of the seats has to be se-
lected, although—from a functional point of view—the keyless-entry functionality
would work with the standard version of the seats, too. An example for a statutory
restriction is the eCall (emergency call) [Com09] system. It is compulsory for new
vehicles in most European countries starting from 2010, while for configurations of
cars for the US or Asian market such a system is not compulsory, yet.

In general, in the context of a software product family a dependency is a relation
between variants. Some prominent examples of dependencies are the requires or
excludes relations [Bat05, KHNP90], which express that the existence of some parts
requires the existence or absence of some other parts. In general, a dependency
expresses that the selection of a certain variant of one variation point determines
also the configuration of other variation points.

The dependency model for a specific product family PF is given as a formula DEPPF

in propositional logic. More precisely, DEPPF is a formula over atomic propositions
which represent the existence or absence of single variants. In order to model indi-
vidual variants in this propositional logic setting we define for every variation point
⊕i(P,Q) of a product family PF two atomic propositions Li and Ri. The proposi-
tion Li means that the left variant Q, the proposition Ri means the right variant P
is selected to be present in the resulting system, respectively. For a product family
PF with n non-trivial variation points we define

APPF =
{

Ri | i ∈ {1, . . . , n}
}

∪
{

Li | i ∈ {1, . . . , n}
}

to be the set of all such atomic propositions. Usually we omit the subscript and
write DEP and AP , if it is clear which product family we mean.

Definition 2.11 (Dependency Model). Let PF be a product family with n variation
points. We call any propositional formula DEPPF with propositions only from the
set APPF a dependency model for PF.

In general, DEP can be an arbitrary propositional formula, but usually it will consist
of an arbitrary conjunction or disjunction of sub-formulas representing the depen-
dencies of individual variants. An example for a very simple dependency model is
the following DEP-formula:

R2 ⇒ L42

It states that whenever the right variant of variation point 2 has been selected, then
the left variant of variation point 42 has to be selected, too. In a realistic context
this might for example mean that selecting the keyless-entry option (represented by

93

2. Formalization of Characteristic Software Product Family Concepts

R2) always requires the comfort behavior of the seats (represented by the variant
L42). Combining several dependencies of this kind as a conjunction yields a slightly
larger DEP-formula:

(R4 ⇒ R17) ∧ (R2 ⇒ L42) ∧ (L2 ⇒ ¬L8)

However, we are not restricted to such simple formulae. By allowing (full) proposi-
tional logic with the described atomic propositions in order to model the dependen-
cies, we can express all kind of relevant dependencies, e.g. also more complex ones
such as:

(

R4 ∨ L42

)

∧
(

(R4 ∧ L2) ⇒ (R17 ∨R18)
)

This dependency states that a valid configuration has to select at least one of the
variants R4 or L42 in any case. In addition, if both variants R4 and L2 are selected
simultaneously, the variants R17 or R18 or both have to be selected, too.

Normal Form for Dependencies

Since with a binary variants operator either the left or the right variant can be
selected for each variation point we observe a natural duality for the variants of any
variation point i:

Li ≡ ¬Ri (2.61)

Ri ≡ ¬Li (2.62)

These dualities allow to eliminate every negation in DEP . Together with the fol-
lowing tautologies 2.63 to 2.67

A⇒ B ≡ (¬A ∨B) (2.63)

A⇒ (B ∧ C) ≡ (A⇒ B) ∧ (A⇒ C) (2.64)

A⇒ (B ∨ C) ≡ ¬A ∨B ∨ C (2.65)

(A ∧B) ⇒ C ≡ A⇒ (¬B ∨ C) (2.66)

(A ∨B) ⇒ C ≡ (A⇒ B) ∧ (A⇒ C) (2.67)

we can transform every DEP formula into a normal form.

Definition 2.12 (Normal Form of a Dependency Model). Let Ai, Bi,j ∈ AP be
atomic propositions. We say that the dependency model DEP is in normal form if
it has the following representation

DEP ≡
m
∧

i=1

(

Ai ⇒
ni
∨

j=1

Bi,j

)

94

2.3. Modeling Dependencies in Software Product Families

The normal form reflects a natural understanding of a dependency: The propositions
Ai represent all those variants whose existence or non-existence influences other
variants. The way how the existence of other variants is effected is described by the
respective disjunctions

∨ni
j=1Bi,j.

A normal form offers several benefits. The transformation into the normal form
directly supports the dependency methodology, since it allows to specify dependen-
cies in any initially free way while being able to transform them in a normal form,
afterwards. Moreover, minimizing the normal form using standard minimization
techniques for propositional logic, e.g. [Kar53], helps to determine the set of all
variants ranging over AP which are involved into a dependency relation at all.

Connection between a Dependency Model and a Software Product Family

For the purpose of establishing the connection between a dependency model for a
product family of sort SPF α and its possible configurations, we introduce a rep-
resentation of a single configuration as a set of propositions. For every complete
configuration c ∈ CONFSn of a product family PF with n non-trivial variation
points we define a function which yields an equivalent representation as a formula
in propositional logic.

κ : CONFSn → P(APPF) (2.68)

The function κ represents the selected variants as a set of corresponding atomic
propositions, i.e.

κ
(

{(1, v1), . . . , (n, vn)}
)

=
{

Propi | i ∈ {1 . . . n}, Prop i =

{

Li , vi = L
Ri , vi = R

}

For example, the configuration c =
{

(1, L), (2, L), (3, R)
}

is represented by the set
of propositions κ(c) = {L1, L2, R3}.

By means of the representation of a configuration as a set of propositions we can
introduce the notion of a valid configuration. Illustratively, a configuration of a
product family is valid for a given dependency model if the variants selected by
the configuration fulfill the restrictions imposed by the dependency model. The
following definition makes this idea precise.

95

2. Formalization of Characteristic Software Product Family Concepts

Definition 2.13 (Valid Configuration). A given configuration c ∈ CONFSn of a
product family PF is said to be valid according to a given dependency model DEPPF

if the corresponding logical representation of the configuration is a model (in the
logical sense) of the dependency model, i.e. iff

κ(c) |= DEPPF

Every product which is represented by a valid configuration is called valid.

We illustrate these concepts with our running example of the family Spf of Stickman
shown in Table 2.3 on Page 41. Image that all stickman drawings with a coffee cup
in their hand are happy and thus have a smiling facial expression. In addition, every
female stickman drawing is happy and shall be always smiling. We can restrict the
set of all combinatorially possible configurations (in this case stickman) for Spf by
requiring the corresponding dependencies:

DEPSpf ≡ (L3 ∨R2) ⇒ L1

2.61−2.67
≡ (R3 ∧ L2) ∨ L1

It states that whenever we have selected the left variant (representing the asset Cof-
fee) of the variation point 3, or the right variant of variation point 2 (representing
the asset Female Torso), we also have to select the left variant (representing the as-
set Smiling) of variation point 1 in order to have a valid product. For this particular
dependency model, the three products shown in Figure 2.4a (cf. Page 42) which
are represented by the configurations c1 = {L1, L2, L3}, c2 = {R1, L2, R3} and c3 =
{L1, R2, L3} are valid since every configuration is a model of DEPSpf . In contrast,
the configuration c4 = {R1, L2, L3} is not valid, since R1, L2, L3 6|= (L3 ∨R2) ⇒ L1.
This can be seen easily if we consider the second line of the equation which shows
DEPSpf in an equivalent representation.

Expressing dependencies as formulae in propositional logic has several advantages:

• Propositional logic offers an appropriate degree of expressiveness. In particular,
it is sufficient to embody those kinds of dependency relations which are typical
for product families [Man02, Bat05], i.e. relations which deal with the existence
of variants such as requires or excludes relations.

• A logical formula is an appropriate representation for the application of formal
methods, e.g. it can easily be fed into a model checker or theorem prover. This
is especially important for the tool-supported verification of a software product
family using e.g. model checking techniques, as we discuss them in Chapter 4.

96

2.4. Discussion

In general, if no dependency model is explicitly given, we assume that no restrictions
on the set of configurations are made, i.e. that all combinatorially possible configu-
rations are actually allowed to be constructed. Technically, in such a situation we
assume the dependency model to be equivalent to the logical value true, i.e.

DEP ≡ true

2.4. Discussion

In this chapter we have provided a formalization of software product family concepts
that allows to reason about software product families in general, and that underpins
the entire paradigm of software product line engineering. In the following we moti-
vate our reasons to formalize software product family concepts by means of an ax-
iomatization (using the technique of algebraic specification). In addition, we briefly
discuss the structural relation between elements of sort SPF α and AND/OR-trees,
and motivate why we have not combined the axiomatization with a type system for
elements of sort SPF α.

2.4.1. On the Choice of an Algebraic Specification

In general, there are several ways of defining a software product family and its
specific concepts in a mathematical, formal manner. Historically, two prominent re-
search directions which made use of rigorous mathematical specification techniques
are (i) approaches defining the semantics of programming languages (cf. Floyd and
Hoare [Flo67, Hoa69, Dij76], and Scott and Strachey [SS71, Sto77]) , and (ii) ap-
proaches for the definition of (abstract) data types (cf. [Gut75, LZ74, Zil74, BHK89,
EM85, Wir90]).

For our purpose we have chosen to axiomatize software product family concepts using
an algebraic specification [Wir90]. Our reasons for an axiomatization by means of
an algebraic specification are:

• An algebraic specification facilitates an implementation-platform independent,
property-oriented formalization. The software product line success stories (cf.
Section 1.1) show that product family concepts are applied (i) in different do-
mains and for different application areas, (ii) at many stages throughout the
software development process, (iii) and for the modeling of different kinds of
products. However, regardless of the concrete software product family, the ba-
sic concepts which are characteristic for a software product family are always

97

2. Formalization of Characteristic Software Product Family Concepts

the same. To this extent, the engineering of software-intensive systems as a
software product family embodies a universal design concept which is orthog-
onal to other design concepts for the construction of systems, and which can
be studied in its own right. For our purpose, we wanted to specify the charac-
teristic software product family concepts in a self-contained, implementation-
platform independent way which still allows to apply formal methods in or-
der to reason about conceptual properties of software product families. The
technique of algebraic specification is suitable for such a purpose. An al-
gebraic specification allows to describe an (abstract) computation structure
without prescribing how the required data structure is represented or how
the respective functions are actually implemented. In this sense, an algebraic
specification can be used to represent an entire class of concrete computation
structures, and captures the conceptual essence which is common to the con-
crete implementation-specific software product family realizations of this class.
With respect to the variety of different software product families, the algebraic
specification of sort SPF α which we have given in this chapter characterizes
a class of possible realizations [ST97]. The members of this class are all those
concrete computation structures which exist as real software product families,
and which exhibit the characteristic properties postulated by the axioms of
the algebraic specification.

• An axiomatization allows to reason about software product family concepts. We
use the axiomatization in order to reason about conceptual properties of soft-
ware product families in general. A main motivation was not only to define
the universal design concept of a software product family, but in particular
to allow reasoning about fundamental properties which every product family
exhibits. Only in such a way we can gain a better understanding of software
product families, and verify our ideas and theorems in a formally valid way.
Since a software product family deals with the constructional aspect of how to
build systems based on their commonalities, an axiomatization was our vehicle
of choice, as it allows to derive new properties from axioms, which characterize
the interplay between the operations that are used to built software product
families. In addition, an axiomatization that is given by means of an algebraic
specification comes with standard ways of deriving new properties and proving
the corresponding theorems, e.g. by structural induction or logical transforma-
tion.

• We use the axiomatization (i) to determine for existing approaches whether
they are proper software product families according to our axiomatization,
and (ii) to guide the construction of new software product family realizations
by characterizing the fundamental operations. Here, an algebraic specification
offers a very suitable vehicle as it describes software product family concepts
from a constructive point of view: although an algebraic specification abstracts
from implementation-specific details, it can still be constructive [Loe87] in the

98

2.4. Discussion

sense that it guides the development of a concrete computation structure of
a software product family for a specific purpose. In particular, if the alge-
braic structure itself fulfills certain constructiveness constraints [vHL89], it
can basically directly be implemented by deriving term rewriting rules from
the axioms. For example, due to defining all axioms according to the scheme
of primitive recursion, the algebraic specification of sort SPF α can very easily
be translated into an implementation in a functional programming language
such as for example ML [MTH90]. In this way, an algebraic specification is
more useful to guide and reason about the construction of a concrete software
product family than for example a denotational approach.

• Standardization of and Reasoning about Software Product Family Concepts
The axiomatization allows to define concepts such as a normal form, trivial
variation points, optional parts, mandatory parts, common parts, etc. in a for-
mal way. Some of these notions and terms are frequently used in the software
product line community, but lack a formal definition. For example, an ap-
parently simple concept like a variation point has quite different meanings in
different approaches [WG04], driven by different implementation paradigms,
different perspectives on technological platforms, different levels of abstrac-
tion, or different stages in the development process. Here, an axiomatization
describes existing concepts precisely, and provides a basis to define a precise
terminology, too. For new concepts, the axiomatization provides the formal
framework to define them in relation to the existing body of knowledge, and
to reason about them formally. For example, the notion of an explicit normal
form for software product families, or the concept of a trivial variation point,
are defined in a precise formal setting within this thesis for the first time, as
far as we are aware.

2.4.2. Structural Similarity to an AND/OR-Tree

With respect to the structure of a product family of sort SPF α which can be specified
by means of the constructors, we observe that such a structure is basically equivalent
to an AND/OR-tree [LS93]. The composition operation corresponds to AND -nodes,
while the variants operator corresponds to OR-nodes. While an AND/OR-tree is a
structure that is commonly known, we have not simply used this structure for the
specification of software product families, since

• there is no set of commonly accepted laws for AND/OR-trees which allow a
restructuring of such a tree, similarly to the way in which we use the axioms
for the constructors to restructure the term representation of an element of
sort SPF α, and

99

2. Formalization of Characteristic Software Product Family Concepts

• since we are in particular interested in the operations such as selection, deter-
mination of mandatory parts, etc., which are not predefined in the context of
an AND/OR-tree, either.

In this light, it was not very beneficial for us to base our specification of a software
product family on the structure of an AND/OR-tree. In fact, it was more comfort-
able to specify such a structure anew by introducing the constructor functions with
their corresponding postulates using the typical mechanism of algebraic specifica-
tion, and thereby being able to benefit from the existing concepts, e.g. the notion of
an abstract computation structure, which are already established in the context of
algebraic specifications.

2.4.3. Combining the Axiomatization with a Type System

We have presented the axiomatization in this chapter without explicitly combining
it with a type system, as it is for example commonly know [LW94] from the data
types of object-oriented programming languages. This means that we cannot further
classify the elements of sort SPF α into subtypes.

Having no type system immediately implies that questions which are typically ad-
dressed in the context of types and their subtypes are not directly expressible within
the axiomatization. For example, as we have already seen in Section 2.2.3.8 (Page
80), while the function is mand allows to specify questions of the kind “Has every
stickman drawing which is derivable from the product family Z of stickman drawings
either a smiling or a sad face?”, formally represented by

is mand
(

Z, asset(Smiling)⊕1 asset(Sad)
)

the question “Has every stickman drawing of the family Z actually a face?” is
not expressible in terms of the axiomatization. The reason for this is because the
specification of a concept like “having a face” requires the existence of a type system
and the notion of subtypes.

A type system represents an orthogonal concept that can be additionally added to
the axiomatization if desired, but that is not necessary to define the conceptual
construction principle behind a software product family. Therefore, we have not
added a type system on top of the axiomatization, being aware that questions such
as the one before are not directly expressible within our theory.

100

2.5. Related Work

2.5. Related Work

Feature Oriented Software Development

Most of the related approaches which deal with the constructional aspect of software
product families are found in the area of Feature Oriented Software Development
(FOSD) [CE00]. FOSD deals with the construction of large-scale, variable software
systems by structuring them into the features they provide. An overview of FOSD
and the recent development in this area is given in [AK09]. Features [KHNP90,
CE00] represent functional or non-functional, observable properties or characteristics
of system components, assets, and/or products, which are relevant for a certain
stakeholder. However, the definitions of what a feature is, are not consistent and
vary from approach to approach.

A typical structure to capture variability on the level of features are so-called fea-
ture models [KHNP90]. They are used to model optional, mandatory and variable
features, and their dependencies in a set of related products. A feature model is a
combination of our concept of a software product family and a dependency model (cf.
Section 2.3): On the one hand, a feature model contains information of mandatory
and optional parts, i.e. it represents information of how products are hierarchically
structured by modeling which parts are present (as sub-parts) in which product
variants, e.g. in a product family of cars features such as Engine or Radio actually
represent the idea of atomic, composable entities (of the same sort). However, since
different features can represent incomparable entities, artifacts, or properties (diesel
engine and automatic mode can both be features in the same feature model), this
is not done strictly on the level of composable and fitting atomic assets or parts (of
the same sort). On the other hand, a feature model contains dependencies, such
as requires or excludes relations between features. Here, the aim is to forbid or to
force certain combinations of features, serving the same purpose as our dependency
model (cf. Section 2.3). However, a feature models mixes those two fundamentally
different aspects (construction and configuration restriction) in a way where differ-
ent concerns are not separated anymore. Moreover, feature models usually lack a
precise semantics (which hinders to reason about features or feature combinations
using formal methods).

Feature models are usually denoted by means of feature diagrams, which are essen-
tially AND/OR trees [LS93]. However, feature models can likewise be denoted as
formulae. Mannion [Man02] was the first one to use propositional formulae in order
to reason about software product lines. In [Bat05], Batory relates the semantics of
feature models with propositional logics and grammars. Another popular work is
due to Czarnecki [CW07], where he relates feature models to BDDs (Binary De-
cision Diagrams) [Ake78], and shows how to extract a feature model from a given
propositional formula. Approaches which use a logical representation usually deal

101

2. Formalization of Characteristic Software Product Family Concepts

with restricting the set of configurations, and with related questions, and thus serve
the same purpose as our dependency model.

Algebraic Treatment of FOSD

In [ALMK10, ALMK08], Apel et al. introduce an algebraic approach for features,
feature composition and feature-based program synthesis, which captures the key
ideas of feature orientation in an algebraic setting. In accordance with most feature-
oriented approaches, a feature is understood to be an increment in functionality that
captures a stakeholder’s requirement. Features are associated to code fragments—
where Java code is used to exemplify the concepts. A single feature corresponds to
a hierarchical tree structure called feature structure tree (FST). A FST consists of
nodes representing code structures of the respective language, e.g. for Java such code
structures are for example packages, files, classes, fields or methods. Features can
be composed, where feature composition is understood and realized in two different
ways: The first kind of feature composition allows to combine two entire features,
respectively their FSTs. On the level of code, this kind of feature composition is
realized by so-called superimposition. Superimposition combines the feature struc-
ture trees of two features by matching the nodes with the same relative position,
names, and types in the tree hierarchy. The result is a combined feature structure
tree—and thus again a feature—representing the composition of both features. Be-
sides superimposition, a second kind of feature composition allows for a more fine
grained extension of a feature by adding specific nodes to the FST that represents
that feature. It is called composition by quantification and weaving. In contrast to
superimposition, this second kind of composition does not combine two features, but
rather combines a feature (its FST) and a so-called modification. In this context a
modification is a tuple that consists (i) of a specification which characterizes a subset
of nodes of an FST to which the modification shall be applied, and (ii) a specifica-
tion of how these nodes are affected (add or altered). Applying a modification to a
feature yields a modified feature.

Within the feature algebra, the operations for composing and modifying features are
described in a way which abstracts from the concrete kind of feature structure trees
which are specific for any individual language. In the feature algebra superimposi-
tion corresponds to an abstract operation called introduction sum. It combines two
so-called introductions, which are abstract counterparts of basic features, i.e. feature
tree structures, yielding a new introduction. The introduction sum operation con-
stitutes an idempotent monoid over the set of introductions. Beside introduction
sum, two other operations on features are introduced: modification application and
modification product. These operations implement the idea of composition by quan-
tification and weaving, where modification application takes a so-called modification
and a introduction, and returns the modified introduction. Modification application
distributes over the introduction sum operation. The third operation, modification
product is a binary operation on modifications that returns a new modification which
represents the combined effect of both modifications. From an algebraic perspective,

102

2.5. Related Work

the modification product operation induces another monoid over the set of modifica-
tions. Modification application combines the two monoids induced by introduction
sum and modification product, and together with the monoids allows to represent
feature composition. In summary, the algebraic structure which results from the two
monoids and the modification application operation is very similar to the structure
of a vector space, where modification application takes the role of scalar product.

There are several options in which features, i.e. introductions and modifications,
can be composed. In order to explore these options more closely the notion of
quarks is introduced. A quark is a tuple that consists of an introduction and one (or
more) modifications. Quarks can be composed to form new quarks. Different kinds
of quark-composition—local and global quark composition—are discussed, which
represent different ways of how and where modifications are applied while composing
a sequence of features.

The focus of the feature algebra as it is introduced in [ALMK10, ALMK08] is on
composing features, and describing effects of modifying features and feature com-
positions. In contrast to our axiomatization of software product family concepts,
the feature algebra does not explicitly support the notion of variability, in the sense
that optional, variable or mandatory parts as known from feature models can not
be explicitly represented as variable features in the feature algebra. Consequently, a
notion of configuration or alternative features in the sense of an alternative variation
point does not exist, either. However, the feature algebra takes the notion of compo-
sition of features much further, than our axiomatization deals with the composition
of assets or product families (being the counterparts to features). In particular, both
algebras—our axiomatization of software product family concepts and the feature
algebra—fit together in the sense that the feature composition mechanism of the
feature algebra can be used to realize the composition function of our axiomatiza-
tion. In that way, the concept of variability and that of feature composition can
be combined in a conceptually clean, and formally based way, resulting in a new
comprehensive algebra for feature-oriented software product families. In fact, in
[AKGL10], Apel et al. go actually a similar way and introduce a feature-oriented
language which implements the concepts introduced in their feature algebra, but
which is combined with a very general kind of feature model in order to model the
design and the restrictions of a product line. We consider their approach in the
following.

Feature-oriented Product Lines

Based on the concepts introduced in their feature algebra, in [AKGL10] Apel et al.
consider so-called feature-oriented product lines, which are families of programs that
share a common set of features. Similarly to their concept of features in their fea-
ture algebra [ALMK10, ALMK08], a feature adds new program structures, or refines
existing ones, when added to a program. In [AKGL10], product lines are specified

103

2. Formalization of Characteristic Software Product Family Concepts

using FFJPL, which extends the feature-oriented, Java-like language Feature Feath-
erweight Java (FFJ) with product line concepts. FFJPL addresses the challenge
of producing only type-safe family members, such that every derivable program is
guaranteed to comprise only a type-safe combination of features.

Already the starting point, the authors’ language FFJ , comes with a type system
comprising a set of type rules and auxiliary operations, that facilitates to check
whether a single FFJ program is well-formed according to the type concept. Com-
pared to type-checks of single programs in FFJ , type-checking in FFJPL is performed
on the code comprising the entire product line, and does no longer require to gen-
erate and check every program individually. In this light, the idea behind a FFJPL

product line is the same as the one behind a software product family of sort SPF α,
since both formalisms represent a product family in an integrated way.

A feature-oriented product line consists of two ingredients: a set of so-called feature
modules which take the role of atomic assets, and a feature model which describes
how the feature modules are combined. For the purpose of FFJPL Apel et al.
abstract from the concrete representation of the feature model. For accessing the
feature model a general interface is provided, which comprises auxiliary operations
that allow to check whether features exist never, sometimes, or always together in the
same program. Since FFJPL does not introduce a special operation which realizes
variation points, these interface to the feature model is the only way to determine
optional and mandatory parts.

Well-formedness conditions (represented as relations) are introduced for classes, re-
finements, and methods, respectively. Based on (i) the well-formedness conditions,
(ii) the well-typedness of the FFJPL term, and (iii) a valid class table, the concept
of well-typed FFJPL product lines is defined. For such a well-typed FFJPL product
line with the corresponding well-formed lookup tables, it is shown that any pro-
gram which can be derived with a valid feature configuration is again well-typed.
In addition, the authors show that a FFJPL product line is well-typed (meeting the
well-formedness conditions of the corresponding lookup-tables) if all programs that
can be derived from the product line are well-typed.

By abstracting from the concrete kind of feature model the focus of FFJPL is not on
how to integrate variability concepts into the introduced feature-oriented language.
The operations which are provided in the abstract interface to the feature model
do not facilitate to take into account the relation between mandatory, alternative,
and optional features on a level as we do it with our axiomatization. For example,
the interface does not allow to determine the connection between optional and al-
ternative features in such an explicit way as our axiomatization does. Beside, the
concept of commonalities between programs is also not explicitly supported. This
implies that the degree of efficiency in which the type-check can be performed on a

104

2.5. Related Work

FFJPL product line strongly depends on the way in which commonalities are taken
into account in the underlying feature algebra.

In summary, the FFJPL approach clearly targets at the practical challenge of produc-
ing type-safe product lines in a specific feature-oriented, Java-like language. FFJPL

does not focus on the nature of variability, and the constructional concepts of how
optional, common and alternative parts are related, which is the main interest of our
axiomatization. This is a fundamental difference and classifies the feature-oriented
product line approach by Apel et al. to a different application area. However, the
operations of the FFJPL interface (to an underlying feature model) can also be re-
alized on basis of our axiomatization. In particular for theoretical considerations,
where properties of FFJPL programs have to be shown that require a more in-depth
consideration of software product family concepts, both approaches can be combined
in a beneficial way.

The work [AKGL10] of Apel et al. takes up many ideas from a preceding paper
[KA08] of Kästner and Apel from 2008. In [KA08], Kästner and Apel introduce the
formal calculus Color Featherweight Java (CFJ) together with a set of type rules.
CFJ is an extension of Featherweigth Java (FJ) [IPW01] and realizes an annotation-
based implementation of a product line. Variability in CFJ is implemented with
#ifdef -like directives on basis of the annotations. Individual products are derived
from an annotated CFJ program by removing those code fragments which correspond
to unselected features. CFJ defines a type system for annotation-based product
lines. Similiarly to [AKGL10], the authors prove for CFJ that the generation of
products preserves typing, i.e. that all programs (products) that are derived from a
annotation-based product line are well-typed if the product line is well-typed itself.
This prove can be done without generating and compiling the individual products
first. In general, CFJ provides a type system which is realized on the preprocessor
level, and which can easily be integrated into existing tool environments (based on
a FJ or Java type system) since CFJ does not introduce new language constructs.
However, even though the type check considers all possibly derivable products, the
connection between the individual products is not explicitly (in the sense of a product
family of sort SPF α) modeled, since the annotations for individual features are not
explicitly related to one other.

In [DCB09], Delaware et al. address the challenge of type-safety for a product line
of Java-like programs. Delaware et al. refer to this challenge as safe composition.
As a basis for their considerations the authors present Lightweight Feature Java
(LFJ), which is an extension of Leightweight Java (LJ) [SSP07] with support for
features. For LFJ the authors define a constraint-based type system and prove
its soundness, which means that any composition of features in LFJ that satisfies
the typing constraints will generate a well-formed LJ program. More precisely, the
typing rules allow to generate a set of constraints for each feature. These constraints

105

2. Formalization of Characteristic Software Product Family Concepts

are encoded into a SAT-instance. The satisfaction of the formula built from these
SAT-instances indicates whether the corresponding LJ program is well-typed.

The authors introduce the typing rules for LFJ and LJ for each LJ construct indi-
vidually. Since features are typically depending on other features, the typing rules
for a single LJ (and LFJ) construct consider the specific structure of the respective
construct, but also the dependencies and relations due to the surrounding program
structure. Converting these type aspects into contraints provides an explicit inter-
face for a LJ construct. Given a LFJ program, the type rules allow to generate
constraints for each feature. Based on the feature constraints, checking safe com-
position of a product line reduces to showing that the programs allowed by the
corresponding feature model are contained within the set of type-safe products. In
LFJ, an entire product line results in a set of constraints that remain static regard-
less of the product specification being checked. In this sense such a set of constraints
is similar to a product family of sort SPF α since both represent a set of products
in its entirety.

Algebraic Treatment of Software Product Family Concepts

Regarding the algebraic treatment of software product families, there are some ap-
proaches which also aim to unify the common concepts, techniques and methods
of feature-oriented approaches by providing an abstract, common, formal basis. In
this context, we consider especially the approaches [HKM06, HKM09, BO92] to be
relevant.

The closest to our axiomatization of a software product family is an approach by
Höfner et al. [HKM06, HKM09], introducing the notion of a feature algebra, and a
product family, respectively, which describes the features of a family of products,
and their typical operations from a mathematical, group-theoretic, algebraic per-
spective. More precisely, a feature algebra is represented as the algebraic structure
of a commutative idempotent semiring.

Elements of a feature algebra are called product families. A product family cor-
responds to a set of products, where individual products are considered to be flat
collections of features. In general, the structure of a feature algebra largely coincides
with the structure of a software product family of sort SPF α, as it can be built us-
ing the constructors (cf. Section 2.2.2) only. In contrast to our variants operator,
which is labeled with a unique name, the corresponding operators in the approach
of Höfner et al. are not numbered at all. Thus, different variation points can not
be told apart, and the notion of configuration as it exists in our approach does not
exist in the approach of Höfner et al., since the configuration of individual variation
points cannot explicitly be specified or referred to. Apart from the constructors, for
product families of sort SPF α in our axiomatization we additionally define func-
tions that characterize how to manipulate and work with a product family, e.g. the

106

2.5. Related Work

selection operators selL and selR, function is mand, etc. Corresponding operations
do not exist in the approach of Höfner et al. either.

For feature algebras, the notion of refinement of product families exists. Refinement
relates several product families and is based on the subset relation of the features
of products. Methodologically, refinement is applied when a new product family
is constructed from an existing one by adding new features. While we have not
explicitly entitled it refinement in our approach, we can express a similar concept
with axioms that characterize the notion of configuration and composition.

Höfner et al. state that a general aim of the feature algebra approach is “to underpin
the ideas of family-based development with a formalism that allows a mathematically
precise description and manipulation of product families”, which is a similar moti-
vation as for our approach. However, being an algebraic specification our approach
tends more in the direction of characterizing the class of “valid” software product
families, and checking that a concrete computation structure is actually an “in-
stance” of the abstract sort SPF α.

In contrast to the work of Höfner et al.

• we provide a unique normal form (cf. Section 2.2.3.2) for software product
families, which allows to represent a software product family in a unique way,
and which is a basis for dealing with the equality of software product fami-
lies. While a corresponding notion of a normal form is not explicitly given in
[HKM06, HKM09], Höfner et al. also make use of distributive laws to change
the representation of product families. However, in contrast to our normal
form, in the approach of Höfner et al. uniqueness of such restructured repre-
sentations is not explicitly investigated. The kind of representation which is
encountered frequently in the feature algebra approach integrates the common
parts are far as possible into the corresponding products, and thus aims at the
quite opposite representation as we use it in our normal form, where common
parts are factored out from alternative variants as far as possible.

• While the approach of Höfner et al. is done in a pure algebraic, mathemati-
cal setting, in our approach we identify the characteristic functions in a less
group-theoretic way from a more “practically motivated” perspective, in the
sense that we do not only introduce the constructors that are required to rep-
resent product families, but also formalize many operations which represent
the interaction and the manipulation that is typical for a software product
family, e.g. configuration selection or the check for common parts by means of
the function is mand. In particular, in the presence of these extra functions we
focus on the properties and laws which can be derived for these functions, and
characterize them to reason about software product families. This allows to
reason about concepts like selection, common mandatory, and optional parts,
which are motivated from a realistic point of view.

107

CHAPTER 3

Product Family CCS—A Framework for the Specification of the
Behaviors of a Set of Systems as a Product Family

In contrast to the general characterization of fundamental software product family
concepts which we have undertaken in the preceding chapter by means of an axiom-
atization, we consider in this chapter product families for a specific purpose. Now,
the operational functionality of a set of reactive systems is represented in an inte-
grated way as a product family, and an individual product of the family corresponds
to the operational behavior of a single system. In order to model such product
families we introduce the process algebraic specification framework Product Family
CCS (PF-CCS). PF-CCS is based on Milner’s process algebra CCS, and essentially
extends it with concepts that allow to model the variability within the behaviors of
a set of systems in a way that respects the laws required by the axiomatization. We
introduce the syntax of PF-CCS and develop a semantics in terms of multi-valued
labeled transition systems.

Contents

3.1. Syntax of PF-CCS . 111

3.2. Semantics of a PF-CCS Program 121

3.3. Design Decisions for PF-CCS 147

3.4. Practicability of PF-CCS 150

3.5. Related Work . 155

109

3. PF-CCS: Product Family CCS

As we have seen in the preceding chapter, many different kinds of software product
families are constructed in various application domains and for various purposes.
The product families differ in their scope, the kind of products, the kind of com-
monalities, the kind of assets and the entire construction mechanism for assembling
the products, etc. For example, while one company develops all software-relevant
parts of an entire family of similar ship systems [BCKB03] using a software product
line engineering approach, another company develops the application software for
a set of mobile phones as a software product family (see [SEI]). Obviously, both
families and their derivable products are completely different and not comparable.
Still, both families incorporate the same fundamental construction principle, which
is fundamental to every software product family. In the last chapter we have for-
mally characterized these concepts in a realization and domain independent way by
means of an axiomatization (cf. Figure 2.11 on Page 90).

Now, in this chapter we move away from the treatment of universally valid soft-
ware product family concepts and consider software product families for a very
specific scope and purpose. We model the operational functionality of a set of
software-intensive, reactive systems as a product family in an integrated way which
is independent of the implementation on a specific software/hardware platform and
architecture. For this purpose we introduce the process algebraic framework Prod-
uct Family CCS (PF-CCS). PF-CCS combines and adds software product family
concepts—as we have introduced them in the preceding chapter—with established
process algebraic techniques for the representation of the behavior of single systems
in an operational though implementation-independent way.

Basically, PF-CCS is a process algebra based on Milner’s Calculus of Communicat-
ing Systems (CCS) [Mil80]. While the process calculus CCS itself can be used to
represent the operational behavior of single systems, PF-CCS extends the capabil-
ities of CCS as it allows to model the behavior of entire families of such systems.
Thereby, the notion of family corresponds exactly to the one we have defined by
means of the axiomatization in the preceding chapter. For example, with PF-CCS
we can represent the operational behavior of families of coffee vending machines,
the behavior embodied in a variable network protocol between a variety of senders
and receivers, the behavior of a swarm of interacting insects [Tof92], and the be-
havior of a family of automotive screen wiper systems. Particularly with regard to
behavioral variety, PF-CCS establishes the conceptual basis to deal with that kind
of variety which we encounter in the operational functionality of families of reactive,
software-intensive systems as they are typical for the automotive domain.

However, PF-CCS is not designed to be a specification framework that can directly
be applied as it is for the practical development of families of software-intensive
systems in the current industrial practice. In particular, PF-CCS does not aim at
the specification of large industrial-size system families. Similarly to the underlying
process algebra CCS that was never designed to specify the behavior of large reactive

110

3.1. Syntax of PF-CCS

systems, also the focus of the PF-CCS framework is not on providing a technically
mature, perfectly scaling solution that allows to specify the operational behavior
of industrial-size system families like for example entire automotive model series.
In this light, the PF-CCS specification framework addresses rather the theoretician
than the practitioner. Nevertheless, as the specification of the operational behavior
of automotive system families is—at least to our knowledge—currently not under-
taken in an integrated way as it is possible with PF-CCS, a framework like PF-CCS
is a useful step to tackle the current challenges in automotive software engineering.
In this light, we see PF-CCS as a conceptual solution to master the large variety in
the operational behavior of similar systems, and as a fundamental technique which
lays the ground for frameworks that aim at the application in the real-life practical
context. Although being designed as a conceptual framework, in Section 3.4 we
discuss some aspects of PF-CCS, e.g. the positioning of PF-CCS in an adjusted
development process, that relativize its applicability in a practical context.

Technically, PF-CCS subsumes all concepts of CCS for the specification of non-
variable behavior. In particular, PF-CCS provides all the operators known from
(basic) CCS, and additionally introduces a variants operator. With respect to the
original CCS operators PF-CCS is a “conservative” extension of CCS in the sense
that the semantic of the original operators is preserved. The variants operator of
PF-CCS allows to model variation points as characterized and introduced in the
axiomatization in the preceding chapter, i.e. it allows to model a (deterministic)
choice between alternative variants. Altogether, PF-CCS is designed in a way that
fulfills the axioms introduced in the last chapter, i.e. any process algebraic structure
which can be specified in PF-CCS is a software product family in the sense of the
axiomatization given in the last chapter.

Beside the ability to capture the operational functionality of a family of systems as
a software product family, PF-CCS (1) comes with a multi-valued logic that allows
to reason about the integrated behavior of the members of a software product family
and the product family itself, as we will discuss in detail in Chapter 4, (2) facili-
tates the application of automatic verification techniques like model checking, and
(3) provides the theoretical basis to restructure a software product family in order
to find commonalities in the operational behavior of its products (cf. Chapter 5).

3.1. Syntax of PF-CCS

PF-CCS is a process algebra based on Milner’s CCS [Mil80]. It allows to specify the
behavior of a product family in a process algebraic fashion as a set of equations over
processes, actions and operations between those. Similarly to other process algebras
such as CCS, ACP [BK84], or CSP [Hoa85], we express the concept of behavior

111

3. PF-CCS: Product Family CCS

(functionality) in PF-CCS in terms of processes which perform actions, too. Let
Id be a finite set of process identifiers. Usually, we use capital latin letters such
P,Q,P1, . . . to denote process identifiers. The identifier Nil is reserved for a special
process, the so called atomic idle process. Nil is a process which can not perform
any action, in particular we can understand Nil as the (successful) termination of
a system. Further, let Σ be a finite set of input actions. Usually, we use lowercase
latin letters such as a, b, . . . to range over input actions. Let

Σ̄ = {ā | a ∈ Σ}

be the set of output actions. As in CCS, let

A = Σ ∪ Σ̄ ∪ {τ}

represent the set of communication actions, where

τ 6∈ Σ ∪ Σ̄

represents a special action, the so-called silent action, which is used to model (and to
abstract from) the internal communication between concurrent processes. Usually,
lowercase Greek letters α, β, . . . range over communication actions.

Definition 3.1 (Syntax of PF-CCS Process Expressions). The set LPFCCS of all
PF-CCS process expressions (also called processes) is generated by the following
EBNF grammar

P = Q
| ’Nil ’
| α ’.’ P
| P ’+’ P
| P ’⊕’ P
| P ’‖’ P
| P ’[’ f ’]’
| P ’\’ L ;

where

• Q ∈ Id is a process identifier

• α ∈ A is an action

• L ⊆ A is a set of action labels

• f : A → A is an action renaming function, i.e. a function with the properties
(i) f(ā) = f(a), and (ii) f(τ) = τ .

Except for ⊕—which represents the variants operator—the symbols represent the
operations as known from CCS [Mil80]. The intuitive meaning of the operations is
the following:

112

3.1. Syntax of PF-CCS

• The symbol . represents action prefixing, i.e. the process α.P represents a
process which can perform the action α and then behaves like process P .
Action prefixing is a special case of sequential composition.

• The symbol + represents non-deterministic choice, i.e. the term P + Q rep-
resents a process which either behaves like the process P or Q. The choice
between P or Q is made by the environment, i.e. depending on whether the
action to be performed is the first one of P or Q. If P and Q have the same
initial action, the choice is made nondeterministically. Since + is associative
and commutative1 , we write

∑

i∈{1...n}

Pi

to represent the more general situation of choosing non-deterministically one
process out of the set of n processes {P1, . . . , Pn}. Per definition the sum

∑

i∈∅

Pi := Nil

over an empty set of processes is equal to the idle process Nil .

• The symbol ‖ represents the parallel composition of processes, where processes
P and Q operate concurrently (asynchronously) but can communicate only
synchronously with each other. Such a kind of “internal” communication is
abstracted by the silent action τ . Note that Milner usually [Mil95] uses the
symbol | instead of ‖ for parallel composition.

• The symbol [f] represents the renaming operator which allows to rename the
actions performed by a process P as specified by the function f . More precisely,
the process P [f] behaves like P , but with all performable actions α renamed
to f(α).

• The symbol \ represents the restriction operator which restricts the set of
actions that a process P can perform in a certain environment. For any action
α 6∈ L, the process P\L can interact with any environment in the same way
as the process P , while it can not perform any actions α ∈ L. Restriction is
typically used to control the communication between parallel processes.

• The symbol ⊕ represents the variants operator, which has no counterpart in
CCS. Thus, syntactically, PF-CCS extends CCS [Mil80] only by the binary
variants operator ⊕. The variants operator allows to specify a special form of
alternative behavior, i.e. it represents a variation point (as defined in Equation
2.4 in Chapter 2.2.2). More precisely, the process P ⊕Q represents a variation

1For the PF-CCS + operator we observe the algebraic laws: (i) P+Q = Q+P (Commutativity)
and (ii) P + (Q+ S) = (P +Q) + S (Associativity).

113

3. PF-CCS: Product Family CCS

point which behaves exactly like one of its two alternative processes P and
Q. However, the choice between P or Q is made deterministically (in contrast
to the nondeterministic choice operator +) according to a given configuration.
In particular, the configuration of a variants operator ⊕ is not affected by
any other process or CCS construct and represents a conceptually different
dimension as it describes the static structure of PF-CCS processes while the
“original” CCS operators like action prefixing and non-deterministic choice
model the dynamic (behavioral) aspect of processes. Note that—as described
in the last chapter in Section 2.46—we can understand optional parts as a spe-
cial case of alternative choices. Similarly to the optional operator optional (cf.
Equation 2.46, Page 77), an optional-operator 〈 〉 can be added to PF-CCS as
the syntactical abbreviation:

〈P 〉 := P ⊕ Nil

In Section 3.2, where PF-CCS semantics is discussed, we will see that this
abbreviation meets our intuition, allowing us to confine in this technical pre-
sentation of PF-CCS to the variants operator ⊕ only.

Similarly to CCS, also in PF-CCS processes can be specified by means of (recursive)
equations. A process definition (constant definition) is a defining equation of the
form

P
def
= t(P1, . . . , Pn)

where P ∈ Id is a process identifier and t(P1, . . . , Pn) ∈ LPFCCS is a PF-CCS
process (term) which contains the process identifiers (P1, . . . , Pn).

Since process terms (right-hand side of the equations) can contain process identifiers
on their part, processes can be defined by mutual recursion in terms of each other,
e.g. as in

P
def
= α.Q

Q
def
= β.P

This gives reason to recursive specification schemes which can be used to specify
the behavior of an entire product family. We call a recursive specification scheme
PF-CCS program.

Definition 3.2 (PF-CCS Program). A PF-CCS program is a tuple (E , P1) which
consists of a finite set of (possibly recursive) process definitions

E =
{

P1
def
= t1(P1, . . . , Pn)

P2
def
= t2(P1, . . . , Pn)
...

Pn
def
= tn(P1, . . . , Pn)

}

and a distinguished main process identifier P1 ∈ Id.

114

3.1. Syntax of PF-CCS

For the sake of simplicity, we typically denote a PF-CCS program by listing its
equations only, assuming that the left-hand side of the first equation is the main
process identifier.

In compliance with results from CCS and ACP [BK84] we only consider PF-CCS
programs with a special kind of recursion, so-called guarded recursion, where all
processes are (action-) guarded. According to Milner [Mil95] a CCS process X is
guarded in a term E if each occurrence of X is within some subterm α.F of E,
which performs initially an action α. For a precise definition for guarded recursion
see [Mil95, Fok00]. For PF-CCS, this means that every process identifier Pi which
appears in a process term ti(P1, . . . , Pn) of a PF-CCS program has to be action
guarded in the above sense. The main benefit of guarded recursive equations is that
they always have unique solutions (see e.g. [Mil95, Fok00]).

Connection of the PF-CCS Operators to the Axiomatization

The PF-CCS operators ‖ and ⊕ are of particular interest with respect to the axiom-
atization given in Chapter 2. In PF-CCS, the (CCS) parallel composition takes the
role of the composition function (cf. Equation 2.3, Page 35) in the axiomatization:
It allows to specify a (static) structure of CCS processes in a way which respects
the axioms required for the composition function in the axiomatization. Letting the
CCS parallel composition ‖ take the role of the composition function was a natural
choice: Beside the restriction and re-labeling operators of CCS, the parallel com-
position is the only so-called static operator according to the classification of CCS
operators of Milner [Mil95]. In CCS, static operators are those operators which
define the (static) structure of a CCS process, i.e. how the sub-processes are linked.
Thus, the parallel composition of PF-CCS fulfills the same purpose as the composi-
tion function in the axiomatization, which was used to compose different structural
units, e.g. assets and compound objects.

Regarding the variants operator in PF-CCS, it takes the role of the function ⊕
(cf. Equation 2.4, Page 36) which represents variation points in the axiomatization.
The PF-CCS variants operator is designed to exhibit the same properties which are
required from the variation points in the axiomatization. In particular, the variants
operator of PF-CCS represents a conceptually new kind of deterministic alternative
choice which cannot be modeled with the original operators of CCS.

For the sake of simplicity we use the same symbols ⊕ and ‖ for denoting the PF-
CCS operators which we have already used to represent the respective functions for
composition and variation points in the axiomatization in the preceding chapter.
Together, the PF-CCS operators ⊕ and ‖ are used to extend CCS with software
product family concepts as defined in the axiomatization of the preceding chapter.
In particular, the distributive laws as propagated in the axiomatization also hold in
PF-CCS. This is the basis for extracting common behavioral parts as described in
the upcoming Chapter 5.

115

3. PF-CCS: Product Family CCS

3.1.1. Well-formed PF-CCS programs.

In the following we introduce some restrictions on the syntax and the (term) struc-
ture of PF-CCS programs. These restrictions serve two purposes: On the one hand,
they realize some basic properties which we require from every rational (process
algebraic) equational specification. On the other hand, they implement some of the
properties required by the axiomatization (cf. Chapter 2.2, Page 90), especially with
respect to variants operators.

The syntactical restrictions are achieved by three conditions: completeness, finitely
configurable, and fully expanded. These conditions are used to derive the notion
of well-formed systems. For well-formed PF-CCS programs we can define a com-
positional semantics (cf. Section 3.2.2) in the sense that if a PF-CCS program is
well-formed, we can label the ⊕-operators in a unique way after having specified the
entire program. This means that we can write down an entire program first with-
out having to attach numbers to the ⊕-operators. If the final program fulfills our
well-formedness constraints, we finally can simply number all occurring ⊕-operators
consecutively in the order of their appearance while guaranteeing the properties re-
quired in the axiomatization of a general software product family. This procedure
enhances the specification process. In the remainder of the section we successively
introduce the syntactical restriction.

Complete PF-CCS Programs

The first condition is essential for any equational specification scheme, and not
specific to PF-CCS. It states that the behavior of all process identifiers which are
used in the program has to be specified as part of the program, and that a PF-CCS
program contains no undefined process identifiers.

Definition 3.3 (Complete PF-CCS Program). We call a PF-CCS program with the

set of process definitions {P1
def
= e1, . . . , Pn

def
= en} complete, if all process identifiers

Pi on the left-hand sides of the defining equations are pairwise distinct and the
defining equations e1, . . . , en contain only the process identifiers P1, . . . , Pn.

The remaining conditions are concerned with the questions of writing PF-CCS pro-
grams with only finitely many variants operators, and of numbering the variants
operators in a PF-CCS program in a unique way. Recall that a unique numbering
(labeling) of the variation points and the existence of only finitely many variation
points are essential properties which we required in the axiomatization for every
software product family. Since in PF-CCS we usually use the variants operators in a
specification without associating unique identifiers to them initially, we have to make
sure that PF-CCS programs facilitate a numbering afterwards. A PF-CCS program
has to meet certain conditions in order that these requirements can be fulfilled.

116

3.1. Syntax of PF-CCS

PF-CCS Programs with Finitely many Variants Operators

Our goal is to model software product lines which require only an a priori finite
number of decisions taken at variation points when deriving a specific system, which
is the case for all product lines relevant in practice. So far, however, as in CCS,
PF-CCS allows the creation of new processes by using the parallel operator ‖ within
recursive process definitions. In combination with our ⊕-operator this may poten-
tially result in an unbounded number of variation points. In order to cope with this
issue we consider the way in which processes (and the defining equations respec-
tively) depend on each other. For this purpose we now turn towards the definition
of a dependency graph of a PF-CCS program, which—similarly to a control flow
graph for programming languages—reflects the (recursive) dependencies of process
definitions in a program. For a PF-CCS process term e, let pt(e) denote the parse
tree of e defined in the usual manner (see e.g. [ASU86]) as a tree labeled with
operator symbols or process identifiers (in leafs).

Definition 3.4 (Program Dependency Graph). Let
(

{P1
def
= e1, . . . , Pn

def
= en}, P1

)

be a complete PF-CCS program. We define its program dependency graph as the
directed labeled graph (V,E) given as follows:

• Its nodes V comprise those for left-hand sides of the equations labeled with
P1, . . . , Pn, together with the nodes of the parse trees pt(e1), . . . , pt(en) of the
defining equations e1, . . . , en.

• Its edges E comprise all edges of the parse trees pt(e1), . . . , pt(en), and edges
connecting the nodes Pi corresponding to the left-hand sides of equations to
the roots of parse trees pt(ei) of the corresponding defining equations ei. In
addition, it comprises all edges from leafs of the parse trees labeled with single
process identifiers Pi to the nodes Pi representing the left-hand side of the

defining equation Pi
def
= ei.

A program dependency graph basically represents an enriched “parse tree” of a PF-
CCS program with also contains its recursive call dependencies. As an example,
consider the following PF-CCS program whose program dependency graph is shown
in Figure 3.1.

P
def
= (α.P) ⊕ (Q ‖ Q)

Q
def
= β1.Nil ⊕ β2.Nil

We call a node labeled Q reachable from a node labeled P if there exists a path from
P to Q in its program dependency graph.

117

3. PF-CCS: Product Family CCS

P ⊕

• ‖

P α Q Q

Q ⊕

• •

β1 Nil β2 Nil

Figure 3.1.: A program dependency graph.

Intuitively, a program dependency graph reflects the dependencies between the pro-
cess identifiers of a PF-CCS program with respect to their defining equations. A
cycle in this graph that contains a node labeled with a parallel operator ‖ might
represent a recursive process definition “spawning” an arbitrary number of copies
of its own. Consider for example the following process which represents a set of
arbitrary many parallel processes.

P
def
= α.P ‖ β.Q

= (α.P ‖ β.Q) ‖ β.Q

= ((α.P ‖ β.Q) ‖ β.Q) ‖ β.Q

= . . .

If in such a context, the variants operator ⊕ comes into play (e.g. if Q contains
an variants operator), an unbounded number of configuration selections would be
possible, since with every newly spawned Q we would get a new variants operator,
as well. In particular, if all variants operators are labeled differently, a realistic
configuration is not performable any more. We therefore consider in the following
PF-CCS programs which forbid such a situation and thus are configurable within
finitely many configuration selections.

Definition 3.5 (Finitely Configurable PF-CCS Program). We call a complete PF-
CCS program finitely configurable, if its program dependency graph has no cycle
containing a node labeled with ‖ from which a node labeled with ⊕ is reachable.

Consider Figure 3.1. While there is a cycle from P back to P from which a ⊕-
operator is reachable, the program is finitely configurable as this cycle does not
contain a node labeled ‖. Thus, the variants operators are not part of a (recursive)
process which gets spawned infinitely often. However, if we would specify instead

P
def
= (α.P) ‖ (Q ‖ Q), the program would not be finitely configurable, as the cycle

from P to P would contain the parallel operator, and, still the ⊕-operator of the
second equation is reachable.

118

3.1. Syntax of PF-CCS

P
def
= Q ‖ Q

Q
def
= Q1 ⊕Q2

(a) First possibility.

R
def
= Q1 ⊕Q2 ‖ Q1 ⊕Q2

(b) Second possibility: The
program is fully expanded.

Figure 3.2.: Two ways of understanding alternative variants and variation points.

Note that the definition of finitely configurable does not characterize the programs
that are configurable within finitely many configuration selections, but is just a suf-
ficient condition. However, as it is (already) undecidable whether a CCS program
yields a finite or infinite state system [Mil95], it is easy to see that it is also undecid-
able whether the transition system defined by a PF-CCS program would make use
of only finitely many configuration selections. In the following, we therefore consider
only finitely configurable PF-CCS programs.

Fully Expanded PF-CCS Programs

There is a further restriction we want to make. It is concerned with the intended
meaning of substituting a process definition which contains a variants operator.
Consider for example the two independent systems P and R shown in Figure 3.2.
When considering the left system P one might understand its meaning as follows:

(a) P consists of two “instances” of the same variation point Q. Hence, one selects
once between Q1 and Q2 and follows this choice for any occurrence of Q in
P . However, if we would specify P by substituting the process Q in P by its
defining equation Q1 ⊕ Q2, we would get a system like R, which represents a
quite different intention:

(b) In R, we now have two (independent) variation points, which—though offering
the same variants Q1 and Q2—might be configured differently from each other.

So far, the structural semantics rules, as we introduce them in Section 3.2.2, are only
compositional for meaning (a). In particular, if we want to model two independent
choices, we have to explicitly model them as shown in Figure 3.2b. Therefore—for
the scope of this thesis and to simplify the technical treatment—we only consider
systems like R, where every variants operator can be configured independently from
the configuration of other variation points (with different names). Note that it is
easy to extend our formalism to actually cope with both meanings by introducing a
second kind of variants operator with a suitable semantics for the case of Figure 3.2a.
However, as this does not match our understanding of a software product family,
we refrain from giving this extension in this thesis. Moreover, the alternative to
assign labels directly to variants operators at the time of writing down the PF-CCS
program also gives the possibility to deal with such a situation in the current setting.

119

3. PF-CCS: Product Family CCS

We call PF-CCS programs that only contain variation points of the kind shown in
Figure 3.2b fully expanded. The property of being fully expanded can be checked by
inspecting the corresponding program dependency graph of a PF-CCS program. If
each ⊕-node can only be reached on one path from any other node in the program
dependency graph, then the corresponding program is fully expanded. Otherwise,
if a ⊕-node can be reached on at least two different paths, we must have a situation
like in Figure 3.2a, where the program is not yet fully expanded. Thereby, we
have to take cycles in the program dependency graph into account, since the two
paths must be “really” different, i.e. different runs through a path which contains
a cycle, by looping through the cycle a different number of times, do not count
as different paths. We achieve this by considering only cycle free paths, where we
call a path (n1, n2, . . . , nm) cycle free, iff it does not contain any node twice, i.e. iff
∀i, j ∈ {1, . . . ,m} : ni 6= nj.

Definition 3.6 (Fully Expanded PF-CCS Program). We call a complete and finitely
configurable PF-CCS program fully expanded, if every ⊕-node in its program depen-
dency graph can be reached from the start node by at most one cycle free path.

The property of being reachable from any node is equivalent to being reachable
from the start node, since in a complete program any node is reachable from the
start node. Note that a finitely configurable PF-CCS program which is not fully
expanded can be transformed into an equivalent fully expanded version. Certainly,
this is not to be understood in a mathematical sense, as no semantics for non-
fully expanded programs has and will be provided, which does not allow to define
equivalence precisely. For example, the program whose program dependency graph
is shown in Figure 3.1 is not fully expanded since the ⊕-node on the right is reachable
from the start node by two different, cycle free paths. The Definitions 3.3 to 3.6 can
be subsumed characterizing the set of well-formed PF-CCS programs.

Definition 3.7 (Well-formed PF-CCS Program). We call a PF-CCS program well-
formed, if it is complete, finitely configurable, and fully expanded.

The rational for the syntactical restrictions leading to Definition 3.7 is that in a
well-formed PF-CCS program we can easily label each variants operator with a
unique natural number by parsing over the PF-CCS program and attaching a fresh
number to every occurrence of a variants operator. In contrast, for non well-formed
programs, we have to number a variants operator immediately when we add it to
the PF-CCS specification. The ability of numbering variants operators in a unique
way allows us to precisely define the concept of a variation point with respect to
PF-CCS programs, which conforms to the corresponding concept of a variation point
as required in the axiomatization in Section 2.2.2.3 (Page 36).

Definition 3.8 (Variation Point in PF-CCS). In PF-CCS, we call a uniquely labeled
variants operator with number i ∈ N, denoted by ⊕i, a variation point.

120

3.2. Semantics of a PF-CCS Program

3.2. Semantics of a PF-CCS Program

In the following, we define the semantics of a PF-CCS program. We do this in an in-
tuitive way by introducing three different, subsequent semantics, the flat semantics,
the unfolded semantics, and the configured-transitions semantics . In particular we
show how they are related. Basically, the first two semantics are only introduced to
motivate and justify the final semantics, the configured-transitions semantics, which
will be an appropriate basis for specifying and model checking properties of software
product line as introduced in Chapter 4.

3.2.1. Flat Semantics

The flat semantics reflects the intuitive understanding of a PF-CCS program repre-
senting a product family: Every PF-CCS program can be understood as the set of
all (plain) CCS programs that can be derived by a full configuration of the PF-CCS
program. More precisely, given a well-formed PF-CCS program, we choose for every
variants operator either the process term on its left- or right-hand side and remove
all the unselected terms together with the respective ⊕ symbols from the PF-CCS
program. For every complete configuration, this procedure results in a plain CCS
program, which can be understood in the usual way, e.g. with the SOS semantics
described by Milner [Mil80].

Technically, in order to talk about configurations for certain variation points, we
have to label every variants operator ⊕ uniquely with a number in {1, . . . , n}. As
we have seen in the preceding section, we can always do this for well-formed PF-CCS
programs by simply parsing a PF-CCS program line by line and numbering every
variants operator with the next fresh number when we parse it. For programs which
are not well-formed we have to label the variants operators manually at the time
when we add it to the PF-CCS program.

We denote a configuration by means of configuration vector, which stores the indi-
vidual configuration selections for the corresponding variants operators.

Definition 3.9 (Configuration Vector). A configuration vector θ ∈ {R,L, ?}n is a
vector of the form 〈c1c2 . . . cn〉 where each ci represents the individual configuration
for the ith variants operator ⊕i of the corresponding PF-CCS program. We call
a configuration vector θ ∈ {R,L, ?}n fitting to a PF-CCS program containing m
variation points, if n = m.

In order to work with configuration vectors we use the following operations and
notation: Let ν ∈ {R,L, ?}n be a configuration vector and 0 < i ≤ n be an index

121

3. PF-CCS: Product Family CCS

number. By νi we denote the ith element of ν. The construct ν|i/x represents the

updated vector ν in which the entry at the ith position is replaced by the value
x ∈ {R,L}. All other entries keep their values, i.e. ∀ j 6= i : (ν|i/x)j = νj . In
order to separate the entries more explicitly, we sometimes denote a configuration
vector using commas as in 〈R,R,L〉. With 〈?n〉 we denote the configuration vector
consisting of n ?-entries.

In a configuration represented by a vector 〈c1, . . . , cn〉, the values of single entries
ci have the following meaning: The value R represents the selection of the right
variant (of variation point i), and L represents the selection of the left variant. The
entry ? represents the situation that none of the two alternative variants has been
selected for the corresponding variation point. This means that the configuration of a
variation point is not relevant for the resulting product, i.e. that products with both
kinds of variants exist. For example, the vector 〈R,R,L〉 denotes the configuration
for a software product family containing three variants operators, where for the first
two variants operators ⊕1 and ⊕2 the right variant (R) is selected, and for the third
variants operator ⊕3 the left variant (L) is selected.

A special kind of configuration vectors are those which contain no ?-entries, as such
configuration vectors always correspond directly to a product of the software product
family.

Definition 3.10 (Fully Configured Configuration Vector). We call a configuration
vector θ ∈ {R,L, ?}n fully configured if ∀i ∈ {1, . . . , n} : θi 6=?.

Configuring a software product family according to the configuration represented by
a fully configured configuration vector results in a concrete product, which contains
no variability anymore. We represent the act of applying a configuration to a PF-
CCS program by the function config . Let LCCS denote the set of all CCS programs.
Given a well-formed PF-CCS program Prog with n variants operators and a fully
configured configuration vector θ ∈ {R,L, ?}n we define the function

config : LPFCCS × {R,L}n → LCCS

which realizes a configuration on the term structure of a PF-CCS program. This
means that config reduces Prog to a CCS program PCCS, where PCCS is constructed
by removing all subterms in the PF-CCS program Prog which are not selected
according to θ. Thus, config manipulates the actual PF-CCS process expression
and removes the unselected variants together with the respective ⊕ tokens from
the PF-CCS equations. The function config is inductively defined as shown below.
Let P, T be PF-CCS processes, α ∈ A a communication action, f : A → A a
renaming function, L ⊆ A a set of actions, Q ∈ Id an atomic process identifier, and
θ ∈ {R,L}n an corresponding configuration vector.

122

3.2. Semantics of a PF-CCS Program

config(P ⊕i T, θ) =

{

config(P, θ) , θi = L
config(T, θ) , θi = R

(3.1)

config(Q, θ) = Q (3.2)

config(Nil , θ) = Nil (3.3)

config(α.P, θ) = α.
(

config(P, θ)
)

(3.4)

config(P + T, θ) = config(P, θ) + config(T, θ) (3.5)

config(P ‖ T, θ) = config(P, θ) ‖ config(T, θ) (3.6)

config(P [f], θ) =
(

config(P), θ
)

[f] (3.7)

config(P\L, θ) =
(

config(P, θ)
)

\L (3.8)

In order to configure a PF-CCS program {P1
def
= e1, . . . , Pn

def
= en} according to a

configuration θ we apply the function config to all right-hand sides ei of the defining
equations. This results in a CCS program given by the following set of equations:

P1
def
= config(e1, θ)

...
...

...

Pn
def
= config(en, θ)

Consider for example the following PF-CCS-program:

P
def
= (α.P) ⊕1 T (3.9)

T
def
= β1.Nil ⊕2 β2.Nil

By following the instructions given above, we get for the configuration θ = 〈R,L〉
the plain CCS program:

P
def
= T

T
def
= β1.Nil

Note that due to the nested structure of a PF-CCS expression there are also not fully
configured vectors which yet determine a single CCS system. For a more detailed
discussion see Chapter 2.2.3.3. For example for the software product family specified
in the preceding PF-CCS program 3.9 the configuration 〈L, ?〉 already yields the

plain CCS program P
def
= α.P , even though 〈L, ?〉 is not fully configured.

By means of the function config we define the flat semantics of a PF-CCS program.
The flat semantics is the set of all plain CCS programs (interpreted as labeled
transitions systems in the conventional CCS SOS semantics) which can be derived
by applying a configuration to the (term structure of a) PF-CCS program. Thus, it
is the same as specifying a software product family by explicitly writing down the
set of all CCS programs directly and interpreting them in the original CCS SOS
semantics shown in Figure 3.3.

123

3. PF-CCS: Product Family CCS

P
α
−→ P ′

C
α
−→ P ′

, C
def
= P (constant definition) (3.10)

α.P
α
−→ P

(prefix) (3.11)

P
α
−→ P ′

P +Q
α
−→ P ′

(nondeterministic choice (1)) (3.12)

Q
α
−→ Q′

P +Q
α
−→ Q′

(nondeterministic choice (2)) (3.13)

P
α
−→ P ′

(P ‖ Q)
α
−→ (P ′ ‖ Q)

(parallel composition (1)) (3.14)

Q
α
−→ Q′

(P ‖ Q)
α
−→ (P ‖ Q′)

(parallel composition (2)) (3.15)

P
α
−→ P ′ Q

ᾱ
−→ Q′

(P ‖ Q)
τ
−→ (P ′ ‖ Q′)

(parallel composition (3)) (3.16)

P
α
−→ P ′

P [f]
f(α)
−−−→ P ′[f]

(relabeling) (3.17)

P
α
−→ P ′

(P \ L)
α
−→ (P ′ \ L)

, α, ᾱ /∈ L (restriction) (3.18)

Figure 3.3.: SOS rules for CCS as defined by Milner [Mil95].

Definition 3.11 (Flat Semantics of a PF-CCS Program). Let Prog ∈ LPFCCS

be a PF-CCS program containing n variation points and θ ∈ {R,L}n be a fitting
configuration vector. The flat semantics of a product line Prog is defined as

[[Prog]]Flat =
{

[[V]]CCS | ∃θ : (config(Prog , θ) = V) }

where [[V]]CCS denotes the conventional CCS semantics of the CCS program V .

The conventional CCS semantics of a CCS program is given in terms of SOS (struc-
tured operational semantics) rules which precisely define how to construct a labeled
transition system (LTS) from a CCS specification. Figure 3.3 shows the SOS rules
for CCS as introduced by Milner in [Mil80]. We write [[Prog]]CCS.s to denote the
state s of the LTS [[Prog]]CCS.

Note that the flat semantics does not account for any feature constrains or feature
dependencies. It simply consists of all combinatorially possible configurations of

124

3.2. Semantics of a PF-CCS Program

a product line. However, such feature constraints can be incorporated in the flat
semantics by further restricting the set of allowed configurations θ in the formula
of Definition 3.11 by means of propositional logic, i.e. by means of the dependency
model which have introduced in Chapter 2.3.

3.2.2. Unfolded Semantics

In the preceding section we have seen that in the flat semantics a PF-CCS pro-
gram corresponds to a set of labeled transition systems (LTS), one for each fully
configured configuration and thus for each product. Now, in the unfolded seman-
tics, the meaning of a PF-CCS program is defined by a single labeled transition
system representing an entire product family. This transition system actually is a
product family in the sense of Chapter 2. In particular, by combining the behav-
ior of all derivable systems within one labeled transition system, it represents the
fundamental model for model checking—as we will show in Chapter 4—since now
commonalities between systems can explicitly be considered and exploited. Before
defining the unfolded semantics we introduce a specific form of a labeled transi-
tion system, a so-called Product Line Labeled Transition System (PF-LTS) which
represents the semantical domain for the unfolded semantics.

Definition 3.12 (PF-LTS for the Unfolded Semantics). A product family labeled
transition system (PF-LTS) (representing the unfolded semantics) for a PF-CCS
program containing n variation points is a tuple T = (S,A,−→, σ), where

• S is a (countably, possibly infinite) set of states.

• A is a finite set of communication actions,

• −→ ⊆ S × A × {R,L, ?}n × S is a transition relation. If (s, α, ν, s′) ∈ −→

we also write s
α, ν
−−→ s′,

• and σ ∈ S is the start state.

With T .s we denote the state s of the PF-LTS T . A PF-LTS for the unfolded se-
mantics is basically a regular LTS which has a special kind of labels. More precisely,
in a PF-LTS every transition from one state to another is labeled by an action α
and an additional (possibly partial) configuration vector ν. We call an configuration
vector attached to a transition also a configuration label. Usually, in this chapter
we use the Greek letter ν to range over configuration labels, while θ ranges over
configuration vectors which represent configurations.

The configuration label ν of a transition specifies in which configurations the tran-
sition exists. Thereby, a single entry νi at position i within ν means the following:

125

3. PF-CCS: Product Family CCS

• if νi = R, then the transition is present only in those products (configurations)
where the right variant for the variation point numbered with i is chosen,

• if νi = L, then the transition is present only in those products (configurations)
where the left variant for the variation point numbered with i is chosen,

• if νi =?, then the existence of the transition is not influenced by the specific
configuration choice of the variation point labeled with number i, i.e. the tran-
sition is present in both cases where we chose either the right (R) or the left
(L) variant for variation point i.

On basis of the individual entries we can define when an entire configuration matches
a configuration label. More precisely, given a configuration θ representing a specific
product (or subfamily), we can compare it with a configuration label ν of a transition
in order to determine whether the corresponding transition exists in the system
(family) represented by θ. Formally, for the comparison we introduce the following
relation between configuration vectors.

Definition 3.13 (Conformance of Configuration Vectors). Let ν, ν ′ ∈ {L,R, ?}n be
configuration vectors. We say that ν ′ conforms to ν, denoted by ν ′ v ν, if

∀i ∈ {1, . . . , n} :
(

(νi = L) ⇒ ν ′i ∈ {L, ?}
)

∧
(

(νi = R) ⇒ ν ′i ∈ {R, ?}
)

We will use the v relation in order to precisely express in what configurations a
certain transition of a PF-LTS is present. Every (possibly incomplete) configuration
θ conforms to a configuration label ν, if θ either requires the same concrete values
L or R at positions where ν holds these concrete values, or if θ even requires less,
i.e. holds the entry ? at such positions (Note that if θi =? then the premises of
both conjuncts are false, making both conjuncts and the entire formula of Definition
3.13 true). For entries where νi =?, an arbitrary entry θi is allowed. For exam-
ple, the (incomplete) configuration θ = 〈RL??〉 conforms to the label ν = 〈?LR?〉.
For the derivation of concrete products, only complete configurations are relevant.
Since complete configurations do not contain any ?-entires anymore, Definition 3.13
reduces to the following form in such a case:

∀i ∈ {1, . . . , n} :
(

(νi = L) ⇒ (ν ′i = L)
)

∨
(

(νi = R) ⇒ (ν ′i = R)
)

For complete configurations θ, a configuration label ν characterizes the set of all those
configurations θ, whose entries either match the entries of ν, or have the values R or
L on positions where ν carries an entry ? (and hence does not require any particular

variant). Thus, a transition s
α, ν
−−→ s′ in a PF-LTS exists in all configurations θ which

conform to the transition label ν, i.e. where θ v ν. For example, the configuration
label 〈LR?〉 characterizes the complete configurations θ1 = 〈LRL〉 and θ2 = 〈LRR〉,

for which the α- transition
α, 〈LR?〉
−−−−−→ is present. Beside the conformance relation we

also need another relation that represents a kind of refinement for configurations
(labels).

126

3.2. Semantics of a PF-CCS Program

Definition 3.14 (Concretization of a Configuration Vector). Let ν, ν ′ ∈ {L,R, ?}n

be configuration vectors. We say that ν ′ is a concretization (or more concrete) of
ν, denoted by ν ′ < ν, if

∀i ∈ {1, . . . , n} : (νi = ν ′i) ∨
(

(νi =?) ⇒ (ν ′i ∈ {L,R})
)

In contrast to v, we use the < relation to characterize the evolution of configu-
ration labels when constructing the transition relation according to the SOS rules.
Illustratively, a configuration label ν ′ is a concretization of a label ν, if ν ′ agrees
exactly with ν except for some positions where ν has an ?-entry while ν ′ has a more
concrete entry in {L,R}. Note that for complete configuration vectors ν ′ ∈ {L,R}n,
and arbitrary configuration vectors ν ∈ {L,R, ?}n we have ν ′ v ν ⇔ ν ′ < ν, as the
construction of the corresponding truth table shows.

Based on this prerequisites we can now elaborate the unfolded semantics of a PF-
CCS program, which is given as a PF-LTS. In such a PF-LTS the states are pairs
consisting of a PF-CCS process expression and a configuration label that specifies the
configurations under which this state was reached. Thus, we denote states as tuples
(t, ν) consisting of a PF-CCS process term t ∈ LPFCCS and a configuration vector
ν ∈ {R,L, ?}n. The transition relation of the PF-LTS is defined by means of SOS
rules. The corresponding SOS rules for PF-CCS are shown in Figure 3.4. Essentially,
the PF-CCS SOS rules are similar to the original CCS SOS rules. However, the PF-
CCS SOS rules are enriched with configuration vectors which are used to construct
the configuration labels for the transitions, respectively. This allows to keep track
of the choices for the variants operators when building up the PF-LTS.

Except for the SOS rules for the variants operator ⊕, the remaining rules do not
influence the construction of the configuration labels of the transitions. They are
basically similar to their CCS SOS counterparts and only adjusted in order to be ca-
pable of handling configuration vectors. For example, rules (3.19) and (3.20) express
that the execution of an action—specified either directly by action-prefixing as in
(3.20) or indirectly by a constant definition as in rule (3.19)—can be done indepen-
dently from and without affecting the current configuration label ν. More precisely,
any state (α.P, ν) affords a transition labeled with the action α to a successor state
(P, ν) in every possible configuration ν. Note that the configuration label ν is not
modified in this rule.

Essential for the SOS rules of the unfolded semantics is the treatment of the variants
operator ⊕. Recall that it is a binary operator which allows to model a selection
between two alternative processes where only one will be existing in the resulting
system. Though looking similar to the ordinary CCS + operator—which also models
a kind of alternative choice—the variants operator has to be treated differently for
two reasons: Firstly, when a configuration selection has been made, the same selec-
tion has to be taken when recursively revisiting the same ⊕i-operator. Secondly, in

127

3. PF-CCS: Product Family CCS

P, ν
α, ν
−−→ P ′, ν

C, ν
α, ν
−−→ P ′, ν

, C
def
= P (constant definition) (3.19)

α.P, ν
α, ν
−−→ P, ν

, for arbitrary ν ∈ {R,L, ?}n (prefix) (3.20)

P, ν
α, ν
−−→ P ′, ν

P +Q, ν
α, ν
−−→ P ′, ν

(nondeterministic choice (1)) (3.21)

Q, ν
α, ν
−−→ Q′, ν

P +Q, ν
α, ν
−−→ Q′, ν

(nondeterministic choice (2)) (3.22)

P, ν
α, ν
−−→ P ′, ν

(P ‖ Q), ν
α, ν
−−→ (P ′ ‖ Q), ν

(parallel composition (1)) (3.23)

Q, ν
α, ν
−−→ Q′, ν

(P ‖ Q), ν
α, ν
−−→ (P ‖ Q′), ν

(parallel composition (2)) (3.24)

P, ν
α, ν
−−→ P ′, ν Q, ν

ᾱ, ν
−−→ Q′, ν

(P ‖ Q), ν
τ, ν
−−→ (P ′ ‖ Q′), ν

(parallel composition (3)) (3.25)

P, ν
α, ν
−−→ P ′, ν

P [f], ν
f(α), ν
−−−−→ P ′[f], ν

(relabeling) (3.26)

P, ν
α, ν
−−→ P ′, ν

(P \ L), ν
α, ν
−−→ (P ′ \ L), ν

, α, ᾱ /∈ L (restriction) (3.27)

(a) PF-CCS SOS rules for the unfolded semantics, except of the variants operator ⊕.

P, ν|i/L
α, ν′|i/L
−−−−−→ P ′, ν ′|i/L

P ⊕i Q, ν
α, ν′|i/L
−−−−−→ P ′, ν ′|i/L

, νi 6= R , ν ′ < ν (configuration selection (1))

(3.28)

Q, ν|i/R
α, ν′|i/R
−−−−−−→ Q′, ν ′|i/R

P ⊕i Q, ν
α, ν′|i/R
−−−−−−→ Q′, ν ′|i/R

, νi 6= L , ν ′ < ν (configuration selection (2))

(3.29)

(b) PF-CCS SOS rules for the treatment of the variants operator ⊕.

Figure 3.4.: Complete set of PF-CCS SOS rules for the unfolded semantics.

128

3.2. Semantics of a PF-CCS Program

order to facilitate further reasoning about the configurations, e.g. by model checking,
the choice has to be “made visible” within the transition relations. These two issues
are captured by the two SOS rules for the variants operator ⊕ shown in Figure 3.4b.

We illustrate their meaning informally taken the example of the first configuration
selection rule (Equation 3.28) which corresponds to the selection of the left variant
of the variants operator i. Recall that (1) νi yields the i

th element of the vector ν,
and (2) ν|i/x represents the updated vector ν in which the entry at the ith position is
replaced by the value x ∈ {R,L}, while all other entries keep their initial values. The
SOS rule 3.28 states that from a state (P ⊕i Q, ν), which represents the parse term
P ⊕i Q and which was reached in configuration ν, we can perform an α transition
to a state (P ′, ν ′) if (i) we decide to select the left variant (represented by the act of
updating the initial configuration label ν to ν ′|i/L and labeling the current transition
with this modified configuration vector), and (ii) the left variant P actually affords
an α successor P ′ in the initial configuration ν, and (iii) the right variant has not
been chosen for this variation point so far in a preceding recursive parsing pass.

The last requirement (iii) is realized by the side condition νi 6= R of rule 3.28. This
side condition guarantees that also in recursive process definitions the SOS rule
only allows to derive transitions which conform to the configuration choices taken in
previous recursive (parsing) passes of the corresponding equation. Thus, it prevents
the derivation of an α transition labeled with a configuration label where νi = L
from a state which lies on a path on which the opposite variant R was already chosen
for the respective variation point i. Consider for example the recursive program

P
def
= α.T ⊕1 β.T

T
def
= γ.P

If we chose one variant, say the right variant β.T , the intention is that in any
subsequent recursive pass of P we cannot undo a preceding configuration choice R
and suddenly select the left variant α.T . The SOS rule 3.28 guarantees that the
resulting transition system is constructed in a way that respects this property.

Together, these SOS rules allow to define the unfolded semantics of a product family
specified in PF-CCS. As a prerequisite the variants operators in the respective PF-
CCS program have to be numbered. However, for any well-formed PF-CCS program
this can be done easily as we have motivated in the preceding section.

Definition 3.15 (Unfolded Semantics of a PF-CCS Program). Let Prog be a well-
formed PF-CCS program Prog = (E , P1) with n variants operators. We define the
unfolded semantics of Prog, denoted by

[[Prog]]UF

as the PF-LTS T obtained by applying the SOS rules (3.19)-(3.29) to the main
process identifier P1 with an initial configuration label ν = 〈?n〉. The start state of
T is (P1, 〈?n〉).

129

3. PF-CCS: Product Family CCS

S, 〈??〉 P3, 〈?R〉 ...

P2, 〈RL〉 ...

P1, 〈LL〉 ...

γ, 〈?R〉

β, 〈RL〉
α, 〈LL〉

(a) Initial part of the PF-LTS.

α.P1, 〈LL〉
α, 〈LL〉
−−−−−→ P1, 〈LL〉

α.P1 ⊕1 β.P2, 〈?L〉
α, 〈LL〉
−−−−−→ P1, 〈LL〉

(α.P1 ⊕1 β.P2)⊕2 γ.P3, 〈??〉
α, 〈LL〉
−−−−−→ P1, 〈LL〉

(b) Deduction of the transition
α,〈LL〉
−−−−→.

Figure 3.5.: PF-LTS for S
def
= (α.P1⊕1β.P2)⊕2γ.P3 and the deduction of a transition.

Let us demonstrate the unfolded semantics with two examples. As a first exam-
ple, Figure 3.5a shows the PF-LTS when applying the configuration selection rules
3.28 and 3.29 to the (incomplete) PF-CCS program starting with the main process
definition

S
def
= (α.P1 ⊕1 β.P2)⊕2 γ.P3

Since the presence of γ.P3 in the final configuration only requires to select the right
variant at the variation point ⊕2, the corresponding transition to state (P3, 〈?R〉)
only fixes the second entry of the configuration vector to the value R while leaving
any choice for the first entry (?). In contrast to that, the selection of either α.P1

or β.P2 requires to take two configuration decisions, reflected by the vectors 〈LL〉
and 〈RL〉 in the respective states (P1, 〈LL〉) and (P2, 〈RL〉). A corresponding de-
duction (applying twice Rule 3.28) for the selection of the variant α.P1 is given in
Figure 3.5b. As the derivation demonstrates, the SOS semantics can require multiple
configuration selections for deriving a single transition.

A second example illustrates the configuration selection rules for recursive process
definitions. More specifically, Figure 3.6 shows the PF-LTS for the PF-CCS program

P
def
= γ.(α.P ⊕1 β.P)

130

3.2. Semantics of a PF-CCS Program

P, 〈?〉 α.P ⊕1 β.P, 〈?〉

P, 〈L〉

P, 〈R〉

α.P ⊕1 β.P, 〈L〉

α.P ⊕1 β.P, 〈R〉

γ, 〈?〉

α, 〈L〉

γ, 〈L〉

α, 〈L〉

β, 〈R〉

γ, 〈R〉

β, 〈R〉

Figure 3.6.: PF-LTS for the PF-CCS term P
def
= γ.(α.P ⊕1 β.P)

Recall, that the state labels correspond to the process term together with the con-
figuration under which they were reached. If the semantics would only depend on
the current state’s PF-CCS term (and not additionally on the configuration selected
so far), the states at the left and the right column could not be told apart since
the process term is the same for all three states in one column. But since the
unfolded semantics keeps track of which configuration was chosen so far, identical
PF-CCS terms yield different states in the PF-LTS, if the terms are parsed under
different configurations. More precisely, this means that for example in the state

(α.P ⊕1β.P, 〈L〉) the semantics does not allow to have an outgoing transition
β,〈R〉
−−−→

since the dual configuration 〈L〉 has already been selected for the configuration label
of this state.

Given a PF-LTS (which we assume to represent an entire product family), we can
derive the respective transitions systems which represent sub-families by means of
projecting to a given configuration. Thereby, the projection yields a PF-LTS which
comprises only those transitions where the configuration θ conforms to the respective
configuration label. All other transitions, i.e. transitions whose configuration labels
contain at least one contradictory entry, are discarded by the projection. Regarding
states, the projected PF-LTS comprises only those states of the original PF-LTS
which are reachable by the preserved transitions. Note that if the configuration θ
is complete the projection always yields a full product which contains no variability
anymore.

131

3. PF-CCS: Product Family CCS

Definition 3.16 (Projection of a PF-LTS (Unfolded Semantics)). Let T = (S,A,−→
, σ) be a PF-LTS, and θ ∈ {R,L, ?}n be a fitting configuration. The projection Πθ(T)
of T according to θ is defined as the PF-LTS

Πθ(T) = (Sθ, A, −→θ, σ)

where

• −→θ= {s
α, ν
−−→ s′ ∈ −→ : θ v ν} is the relation which comprises exactly those

transitions of −→ which are allowed according to the configuration θ (Recall that v
represents the conformance relation as defined in Definition 3.13),

• Sθ = {(P, ν) ∈ S : θ v ν}, i.e. Sθ ⊆ S is the set of all states which are reachable
from σ with respect to the transition relation −→θ.

• A is a set of communication actions,
• and σ ∈ S is the start state.

Depending on the configuration, the concept of projection allows us to derive differ-
ent kinds of transition systems: If the configuration is not complete the projection
yields a PF-LTS which represents a sub-family that in general still contains variabil-
ity. On the contrary, if the configuration is complete, the projection yields a PF-LTS
which represents exactly the behavior of a single product. Since a complete configu-
ration selects a variant for every occurring variation point, the projection according
to a complete configuration only leaves those transitions (and respective states) in
the resulting system for which ν v θ, i.e. which exist exactly in this individual
system.

In order to illustrate the concept of deriving products by projection consider the
program Prog which is given by the following equations:

P
def
= α.P1 ⊕1 β.P2 (3.30)

P1
def
= α.P ⊕2 β.P2

P2
def
= γ.P

The PF-LTS representing the unfolded semantics of Prog is shown in Figure 3.7. The
projections of the PF-LTS according to the four possible complete configurations are
indicated by the line styles of the transitions:

- In configuration 〈LL〉 only the dotted,
- in configuration 〈LR〉 only the dashed
- in configuration 〈RL〉 only the disproportionately dashed,
- and in configuration 〈RR〉 only the solid transitions exist.

132

3.2. Semantics of a PF-CCS Program

P, 〈??〉 P1, 〈L?〉

P, 〈LL〉 P1, 〈LL〉

P2, 〈LR〉

P, 〈LR〉 P1, 〈LR〉

P2, 〈R?〉P, 〈R?〉

α, 〈L?〉

α, 〈LL〉

α, 〈LL〉

α, 〈LL〉

β, 〈LR〉

γ, 〈LR〉

α, 〈LR〉

β, 〈LR〉

β, 〈R?〉

γ, 〈R?〉

β, 〈R?〉

Figure 3.7.: The PF-LTS representing the unfolded semantics of process P defined in
Equation 3.30 (on Page 132). The line styles of the transitions illustrate
the projections to the four possible (complete) configurations: in a single
configuration only the transitions with the same style are present.

133

3. PF-CCS: Product Family CCS

The corresponding states which exist in each single projection are those ones reach-
able under the respective subset of transitions (with the same line style), however,
they are not explicitly marked in Figure 3.7. For example, the projection to config-
uration 〈LL〉 comprises the states (P, 〈??〉), (P1, 〈L?〉), (P, 〈LL〉), and (P1, 〈LL〉).

Let us now elaborate on the correctness of the unfolded semantics. The question
is whether the PF-LTS constructed by the unfolded semantics indeed corresponds
to the same set of products as specified by the flat semantics. More precisely, does
every transition system which we can construct for any (complete) configuration θ
from the unfolded semantics coincide with its corresponding counterpart which we
obtain for the same configuration θ from the flat semantics? As we will show in the
following, the answer is yes, modulo bisimulation.

To motivate this more clearly consider Figure 3.8. It shows the flat semantics of
the PF-CCS program Prog specified in Equation 3.30, i.e. for all possible com-
plete configurations θ it shows the corresponding transition systems which result
from applying the CCS semantics to the respectively reduced PF-CCS program
config(Prog , θ), which is shown next to each transition system. If we compare these
transition systems with the corresponding transitions systems (for the same configu-
ration) in Figure 3.7, we can see easily that they are not isomorphic. However, they
are bisimilar, as Theorem 3.1 (Page 135) will show. Since bisimulation is the “nat-
ural” kind of equivalence relation for synchronously communicating systems—and
thus also for PF-CCS—the wider meaning of Theorem 3.1 is that we can actually use
PF-CCS to specify product families, since we can be sure that the derivable prod-
ucts are equivalent to specifying the same systems as standalone CCS programs.
More precisely, Theorem 3.1 states that the two ways of constructing a system—via
the flat semantics and the unfolded semantics, respectively—always coincide (mod-
ulo bisimulation) for any complete configuration. Thus, for a given product family
represented as a PF-CCS program Prog and a complete configuration θ, the pro-
jection Πθ(Prog) from the respective PF-LTS for Prog (constructed using the SOS
rules 3.19-3.29.) and the corresponding configuration config(Prog , θ) of the actual
PF-CCS term Prog in fact yield bisimilar transition systems.

Before we introduce Theorem 3.1, we recall the concept of bisimulation as introduced
by Park [Par81]. Certainly, the idea of bisimulation directly applies to processes,
too, since processes (process expressions) semantically correspond to states. Milner
[Mil95] presents the same concept of (strong) bisimulation in terms of processes.

Definition 3.17 (Bisimulation). Let s1, s
′
1, s2, s

′
2 be states, and α ∈ A be an action.

A binary relation B over a set of states of one (or many) labeled transition system(s)
is a bisimulation iff whenever s1Bs2 :

• if s1
α
−→ s′1, then there is a transition s2

α
−→ s′2 such that s′1Bs

′
2, and

• if s2
α
−→ s′2, then there is a transition s1

α
−→ s′1 such that s′2Bs

′
1.

134

3.2. Semantics of a PF-CCS Program

For any pair of states (s1, s2) ∈ B we say that s1 and s2 are bisimilar and write

s1 ≈ s2

Two transition systems Sys1 and Sys2 are called bisimilar, denoted by Sys1 ≈ Sys2,
if their initial states are bisimilar.

Technically, in order to relate the transition systems which result from the flat
semantics and unfolded semantics, respectively, we have to adjust the concept of
bisimulation to the particular structure of a PF-LTS. In contrast to an LTS (in the
flat semantics) where the transitions are only labeled with single actions α, e.g. as
in s

α
−→ s′, the transitions in a PF-LTS (in the unfolded semantics) additionally are

labeled with a configuration label ν, such as in s
α,ν
−−→ s′. However, since we only con-

sider PF-LTS s which result from projection according to a complete configuration,
the configuration labels in such a PF-LTS are meaningless, since every complete
configuration corresponds to a full product which contains no variability anymore.
Thus, we can ignore the configuration labels in such a case for the examination of a
bisimulation between an LTS and a PF-LTS.

Theorem 3.1 (Correctness of Unfolded Semantics). Let Prog = (E , P) be a well-
formed PF-CCS program with n variation points. For all fitting and complete con-
figurations θ ∈ {R,L}n the (transition) system obtained from Prog with the flat
semantics according to θ is bisimilar to the system obtained by applying the unfolded
semantics and subsequently projecting to the identical configuration θ.

[[config(Prog , θ)]]CCS ≈ Πθ([[Prog]]UF)

Proof. Let
TU := (SU ,A,−→, σU) = [[Prog]]UF

be the PF-LTS representing the unfolded semantics of Prog . We denote the states
of TU as tuples (Proc, ν) consisting of a PF-CCS process term Proc ∈ LPFCCS and
a configuration label ν ∈ {R,L, ?}n. Further, let

TF := (SF ,A, , σF) = [[config(Prog , θ)]]CCS

be the LTS representing the flat semantics of Prog for the concrete configuration θ.
Here, the states SF are only labeled with CCS process terms. We denote them as
(P), where P ∈ LCCS.

Proof Outline: For any complete configuration θ ∈ {R,L}n we define a (bisimula-
tion) relation Bθ between the states of Πθ(TU) and TF . The relation Bθ comprises
all states in Πθ(TU) and TF , and basically relates states that have the same process
labels. We show for each configuration θ, that for every pair of related states in
the corresponding Bθ, the states can exactly perform the actions of the other state

135

3. PF-CCS: Product Family CCS

P
def
= α.P1

P1
def
= β.P2

P2
def
= γ.P P P1

P2

α

βγ

(a) Flat Semantics for the configuration θ = 〈LR〉.

P
def
= α.P1

P1
def
= α.P

P2
def
= γ.P

P P1

α

α

(b) Flat Semantics for the configuration θ = 〈LL〉.

P
def
= β.P2

P1
def
= α.P

P2
def
= γ.P

P P2

β

γ

(c) Flat Semantics for the configuration θ = 〈RL〉.

P
def
= β.P2

P1
def
= β.P2

P2
def
= γ.P

P P2

β

γ

(d) Flat Semantics for the configuration θ = 〈RR〉.

Figure 3.8.: The respective transition systems of the four possible configurations
which represent the flat semantics of the PF-CCS program Prog defined
by the Equations 3.30 (on Page 132). The CCS programs config(Prog , θ)
from which these LTSs are constructed are shown next to each LTS,
respectively.

136

3.2. Semantics of a PF-CCS Program

and vice versa, resulting always in a pair of successor states which are again in Bθ.
Since the performable transitions for every states are characterized by the applicable
SOS rules, we do this technically by performing a case discrimination over the set
of applicable SOS for the respective process terms.

Detailed Proof: For every θ we define a (bisimulation) relation Bθ ⊆ SU × SF

between the states of Πθ(TU) and TF . Recall, that per construction, the projected
PF-LTS Πθ(TU) contains only those states and transitions whose configuration labels
ν fulfill: θ v ν. The relation Bθ is defined in the following way:

1. Each state (P) ∈ SF is related by Bθ to all states (P, ν) of Πθ(TU) which
have an identical process expressions P , respectively, i.e. (P, ν)Bθ(P) for all ν
appearing in Πθ(TU). Note that this relates every state in SF with at least
one state of Πθ(TU), since (i) config(Prog , θ) has only preserved those process
expressions which appear in a chosen variant, and (ii) exactly for these process
expressions the corresponding states are preserved by the projection to θ in
Πθ(TU).

2. All states (P, ν) of Πθ(TU) which are not related in step 1 must have a process
expression P which contains a subterm V1 ⊕n V2. Each of these states (P, ν)
will be related by Bθ to the state (R) ∈ SF , where R is the process term P in
which every subterm V1 ⊕n V2 is replaced

• either by the left variant V1, if θn = L,

• or by the right variant V2, if θn = R.

Thus, the variant which is chosen in R is the same as the variant which was
preserved by config in the program config(Prog , θ). In particular, this means
that a state labeled with such a term R always exists in SF . Other states
(P, ν) where θ 6v ν do not exist in the transition system Πθ(TU), as they have
been discarded by the projection Πθ.

This construction guarantees that for any complete configuration θ , the relation Bθ

comprises all states in Πθ(TU) as well as in SF , and relates .

We show now that for all pairs
(

(P, ν), (Q)
)

∈ Bθ both states afford the same
transitions leading to a pair of successor states which is again in Bθ. Since for each
state of Πθ(TU) there exists exactly one state (Q) such that (P, ν)Bθ(Q), iterating
over all states (P, ν) guarantees that all pairs in Bθ are considered. To this end we
perform a case discrimination over the kind of process expression P in (P, ν), which
reduces to a case discrimination over the set of SOS rules which are applicable to
the process expression P .

137

3. PF-CCS: Product Family CCS

• Pairs (P ⊕nQ, ν)Bθ(P) and (P ⊕nQ, ν)Bθ(Q) (Configuration Selection Rules)
We show only the case where θi = L and thus consider the situation where
(P ⊕n Q, ν)Bθ(P). The dual case (P ⊕n Q, ν)Bθ(Q) for the right variant is
shown analogously.

– Transitions from (P ⊕n Q, ν):
Since θi = L, according to SOS rule 3.28 the only performable transition

is P ⊕n Q, ν
α,ν′
−−→ P ′, ν ′, where ν ′ v ν|i/L. This transition can only be

performed if the premise P, ν ′
α,ν′
−−→ P ′, ν ′ can be shown. However, if

so, by SOS rule 3.11 the related state (P) can also perform a transition

(P)
α
 P ′. Since the successor state (P ′) has an identical process term

as the state (P ′, ν), we have (P ′, ν)Bθ(P).

– Transitions from (P):

The state (P) affords all transitions P
α
 P ′ which are derivable for the

process P . Due to identical process expressions (P), the state (P ⊕nQ, ν)

can simulate all these transitions by respective transitions P ⊕nQ, ν
α,ν′
−−→

P ′, ν ′. This requires to select the left variant L for the variation point n.
However, since the pair (P ⊕nQ, ν)Bθ(P) is only related in configurations
θ where θi = L, this requirement is always fulfilled. Thus, both states
perform the same set of transitions. In addition, by rule 3.28, for all
successor states (P ′, ν) which can be reached from the left variant of
(P⊕nQ, ν), the respective configuration label ν ′ fulfills ν ′i = L and ν ′ < ν.
This means that all successor states (P ′, ν) actually exist in Πθ(TU), and
in particular that all resulting states are in Bθ due to the equivalence of
their process expressions P ′.

• Pairs (α.P, ν)Bθ(α.P) (Action Prefixing Rule)

– Transitions from (α.P, ν):
For every ν and for every α ∈ A, every state (α.P, ν) can be perform

a transition α.P, ν
α,ν
−−→ P, ν by SOS rule 3.20 to a state (P, ν). Since

this is the only applicable SOS rule, no more outgoing transitions exist in
(α.P, ν). Per construction of Bθ the state (α.P) is related to every one of
these states (α.P, ν), and affords the same α-transition by SOS rule 3.11
resulting in state (P). Since both process expressions P are equal, per
construction of Bθ the pair

(

(P, ν), (P)
)

is again in Bθ.

– Transitions from (α.P):

By SOS rule 3.11, the only possible transition is α.P
α
 P . No other

transitions can be derived in this state. For every ν which exists in
Πθ(TU), every state (α.P, ν) can match this transition by SOS rule 3.20,

i.e. α.P, ν
α,ν
−−→ P, ν, where all successor states (P, ν) are again in relation

(P, ν)Bθ(P), respectively.

138

3.2. Semantics of a PF-CCS Program

• The rules for the remaining cases, i.e. for the constant definition P
def
= Q, and

the process expressions P+Q, P ‖ Q, P [f], and P \L are shown in an analogue
way. Each proof is based on the facts that the states which are related by Bθ

for these SOS rules all have identical process expressions and thus equivalent
SOS rules apply.

This shows that Bθ is indeed a bisimulation for every θ. Since per construction of B
we always have

(

(σU , 〈?
n〉), (σF)

)

∈ Bθ for every configuration θ and every pair of
start processes σU and σF , the systems Πθ([[Prog]]UF) and [[config(Prog , θ)]]CCS are
bisimilar for all PF-CCS programs Prog and all configurations θ.

Theorem 3.1 shows what we intuitively expect from the introduced SOS rules:
Regarding the resulting (transitions system of the) product there is no difference
whether we (i) transform the PF-CCS program of a product line according to a given
configuration and apply the original CCS SOS rules afterwards, (ii) or whether we
generate a PF-LTS for the entire product line from a PF-CCS program and retrieve
the transition system of an individual system by means of projection according to the
same configuration. Thus, applying a configuration can be done by either removing
the unselected variants from the PF-CCS term or by removing the transitions which
are not selected from the corresponding PF-LTS. For all possible configurations,
both ways will yield equal (bisimilar) transition systems. But most importantly, we
can actually use a PF-CCS program to represent the same behavior as it can be
represented by a family of corresponding CCS programs. However, in PF-CCS we
have the commonalities explicitly expressed.

While the unfolded semantics is easily understood and does indeed represent the
behavior of a PF-CCS program within a single transition system, a transition sys-
tem constructed according to the unfolded semantics usually contains many states
with identical process terms that just differ in the respective configuration label in
the states, as Figures 3.6 and 3.7 demonstrate. This leads one to suspect that the
unfolded semantics yields non-compact transition systems, which is a major disad-
vantage for model checking techniques which operate on such a PF-LTS. We will
investigate this question in the following section, and in fact, we will introduce an-
other semantics, the configured-transitions semantics, which is based on the unfolded
semantics, yet yields smaller transition systems.

3.2.3. Configured-transitions Semantics

In the following, we give a further semantics for a PF-CCS program which yields
a smaller transition system and, at the same time, provides the basis for model
checking the entire product line as described in Chapter 4. The idea—and the

139

3. PF-CCS: Product Family CCS

main difference to the unfolded semantics—is to identify states that have the same
PF-CCS process term but only differ in the corresponding configuration label.

The configured-transitions semantics is also given in terms of a labeled transition
system which represents the entire product family. We refer to it as a PF-LTS,
too. However, in contrast to the PF-LTS used for the unfolded semantics, in a PF-
LTS for the configured-transitions semantics the states and transitions are labeled
differently: States now correspond to process terms only (no longer to tuples of
process terms/configuration label), and transitions are labeled with a pair consisting
of an action an a set of configurations. In addition—in order to set the course for
a PF-LTS as a structure suitable for model checking—we represent the transition
relation no longer as a single relation but rather as a set of relations {Rα|α ∈ A},
where each Rα represents the α-transitions in the LTS. The following definition
makes the structure of a PF-LTS for the configured-transitions semantics precise.

Definition 3.18 (PF-LTS for the Configured-Transitions Semantics). A product
line labeled transition system (PF-LTS) representing the configured-transitions se-
mantics for a PF-CCS program with n variation points is a tuple T = (S, A, {Rα|α ∈
A}, σ), where

• S is a (possibly infinite) set of states,
• A is a finite set of communication actions,
• {Rα | α ∈ A} is a family of (transition) relations Rα ⊆ S ×P({R,L, ?}n)×S.
• and σ ∈ S is the start state.

We call a PF-LTS also a multi-valued modal (labeled) transition system. With T .s
we denote the state s of the PF-LTS T .

The transition relation of the configured-transitions semantics is based on the tran-
sition relation of the unfolded semantics. In order to construct the PF-LTS of the
configured-transitions semantics we introduce a family of transition relations

==⇒α ⊆ LPFCCS × P({R,L, ?}n)× LPFCCS

for each action α ∈ A. For convenience of notation, if (P, V, P ′) ∈ ==⇒α we usually

write P
α,V
==⇒ P ′ instead. The relation ==⇒α associates all PF-CCS process expres-

sions P,P ′ ∈ LPFCCS for which a transition exists in the corresponding PF-LTS of
the unfolded semantics in the following way

P
α,V
==⇒ P ′ where V =

{

ν
∣

∣ ∃ν ′ : P, ν ′
α, ν
−−→ P ′, ν

}

where ν, ν ′ ∈ {L,R, ?}n and
α, ν
−−→ is the relation defined in the previous section by

the PF-CCS SOS rules defined in Figure 3.4. Intuitively, the relation collects for all

140

3.2. Semantics of a PF-CCS Program

pairs of states labeled with process expressions P and P ′ which are connected in the
unfolded semantics each possible configuration ν and relates the corresponding two
states in the configured-transitions semantics with a transition labeled with the set

V containing all collected ν. A transition P
α,V
==⇒ P ′ where V = ∅ means that the

corresponding states are not connected by an α transition ==⇒α. In such a case we
simply omit the respective transition and do not explicitly write it anymore.

Since in the configured-transitions semantics states correspond to process expres-
sions, the relations ==⇒α allow to construct the labeled transition system for the
configured-transitions semantics. We define the configured-transitions semantics of
a PF-CCS program as a labeled transition system in the following way.

Definition 3.19 (Configured-transitions Semantics of a PF-CCS Program). Let
Prog be a well-formed PF-CCS program Prog = (E , P1) with n variants operators.
The configured-transitions semantics of Prog, denoted by

[[Prog]]CT

is defined to be the PF-LTS (S,A, {==⇒α |α ∈ A}, (P1)) consisting of all states S
reachable from the main process identifier P1 w. r. t. the relation family ==⇒α.

A PF-LTS for the configured-transitions semantics contains exactly the same process
expressions which also appear in the PF-LTS which is constructed according to the
unfolded semantics. However, in the configured-transitions semantics each state (P)
with process expression P appears only once.

We demonstrate how a PF-LTS for the configured-transitions semantics can be con-
structed with a concrete example. Recall the program which we have introduced in
Equation System 3.30:

P
def
= α.P1 ⊕1 β.P2

P1
def
= α.P ⊕2 β.P2

P2
def
= γ.P

Its unfolded semantics is shown in Figure 3.9a. As the definition of the configured-
transitions semantics suggests, one can gain the PF-LTS of the configured-transitions
semantics from the PF-LTS of the unfolded semantics in a systematic way. The
entire Figure 3.9 illustrates the practical construction of the PF-LTS representing
the configured-transitions semantics (cf. Figure 3.9b) from the PF-LTS of the un-
folded semantics (cf. Figure 3.9a). At first, we identify all process terms that
appear in the states of the unfolded semantics. For Figure 3.9a these process
terms are P,P1 and P2 (where states with identical process terms are shown in
the same columns). These process terms form the corresponding states (P), (P1)
and (P2) in the configured-transitions semantics. Then, one proceeds according to
Definition 3.19 by collecting for all connected pairs of states and all actions the

141

3. PF-CCS: Product Family CCS

respective configurations in which the unfolded semantics has a corresponding tran-
sition. In the configured-transitions semantics this set of configurations together
with the respective action then builds a new transition between the considered pair
of states. For example, for the pair of states (P2, P) (in the configured-transitions
semantics) we observe two transitions in the PF-LTS of the unfolded semantics,

namely: P2, 〈R?〉
γ, 〈R?〉
−−−−→ P, 〈R?〉 and P2, 〈LR〉

γ, 〈LR〉
−−−−−→ P, 〈LR〉 . Consequently,

the PF-LTS of the configured-transitions semantics shown in Figure 3.9b contains

the transition P2
γ,{〈R?〉,〈LR〉}
=========⇒ P .

We see another example of the configured-transitions semantics in Figure 3.10, which

shows the transition system for the program P
def
= γ.(α.P ⊕1 β.P). A comparison

with Figure 3.6, which shows the unfolded semantics for the same program, sug-
gests that the configured-transitions semantics can indeed yield smaller transition
systems. The first example given in Figure 3.9 strengthens this suggestion. By
inspecting the way in which the transition relation of the configured-transitions se-
mantics is constructed, it is easy to see that a PF-LTS comprises always fewer (or
at most equally many) states than its unfolded semantics counterpart, due to the
fact that each process expressions appears only once as a state in the PF-LTS of
the configured-transitions semantics, while it can correspond to many states in the
PF-LTS of the unfolded semantics. In particular, for PF-CCS programs with a high
degree of recursive definitions, the configured-transitions semantics will in general
yield a much smaller PF-LTS than the unfolded semantics.

From a PF-LTS representing the configured-transitions semantics we can derive the
transitions systems of sub-families or concrete products by means of projection. The
projection of a PF-LTS according to the configured-transitions semantics is similar
to the projection in the unfolded semantics (cf. Definition 3.16). In fact, it simply
extends Definition 3.16 to handle transitions which are labeled with a set of config-

uration labels. For every transition
α,L
==⇒ the projection according to a configuration

θ discards all those configuration vectors in L which do not conform to θ. This can
yield a possibly empty set L of configuration labels, which represents the situation
that the respective transition does not exist at all. Due to the similarity to the pro-
jection specified in Definition 3.16 we use the same symbol Π also for the projection
of PF-LTS s constructed according to the configured-transitions semantics.

Definition 3.20 (Projection of a PF-LTS (Configured-transitions Semantics)). Let
T = (S,A, {==⇒α |α ∈ A}, σ) be a PF-LTS (as defined in Definition 3.18) , and
θ ∈ {R,L, ?}n be a fitting configuration. The projection Πθ(T) of T according to θ
is defined as the PF-LTS

Πθ(T) = (Sθ, A, {==⇒θ
α |α ∈ A}, σ)

where

142

3.2. Semantics of a PF-CCS Program

P, 〈??〉 P1, 〈L?〉

P, 〈LL〉 P1, 〈LL〉

P2, 〈LR〉

P, 〈LR〉 P1, 〈LR〉

P2, 〈R?〉P, 〈R?〉

α, 〈L?〉

α, 〈LL〉

α, 〈LL〉

α, 〈LL〉

β, 〈LR〉

γ, 〈LR〉

α, 〈LR〉

β, 〈LR〉

β, 〈R?〉

γ, 〈R?〉

β, 〈R?〉

(a) Unfolded Semantics

P

P1

P2

α, {〈L?〉, 〈LL〉, 〈LR〉}

α, {〈LL〉}

β, {〈R?〉}

γ, {〈R?〉, 〈LR〉}

β, {〈LR〉}

(b) Configured-Transitions Semantics

Figure 3.9.: The unfolded semantics and the configured-transitions semantics of the
same PF-CCS program defined in Equations 3.30.

143

3. PF-CCS: Product Family CCS

• ==⇒θ
α =

{

s
α,L′

===⇒ s′ : (s
α,L
==⇒ s′ ∈ ==⇒α) ∧ (L′ = {ν ∈ L : θ v ν})

}

• Sθ ⊆ S is the set of all states which are reachable from σ with respect to the
transition relation ==⇒θ

α.
• A is a set of communication actions,
• and σ ∈ S is the start state.

Note that the start state σ is always preserved by any projection, since it is labeled
with the least concrete configuration label 〈?〉n. Further, recall that for projections
according to complete configurations θ, the conformance relation v is equal to the
concretization relation <. As a consequence of the projection some of the original
states of a PF-LTS T are discarded and do not exist any more in the projected
system Πθ(T). All preserved states correspond to their original counterparts.

The concept of projection can easily be extended to sets of configurations. As we
will see in the upcoming Chapter 5.3, this is in particular useful to reason about the
commonalities of alternative processes. However, as we will deal with such topics
not now, we defer the definition to Chapter 5.3, where we will introduce a general
form of projection in Definition 5.1 (Page 215).

The unfolded semantics and the configured-transitions semantics have a fundamental
difference: For any PF-CCS program Prog , every path in the unfolded semantics
[[Prog]]UF corresponds to the execution of one path of a concrete product of the
family, i.e. for every trace t which we can construct in the PF-LTS of the unfolded
semantics (ignoring the configuration labels), there is at least one concrete product
in the flat semantics [[Prog]]Flat which also provides the trace t. This means that
all transitions on any path in the unfolded semantics correspond to realistic traces
which are actually realizable for at least one concrete product. This property no
longer holds for the paths and traces in the PF-LTS of the configured-transitions
semantics [[Prog]]CT . For example, the trace γαγβ in the system shown in Figure 3.10

does not exist in any of the transition systems of [[P
def
= c.(a.P ⊕ b.P)]]Flat . However,

the interesting property of the configured-transitions semantics is that for every

P α.P ⊕1 β.P
γ, 〈?〉

α, 〈L〉

β, 〈R〉

Figure 3.10.: Configured-transitions Semantics for the simple recursive PF-CCS pro-

cess P
def
= γ.(α.P ⊕1 β.P). It’s unfolded semantics is shown in Figure

3.6.

144

3.2. Semantics of a PF-CCS Program

configuration vector θ, the projection of Πθ([[Prog]]CT) yields the same transition
system (modulo bisimulation) as the one obtained when configuring Prog w. r. t. a
fully-configured configuration θ according to the flat semantics.

Theorem 3.2 (Correctness of Configured-Transitions Semantics). Let Prog be a
PF-CCS program with n variation points. For any fitting, complete configuration
vector θ ∈ {L,R}n we have

[[config(Prog , θ)]]CCS ≈ Πθ([[Prog]]CT)

Here, the resulting transition systems have different kinds of transition labels. Sim-
ilarly to Theorem 3.1, for the bisimulation relation we will only consider the actions
α ∈ A of the corresponding transition labels.

The proof uses the fact that the configured-transitions semantics is based on the un-
folded semantics and establishes a bisimulation relation between those two PF-LTS
s. Since the bisimulation is an equivalence relation, this implies also the bisimulation
to the transition system representing the flat semantics.

Proof. Let

TU := (SU ,A,−→, σU) = [[Prog]]UF

be the PF-LTS representing the unfolded semantics of Prog . Further, let

TC := (SC ,A, {==⇒α |α ∈ A}, σC) = [[Prog]]CT

be the PF-LTS representing the configured-transitions semantics of Prog .

We show that

∀θ ∈ {R,L}n : Πθ(TU) ≈ Πθ(TC)

Due to the transitivity of the bisimulation relation and Theorem 3.1 we then can
conclude that [[config(Prog , θ)]]CCS ≈ Πθ([[Prog]]CT).

We proceed similarly to the proof of Theorem 3.1 and define a (bisimulation) relation

Bθ ⊆ SC × SU

between the states of the transition systems TC and TU . It relates every state
(P) ∈ SC with all states (P, v) ∈ SU which have identical process expressions P .
Due to the way in which TC is constructed from TU , both transitions systems can
simulate each other for any complete configuration θ ∈ {R,L}n.

145

3. PF-CCS: Product Family CCS

• TC simulates every transition of TU :

Due to the way in which TC is constructed, for every transition P, ν
α,ν′
−−→ P ′, ν ′

from states (P, ν) to (P ′, ν ′) in TU , there exists a corresponding transition

P
α,V
==⇒ P ′ in TC which contains the label ν ′ ∈ V , and where the involved

states are bisimilar, i.e. (P)Bθ(P, ν) and (P ′)Bθ(P
′, ν ′). Further, for every

complete configuration θ where the projection Πθ(TU) preserves a transition,
i.e. where θ v ν ′, the same configuration vector ν ′ is also preserved by the
projection Πθ(TC) and thus appears in the corresponding set of configuration
labels V . Thus, for every configuration and every transition of TU , a corre-
sponding transition is also present in TC .

• TU simulates every transition of TC :

For every configuration label ν ′ ∈ V in a transition P
α,V
==⇒ P ′ in TC there exists

a corresponding transition P, ν
α,ν′
−−→ P ′, ν ′ due to the construction principle of

TC . For any transition P
α,V
==⇒ P ′, for every ν ′ ∈ V which is not discarded by

the projection to θ a corresponding transition P, ν
α,ν′
−−→ P ′, ν ′ is also preserved

in TU since in both cases the same property θ v ν ′ holds.

Thus, each transition system can simulate the other one.

Theorem 3.2 guarantees that all products which we can derive from the configured-
transitions semantics match the products from the standard CCS semantics, i.e. the
products which we expect if we model all systems in a stand-alone fashion not as
part of a product family. In fact, since the bisimulation is an equivalence relation,
due to the transitivity we can combine both theorems to the following result.

Theorem 3.3 (Equivalence of Unfolded Semantics and Configured-Transitions Se-
mantics). For any fitting, complete configuration θ ∈ {L,R}n we have

[[config(Prog , θ)]]CCS ≈ Πθ([[Prog]]UF) ≈ Πθ([[Prog]]CT)

Proof. The proof follows directly from Theorem 3.1, Theorem 3.2, and the transi-
tivity of the bisimulation relation ≈.

This “equivalence” allows us to interpret a PF-CCS program with either of the two
semantics. However, in the following we will use the configured-transitions seman-
tics as as the standard way of understanding the PF-CCS specification of an entire
product family. In fact, we have introduced the unfolded semantics only as an inter-
mediate step that motivates and leads to the configured-transitions semantics. But
since the configured-transitions semantics was especially designed to be a suitable

146

3.3. Design Decisions for PF-CCS

structure for model checking we will use the configured-transitions semantics as the
default way of constructing a PF-LTS for the remainder of this thesis.

If we interpret a PF-CCS program with the configured-transitions semantics we get
a transition system where each transition is labeled with a set V ∈ P({L,R, ?}n) of
configuration labels. In particular, the configuration labels ν ∈ V themselves must
not be complete, i.e. they can still contain ?-entries. However, every configuration
label which contains ?-entries represents a set of complete configuration vectors.

Thus, for every transition P
α,V
==⇒ P ′ the set V of possibly incomplete configuration

labels is equivalent to the following set of complete configuration labels ν ′ ∈ {L,R}n:

{ν ′ ∈ {L,R}n | ∃ν ∈ V : ν ′ < ν}

For example, the transition P2
γ,{〈R?〉,〈LR〉}
=========⇒ P (cf. Figure 3.9) is just a compact

form of denoting the transition P2
γ,{〈RR〉,〈RL〉,〈LR〉}
=============⇒ P . Constructively, we obtain

the latter version by replacing all ?-entries of any configuration label by the com-
binatorially possible configurations with L and R entries. This results in a set of
complete configuration labels, only.

For the remainder of this work we use the non-compact form for any configuration
labels set attached to a transition in the PF-LTS of the configured-transitions se-
mantics. In particular, for applying model checking techniques a configuration label
set consisting of complete configuration labels only, is necessary.

3.3. Design Decisions for PF-CCS

For the design of the PF-CCS framework we have made some concrete design deci-
sions, e.g. the choice for a process algebra, the decision for synchronous communica-
tion and the associated decision for choosing bisimulation as the relevant equivalence
relation, etc. In the following we discuss some of the major design decisions and in
particular explain our motivation and the design drivers behind them.

Why is PF-CCS based on a process algebra?

PF-CCS allows to model the behavior of a set of systems as a software product
family. As we have seen in Chapter 2, the product family concepts are indepen-
dent of the concrete specification technique which we use to model the behavior
or interaction with other systems or the environment. With PF-CCS, we have de-
liberately chosen a process algebraic approach for modeling the behavioral aspect.
In particular, we have preferred a process algebra to other specification techniques,
such as for example various kinds of automaton models [dAH01, LT89, Har87], Petri
nets [Pet62], or specific logic based specification frameworks such as TLA [Lam94],
which also allow the specification of behavior. The decision for a process algebra
was motivated by the following factors:

147

3. PF-CCS: Product Family CCS

• The products of system families that we have in mind are systems which con-
sist of many components that operate in parallel and interact with each other
in a complex way. Typical examples are modern cars that consist of many
ECUs that operate in parallel and interact by means of message passing. For
capturing the interaction and the operational functionality of such systems
process algebras are per se very suitable. In particular, in contrast to au-
tomaton model, a process algebra allows to denote an infinite behavior with
an finite specification, where automaton models require to denote an infinite
transition system, which is practically not feasible.

• Beside the mere specification of the behavior of such system families, we are
also interested in the systematic restructuring of such a specification. The
restructuring is based on rules which tell us how to transform our specifica-
tion systematically into another representation while preserving the behavior
of each derivable system. As we will see in the upcoming Chapter 5, the re-
structuring and the “calculation” of the greatest behavioral commonality only
means to apply algebraic laws. Against this background, compared to other
specification techniques for capturing the behavior, e.g. automata, a process
algebra is a more natural choice since it already exhibits an algebraic nature
and easily allows to define such restructuring laws.

• Beside the specification and restructuring aspect, another main driver of the
PF-CCS framework is to provide a theoretical basis for the verification of
behavioral properties in the context of a large variety of similar systems as
we find them in a product family. Modern verification techniques, for exam-
ple model checking [CGP99, BK08], for single systems usually operate on a
representation of the system’s behavior as a labeled transition system. By pro-
viding an operational semantics for PF-CCS programs, any PF-CCS program
can equivalently be represented by a corresponding labeled transition system.
Thus, similarly to automata models which are directly usable for model check-
ing techniques, PF-CCS specifications are also suitable for transition system
based verification techniques, e.g. model checking, but at the same time fulfill
the other properties which we require from a specification technique in our
case.

In summary, a process algebra is a very suitable specification technique for our
purpose since it combines all three aspects which are important for our purpose, i.e.
for the specification, verification and restructuring of system families which we have
in mind.

Is the choice for CCS as the underlying process algebra for PF-CCS compulsory?

For PF-CCS we have chosen CCS as the underlying basic process algebra, and espe-
cially not one of the other established process algebras like e.g. ACP [BK84] or CSP
[Hoa85]. We have chosen CCS because among the prominent process algebras, CCS

148

3.3. Design Decisions for PF-CCS

is that one for which traditionally an operational semantics is provided, while for
CSP usually denotational or axiomatic semantics prevail. Thus, it is more likely that
someone who is interested in an operational specification of the system’s behavior,
is familiar with CCS rather than with CSP. However, CCS it is not compulsory for
the realization of the software product family concepts: CCS is not better suited
for the combination with product family concepts than any of the other prominent
process algebras like ACP or CSP. In fact, we could have easily used CSP or ACP
as the basis for PF-CCS, i.e. we could have extended CSP or ACP in the same way
with product family concepts as we have actually done it with CCS. The axiomati-
zation, i.e. the algebraic specification of the sort SPF α given in Chapter 2, is the
formal basis that allows us to substantiate that ACP or CSP could have also been
extended with software product family concepts resulting in an equivalently appro-
priate framework such as PF-CCS. Similarly to CCS, also the concepts of ACP and
CSP are orthogonal to product family specific concepts, and thus can be combined
easily, too.

We have seen that PF-CCS provides all the original operators of CCS—in a slightly
adjusted kind. Every PF-CCS specification of a final product—containing no more
variation points—only contains basic CCS operators. In this context, the parallel
composition takes a special role since for the axiomatization it realizes the com-
position function and fulfills the respective axioms stated in Figure 2.11, e.g. the
distributive law in connection with the variants operator, etc. Without giving an
in-depth analysis here, we can easily see that the basic operators of ACP and CSP
can be enriched with a variants operator in a similar way, where the various parallel
composition functions of ACP (i.e. the so-called free merge, communication merge,
and left merge operators) and CSP (i.e. the interleaving and interface parallel oper-
ators) can take the role of the composition function specified in the axiomatization
in an correct way, too. Thus, product family extensions of ACP or CSP would ful-
fill the properties and laws of the axiomatization in the same way, as the current
version of PF-CCS does. For the large variety of remaining process algebras, we
can proceed with each one of these in the same way and check whether they can be
extended with software product family concepts by showing the consistency of the
respective extension with the axiomatization. Against this background, it becomes
now also more comprehensible why we have provided an axiomatization in such a
detail: The axiomatization specifies all requirements of a software product family in
a way which allows check for potential models whether they fulfill the axioms and
laws, or not.

Why synchronous message passing for PF-CCS?

With PF-CCS we have chosen synchronous communication, where common actions
can only be performed by two parallel process if one process is willing to perform
an action while at the same time the other process is actually waiting for the action
to be performed, in the way of a handshake protocol. Similarly to the choice for
CCS, also the choice for synchronous communication is not compulsory for PF-CCS,

149

3. PF-CCS: Product Family CCS

since the specification of the composition operation of the axiomatization does nei-
ther exclude nor require synchronous nor asynchronous communication. However,
synchronous communication is closer to an implementation than asynchronous com-
munication [Sch98]. Since with PF-CCS our focus is on describing behavior in a
way which is as close to an implementation as possible, while still being platform
independent, we have decided for synchronous communication. Furthermore, syn-
chronous communication fits well with our choice for CCS, since originally CCS
was also introduced with synchronous communication. It was only later when pro-
cess algebras based on CCS/ACP with asynchronous communication emerged, cf.
[BKT84, dKP92, Ros05].

We stress again that from the point of view of fundamental product family con-
cepts, the kind of communication (synchronous or asynchronous) is not relevant.
In particular, the axiomatization of a software product family does not require the
composition operator to provide any specific kind of communication. It only requires
the properties stated in the axioms, e.g. distributivity with the variants operator,
etc.

3.4. Practicability of PF-CCS

PF-CCS is designed to be a conceptual specification framework that allows to specify
the operational behavior of a family of systems, but that does not claim to be
directly applicable for the practical development of families of large-scale, software-
intensive systems which exist in the current industrial practice. In the following we
discuss some aspects regarding the practicability of the PF-CCS framework for the
practical specification of more complex, industry-relevant systems. As our focus is
on establishing a conceptual framework, we have not realized these aspects in the
current version of PF-CCS. Nevertheless, they are important steps to increase the
practicability of PF-CCS. The most important aspect considers how and at which
abstraction level PF-CCS can be integrated in the development process, and what
the requirements for such an integration are.

3.4.1. Value-Passing PF-CCS: Understanding Actions as Exchange of
Messages

PF-CCS uses pure CCS in order to model the behavior of non-variable processes
and systems. In particular, in pure CCS communication simply means synchro-
nization of actions which involves no explicit exchange of data. This abstract view
unto communication does not perfectly fit the situation that we face during the
development of a reactive system, where—at more concrete levels which are closer

150

3.4. Practicability of PF-CCS

to an implementation—communication is usually modeled as the exchange of data
elements via a kind of communication channels. In [Mil95], Milner himself has ex-
tended pure CCS with a mechanism called value passing CCS , which integrates the
idea of passing data elements along communication lines in order to realize commu-
nication. Some subsequent work [Bru91] introduces a concrete language for value
passing CCS, which makes it even more applicable in a realistic context and lifts it
to an entire programming language like setting, whose specifications can be directly
imported in verification tools, e.g. like the concurrency workbench [Cle93]. However,
in the same work [Mil95], Milner also argues that the value-passing extension is con-
venient, although theoretically unnecessary. PF-CCS—as it is introduced in this
chapter—uses the mechanism based on pure CCS, i.e. it does not explicitly allow to
model communication of data elements over channels.

In an analogous manner to the extension of CCS, also PF-CCS can easily be extend
to a value-passing version, where actions correspond to tuples of channel names
and data messages, and performing an action means to either send or receive a
data element via a (directed) channel. However, we have omitted to introduce
such an extension for PF-CCS in the scope of this thesis since (i) value-passing
PF-CCS offers just a more convenient specification technique without giving more
theoretical expressiveness [Mil95], and (ii) since a concept of directed channels that
reflects communication between architectural entities requires also a corresponding
underlying model of a component architecture that also facilitates the notion of
variability. Since we do not provide such an architectural model in the scope of this
thesis either, also a value-passing extension of PF-CCS makes only little sense.

3.4.2. Placing PF-CCS in the Development Process

In this thesis we have not integrated the PF-CCS framework into a correspond-
ing development process, as our focus is on the theoretical level dealing with the
fundamental question of how to combine product family concepts with an (process
algebraic) approach to specify the operational behavior of systems. At such a formal,
theoretical level, describing a reasonable integration would require the existence of
compatible, formal models at other abstraction levels, e.g. the component architec-
ture or user requirements level, which also support the notion of variability. The
development of such models is beyond the scope of this thesis, as it opens a whole
new field of research. However, the indispensable basis for a successful application of
the PF-CCS framework in practice—and the exploitation of its advantages—is the
integration of PF-CCS into a seamless model-based development process. Therefore,
we sketch in the following our vision of how PF-CCS can be reasonably applied in an
overall development process which allows the development of product families, as we
encounter them for example in the automotive domain. In particular, we describe
the abstraction level on which PF-CCS can be applied in a software product family
development process.

151

3. PF-CCS: Product Family CCS

For single system development, [GHH07] and [BFG+08] introduce a development
process which is suitable for the application in the automotive domain. However,
this development process does not cover the notion of variability (in the sense of
a software product family) and hence does not allow the development of a set of
systems as a product family. Due to the lacking support of variability (and for several
other reasons which we will discuss in the following) PF-CCS cannot reasonably be
integrated into this specific development process. However, the structure of the
development process, i.e. the structure of the consecutive abstraction layers and
the aspects which are addresses by each layer, serves as a template for an equivalent
development process for product families, in which PF-CCS can be used to represent
the operational functionality of the product family and its products. We briefly
introduce the development process of [GHH07, BFG+08] in the following in more
detail, before we sketch an equivalent development process which contains PF-CCS.

The model-based development process of [GHH07, BFG+08] is based on several con-
secutive abstraction layers. The abstraction layers realize a separation of concerns
in the sense that each layer addresses a special concern/aspect of the system de-
sign and provides the appropriate models. Although each layer represents a specific
concern, the arrangement of the layers guarantees a seamless, overall development
process. This means that the properties and aspects which are modeled at one layer
are preserved in the successive layer, i.e. successive layers respect the properties of
preceding layers and only contribute additional information. Thus, the models of
consecutive abstraction layers provide a more and more concrete view of the system,
leading towards a concrete implementation (Deployable code together with the de-
ployment architecture). In this context we speak of an abstraction layer framework.

Figure 3.11 shows such a layer framework. The functional part of the (informally
represented) requirements (topmost layer) is formalized in the second layer, the so-
called functional specification layer. This layer gives an abstraction of the system
which represents an implementation independent view of the system’s functional-
ity. The system’s functionality is hierarchically structured into smaller functional
entities, so-called services (cf. [BKM07]), where the behavior of any service is pre-
cisely defined by its direct sub-services. Depending on whether the focus is on
a more interface-centric, black-box view, or on a more operational view of func-
tionality, services can be specified using various specification techniques, such as
stream-based functions [Bro05, BS01b], variants of I/O-automata [LT89], Message
Sequence Charts [IT96], or a logic-based assumption/guarantee style [BS01b]. The
subsequent layer, the conceptual component architecture, implements the functional-
ity specified in the functional specification layer by a network of interacting, hierar-
chical, conceptual components which communicate by passing messages via directed
channels. The channels and messages are realized as abstract data types, and the
behavior of atomic components is given in an operational, “executable” but still
implementation-platform independent way, using some appropriate representation
techniques known from layer two, for example I/O-automata. Compared to the

152

3.4. Practicability of PF-CCS

Figure 3.11.: A layer framework [GHH07, BFG+08] for a seamless model-based de-
velopment process, whose separation into abstraction layers serves as
a template for a corresponding development process for PF-CCS.

functional layer, the third layer introduces the new aspect of communication struc-
ture. Finally, the bottom layer, the so-called deployed implementation, corresponds
to an implementation of the conceptual component architecture on a specific soft-
ware/hardware platform. The conceptual component architecture of layer three is
now implemented as a network of concrete software components which are allocated
to ECUs (electronic control unit). Communication channels are implemented using
concrete buses, protocols and technologies, and the behavior of components is given
using concrete programming languages like C or Assembler. This abstraction layer
represents an implementation of the final system. Throughout the abstraction lay-
ers, any non-functional requirements which are not explicitly covered in one of these
layers are integrated into the relevant layers, respectively.

For the development of software product families we assume a layer framework with
an equivalent structure, i.e. with equivalent abstraction layers and an equivalent
separation of concerns. However, the models of every abstraction layer have to ex-
plicitly support the notion of variability. Assuming such a “product family layer
framework”, PF-CCS allows to model the operational functionality and would inte-
grate in such a product family layer framework at the lower part of the functional
specification layer. In order to benefit from the behavioral variability which is ex-
pressible in the PF-CCS framework, successive abstraction layers have to take over
the variability of PF-CCS programs. In particular the conceptual component ar-
chitecture has to provide appropriate models that allow to take over the idea of

153

3. PF-CCS: Product Family CCS

variability to the architectural dimension. Regarding (structural) variability within
the conceptual component architecture, some work in this direction has already be
done by the Fraunhofer ISST and BMW as part of the project MOSES [ISS06].

Beside providing adequate variability concepts, all other models which are involved
in such a layer framework have to match the process algebraic nature of PF-CCS.
This comprises for example to have a “compatible” concept of how units of compo-
sition are structured, or the ability to deal with synchronous communication as it is
used in PF-CCS. In particular the latter property of using synchronous communi-
cation is one reason why PF-CCS programs do not fit into the development process
introduced in [GHH07, BFG+08], in which the models at the functional specification
and conceptual component architecture are based on the more general form of asyn-
chronous communication. Here, it seems more feasible to extend a process algebraic
system engineering approach by variability concepts. However, process algebras are
usually used by the theoretic community for fundamental reasoning rather than for
the specification of complex, industry-scale systems. In particular, as far as we know
there is no comprehensive system engineering method or process based on process
algebras which is successfully applied for the development of realistic systems.

A process algebraic development method which comes the closest to a comprehensive
system engineering method is LOTOS [BB87]. LOTOS is a ISO-standardized formal
description technique based on CCS, CSP and ACT-ONE [EM85] for the design of
distributed systems, which was used recently for example for the design of middle-
ware behavior [RC04]. LOTOS supports various levels of abstraction, provides sev-
eral specification styles, and comes with tools supporting specification, verification
and code generation. It permits modeling of both synchronous and asynchronous
communication and thus allows a smooth integration with PF-CCS, in principle.
Even though in this thesis we have not integrated PF-CCS with LOTOS, the fact
that LOTOS is also based on CCS is very conductive to a smooth integration with
PF-CCS. Beside LOTOS, with PSF (Process Specification Formalism) [Die08] there
exists a process algebra based specification language which is accompanied by Tool-
Bus [BK96], a process algebra based coordination architecture developed at the CWI
(Amsterdam) and the University of Amsterdam. ToolBus serves as an implemen-
tation model for PSF. Together, these approaches constitute a software engineering
environment which aims at the development of software applications and allows spec-
ification of the behavior, the data types, and the structure of client/server systems,
e.g. tool chains consisting of several interacting tools and programs that offer certain
services. Due to their process algebra basis, both of these approaches seem to be
generally suitable for the definition of a development process for software product
families in which PF-CCS can be integrated. Still, a more in-depth consideration is
necessary, since small pitfalls have to be overcome, for example that ToolBus cannot
directly handle recursive processes as they are allowed in PF-CCS.

Regarding architectural description languages (ADLs), there exists a large pool of
different approaches (Medvidovic et al. [MT00] give a nice summary and compari-

154

3.5. Related Work

son). Some of these are based on a process algebra, for example (i) Wright [All97],
an ADL developed at the Carnegie Mellon University which uses CSP to capture
the dynamic behavior of its architectural entities, (ii) Darwin [MDEK95], an ADL
developed at Imperial College London, whose operation semantics is given in terms
of Milner’s π-calculus [Mil99], and (iii) PADL [BCD02], by Bernardo et al., which
even aims at describing architectures in the presence of variable components with
the aim to detect and rule out mismatches which arise due to the combination of
components. These process algebra based ADLs are also possible candidates for a
combination with PF-CCS and its software product family specific concepts.

In summary, although the integration of PF-CCS into the development process is not
done in this thesis, it is necessary to bring a framework like PF-CCS into practice. As
we have just seen, some possibilities for an integration with existing techniques and
frameworks (for the development and design of single systems) exist. However, the
development of the corresponding models and description techniques which provide
an appropriate variability concept at the various abstraction levels requires more
in-depth research and represents a reasonable continuation of the research carried
out in this thesis.

3.5. Related Work

The first process algebras have been developed in the 1970s, driven by different
groups and persons simultaneously, and have been a fruitful area of research since
then. Consequently, up to today, a large variety of different kinds of process algebras
for various purposes has been developed. A nice overview of the evolution of process
algebras, which also covers various extensions of process algebras, is given by Baeten
in [Bae05]. However, to our knowledge, until today there is no single process alge-
braic approach that explicitly integrates modeling techniques for the specification
of variants in the sense of a software product family. From this point of view, our
PF-CCS approach is novel.

The approaches which bear the greatest resemblance to our approach use nondeter-
minism as one way of representing a set of possible versions or concrete models of a
system. Although, this is still far from being a product family, the idea of explicitly
understanding a nondeterministic specification as a set of concrete (deterministic)
specifications, which represent the concrete systems, is very close to the intention of
a software product family. Thus, we briefly introduce some of these approaches in
the following.

Close to our approach is an approach by Veglioni and De Nicola [VN98]. Even if
they do not introduce a product family extension, they define how a nondeterministic
process can be understood as a representation of a set of deterministic processes, its

155

3. PF-CCS: Product Family CCS

so-called possible worlds. For this purpose they introduce several semantics which
relate a nondeterministic process to a set of its possible worlds. The designated goal
of their approach is to provide a specification framework where refinement can be
proven efficiently, not to provide a specification technique for product families. Their
setting is a basic process algebra consisting of a Nil constant, a prefix and choice
operator +, but without recursion. On top of this basic algebra they introduce a so-
called underspecification operator ⊕. Using the notation of Viglioni and De Nicola,
the central axiom for their ⊕ operator is

aP + aQ = aP ⊕ aQ

where a is an action and P,Q are process identifiers. This means that they under-
stand and realize their underspecification operator ⊕ simply as a regular nondeter-
ministic choice. In particular, this implies that we cannot use such an ⊕ operator
in order to model alternative variants in our sense as it directly contradicts the
fundamental axioms of our ⊕ operator as defined in the product family axiomati-
zation. Moreover, such a law contradicts our view of a variants operator, which
cannot be “simulated” or implemented by a nondeterministic choice operator, since
the alternative selection of variants is an orthogonal concept compared to the non-
deterministic choice between two processes. For example—recall the discussion in
Chapter 2.2.2 and 3.1—the ordinary nondeterministic recursive process

P
def
= α.P + β.Q

does not guarantee that in a recursive re-entrance, the same side of the nondeter-
ministic + operator, which has been chosen in the preceding recursion, is selected
again in the upcoming re-entrance. For example, if during a first step, the left-hand
side process α.P is chosen, there is no guarantee that in the following recursive re-
entrance the right-hand side process β.Q is not executed instead, according to the
fact of being a nondeterminism choice. However, for a product line this is not feasible
since whenever we have chosen one concrete variant of a variation point (⊕ opera-
tor), the same choice has to be made in every upcoming recursive re-entrance. This
fundamental difference makes the approach of Veglioni and De Nicola not usable for
our purpose of specifying a software product line.

In [MC01], Majster-Cederbaum takes on Veglioni and De Nicolas’ approach and
extends it to a setting with recursion. On this basis she discusses some problems
which arise in the recursive setting and gives some possible extensions which move
her framework closer to our PF-CCS framework, than the one of Veglioni and De
Nicola actually is. However, the general scenario of Majster-Cederbaum’s work is
still the same as the one of Veglioni and De Nicola: underspecification. In particular,
this approach is not tailored to product lines, either, and cannot be considered in
our sense as a software product family framework.

Another specification technique which we want to mention in this context are modal
transition systems [LT88] as proposed by Larsen and Thomson in 1988. Even though

156

3.5. Related Work

modal transition systems are in a first instance not a process algebraic technique,
they are still very suitable to serve as a semantic domain when giving a SOS seman-
tics for a process algebra. For example for PF-CCS, the PF-LTS transition systems
which we have introduced to define our SOS semantics can be seen as a special kind
of modal transition systems.

A modal transition system has two flavors of transitions: so-called must and may
transitions. If a modal transition system has a must transition, all refining systems
must have this transition, too, while a may transition can exist in a refining sys-
tem, but does not necessarily have to. This definition already indicates the area of
application for modal transition systems: it offers a more systematic development
process by relating specifications to its implementations within a single specification
technique. In this context we also speak of mixed specifications.

The concept of must and may transitions bears a basic resemblance to what we
define as mandatory and optional parts within a product family: If we consider a
product family, some derivable products may contain a certain behavior while others
may not; thus, may transitions correspond to optionality. A must transition can be
used to model mandatory behavior which always exists in every derivable product.
However, for the modeling of a full software product family in our sense must and
may transitions are not yet sufficient since they do not allow to express a more fine
grain relation between may transitions and the corresponding configuration of the
product family.

In [LNW07], Larsen et al. introduce a special kind of modal transition systems,
so-called modal I/O automata, which basically extend interface automata [dAH01]
with modality. In the same paper the authors show how modal I/O automata can
be applied for product line development, by sketching the basic ideas. This is done
by introducing a behavioral formalism for specifying the variability of systems.

The PF-LTS transition system, which we introduced for the definition of the seman-
tics of PF-CCS, lifts the idea of modality to a higher dimension: multi-modality.
Instead of only considering may transitions, in a multi-modal transition system we
now have multiple instances of may-values, where each one is associated with a
unique property. Thus, we can not only express that a transition may be present,
but that a transition may be present in a specific situation under specific circum-
stances. In our setting, these circumstances reflect the different configurations of a
product family, and thus allow to model that a transition is only present in a certain
set of products. The formalism of Larsen et al. [LNW07] is not capable of expressing
such a detailed information.

Fantechi et al. [AtBGF09] use deontic logics to model variabilities in product family
descriptions. Connecting deontic logics with modal transitions systems, they show
how modal transition systems can be characterized with deontic logics, and thus

157

3. PF-CCS: Product Family CCS

provide a way of how a logical-based formalism can be used to specify variable
systems. Using deontic logics makes it possible to express concepts like obligation
and permission, and to show some properties of variable systems. However, since
they base their formalism on modal transition system which do not support the
notion of different configurations, also this approach is not directly useful for us to
model the operational behavior of software product families as we are interested in.

In [CHS+10], Classen et al. introduce an approach for model checking entire product
families. Product families are modeled as feature-labeled transitions systems which
are very similar to our notion of a PF-LTS. For a more detailed discussion of their
approach we refer to Section 4.4 (Page 188).

158

CHAPTER 4

Verifying Properties of PF-CCS Software Product Families

In this section we introduce the logic mv -Lµ, which is a multi-valued extension of the
modal µ-calculus for the specification of behavioral properties of PF-CCS product
families. Formulae of mv -Lµ are interpreted over multi-valued transition systems,
which we introduced in the preceding chapter in order to define the semantics of
PF-CCS product families. The interpretation of a mv -Lµ formula ϕ over a PF-CCS
product families is no longer a “simple” yes/no result, but rather yields a set of
configurations. We show that the contained configurations represent exactly those
products of the corresponding product family which fulfill ϕ. With respect to the
evaluation of mv -Lµ formulae, we have designed mv -Lµ in a way that existing model
checking algorithms can be applied to compute the value of a mv -Lµ formula with
respect to a given multi-valued transition system.

Contents

4.1. The Multi-Valued Modal µ-calculus 162

4.2. Model Checking . 177

4.3. Example: Verifying a Family of Windscreen Wipers . . 180

4.4. Related Work . 185

159

4. Verifying Properties of PF-CCS Software Product Families

In the preceding Chapter 3 we have introduced PF-CCS, an algebraic specification
framework which allows to specify the behavior of a set of similar systems as a
software product family. As we have seen, a PF-CCS model represents an entire
product family with all its derivable products. In particular, it not only comprises
the behavior of each individual product, but it also contains the information how
the behaviors of different products are related with each other. As we have already
seen in the preceding chapter—and as we will discuss in even more detail in Chapter
5—this is the basis to talk about common and optional behavior of similar systems.

However, being able to specify a PF-CCS product family is just half of the story.
Especially for reactive systems, as important as the specification itself is the analysis
of the system’s behavior, i.e. to check if a system meets certain behavioral properties.
In the case of safety-critical systems, we even want to verify such properties formally.
In the context of single systems—when a system is seen in its own rights and not
in relation to other similar systems—there is a multitude of modal logics like linear
temporal logic LTL [Pnu77], computation tree logic CTL [CE81a], CTL∗ [EL86] (cf.
[CGP99]), or the modal µ-calculus [Koz83] which allow to specify such properties.
Usually, these logics are accompanied by a variety of verification techniques, e.g.
model checking [CGP99], and corresponding tools (e.g. [Cle93, Hol03, CCG+02,
BLL+95]) that allow to check the properties on the given model in a more or less
automated and efficient way. The result of such a check is usually a yes/no answer
indicating whether a property holds for the system or not.

Certainly, we can apply these logics and tools to investigate and verify properties of
single products of a product family in the same way as we apply them for verifying
properties of any other standalone system. However, in particular in the context
of a software product family we are often interested in properties which span sev-
eral products. In the automotive domain for example, where a car model, e.g. the
7-series BMW, can be ordered in a huge variety of different configurations [Sch08],
the developers are often faced with the question in which variants of a series a certain
property holds. For example, does every 7-series BMW model which is equipped
with Break-by-Wire [Jur09] technology always break when the break pedal is oper-
ated, independently of the specific variant of the ACC (Adaptive Cruise Control)
being installed in the respective model? The naive way to check whether a prop-
erty holds for all products of a product family is to derive the specification of every
product and to check the property in the default manner for every product individ-
ually. Certainly, this is the most expensive way in terms of time and effort and it
becomes more and more intricate with an increasing number of variants. In fact,
in situations where not all model variants can explicitly be constructed, such an
approach is not feasible at all. Apart from that, if the products have a high degree
of behavioral commonalities, a common behavior between variants is not taken into
account for the verification using the naive method of checking each configuration
variant separately.

160

In contrast to single system development, if systems are developed as members of
a software product family, behavioral commonalities should also be considered for
the verification of behavioral properties. Instead of performing the verification of
properties on the specific models of the concrete products, we perform the verifi-
cation directly on the model of the product family, itself. Especially for properties
which apply to several configurations this is the adequate way, since it overcomes
the previously stated drawbacks. However, current temporal logics are not explicitly
tailored for the application on models which provide the explicit notion of variants,
such as for example a software product family. The meaning of formulae of tradi-
tional two-valued logics like the µ-calculus, CTL, or LTL, for the model of a product
family is per se not clear. For product families, traditional logics do not suffice, as
they do not support the concept of variants or variability in the logic itself.

Therefore, in this chapter we introduce an adequate modal logic which allows to ex-
plicitly deal with configurations as they are relevant in a software product family. We
call the logic the multi-valued modal µ-calculus. The multi-valued modal µ-calculus
is tailored to be a property specification language suitable for the specification of
properties of PF-CCS programs. Even though the logic is interesting mostly from
a theoretic point of view and not interesting for a practitioner, the multi-valued
modal µ-calculus is very suitable as a specification language in combination with
model checking.

In this context we show how existing model checking techniques can be used to
check multi-valued modal µ-calculus properties on a PF-CCS specification of the
system (family). In particular, we can reduce typical questions from software prod-
uct line engineering to model checking problems. In our setting, the result of model
checking a property of a PF-CCS program is the set of configurations satisfying the
property at hand and not only the answer if the property holds or not.

We have chosen to develop our verification approach for specifications as a variant
of the µ-calculus, as it is a very expressive logic which subsumes linear temporal
logic (LTL) as well as computation tree logic (CTL) as first shown in [EL86, Wol]
and nicely summarized in [Dam94]. This makes our multi-valued modal µ-calculus
a fundamental logic which is capable of handling product family specific properties
in general, and which is not limited to a certain flavor of logic like linear-time or
branching-time. On the other hand, the decision for the µ-calculus also means that
we have chosen a (fixpoint) logic which is notorious for being incomprehensible, and
which is far away from being applicable in industrial practice. If used at all, temporal
logics like CTL or LTL are more common in industrial practice, depending on the
domain and area of application. However, there exists a large pool of translations of
common CTL and LTL properties into equivalent µ-calculus formulae [Sti01]. On a
even more abstract level, there are also property specification languages like SALT
[BLS06] which aim at a more comfortable specification of temporal properties in the
industrial practice. SALT can be seen as a specification front end which translates

161

4. Verifying Properties of PF-CCS Software Product Families

a (program like) property specification into a corresponding temporal logic formula.
Techniques like these relativize our choice for the µ-calculus for the transfer to the
industrial practice.

4.1. The Multi-Valued Modal µ-calculus

In the following we introduce a multi-valued version of the modal µ-calculus as a
property specification language tailored specifically for PF-CCS software product
families. For the scope of this thesis we refer to this multi-valued version as the
multi-valued modal µ-calculus. The multi-valued modal µ-calculus is a modal logic
which bases on the modal µ-calculus [Koz83], and a general, multi-valued version
of the µ-calculus as described by Bruns and Godfroid [BG04], and Shoham and
Grumberg [SG05]. With the multi-valued modal µ-calculus we lift the multi-valued
µ-calculus as defined in [SG05] to the application area of software product families in
general, but in particular to the area of PF-CCS product families. More precisely,
we (i) enrich [SG05], which only supports unlabeled diamond and box operators,
by providing also action-labeled versions of these operators, which is essential to
formulate properties of PF-CCS programs, and (ii) adjust the version of [SG05] to
the specific case of PF-CCS product families. Thus, our terminology “multi-valued
modal” is somehow misleading, since strictly speaking we define a multi-valued (i.e.
the result of a formulae is no longer restricted to one of the two values true or false)
and multi-modal (i.e. the modal operators now correspond to action-labeled families
of operators) version of the µ-calculus. However, we stick to the shorter name for
simplicity.

The essential difference between the original modal µ-calculus and our multi-valued
version lies in the semantical interpretation of formulae. Formulae of our multi-
valued modal µ-calculus are not interpreted over a regular Kripke structure, but
over a Kripke structure defined over a powerset lattice of configurations. This means
that the transitions of the Kripke structure which we consider for our interpretation
are labeled with actions (similar to a regular Kripke structure), and additionally
with a set of configurations. This set is an element of the powerset lattice over
configurations, and contains exactly those configurations in which this particular
transition exists. From this point of view the Kripke structures over which we
interpret formulae of our multi-valued µ-calculus correspond exactly to the PF-LTS
transition systems which we use in Chapter 3 to represent the semantics of PF-CCS
product families. We define the syntax and the semantics of the multi-valued modal
µ-calculus in the remainder of this section. Note that for this chapter we require
some fundamental knowledge of basic lattice theory, as well as knowledge of the
(standard) modal µ-calculus, and in particular its semantics. For the reader who is
not familiar with these topics we have summarized the relevant prerequisites in the
Appendices C (Page 267), and D (Page 269).

162

4.1. The Multi-Valued Modal µ-calculus

4.1.1. Syntax of the Multi-Valued Modal µ-Calculus

Syntactically, our multi-valued modal µ-calculus is equivalent to the standard µ-
calculus [Koz83]. Formulae of the multi-valued modal µ-calculus are built from
propositions, boolean connectives, modal operators, variables, and fixpoint operators
in the same way as in the standard µ-calculus. Let

• V be an (infinite) set of propositional (fixpoint) variables,

• P be a set of propositional constants, and

• A be a set of action names.

Usually, we use the capital letters X,Y,Z to range over variables in V, the lowercase
letters p, q to range over propositions in P, and α, β to range over actions in A.
Formulae of the multi-valued modal µ-calculus are given by the EBNF grammar
shown in Figure 4.1. The symbols ∧ and ∨ denote the logical AND and OR op-
erations in the usual way. With [α] and 〈α〉 we denote the modal box (necessity)
and diamond (possibility) operator, which are both labeled with an action α ∈ A.
Intuitively, the meaning of 〈α〉ϕ is that there exists a state that can be reached by
an α-transition in which the property ϕ holds. Similarly, [α]ϕ means that ϕ holds
in all states which can be reached by an α-transition. The symbols µ and ν denote
the fixpoint operators yielding the smallest and largest fixpoint, respectively.

ϕ = true | false

| q

| ¬q

| ϕ ∨ ϕ | ϕ ∧ ϕ

| 〈α〉ϕ | [α]ϕ

| Z

| µZ.ϕ | νZ.ϕ

Figure 4.1.: Syntax of the multi-valued modal µ-calculus mv -Lµ, where q ∈ P de-
notes an atomic proposition, α ∈ A an action, and Z ∈ V a (fixpoint)
variable.

With mv -Lµ we denote the set of closed multi-valued modal µ-calculus formulae
generated by the grammar shown in Figure 4.1, where the fixpoint quantifiers µ and
ν are variable binders. In the following we write η for either µ or ν in order to
ease the notation. In order to emphasize that a variable X occurs in a formula ϕ

163

4. Verifying Properties of PF-CCS Software Product Families

we write ϕ(X). We assume that formulae are well-named, i.e. no variable is bound
more than once in any formula.

Following the definition of the standard µ-calculus, the formulae of mv -Lµ as intro-
duced in Figure 4.1 are in so-called positive normal form. This means (i) that the
negation operation ¬ is only applied directly to atomic propositions in q ∈ P, and
(ii) that all bound variables are distinct. The positive requirement is a syntactic
means to ensure that a formula ϕ(Z) is actually monotonic in Z, which is the basis
for having unique maximal and minimal fixpoints. Note that in other sources, e.g.
[BS01a], the µ-calculus syntax is introduced in parsimonious form. Here, negation
can be applied to arbitrary formulae, and derived operators are defined by de Mor-
gan duality in the usual manner, e.g. ϕ1∨ϕ2 is defined as ¬(¬ϕ1∧¬ϕ2), the diamond
operator 〈α〉ϕ is defined in terms of the box operator as ¬[α]¬ϕ, etc. However, for
such formulae it has to be ensured that every free occurrence of a variable Z only
occurs within the scope of an even number of negations. Certainly, this implies an
administrative overhead compared to the positive normal form. However, according
to [BS01a], both forms are equivalent, as any formula can be turned into positive
normal form by use of de Morgan laws and variable renaming.

4.1.2. Semantics of the Multi-Valued Modal µ-Calculus

While syntactically the multi-valued µ-calculus is equivalent to the standard µ-
calculus, semantically the calculi are not comparable, since (i) they are interpreted
over different kinds of Kripke structures, and (ii) the interpretations yield differ-
ent kinds of result values. While a formula of the standard modal µ-calculus is
interpreted over a regular Kripke structure (cf. [CGP99]) yielding a true/false-
information whether the formula holds in a given state, formulae of our multi-valued
µ-calculus are interpreted over so-called multi-valued modal Kripke structures yield-
ing an element of a lattice (for every atomic proposition in P). As we will explain in
the following, such a multi-valued modal Kripke structure is just a slightly adjusted
way of representing a multi-valued labeled transition system (PF-LTS), which we
have used in the preceding chapter in order to represent the semantics of a PF-CCS
product family. Accordingly, the lattice element (which we obtain for a fixed propo-
sition) which is the result of interpreting a multi-valued mu-calculus formula over
a multi-valued Kripke structure represents the set of configurations in which the
desired property holds for the given product family (and for the given proposition).

For the definition of the semantics of mv -Lµ-formulae—which we will provide in
the remainder of this subsection—we proceed as follows: Initially we give a formal
definition of a multi-valued modal Kripke structure. Then we explain the connec-
tion between the lattice elements which that the states and the transitions in a
multi-valued modal Kripke structure are labeled and the configurations of a product

164

4.1. The Multi-Valued Modal µ-calculus

family. Then we proceed to define the semantics of a mv -Lµ-formula. The semantics
is defined over multi-valued modal Kripke structures, since Kripke structures are the
common kind of structure to represent system (families) in the context of temporal
logics. After we have defined the semantics we show how an MMKS can be under-
stood as a PF-LTS and thus bridge the formal gap between the logic mv -Lµ and the
semantic domain which we use for PF-CCS product families. Ultimately, this allows
to use formulae of mv -Lµ in order to reason about PF-CCS product families.

Multi-Valued Modal Kripke Structures

As we have defined in the beginning of this chapter, let P be a set of propositional
constants, and A be a set of action names. We define the semantics of mv -Lµ

formulae in terms of multi-valued modal Kripke structures.

Definition 4.1 (Multi-Valued Modal Kripke Structure (MMKS)). Let (L,u,t,¬)
be a (complete) de Morgan lattice1 . A multi-valued modal Kripke structure (MMKS)
is a tuple

T = (S, {Rα | α ∈ A}, L)

where

• S is a set of states,

• for each action α ∈ A, the relation Rα : S × S → L is a valuation function
mapping each pair of states to a lattice element, and

• L : S → LP is a (labeling) function yielding a value in L for each state s ∈ S
and proposition p ∈ P.

We write (S, {Rα | α ∈ A}, L, σ) for a MMKS with start state σ.

Unlike to standard Kripke structures, where each states holds the yes/no-information
whether an atomic proposition holds in this state, in a MMKS each state holds the
information to which degree every proposition in this state is fulfilled. The degree
is represented by an element of the lattice L over which the Kripke structure is
defined. As we will explain in the following in more detail, for our purpose we let L
always be the powerset lattice over a given set of configurations, which means that
individual elements of the lattice represent sets of configurations. Note that we can
equivalently denote the labeling function L in a more functional style as a function
L : S → (P → L), emphasizing that L actually returns a lattice element in L.
The transitions in a MMKS are labeled with an action α ∈ A and a lattice element

1In a de Morgan lattice every element x has a unique complement ¬x. For more details on
lattices see the Appendix C, Page 267ff.

165

4. Verifying Properties of PF-CCS Software Product Families

l ∈ L. Regarding the definition of the transition relation, we denote the entire rela-
tion as a family of individual transition relations Rα. For example, for all actions in
A = {β1, β2, . . . }, the relation Rβ1 represents the β1-transitions only, Rβ2 only the
β2-transitions, etc. For each state s we require that it has a reasonable successor,
i.e. at least one successor state s′ which can be reached under an α-transition with
a lattice value “greater” than ⊥, i.e. we require ∃α ∈ A,∃s′ ∈ S : Rα(s, s

′) 6= ⊥.
We write T .s to denote the state s of the MMKS T .

A MMKS is like a regular Kripke structure [CGP99], except that propositions and
transitions are now interpreted over a lattice L. Usually, a regular Kripke structure
(S,

α
−→, L) consists of a finite set S of states, an action-labeled transition relation

α
−→⊆ S × A × S, which is assumed to be total, and a labeling function L : S →
{true, false}P which associates either the truth value true or false to every atomic
proposition p ∈ P in a given state, indicating whether the proposition holds or not
in this state. In contrast thereto, in a MMKS the atomic propositions (at given
states) as well as the transitions are now interpreted as elements of a lattice, which
represent the degree to which a certain proposition (in a given state) or transition
holds or exists.

Note that a Kripke structure in the usual sense can be regarded as a MMKS with
values over the two element lattice ({⊥,>},v) consisting of a bottom element ⊥
and a top element >, ordered in the expected manner ⊥ v >. Value > then means
that the property holds (it represents true) in the considered state while ⊥ means
that it does not hold. Similarly, Rα(s, s

′) = > reads as there is a corresponding α
transition while Rα(s, s

′) = ⊥ means there is no α-transition from s to s′ in the
respective MMKS.

Connection between the Lattice and Configurations of Software Product
Families

The lattice in a MMKS can be any arbitrary de Morgan lattice (cf. Appendix C for
the de Morgan property). However—in particular for software product families—a
very important example of a de Morgan lattice is the powerset lattice (P(S),⊆)
defined over a set S, where the ordering is given by subset inclusion. The elements
of the lattice are the elements of the powerset of S, i.e. individual subsets of the set
S. The lattice operation u (meet) is given by set intersection ∩, the operation t
(join) is given by set union ∪, and the lattice complement operation ¬ is given by
set complement M{ := S \M , M ⊆ S, respectively. In the lattice (P(S),⊆), the
set S takes the role of >, while the empty set ∅ takes the role of ⊥.

In order to model a PF-CCS software product family, we let the set S be the
set of all possible configurations of the software product family. Recall, that we
denote the set of all (combinatorially) possible configurations of a PF-CCS product

166

4.1. The Multi-Valued Modal µ-calculus

family Prog by CONFIGSProg (cf. Section 2.2.3.3), where we omit the index Prog
if it is clear which system we mean. Thus, an individual element s ∈ CONFIGS
represents a single (complete) configuration of the product family, which associates
a concrete variant to each variation point. In a PF-CCS software product family
with N ∈ N variation points (offering 2 alternative variants each) the set CONFIGS
has |CONFIGS | = 2N elements which represent all N possible configurations of the
software product family. Then, any element s ∈ P(CONFIGS) of the powerset
lattice over CONFIGS corresponds to a set of configurations.

A MMKS over such a powerset lattice (P(CONFIGS),⊆) is appropriate to rep-
resent a software product family. The elements of the lattice (P(CONFIGS),⊆)
which are attached to transitions represent the set of configurations in which this
particular transition is present, i.e. Rα(s, s

′) denotes the set of configurations in
which there is an α-transition from state s to s′. Likewise, the lattice elements
which are used to interpret the atomic propositions in individual states represent
the set of configurations in which this proposition holds. The two extreme lattice
elements CONFIGS and ∅ represent the situation, when a transition (or a proposi-
tion) exists in every configuration (represented by CONFIGS), or when it does not
exist at all (represented by ∅).

However, for the following definition of the semantics we will use a general de Morgan
lattice instead of its special case, the power lattice of configurations. This represents
the more general case, but more importantly allows to apply directly certain model
checking algorithms and techniques, which are defined on a general lattice structure.
In any case, if we interpret the general de Morgan lattice as a powerset lattice of
configurations as described above, then the following semantics definition is directly
applicable for PF-CCS software product families.

Semantics of mv -Lµ Formulae

The semantics of a mv -Lµ formula is an element of LS , i.e. a satisfaction function

f : S → L

yielding for the formula at hand and a given state the satisfaction value (given
in terms of the lattice L). In our product family setting, this satisfaction value
is the set of configurations for which the formula holds in the given state. With
FUNCTIONALS we denote the set of all satisfaction functions. Let the environment
which explains the meaning of free variables in mv -Lµ formulae be represented by
the function

ρ : V → LS

Note that this is equivalent to ρ : V → (S → L). With

ρ[Z 7→ f]

167

4. Verifying Properties of PF-CCS Software Product Families

[[true]]ρ := λs.>

[[false]]ρ := λs.⊥

[[q]]ρ := λs.L(s)(q)

[[¬q]]ρ := λs.¬L(s)(q)

[[ϕ ∨ ψ]]ρ := [[ϕ]]ρ t [[ψ]]ρ
[[ϕ ∧ ψ]]ρ := [[ϕ]]ρ u [[ψ]]ρ

[[〈α〉ϕ]]ρ := λs.
⊔

s′∈S

{Rα(s, s
′) u [[ϕ]]ρ(s

′)}

[[[α]ϕ]]ρ := λs.
l

s′∈S

{¬Rα(s, s
′) t [[ϕ]]ρ(s

′)}

[[Z]]ρ := ρ(Z)

[[µZ.ϕ]]ρ :=
l

{f | [[ϕ]]ρ[Z 7→f] v f}

[[νZ.ϕ]]ρ :=
⊔

{f | f v [[ϕ]]ρ[Z 7→f]}

Figure 4.2.: Semantics of mv -Lµ formulae.

we denote the environment that maps Z to f and agrees with ρ on all other ar-
guments. The semantics [[ϕ]]Tρ of a mv -Lµ formula ϕ with respect to a MMKS
T = (S, {Rα | α ∈ A}, L) and an environment ρ, is defined inductively on the
structure of the formula as shown in Figure 4.2. We assume T to be fixed and do
not mention it explicitly anymore. In the case of closed formulae we will also drop
the environment ρ from the semantic brackets.

The semantics given in Figure 4.2 is defined in a standard manner. The constant true
is fulfilled in all states to the maximal degree. Thus, the corresponding function λs.>
always returns the maximal lattice value > independently of the specific state. For
the interpretation of the lattice values as sets of configurations this means that the
formula true is fulfilled in any state by all configurations, represented by the set S of
all possible configurations. The opposite holds for the constant false , which can not
be fulfilled at all in any state, represented by the lattice value ⊥ which corresponds
to the empty set of configurations. The semantics of atomic propositions is directly
given by evaluating the labeling function for the specific state and proposition. Note
that the symbol ¬ in Line 4 in Figure 4.2 is overloaded: on the left-hand side of
defining equation it represents the logical negation operation of mv -Lµ, while on the
right-hand side it represents the complement operation of the lattice. Realizing the
mv -Lµ negation directly by the lattice complement operation is possible since in a
de Morgan lattice every element has a unique complement. The semantics of the
boolean operations ∧ and ∨ is straight forward.

168

4.1. The Multi-Valued Modal µ-calculus

The only operators deserving a more thorough discussion are the diamond and box-
operator (cf. Lines 7 and 8 in Figure 4.2). Intuitively, 〈α〉ϕ is classically supposed
to hold in states that have an α-successor satisfying ϕ. In a multi-valued version,
we first consider the value of an α-transition and reduce it (meet it) with the value
of ϕ in the successor state (inner meet). As there might be different α-transitions to
different successor states, we take the best value (outer join). For PF-CCS programs,
this meets exactly our intuition: a configuration in state s satisfies a formula 〈α〉ϕ
if it has an α-successor satisfying ϕ, where we chose the best α-successor (the one
which exists in the most configurations) in the case when multiple α-successors exist.
The semantics (Line 8 in Figure 4.2) of the box operator is based on the fact that
box is the dual of the diamond operator, i.e.

〈α〉ϕ ≡ ¬[α]¬ϕ

which is equivalent to

¬〈α〉¬ϕ ≡ [α]ϕ

Thus, based on the semantics of our diamond operator we derive the semantics of
the box operator as:

[[[α]ϕ]]ρ := [[¬〈α〉¬ϕ]]ρ

= ¬λs.
⊔

s′∈S

{

Rα(s, s
′) u [[¬ϕ]]ρ(s

′)
}

= λs.
l

s′∈S

{

¬
(

Rα(s, s
′) u [[¬ϕ]]ρ(s

′)
)

}

= λs.
l

s′∈S

{

¬Rα(s, s
′) t ¬[[¬ϕ]]ρ(s

′)
}

= λs.
l

s′∈S

{

¬Rα(s, s
′) t [[ϕ]]ρ(s

′)
}

Intuitively, the semantics of the box operator [α]ϕ seems to be somehow less obvious
to understand. We illustrate it with the concrete example of the powerset lattice of
configurations. Since we are interested in the set of configurations in that every α-
successor state s′ can fulfill ϕ we take the intersection over all possible α-transitions,
which motivates the outer meet. For the inner part, ¬Rα(s, s

′) t [[ϕ]]ρ(s
′), suppose

we consider a transition labeled with the set of configurations Rα(s, s
′). We are

interested in all configurations which fulfill the property: “If there is a way from s
to s′ in this particular configuration, then the successor state s′ must also afford this

configuration”. For all those configurations which are not in Rα(s, s
′) this property

certainly holds, and we include them in the semantics (represented by the term
¬Rα(s, s

′)). In addition, those configuration which appear both in Rα(s, s
′) and

169

4. Verifying Properties of PF-CCS Software Product Families

in [[ϕ]]ρ(s
′), the property holds, too. These configurations are given by Rα(s, s

′) u
[[ϕ]]ρ(s

′). Combining those two sets which fulfill the property yields

¬Rα(s, s
′) t

(

Rα(s, s
′) u [[ϕ]]ρ(s

′)
)

= ¬Rα(s, s
′) t [[ϕ]]ρ(s

′)

which is the desired result for the inner part of the semantics of the box operator.

The semantics of atomic variables is determined exclusively by the environment
ρ : V → LS which returns the degree (satisfaction value) to which each variable
is fulfilled in a certain state. The fixpoint operators µ and ν—yielding the least
and greatest fixpoint, respectively—are also defined in the usual manner. For these
fixpoint operators we are interested in the functionals

λf.[[ϕ]]ρ[Z 7→f] : LS → LS

where for every concrete variable the corresponding functional maps satisfaction
functions to satisfaction functions. For any Z,ϕ and S, these functionals are mono-
tonic (for pointwise ordering) w. r. t. v 2. Thus, according to Tarski’s fixpoint the-
orem [Tar55], least and greatest fixpoints of these functionals exist. As usual, in
the semantics we have defined the operators µ and ν in terms of prefixed and post-
fixed points, since the least prefixed and the greatest postfixed point coincide with
the least and greatest fixpoint of a monotonic functional [Sti01]. Regarding fix-
point iteration, approximants of mv -Lµ formulae are defined in the usual way: if
fp(Z) = µZ.ϕ then Z0 := λs.⊥, Zα+1 := [[ϕ]]ρ[Z 7→Zα] for any ordinal α and any

environment ρ, and Zλ :=
d

α<λ Zα for a limit ordinal λ. Dually, if fp(Z) = νZ.ϕ
then Z0 := λs.>, Zα+1 := [[ϕ]]ρ[Z 7→Zα], and Z

λ :=
⊔

α<λ Zα. The following theorem
due to Tarski states that least and greatest fixpoints are indeed approximants.

Theorem 4.1 (Computation of Fixpoints, [Tar55]). For all MMKS T with state set
S there is an α ∈ Ord s.t. for all s ∈ S we have: if [[ηZ.ϕ]]ρ(s) = x then Zα(s) = x.

In summary, our multi-valued modal µ-calculus exhibits all the general properties
known from the standard µ-calculus. It is a modal logic where action labeled paths
can be considered. Its semantics exhibits the expected dualities between the op-
erators and fulfills our expectations of a useful fixpoint logic: least and greatest
fixpoints always exist and coincide with the least and upper bounds of the respec-
tive approximants.

MMKS vs. PF-LTS: Connection between the Two Kinds of Structures

An MMKS over a powerset lattice (P(S),⊆) (as we have introduced it in this
chapter) is the appropriate structure to reason about software product family prop-
erties using mv -Lµ. In contrast to an MMKS, in Chapter 3.2.3 we have seen that

2Let the auxiliary relation � ⊆ (S × L) × (S × L) extend the lattice ordering v to functions
g, h : S → L by pointwise application, i.e. ∀s ∈ S : g � h iff g(s) v h(s). Then, a functional
f ∈ FUNCTIONALS is monotonic w. r. t. v iff g � h ⇒ f(g) � f(h).

170

4.1. The Multi-Valued Modal µ-calculus

the configured-transitions semantics of a PF-CCS program is given as a PF-LTS—
which is formally not quite a MMKS. Obviously, despite their slight differences, both
structures can equivalently be used to represent the semantics of a PF-CCS product
family. In the following we show how one structure can be transformed into the other
one, and thus establish the connection between both. Ultimately, this allows to use
formulae of mv -Lµ in order to reason about the properties of a PF-CCS software
product family.

Essentially, the only difference between both kinds of structures is that a MMKS
additionally holds the information to what degree atomic propositions hold in in-
dividual states. Consequently, it is a simple matter to translate (on-the-fly) a
PF-LTS transition system (cf. Definition 3.18, Page 140) which represents the
configured-transitions semantics of a PF-CCS product family into a correspond-
ing MMKS. For a PF-LTS (S,A, {Rα|α ∈ A}, σ) the corresponding MMKS is given
as (S, {Rα | α ∈ A}, L). The set of states S, the transition relations Rα, and
the corresponding actions in A are identical for the PF-LTS and the MMKS struc-
ture. The state labeling function L can not be derived from the respective PF-LTS,
since so far, PF-CCS programs do not support propositional constants. Thus, when
deriving a MMKS from a PF-LTS system, the validity of atomic propositions in
individual states, i.e. the function L itself, has to be defined explicitly. However,
we can also specify reasonable mv -Lµ-formulae without making use of the values of
atomic propositions in the respective formulae. Such properties consider only the
action traces of the PF-LTS system and involve the basic constants true and false.
We will see some examples of such properties in Section 4.3.

For the other direction, when a MMKS T with an explicit state labeling function L
is given, we can easily derive a consistent state labeling of the corresponding PF-LTS
Q by labeling the states according to

θ ∈ L(s)(q) ⇐⇒ q ∈ LQ(s)

where we use the function LQ : S → P(P) to label the states of the PF-LTS, as
done for regular Kripke structures (cf. Appendix D). Thus, also the way in which
states are labeled in both structures can be easily kept consistent.

For the remainder of this chapter, whenever we evaluate a mv -Lµ-formula on a PF-
LTS, we mean the evaluation of the formula on the MMKS constructed from the
respective PF-LTS according to the construction described before. Concepts, such
as for example projection (cf. Definition 3.20 on Page 142), which we have defined
for a PF-LTS, are defined in an equivalent way also for a MMKS. In particular, from
now on we do not distinguish between a PF-LTS and the corresponding MMKS for
the verification of mv -Lµ-formulae, anymore.

171

4. Verifying Properties of PF-CCS Software Product Families

4.1.3. Correctness of the Provided Semantics

The semantics which we have defined for mv -Lµ yields a lattice element when eval-
uating it in a certain state. In the concrete case of the lattice (P(CONFIGS),⊆)
this lattice element represents the set of all configurations which fulfill the specified
property. In the following we elaborate on the correctness of our logic, i.e. we show
that the semantics of a mv -Lµ-formula interpreted over a powerset lattice of con-
figurations actually represents the result which we intuitively expect. As we have
motivated in the last chapter, the intuitive correctness of our approach is based on
relating a PF-CCS software product family—respectively its products—to a corre-
sponding set of standalone CCS programs. Recall, that this intuitive meaning of
a PF-CCS program is represented by the flat semantics (Definition 3.11, Chapter
3.2.1). Given this idea of correctness, we now show that the result of checking a
mv -Lµ-formula on a PF-CCS product family actually conforms to the results which
we expect when checking an equivalent µ-calculus formula on the respective CCS
systems directly. More precisely, if a specific configuration θ is contained in the set
of configurations for which a mv -Lµ-formula ϕ holds for a specific PF-CCS product
family Prog , then the same property ϕ (now expressed as a formula in the standard
µ-calculus) also holds for that CCS program which represents the product for config-
uration θ. This means that the semantics which we have defined for our multi-valued
modal µ-calculus is indeed suitable for checking the different configurations of a PF-
CCS program, since it coincides with the two-valued yes/no results we would obtain
when checking the same property for every (standalone) system independently. In
particular, this is the foundation for the correctness of any model checking algorithm
for our multi-valued µ-calculus.

This fundamental connection between the result of a mv -Lµ and a Lµ formula inter-
preted over a product family and a standalone CCS system is formalized in Theorem
4.2. However, the formulation of this theorem requires some preparation, which we
will provide in the following. A substantial part thereof is summarized in Lemma
4.1, which relates mv -Lµ-properties of a MMKS T (representing a product family)
to Lµ-properties of complete projections of T (representing concrete products).

Lemma 4.1 formally involves the two logics mv -Lµ and Lµ, where Lµ denotes the
standard µ-calculus. As we have already discussed in the preceding part of this
chapter, both logics have the same syntax, but have different semantics. In order to
distinguish clearly between both logics we decorate the symbol |=µ with the index
µ to denote the satisfaction relation of modal µ-calculus formulae in Lµ. Since
formulae of Lµ and mv -Lµ have the same syntax we can express a property with the
same formulae ϕ in both logics.

Syntactically, both logics make use of the same set of variables V. Semantically,
the interpretation of free variables is formally fixed by two different variable envi-
ronments ρ and V , where ρ denotes the variable environment for the interpretation

172

4.1. The Multi-Valued Modal µ-calculus

of mv -Lµ formulae over a MMKS, while V denotes an environment used for the
interpretation of Lµ formulae over a corresponding PF-LTS (cf. Appendix D for
details on V). Certainly, only if both environments define the interpretations of
identical variables in a consistent way, we can expect that the same formula yields a
consistent result when being interpreted according to both semantics. The following
definition makes the idea of consistent variable environments more precise. Since the
consistency of environments is an auxiliary concept which we need for Lemma 4.1,
where we evaluate a formula on both a MMKS and a complete projection of the cor-
responding PF-LTS, we introduce the following definition for the special case where
both the MMKS and the corresponding PF-LTS share the same set S of states.

Definition 4.2 (Consistency of Variable Environments). Let T = (S, {Rα | α ∈
A}, L) be a MMKS over which mv-Lµ formulae are interpreted with respect to a
variable environment ρ : V → (S → L) , and Q = (S,A, {Rα|α ∈ A}) be the
PF-LTS constructed according to T , over which Lµ formulae are interpreted with
respect to a variable environment V : V → P(S). Regarding the interpretation of
the same formula ϕ over both structures T and Q in the respective logic we call both
environments consistent iff

∀Z ∈ V, s ∈ S : s ∈ V (Z) ⇐⇒ θ ∈ ρ(Z)(s)

The idea of consistent variable environments states that if in a variable environment
ρ, a proposition p holds in a state s of the structure T for a configuration θ, then
this state s also has to be labeled with p in the structure Q by the environment V .
Definition 4.2 directly implies a construction rule for an environment V given an
environment ρ, if V is constructed according to

∀Z ∈ V : V (Z) = {s ∈ S | θ ∈ ρ(Z)(s)}

Note that—unless explicitly respecified—the variable environment V specified for
a PF-LTS Q also holds for all projections Πθ(Q). Thus, if for a system Q and a
variable Z we have s ∈ V (Z), then s ∈ V (Z) holds also in any projected system
Πθ(Q) in which the state s is preserved according to the configuration θ.

Note that we specify Theorem 4.2 and Lemma 4.1 for the specific case where the
underlying lattice is the powerset lattice (P({R,L, ?}n),⊆) over the set of configu-
rations {R,L, ?}n. Further, as a notational easement, we assume that the transitions
in T are labeled with sets of complete configuration vectors, only. Thus, no con-
figuration vector contains an ?-entry anymore, and any lattice element represents
a set of complete configurations. Recall, that any set of incomplete configuration
labels can uniquely be denoted as an equivalent set of complete configuration vectors
(cf. Page 147). In particular, this is just a technical issue and does not change the
meaning of a configuration label.

173

4. Verifying Properties of PF-CCS Software Product Families

With these premises we now introduce Lemma 4.1. It relates properties of a product
family represented as a MMKS/PF-LTS T to properties of its products (given as
complete projections of T). Essentially, it states that whenever T fulfills a mv -Lµ-
property ϕ for a certain configuration θ in a state s, then the product which can be
derived from T by projection to θ also fulfills the property ϕ (now interpreted as a
formula in Lµ) in its corresponding state s.

Lemma 4.1 (Property Equivalence of a Projected Family and a Product). Let
T = (S, {Rα | α ∈ A}, L) be a MMKS with labeling function L constructed
according to the PF-LTS Q = (S,A, {Rα|α ∈ A}, σ). Further, let ρ and Vθ be
consistent variable environments for T and each Πθ(Q), respectively. Then, for all
fitting and complete configurations θ ∈ CONFIGS, states s of Πθ(Q), and formulae
ϕ we observe

Πθ(Q).s |=Vθ
µ ϕ iff θ ∈ [[ϕ]]Tρ .s

Proof. By structural induction on the formula.

• Base cases: ϕ = true, false, q, Z
According to the semantics of mv -Lµ, for all states s we have [[true]]Tρ .s =
CONFIGS , and thus all configurations θ fulfill the formula true in every state.
Regarding the projection, since per definition s̃ |=Vθ

µ true for any state s̃ ∈ SQ,
also all states of every projected PF-LTS Πθ(Q) fulfill the formula true for any
θ. For the formula false , an analogue argument shows that for any configu-
ration θ, no state ever fulfills false in either of the two structures. Regarding
atomic propositions, according to the semantics a proposition q ∈ P holds in a
state s in all configurations θ ∈ L(s)(q). According to the consistent construc-
tion of the labeling function for both structures, this means that q is in the
set of propositions that hold in state s of Q (in every configuration θ). Thus,
according the definition of |=Vθ

µ , every state s also fulfills s |=Vθ
µ ϕ in the corre-

sponding projection to θ. Likewise, in all other configurations θ 6∈ L(s)(q), the
proposition q does not hold in a state s, and thus s 6|=Vθ

µ q. Regarding any free
variable Z, our semantics yields θ ∈ ρ(Z)(s). According to the construction
of consistent variable environments this directly implies that s ∈ Vθ(Z) for all
θ. This is exactly the definition of |=Vθ

µ and directly yields Πθ(Q).s |=Vθ
µ ϕ.

• Inductive step:

– Formulae ¬q :
To show: Πθ(Q).s |=µ ¬ϕ iff θ ∈ [[¬ϕ]]Tρ .s

Ind. hypothesis: Πθ(Q).s |=µ ϕ iff θ ∈ [[ϕ]]Tρ .s

Let M := [[q]]Tρ .s . Applying the semantics yields [[¬q]]Tρ .s = M{. Thus
¬q holds for all configurations η 6∈M . Since per induction hypothesis we
can assume that Πθ([[Prog]]CT).s |=µ q for all configurations θ ∈ M , we
conclude that Πη([[Prog]]CT).s 6|=µ q for all configurations η 6∈ M . Since

s 6|=µ ϕ is equal to s |=µ ¬ϕ, we have Πη([[Prog]]CT).s |=µ ¬q iff η ∈M{.

174

4.1. The Multi-Valued Modal µ-calculus

– Formulae ϕ ∧ ψ :
To show: Πθ(Q).s |=µ ϕ ∧ ψ iff θ ∈ [[ϕ ∧ ψ]]Tρ .s

Ind. hypothesis: Πθ(Q).s |=µ ϕ iff θ ∈ [[ϕ]]Tρ .s

and Πθ(Q).s |=µ ψ iff θ ∈ [[ψ]]Tρ .s

According to the semantics of mv -Lµ, θ ∈ [[ϕ ∧ ψ]]Tρ .s means that θ ∈
(

[[ϕ]]Tρ .s ∩ [[ψ]]Tρ .s
)

. In order to be in the intersection, θ must be part

of all subsets, i.e. θ ∈ [[ϕ]]Tρ .s and θ ∈ [[ψ]]Tρ .s. Thus, according to the
induction hypothesis, Πθ(Q).s |=µ ϕ and Πθ(Q).s |=µ ψ. According to the
semantics of ∧ in the µ-calculus we can conclude that Πθ(Q).s |=µ ϕ∧ψ.

– The case for formulae ϕ ∨ ψ is shown similarly.

– Formulae 〈α〉ϕ :

To show: Πθ(Q).s |=µ 〈α〉ϕ iff θ ∈ [[〈α〉ϕ]]Tρ .s

Ind. hypothesis: Πθ(Q).s′ |=µ ϕ iff θ ∈ [[ϕ]]Tρ .s
′, where the

state s′ is an α-successor of s.

Applying the semantics yields [[〈α〉ϕ]]Tρ = λs.
⋃

s′∈S{Rα(s, s
′)∩ [[ϕ]]Tρ (s

′)}.

If we assume that θ ∈ [[〈α〉ϕ]]Tρ .s (the premise of what we want to show), θ

must be at least in one of the intersections Rα(s, s
′)∩ [[ϕ]]Tρ .s

′. According

to the induction hypothesis θ ∈ [[ϕ]]Tρ .s
′. Since θ is in the intersection and

in the right subset [[ϕ]]Tρ .s
′, we can conclude that θ ∈ Rα(s, s

′) for at least
one transition. Together with the induction hypothesis Πθ(Q).s′ |=µ ϕ we
can conclude that there exists an α-transition to a state s. This matches
exactly the requirements of the semantics of diamond operator in the µ-
calculus, which implies that Πθ(Q).s |=µ 〈α〉ϕ. For the situation where

θ ∈ [[〈α〉ϕ]]Tρ .s does not hold, following the same argumentation we see
that θ is not in the intersection and thus θ 6∈ Rα(s, s

′). Thus, in this case
Πθ(Q).s 6|=µ 〈α〉ϕ.

– The case for formulae [α]ϕ is shown similarly.

– Formulae µZ.ϕ :
To show: Πθ(Q).s |=µ µZ.ϕ iff θ ∈ [[µZ.ϕ]]Tρ .s

Ind. hypothesis: s ∈ S where µ[[ϕ]]
Πθ(Q)
V [Z 7→S] ⊆ S

iff θ ∈ f.s where [[ϕ]]Tρ[Z 7→f].s ⊆ f.s

Recall, that µ[[ϕ]]V denotes the semantics of ϕ in the µ-calculus for en-
vironment V . According to our semantics, θ ∈

⋂

{f | [[ϕ]]ρ[Z 7→f] ⊆ f}.s
3. Since θ is in the intersection, it is part of any such f , which means
that for all f with [[ϕ]]ρ[Z 7→f].s ⊆ f.s we have that θ ∈ f.s. Thus, ac-
cording to the induction hypothesis for every such s we can conclude

3The expression {f | [[ϕ]]ρ[Z 7→f] ⊆ f}.s is an abbreviation for the set {f.s | [[ϕ]]ρ[Z 7→f].s ⊆ f.s} .

175

4. Verifying Properties of PF-CCS Software Product Families

that s ∈ S where µ[[ϕ]]V [Z 7→S] ⊆ S in the structure Πθ(Q). Since state
s is in every such set S, it is also part of the intersection of all S, i.e.
s ∈

⋂
{

S | µ[[ϕ]]V [Z 7→S] ⊆ S
}

. According to the definition of the fixpoint
operator µ in the standard µ-calculus this is equivalent to the desired
result Πθ(Q).s |=µ µZ.ϕ.

– The case νZ.ϕ for the greatest fixpoint is shown similarly.

Now, we can formulate the central result of this section in the following theorem.
Essentially, Theorem 4.2 states that the result of evaluating a property ϕ according
to the multi-valued µ-calculus semantics on a PF-CCS model of a product family
agrees with the separate evaluation according to the standard µ-calculus on the
corresponding CCS systems, respectively. Ultimately, this justifies the semantics of
our multi-valued modal µ-calculus. Recall, that the expression Q |=µ ϕ means that
the transition system Q fulfills property ϕ in its start state.

Theorem 4.2 (Correctness of the Multi-Valued µ-Calculus Semantics). Let Prog =
(E , P1) be a PF-CCS program, and T = (S, {Rα | α ∈ A}, L, p1) be a MMKS con-
structed according to the PF-LTS [[Prog]]CT , where the start state p1 corresponds
to the start process P1 of Prog. Further, let ρ and Vθ be consistent variable envi-
ronments as defined in Lemma 4.1. For all such PF-CCS programs Prog, complete
configurations θ, and formulae ϕ

[[config(Prog , θ)]]CCS |=Vθ
µ ϕ iff θ ∈ [[ϕ]]Tρ .p1

Proof. According to Lemma 4.1, for any state s ∈ Πθ([[Prog]]CT) the results of
evaluating a formula ϕ on a product family [[Prog]]CT and of evaluating the same
formulae ϕ on a single product Πθ([[Prog]]CT) which is derived according to the
complete configuration θ are consistent, i.e.

Πθ([[Prog]]CT).s |=
Vθ
µ ϕ iff θ ∈ [[ϕ]]Tρ .s

In particular, this holds also for the start state p1. Theorem 3.2 (Page 145) shows
that every derived product Πθ([[Prog]]CT) is (strongly) bisimilar to the correspond-
ing CCS program [[config(Prog , θ)]]CCS for the same configuration θ. According to
[BS01a], if two states (respectively processes) are (strongly) bisimilar, then they
satisfy exactly the same Lµ-formulae. Thus, [[config(Prog , θ)]]CCS |=Vθ

µ ϕ iff θ ∈

[[ϕ]]Tρ .p1.

176

4.2. Model Checking

In essence, Theorem 4.2 establishes the fundamental result that the semantics of our
logic mv -Lµ indeed corresponds to our intuitive expectations which we have for the
result of the evaluation of a formula on a PF-CCS product family. In particular,
the semantics of mv -Lµ is correct in the sense that we can likewise check properties
on the model of the product family or on the individual products directly. In any
case, the evaluations yield consistent results. This is the indispensable basis for the
application of model checking techniques. From this point of view, Theorem 4.2
establishes also a kind of fundamental correctness of model checking.

4.2. Model Checking

So far, we have introduced an appropriate logic, mv -Lµ, for the specification of prop-
erties of a software product family which is given as a multi-valued labeled transition
system (PF-LTS). We have defined the meaning of mv -Lµ-formulae and shown the
(intuitive) correctness of our semantics. As this is sufficient for a pure theoretician,
for the practioner the question that remains is how to compute the satisfaction value
of a mv -Lµ formula over a PF-LTS in a practically feasible way. Certainly, while
Theorem 4.1 (Page 170) implies a way for computing the satisfaction value of an
mv -Lµ-formula and a given MMKS based on applying the semantics definition, the
associated fixpoint computation is typically expensive as it is based on the construc-
tion of subsequent approximants in a naive brute force fashion. In particular for
complex systems this fixpoint iteration is not practicable. For evaluating mv -Lµ

formulae, model checking offers a more suitable solution. In fact, PF-CCS and
mv -Lµ are actually both designed for the application with model checking.

Model checking [CGP99, BK08] is an automatic verification technique which was
pioneered by Clarke and Emerson [EC81, CE81b, CES86], and Queille and Sifakis
[QS82] in the early 1980s. Until this day, model checking has evolved to become a
serious and promising verification technique for verifying complex software systems
in an automatic fashion. In 2007, Clarke, Emerson and Sifakis even received the
Turing Award for their work on model checking.

Model checking is an algorithmic approach to solve the question whether a system
S satisfies a property ϕ w. r. t. one of its states s. Usually, the system S is given as a
Kripke structure and the property ϕ is specified using a temporal logic such as LTL,
CTL, or the standard modal µ-calculus. Typically, the result of model checking is
a true/false-answer, indicating whether ϕ holds in state s or not. We refer to this
kind of model checking as standard or two-valued model checking.

However, as the definition of the semantics of mv -Lµ shows, standard model check-
ing algorithms are not applicable for multi-valued structures like a PF-LTS. In the

177

4. Verifying Properties of PF-CCS Software Product Families

context of multi-valued systems, another branch of model checking is of particu-
lar interest: multi-valued model checking. Multi-valued model checking is tailored
to multi-valued structures which represent partial information, such as for example
our PF-LTS structures. In particular, evaluating a mv -Lµ formula ϕ on a PF-LTS—
and thus finding the set of configurations of a PF-CCS product family that fulfill a
certain multi-valued µ-calculus property ϕ—can be done using existing multi-valued
model checking techniques and algorithms.

In our concrete situation we have chosen the multi-valued, game-based model check-
ing approach introduced by Shoham and Grumberg [SG05] for the evaluation of
mv -Lµ formulae on a given MMKS structure. First and foremost, because this ap-
proach is designed for multi-valued Kripke structures defined over a lattice, which
are almost like our PF-LTS. In fact, a slight adaption of [SG05] yields a game-
based approach for our multi-valued modal µ-calculus. Secondly, in particular the
realization as a game-based approach—originating from the work by [EJS93] and
[Sti95]—represents an efficient model checking technique which additionally allows
model checking in an on-the-fly or local fashion. In contrast to other so-called re-
duction approaches, e.g. [BG04], in which a multi-valued problem is solved based
on the evaluation of several two-valued problems, the approach of [SG05] checks the
property on the multi-valued structure directly, and thus can provide auxiliary in-
formation (in terms of the multi-valued structure itself) that explains it’s result. In
particular for our scenario of PF-CCS product families these auxiliary information
can lead to the variation point whose configuration selection has caused the property
to fail. As the game-based model checking approach of [SG05] is not a contribu-
tion of this thesis, we do not reproduce [SG05] in its full detail, here. Instead, we
just give an overview of the approach and describe it to a level where the necessary
adaptations which have to be made to fit to our approach can be understood.

Adjustments of the Game-Based Approach of Shoham/Grumberg [SG05] to fit
the Setting of PF-CCS Product Families

In the context of the multi-valued µ-calculus, the game-based setting becomes tech-
nically more involved compared to its two-valued counterpart. Nevertheless, the
essence of the game-based approach of computing a satisfaction value based on the
so-called game graph is similar in the multi-valued and the two-valued situation.
Like a two-valued model checking game, a multi-valued model checking game of
[SG05] is also played by two players, the verifier and the refuter. A play of the
game ΓM(s0, ϕ0) is a maximal sequence of play configurations, which consist of a
state s and a sub-formula ϕ denoted by s ` ϕ. A game is played according to
rules which determine the moves that each player can make in a certain play con-
figuration. The rules are applied depending on the current game configuration, i.e.
the next move in a play yielding from a game configuration si ` ϕi to a successor
configuration si+1 ` ϕi+1 is determined by the main connective of ϕi. A play ends

178

4.2. Model Checking

when no rule can be applied anymore. While in a two-valued model checking play
the final play configuration (or the play configuration structure in the case of an
infinite play) determines the winner of the game, in a multi-valued model checking
play, the idea of winning a single play is not really applicable anymore, since the
outcome of a single play is an element of the lattice and no longer a >/⊥-result.
Thus, the aim of the verifier in the multi-valued situation is no longer to win the
play (as in the two-valued setting), but to “maximize” (in terms of the lattice) the
value of the play instead. Similarly, the refuter tries to minimize the result of the
play. In this light, the result of a multi-valued play can be seen as a measure for
how close the verifier is to winning.

By adapting the multi-valued model checking game of [SG05] to action labeled tran-
sitions, we can directly use it as a model checking algorithm to compute the satis-
faction value of a mv -Lµ formula in a state s for a given MMKS T . For our purpose
the game rules for the box and diamond operator are updated by the following two
rules, which use action labeled versions of both operators:

s ` 〈α〉ϕ

s′ ` ϕ
(verifier) : Rα(s, s

′) 6= ⊥ (4.1)

s ` [α]ϕ

s′ ` ϕ
(refuter) : Rα(s, s

′) 6= ⊥ (4.2)

The first parts of the side conditions, i.e. the words verifier and refuter, indicate
which player is allowed to make the move according to this rule. For example, Rule
4.1 describes a move of the verifier: if the current play configuration is s ` [α]ϕ the
verifier makes the move according to this rule to a subsequent play configuration
s′ ` ϕ, if there is an α-transition from s to s′ for which the transition value is greater
than ⊥ (indicating that the respective transition actually exists). The rest of the
multi-valued model checking game rules are exactly as the original ones described
in [SG05].

In the two-valued situation, we say that a player has a winning strategy for a game
if he can win any play when playing according to this strategy. In this context
a strategy is simply a mapping which tells the player how to move for every play
configuration in which it is his turn to move. Thus, a strategy specifies to which
play configuration a player has to go next. In contrast to a two-valued game, the
winning criteria in a multi-valued model checking game have to be adjusted, as the
multi-valued game now yields an element of the lattice and no longer a true/false
answer. The best game strategy for the verifier is that one which maximizes the
results over all plays. In particular, the verifier is interested in a strategy which
guarantees that the result of any play he plays will be equal or higher to the value

179

4. Verifying Properties of PF-CCS Software Product Families

of the strategy, i.e. he is interested in maximizing the greatest lower bound of all
play results. Reflecting this idea, the value of the strategy for the verifier is defined
as the greatest lower bound over all his plays. For the refuter, the situation is dual:
he aims to play according to a strategy which keeps the result of all plays as low as
possible in a guaranteed way. Thus, in the multi-valued setting the players are no
longer seeking “winning” strategies, but rather strategies for gaining a (maximal or
minimal) value.

The idea of strategies for gaining a value allows us to make the connection to model
checking, and thus the satisfaction value of a mv -Lµ formula. More precisely, the
value of the game ΓM(s0, ϕ0) determines the truth value of the mv -Lµ formula ϕ0

evaluated in state s0 over the multi-valued structure M, where the definition of
the value of a game is directly adapted from [SG05]: The value of the multi-valued
model checking game ΓT (s, ϕ) is defined as the least upper bound over all strategy
values for the verifier. The corresponding proof found in [SG05] for the correct-
ness of a multi-valued model checking game immediately implies the correctness for
multi-valued multi-valued games using the adjusted rules 4.1 and 4.2. Moreover,
[SG05] also provides a way of solving a multi-valued model checking game based
on the game graph which we can also use in our setting by simply adjusting the
transition relation to use action labeled transitions. In summary, the game-based
model checking approach of [SG05] can be directly used—with the minor adjust-
ments described above—to compute the satisfaction value of a mv -Lµ formula over
a MMKS. This allows us to exploit all the advantages of a game-based model check-
ing approach [Sti95] also for our multi-valued modal µ-calculus, and in particular
provides a much more practicable way of solving the model checking problem for
mv -Lµ than the naive fixpoint iteration does.

4.3. Example: Verifying a Family of Windscreen Wipers

Let us now demonstrate our approach on a product line whose configurations realize
different versions of a windscreen wiper system. Note that this is just a small example
to make the reader familiar with PF-CCS specifications and the multi-valued modal
µ-calculus.

4.3.1. Specification of the Product Family of Windscreen Wipers

At first, we specify the family of systems, using the PF-CCS formalism introduced
in Chapter 3. As a convention, action names start with lowercase letters, while
process identifiers start with uppercase letters. The windscreen wiper systems that
we specify in our family WipFam are each built of two subcomponents: a rain sensor,

180

4.3. Example: Verifying a Family of Windscreen Wipers

Sensor , and a windscreen wiper, Wiper . Both subcomponents can be realized by
two variants, a high and a low one, respectively:

WipFam
def
= Sensor ‖ Wiper (4.3)

Sensor
def
= SensL⊕1 SensH (4.4)

Wiper
def
= WipL⊕2 WipH (4.5)

The low variant SensL of the sensor is specified as follows:

SensL
def
= non.SensL+ ltl .Raining + hvy .Raining + noRain .SensL (4.6)

Raining
def
= non.SensL+ ltl .Raining + hvy .Raining + rain .Raining (4.7)

The low variant SensL only detects two different environmental conditions—dry and
raining—even though the environment can stimulate the sensor with three different
conditions: hvy for heavy rain, ltl for little rain and non for no rain. However, this
sensor cannot differ between heavy and little rain, i.e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain , indicating solely the fact that it is raining (without precisely characterizing
the intensity). As long as no rain has been detected, the sensor provides the action
noRain , respectively.

The high version of the sensor can distinguish between different degrees of rain
intensity, i.e. SensH additionally differentiates heavy rain from little rain. Its PF-
CCS specification is given in the following:

SensH
def
= non.SensH + ltl .Medium + hvy .Heavy + noRain .SensH (4.8)

Medium
def
= non.SensH + ltl .Medium + hvy .Heavy + rain .Medium (4.9)

Heavy
def
= non.SensH + ltl .Medium + hvy .Heavy + hvyRain .Heavy (4.10)

In this product family, the sensors can be arbitrarily combined with two variants
of windscreen wipers, WipL and WipH . In particular, for this example we have no
additional non-functional dependencies between the possible variants which would
restrict the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpetual
wiper arm movement (action permWip), which has to be activated explicitly by the

181

4. Verifying Properties of PF-CCS Software Product Families

driver, (ii) and a semi-automatic interval mode in which the wiper arm moves at a
lower frequency triggered by the rain sensor (via the action rain).

WipL
def
= off .WipL+ permOn .Perm + intvOn.Interval (4.11)

Interval
def
= noRain .Interval + intvOff .WipL+ intvOn.Interval (4.12)

+ rain .Wiping + hvyRain .Wiping

Wiping
def
= slowWip.Interval + intvOn.Interval (4.13)

Perm
def
= permWip.Perm + off .WipL+ intvOn.Interval (4.14)

The high variant WipH can operate at two speeds: slow (action slowWip) and fast
(action fastWip). Here, the wiper arm movement is fully controlled by the rain
sensor and adjusts its frequency automatically to the current rain intensity.

WipH
def
= off .WipH + intvOn.AutoIntv (4.15)

AutoIntv
def
= noRain .AutoIntv + intvOn.AutoIntv + rain .Slow (4.16)

+ intvOff .WipH + hvyRain .Fast

Slow
def
= slowWip.AutoIntv + intvOn.AutoIntv (4.17)

Fast
def
= fastWip.AutoIntv + intvOn.AutoIntv (4.18)

The PF-CCS program specifying the entire product line WipFam is given by the
Equations 4.3–4.18. The whole program WipFam is well-formed, which allows a
unique numbering of all (two) variation points as shown by Equations 4.4 and 4.5.

4.3.2. Verification

From our example system family WipFam , we can derive four products as we can
combine the subsystem variants arbitrarily. Having specified the family in PF-CCS,
we can now apply the verification approach described in this chapter in order to
verify functional properties for the individual configurations in the product family.
In the following we use 〈.〉 and [.] to denote a successor state which can be reached
using a transition labeled with an arbitrary action.

Thinking of a relevant property, for instance, one could possibly be interested in
verifying for a windscreen wiping system whether or not a driver is always able to
switch to automatic windscreen wiping mode.

µZ.
(

〈intvOn〉true ∨ 〈.〉Z
)

(4.19)

182

4.3. Example: Verifying a Family of Windscreen Wipers

Note that this property corresponds to the CTL formula scheme EFP which corre-
sponds to the fixpoint characterization EFP = µZ.P∨EXZ in the modal µ-calculus.

Another property could demand the windscreen wiper to wipe fast, once it is raining
heavily.

νZ.
(

(

¬〈intvOff 〉true ∨ [hvy]〈fastWip〉true
)

∧ [.]Z
)

(4.20)

This property is of the kind νZ.P ∧AXZ, and thus represents the fixpoint charac-
terization of the CTL formula AGP . Note that both properties do not use atomic
propositions, but still specify reasonable properties of the wiper family.

In order to evaluate whether the properties 4.19 and 4.20 hold for our exemplary
product family we can use one of the two possibilities that we have introduced in
this thesis, i.e. we can either

1. evaluate the formula directly by applying the semantics rules for mv -Lµ-
formulae (cf. Figure 4.2), or

2. apply the game-based model checking algorithm of Shoham and Grumberg
[SG05] with the adjustments introduced in the previous Section 4.2.

Both possibilities are interpreted over the PF-LTS (and the corresponding MMKS)
that represents the semantics of the family of wiper systems which is given by the
PF-CCS program (E ,WipFam), where the set E of process definitions is specified by
the Equations 4.3–4.18. Recall that [[. . .]]CT represents the configured-transitions
semantics of PF-CCS programs (cf. Chapter 3.2.3, Definition 3.19). Let

(S, A, {Rα|α ∈ A}, σ) := [[(E ,WipFam)]]CT

be that PF-LTS, and

(S, {Rα | α ∈ A}, L) =: W

be the corresponding MMKS (which we abbreviate as W), where

• S denotes the set of states,
• A =

{

non , ltl , hvy ,noRain , rain , hvyRain , off , permOn , intvOff , intvOn , slowWip,

fastWip, permWip,non , ltl , . . .
}

represents the set of actions which are used in the
PF-CCS program,

• {Rα|α ∈ A} is the family of transition relations,
• σ is the start state, and
• L is the labeling function that associates for every state in S the respective lattice

values to each atomic proposition. Since no atomic propositions exist in the
Formulae 4.19 and 4.20, the labeling function can be an arbitrary function as it
is not relevant for the following interpretation.

183

4. Verifying Properties of PF-CCS Software Product Families

For the four possible configurations 〈LL〉, 〈LR〉, 〈RL〉, and 〈RR〉, the lattice L is

given as the powerset lattice
(

P
({

〈LL〉, 〈LR〉, 〈RL〉, 〈RR〉
})

, ⊆
)

over the set of

these configurations.

Evaluation of the Properties

The first way of evaluating the property is to perform the semantics rules which we
have defined for the multi-valued modal µ-calculus in Figure 4.2 (Page 168) in the
start state σ of the corresponding MMKS W. For the evaluation of property 4.19
this means to compute

[[µZ.
(

〈intvOn〉true ∨ 〈.〉Z
)

]]
W

ρ
.σ (4.21)

where the variable environment ρ is empty for this property since the formula con-
tains no free variables. Computing the semantics of this property means to apply the
corresponding semantics rules for the mv -Lµ which are given in Figure 4.2. Since
the outermost operator is the least fixpoint operator µ the computation directly
requires to perform a corresponding fixpoint iteration according to the second last
rule of Figure 4.2. The fixpoint iteration is performed as usual, i.e. starting with
the least defined function (that one mapping all states, especially the start state σ,
to the least lattice element ∅) for the state σ, computing the value, reapplying the
definition again with the resulting value, and so on, until the the resulting lattice
element (i.e. the set of configurations) does not change anymore between consecutive
iterations. Since due to Theorem 4.1 the fixpoint is guaranteed to be reached, we
omit to present the entire computation here. Finally, the result of computing the
semantics of property 4.21 is the lattice element

{

〈LL〉, 〈LR〉, 〈RL〉, 〈RR〉
}

. The
configurations which are elements of this lattice element represent those products
of the wiper family in that the desired property 4.19 holds. Thus, in the particular
case of property 4.19, all derivable wiper variants fulfill the property. This result
matches what we have intuitively expected by inspecting the PF-CCS product fam-
ily: in every state of the corresponding MMKS W the action intvOn is performable.

The Property 4.20 can be checked in an analogous way as Property 4.19, i.e. by
computing the semantics

[[νZ.
(

(

¬〈intvOff 〉true ∨ [hvy]〈fastWip〉true
)

∧ [.]Z
)

]]
W

ρ
.σ

The result of the corresponding fixpoint iteration yields the lattice element {〈RR〉}.
This means that property 4.20 is only satisfied in the configuration in which the
high variants of both subsystems are used. Intuitively, it is easy to see why: as the
low version of the windscreen wiper does not provide a fast wiping mode, it never
provides the output action fastWip. Thus, the wind screen wiper can never wipe fast

184

4.4. Related Work

if the low version is used, which means that the configurations {〈LL〉} and {〈RL〉}
do not fulfill the property. However, if the high version of the windscreen wiper
is used, but combined with the low version of the rain sensor (this corresponds to
the configuration 〈LR〉), the property is not satisfied, either, since the sensor (low
version) is not able to provide the output action hvyRain , which would trigger the
wiper to wipe fast.

As an alternative to the evaluation of the properties by means of applying the se-
mantics rules of mv -Lµ, we can use the algorithm defined by Shoham and Grumberg
[SG05] with the adjustments that we have described in Section 4.2. For example for
evaluating Property 4.19 this requires to play the corresponding game

ΓS

(

σ, µZ.(〈intvOn〉true ∨ 〈.〉Z)
)

where σ and S denote the MMKS and the start state of it, as defined above. The
final value of the game, which is reached in that configuration of the game in which
the current player can apply no more play rule and thus make no more move, is
the same set of configurations that we have obtained by evaluating the property
using the mv -Lµ semantics. As far as we know there is no implementation of the
game-based algorithm for an existing model checker, which means that so far the
value of the game has to be computed by playing the game according to the defined
rules (cf. [SG05] and Section 4.2) manually. We omit to present this play here, as
the original algorithm is not our contribution.

4.4. Related Work

Clearly, the most important related approach to the verification formalism which
we have presented in this chapter is the game-based, multi-valued model checking
approach by Shoham and Grumberg [SG05], which we have already introduced in
detail in this chapter. In summary, in [SG05], Shoham and Grumberg extend the
game-based framework of µ-calculus model checking to the multi-valued setting.
They define a new model checking game that is equivalent to the problem of deter-
mining the value of a multi-valued µ-calculus formula over a multi-valued Kripke
structure directly. In addition, they derive a direct model checking algorithm to
solve this kind of games. The algorithm handles the underlying multi-valued struc-
ture directly without any reduction. Moreover, Shoham and Grumberg explore the
connection between their multi-valued game-based approach and the established
automata-based approach. As we explain the relevant details of their approach in
detail in the scope of this chapter, we do not provide a more detailed summary here.

In fact, our version of the multi-valued µ-calculus was entirely influenced by the
work of Shoham and Grumberg in the sense that we have defined the logic as well

185

4. Verifying Properties of PF-CCS Software Product Families

as the semantics in a more general way than necessary, in order to fit the (general)
concepts and setting of Shoham and Grumberg’s approach directly. As we have
seen, this allows to apply the game-based model checking algorithm of Shoham and
Grumberg (with only minimal adjustments) in order to compute the values of mv -
Lµ-formulae. In this light our approach is a specialization and adaption of Shoham
and Grumberg’s approach for the special case of PF-CCS product families.

The approach of Shoham and Grumberg bases on the work of Bruns and Godefroid
[BG04], in which they explore model checking for multi-valued logics in general.
Bruns and Godefroid show how to reduce multi-valued model checking to stan-
dard two-valued model checking, and present an automata-theoretic algorithm for
multi-valued model checking with logics as expressive as the modal µ-calculus. As
the game-based algorithm of Shoham and Grumberg, also the algorithm of Bruns
and Godefroid can likewise be applied to evaluate multi-valued µ-calculus formulae
defined over PF-CCS product families.

De Alfaro et al. introduce in [dAFH+05] a model checking approach to a so-called
discounted logic DCTL. The logic DCTL is a generalization of CTL in which the
predicates and the operators have a quantitative interpretation, i.e. where in every
state the value of a formula is a real number in the interval [0, 1]. DCTL provides
the default operators of CTL, where the interpretation of the operators is adjusted
to the quantitative setting. Additionally, all operators can be discounted by a pa-
rameter which allows to change the weight (value) of the interpretation in states
that are closer to the beginning of a path. While the fundamental idea, and the
implementation of the operators is close to our approach, the discounted approach
aims at the analysis of stochastic systems, and not at the application for product
families. Beside an interpretation over transition systems, DCTL can additionally
be interpreted over Markov chains, and Markov decision processes, where both a
path semantics, and a fixpoint semantics—similar to the semantics of mv -Lµ—are
introduced. For both semantics, model checking algorithms are introduced, respec-
tively.

Thrane, Fahrenberg and Larsen [LFT09] extend the usual notion of Kripke struc-
tures with a weighted transition relation. Based on this extended notion they pro-
vide a general framework for the analysis of quantitative and qualitative properties
of reactive systems. They apply the framework to check the equivalence between
an implementation of a system and its specification, while they express the equiva-
lence not as yes/no-result in the classical sense, but as a real-valued distance which
measures to which degree the implementation is equivalent/different to the speci-
fication. They provide different kinds of distances and discuss their computations.
Their quantitative framework is applied to implementation verification for weighted
timed automata. Similar to the work of de Alfaro et al. also Thrane et al. do not
use the weights on transitions as a means to differentiate between the various con-
figurations of a product family of transition systems, which classifies their approach
into a different area of application.

186

4.4. Related Work

In the shortpaper [PS08], Post and Sinz sketch a general idea for the verification of
software product lines, which the authors call lifting. Essentially, lifting means to
convert all variants of a software product line into a meta-program, which—similarly
to our notion of a PF-CCS product family—represents a configuration-aware, inte-
grated model of all products. The basic idea is to perform verification techniques on
the meta-program rather than deriving and verifying each of the possible programs
separately. The authors demonstrate the lifting technique by checking “configura-
tion dependent hazards for the Linux kernel”, where the SAT-based model checker
CBMC is used as verification backend. The authors assume a scenario where valid
software variants are specified by a feature model, and where configuration is real-
ized by preprocessor directives on the level of source code. The configuration process
itself is performed by a corresponding tool chain, which the authors call a Software
Variant Generation System (SVGS), e.g. realized by makefiles, and a C preprocessor.

Post and Sinz apply the idea of lifting to the verification of a Linux kernel, since the
configurable Linux editions constitute a software product line. This is done in sev-
eral subsequent steps, which essentially correspond to (i) the encoding of the feature
model (decoded as Kbuild) into C code, (ii) the lifting of the semantic information
contained in the makefiles to C code, and (iii) the encoding of arbitrary preprocessor
statements into preprocessor-free C code. In summary, the resulting C code repre-
sents the so-called meta-program to which verification tools like C software model
checkers can be applied. Following this concept the authors address questions such
as “May a feature be enabled, although its dependencies are not fulfilled”, or “May
a function be used in configurations in which it is not defined”. In summary, this
paper reduces to the general idea of checking properties of a software product line on
an integrated model of the family rather than on the flat set of individual products,
and does not provide any technical or methodological information in more detail.
The idea of Sinz et al. is the same as ours, since we also reason and check properties
of individual products on basis of the integrated product family model.

In [LPT09], Lauenroth et al. present a model checking approach which allows to ver-
ify properties of the domain artifacts of a product line in the presence of variability.
The paper refers to one of our papers [GLS08b] from 2008 (in which we define the
basic concepts of PF-CCS and the relation to our logic mv -Lµ) and addresses also
the challenge of verifying entire product families. In [LPT09], individual products
are represented as adjusted I/O-automata, and the properties are specified in CTL.
According to Lauenroth et al. model checking of domain artifacts means to verify
that every possible product that can be assembled from domain artifacts fulfills the
specified properties. In contrast to our logic mv -Lµ and the approach presented in
this chapter, the approach of Lauenroth et al. gives a yes/no-answer whether the
property holds, but does not return the set of products in which a property holds,
as we do in our approach. In particular, for determining the set of all products
for which a particular property holds, the approach of Lauenroth et al. is no im-
provement compared to the trivial way of checking the property for each product
separately.

187

4. Verifying Properties of PF-CCS Software Product Families

The variability of a product line is specified using the orthogonal variability modeling
language developed by Pohl et al. . An orthogonal variability model provides vari-
ation points, variants, variability dependencies and constraint dependencies. Vari-
ability dependencies define the allowed selections of a variation point, and constraint
dependencies define constraints for the configurations of variations points. Formally,
variation points and variables are formalized as Boolean variables. Variability mod-
els are interpreted as Boolean expressions over these variables. For a given config-
uration vector v (∈ Booln) Lauenroth et al. introduce the function OVM (v) which
returns true only if the vector v is a model of the variability model.

I/O-automata are used for the specification of the system behavior. More precisely,
the idea of Larsen’s modal I/O-automata is adapted and may-transitions are asso-
ciated with a so-called variability relation VRel IO that represents the information
of the variability model. This results in so-called variable I/O-automata which are
used to specify domain artifacts. A transition t in a variable I/O-automaton is vari-
able if t is related to a variant by the variability relation VRel IO , otherwise t is said
to be common. System properties are specified using an adaption of CTL. A second
variability relation VRelCTL relates variants to CTL properties. If a CTL property
p is related to a variant v by VRelCTL the property p has to be fulfilled only if
the related variant v is selected. As a strong restriction the authors assume that a
property cannot be related to more than one variant.

In order to model check variable I/O-automata specifications the I/O-automata that
represent the domain artifacts are merged into a single product automaton which
provides the notion of variable, common and implicit transitions. Model checking
of variable I/O-automata is based on the fundamental model checking approach of
Clarke, but adapted to handle the variability information: During the exploration
of the state space the algorithm of Lauenroth et al. considers the variability model
to ensure that the current path is valid with respect to the variability model. In
summary, the approach addresses the challenge that every I/O-automaton that can
be derived from a variable I/O-automaton fulfills its CTL properties, i.e. the prop-
erties specified for the individual I/O-automaton. However, since the authors do not
use a multi-valued logic, they address a different application scenario compared to
our multi-valued logic mv -Lµ. While in our logic mv -Lµ the result of an evaluation
is the set of configurations/products that fulfill the given property, the approach of
Lauenroth et al. only allows to check whether a property holds for all products.

In [CHS+10], Classen, Heymans, Schobbens, Legay, and Raskin introduce an ap-
proach that addresses the model checking of entire product families similarly to
ours. After a research visit of one of the authors—Axel Legay—in our group, our
work about PF-CCS and mv -Lµ [GLS08b] was well known to him at the time of writ-
ing [CHS+10]. Consequently, our concepts of checking a product family as a whole,
as well as the fundamental concepts of mv -Lµ agree quite well with the approach
presented in [CHS+10].

188

4.4. Related Work

Similarly to a PF-LTS (cf. Definition 3.18, Page 140) Classen et al. also define a
special kind of labeled transition systems called Feature Transitions Systems (FTS).
Like a PF-LTS, an FTS represents an entire product family. An FTS is a transition
system in which the transitions are not only labeled with an action, but additionally
with the information in which products this transition exists. However, unlike to
a PF-LTS where this information is captured by a vector containing configuration
decisions of individual variation points, in an FTS this information is modeled by
attaching a single feature to each transition. The meaning is that the respective
transition is present in all products that contain that feature. In an FTS priorities
can be associated to transitions. Priorities allow to model the situation in which one
feature overrides the behavior of another. The meaning of a transition priority is that
for transitions with a common start state but with different features, only the feature
attached to the transition with the higher priority does exist in the resulting product
if both features are selected simultaneously. In our approach—where a system is
modeled in PF-CCS and not directly as a transition system—transition priorities are
not necessary since PF-CCS guarantees that the configuration information attached
to the transitions is always constructed such that only consistent products can be
derived.

Similarly to a PF-LTS, the individual products can be derived from an FTS by
projection to a set of features. Projection is the basis for the semantics of an FTS.
The semantics of an FTS is defined as the set of all behaviors of the projections on
all valid products. This kind of semantics is conceptually equivalent to our flat se-
mantics (cf. Definition 3.11, Page 124) which is defined as the set of all configurable
products. The authors define a reachability relation on the set of products which
states in which products (feature combinations) a particular state is reachable. To-
gether with another relation that characterizes the successors of a given state the
reachability relation is the basis for the search performed by the model checking
algorithm.

The model checking approach of Classen et al. uses an automata-based algorithm
which follows the well established ideas of Vardi and Wolper [VW94]. Reachability
and the (temporal) properties are expressed by automata, respectively, and model
checking reduces to checking whether the product of these automata is empty or not.
Conceptually, this kind of automaton-based model checking approach is different to
the game-based approach which we introduce in this chapter. The model checking
algorithm of Classen et al. is constructed in a way that if the property is satisfied
by the FTS then it is also satisfied by every product of the FTS. Otherwise, a
counterexample is produced, and the set of all products which violate the property
is returned. To this extend, the algorithm of Classen et al. is similar to ours since
both allow to determine the set of products that fulfill a given property. The model
checking algorithm is implemented in Haskell and comes as a command line tool.
According to the benchmarks which Classen et al. performed, the algorithm achieves
in average a 20% improvement over the classical algorithm.

189

4. Verifying Properties of PF-CCS Software Product Families

In general, compared to our approach, by modeling variability in terms of features
(and not variation points), Classen et al. focus more on the aspect of structuring the
behavior of a software product family and its products into modular entities, in the
sense of atomic building entities. While we have discussed the concept of composition
and atomic assets in detail in Section 2.2.2.1 (Page 33), for PF-CCS processes are the
fundamental structural entities. While in this thesis we have not made a statement
on the efficiency gain that is obtained by checking properties on the model of a (PF-
CCS) product family directly the approach of Classen et al. comes with a running
implementation that allows to gain experimental results regarding the efficiency gain.
Although Classen et al. consider “only” LTL properties, these properties represent
already a representative subset of the properties that are expressible in our multi-
valued variant of the modal µ-calculus, and the observed efficiency gain suggests
that a similar efficiency gain can also be expected in our setting based which is also
based on a similar representation of the product family as an integrated transition
system.

190

CHAPTER 5

Restructuring PF-CCS Software Product Families

In this chapter we take advantage of the algebraic nature of PF-CCS in order to
restructure the term representation of a PF-CCS program while preserving its mean-
ing. This means that we deal with (semantically) one and the same PF-CCS product
family, but look at it using different program-representations. Each representation
is useful for a different purpose. The formal basis for the restructuring, i.e. the tran-
sition from one representation to another, are algebraic laws which we introduce in
this chapter. In particular with respect to the commonalities between the products
of a PF-CCS product family, the restructuring laws allow to represent the products
with a higher or lower degree of commonalities, and represent a formal framework
to calculate behavioral commonalities between products.

Contents

5.1. Algebraic Laws . 194

5.2. Calculating Commonalities: A Detailed Example 206

5.3. Common Parts . 214

191

5. Restructuring PF-CCS Software Product Families

In order to formally reason about software product families, a formal framework
for modeling product families is necessary. With PF-CCS (cf. Chapter 3) we have
introduced such a framework. PF-CCS allows the formal specification and modeling
of the behavior of a set of similar products in an algebraic manner. Thereby, the
entire behavior of all products is represented in an integrated way by the PF-CCS
program of the product family.

In this chapter, we consider how to restructure the representation of a PF-CCS
product family, resulting in other representations, i.e. other PF-CCS programs, of
the same product family. These restructured representations specify still the same
product family (with respect to its semantical meaning), but are more suitable to
reason about certain aspects of the product family. In particular, the aspect in
which we are interested is the common part of a set of products, which for PF-CCS
products corresponds to the common operational functionality which is offered by
all products.

Thereby, the motivation for restructuring, as well as the technique of restructuring
is already familiar to every one of us—even though not from the specific area of soft-
ware product line engineering, but from a much more common application context:
arithmetic. Suppose the task is to multiply the two numbers 49 and 35. There are
many possibilities to calculate the result. A very common way is the so-called long
multiplication method, which is taught already in elementary school as the natural
way of multiplication. Another multiplication method, which is in particular useful
if a table of pre-calculated square numbers is at hand, bases on the transformation
of the product 49∗35 into a form in which the relation to square numbers is directly
given, according to the following calculation.

49 ∗ 35 = (42 + 7) ∗ (42− 7)

= 422 − 72

= 1764 − 49

= 1715

As the square numbers 422 and 72 can directly be retrieved from the table, the
multiplication reduces to performing some other—possibly simpler—operations such
as subtraction. Thereby, the original representation (49 ∗ 35) is changed into an
other, equivalent form (422 − 72), following arithmetic restructuring laws, e.g. the
well-known binomial theorem (x+ y) ∗ (x− y) = x2− y2 (line 1 to 2). Laws like this
describe universally valid restructuring principles for the treatment of arithmetic
equations, as their correctness can be shown within the laws of arithmetic. While
both representations, 49 ∗ 35 and 422 − 72, are equivalent—they denote the same
natural number 1715—the last form is much more useful in the presence of a table
of pre-calculated square numbers.

192

Similarly to arithmetic, which specifies a mathematical, formal framework for the
calculation with numbers and the restructuring of arithmetic equations, with PF-
CCS we have created a formalism for reasoning about and calculating with the
operational behavior incorporated in a family of products.

The advantage of using the PF-CCS representation for the restructuring is that
compared to the labeled transition system, which defines the semantics of a PF-
CCS program, a PF-CCS program itself is always a finite representation, while
the corresponding transition system might have infinitely many states. Thus, by
restructuring a PF-CCS program directly we can deal with infinite behavior which
we could not adequately handle with corresponding restructuring rules that operate
on the labeled transition system.

The motivation for restructuring a PF-CCS product family is similar to the one of
restructuring an arithmetic equation: while a product family is initially specified in
a certain way, this single representation is usually not suitable to equally address
all questions in which we are interested during the life of a software product family.
Thus—similarly to the laws in arithmetic—a restructuring mechanism based on
formally defined laws allows to transform one representation of a product family
into another “more useful/interesting” representation, without altering its initial
meaning.

In the context of software product families, a very interesting representation form
is that one from which we can easily determine the commonalities of products.
Undoubtedly, the ability to represent and retrieve the commonalities of a set of
products is the main advantage of software product line engineering compared to
independent product development, and is a key property of any product family (cf.
Chapter 2.2). However, since a software product family evolves over time, i.e. new
features and variants are added, the common parts between products change, too,
and thus can not be determined statically. In addition, depending on the application
scenario, we are interested in a representation of the product family that shows the
maximal common part of products, while during the specification of a PF-CCS
product family it is methodological very convenient to simply specify the points in
which the products differ without being concerned about commonalities.

Thus, in order to work effectively with a software product family, not only is it
necessary to be able to represent the common parts in a formal way, but even
more importantly to be able to work with changing common parts effectively. First
and foremost, this requires the ability to determine the commonalities of two or
more products, similarly to solving an arithmetic equation. In this context—and in
analogue to arithmetic—we also speak of the calculation of common parts.

Such a powerful mechanism for the calculation of common parts allows to maximize
the reuse of existing software components. For example in a top-down development

193

5. Restructuring PF-CCS Software Product Families

process, the restructuring mechanism of PF-CCS allows the developer to adjust the
behavioral model, i.e. the PF-CCS product family, to match existing (implementa-
tion) assets or COTS components in a way that the maximal part of the product
family can be “covered” and realized with existing assets. For the opposite situation,
where no or very little existing components have to be reused, the software product
family can be restructured to a form which shows a maximal degree of common
parts. Since common parts have to be implemented only once with a high degree
of reuse within the product family, this allows to maximize the efficiency of the
development.

In the following we introduce a corresponding restructuring formalism that allows
to restructure a PF-CCS program, yielding a syntactically different program that
is semantically equivalent, and that represents the commonalities of the derivable
products more directly. The restructuring formalism is based on algebraic laws. We
introduce these laws in the following and show their correctness, i.e. we show that
they do not change the semantics of a PF-CCS program.

5.1. Algebraic Laws

In the following we introduce the relevant algebraic laws of PF-CCS that are the
foundation of the restructuring of PF-CCS specifications (PF-CCS programs). In
this section we will present the laws in a rather theoretical way without giving a
detailed explanation or a methodological embedding. For an illustrative application,
which demonstrates how these laws can be used to actually calculate the common
parts of products, we refer to the detailed example given in the following Section
5.2.

We speak of “restructuring” since these laws change the term structure, i.e. the
representation, of a PF-CCS program. Thus—similarly to the laws in arithmetic—a
restructuring mechanism based on formally defined laws allows to transform one
representation of a software product line into another representation, while preserv-
ing its initial meaning. However, in contrast to arithmetic, where the meaning of
an arithmetic expression was defined as an integer number, the meaning of a soft-
ware product line is defined as the set of derivable products, i.e. their number and
individual behaviors (cf. Definition 2.8, Page 72). In particular, this means that
the application of algebraic restructuring laws does not change the number nor the
behavior of the products of a PF-CCS product family. Regarding the correctness
of the laws, since the equivalence relation for PF-CCS systems is given by strong
bisimulation, we show that the application of any law results in a set of bisimilar
products.

The restructuring laws—especially those which are relevant for the purpose of calcu-
lating commonalities of products—are mainly distributive laws. In particular, they

194

5.1. Algebraic Laws

implement the essential property of a product family, which is specified by the dis-
tributive law given in Axiom 3 of the algebraic specification (Figure 2.11, Page 90).
While in the axiomatization we used only one general composition operation and
thus required only one distributive law, in PF-CCS we can build up processes using
several composition operators, i.e. essentially the operators ’.’, ’+’ and ’‖’ inher-
ited from CCS. Thus, we are also interested in the distributive laws of any of these
operators over ⊕, as these laws establish the connection between these operators
and the variants operator ⊕, respectively. Thereby—following Milner [Mil95]—we
differentiate between the PF-CCS operator ‖, which describes the static structure
of processes, and the operators . and + which describe the more dynamic aspect of
how a process evolves by performing actions.

5.1.1. Distributivity of Action Prefixing over ⊕

At first, we consider the distributivity of the variants operator ⊕ over the action
prefixing operator ’.’, i.e. we are interested in processes of the kind

α.P ⊕i α.Q

where both variants of a variation point ⊕i can initially perform the same action.
For such a situation we observe that the configuration selection of the variation
point ⊕i does not influence the initial action which the entire process α.P ⊕i α.Q
can perform. This means, that for a process α.P ⊕i α.Q, instead of performing the
configuration selection between the variants α.P and α.Q right away, we can post-
pone the configuration decision, perform an action α first, and then select between
the processes P or Q, instead. Formally, this is expressed precisely in the following
distributive law.

Theorem 5.1 (Distributivity of Action Prefixing). Action prefixing distributes over
the alternative selection of processes, i.e. for any variation point ⊕i, and any con-
figuration θ ∈ {L,R, ?}n where θi = L or θi = R, we observe the law

α.P ⊕i α.Q = α.(P ⊕i Q)

Proof. We show that applying the law does not change the number of derivable
products, nor the behavior of any of the products. Obviously, since the law does not
alter the number of ⊕i operators the number of derivable products is not changed.
Regarding the behavior, we show that

Πθ

(

[[α.P ⊕i α.Q]]UF

)

≈ Πθ

(

[[α.(P ⊕i Q)]]UF

)

195

5. Restructuring PF-CCS Software Product Families

for every configuration θ where either θi = L or θi = R. For any configuration
θ ∈ {R,L, ?}n let Sleft denote the set of states of the PF-LTS Πθ([[α.P ⊕i α.Q]]UF)
(left-hand side of the law), and Sright denote the set of states of the PF-LTS
Πθ([[α.(P ⊕i Q)]]UF) (right-hand side). For any projection Πθ we define a (bisimu-
lation) relation Bθ ⊆ Sleft × Sright in the following way:

•
(

(α.P ⊕i α.Q, ν) , (α.(P ⊕i Q), ν)
)

∈ Bθ

•
(

X , (α.(P ⊕i Q), ν)
)

∈ Bθ, where X =

{

(P, ν|i/L) , if θi = L

(Q, ν|i/R) , if θi = R

•
(

(P, ν) , (P, ν)
)

∈ Bθ for all remaining states.

This yields two classes of bisimulation relations (cf. Definition 3.17, Page 134)
where for one class θi = L and for the other one θi = R. Figures 5.1a and 5.1b
illustrate the respective PF-LTSs for the unfolded semantics (for the case of an
initial ν with νi =?), while the remaining figures show how the relation Bθ relates
the states of the projected systems according to θ for the two cases of θi = L
(Figure 5.1c) and θi = R (Figure 5.1d), respectively. Figures 5.1c and Figure 5.1d
contain all possible transitions which can be constructed for the two sides α.P ⊕i

α.Q and α.(P ⊕i Q) according to the SOS rules (cf. Figure 3.4, Page 128). We
check easily that for all pairs of states (s, t) ∈ Bθ and every outgoing transition
in Πθ([[α.P ⊕i α.Q]]UF), the pair of successor states (s′, t′) is again in Bθ for the
corresponding transition in Πθ([[α.(P ⊕i Q)]]UF), and vice versa. In all configurations
where θi = L, the pair

(

(P, ν|i/L), (P⊕iQ, ν)
)

affords transitions to pairs of identical

states
(

(P ′, ν|i/L), (P
′, ν|i/L)

)

∈ Bθ. The situation for configurations where θi = R
is similar. In general, the states in the last rows of Figures 5.1c and 5.1d are to be
understood symbolic, since they represent any possible successor of (P, ν|i/L) and
(Q, ν|i/R), respectively. However, since each such pair consists of successor states
with identical process terms and configuration labels, both states afford the same
transitions (according to the SOS rules), yielding again a pair of identical states in
Bθ, and thus are bisimilar, too. Note that for the initial vector ν we assume that
νi =?. If this does not hold, then the SOS semantics guarantees that the PF-LTS
in Figures 5.1a and 5.1b contain only the transitions for the right or left variant,
respectively.

Note that since the unfolded semantics and configured-transitions semantics yield
bisimilar systems (cf. Theorem 3.3, Page 146) for the same complete configurations,
due to the transitivity of the bisimulation relation, the above proof holds likewise for
the configured-transitions semantics, too. Consequently, the distributive law holds
for all of our semantics. With the same argumentation, the following distributive
laws for the other composition operations hold in all of our semantics, too.

196

5.1. Algebraic Laws

α.P ⊕i α.Q, ν

P, ν|i/L Q, ν|i/R

P ′, ν|i/L Q′, ν|i/R

α, ν|i/L α, ν|i/R

β, ν|i/L γ, ν|i/R

(a) PF-LTS for [[α.P ⊕i α.Q]]
UF

α.(P ⊕i Q), ν

P ⊕i Q, ν

P ′, ν|i/L Q′, ν|i/R

α, ν

β, ν|i/L γ, ν|i/R

(b) PF-LTS for [[α.(P ⊕i Q)]]
UF

α.P ⊕i α.Q, ν

P, ν|i/L

P ′, ν|i/L

α, ν|i/L

β, ν|i/L

α.(P ⊕i Q), ν

P ⊕i Q, ν

P ′, ν|i/L

α, ν

β, ν|i/L

Bθ

Bθ

Bθ

(c) Bisimulation relation Bθ between the projections of (a) and (b) according to θ with θi = L.

α.P ⊕i α.Q, ν

Q, ν|i/R

Q′, ν|i/R

α, ν|i/R

γ, ν|i/R

α.(P ⊕i Q), ν

P ⊕i Q, ν

Q′, ν|i/R

α, ν

γ, ν|i/R

Bθ

Bθ

Bθ

(d) Bisimulation relation Bθ between the projections of (a) and (b) according to θ with θi = R.

Figure 5.1.: PF-LTS illustrating the distributivity of action prefixing. For all figures

we assume that P
def
= β.P ′ and Q

def
= γ.Q′.

197

5. Restructuring PF-CCS Software Product Families

Theorem 5.1 directly extends to entire sequences of common actions, i.e. it allows us
to factor out an entire sequence of identical actions which the variants of the same
variation point have initially in common. For example, by repeated application of
the Theorem 5.1 we can factor out the initial sequence ααα of the process

α.α.α.β.P ⊕i α.α.α.γ.Q = α.
(

α.α.β.P ⊕i α.α.γ.Q
)

= α.α.
(

α.β.P ⊕i α.γ.Q
)

= α.α.α.
(

β.P ⊕i γ.Q
)

Such initial sequences are the first example of common parts of variants, and of
commonalities of the corresponding products.

However, with common parts we mean common initial behavior, not common be-
havior which is nested in the variants of the same variation point without having an
initial common action. Consider for example the process

α.P ⊕i β.P

Here, the distributive law does not allow to extract P as a common part of both
variants, since P is preceded by different actions in the respective variants. Note
that this limitation is due to the conceptual idea embodied by the prefixing operator,
and not due to the variants operator.

Comparing the variants operator ⊕ with the standard non-deterministic choice +,
we observe that a similar distributive law for the standard non-deterministic choice
operator + does not hold, i.e. for CCS and PF-CCS we have to reject a law

α.P + α.Q = α.(P +Q)

since both sides yield non-bisimilar systems, as Figure 5.2 demonstrates. Thus, for
the non-deterministic choice operator + we can not factor out an identical initial
action of both processes. Against the background of common behavior, this means
that although two processes might start with an identical initial sequence of actions,
we can not consider this sequence as a common part of both. This shows the concep-
tual difference between a non-deterministic choice and our configuration-controlled
choice operator ⊕, and demonstrates why the non-deterministic choice operator +
of CCS can not simulate the variants operator ⊕ of PF-CCS.

5.1.2. Distributivity of Non-Deterministic Choice over ⊕

Beside the action prefixing operator, the + operator of PF-CCS is the second dy-
namic composition operation. Like action prefixing, also + has a dynamic character
since the + operator is present in the premise of the corresponding SOS rule, but ab-
sent in the result (conclusion) of such an SOS rule. This means that the + operation

198

5.1. Algebraic Laws

α.(β.P) + α.(γ.Q)

β.P γ.Q

P Q

α α

β γ

(a)

α.(β.P + γ.Q)

β.P + γ.Q

P Q

α

β γ

(b)

Figure 5.2.: Action prefixing does not distribute over the non-deterministic choice
operator of CCS, since the CCS semantics (cf. SOS rules in Figure 3.3,
Page 124) for the CCS processes α.(β.P) + α.(γ.Q) and α.(β.P + γ.Q)
yields transition systems which are obviously not bisimilar.

is “disturbed” by action and thus has no static character. Also for the + operator,
we observe a similar distributive law as with the action prefixing operation. For a
variation point

(P +Q) ⊕i (P + S)

whose two variants offer both the same process P as part of an non-deterministic
choice, we can understand the entire variation point as a non-deterministic choice
whose two possibilities are the common process P and the alternative choice Q⊕i S
between the remaining parts of the variants, i.e. between Q and S. The following
Theorem 5.2 makes this distributive law more precise.

Theorem 5.2 (Distributivity of Non-Deterministic Choice). Let ⊕i be an arbitrary
variation point. Then, for any configuration θ ∈ {L,R, ?}n where θi = L or θi = R,
the non-deterministic composition + distributes over the alternative selection ⊕ of
processes:

P + (Q⊕i S) = (P +Q) ⊕i (P + S)

This defines a left-distributivity. Since + is commutative, this also implies right-
distributivity and hence full distributivity of + over ⊕.

Proof. We consider the semantics of both sides of the distributive law, where we
make a case discrimination according to the initial configuration label ν.

• Assuming νi =?, the application of the corresponding SOS rules (cf. Figure
3.4, Page 128) to the left and right side of the equation yields the two PF-
LTSs shown in Figure 5.3a and 5.3b. For any configuration θ ∈ {R,L, ?}n, let

199

5. Restructuring PF-CCS Software Product Families

Sleft denote the set of states of the PF-LTS Πθ([[P + (Q⊕i S)]]UF), and Sright

denote the set of states of the PF-LTS Πθ([[(P +Q)⊕i (P + S)]]UF). For any
projection Πθ according to a configuration θ we define a (bisimulation) relation
Bθ ⊆ Sleft × Sright in the following way:

•
(

(

P + (Q⊕i S), ν
)

,
(

(P +Q)⊕i (P + S), ν
)

)

∈ Bθ

•
(

(P ′, ν) , X
)

∈ Bθ, where X =

{

(P ′, ν|i/L) , if θi = L

(P ′, ν|i/R) , if θi = R

•
(

(P, ν) , (P, ν)
)

∈ Bθ

This yields two classes of bisimulation relations (cf. Definition 3.17, Page 134),
where for one class θi = L and for the other one θi = R. The relevant ex-
tracts of both classes are illustrated in Figures 5.3c and 5.3d. It is easy to
see that all states which are related by Bθ afford the same transitions, and
for all such transitions the successor states are again related by Bθ. Only the
pair

(

(P ′, ν), (P ′, ν|i/L)
)

in configurations θ where θi = L deserves a closer

discussion (Similarily the pair
(

(P ′, ν), (P ′, ν|i/R)
)

in a configuration θ with

θi = R): Although the SOS rules allow the state (P ′, ν) to have some outgo-
ing transitions labeled with ν|i/R, the projection according to θ with θi = L
discards all such transitions for sure, and only those transitions labeled with
vectors ν|i/L remain. Thus, both states (P ′, ν) and (P ′, ν|i/L) actually afford
the same transitions to bisimilar states, even though their configuration labels
ν and ν|i/L are not identical.

• For the situation where νi = L (for the states in the topmost row of Figure
5.3c), the SOS semantics only allows to derive outgoing transitions labeled
with vectors ν|i/L. Then, any projection according to a configuration θ with
θi = L obviously yields bisimilar states, while for the case of θi = R no states
exist (not derivable due to the SOS rules), and thus the projections are trivially
bisimilar for θi = R, too.

• The cases for the situation with an configuration label νi = R are similar.

Theorem 5.2 allows to deal with commonalities of processes that are forking non-
deterministically. In combination with Theorem 5.1 this distributive law allows us
to factor out common action sequences of alternative variants even if each variant
itself exhibits a non-deterministic behavior structure.

Note that a similar law for the distributivity of + over +, i.e. a law such as

P + (Q+ S) = (P +Q) + (P + S)

does also hold. We can show this directly with the CCS law P = P + P and the
associativity of +. This, with respect to this law, the variants operator can be
“emulated” by the non-deterministic choice operator + of CCS.

200

5.1. Algebraic Laws

P + (Q⊕i S), ν

P ′, ν

Q′, ν|i/L S′, ν|i/R

α, νβ, ν|i/L γ, ν|i/R

(a) PF-LTS for P + (Q⊕i S)

(P +Q)⊕i (P + S), ν

P ′, ν|i/L P ′, ν|i/R

Q′, ν|i/L S′, ν|i/R

α, ν|i/L α, ν|i/R

β, ν|i/L γ, ν|i/R

(b) PF-LTS for (P +Q)⊕i (P + S)

P + (Q⊕i S), ν

P ′, ν

Q′, ν|i/L

α, νβ, ν|i/L

(P +Q)⊕i (P + S), ν

P ′, ν|i/L

Q′, ν|i/L

α, ν|i/L

β, ν|i/L

Bθ

Bθ

Bθ

(c) Bisimulation relation Bθ between the projections of (a) and (b) according to θ, where θi = L,
for an initial label ν with νi =?.

P + (Q⊕i S), ν

P ′, ν

S′, ν|i/R

α, ν γ, ν|i/R

(P +Q)⊕i (P + S), ν

P ′, ν|i/R

S′, ν|i/R

α, ν|i/R

γ, ν|i/R

Bθ

Bθ

Bθ

(d) Bisimulation relation Bθ between the projections of (a) and (b) according to θ, where θi = R,
for an initial label ν with νi =?.

Figure 5.3.: PF-LTS showing the unfolded semantics and some relevant projections
for the left-hand and right-hand side of the distributive law for + over

⊕i (cf. Theorem 5.2). W. l. o. g. we assume that P
def
= α.P ′, Q

def
= β.Q′,

and S
def
= γ.S′.

201

5. Restructuring PF-CCS Software Product Families

5.1.3. Distributivity of Parallel Composition over ⊕

In contrast to the dynamic operators + and action prefixing ’.’, the parallel operator
‖ is a so-called static operator (cf. Milner [Mil95]), which allows to model the static
structure of a process. An inspection of the SOS rules for ‖ (cf. the rules for the
parallel composition shown in Figure 3.4, Page 128) shows that the corresponding ‖
operator is present before as well as after the action, while the only things that have
changed are the processes which contributed to the action of the compound process.
Thus, the process structure which is modeled by the ‖ operators remains and is not
“disturbed” by performing actions. Against this background, the ‖ operation allows
to model the structure of sub-processes which make up a compound process.

Although the dynamic operators + and ’.’ are different to the static operator ‖, for
the ‖ operator we observe a distributive law similarly to the ones of the dynamic
operators + and ’.’, too. In the light of the static character of the parallel operator,
the distributive law (read from right to left) for the parallel operator formalizes the
fact that common parts (in the sense of a contains-relationship of sub-components)
can be factored out from the static structure of two alternative processes.

Theorem 5.3 (Distributivity of Parallel Composition). Let ⊕i be an arbitrary vari-
ation point. Then, for any configuration θ ∈ {L,R, ?}n where θi = L or θi = R,
parallel composition distributes over the alternative selection of processes, i.e.

P ‖ (Q⊕i S) = (P ‖ Q)⊕i (P ‖ S)

This defines a left-distributivity. Since the ‖ operator is commutative, this implies
also right-distributivity and hence full distributivity of ‖ over ⊕.

Proof. This proof is analogue to the one of Theorem 5.2. Therefore we omit to
visualize the corresponding transition systems. Applying the SOS rules to each side
of the distributive law with an initial configuration label ν, where νi =?, yields the
two PF-LTSs [[P ‖ (Q⊕i S)]]UF and [[(P ‖ Q)⊕i (P ‖ S)]]UF . For any configuration
θ ∈ {R,L, ?}n, let Sleft denote the set of states of Πθ([[P ‖ (Q⊕i S)]]UF), and Sright

denote the set of states of Πθ([[(P ‖ Q)⊕i (P ‖ S)]]UF). For any projection Πθ ac-
cording to a configuration θ we define a relation Bθ ⊆ Sleft × Sright in the following
way:

•
(

(P ‖ (Q⊕i S), ν) ,
(

(P ‖ Q)⊕i (P ‖ S), ν
)

)

∈ Bθ

•
(

(

P ′ ‖ (Q⊕i S), ν
)

, X
)

∈ Bθ, where X =

{

(P ′ ‖ Q, ν|i/L) , if θi = L

(P ′ ‖ S, ν|i/R) , if θi = R

•
(

(P, ν) , (P, ν)
)

∈ Bθ

202

5.1. Algebraic Laws

For any projection θ, this relation comprises all states of Sleft and Sright, respectively.
The inspection of the relation shows, that each pair of states in Bθ provides the same
outgoing transitions resulting in a pair of successor states which are in Bθ, again. The

pair
(

(P ′ ‖ (Q⊕i S), ν) , (P
′ ‖ Q, ν|i/L)

)

in configurations θ where θi = L deserves

a closer discussion (Similarily the pair
(

(P ′ ‖ (Q⊕i S), ν) , (P
′ ‖ S, ν|i/R)

)

in a con-

figuration θ with θi = R): Although the SOS rules allow the state (P ′ ‖ (Q⊕i S), ν)
to have some outgoing transitions labeled with ν|i/R, the projection according to θ
with θi = L discards all such transitions, preserving only those transitions labeled
with vectors ν|i/L. Thus, both states (P ′ ‖ (Q⊕i S), ν) and (P ′ ‖ Q, ν|i/L) actually
afford the same transitions to bisimilar states, even though their configuration labels
ν and ν|i/L are not identical.

For the situation where νi = L, the SOS semantics only allows to derive outgoing
transitions labeled with vectors ν|i/L. Then, any projection according to a configu-
ration θ with θi = L obviously yields bisimilar states, while for the case of θi = R
no states exist (not derivable due to the SOS rules), and thus the projections are
trivially bisimilar for θi = R, too. The cases for the situation with an configuration
label νi = R are similar.

Comparing the variants operator ⊕ with the non-deterministic choice operator +, a
similar law for the distributivity of ‖ over the non-deterministic choice + does not
hold. To see this, consider for example the processes

α.P ‖ (β.Q+ γ.S) and (α.P + β.Q) ‖ (α.P + γ.S)

While the left process can always perform a β and a γ action after an initial α action,
the right process can perform either a β or a γ action, once an initial α action has
been performed. This example shows once more, that the configuration selection is
a conceptually different operation than the non-deterministic choice, and that the
non-deterministic choice can not simulate the configuration selection ⊕.

Remarks on the Distributive Laws

From an algebraic perspective, the introduced distributive laws make a rather un-
spectacular statement about the connection of different operators. However, from a
product family perspective, the distributive laws describe an essential concept how
to restructure the assets of a product family. In particular, they represent the con-
nection between common (mandatory) and variable parts. More precisely, if we read
the Theorems 5.2 and 5.3 from left to right (Theorem 5.1 from right to left), they
express the formal relationship how common parts can be distributed over variation
points. Applied in the other direction from right to left (Theorem 5.1 from left to
right), the theorems describe how identical (in terms of bisimulation) parts P can

203

5. Restructuring PF-CCS Software Product Families

be extracted from two alternative variants of the same variation point. This equals
the extraction of the common part of two variants. When applying the distributive
laws in this direction we speak of factoring out a common part. Thinking of the
representation of a product family as a term hierarchy containing several variation
points at various hierarchical levels, “restructuring” by applying the distributive
laws corresponds to moving the variation points throughout the term hierarchy to-
wards the leaves or towards the root. In this context, factoring out a common part
equals to push the corresponding variants operator deeper into the term hierarchy
towards the leaves.

Note that the application of the distributive laws does not change the number of
variation points, nor does it change the assignment between a variant and its repre-
sentation label R or L in the configuration. Recall for example Theorem 5.2.

P + (Q⊕i S) = (P +Q) ⊕i (P + S)

If—without loss of generality—the right variant S is selected, i.e. θi = R, the result-
ing system will always be P +S, no matter which side of the distributive law we use
to perform the configuration (derive the system). In particular, choosing the right
variant will always result in choosing process S, independent of the application of
the distributive law.

However, applying the distributive law changes the variants which a variation point
⊕i offers. Consider again the example of the distributive law for + over ⊕ from
above. While for the left side of the law the variation point ⊕i offers the variants
Q and S, the same variation point ⊕i offers different variants, the variants (P +Q)
and (P + S), when we consider the right side of the law. However, this has no
effect on the semantics of a PF-CCS program, as the proof for the theorems has
shown that the same configuration yields the same final product, independently of
the representation (before or after applying the law) that is used for performing the
configuration.

5.1.4. Miscellaneous Laws

While the distributive laws introduced above are very important for any PF-CCS
product family, they are not the only laws which we use to restructure a PF-CCS
program. In fact, many laws which we use are not even specific for PF-CCS, but
are inherited from CCS.

In Chapter 3 we have seen how PF-CCS extends CCS with the concept of alterna-
tive variants (implemented by the variants operator) and adjusts the original CCS
semantics to be able to deal with such variants. Regarding the properties and laws
that hold in CCS, PF-CCS can be seen as a conservative extension of CCS in the

204

5.1. Algebraic Laws

following sense: PF-CCS inherits all algebraic laws which already hold in CCS. In
particular, there is no law which holds in CCS, but which does not hold anymore in
PF-CCS. For example, the simple law concerning the restriction operation

P \ L1 \ L2 = P \ {L1 ∪ L2}

holds likewise in CCS and PF-CCS. Certainly, in this context the term conservative
is not to be understood in its strict (mathematical) logical meaning, nevertheless,
the idea is the same: With PF-CCS we only add new concepts while preserving
the validity of the original ones. In particular, a PF-CCS program containing no
variation points corresponds directly to the equivalent CCS program, i.e. it fulfills
the same properties and the same laws are applicable.

Against this background, for restructuring a PF-CCS program we can use the exist-
ing algebraic laws and theorems that already hold in CCS. All important algebraic
laws of CCS—and thus also all inherited laws which we take over to PF-CCS—are
introduced and proven in one of the sources [Mil95, Fok00, BK84]. Since these laws
(i) belong to the common knowledge of anyone familiar with process algebras, and
(ii) are not a contribution of this thesis we do not list them here explicitly again, and
simply use them in the following calculations, referring to them as standard laws or
CCS laws. Beside these standard laws, there are some more PF-CCS specific alge-
braic laws and restructuring principles which are necessary to effectively perform a
restructuring of a PF-CCS program. We will introduce them in the following.

Substitution of Variants Identifiers

The following Theorem 5.4 deals with the role of a variant in the scope of its variation
point. More precisely, it defines a substitution rule for the variants P and Q, if they
are used as direct variants of a variation point P ⊕i Q.

Theorem 5.4 (Substitution of Variant Identifiers). Let (EP , P) and (EQ, Q) be two
PF-CCS programs where the sets of process identifiers appearing in the equations EP
and EQ are disjoint. Further, let the alternative combination of two systems (EP , P)
and (EQ, Q) be defined as (ES , S), where

• ES = EP] EQ,

• S
def
= P ⊕i Q, and

• ⊕i is a fresh variants operator.

Then, we can substitute every occurrence of P and Q in the equations of ES by the
term P ⊕i Q.

205

5. Restructuring PF-CCS Software Product Families

Proof. Both systems P and Q appear as variants in a variation point P ⊕iQ. Since
P and Q might be recursive process specifications, both might contain their main
process identifiers again within their equations EP and EQ, respectively. The process
identifier P is only substituted on the left-hand side of the variation point, while
Q is only substituted on the right-hand side (due to the disjointness of the process
identifiers). Additionally, every substitution P⊕iQ, which is made for P or Q, refers
to the same variation point ⊕i. Consequently, depending on the configuration for
⊕i, either (i) for a configuration θi = L, all substitution terms P ⊕i Q are set to P
and the left-hand side of the equation for the variation point is selected, or (ii) for
θi = R, all substitution terms P ⊕i Q are set to Q, while now the right-hand side
of the variation point is selected. In both cases, the remaining terms contain the
correct process identifiers P or Q at the appropriate sides of the variation point.
Note that the unselected side of the equations always contains the wrong process
identifiers. But since the terms of this side are not selected anyway, the remaining
system is still correct.

The correctness of the previous theorem depends crucially on the disjointness of
the process identifiers in both programs. This ensures that when the programs are
combined as variants of the variation point P ⊕i Q, the process identifier P only
appears on the left-hand side, and Q only on the right-hand side of ⊕i. Thus, the
identifiers P and Q can everywhere be substituted by P ⊕iQ, and any configuration
the entire program will always result in the desired program. The example in the
next section will motivate why and in which situations this theorem is beneficial for
the computation of common parts.

5.2. Calculating Commonalities: A Detailed Example

In this section we give a detailed, guided example of how the algebraic laws of the
previous section can be applied in order to compute common parts of similar PF-
CCS systems. Thereby—anticipating the definition of a common part as given in
Section 5.3—we use the concept of common parts already in this example, without
having defined it precisely beforehand. However, in this case we can accept this
style since the example is understandable in its own rights and in particular greatly
eases the understanding of the upcoming definition of common parts.

We use again the example of a family of windscreen wipers—yet in an adjusted
version compared to the example introduced in Section 4.3. More precisely, in our
example we consider two version of similar windscreen wiper systems and compute
their “maximal” common part. As a prerequisite for the calculation both wiper
systems are combined as variants of the same variation point. Then the distribu-
tive laws are applied in order to factor out common actions and (bisimilar) action

206

5.2. Calculating Commonalities: A Detailed Example

structures. Regarding the distributive laws, the goal is to restructure the product
family into a kind of normal form, in the sense of the normal form which we have
introduced in Chapter 2.2.3.2 for software product families in general. Recall, that
for constructing the normal form in Chapter 2.2.3.2 common parts which exist in
the variants of a variation point are factored out by applying the distributive law
in the appropriate direction, until all variants have no more common parts, and the
common parts form compound elements with the variation points from which they
were factored out. Thus, with respect to common parts, the goal of the calculation
that we perform in the following example is to bring the respective windscreen wiper
family in its normal form (regarding the application of the distributive laws).

We consider a simple version of a windscreen wiper FWS (F ront W iper Standard)
for the front window of a car. It offers three different operation modes, where the
behavior in each mode is represented by the three processes FWS , Intv , and Perm.
They describe the situations where the windscreen wiper

1. is not operating but waiting in its initial mode (FWS),
2. operates with intermittent periodic stops (Intv),
3. operates continuously without intermittent breaks (Perm).

The corresponding PF-CCS specification of FWS is shown in Figure 5.4. Initially,
the operation modes are triggered by the actions off , intv , and permOn , respectively.
In Perm, the system executes constantly single wiper arm movements (action wipe)
unless ceased by an off action. The interval mode (Intv) behaves similarly but adds
a rest period between successive wiper arm movements, which is realized by shared
communication of the action wait between the restricted, parallel processes Intv
and Nil . In addition, the wiper offers a second interval mode Intv2 with a shorter
interval period, which can be activated only consecutively from the basic interval
mode Intv . This kind of interval control corresponds to the one typically found in
cars with a turn-switch for the wiper functionality. In all three modes, an off action
sets the wiper back to its starting behavior specified by the initial process FWS .

Another version of a windscreen wiper for the front window offers similar func-
tionality as FWS , but includes some more comfort features, such as automatically

FWS
def
= off .FWS + intv .Intv + permOn .Perm

Intv
def
= wipe .WaitL+ intv2 .Intv2 + off .FWS

WaitL
def
=

(

wait .wait .Intv ‖ wait .wait .Nil
)

\
{

wait
}

Intv2
def
= wipe .Wait + intv .Intv

Wait
def
=

(

wait .Intv2 ‖ wait .Nil
)

\
{

wait
}

Perm
def
= wipe .Perm + off .FWS

Figure 5.4.: Specification of a front screen wiper FWS , standard version.

207

5. Restructuring PF-CCS Software Product Families

FWC
def
= off .FWC + intv .Intv + permOn .Perm

Intv
def
= wipe .WaitL+ hvyRn.Fast + off .FWC

WaitL
def
=

(

wait .wait .Intv ‖ wait .wait .Nil
)

\
{

wait
}

Fast
def
= wipe .Wait + off .FWC + ltlRn.Intv + permOn .Perm

Wait
def
=

(

wait .Fast ‖ wait .Nil
)

\
{

wait
}

Perm
def
= wipe .Perm + off .FWC

Figure 5.5.: Specification of a front screen wiper FWC with comfort features.

adjusting wiper arm speed for the interval mode, matching the current rain intensity.
Whenever the wiper is in interval mode and heavy rain is detected—represented by
the input action hvyRn—the wiper arm adjusts its wiper arm speed automatically
and starts with fast interval wiper arm movements, as specified by the process Fast .
As soon as the rain intensity decreases—represented by the input action ltlRn—the
wiper switches back to regular interval mode. This more comfortable version of the
windscreen wiper is realized by the process FWC (F ront W iper Comfort), whose
entire PF-CCS specification is given in Figure 5.5.

Now, the question is what are the commonalities of both wiper variants? What are
their common parts and how can we represent or even calculate them? Intuitively—
simply by inspecting the corresponding PF-CCS program for FWS and FWC—we
guess that both versions have at least the behavior of the permanent wiping mode in
common. In addition, their interval modes seem to be similar, however, already here
we probably can not specify the commonalities exactly anymore. We will address
this challenge in the following and calculate the common parts of both versions in a
formal way by applying the introduced algebraic laws.

In order to determine the common parts we join both wiper versions to form a family
of front wipers. Therefore, we combine the corresponding start processes FWS and
FWC as alternative variants under the same variation point, which we label with a
fresh number, i.e. a number which is not already taken for a variation point in the
programs of FWS or FWC . Since both systems FWS and FWC do not contain any
variation points, yet, the new variation point is labeled with number 1.

FWFam
def
= FWS ⊕1 FWC (5.1)

The Equation 5.1 together with the PF-CCS specifications of the two processes FWS
and FWC constitutes the program (E ,FWFam) which is the basis for our further
calculation. Thereby, the set E of equations is given as the union of the equations
of FWS and FWC . However, before combining both sets of equations we have to
ensure that the process identifiers of both programs do not (accidently) overlap. In
this example, we therefore index every clashing identifier of the specification of FWC
with the letter ’c’. Note that overlapping is only problematic for process identifiers,

208

5.2. Calculating Commonalities: A Detailed Example

not for actions, since we assume that actions of the same name in different PF-CCS
programs actually represent the same actions. In particular, this means that actions
are not subject to renaming due to name clashes. The entire program (E ,FWFam),
where all name clashes are resolved, is shown in Figure 5.6a.

The calculation for determining the common parts is given in detail in Figure 5.7.
The calculation restructures Equation 5.1 by applying the distributive laws (The-
orems 5.2 and 5.3) in the direction from right to left, i.e. “pushing” the variation
points deeper into the term hierarchy and thereby factoring out common parts. We
consider it step by step. Line (1) to (2) is a simple expansion of the original process
constants according to the defining equations of FWS and FWC given in Figure
5.6a. Line (2) to (3) is the substitution of the processes FWS and FWC by the
term FWS ⊕1 FWC according to Theorem 5.4. Here, Theorem 5.4 is applicable
since both wiper versions are combined as variants of the same variation point ⊕i.
As we will perform the same substitution again going from line (5) to (6), from
now on we directly expand the process definitions using the equations of Figure
5.6b, as in these equations the substitution of FWS and FWC by FWS ⊕1 FWC
is already performed. Line (3) to (4) shows the extraction of the common process
off .(FWS ⊕1 FWC) out of a nondeterministic sum according to Theorem 5.2. Re-
garding Line (4) we can not straight away extract any further processes by means of
the distributive laws, as the process identifiers are formally (syntactically) different.
However, semantically the processes Perm and Permc are bisimilar and thus equiv-
alent. We see the bisimulation easily when considering the corresponding process
definitions for Perm and Permc shown in Figure 5.6b. Since (strong) bisimulation is
a (strong) congruence relation for all operators of CCS [Mil95] and PF-CCS, we can
substitute both processes for each other. W. l. o. g. we substitute Permc by Perm,
and can now directly apply the distributive law for + (Theorem 5.2) resulting in the
term shown in Line (5). For the remaining term intv .

(

Intv ⊕1 Intv c
)

we can extract
the common initial action intv according to Theorem 5.1, resulting in Line (6). Since
the processes Intv and Intv c are not bisimilar, we expand them according to their
process definitions shown in Figure 5.6b. Another application of the distributive law
of + in Line (7) allows us to extract the common process off .(FWS ⊕1 FWC) from
both interval processes. Since the processes WaitL and WaitLc are not bisimilar we
can not factor out any further common parts using the distributive laws.

In summary, the calculation yields the following result.

FWS ⊕1 FWC = off .(FWS ⊕1 FWC) + permOn .Perm + (5.2)

intv .
(

off .(FWS ⊕1 FWC) +
(

(wipe .WaitL+ intv2 .Intv2)

⊕1 (wipe .WaitL+ hvyRn .Fast)
)

)

209

5. Restructuring PF-CCS Software Product Families

FWFam
def
= FWS ⊕1 FWC

FWS
def
= off .FWS + intv .Intv + permOn .Perm

Intv
def
= wipe .WaitL + intv2 .Intv2 + off .FWS

WaitL
def
=

(

wait .wait .Intv ‖ wait .wait .Nil
)

\
{

wait
}

Intv2
def
= wipe .Wait + intv .Intv

Wait
def
=

(

wait .Intv2 ‖ wait .Nil
)

\
{

wait
}

Perm
def
= wipe .Perm + off .FWS

FWC
def
= off .FWC + intv .Intv c + permOn .Permc

Intv c
def
= wipe .WaitLc + hvyRn.Fast + off .FWC

WaitLc
def
=

(

wait .wait .Intv c ‖ wait .wait .Nil
)

\
{

wait
}

Fast
def
= wipe .Waitc + off .FWC + ltlRn .Intv c

+ permOn .Permc

Waitc
def
=

(

wait .Fast ‖ wait .Nil
)

\
{

wait
}

Permc
def
= wipe .Permc + off .FWC

(a) Program without substitution.

FWFam
def
= FWS ⊕1 FWC

FWS
def
= off .(FWS ⊕1 FWC) + intv .Intv + permOn .Perm

Intv
def
= wipe .WaitL + intv2 .Intv2 + off .(FWS ⊕1 FWC)

WaitL
def
=

(

wait .wait .Intv ‖ wait .wait .Nil
)

\
{

wait
}

Intv2
def
= wipe .Wait + intv .Intv

Wait
def
=

(

wait .Intv2 ‖ wait .Nil
)

\
{

wait
}

Perm
def
= wipe .Perm + off .(FWS ⊕1 FWC)

FWC
def
= off .(FWS ⊕1 FWC) + intv .Intv c + permOn .Permc

Intv c
def
= wipe .WaitLc + hvyRn .Fast + off .(FWS ⊕1 FWC)

WaitLc
def
=

(

wait .wait .Intv c ‖ wait .wait .Nil
)

\
{

wait
}

Fast
def
= wipe .Waitc + off .(FWS ⊕1 FWC) + ltlRn .Intv c

+ permOn .Permc

Waitc
def
=

(

wait .Fast ‖ wait .Nil
)

\
{

wait
}

Permc
def
= wipe .Permc + off .(FWS ⊕1 FWC)

(b) Substitution of FWS and FWC by FWS ⊕1 FWC according to Theorem 5.4.

Figure 5.6.: The PF-CCS program (E ,FWFam) specifying a family of front screen
wipers. The program is the starting point for the calculation of the
common parts of the two front wiper variants. Figure (b) shows the
version of (a), where the process identifiers FWS and FWC are already
substituted with the term FWS ⊕1 FWC according to Theorem 5.4.

210

5.2. Calculating Commonalities: A Detailed Example

(1) FWFam
def
= FWS ⊕1 FWC

(2) =
(

off .FWS + intv .Intv + permOn .Perm
)

⊕1
(

off .FWC + intv .Intv c + permOn .P ermc

)

(3)
Th5.4
=

(

off .(FWS ⊕1 FWC) + intv .Intv + permOn .Perm
)

⊕1
(

off .(FWS ⊕1 FWC) + intv .Intv c + permOn .P ermc

)

(4)
Th5.2
= off .(FWS ⊕1 FWC) +

(

(

intv .Intv + permOn .Perm
)

⊕1
(

intv .Intv c + permOn .P ermc

)

)

(5)
Perm≈Permc; Th5.2

= off .(FWS ⊕1 FWC) +
permOn .Perm +
(

intv .Intv ⊕1 intv .Intv c

)

(6)
Th5.1
= off .(FWS ⊕1 FWC) +

permOn .Perm +
intv .

(

Intv ⊕1 Intv c
)

(7) = off .(FWS ⊕1 FWC) +
permOn .Perm +

intv .
(

(

wipe.WaitL+ intv2 .Intv2 + off .(FWS ⊕1 FWC)
)

⊕1

(

wipe .WaitLc + hvyRn .Fast + off .(FWS ⊕1 FWC)
)

)

(8)
Th5.2
= off .(FWS ⊕1 FWC) +

permOn .Perm +

intv .
(

off .(FWS ⊕1 FWC) +
(

(wipe .WaitL+ intv2 .Intv2) ⊕1

(wipe .WaitLc + hvyRn .Fast)
)

)

Figure 5.7.: Calculation of the commonalities of FWS and FWC .

211

5. Restructuring PF-CCS Software Product Families

This result provides a new representation of the product family. It means that in or-
der to obtain one of the products FWS or FWC , instead of performing the configura-
tion selection directly between these two processes using the variation point FWS⊕1

FWC , we can likewise select between the variants (wipe .WaitL + intv2 .Intv2) and
(wipe .WaitL+hvyRn .Fast) of the variation point ⊕1 embedded in the process struc-
ture shown on the right side of Equation 5.2. Note that the (same) variation point
⊕1 offers different pairs of variants, depending on the context/position in which it
appears in the term structure. In the representation on the left side of Equation 5.2,
the variation point is the uppermost token in the term structure, while in the rep-
resentation on the right side of Equation 5.2, the variation point is embedded into a
greater process term structure. It is the combination of the different pairs of variants
together with the position of the variation point ⊕1 itself that guarantees that the
overall result of configuring the right side of Equation 5.2 will be the same as when
configuring the left side for the same configuration. In particular, a configuration
θ with θ1 = L (respectively θ1 = R) will yield a product equivalent (bisimilar) to
FWS (respectively FWC), independently from the representation (left or right side
of Equation 5.2) which we use to perform the configuration.

In the representation shown on the right side of Equation 5.2, the variation point
⊕1 is pushed as far into the term hierarchy as possible, thereby extracting the
common part of both wiper variants. In this position, the variation point shows
the difference between both products in its most “exact” from. In particular, the
difference between both products can not be any “smaller” since both variants have
no common part anymore. We see this easily since the variation point can not
be pushed further into the term hierarchy by means of the distributive laws. The
actual differences themselves, i.e. the way how both products differ, are precisely
characterized by the two variants (wipe .WaitL + intv2 .Intv2) and (wipe .WaitL +
hvyRn.Fast). In order to visualize the differences better, we define a new process
Diff as an abbreviation of this variation point.

Diff
def
= (wipe .WaitL+ intv2 .Intv2) ⊕1 (wipe .WaitL+ hvyRn .Fast) (5.3)

In contrast to their difference, the common behavior of both wiper processes is repre-
sented by the process term which is pushed out during the calculation by the applica-
tion of the distributive laws. In Equation 5.2 this is that part of the defining equation
which is parsed until the variation point (wipe .WaitL+intv2 .Intv2)⊕1 (wipe .WaitL+
hvyRn.Fast) is reached. A substitution of the process FWS ⊕1 FWC by FWFam
according to our initial constant definition (Equation 5.1), and the usage of the pre-
viously defined process Diff yields a representation which shows the common part
more clearly:

FWFam = off .FWFam + permOn .Perm + (5.4)

intv .
(

off .FWFam +Diff
)

212

5.2. Calculating Commonalities: A Detailed Example

FWFam
def
= off .FWFam + permOn .Perm + intv .

(

off .FWFam +Diff
)

Diff
def
= (wipe .WaitL+ intv2 .Intv2) ⊕1 (wipe .WaitLc + hvyRn.Fast)

Perm
def
= wipe .Perm + off .FWFam

Intv
def
= wipe .WaitL + intv2 .Intv2 + off .FWFam

WaitL
def
=

(

wait .wait .Intv ‖ wait .wait .Nil
)

\
{

wait
}

Intv2
def
= wipe .Wait + intv .Intv

Wait
def
=

(

wait .Intv2 ‖ wait .Nil
)

\
{

wait
}

Intv c
def
= wipe .WaitLc + hvyRn.Fast + off .FWFam

WaitLc
def
=

(

wait .wait .Intv c ‖ wait .wait .Nil
)

\
{

wait
}

Fast
def
= wipe .Waitc + off .FWFam + ltlRn .Intv c + permOn .P ermc

Waitc
def
=

(

wait .Fast ‖ wait .Nil
)

\
{

wait
}

Permc
def
= wipe .P ermc + off .FWFam

Figure 5.8.: Restructured version of the product family of front screen wipers with
a maximal degree of common parts.

The common part of two PF-CCS processes is the initial common behavior of both
processes, until the first behavioral differences are encountered. The common part
of the two front wipers comprises the entire process FWFam as defined in Equation
5.4 until the process Diff is executed. Thus, both derivable products—the system
FWS corresponding to the projection of FWFam according to a configuration θ with
θi = L, and system FWC corresponding to θi = R—share the common behavior of

• remaining in an initial mode (FWFam) until another action than the action off
is performed,

• being capable of performing permanent wiper arm movements as described by the
process Perm , initially triggered by the action permOn , and

• offering interval modes, which are for both products initiated by the action intv
and suspended by the action off , leading again to the initial mode FWFam .

The entire restructured representation of the product family can be derived from
the result of the calculation. Instead of the original result (Equation 5.2) we use
the equivalent version shown in Equation 5.4 which (i) uses the substitution of
FWS ⊕1 FWC by the constant FWFam , and which (ii) shows the differences more
illustratively using the process Diff as defined in Equation 5.3. This equation to-
gether with the required original process definitions of Figure 5.6a constitute the
entire restructured version of our product family. It is shown in Figure 5.8. Note
that it is not necessary to include the process Permc, as we have seen that Permc

is bisimilar (and congruent) to the process Perm and thus can be replaced by Perm
throughout the entire program. However, in order to improve the comprehensability
of Figure 5.8 we use both processes in the program.

213

5. Restructuring PF-CCS Software Product Families

Let us briefly recapitulate the calculation. It confirms what we initially have al-
ready expected, that (i) both wipers can perform the same functionality of wiping
permanently, and that (ii) their behaviors in the interval modes are similar, but not
identical. However, while outside the PF-CCS framework we are not able to specify
this commonality formally, in PF-CCS we can not only specify the commonalities,
but also calculate them in a schematic way based on well-defined laws. Certainly,
the calculation of commonalities cannot be performed in a completely automated
fashion. Similarly to a calculation in arithmetic, the calculation has to be performed
in a guided way. However, compared to the situation without PF-CCS, we now can
perform the restructuring according to formal rules, which allow to proof the cor-
rectness of restructuring operations. Thus, PF-CCS gives the basis to reason about
a product family, and especially the commonalities and differences of its products
in a formal way using formal methods.

5.3. Common Parts

The example in the preceding section has given us the right intuition for common-
alities between products, and has also sketched a rudimentary procedure of how
a calculation can take place. However, we have not yet precisely defined what a
common part actually is. We will do so in the following.

Although we use the term representation of a PF-CCS program in order to perform
the restructuring procedure, we actually define the common part of an arbitrary
set of configurations in terms of a PF-LTS (representing the configured-transitions
semantics of a product family). The conceptual structure of a PF-LTS, where the
transitions are labeled with a set of configurations indicating when the transition
is present, allows for a straight-forward definition of the common parts of a set
a configurations. The definition is based on the simple idea that two (or more)
configurations have a transition in common, if both (all) configurations are elements
of the set of configuration labels of the transition. This allows to represent the
common part of a set of products as a projection of the PF-LTS representing the
entire product family. More precisely, the common part of a set of products is the
projection of the product family which discards all those transitions (and states)
that do not exist in all products.

In order to express this formally we introduce a slightly adjusted concept of pro-
jection. It extends the concept of projection as introduced in Definition 3.20 (cf.
Chapter 3.2.3, Page 142) to deal with sets of configurations, instead of single con-
figurations only.

214

5.3. Common Parts

Definition 5.1 (Projection of a PF-LTS According to a Set of Configurations).
Let T = (S,A, {==⇒α |α ∈ A}, σ) be a PF-LTS (cf. Definition 3.18), and C =
{θi : θi ∈ {R,L, ?}n, i ∈ N} be a set of fitting configurations. The projection
ΠC(T) of T according to C is defined as the PF-LTS

ΠC(T) = (SC , A, {==⇒C
α |α ∈ A}, σ)

where

• ==⇒C
α=

{

s
α,L′

===⇒ s′ : (s
α,L
==⇒ s′ ∈ ==⇒α) ∧ (L′ = {ν ∈ L|∀θi ∈ C : θi v ν})

∧ L′ 6= ∅
}

• SC ⊆ S is the set of all states which are reachable from σ with respect to the
transition relation ==⇒C

α ,
• A is a set of communication actions,
• and σ ∈ S is the start state.

For a singleton set C containing only one complete configuration this kind of pro-
jection is equivalent to the original projection as introduced in Definition 3.20 (cf.
Chapter 3.2.3, Page 142). Similarly to the original projection, this extended pro-
jection handles complete and incomplete configurations. However, while we have
applied the original projection in Chapter 3 only with complete configurations in or-
der to derive single products, we use the new kind of projection also with incomplete
configurations, since we are not only interested in the common parts of complete
products, but also in the common parts of sub-families (which still contain variation
points themselves).

The transition relation which is preserved by the kind of projection of Definition 5.1
comprises only those transitions which actually exist in all specified configurations
of C, while all other transitions are discarded. Regarding a single variation point
⊕i, this kind of projection performed on the PF-LTS representing the configured-
transitions semantics of the variation point allows to characterize the common part
of its variants. More precisely, the projection of a PF-LTS [[P ⊕i Q]]CT according
to a configuration set C = {θ, π}, where θi = L and πi = R, yields the PF-LTS
which describes the common behavior of both variants of this particular variation
point ⊕i. This idea can be extended from single variation points to entire product
families, which results in a definition of the common part of an entire product family
for an arbitrary set of configurations. Thereby, it makes only sense to talk about
the common part of a process which represents a true product family, i.e. which
contains at least one variation point. In this light, the following definition defines
the notion of common part for such a product family.

Definition 5.2 (Common Part of a Set of Configurations). Let Prog = (E , P)
be a product family containing n variation points. Given a set C = {θi : θi ∈
{R,L, ?}n, i ∈ N} of fitting configurations, we call the PF-LTS

ΠC([[Prog]]CT)

a common part of the configurations in C w. r. t. the product family Prog.

215

5. Restructuring PF-CCS Software Product Families

Although we have based the definition of common parts of a product family on
the configured-transitions semantics, the concept of common parts can be directly
transfered to the unfolded semantics, and defined in terms of the unfolded seman-
tics, too. However, we have preferred the definition using the configured-transitions
semantics, as it is the semantics which will be usually used “in practice”.

The common part of a set of configurations C is again a product family, i.e. the
common part itself can still contain variable parts and variation points which are not
configured, yet. Recall the front wiper example of the previous section (cf. Figure
5.8). In this example, the common part itself does not contain variation points
anymore. However, this is not necessarily the case. Assume that the permanent
wiping can be stopped not only by the driver by operating the turn switch (action
off), but optionally also by the car itself whenever the car is parked and the engine
is turned off (action engOff). Such a behavior is realized by the adjusted process
Perm, which itself contains a second variation point ⊕2.

Perm
def
= wipe.Perm + off .FWS +

(

Nil ⊕2 engOff .FWS
)

Using this new version of Perm (and of Perm, respectively) we can perform the
same calculation as shown in Figure 5.7, and obtain the updated process Perm as
part of the commonalities of both wiper variants like in Figure 5.8. However, since
the updated process Perm now contains a variation point itself, i.e. variation point
⊕2, the common part now is a sub-family.

While we have defined common parts in terms of the semantic structure (PF-LTS)
of a PF-CCS product family, the example in the preceding section shows that the
commonalities between variants can be determined directly from the corresponding
PF-CCS program representing the product family. According to Definition 5.2,
the common part—being a sub-system of the original PF-LTS— “ends” in states
whose incoming transition are labeled with a configuration set containing all relevant
configurations, while the labels on any outgoing transition do not contain all relevant
configurations anymore. Since the SOS rules for the variants operator (Figure 3.4b,
Page 128) are the only rules which change the transition labels, such states can only
be constructed as a consequence of parsing a subterm of the entire PF-CCS program
which contains a variants operator. When determining the common part for a set
C of configurations, a certain set of variation points is decisive in order to clearly
specify this set C. The end of the common part of the configurations in C is reached
in all states of the corresponding PF-LTS, which are constructed when the last of
the decisive variants operators is parsed for the first time in the term hierarchy and
the corresponding SOS rule is applied, respectively. Altogether, this gives us the
connection between the formal definition of common parts based on a PF-LTS and
its representation as a PF-CCS program. Using the PF-CCS representation, the
common part of a set C of configurations starts with the start process and ends
when the last decisive variants operator is parsed in the term hierarchy for the first

216

5.3. Common Parts

time. Coming back to the example in the preceding section, this now explains why
we define the process shown in Equation 5.4 (Page 212) as a common part of both
wiper variants.

The size and the structure of the common part of a set of configurations crucially
depends on the representation of the product family which we use to determine
the commonalities. In particular, the common part of a set of configurations is not
unique for a product family. Recall the calculation of our example from the previous
section shown in Figure 5.7. According to Definition 5.2, a common part of the two
variants FWS and FWC using the initial representation (Line 1 in Figure 5.7) is
given by

Π{〈L〉,〈R〉}([[FWS ⊕1 FWC]]CT)

However, constructing the corresponding PF-LTS shows that this common part
consists only of the single state (FWS ⊕1 FWC , 〈?〉), since already the outgoing
transitions from this initial state of the PF-LTS are labeled with either 〈L〉 or 〈R〉,
but not with both. Hence, no required outgoing transition exists for the start state,
as all of them are discarded by the projection. In contrast, if we consider the common
part of the same set of configurations using the representation which is the result of
the restructuring , we get a common part given by

Π{〈L〉,〈R〉}([[FWFam]]CT)

where the process FWFam is specified as in Figure 5.8 (Page 213). This common part
is obviously different as the construction of the corresponding PF-LTS [[FWFam]]CT

clearly shows. Here, the splitting of the transitions into some transitions labeled
with 〈L〉 and 〈R〉 happens only after the application of some other SOS rules, finally
caused by the SOS rules for the variants operator when parsing the subprocess

(wipe .WaitL+ intv2 .Intv2) ⊕1 (wipe .WaitL+ hvyRn .Fast)

shown in Line 2 of Figure 5.8.

Depending on the concrete representation which we use for a product family, the
common part of a set of configurations varies. However, the common parts (stem-
ming from different representations of the same product family) for the same set of
configurations are related. Consider again the calculation shown in Figure 5.7 (Page
211). Each of the lines (2), (4), (5), (6), and (8) shows another representation of
the same product family, where each one contains a common part. Following the
calculation, we observe that the common part becomes “larger” from line to line, i.e.
the common part comprises more and more processes when we compare the respec-
tive representations. In fact, processes which are already in the common part in one
line are preserved in the common part in the following line, while the common part
grows by adding further processes. Thereby, the “size” of the common part, i.e. the
degree of commonalities, is determined by the nesting levels of the relevant variants

217

5. Restructuring PF-CCS Software Product Families

operators in the term hierarchy. This implies the existence of an ordering among
the common parts of a set of configurations, and in particular suggests the notion
of a greatest common part of a set of configurations. Since we perform the calcu-
lation of the greatest common part directly on a PF-CCS program we provide the
characterization of the greatest common part also in terms of a PF-CCS program,
and not on basis of the corresponding semantic domain, i.e. a PF-LTS.

Definition 5.3 (Representation Showing the Greatest Common Part). Let Prog =
(E , P) be a PF-CCS program representing a product family containing n variation
points, and C = {θi : θi ∈ {R,L, ?}n, i ∈ N} be a set of fitting configurations. We
say that Prog is the representation showing the greatest common part of C w. r. t.
the corresponding product family, if we cannot apply any further distributive laws
(Theorems 5.1 to 5.3) to the set of equations E in order to factor out a variation
point relevant for C.

The ordering on the representations of the common parts of a set C of configurations
can be observed on the corresponding PF-LTSs, too. Let Prog1 and Prog2 be two
representations of the same product family, where Prog2 is derived from Prog1 by
factoring out more common parts using the distributive laws. Then, the PF-LTS
representing the common part according to representation Prog1 is the “initial” part
of the PF-LTS representing the common part according to Prog2. We illustrate this
using the example of the PF-LTSs shown in the uppermost line of Figure 5.3 on Page
201. The effect of factoring out the common part (here by applying the distributive
law for the + operator) corresponds to changing from the PF-LTS shown in Figure
5.3b to the one shown in Figure 5.3a. While all outgoing transitions from the initial
state in Figure 5.3b have configuration labels which have concrete selections for the
variants operator ⊕i, the initial state in Figure 5.3a provides the transition α, ν
whose transition label ν does not yet require a selection for one of the variants of
the variants operator ⊕i, as this selection decision is postponed to a successor of
the state (P ′, ν). This means that while the common part of the variants of the
variation point ⊕i in Figure 5.3b is only the initial state, the common part of the
same variation point in Figure 5.3a is given by the initial state, the transition α, ν and
the state (P ′, ν). In particular, the PF-LTS representing the common part in Figure
5.3b is an initial subsystem1 (modulo bisimulation) of the PF-LTS representing the
common part in Figure 5.3a. The situation is similar for the remaining distributive
laws. This means that by factoring out the common part using distributive laws, we
continually enlarge the PF-LTS which represents the common part, until we can no
longer apply any one of the distributive laws. Thus, in terms of the corresponding
PF-LTSs, the common parts (according to different representations) of a set C of
configurations are ordered in a subsystem1 relation. In particular, any PF-LTS
which represents a common part is a subsystem of the PF-LTS which is constructed
using the representation of the greatest common part.

1Let T1 = (S1,A,−→1, σ1) and T2 = (S2,A,−→2, σ2) be two PF-LTSs. We call T2 an initial

subsystem of T1 iff S2 ⊆ S1, −→2⊆−→1, and both system have the same start state, i.e. σ2 = σ1.

218

5.3. Common Parts

The ability to calculate the greatest common part of a set of configurations is the key
to establish the connection between the two different views unto a product family:
a view based purely on alternatives, i.e. emphasizing the information of the points
where products differ, and a view using common and optional parts, i.e. emphasizing
the information how products differ. While the “alternative” view corresponds to
the concept of variations points (represented by the variants operator of PF-CCS),
the “optional” view unto two variants is a special case of the alternative view,
where one variant completely includes the behavior of the other one. The ability to
calculate the greatest common part allows us to swap between both views arbitrarily,
since the knowledge of the greatest common part allows to represent two alternative
variants in a new form which consists of the common part of both, and those parts
which are specific for each product. In the special case where one of the specific
parts is Nil , we have the situation of optionality, where one variant comprises the
entire behavior of the other variant (which has exactly the behavior of the common
part) but additionally contains some extra behavior (the optional part), too. In a
component-based development paradigm, the situation of having a characterization
using such optional parts is extremely useful, as it allows to describe the differences
between products as separate entities in a modular way. In particular, this is the
basis to determine the atomic assets of which all products are built.

Let us close the chapter by emphasizing again the importance of the ability to
calculate behavioral commonalities of products in a formal way. Since the beginning
of the software crisis the idea of making use of the commonalities of programs and
specifications is central to software engineering. Beside McIllroy, Dijkstra expresses
this vision quite illustratively in the context of programs:

If a program has to exist in two different versions, I would rather not
regard (the text of) the one program as a modification of (the text of) the
other. It would be much more attractive if the two different programs
could, in some sense or another, be viewed as, say, different children
from a common ancestor, where the ancestor represents a more or less
abstract program, embodying what the two versions have in common.

Using our terminology, what Dijkstra calls the “common ancestor” matches exactly
what we define as the greatest common part of the behavior of a set of PF-CCS
processes. In this light, PF-CCS is an implementation of Dijkstra’s vision. However,
while Dijkstra’s vision is more concerned with the (formal) representation of a com-
mon part, regarding the maximization of reuse, the ability to calculate the greatest
common part in a schematic way is as important as the ability to specify it formally.
Only with such a formally founded calculation mechanism is it possible to make
use of a formal representation of the commonalities between variants in a realistic
application scenario. With PF-CCS we have implemented this idea of restructuring
as a central aspect beside the pure specification of commonalities.

219

CHAPTER 6

Conclusion and Future Work

In this chapter we briefly recapitulate the main contributions of this thesis, and
discuss them in the light of the challenges which we describe in the introduction
of this thesis. In addition, we discuss some general design decisions of our theory,
comprising for example the practical relevance of the PF-CCS framework, the rela-
tionship between PF-CCS and CCS, and the conceptual independence of product
family specific concepts from a concrete underlying formalism like CCS. Finally, we
present some of our ongoing and future work.

Contents

6.1. Discussion . 225

6.2. Future and Ongoing Work 228

221

6. Conclusion and Future Work

With this thesis we contribute to the theoretical foundation of software product
line engineering by (i) providing an axiomatization of general software product fam-
ily concepts, and by (ii) introducing a framework, consisting of the process algebra
PF-CCS and a multi-valued version of the modal µ-calculus, for the specification,
verification, and restructuring of product families which correspond to the opera-
tional functionality of a family of software-intensive, reactive systems. The aim of
the PF-CCS framework is to provide and demonstrate the fundamental concepts,
and not to be applied overnight in the current development process of an automo-
tive OEM. Accordingly, our work is a contribution to the theory of software product
family development, rather than to the challenges of putting fundamental software
product family concepts into practice. However, a conceptual and theoretical frame-
work as we provide it in this thesis is the indispensable basis for the development
of appropriate tools, a corresponding methodology, and the integration of software
product family practices into the software development process.

The contributions that we have made in this thesis can be summarized in the fol-
lowing four major ones:

• We identify and formalize the general characteristics and fundamental con-
struction concepts of software product families, independent of the concrete
realization of the product family. We do this by elaborating an axiomatization
of software product family concepts. Technically, the axiomatization is de-
fined as an algebraic specification (cf. Chapter 2) which describes the specific
operations, concepts, and laws of software product families in a formal way.

• We introduce the process algebraic framework PF-CCS (cf. Chapter 3) for the
specification of the behavior of a family of similar systems in an implementation
and platform independent way.

• We introduce the multi-valued modal µ-calculus mv -Lµ (cf. Chapter 4) which
is tailored to specify properties of product families in general, and in particular
of PF-CCS programs. Thereby, mv -Lµ properties can be evaluated using
existing multi-valued model checking techniques.

• We introduce concepts and techniques to restructure a PF-CCS program (cf.
Chapter 5). An important application of the restructuring concepts is to cal-
culate the greatest common part (cf. Definition 5.3, Page 218) of a set of
products.

The motivation for our approach, in particular for the PF-CCS framework, are chal-
lenges which have to be faced during the construction of complex, multi-functional
systems. In Chapter 1.3 we have described these challenges using the concrete
example of automotive systems and the automotive domain. Although these chal-
lenges become noticeable during practical system engineering, they stem from a lack

222

of fundamental, conceptual knowledge about the construction of software product
families. With our contributions we realize the properties and concepts which we
have identified in Chapter 1.2.1 as very relevant requirements for the improvement
of the current development of families of similar systems. In the following we discuss
the benefits of our contributions with respect to these requirements.

Benefit of the Axiomatization

With the axiomatization we formalize the fundamental concepts, and techniques that
represent the underlying construction principle behind the development of a set of
system as a software product family. In other words, the axiomatization defines
precisely what a product family actually is, by formalizing the specific concepts
and properties which hold in every software product family. In this sense, the
axiomatization represents a standardization of software product family concepts
which unifies the various notions of a software product family which exist in the
software product line community, and which is the basis for a precise terminology.

Due to the realization as an algebraic specification, we can understand the axioma-
tization as a precise characterization of the class of computation structures that are
“valid instances” of a software product family.

Moreover, although being given in an implementation-platform independent way,
the axiomatization still guides the construction of new concrete product families,
since it has an operational character in the sense that the axioms are all specified
according to the scheme of primitive recursion. This means that the axiomatiza-
tion can directly be implemented in a functional programming language such as for
example ML [MTH90], and thus serve as a template for implementations.

Benefit of PF-CCS and its Restructuring Concept

PF-CCS provides the concepts for representing and modeling the operational func-
tionality of families of software-intensive, reactive systems in a platform-independent
way, and represents a specification formalism that supports the concept of behav-
ioral variability in the deterministic sense of a software product family. Firstly, this
means that we can use PF-CCS to specify the behavior of a family of functionally
similar systems. For the automotive industry this offers completely new possibilities
for the specification of the behavior of families of automotive systems, as the speci-
fication of a family of similar behaviors is not possible with the current state of the
art in automotive software engineering.

PF-CCS allows to represent the connection between the operational behaviors of
similar systems, facilitating to develop the operational behavior of similar systems
in an coordinated way. In other words, PF-CCS provides all concepts to specify

223

6. Conclusion and Future Work

the operational behavior of a family of systems as a software product family. Due
to the restructuring concept of PF-CCS we can determine for a given PF-CCS
product family the common behavior of any (sub)set of its products. Thereby,
the ability to restructure a product family is the essential property in order to
work effectively with the commonalities of products. In fact, it is the fundamental
requirement to benefit from commonalities. However, the shape and the size of
a software product family are subject to frequent changes: new assets are added
or replaced, old assets are removed, entire product families have to be merged,
etc. These changes in the structure of a product family require techniques and
methods to determine the commonalities of products or sub-families of a software
product family at any time anew. As we have demonstrated in Chapter 5, the
restructuring concept of PF-CCS realizes such a calculation of common parts. The
idea of restructuring finally brings together the two “dual” views on the variability
of a PF-CCS software product family: the view based on alternative behavior, and
the view based on optional behavior. With the ability to calculate the greatest
common part between two alternative PF-CCS products we can represent each PF-
CCS product by a composition of the common part and a variant-specific part. This
means that PF-CCS is a specification technique in which both concepts, optionality
and alternativeness, can be used equally, since their relation is formally understood
and precisely defined for PF-CCS software product families.

In PF-CCS, the ability to determine common behavioral parts is the basis for the
realization of a reuse concept of operational functionality for families of similar sys-
tems. In particular, by the explicit separation between common parts and variant-
specific parts (i.e. the differences between products), the PF-CCS formalism facili-
tates a planned reuse of artifacts. PF-CCS provides the conceptual basis to reuse
(pieces of) implementation-independent, operational behavior. Instead of specifying
the behaviors of two similar products separately, as for example by two individual
CCS programs, PF-CCS facilitates to specify both products in an integrated way
as a single PF-CCS program, where the points in which both products differ are
explicitly modeled. In this scenario, reuse takes already place as part of the speci-
fication of the product family, since whenever a new variation point is added to an
existing PF-CCS program, parts of the existing program, i.e. the common parts of
the existing program and the new variants, are implicitly reused. With respect to
the development process this means that PF-CCS allows reuse of artifacts in a very
early stage of the development, long before implementation and platform specific
details are considered. As we have discussed in the introduction, this matches the
needs of industrial practice, since reuse is mainly functionality-driven, i.e. usually
functionality has to be reused, independently of its concrete implementation.

Benefit of the Multi-Valued modal µ-Calculus

The multi-valued version of the modal µ-calculus which we have introduced in Chap-
ter 4 allows to verify an entire PF-CCS product family, and to determine all those

224

6.1. Discussion

products of a product family that fulfill a certain property. So far, without the
multi-valued µ-calculus, regarding the operational behavior of a family of similar
systems, this question can only be answered by inspecting the products individu-
ally, since standard two-valued logics (e.g. µ-calculus, LTL) cannot be used to reason
about product families directly, as their semantics is only defined for regular Kripke
structures but not for PF-LTSs representing product families. Thus, our main con-
tribution in this context is to define a logic which operates directly on the model
of a product family, which consequently allows to reason about commonalities and
differences of the products, directly, and which most importantly yields not only
a true/false-result, but the set of configurations that fulfill the desired property.
Moreover, since the model of the product family is the central model in the PF-CCS
approach—the models of every product can be derived automatically from the prod-
uct family—it is essential to provide a logic that allows to reason about this central
model.

Regarding the practical application of the multi-valued µ-calculus, the evaluation
of formulae does not require new techniques or algorithms. As we have shown in
Chapter 4.2, the evaluation can be done using existing model checking techniques
which have to be adjusted only marginally. Since these techniques operate directly
on the model of the product family, they exploit commonalities between the products
for the verification.

6.1. Discussion

Operational Semantics of PF-CCS

The decision to provide an operational semantics for PF-CCS specifications was an
intentional step towards the practical applicability of PF-CCS. For the practitioner,
a central question is how to derive an implementation from the models that are
used in a model-based development process. With an operational semantics which
is given in terms of labeled transition systems (that can easily be understood as I/O-
automata), a PF-CCS specification is already very close to an implementation. In
fact, in a model-based development process it is a matter of generators to construct
a platform-specific implementation from that kind of transition systems which form
the semantic domain for the operational semantics of PF-CCS. As an alternative
to an operational semantics, we could have also defined the meaning of PF-CCS
programs by providing a denotational [ZLWL07] or an axiomatic semantics. Both
kinds of semantics are frequently found in the area of process algebras, in particular
for Hoare’s CSP, too. However, compared to an operational semantics, a denota-
tional semantics describes the effects of performing a PF-CCS program in terms of
mathematical objects, rather than defining a sequence of computational steps which

225

6. Conclusion and Future Work

reflect the execution of a PF-CCS program (like an operational semantics does). A
similar situation is given for an axiomatic semantics, which aims rather at deriving
new laws from existing axioms. In this light, an operational semantics is the clos-
est to an implementation as we can get, and thus is the most interesting kind of
semantics from a practical point of view.

Relationship between PF-CCS and CCS

With PF-CCS we have made the decision for one concrete process algebra, CCS.
This means that PF-CCS takes over the specific concepts of CCS, for example
synchronous communication, and consequently has to deal with all the specific chal-
lenges, concepts and problems of CCS. However, the question arises whether CCS
is necessarily required in order to realize the software product family concepts, or
whether others process algebras can also be the basis for a formalism like PF-CCS,
as well. It was this question that motivated us to specify software product family
concepts in a completely independent and self-contained way, using a mathemati-
cally solid approach: an axiomatization of software product family concepts, given
as an algebraic specification of the abstract data type SPF α representing a soft-
ware product family. With the axiomatization we have created a vehicle that allows
us to formally demonstrate that the software product family concepts implemented
in PF-CCS are independent of a concrete underlying process algebra—CCS in our
case—and that the software product family concepts can be combined with other
process algebras, like for example CSP, as well. Similarly, on basis of the axiomati-
zation we can show that product family concepts are independent of the choice for
synchronous or asynchronous communication.

The axiomatization characterizes the essential properties and concepts that consti-
tute a software product family in an implementation and paradigm independent
way, and specifies the fundamental requirements which any software product family
has to fulfill, independently of its concrete realization. In this light, the PF-CCS
framework is just one instance of a software product family that conforms to this ax-
iomatization. In particular, the axiomatization provides a formal way of falsification:
any formalism or modeling approach for which we can show that it violates one of
the axioms of the algebraic specification is not an instance of a software product fam-
ily formalism in our sense. In that sense the axiomatization represents a blueprint
for the integration of software product family aspects into existing formalisms and
modeling techniques.

With respect to the axiomatization, PF-CCS is a software product family approach.
The variants operator of PF-CCS matches exactly the variants operator as charac-
terized in the axiomatization. The remaining operators of the axiomatization are
realized by the CCS portion of PF-CCS, i.e. we realize

226

6.1. Discussion

• atomic assets, i.e. the function asset (Chapter 2.2.2), by the CCS concept of
process and (process) constant definitions,

• the composition operator ‖ (Chapter 2.2.2) by the composition operations ‖,
+, and action prefixing “.”, respectively, and

• the neutral element ntrl (Chapter 2.2.3, Page 34) by the idle process Nil .

In particular, for these CCS concepts and operations, we have shown in the Chapters
3 and 5 that they realize the corresponding operators of the axiomatization in a way
that respects the corresponding laws. If we compare other process algebras, for
example CSP, with CCS, we see that CSP provides equivalent operations (with an
agreeing semantics). Thus, an extension of CSP with the software product family
concepts is also possible, such that this extension offers all operations and respects
all laws required in the axiomatization, too. As the properties specified in the
axiomatization do not require any particular communication paradigm, it is also
possible to extend a specification technique based on asynchronous communication
with software product family concepts. In this light, the decision for CCS was not
mandatory.

Beside the “original” operators of CCS, PF-CCS provides only one more operator—
the variants operator—in order to realize the modeling of alternative variants. Here,
the question arises whether the variants operator is actually required as an addi-
tional, new operator, or whether we could have realized the concept of alternative
variants with existing CCS operators and mechanisms, too. In particular, since the
non-deterministic choice operator + represents also a kind of selection between dif-
ferent processes, can we “simulate” the variants operator by the non-deterministic
choice operator? The answer is no. The kind of choice between two alternative
variants which is represented by the variants operator is conceptually different to a
non-deterministic choice: While the selection for one variant of the variants operator
is always performed in the same way according to the corresponding configuration,
the selection for one process of a non-deterministic choice can vary. As we have
already discussed in detail in Chapter 3.2.2, in particular in the context of recur-
sive process definitions, this is a fundamental difference. Consider for example the
recursive program

P
def
= α.T ⊕1 β.T

T
def
= γ.P

If we chose one variant, say the right variant β.T , the intention is that in any
subsequent recursive pass of P we cannot undo the preceding configuration choice
R and suddenly select the left variant α.T . In contrast, the non-deterministic choice
operator does not guarantee such a property. Consider for example the process

P
def
= α.T + β.T

T
def
= γ.P

227

6. Conclusion and Future Work

While in a first round the left process α.T can be selected non-deterministically,
in a subsequent recursive entry the right process β.T can be selected. Clearly,
this contradicts the axiomatization of a software product family, in particular the
requirement that a configuration selection has to be deterministic, resulting always
in the same product, no matter when it is performed. Thus, the non-deterministic
choice operator cannot simulate the variants operator.

Moreover, the distributive laws which we require for a variants operator do not hold
for the non-deterministic choice operator. In Chapter 5.1.2 we have demonstrated
that the laws

α.P ⊕i α.Q = α.(P ⊕i Q) (cf. Theorem 5.1)

and

P ‖ (Q⊕i S) = (P ‖ Q)⊕i (P ‖ S) (cf. Theorem 5.3)

hold, while analogue laws for the non-deterministic choice, e.g. α.P +α.Q = α.(P +
Q), do not hold. Thus, the non-deterministic choice cannot “simulate” the variants
operator with respect to these laws, either. In summary, these fundamental concep-
tual differences between the concept of alternative variants in a software product
family and the concept of a non-deterministic choice suggest the existence of a vari-
ants operator as an additional, independent operator.

6.2. Future and Ongoing Work

Our future work focuses on improving the applicability of PF-CCS by providing
concepts to deal with, and verify large PF-CCS software product families. We
have already made a first step in this direction with the introduction of a general
abstraction concept [CGLT09] for software product families, which is in particular
applicable for PF-CCS product families, too. The abstraction formalism establishes
the theoretical basis to deal also with product families containing a high degree of
variability by reducing the state space as well as the sets of possible configurations
of a product family. We briefly introduce the abstraction concept in the following.

Abstraction Techniques for SPFs

As part of our ongoing work we focus on abstraction and refinement techniques for
software product families. Abstraction techniques improve the scalability of the PF-
CCS theory, but in particular also increase the practical applicability of verification
techniques such as multi-valued model checking.

228

6.2. Future and Ongoing Work

Usually, a PF-CCS software product family is a very large and comprehensive model
which comprises the behavior of all of its products. As we have seen, in our PF-
CCS approach, the product family is the central model for verification. However,
for the verification of properties we are not always interested in all aspects of the
entire product family in their very details, but very often can/want to abstract from
some parts of the product family. In particular with respect to multi-valued model
checking, abstraction is an effective remedy for the state explosion problem.

Abstraction techniques for two-valued transition systems usually base on the fact of
joining states and thereby decreasing the size of the abstract system. In contrast to
the two-valued setting, for a multi-valued system like a PF-CCS product family we
identify two dimensions of abstraction for the corresponding PF-LTS: Abstraction
by joining states of the PF-LTS as well as abstraction by joining configurations. In
[CGLT09], we have introduced an abstraction concept for multi-valued transition
systems which realizes these two dimensions. The abstraction yields an abstract
product family, which itself can be represented as a multi-valued Kripke structure
(i.e. a PF-LTS), and for which all model checking concepts apply in the same way
as for the concrete product family or any other multi-valued Kripke structure.

The abstract product family follows both an optimistic and pessimistic account
for each dimension of abstraction. The optimistic account corresponds to an over-
approximation of the system, in which all those configurations are considered in
which a transition may be present, while the pessimistic account corresponds to an
under-approximation, in which transitions must be present for a given set of config-
urations. We show that this notion of abstraction is conservative in the following
sense: The set of configurations which fulfill a property in a concrete system is
“between” the optimistic and pessimistic assessment of the abstract system. More-
over, whenever the optimistic and pessimistic model checking result differ, the cause
[CGLT09] for such an assessment is identified, allowing the abstraction to be refined
to eventually yield a result for which both the optimistic and pessimistic assessment
coincide.

From a practical point of view, the applicability of multi-valued model checking in a
realistic, industrial environment greatly benefits from such an abstraction concept,
as it allows to reduce the state space of the system dramatically. With respect to
future work in the area of abstraction, our next steps will be to apply the abstraction
concepts on a realistic case study in order to give a proof of concept, but also to
measure the gain for model checking when using the abstract system. Along with
such a case study we want to provide a complexity analysis of the multi-valued model
checking algorithm which we use for the evaluation of mv -Lµ-properties of PF-CCS
programs as introduced in Chapter 4.

Tool Support

Finally, another important aspect for our PF-CCS approach is to come up with an
appropriate tool support. Although we provide a solution for the specification, veri-

229

6. Conclusion and Future Work

fication and handling of software product families in this thesis on a conceptual level,
these concepts and techniques will not be able to enter industrial practice without
such an adequate tool support. In the context of PF-CCS this means to provide
(i) a tool for the specification of a PF-CCS product family, and (ii) to integrate this
tool with an implementation of a multi-valued model checking algorithm which is
appropriate for such PF-CCS specifications. However, since the aim and the con-
tribution of this thesis is to understand and model the idea and concepts behind
a software product family, we have delayed the construction of tools to our future
work.

230

APPENDIX A

Selected Algebraic Specifications

In the following we list the algebraic specifications of those sorts which are used and
imported in the specification of the sort SPF α, given by the algebraic specification
SOFTWAREPRODUCTFAMILY shown in Figure 2.11, Section 2.2.4 (Page 90).

The algebraic specifications of the sorts Bool, Nat, Seq α, Set α, and MSet α define
the fundamental sorts of boolean values, of natural numbers, of sequences, of (or-
dinary) sets, and of multiset (bags), together with their respective operations and
laws. They are given in Figures A.1, A.3, A.4, A.5, and A.6, respectively.

For the normal form which we introduce in Section 2.2.3.2 as part of the axiomatiza-
tion we require some auxiliary functions on multisets. These auxiliary functions are
specified as an extension to the specification MULTISET in the separate specification
EXT MULTISET shown in Figure A.7.

Within the specification SOFTWAREPRODUCTFAMILY we make use of a condi-
tional if function. Such a conditional function can itself be defined in an algebraic
fashion. The corresponding axiomatization is given in a stand-alone algebraic spec-
ification which is shown in Figure A.2.

231

A. Selected Algebraic Specifications

SPEC BOOL =
{ defines sort Bool,

true, false : Bool,
¬ : Bool → Bool, Prefix

∨ , ∧ : Bool,Bool → Bool, Infix

Bool generated by true, false,

not (true = false),

¬(true) = false,
¬(false) = true,
¬(¬(x)) = x,

(false ∨ x) = (x ∨ false) = x,

(true ∨ x) = (x ∨ true) = true,
(true ∧ x) = (x ∧ true) = x,

(false ∧ x) = (x ∧ false) = false
}

Figure A.1.: Algebraic specification of the sort Bool, representing boolean values.

SPEC CONDITIONAL IF =
{ defines sort If-then-else,
based on BOOL,

if : Bool, α, α → α, Prefix

if(true, x, y) = x,

if(false, x, y) = y,

}

Figure A.2.: Algebraic specification of the sort If-then-else, representing the condi-
tional if-function.

232

SPEC NAT =
{ defines sort Nat,
based on BOOL

0 : Nat,
succ : Nat → Nat,
pred : Nat → Nat,

iszero : Nat → Bool,
+ : Nat,Nat → Nat, Infix

∗ : Nat,Nat → Nat, Infix

=Nat : Nat,Nat → Bool, Infix

Nat generated by 0, succ,

iszero(0) = true,
iszero

(

succ(x)
)

= false,

pred
(

succ(x)
)

= x,

0 + y = y,

succ(x) + y = succ(x+ y),
0 ∗ y = 0,
succ(x) ∗ y = y + (x ∗ y),

(

0 =Nat 0
)

= true
(

succ(x) =Nat succ(y)
)

=
(

x =Nat y
)

}

Figure A.3.: Algebraic specification of the sort Nat, representing the natural num-
bers.

233

A. Selected Algebraic Specifications

SPEC SEQ =
{ defines sort Seq α,

based on BOOL, NAT

〈〉 : Seq α,

〈 〉 : α → Seq α, Mixfix

◦ : Seq α, Seq α → Seq α, Infix

iseseq : Seq α → Bool,
first, last : Seq α → α,

head, rest : Seq α → Seq α,

get : Seq α, Nat → Seq α,

Seq α generated by 〈〉, 〈 〉, ◦,

iseseq(〈〉) = true
iseseq(〈a〉) = false
iseseq(x ◦ y) = (iseseq(x) ∧ iseseq(y))

x ◦ 〈〉 = x = 〈〉 ◦ x
(x ◦ y)◦z = x◦(y ◦ z)

first(〈a〉 ◦ x) = a

last(x ◦ 〈a〉) = a

head(x ◦ 〈a〉) = x

rest(〈a〉 ◦ x) = x

get(〈〉, n) = 〈〉
get(〈a〉, 1) = a

¬iseseq(x) ⇒
(

get(x, n) = get
(

rest(x), pred(n)
)

)

}

Figure A.4.: Algebraic specification of the sort Seq α, representing sequences of el-
ements of sort α. The function getrealizes an indexed access to the
elements of the sequence, similarly to an array.

234

SPEC SET =
{ defines sort Set α,

based on BOOL,

∅ : Set α,
add : Set α, α → Set α,
del : Set α, α → Set α,

iseset : Set α → Bool,
iselem : Set α, α → Bool,

Set α generated by ∅, add,

iseset(∅) = true,
iseset

(

add(s, x)
)

= false,

iselem(∅, x) = false,
iselem

(

add(s, x), x
)

= true,
iselem(s, x) = true ⇒ iselem

(

add(s, y), x
)

= true,
x 6= y ⇒ iselem

(

add(s, y), x
)

= iselem(s, x),

del(∅, x) = ∅,
del

(

add(s, x), x
)

= del(s, x),
x 6= y ⇒ del

(

add(s, y), x
)

= add
(

del(s, x), y
)

,

add
(

add(s, x), y
)

= add
(

add(s, y), x
)

,
iselem(s, x) = true ⇒ add(s, x) = s,

}

Figure A.5.: Algebraic specification of the sort Set α, representing the axiomatiza-
tion of a set (of elements of the same sort).

235

A. Selected Algebraic Specifications

SPEC MULTISET =
{ defines sort MSet α,

based on BOOL,

∅ : MSet α,
add : MSet α, α → MSet α,
del : MSet α, α → MSet α,

iseset : MSet α → Bool,
iselem : MSet α, α → Bool,

MSet α generated by ∅, add,

iseset(∅) = true,
iseset

(

add(s, x)
)

= false,

iselem(∅, x) = false,
iselem

(

add(s, x), x
)

= true,
iselem(s, x) = true ⇒ iselem

(

add(s, y), x
)

= true,
x 6= y ⇒ iselem

(

add(s, y), x
)

= iselem(s, x),

add
(

add(s, x), y
)

= add
(

add(s, y), x
)

,

del(∅, x) = ∅,

del
(

add(s, y), x
)

=

{

s , x = y

add
(

del(s, x), y
)

, else

}

Figure A.6.: Algebraic specification of the sort MSet α, representing the axiomati-
zation of a multiset.

236

SPEC EXT MULTISET =
{ based on MULTISET,

{ }

: α → MSet α,
Represents the creation of singleton sets. The function
is simply an abbreviation for adding a single element to
the empty set.

∪ : MSet α, MSet α → MSet α, Default set union for multisets. Infix.

cmn : MSet α, MSet α → MSet α,

The operation cmn(s, t) returns (a mul-
tiset of) those elements which appear
in both multisets s and t. Thereby, the
number of occurences of single elements
is preserved, i.e. cmn({a, a, a}, {a, a})
yields {a, a}, and not only the singel-
ton set {a}.

diff : MSet α, MSet α → MSet α,

The operation diff(s, t) realizes a set mi-
nus operation on multisets, e.g. diff(s, t)
returns a multiset of those elements
which appear in s but not in t.

{

x
}

= add(∅, x) ,

∅ ∪ s = s ,

add(s, a) ∪ t = s ∪ add(t, a) ,
s ∪ t = t ∪ s ,

cmn(s, t) = cmn(t, s) ,
cmn(∅, s) = ∅ = cmn(t, ∅) ,

cmn
({

a
}

, add(t, b)
)

=

{ {

a
}

, a = b

cmn
({

a
}

, t
)

, a 6= b
,

¬iseset(s) ⇒
(

cmn
(

add(s, a), add(t, b)
)

= cmn
({

a
}

, add(t, b)
)

∪ cmn
(

s, del(add(t, b), a)
)

)

,

diff(∅, s) = ∅ ,

diff(s, ∅) = s ,

diff
(

add(s, a),
{

b
})

=

{

s , a = b

add
(

diff(s,
{

b
}

), a
)

, a 6= b
,

¬iseset(t) ⇒

diff
(

add(s, a), add(t, b)
)

= diff
(

diff
(

add(s, a),
{

b
})

, t
)

}

Figure A.7.: Extension of the algebraic specification of sort MSet.

237

APPENDIX B

Uniqueness of the Normal Form: Proofs

In this section we present the main part of the proof of Theorem 2.2 (Chapter 2.2.3.2,
Page 59), which states that the normal form realized by the function NF is unique.
The essential idea of this proof is the fact that the function norm always yields the
same term when applied to the left-hand and right-hand side of terms that represent
a constructor axioms, respectively. We have decided to source out the main part of
the proof to this chapter in the Appendix as it consists of five individual proofs which
are rather long, standard structural inductions and thus purely technical. Each of
the following proofs shows for the function norm one of the identities for the term
representations that are established by a single constructor axiom as introduced in
Theorem 2.2, respectively. Throughout the proofs we use the abbreviations lhs, and
rhs to denote the left-hand, and the right-hand side of the identities, respectively.
Numbers on top of equal signs refer to the laws of Section 2.2.3.2. The auxiliary
Lemmas B.1–B.6 which we need during some of the proofs are presented at the end
of this section.

Proof. We show the identity

norm(P ‖ ntrl) = norm(P)

of Theorem 2.2 by structural induction on the term structure of P .
Base cases:

239

B. Uniqueness of the Normal Form: Proofs

• P = ntrl: lhs: norm(ntrl ‖ ntrl)
2.12
= ntrl

rhs: norm(ntrl)
2.10
= ntrl

• P = asset(a): lhs: norm(asset(a) ‖ ntrl)
2.12
= reconv (sort (coll (asset(a))))
2.16
= reconv (sort ({asset(a)}))

sorting
= reconv (〈asset(a)〉)
2.37
= asset(a)

rhs: norm(asset(a))
2.11
= asset(a)

Inductive step:

• P = Q ‖ R: Showing: norm
(

(Q ‖ R) ‖ ntrl
)

= norm(Q ‖ R)
Induction hypothesis: norm(Q ‖ ntrl) = norm(Q) and

norm(R ‖ ntrl) = norm(R)
Case differentiation according to the cases of Law 2.12:

Case 1, norm(Q ‖ R) = ntrl:

lhs: norm
(

(Q ‖ R) ‖ ntrl
) 2.12

= ntrl

rhs: norm(Q ‖ R) = ntrl according to assumption.

Case 2, norm(Q ‖ R) 6= ntrl:
lhs: norm

(

(Q ‖ R) ‖ ntrl
)

= reconv (sort (coll (Q ‖ R)))
rhs: norm(Q ‖ R)
Case differentiation according to the 3 possible cases of Law 2.12:

Case i, (norm(Q) 6= ntrl) ∧ (norm(R) 6= ntrl):
lhs: reconv (sort (coll (Q ‖ R)))

rhs: norm(Q ‖ R)
2.12
= reconv (sort (coll (Q ‖ R)))

Case ii, (norm(Q) = ntrl) ∧ (norm(R) 6= ntrl):
lhs: reconv (sort (coll (Q ‖ R)))

2.17
= reconv (sort (coll (R)))

rhs: norm(Q‖R)
2.12
= reconv (sort (coll (R)))

Case iii, (norm(Q) 6= ntrl) ∧ (norm(R) = ntrl):
lhs: reconv (sort (coll (Q ‖ R)))

2.17
= reconv (sort (coll (Q)))

rhs: norm(Q‖R)
2.12
= reconv (sort (coll (Q)))

240

• P = Q⊕iR: Showing: norm
(

(Q⊕i R) ‖ ntrl
)

= norm(Q⊕i R)
Induction hypothesis: norm(Q ‖ ntrl) = norm(Q) and

norm(R ‖ ntrl) = norm(R)
Case differentiation according to the cases of Law 2.12:

Case 1, norm(Q⊕i R) = ntrl:

lhs: norm
(

(Q⊕i R) ‖ ntrl
) 2.12

= ntrl

rhs: norm(Q⊕i R) = ntrl according to the assumption of this case.

Case 2, norm(Q⊕i R) 6= ntrl:

lhs: norm
(

(Q⊕i R) ‖ ntrl
) 2.12

= reconv (sort (coll (Q⊕i R)))
Case differentiation according to the cases of Law 2.13:

Case i, norm(Q) = norm(R):
lhs: reconv (sort (coll (Q⊕i R)))

2.18
= reconv (sort (coll (Q)))

rhs: norm(Q⊕i R)
2.13
= norm(Q)

lhs = rhs according to Lemma B.1 (cf. Page 264).

Case ii, (norm(Q) 6= norm(R)) ∧
(

cmn
(

coll(P), coll(Q)
)

= ∅
)

:
lhs: reconv (sort (coll (Q⊕i R)))

2.18
= reconv (sort ({norm(Q)⊕i norm(R)}))

rhs: norm (Q⊕i R)
2.13
= norm(Q)⊕i norm(R)

lhs = rhs, since the lhs consists of a list with only one ele-
ment, that is equal to the rhs.

Case iii, (norm(Q) 6= norm(R)) ∧
(

cmn
(

coll(P), coll(Q)
)

6= ∅
)

:
lhs: reconv (sort (coll (Q⊕i R)))

2.18
= reconv (sort (coll (norm(Q⊕i R)))

rhs: norm (Q⊕i R)
lhs = rhs according to Lemma B.1 (cf. Page 264).

Proof. We show the identity

norm(P ⊕i P) = norm(P)

of Theorem 2.2 by structural induction on the term structure of P .
Base cases:

241

B. Uniqueness of the Normal Form: Proofs

• P = ntrl: lhs: norm(ntrl ⊕i ntrl)
2.13
= ntrl

since norm(ntrl)
2.10
= ntrl.

rhs: norm(ntrl)
2.10
= ntrl

• P = asset(a): lhs: norm(asset(a)⊕i asset(a))
2.13
= asset(a)

since norm(asset(a))
2.11
= asset(a).

rhs: norm(asset(a))
2.11
= asset(a)

Inductive step:

• P = Q ‖ R: Showing: norm
(

(Q ‖ R)⊕i (Q ‖ R)
)

= norm(Q ‖ R)
Case differentiation according to the cases of Law 2.13:
Only the first case of Law 2.13 applies, since norm(Q ‖ R) = norm(Q ‖ R).

This means that: norm
(

(Q ‖ R)⊕i (Q ‖ R)
) 2.13

= norm(Q ‖ R)

• P = Q⊕i R:
The case follows with the same argumentation as in the case before.

Proof. We show the identity

norm(P ‖ Q) = norm(Q ‖ P)

of Theorem 2.2 by structural induction on the term structure of P .
Base cases:

• P = ntrl:
Case differentiation according to the two possible cases of Law 2.12.

Case 1, Q = ntrl:

lhs: norm(ntrl ‖ ntrl)
2.10
= ntrl

rhs: norm(ntrl ‖ ntrl)
2.10
= ntrl

Case 2, Q 6= ntrl:

lhs: norm(ntrl ‖ Q)
2.12
= reconv (sort (coll (Q)))

rhs: norm(Q ‖ ntrl)
2.12
= reconv (sort (coll (Q)))

• P = asset(a):
Case differentiation according to the two possible cases of Law 2.12.

242

Case 1, Q = ntrl:

lhs: norm(asset(a) ‖ ntrl)
2.12
= reconv (sort (coll (asset(a))))

rhs: norm(ntrl ‖ asset(a))
2.12
= reconv (sort (coll (asset(a))))

Case 2, Q 6= ntrl: W. l. o. g. we assume that coll(Q) = {q1, . . . , qn} where
∀i ∈ {1, . . . , n} : a <α qi.

lhs: norm(asset(a) ‖ Q)
2.12
= reconv (sort (coll (asset(a) ‖ Q)))
2.17
= reconv (sort (coll (asset(a)) ∪ coll (Q)))
2.16
= reconv (sort ({asset(a)} ∪ coll (Q)))

properties
of sorting

= reconv (〈asset(a)〉 ◦ sort (coll (Q)))

rhs: norm(Q ‖ asset(a))
2.12
= reconv (sort (coll (Q ‖ asset(a))))
2.17
= reconv (sort (coll (Q) ∪ coll (asset(a))))
2.16
= reconv (sort (coll (Q) ∪ {asset(a)}))

properties
of sorting

= reconv (〈asset(a)〉 ◦ sort (coll (Q)))

Inductive step:

• P = R ‖ S: Showing: norm
(

(R ‖ S) ‖ Q
)

= norm
(

Q ‖ (R ‖ S)
)

Induction hypothesis: norm(R ‖ Q) = norm(Q ‖ R) and
norm(S ‖ Q) = norm(Q ‖ S)

W. l. o. g. we assume that coll(Q) = {q1, . . . , qn}, coll(R) =
{r1, . . . , rm}, and coll(S) = {s1, . . . , sl} with the ordering
q1 <α . . . <α qn <α r1 <α . . . <α rm <α s1 <α . . . <α sl.

Case differentiation according to the two possible cases of Law 2.12.

Case 1, Q = ntrl:

lhs: norm
(

(R ‖ S) ‖ ntrl
) 2.12

= reconv (sort (coll (R ‖ S)))

rhs: norm
(

ntrl ‖ (R ‖ S)
) 2.12

= reconv (sort (coll (R ‖ S)))

Case 2, Q 6= ntrl:
lhs: norm

(

(R ‖ S) ‖ Q
)

2.12
= reconv (sort (coll ((R ‖ S) ‖ Q)))
2.17
= reconv (sort (coll (R ‖ S) ∪ coll (Q)))

rhs: norm
(

Q ‖ (R ‖ S)
)

2.12
= reconv (sort (coll (Q ‖ (R ‖ S))))
2.17
= reconv (sort (coll (Q) ∪ coll (R ‖ S)))

Case differentiation according to the three cases of Law 2.17.

243

B. Uniqueness of the Normal Form: Proofs

Case i, S = ntrl ∧ R 6= ntrl:
lhs: reconv (sort (coll (R ‖ ntrl) ∪ coll (Q)))

2.17
= reconv (sort (coll (R) ∪ coll (Q)))

sorting and
assumption

= reconv
(〈

q1, . . . , qn, r1, . . . , rm
〉)

rhs: reconv (sort (coll (Q) ∪ coll (R ‖ ntrl)))
2.17
= reconv (sort (coll (Q) ∪ coll (R)))

sorting and
assumption

= reconv
(〈

q1, . . . , qn, r1, . . . , rm
〉)

Case ii, R = ntrl ∧ S 6= ntrl:
The case follows with a similar argumentation as in the case
above.

Case iii, S 6= ntrl ∧ R 6= ntrl:
lhs: reconv (sort (coll (R ‖ S) ∪ coll (Q)))

2.17
= reconv (sort (coll (R) ∪ coll (S) ∪ coll (Q)))

sorting and
assumption

= reconv
(〈

q1, . . . , qn, r1, . . . , rm, s1, . . . , sl
〉)

rhs: reconv (sort (coll (Q) ∪ coll (R ‖ S)))
2.17
= reconv (sort (coll (Q) ∪ coll (R) ∪ coll (S)))

sorting and
assumption

= reconv
(〈

q1, . . . , qn, r1, . . . , rm, s1, . . . , sl
〉)

• P = R⊕iS: Showing: norm
(

(R⊕i S) ‖ Q
)

= norm
(

Q ‖ (R⊕i S)
)

Induction hypothesis: norm(R ‖ Q) = norm(Q ‖ R) and
norm(S ‖ Q) = norm(Q ‖ S)

lhs: norm
(

(R ⊕i S) ‖ Q
)

rhs: norm
(

Q ‖ (R ⊕i S)
)

Case differentiation according to the two possible cases of Law 2.12.

Case 1, Q = ntrl:

lhs: norm
(

(R⊕i S) ‖ ntrl
) 2.12

= reconv (sort (coll (R⊕i S)))

rhs: norm
(

ntrl ‖ (R⊕i S)
) 2.12

= reconv (sort (coll (R⊕i S)))

Case 2, Q 6= ntrl:
Case differentiation according to the two cases of Law 2.12 for R⊕iS.

Case i, norm(R⊕i S) = ntrl:
(

norm(R⊕i S) = ntrl
)

⇔
(

norm(R) = norm(S) = ntrl
)

244

lhs: norm
(

(R ⊕i S) ‖ Q
)

= norm(ntrl ‖ Q)
2.12
= reconv (sort (coll (Q)))

rhs: norm
(

Q ‖ (R ⊕i S)
)

= norm(Q ‖ ntrl)
2.12
= reconv (sort (coll (Q)))

Case ii, norm(R⊕i S) 6= ntrl:
lhs: norm

(

(R ⊕i S) ‖ Q
)

2.12
= reconv (sort (coll (R⊕i S) ∪ coll (Q)))

rhs: norm
(

Q ‖ (R ⊕i S)
)

2.12
= reconv (sort (coll (Q) ∪ coll (R⊕i S)))

lhs = rhs, since both sets coll (R⊕i S)∪coll (Q) and coll (Q)∪
coll (R⊕i S) contain the same elements. Thus, sorting and
reconstructing both sets, i.e. the application of reconv (sort (. . .))
on both sets, yields the same term.

Proof. We show the identity

norm
(

P ‖ (Q ‖ R)
)

= norm
(

(P ‖ Q) ‖ R
)

of Theorem 2.2 by structural induction on the term structure of P .
Base cases:

• P = ntrl:
rhs: norm

(

(ntrl ‖ Q) ‖ R
)

2.12
= reconv (sort (coll (Q ‖ R)))

Lemma B.1
= norm (Q ‖ R)

lhs: norm
(

ntrl ‖ (Q ‖ R)
)

Case differentiation according to Law 2.12.

Case 1,
(

norm(R) = ntrl
)

∧
(

norm(ntrl ‖ Q) = ntrl
)

:
From norm(ntrl ‖ Q) = ntrl we conclude that norm(Q) = ntrl.

lhs: norm
(

ntrl ‖ (Q ‖ R)
)

= norm
(

ntrl ‖ ntrl
) 2.12

= ntrl

rhs: norm (Q ‖ R) = norm
(

ntrl ‖ ntrl
) 2.12

= ntrl

245

B. Uniqueness of the Normal Form: Proofs

Case 2,
(

norm(R) = ntrl
)

∧
(

norm(ntrl ‖ Q) 6= ntrl
)

:
From norm(ntrl ‖ Q) 6= ntrl we conclude that norm(Q) 6= ntrl.
lhs: norm

(

(ntrl ‖ Q) ‖ ntrl
)

2.12
= reconv (sort (coll (ntrl ‖ Q)))
2.17
= reconv (sort (coll (Q)))

rhs: norm (Q ‖ ntrl)
2.12
= reconv (sort (coll (Q)))

Case 3,
(

norm(R) 6= ntrl
)

∧
(

norm(ntrl ‖ Q) = ntrl
)

:
From norm(ntrl ‖ Q) = ntrl we conclude that norm(Q) = ntrl.
lhs: norm

(

(ntrl ‖ ntrl) ‖ R
)

= reconv (sort (coll (R)))
rhs: norm (ntrl ‖ R) = reconv (sort (coll (R)))

Case 4,
(

norm(R) 6= ntrl
)

∧
(

norm(ntrl ‖ Q) 6= ntrl
)

:
From norm(ntrl ‖ Q) 6= ntrl we conclude that norm(Q) 6= ntrl.
lhs: norm

(

(ntrl ‖ Q) ‖ R
)

2.12
= reconv (sort (coll (ntrl ‖ Q) ∪ coll (R)))
2.17
= reconv (sort (coll (Q) ∪ coll (R)))

rhs: norm
(

Q ‖ R
)

2.12
= reconv (sort (coll (Q ‖ R)))
2.17
= reconv (sort (coll (Q) ∪ coll (R)))

• P = asset(a):
rhs: norm

(

asset(a) ‖ (Q ‖ R)
)

Case differentiation according to Law 2.12.

Case 1, norm(Q ‖ R) = ntrl:
The assumption implies that norm(Q) = norm(R) = ntrl.
rhs: norm

(

asset(a) ‖ ntrl
)

2.12
= reconv (sort (coll (asset(a))))

Lemma B.1
= norm

(

asset(a)
)

2.11
= asset(a)

lhs: norm
(

(asset(a) ‖ Q) ‖ R
)

= norm
(

(asset(a) ‖ ntrl) ‖ ntrl
)

2.12
= reconv (sort (coll (asset(a) ‖ ntrl)))
2.17
= reconv (sort (coll (asset(a))))

Lemma B.1
= norm

(

asset(a)
)

2.11
= asset(a)

246

Case 2, norm(Q ‖ R) 6= ntrl:
rhs: norm

(

asset(a) ‖ (Q ‖ R)
)

2.12
= reconv

(

sort
(

coll
(

asset(a) ‖ (Q ‖ R)
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪ coll
(

Q ‖ R
)))

lhs: norm
(

(asset(a) ‖ Q) ‖ R
)

Case differentiation according to Law 2.12, where only the two cases
where norm(asset(a) ‖ Q) 6= ntrl have to be considered.

Case i, norm(R) = ntrl:
This implies that norm(Q) 6= ntrl since according to the
assumption the property norm(Q ‖ R) 6= ntrl holds.
lhs: norm

(

(asset(a) ‖ Q) ‖ ntrl
)

= norm
(

(asset(a) ‖ ntrl) ‖ ntrl
)

2.12
= reconv (sort (coll (asset(a) ‖ Q)))
2.17
= reconv (sort (coll (asset(a)) ∪ coll (Q)))

rhs: reconv
(

sort
(

coll
(

asset(a)
)

∪ coll
(

Q ‖ ntrl
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪ coll
(

Q
)))

Case ii,
(

norm(R) 6= ntrl
)

∧
(

norm(asset(a) ‖ Q) 6= ntrl
)

:
lhs: norm

(

(asset(a) ‖ Q) ‖ R
)

2.12
= reconv

(

sort
(

coll
(

(asset(a) ‖ Q) ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

asset(a) ‖ Q
)

∪ coll
(

R
)))

Case differentiation according to Law 2.17.

Case i, Q = ntrl:
lhs: reconv

(

sort
(

coll
(

asset(a) ‖ ntrl
)

∪
coll

(

R
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪ coll
(

R
)))

rhs: reconv
(

sort
(

coll
(

asset(a)
)

∪
coll

(

ntrl ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪ coll
(

R
)))

Case ii, Q 6= ntrl:
lhs: reconv

(

sort
(

coll
(

asset(a) ‖ Q
)

∪
coll

(

R
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪
coll

(

Q
)

∪ coll
(

R
)))

rhs: reconv
(

sort
(

coll
(

asset(a)
)

∪
coll

(

Q ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

asset(a)
)

∪
coll

(

Q
)

∪ coll
(

R
)))

247

B. Uniqueness of the Normal Form: Proofs

Inductive step:

• P = S ‖ T : Showing: norm
(

(S ‖ T) ‖ (Q ‖ R)
)

= norm
(

((S ‖ T) ‖ Q) ‖ R
)

I. H. : norm
(

S ‖ (Q ‖ R)
)

= norm
(

(S ‖ Q) ‖ R
)

and
norm

(

T ‖ (Q ‖ R)
)

= norm
(

(T ‖ Q) ‖ R
)

lhs: norm
(

(S ‖ T) ‖ (Q ‖ R)
)

Case differentiation according to Law 2.12.

Case 1,
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q ‖ R) = ntrl
)

:
This assumption implies that norm(Q) = norm(R) = ntrl.

lhs: norm
(

ntrl ‖ ntrl
) 2.12

= ntrl

rhs: norm
(

(ntrl ‖ ntrl) ‖ ntrl
) 2.12

= ntrl

Case 2,
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q ‖ R) 6= ntrl
)

:
This assumption implies that norm(S) = norm(T) = ntrl.

lhs: norm
(

ntrl ‖ (Q ‖ R)
) 2.12

= norm(Q ‖ R)
rhs: norm

(

(ntrl ‖ Q) ‖ R
)

Case differentiation according to Law 2.12.

Case i,
(

norm(R) = ntrl
)

∧
(

norm(ntrl ‖ Q) = ntrl
)

:
The proof of the base case P = ntrl, Case 1, applies analo-
gously to this case.

Case ii,
(

norm(R) = ntrl
)

∧
(

norm(ntrl ‖ Q) 6= ntrl
)

:
The proof of the base case P = ntrl, Case 2, applies analo-
gously to this case.

Case iii,
(

norm(R) 6= ntrl
)

∧
(

norm(ntrl ‖ Q) = ntrl
)

:
The proof of the base case P = ntrl, Case 3, applies analo-
gously to this case.

Case iv,
(

norm(R) 6= ntrl
)

∧
(

norm(ntrl ‖ Q) 6= ntrl
)

:
The proof of the base case P = ntrl, Case 4, applies analo-
gously to this case.

Case 3,
(

norm(S ‖ T) 6= ntrl
)

∧
(

norm(Q ‖ R) = ntrl
)

:
The proof for the previous Case 2 applies analogously for this case,
where only (S ‖ T) and (Q ‖ R) swap their roles.

Case 4,
(

norm(S ‖ T) 6= ntrl
)

∧
(

norm(Q ‖ R) 6= ntrl
)

:
This assumption implies that ¬

(

(norm(S) = ntrl) ∧ (norm(T) = ntrl)
)

and ¬
(

(norm(Q) = ntrl) ∧ (norm(R) = ntrl)
)

.

248

lhs: norm
(

(S ‖ T) ‖ (Q ‖ R)
)

2.12
= reconv

(

sort
(

coll
(

(S ‖ T) ‖ (Q ‖ R)
)))

2.17
= reconv

(

sort
(

coll(S ‖ T) ∪ coll(Q ‖ R)
))

Case differentiation according to Law 2.17 (Note that the case (Q =
ntrl) ∧ (R = ntrl) is not possible due to the assumption).

Case i, (Q = ntrl) ∧ (R 6= ntrl):
lhs: reconv

(

sort
(

coll(S ‖ T) ∪ coll(ntrl ‖ R)
))

2.17
= reconv

(

sort
(

coll(S ‖ T) ∪ coll(R)
))

rhs: norm
(

((S ‖ T) ‖ ntrl) ‖ R
)

2.12
= reconv

(

sort
(

coll
(

((S ‖ T) ‖ ntrl) ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

(S ‖ T) ‖ ntrl
)

∪ coll(R)
))

2.17
= reconv

(

sort
(

coll(S ‖ T) ∪ coll(R)
))

Case ii, (Q 6= ntrl) ∧ (R = ntrl):
The proof for the previous Case i applies analogously for
this case, where only Q and R swap their roles.

Case iii, (Q 6= ntrl) ∧ (R 6= ntrl):
lhs: reconv

(

sort
(

coll(S ‖ T) ∪ coll(Q ‖ R)
))

2.17
= reconv

(

sort
(

coll(S ‖ T) ∪ coll(Q) ∪ coll(R)
))

rhs: norm
(

((S ‖ T) ‖ Q) ‖ R
)

2.12
= reconv

(

sort
(

coll
(

((S ‖ T) ‖ Q) ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

(S ‖ T) ‖ Q
)

∪ coll(R)
))

2.17
= reconv

(

sort
(

coll(S ‖ T) ∪ coll(Q) ∪ coll(R)
))

• P = S ⊕i T : Showing: norm
(

(S ⊕i T) ‖ (Q ‖ R)
)

=
norm

(

((S ⊕i T) ‖ Q) ‖ R
)

Ind. hyp. : norm
(

S ‖ (Q ‖ R)
)

= norm
(

(S ‖ Q) ‖ R
)

and
norm

(

T ‖ (Q ‖ R)
)

= norm
(

(T ‖ Q) ‖ R
)

lhs: norm
(

(S ⊕i T) ‖ (Q ‖ R)
)

Case differentiation according to Law 2.12.

Case 1,
(

norm(S ⊕i T) = ntrl
)

∧
(

norm(Q ‖ R) = ntrl
)

:
lhs = rhs follows directly from Law 2.12.

Case 2,
(

norm(S ⊕i T) = ntrl
)

∧
(

norm(Q ‖ R) 6= ntrl
)

:
lhs = rhs, where the proof proceeds analogously to the one for Case 2
of the previous constructor case P = S ‖ T .

249

B. Uniqueness of the Normal Form: Proofs

Case 3,
(

norm(S ⊕i T) 6= ntrl
)

∧
(

norm(Q ‖ R) = ntrl
)

:
The assumption for this case implies that norm(S) 6= ntrl, norm(T) 6=
ntrl, and norm(Q) = norm(R) = ntrl.
lhs: norm

(

(S ⊕i T) ‖ ntrl
)

2.12
= reconv

(

sort
(

coll(S ⊕i T)
))

rhs: norm
(

((S ⊕i T) ‖ ntrl) ‖ ntrl
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕i T) ‖ ntrl
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)))

Case 4,
(

norm(S ⊕i T) 6= ntrl
)

∧
(

norm(Q ‖ R) 6= ntrl
)

:
The assumption implies that ¬

(

(norm(S) = ntrl) ∧ (norm(T) = ntrl)
)

and ¬
(

(norm(Q) = ntrl) ∧ (norm(R) = ntrl)
)

.

lhs: norm
(

(S ⊕i T) ‖ (Q ‖ R)
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕i T) ‖ (Q ‖ R)
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪ coll
(

Q ‖ R
)))

rhs: norm
(

((S ⊕i T) ‖ Q) ‖ R
)

Case differentiation according to Law 2.12, where due to the assump-
tion only the two cases where norm((S ⊕i T) ‖ Q) 6= ntrl have to
be considered (since the part norm(S ⊕i T) 6= ntrl according to the
assumption) .

Case i, norm(R) = ntrl:
This implies that norm(Q) 6= ntrl since according to the
assumption the property norm(Q ‖ R) 6= ntrl holds.
rhs: norm

(

((S ⊕i T) ‖ Q) ‖ ntrl
)

2.12
= reconv (sort (coll ((S ⊕i T) ‖ Q)))
2.17
= reconv (sort (coll (S ⊕i T) ∪ coll (Q)))

lhs: reconv
(

sort
(

coll
(

S ⊕i T
)

∪ coll
(

Q ‖ ntrl
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪ coll
(

Q
)))

Case ii, norm(R) 6= ntrl:
rhs: norm

(

((S ⊕i T) ‖ Q) ‖ R
)

2.12
= reconv

(

sort
(

coll
(

((S ⊕i T) ‖ Q) ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

(S ⊕i T) ‖ Q
)

∪ coll
(

R
)))

Case differentiation according to Law 2.17.

Case a,
(

Q = ntrl
)

∧
(

norm(S ⊕i T) 6= ntrl
)

:
rhs: reconv

(

sort
(

coll
(

(S ⊕i T) ‖ ntrl
)

∪
coll

(

R
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪ coll
(

R
)))

250

lhs: reconv
(

sort
(

coll
(

S ⊕i T
)

∪
coll

(

ntrl ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪ coll
(

R
)))

Case b,
(

Q 6= ntrl
)

∧
(

norm(S ⊕i T) 6= ntrl
)

:
rhs: reconv

(

sort
(

coll
(

(S ⊕i T) ‖ Q
)

∪
coll

(

R
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪
coll

(

Q
)

∪ coll
(

R
)))

lhs: reconv
(

sort
(

coll
(

S ⊕i T
)

∪
coll

(

Q ‖ R
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕i T
)

∪
coll

(

Q
)

∪ coll
(

R
)))

Proof. We show the identity

norm
(

(P ‖ Q)⊕i (P ‖ R)
)

= norm
(

P ‖ (Q⊕i R)
)

of Theorem 2.2 by structural induction on the term structure of P .
Base cases:

• P = ntrl:
lhs: norm

(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

rhs: norm
(

ntrl ‖ (Q⊕i R)
)

Case differentiation according to the three cases of Law 2.13.

Case 1, norm(ntrl ‖ Q) = norm(ntrl ‖ R):
This implies that norm(Q) = norm(R)

lhs: norm
(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
) 2.13

= norm(ntrl ‖ Q)
Case differentiation according to the Law 2.12.

Case i, Q = ntrl:
This implies for this case that norm(Q) = norm(R) = ntrl.
lhs: norm(ntrl ‖ ntrl)

2.12
= ntrl

rhs: norm
(

ntrl ‖ (ntrl⊕i ntrl)
)

2.12
= reconv (sort (coll (ntrl⊕i ntrl)))
2.13
= reconv (sort (coll (ntrl)))

Lemma B.1
= norm (ntrl)
2.10
= ntrl

251

B. Uniqueness of the Normal Form: Proofs

Case ii, Q 6= ntrl:
This implies for this case that norm(R) 6= ntrl.
lhs: norm(ntrl ‖ Q)

2.12
= reconv (sort (coll (Q)))

rhs: norm
(

ntrl ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))

Lemma B.1
= norm(Q⊕i R)

2.13,
norm(Q) =
norm(R)

= norm(Q)
Lemma B.1

= reconv (sort (coll (Q)))

Case 2,
(

norm(ntrl ‖ Q) 6= norm(ntrl ‖ R)
)

∧
(

cmn
(

coll(ntrl ‖ Q), coll(ntrl ‖ R)
)

= ∅
)

:

Since norm(ntrl ‖ Q) 6= norm(ntrl ‖ R) this means that norm(Q) 6=
norm(R).

lhs: norm
(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

2.13
= norm(ntrl ‖ Q) ⊕i norm(ntrl ‖ R)
2.12
= reconv (sort (coll (Q))) ⊕i reconv (sort (coll (R)))

Lemma B.1
= norm (Q) ⊕i norm (R)

rhs: norm
(

ntrl ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))

Lemma B.1
= norm(Q⊕i R)
2.13
= norm (Q) ⊕i norm (R)

Case 3,
(

norm(ntrl ‖ Q) 6= norm(ntrl ‖ R)
)

∧
(

cmn
(

coll(ntrl ‖ Q), coll(ntrl ‖ R)
)

6= ∅
)

:

We can assume that norm(Q) 6= norm(R) since norm(ntrl ‖ Q) 6=
norm(ntrl ‖ R), and cmn

(

coll(Q), coll(R)
)

6= ∅ since cmn
(

coll(ntrl ‖
Q), coll(ntrl ‖ R)

)

6= ∅.

252

lhs: norm
(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

2.13
= reconv (sort (X ∪ Y))

where X and Y are defined according to Law 2.13 as

X = cmn
(

coll(ntrl ‖ Q), coll(ntrl ‖ R)
)

2.17
= cmn

(

coll(Q), coll(R)
)

and

Y =
{

reconv
(

sort
(

diff
(

coll(ntrl ‖ Q),

coll(ntrl ‖ R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(ntrl ‖ R),

coll(ntrl ‖ Q)
))

) }

2.17
=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

rhs: norm
(

ntrl ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))

Lemma B.1
= norm(Q⊕i R)
2.13
= reconv (sort (X ∪ Y))

where X and Y are exactly as specified above for the lhs.

• P = asset(a):
lhs: norm

(

(asset(a) ‖ Q)⊕i (asset(a) ‖ R)
)

rhs: norm
(

asset(a) ‖ (Q⊕i R)
)

Case differentiation according to the cases of Law 2.13, where due to the
common element asset(a) only the first and the third case apply.

Case 1, norm(asset(a) ‖ Q) = norm(asset(a) ‖ R):
This implies that norm(Q) = norm(R).
lhs: norm

(

(asset(a) ‖ Q)⊕i (asset(a) ‖ R)
)

2.13
= norm(asset(a) ‖ Q)

Case differentiation according to the cases of Law 2.12.

Case i, Q = ntrl:
lhs: norm

(

asset(a) ‖ ntrl
)

2.12
= reconv (sort (coll (asset(a))))

Lemma B.1
= norm

(

asset(a)
)

rhs: In this case we have norm(Q) = norm(R) = ntrl.

253

B. Uniqueness of the Normal Form: Proofs

norm
(

asset(a) ‖ (ntrl⊕i ntrl)
)

2.12
= reconv (sort (coll (asset(a))))

since norm
(

ntrl⊕i ntrl
)

= ntrl.
Lemma B.1

= norm
(

asset(a)
)

Case ii, Q 6= ntrl:
lhs: norm

(

asset(a) ‖ Q
)

2.12
= reconv (sort (coll (asset(a) ‖ Q)))
2.17
= reconv (sort (coll (asset(a)) ∪ coll (Q)))

rhs: norm
(

asset(a) ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (asset(a) ‖ (Q⊕i R))))
2.17
= reconv (sort (coll (asset(a)) ∪ coll (Q⊕i R)))

norm(Q) =
norm(R),

2.18= reconv (sort (coll (asset(a)) ∪ coll (Q)))

Case 2,
(

norm(asset(a) ‖ Q) 6= norm(asset(a) ‖ R)
)

∧
(

cmn
(

coll(asset(a) ‖ Q), coll(asset(a) ‖ R)
)

6= ∅
)

:

This case implies that norm(Q) 6= norm(R).
lhs: norm

(

(asset(a) ‖ Q)⊕i (asset(a) ‖ R)
)

2.13
= reconv (sort (X ∪ Y))

where X and Y are defined according to Law 2.13 as

X = cmn
(

coll(asset(a) ‖ Q), coll(asset(a) ‖ R)
)

Lemma B.3
= {asset(a)} ∪ cmn

(

coll(Q), coll(R)
)

and

Y =
{

reconv
(

sort
(

diff
(

coll(asset(a) ‖ Q),

coll(asset(a) ‖ R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(asset(a) ‖ R),

coll(asset(a) ‖ Q)
))

)}

Lem.
B.5=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

Lem.
B.6=

{

reconv
(

sort
(

coll(Q)
)

)

⊕i

reconv
(

sort
(

coll(R)
)

) }

254

rhs: norm
(

asset(a) ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (asset(a)) ∪ coll (Q⊕i R)))

as norm(Q ⊕i R) 6= ntrl, since due to the assumption
of this case Q and R have common parts which are
different to ntrl, themselves.

lhs = rhs, if the corresponding setsX∪Y and coll (asset(a))∪coll (Q⊕i R)
contain the same elements.
Case differentiation for the set coll (asset(a))∪ coll (Q⊕i R) in the rhs
according to the cases of Law 2.18.

Case i, cmn
(

coll(Q), coll(R)
)

= ∅:
Consider the set which is part of the rhs:

coll (asset(a)) ∪ coll (Q⊕i R)
2.18
= coll (asset(a)) ∪

{

norm(Q)⊕i norm(R)
}

2.16
= {asset(a)} ∪

{

norm(Q)⊕i norm(R)
}

Lemma B.1
= {asset(a)} ∪

{

reconv (sort (coll (Q))) ⊕i

reconv (sort (coll (R)))
}

This result is equivalent to the set which appears in the
lhs, since the part cmn

(

coll(Q), coll(R)
)

= ∅ due to the case
restriction, which means that the set X of the lhs reduces
to {asset(a)}. Together with the set Y we get the same set
as here for the rhs.

Case ii, cmn
(

coll(Q), coll(R)
)

6= ∅:
Consider the set which is part of the rhs:

coll (asset(a)) ∪ coll (Q⊕i R)
2.18
= coll (asset(a)) ∪ coll (norm(Q⊕i R))
2.13
= coll (asset(a)) ∪ coll (reconv (sort (X ∪ Y)))
2.16
= {asset(a)} ∪ coll (reconv (sort (X ∪ Y)))

Thus lhs = rhs, since this is is exactly the set which exists
in the lhs.

Inductive step:

• P = S ‖ T : Showing: norm
(

(

(S ‖ T) ‖ Q
)

⊕i

(

(S ‖ T) ‖ R
)

)

=

norm
(

(S ‖ T) ‖ (Q⊕i R)
)

Ind. hyp. : norm
(

(

S ‖ Q
)

⊕i

(

S ‖ R
)

)

=

norm
(

S ‖ (Q⊕i R)
)

and

norm
(

(

T ‖ Q
)

⊕i

(

T ‖ R
)

)

=

norm
(

T ‖ (Q⊕i R)
)

255

B. Uniqueness of the Normal Form: Proofs

lhs: norm
(

(

(S ‖ T) ‖ Q
)

⊕i

(

(S ‖ T) ‖ R
)

)

Case differentiation according to the three cases of Law 2.13.

Case 1, norm((S ‖ T) ‖ Q) = norm((S ‖ T) ‖ R):

The assumption for this case implies that norm(Q) = norm(R).

lhs: norm
(

(

(S ‖ T) ‖ Q
)

⊕i

(

(S ‖ T) ‖ R
)

)

2.13
= norm

(

(S ‖ T) ‖ Q
)

Case differentiation according to Law 2.12:

Case i, norm(Q) = ntrl:
Due to the assumption norm(Q) = norm(R) this implies that
norm(R) = ntrl.
lhs: norm

(

(S ‖ T) ‖ Q
)

2.12
= reconv (sort (coll (S ‖ T)))

rhs: norm
(

(S ‖ T) ‖ (ntrl⊕i ntrl)
)

2.12
= reconv (sort (coll (S ‖ T)))

Case ii, norm(S ‖ T) = ntrl:
lhs: norm

(

(S ‖ T) ‖ Q
)

2.12
= reconv (sort (coll (Q)))

rhs: norm
(

(S ‖ T) ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))
2.18
= reconv (sort (coll (Q)))

Case iii,
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q) = ntrl
)

:
Due to the assumption norm(Q) = norm(R) this implies that
norm(R) = ntrl.

lhs: norm
(

(ntrl ‖ ntrl) ‖ ntrl
) 2.12

= ntrl

rhs: norm
(

ntrl ‖ (ntrl⊕i ntrl)
) 2.12

= ntrl

Case 2,
(

norm((S ‖ T) ‖ Q) 6= norm((S ‖ T) ‖ R)
)

∧
(

cmn
(

coll((S ‖ T) ‖ Q), coll((S ‖ T) ‖ R)
)

= ∅
)

:

The assumption of this case implies that norm(S ‖ T) = ntrl and
cmn

(

coll(Q), coll(R)
)

= ∅, since only then can the two elements
(

(S ‖
T) ‖ Q

)

and
(

(S ‖ T) ‖ Q
)

have no common elements.

rhs: norm
(

(S ‖ T) ‖ (Q⊕i R)
)

Case differentiation according to Law 2.12. But due to the assumption

256

only the case
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

applies,
since norm(Q⊕iR) = ntrl would only be possible if both norm(Q) and
norm(R) equal ntrl, which is contrary to the higher-level assumption
for this case.

Case i,
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

:
rhs: norm

(

ntrl ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))
2.18
= reconv

(

sort
({

norm(Q) ⊕i norm(R)
}))

= norm(Q) ⊕i norm(R)
since the set contains only one element.

lhs: norm(ntrl ‖ Q) ⊕i norm(ntrl ‖ R)
2.12
= reconv (sort (coll (Q))) ⊕i

reconv (sort (coll (R)))
Lemma B.1

= norm(Q) ⊕i norm(R)

Case 3,
(

norm((S ‖ T) ‖ Q) 6= norm((S ‖ T) ‖ R)
)

∧
(

cmn
(

coll((S ‖ T) ‖ Q), coll((S ‖ T) ‖ R)
)

6= ∅
)

:

The assumption for this case implies that norm(Q) 6= norm(R).

lhs: norm
(

(

(S ‖ T) ‖ Q
)

⊕i

(

(S ‖ T) ‖ R
)

)

2.13
= reconv (sort (X ∪ Y))

where X and Y are defined according to Law 2.13 as

X = cmn
(

coll
(

(S ‖ T) ‖ Q
)

, coll
(

(S ‖ T) ‖ R
)

)

B.3
= coll(S ‖ T) ∪ cmn

(

coll(Q), coll(R)
)

and

Y =
{

reconv
(

sort
(

diff
(

coll
(

(S ‖ T) ‖ Q
)

,

coll
(

(S ‖ T) ‖ R
)))

)

⊕i

reconv
(

sort
(

diff
(

coll
(

(S ‖ T) ‖ R
)

,

coll
(

(S ‖ T) ‖ Q
)))

) }

Lem. B.5
=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

257

B. Uniqueness of the Normal Form: Proofs

rhs: norm
(

(S ‖ T) ‖ (Q⊕i R)
)

Case differentiation according to Law 2.12.
Due to the assumption norm(Q) 6= norm(R) the situation where
norm(Q) = ntrl = norm(R) cannot exist, which implies that
only those cases of Law 2.12 have to be considered where
norm

(

Q⊕i R
)

6= ntrl.

Case i,
(

norm(S ‖ T) = ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

:

rhs: norm
(

ntrl ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll (Q⊕i R)))

Case differentiation according to Law 2.13.

Case a, cmn
(

coll(Q), coll(R)
)

= ∅:
rhs: reconv (sort (coll (Q⊕i R)))

Lem. B.1
= norm (Q⊕i R)
2.13
= norm (Q) ⊕i norm (R)

lhs = rhs, since X = coll(ntrl)∪ntrl = ntrl according
to the assumptions for this case. Thus the set X∪Y
reduces to Y which leaves the lhs as:
lhs: reconv (sort (Y))

one
elem.
list= reconv

(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

)

B.6
= reconv

(

sort
(

coll(Q)
)

)

⊕i

reconv
(

sort
(

coll(R)
)

)

B.1
= norm (Q) ⊕i norm (R)

Case b, cmn
(

coll(Q), coll(R)
)

6= ∅:
rhs: reconv (sort (coll (Q⊕i R)))

Lem. B.1
= norm (Q⊕i R)
2.13
= reconv (sort (X ′ ∪ Y ′))

where X ′ and Y ′ are defined according to Law 2.13
as

X ′ = cmn
(

coll(Q), coll(R)
)

and

258

Y ′ =
{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

lhs = rhs since Y = Y ′, and due to the assumption
(

norm(S ‖ T) = ntrl
)

we have X = X ′.

Case ii,
(

norm(S ‖ T) 6= ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

:

rhs: norm
(

(S ‖ T) ‖ (Q⊕i R)
)

2.12
= reconv (sort (coll ((S ‖ T) ‖ (Q⊕i R))))
2.17
= reconv (sort (coll (S ‖ T) ∪ coll (Q⊕i R)))

Case differentiation according to Law 2.18.

Case a, cmn
(

coll(Q), coll(R)
)

= ∅:
rhs: reconv (sort (coll (S ‖ T) ∪ coll (Q⊕i R)))

2.18
= reconv(sort(coll(S ‖ T) ∪

{

norm(Q)⊕i norm(R)
}

))

rhs = lhs since coll(S ‖ T)∪
{

norm(Q)⊕i norm(R)
}

equals the set X∪Y , as Y =
{

norm(Q)⊕inorm(R)
}

,
and due to the assumption for this case we have
X = coll(S ‖ T) ∪ ∅ = coll(S ‖ T).

Case b, cmn
(

coll(Q), coll(R)
)

6= ∅:
rhs: reconv (sort (coll (S ‖ T) ∪ coll (Q⊕i R)))

2.18
= reconv

(

sort
(

coll
(

S ‖ T) ∪
coll

(

norm(Q⊕i R)
)))

2.13
= reconv

(

sort
(

coll
(

S ‖ T) ∪

coll
(

reconv(sort(X̃ ∪ Ỹ))
)))

where X̃ and Ỹ are defined according to Law 2.13
as

X̃ = cmn
(

coll(Q), coll(R)
)

and
Ỹ =

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

rhs = lhs, since
coll (S ‖ T) ∪ coll

(

reconv(sort(X̃ ∪ Ỹ))
)

= X ∪ Y

as the subsequence coll
(

reconv(sort(X̃ ∪ Ỹ))
)

contains the same elements as the subsequence
cmn

(

coll(Q), coll(R)
)

∪ Y .

259

B. Uniqueness of the Normal Form: Proofs

• P = S ⊕j T : Showing: norm
(

(

(S ⊕j T) ‖ Q
)

⊕i

(

(S ⊕j T) ‖ R
)

)

=

norm
(

(S ⊕j T) ‖ (Q⊕i R)
)

Ind. hyp. : norm
(

(

S ‖ Q
)

⊕i

(

S ‖ R
)

)

=

norm
(

S ‖ (Q⊕i R)
)

and

norm
(

(

T ‖ Q
)

⊕i

(

T ‖ R
)

)

=

norm
(

T ‖ (Q⊕i R)
)

lhs: norm
(

((S ⊕j T) ‖ Q)⊕i ((S ⊕j T) ‖ R)
)

rhs: norm
(

(S ⊕j T) ‖ (Q⊕i R)
)

Case differentiation according to the cases of Law 2.12.

Case 1,
(

norm(S ⊕j T) = ntrl
)

∧
(

norm(Q⊕i R) = ntrl
)

:
The assumption of this case implies that norm(Q) = norm(R) = ntrl.

rhs: norm
(

ntrl ‖ ntrl
) 2.12

= ntrl

lhs: norm
(

(ntrl ‖ ntrl)⊕i (ntrl ‖ ntrl)
) 2.13

= norm(ntrl ‖ ntrl)
2.12
= ntrl

Case 2,
(

norm(S ⊕j T) = ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

:
The assumption of this case implies that norm(S) = norm(T) = ntrl.

rhs: norm
(

ntrl ‖ (Q⊕i R)
) 2.12

= norm(Q⊕i R)
lhs: norm

(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

Case differentiation according to the cases of Law 2.13.

Case i, norm(Q) = norm(R):
lhs: norm

(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

2.13
= norm

(

ntrl ‖ Q
)

2.12
= reconv (sort (coll (Q)))

Lemma B.3
= norm (Q)

rhs: norm(Q⊕i R)
2.13
= norm(Q)

Case ii,
(

norm(Q) 6= norm(R)
)

∧
(

cmn
(

coll(Q), coll(R)
)

= ∅
)

:
lhs: norm

(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

2.13
= norm

(

ntrl ‖ Q
)

⊕i norm
(

ntrl ‖ R
)

2.12
= reconv (sort (coll (Q))) ⊕i

reconv (sort (coll (R)))
Lemma B.3

= norm (Q) ⊕i norm(R)

rhs: norm(Q⊕i R)
2.13
= norm(Q)⊕i norm(R)

260

Case iii,
(

norm(Q) 6= norm(R)
)

∧
(

cmn
(

coll(Q), coll(R)
)

6= ∅
)

:

rhs: norm(Q⊕i R)
2.13
= reconv

(

sort
(

X ∪ Y
)

)

, where

X = cmn
(

coll(Q), coll(R)
)

Y =
{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

lhs: norm
(

(ntrl ‖ Q)⊕i (ntrl ‖ R)
)

2.13
= reconv

(

sort
(

X ′ ∪ Y ′
)

)

, where

X ′ = cmn
(

coll(ntrl ‖ Q), coll(ntrl ‖ R)
)

2.17
= cmn

(

coll(Q), coll(R)
)

= X

Y ′ =
{

reconv
(

sort
(

diff
(

coll(ntrl ‖ Q), coll(ntrl ‖ R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(ntrl ‖ R), coll(ntrl ‖ Q)
))

) }

2.17
=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

= Y
lhs = rhs since X = X ′ and Y = Y ′.

Case 3,
(

norm(S ⊕j T) 6= ntrl
)

∧
(

norm(Q⊕i R) = ntrl
)

:
The proof of the previous Case 2 applies analogously for this case,
where S ⊕j T and Q⊕i R swap their roles.

Case 4,
(

norm(S ⊕j T) 6= ntrl
)

∧
(

norm(Q⊕i R) 6= ntrl
)

:
The assumption of this case implies that ¬

(

(norm(S) = ntrl)∧(norm(S) =
ntrl)

)

and ¬
(

(norm(Q) = ntrl) ∧ (norm(R) = ntrl)
)

.
rhs: norm

(

(S ‖ T) ‖ (Q⊕i R)
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕j T) ‖ (Q⊕i R)
)))

2.17
= reconv

(

sort
(

coll
(

S ⊕j T
)

∪ coll
(

Q⊕i R
))))

Case differentiation according to the cases of Law 2.18.

Case i, norm(Q) = norm(R):
rhs: reconv

(

sort
(

coll
(

S ⊕j T
)

∪ coll
(

Q⊕i R
))))

2.18
= reconv

(

sort
(

coll
(

S ⊕j T
)

∪ coll
(

Q
)))

lhs: norm
(

(

(S ⊕j T) ‖ Q
)

⊕i

(

(S ⊕j T) ‖ R
)

)

2.13,
Lemma B.2= norm

(

(S ⊕j T) ‖ Q
)

261

B. Uniqueness of the Normal Form: Proofs

Case a, Q = ntrl:
lhs: norm

(

(S ⊕j T) ‖ Q
)

2.12
= reconv

(

sort
(

coll
(

S ⊕j T
)))

rhs: reconv
(

sort
(

coll
(

S ⊕j T
)

∪ coll
(

ntrl
)))

2.15
= reconv

(

sort
(

coll
(

S ⊕j T
)

∪ ∅
))

= reconv
(

sort
(

coll
(

S ⊕j T
)))

Case b, Q 6= ntrl:
lhs: norm

(

(S ⊕j T) ‖ Q
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕j T) ‖ Q
)))

2.18
= reconv

(

sort
(

coll(S ⊕j T) ∪ coll(Q)
))

rhs: reconv
(

sort
(

coll(S ⊕j T) ∪ coll(Q)
))

Case ii,
(

norm(Q) 6= norm(R)
)

∧
(

cmn
(

coll(Q), coll(R)
)

= ∅
)

:
rhs: norm

(

(S ⊕j T) ‖ (Q⊕i R)
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕j T) ‖ (Q⊕i R)
)))

2.17
= reconv

(

sort
(

coll(S ⊕j T) ∪ coll(Q⊕i R)
))

2.18
= reconv

(

sort
(

coll(S ⊕j T) ∪
{

norm(Q)⊕i norm(R)
}))

lhs: norm
(

(

(S ⊕j T) ‖ Q
)

⊕i

(

(S ⊕j T) ‖ R
)

)

2.13
= reconv (sort (X ∪ Y))

where X and Y are defined according to Law 2.13 as

X = cmn
(

coll
(

(S ⊕j T) ‖ Q
)

, coll
(

(S ⊕j T) ‖ R
)

)

B.3
= coll(S ⊕j T) ∪ cmn

(

coll(Q), coll(R)
)

and

262

Y =
{

reconv
(

sort
(

diff
(

coll
(

(S ⊕j T) ‖ Q
)

,

coll
(

(S ⊕j T) ‖ R
)))

)

⊕i

reconv
(

sort
(

diff
(

coll
(

(S ⊕j T) ‖ R
)

,

coll
(

(S ⊕j T) ‖ Q
)))

) }

B.5
=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

B.6
=

{

reconv
(

sort
(

coll(Q)
)

)

⊕i

reconv
(

sort
(

coll(R)
)

) }

B.1
=

{

norm(Q)⊕i norm(R)
}

rhs = lhs, since the set X reduces completely to its ele-
ment coll(S ⊕j T), as cmn

(

coll(Q), coll(R)
)

= ∅ due to the
assumption for this case.

Case iii,
(

norm(Q) 6= norm(R)
)

∧
(

cmn
(

coll(Q), coll(R)
)

6= ∅
)

:
rhs: norm

(

(S ⊕j T) ‖ (Q⊕i R)
)

2.12
= reconv

(

sort
(

coll
(

(S ⊕j T) ‖ (Q⊕i R)
)))

2.17
= reconv

(

sort
(

coll(S ⊕j T) ∪ coll(Q⊕i R)
))

2.18
= reconv

(

sort
(

coll(S ⊕j T) ∪ coll
(

norm(Q⊕i R)
)))

2.13
= reconv

(

sort
(

coll(S ⊕j T) ∪
coll

(

reconv (sort (X ′ ∪ Y ′))
)))

where X ′ and Y ′ are defined according to Law 2.13 as

X ′ = cmn
(

coll(Q), coll(R)
)

and
Y ′ =

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

lhs: norm
(

(

(S ⊕j T) ‖ Q
)

⊕i

(

(S ⊕j T) ‖ R
)

)

2.13
= reconv (sort (X ∪ Y))

where X and Y are defined according to Law 2.13 as

X = cmn
(

coll
(

(S ⊕j T) ‖ Q
)

, coll
(

(S ⊕j T) ‖ R
)

)

B.3
= coll(S ⊕j T) ∪ cmn

(

coll(Q), coll(R)
)

and

263

B. Uniqueness of the Normal Form: Proofs

Y =
{

reconv
(

sort
(

diff
(

coll
(

(S ⊕j T) ‖ Q
)

,

coll
(

(S ⊕j T) ‖ R
)))

)

⊕i

reconv
(

sort
(

diff
(

coll
(

(S ⊕j T) ‖ R
)

,

coll
(

(S ⊕j T) ‖ Q
)))

) }

B.5
=

{

reconv
(

sort
(

diff
(

coll(Q), coll(R)
))

)

⊕i

reconv
(

sort
(

diff
(

coll(R), coll(Q)
))

) }

rhs = lhs, as the set

coll(S ⊕j T) ∪ coll
(

reconv
(

sort
(

X ′ ∪ Y ′
)))

contains the same elements as the setX∪Y , since the subsets
coll

(

reconv (sort (X ′ ∪ Y ′))
)

and X ′ ∪ Y ′ contain the same
elements.

B.1. Auxiliary Lemmata

For some of the preceding proofs, e.g. for the case norm(P ‖ ntrl) = norm(P) or
norm

(

(P ‖ Q) ⊕i (P ‖ R)
)

= norm
(

P ‖ (Q ⊕i R)
)

, we make use of the following
lemmata.

Lemma B.1.

norm(Q) = reconv (sort (coll (Q)))

Proof. Structural induction on the term structure of Q.
Base cases:

• Q = ntrl: lhs: norm(ntrl)
2.10
= ntrl

rhs: reconv (sort (coll (ntrl)))
2.15
= reconv (sort (∅))

sorting
= reconv (〈〉)
2.36
= ntrl

• Q = asset(a): lhs: norm(asset(a))
2.11
= asset(a)

rhs: reconv (sort (coll (asset(a))))
2.16
= reconv (sort ({asset(a)}))

sorting
= reconv (〈asset(a)〉)
2.37
= asset(a)

264

B.1. Auxiliary Lemmata

Inductive step:

• Q = R ‖ S: Showing: norm(R ‖ S) = reconv (sort (coll (R ‖ S)))
Ind. hypothesis: norm(R) = norm

(

reconv (sort (coll (R)))
)

and
norm(S) = norm

(

reconv (sort (coll (S)))
)

Case differentiation according to the cases of Law 2.12:

Case 1, R = S = ntrl:

lhs: norm(ntrl ‖ ntrl)
2.10
= ntrl

rhs: reconv(sort(coll(ntrl ‖ ntrl)))
2.17
= reconv(sort(coll(ntrl)))

cf. base case
= ntrl

Case 2, R 6= ntrl ∧ S = ntrl:

lhs: norm(R ‖ ntrl)
2.12
= reconv(sort(coll(R)))

rhs: reconv(sort(coll(R ‖ ntrl)))
2.17
= reconv(sort(coll(R)))

Case 3, R = ntrl ∧ S 6= ntrl: Similarly to Case 2.

Case 4, R 6= ntrl ∧ S 6= ntrl:

lhs: norm(R ‖ S)
2.12
= reconv(sort(coll(ntrl ‖ R ‖ S)))

rhs: reconv(sort(coll(R ‖ S)))

• Q = R⊕iS: Showing: norm(R⊕i S) = reconv (sort (coll (R⊕i S)))
Ind. hypothesis: norm(R) = norm

(

reconv (sort (coll (R)))
)

and
norm(S) = norm

(

reconv (sort (coll (S)))
)

Case differentiation according to the three cases of Law 2.13:

Case 1, norm(R) = norm(S):

lhs: norm(R⊕i S)
2.13
= norm(R)

rhs: reconv(sort(coll(R⊕i S)))
2.18
= reconv(sort(coll(R)))
I.H.
= norm(R)

Case 2,
(

norm(R) 6= norm(S)
)

∧
(

cmn (coll(R), coll(S)) = ∅
)

:

lhs: norm(R⊕i S)
2.13
= norm(R)⊕i norm(S)

rhs: reconv(sort(coll(R ⊕i S)))
2.18
= reconv(sort({norm(R)⊕i norm(S)}))

sorting
= reconv(〈norm(R)⊕i norm(S)〉)
2.37
= norm(R)⊕i norm(S)

265

B. Uniqueness of the Normal Form: Proofs

Case 3,
(

norm(R) 6= norm(S)
)

∧
(

cmn (coll(R), coll(S)) 6= ∅
)

:

lhs: norm(R⊕i S)
2.13
= reconv(sort(X ∪ Y))

where X,Y represent the common parts and the reduced variation
point as defined in Equation 2.13.
rhs: reconv(sort(coll(R⊕i S)))

2.18
= reconv(sort(coll(norm(R⊕i S))))
2.13
= reconv(sort(coll(reconv(sort(X ∪ Y))))
= reconv(sort(coll(X ∪ Y)))

since reconv and sort do not affect the number and the kind of elements
in the sequence on which they are applied.

Lemma B.2. If the components of two compound element have identical normal
forms, respectively, then also the two compound elements themselves have the iden-
tical normal form, i.e.
(

(

norm(P) = norm(P ′)
)

∧
(

norm(Q) = norm(Q′)
)

)

⇒
(

norm(P ‖ Q) = norm(P ′ ‖ Q′)
)

Proof. Structural induction on the term structure of P .

Lemma B.3. For the function cmn (cf. Figure A.7, Page 237) we observe the law

cmn
(

coll
(

P ‖ Q
)

, coll
(

P ‖ R
)

)

= coll(P) ∪ cmn
(

coll(Q), coll(R)
)

Proof. Structural induction on the term structure of P .

Lemma B.4. For the function cmn (cf. Figure A.7, Page 237) we observe the law
(

cmn
(

coll(Q), coll(R)
)

= ∅
)

⇒
(

cmn
(

coll(P ‖ Q), coll(P ‖ R)
)

= coll(P)
)

Proof. Structural induction on the term structure of P .

Lemma B.5. Let diff be specified as shown in Figure A.7 on Page 237. We observe
the law

diff
(

coll(P ‖ Q), coll(P ‖ R)
)

= diff
(

coll(Q), coll(R)
)

Proof. Structural induction on the term structure of P .

Lemma B.6. If two product families have no common elements, “subtracting” one
product family from the other always yields the original product family, i.e.

(

cmn
(

coll(Q), coll(R)
)

= ∅
)

⇔
(

diff
(

coll(Q), coll(R)
)

= coll(Q)
)

Proof. Structural induction on the term structure of Q.

266

APPENDIX C

Lattices

The following definitions follow [DP90]. An algebraic structure (L,u,t) consisting
of a set L, a binary operation u : L × L → L called meet and a binary operation
t : L × L → L called join is a lattice if it satisfies the following equations for all
elements x, y, z ∈ L:

• x u y = y u x and x t y = y t x, (Commutative laws)

• x u (y u z) = (x u y) u z and x t (y t z) = (x t y) t z, (Associative laws)

• x u (y t x) = x and x t (y u x) = x, (Absorption laws)

• x u x = x and x t x = x, (Idempotent laws)

Note that the idempotent laws can be derived from the absorption laws.

Equivalently to the definition as an algebraic structure, a lattice can be defined as
a partially ordered set (L,v) where for each x, y ∈ L, there exists

1. a unique greatest lower bound (glb), which is called the meet of x and y,
denoted by x u y,

2. and a unique least upper bound (lub), which is called the join of x and y,
denoted by x t y.

267

C. Lattices

The definitions of glb and lub extend to finite sets of elements A ⊆ L as expected,
which are then denoted by

d
A and

⊔

A, respectively. Depending on the usage we
use one or the other form for dealing with lattices. To simplify the notation, we
denote the partially order set L as well as the mathematical structure (L,u,t) both
with the same symbol L.

We call a lattice bounded if it has a greatest element called top (denoted by >), and
least element called bottom (denoted by ⊥). Thus, a bounded lattice is an algebraic
structure of the form (L,u,t,>,⊥) such that (L,u,t) is a lattice, and ⊥ and > are
the identity elements for the join operation t, and meet operation u, respectively.
A lattice is called finite iff L is finite. Every (non-empty) finite lattice is bounded,
i.e. it has a least element ⊥, and a greatest element >. A lattice (L,u,t) is called
complete if all subsets of L have both a meet and a join. In particular, this definition
comprises also infinite meets and joins. Every finite lattice is complete, and every
complete lattice is also bounded.

For the purpose of model checking software product families as introduced in Chapter
4 we are interested in lattices which provide a notion of complement. The following
types of lattices are useful for such a purpose. A bounded lattice in which every
element x has a complement, i.e. an element y such that x t y = > and x u y =
⊥, is called a complemented lattice. If a complemented lattice is also distributive,
every element x has a (necessarily) unique complement denoted by ¬x. A lattice is
distributive, iff xu(ytz) = (xuy)t(xuz), and, dually, xt(yuz) = (xty)u(xtz).
A complete distributive lattice is called Boolean iff for all elements x ∈ L we have
x t ¬x = > and x u ¬x = ⊥. Some properties of a Boolean lattice are emphasized
in a de Morgan lattice. In a de Morgan lattice (also: orthocomplemented lattice),
every element x has a unique dual element ¬x, such that ¬¬x = x and x v y implies
¬y v ¬x. As the negation is essential we denote a de Morgan lattice as a quadruple
(L,u,t,¬). Note that a Boolean lattice is a special case of a de Morgan lattice.

A typical Boolean lattice is the one induced by the power of some non-empty finite
set S, i.e. the lattice (P(S),⊆) where the ordering is given by set inclusion. Here,
the entire set S takes the role of >, while the empty set ∅ takes the role of ⊥. The
lattice operation meet u is given by set intersection ∩, join t is given by set union ∪,
and the lattice complement operation ¬ is given by set complement {, respectively.
In particular, in the context of a PF-CCS software product family we can represent
sets of configuration as elements of such a powerset lattice: In a PF-CCS software
product family with N ∈ N variation points we associate every complete configura-
tion with an element of S (in a unique way). Thus, the set S has |S| = 2N elements
which represent all N possible configurations of the software product family. Then,
any element s ∈ P(S) of the powerset lattice over S corresponds to a (sub)set of
configurations. In the context of model checking software product families, as we
introduce it in Chapter 4, we require such a powerset lattice P(S) over a set of
configurations in order to determine and represent those configurations in which
certain properties hold.

268

APPENDIXD

The Modal µ-Calculus

The modal µ-calculus—in the form we use it—was introduced by Dexter Kozen in
1983 [Koz83]. The set Lµ of syntactically correct formulae of the modal µ-calculus
is defined by the grammar in Chapter 4.1.1 on Page 163. Note that this is the same
syntax as formulae of our multi-valued modal µ-calculus mv -Lµ.

A Lµ-formula is interpreted over a Kripke structure (see e.g. [CGP99]). An action-
labeled Kripke structure

T = (States ,
α
−→, L)

consists of a finite set States of states, a total transition relation
α
−→⊆ States ×A×

States where individual transitions are labeled with actions in A, and a labeling
function L : States → P(P) which associates every state with a subset of atomic
propositions in P, which hold in this state. With T .s we denote the state s of
T . If the set I ⊆ States of initial states has to be considered explicitly, we add it
to the definition of a Kripke structure T and write T = (States ,

α
−→, L, I). In the

case of I being the singleton set I = {σ}, we omit the set notation and only write
T = (States ,

α
−→, L, σ). Note that a product family LTS (PF-LTS) as we introduce

it in Chapter 3.12 (Page 125) is actually a special kind of a Kripke structure, where
the state labeling function is not explicitly given.

The semantics of the modal µ-calculus is defined in terms of sets of states of a Kripke
structure T . Thus, formulae of the modal µ-calculus Lµ are ascribed to states of T .
A state s has property ϕ, denoted by s |=µ ϕ, if ϕ holds in that particular state. If

269

D. The Modal µ-Calculus

a state does not have the property ϕ we write s 6|=µ ϕ. We write T |=µ ϕ if a Kripke
structure (also a PF-LTS) T fulfills a property ϕ in any of its start states σ, i.e. iff
T .σ |=µ ϕ.

Let V denote the set of all Variables. In a Lµ formula, the fixpoint operators µ
and ν are the only variable binders. The valuation of free variables is given by the
function

V : V → P(States)

which defines a variable environment. It yields for every free variable Z ∈ V the set
of states in which this variable holds. The construct V [Z 7→ S] denotes the updated
valuation environment where the variable Z is mapped to the set S ⊆ States , and
where all other variable valuations are according to V . In order to emphasize that
a satisfaction relation uses the environment V we also write |=V

µ .

The satisfaction relation |=V
µ with respect to a variable environment V is defined

inductively on the structure of the formula as shown below, where ϕ,ψ ∈ Lµ are
formulae, q ∈ P is an atomic proposition, and α ∈ A is an action. Note that this is
just a brief summary of the semantics of the µ-calculus as given in [Sti01] (adjusted
to the setting of states instead of processes).

s |=V
µ true for all states s ∈ States

s 6|=V
µ false for all states s ∈ States

s |=V
µ q iff q ∈ L(s)

s |=V
µ ϕ ∧ ψ iff s |=V

µ ϕ and s |=V
µ ψ

s |=V
µ ϕ ∨ ψ iff s |=V

µ ϕ or s |=V
µ ψ

s |=V
µ 〈α〉ϕ iff ∃t ∈

{

s′ | ∃α : s
α
−→ s′

}

: t |=V
µ ϕ

s |=V
µ [α]ϕ iff ∀t ∈

{

s′ | ∃α : s
α
−→ s′

}

: t |=V
µ ϕ

s |=V
µ Z iff s ∈ V (Z)

s |=V
µ νZ.ϕ iff s ∈

⋃

{

S ⊆ States
∣

∣

∣
S ⊆ µ[[ϕ]]

T
V [Z 7→S]

}

s |=V
µ µZ.ϕ iff s ∈

⋂

{

S ⊆ States
∣

∣

∣ µ[[ϕ]]
T
V [Z 7→S] ⊆ S

}

We denote the set of all states s ∈ States in which a formula ϕ interpreted over a
Kripke structure T holds by

µ[[ϕ]]
T
V

def
= {s ∈ States : s |=V

µ ϕ under valuation V }

where the left subscript µ emphasizes that the semantics is for the standard µ-
calculus. If it is clear which structure we mean, we omit the superscript T , respec-
tively.

270

Bibliography

[AGM+06] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba,
and Carlos José Pereira de Lucena. Refactoring product lines. In
Stan Jarzabek, Douglas C. Schmidt, and Todd L. Veldhuizen, editors,
GPCE’06: Proceedings of the 5th International Conference on Genera-
tive Programming and Component Engineering, pages 201–210. ACM,
2006.

[AK09] Sven Apel and Christian Kästner. An overview of feature-oriented soft-
ware development. Journal of Object Technology, 8(5):49–84, 2009.

[Ake78] S.B. Akers. Binary decision diagrams. IEEE Transactions on Comput-
ers, C-27(6), June 1978.

[AKGL10] Sven Apel, Christian Kästner, Armin Größlinger, and Christian
Lengauer. Type safety for feature-oriented product lines. Automated
Software Engineering, 17(3):251–300, 2010. 10.1007/s10515-010-0066-8.

[All97] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,
School of Computer Science, Carnegie Mellon University, 1997.

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian
Kästner. An algebra for features and feature composition. In José
Meseguer and Grigore Rosu, editors, AMAST, volume 5140 of Lecture
Notes in Computer Science, pages 36–50. Springer, 2008.

271

Bibliography

[ALMK10] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian
Kästner. An algebraic foundation for automatic feature-based program
synthesis. Science of Computer Programming (SCP), 75(11):1022–1047,
2010.

[App10] Apple. Mac OS X Snow Leopard. http://www.apple.com/de/

macosx/, January 2010.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Reading, Massachusetts,
1986.

[AtBGF09] Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessan-
dro Fantechi. Deontic logics for modeling behavioural variability. In
David Benavides, Andreas Metzger, and Ulrich W. Eisenecker, editors,
VaMoS, volume 29 of ICB Research Report, pages 71–76. Universität
Duisburg-Essen, January 2009.

[Bae05] J.C.M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131 – 146, 2005. Process Algebra.

[Bat05] Don S. Batory. Feature models, grammars, and propositional formulas.
In J. Henk Obbink and Klaus Pohl, editors, SPLC, volume 3714 of
Lecture Notes in Computer Science, pages 7–20. Springer, 2005.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO speci-
fication language LOTOS. Computer Networks, 14:25–59, 1987.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. How reuse
influences productivity in object-oriented systems. Communications of
the ACM, 39(10):104–116, 1996.

[BC96] L. Brownsword and P. Clements. A case study in successful product
line development. Technical Report CMU/SEI-96-TR-016, Software
Engineering Institute, Carnegie Mellon University, 1996.

[BCD02] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Architect-
ing families of software systems with process algebras. ACM Transac-
tions on Software Engineering and Methodology, 11(4):386–426, 2002.

[BCKB03] Len Bass, Paul Clements, Rick Kazmann, and Lisa Brownsword. Cel-
siustech - a case study in product line development. Software Archi-
tecture in Practice, Second Edition, pages 369–399, 2003. ISBN 0-321-
15495-9.

272

http://www.apple.com/de/macosx/
http://www.apple.com/de/macosx/

Bibliography

[BDG+05] Peter Braun, Peter Dornbusch, Alexander Gruler, Alfred Helmerich,
Patrick Keil, Nora Koch, Roland Leisibach, Luis Mandel, Jan Romberg,
Bernhard Schätz, Thomas Wild, and Guido Wimmel. Study of
worldwide trends and r&d programmes in embedded systems in
view of maximising the impact of a technology platform in the
area. Online at ftp://ftp.cordis.lu/pub/ist/docs/embedded/

final-study-181105_en.pdf, November 2005. Study for the Euro-
pean Commission.

[Bec00] Kent Beck. Extreme Programming Explained: Embracing Change.
Addison-Wesley, 1st edition, 2000.

[Bel08] Michael Bell. Service-Oriented Modeling: Service Analysis, Design, and
Architecture. Wiley and Sons, 2008. ISBN 978-0-470-14111-3.

[BFG+93a] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth,
F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and
Design Specification Language Spectrum. An Informal Introduction.
Version 1.0. Part I. Technical Report TUM-I9311, Technische Univer-
sität München. Institut für Informatik, May 1993.

[BFG+93b] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth,
F. Regensburger, O. Slotosch, and K. Stølen. The Requirement and
Design Specification Language Spectrum. An Informal Introduction.
Version 1.0. Part II. Technical Report TUM-I9312, Technische Univer-
sität München. Institut für Informatik, May 1993.

[BFG+08] Manfred Broy, Martin Feilkas, Johannes Grünbauer, Alexander Gruler,
Alexander Harhurin, Judith Hartmann, Birgit Penzenstadler, Bernhard
Schätz, and Doris Wild. Umfassendes architekturmodell für das en-
gineering eingebetteter software-intensiver systeme. Technical Report
TUM-I0816, Technische Universität München, June 2008.

[BG04] Glenn Bruns and Patrice Godefroid. Model checking with multi-valued
logics. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald
Sannella, editors, ICALP, volume 3142 of Lecture Notes in Computer
Science, pages 281–293. Springer, 2004.

[BHK89] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification.
Addison-Wesley, New York, 1989. ISBN 0-201-41635-2.

[BK84] J. A. Bergstra and J. W. Klop. Process algebra for synchronous com-
munication. Information and Control, 60:109–137, 1984.

273

ftp://ftp.cordis.lu/pub/ist/docs/embedded/final-study-181105_en.pdf
ftp://ftp.cordis.lu/pub/ist/docs/embedded/final-study-181105_en.pdf

Bibliography

[BK96] J. A. Bergstra and P. Klint. The ToolBus coordination architecture.
Lecture Notes in Computer Science, 1061:75–??, 1996.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, May 2008. ISBN-10 0-262-02649-X, ISBN-13 978-0-
262-02649-9.

[BKM07] Manfred Broy, Ingolf Krüger, and Michael Meisinger. A formal model of
services. ACM Transactions on Software Engineering and Methodology,
16(1), 2007. Available at http://doi.acm.org/10.1145/1189748.

1189753.

[BKPS07] M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann. Engineering au-
tomotive software. Proceedings of the IEEE, 95(2):356–373, Feb. 2007.

[BKT84] J. A. Bergstra, J. W. Klop, and J. V. Tucker. Process algebra with asyn-
chronous communication mechanisms. In A. W. Roscoe S. D. Brookes
and G. Winskel, editors, Proceedings of the Seminar on Concurrency,
volume 197 of Lecture Notes in Computer Science, pages 76–95, Pitts-
burgh, PA, July 1984. Springer.

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and
Wang Yi. Uppaal— a tool suite for automatic verification of real–time
systems. In Proceedings of the Workshop on Verification and Control of
Hybrid Systems III, number 1066 in Lecture Notes in Computer Science,
pages 232–243. Springer–Verlag, October 1995.

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT—
structured assertion language for temporal logic. In ICFEM’06: Pro-
ceedings of the 8th International Conference on Formal Engineering
Methods, volume 4260 of Lecture Notes in Computer Science, Septem-
ber 2006.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, 1998.

[BO92] Don Batory and Sean O’Malley. The design and implementation of
hierarchical software systems with reusable components. ACM Trans-
actions on Software Engineering and Methodology, 1(4):355–398, 1992.

[Boc09] Otto Bock. Knee joints. Homepage, December 2009. Avail-
able online http://www.ottobock.com/cps/rde/xchg/ob_com_en/

hs.xsl/1943.html.

274

http://doi.acm.org/10.1145/1189748.1189753
http://doi.acm.org/10.1145/1189748.1189753
http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/1943.html
http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/1943.html

Bibliography

[Bos00] Jan Bosch. Design and Use of Software Architectures: Adopting and
Evolving a Product Line Approach. Pearson Education (Addison-
Wesley & ACM Press), May 2000.

[BR05] Manfred Broy and Andreas Rausch. Das neue V-modell R© XT. Infor-
matik Spektrum, 28(3):220–229, 2005.

[Bro98] Manfred Broy. Informatik. Eine grundlegende Einfuehrung. Band I:
Programmierung und Rechnerstrukturen, 2. Auflage. Springer, Berlin,
1998. ISBN 3-540-64392-3.

[Bro05] Manfred Broy. Service-oriented Systems Engineering: Specification and
Desgin of Serices and Layered Architectures - The Janus Approach. In
Manfred Broy, Johannes Grünbauer, David Harel, and Tony Hoare,
editors, Engineering Theories of Software Intensive Systems, pages 47–
81. Springer Verlag, July 2005.

[Bru91] Glenn Bruns. A language for value-passing CCS. Internal Report ECS-
LFCS-91-175, University of Edinburgh, August 1991.

[BS01a] J. Bradfield and C. Stirling. Modal logics and mu-calculi. In J. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages
293–332. Elsevier, North-Holland, 2001.

[BS01b] Manfred Broy and Ketil Stølen. Specification and Development of
Interactive Systems - Focus on Streams, Interfaces and Refinement.
Springer, New York, 2001. ISBN 0-387-95073-7.

[Cam88] Michelle M. Campbell. A microcomputer-based knee controller. Tech-
nical Report 88/317/29, University of Calgary, July 1988.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv version 2: An
opensource tool for symbolic model checking. In CAV’02: Proceedings
of the 14th International Conference on Computer-Aided Verification,
volume 2404 of Lecture Notes in Computer Science, Copenhagen, Den-
mark, July 2002. Springer.

[CE81a] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchro-
nization Skeletons using Branching Time Temporal Logic. In D. Kozen,
editor, Proceedings of the Workshop on Logics of Programs, volume 131
of Lecture Notes in Computer Science, pages 52–71, Yorktown Heights,
New York, May 1981. Springer.

275

Bibliography

[CE81b] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchroniza-
tion Skeletons using Branching Time Temporal Logic. In D. Kozen, ed-
itor, Proceedings of the Workshop on Logics of Programs, volume 131 of
Lecture Notes in Computer Science, pages 52–71. Springer, May 1981.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley, 2000.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and Systems, 8(2):244–
263, 1986.

[CGLT09] Alarico Campetelli, Alexander Gruler, Martin Leucker, and Daniel
Thoma. Don’t know for multi-valued systems. In Zhiming Liu and An-
ders P. Ravn, editors, ATVA’09: Proceedings of the 7th International
Symposium on Automated Technology for Verification and Analysis,
number 5799 in Lecture Notes in Computer Science, pages 289–305.
Springer, 2009.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, Cambridge, Massachusetts, 1999.

[Cha09] Robert N. Charette. This car runs on code. IEEE Spectrum On-
line, February 2009, 2009. http://spectrum.ieee.org/green-tech/
advanced-cars/this-car-runs-on-code#.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel
Legay, and Jean-François Raskin. Model checking lots of systems: Ef-
ficient verification of temporal properties in software product lines. In
ICSE 2010, Proceedings of the 32nd International Conference on Soft-
ware Engineering, pages 335–344. ACM, May 2010. Acceptance rate:
13.7

[CHW98] James Coplien, Daniel Hoffman, and David Weiss. Commonality and
variability in software engineering. IEEE Software, 15(6):37–45, 1998.

[Cle93] Rance Cleaveland. The concurrency workbench: A semantics-based
verification tool for the verification of concurrent systems. ACM Trans-
actions on Programming Languages and Systems, 15(1):36–72, January
1993.

[CN01] Paul C. Clements and Linda Northrop. Software Product Lines: Prac-
tices and Patterns. SEI Series in Software Engineering. Addison-Wesley,
Aug 2001.

276

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code#
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code#

Bibliography

[Com09] European Commission. ecall: Time saved turns into lives saved. Web-
site of the European Commission, Information Society, 2009. On-
line at http://ec.europa.eu/information_society/activities/

esafety/ecall/index_en.htm, Accessed 12-2009.

[CW85] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and ploymorphism. ACM Computing Surveys, 17(4):471–521,
December 1985.

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. In SPLC’07: Proceedings of the 11th
International Software Product Line Conference, pages 23–34, 2007.

[dAFH+05] Luca de Alfaro, Marco Faella, Thomas A. Henzinger, Rupak Majumdar,
and Mariëlle Stoelinga. Model checking discounted temporal properties.
Theoretical Computer Science, 345(1):139–170, 2005.

[dAH01] L. de Alfaro and T.A. Henzinger. Interface automata. In FSE’01:
Proceedings of the 9th Annual Symposium on Foundations of Software
Engineering, pages 109–120. ACM Press, 2001.

[Dam94] Mads Dam. CTL* and ECTL* as fragments of the modal µ-calculus.
Theoretical Computer Science, 126(1):77–96, 04 1994.

[DCB09] Benjamin Delaware, William R. Cook, and Don Batory. Fitting the
pieces together: a machine-checked model of safe composition. In Pro-
ceedings of the the 7th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on The foundations
of software engineering, ESEC/FSE ’09, pages 243–252, New York, NY,
USA, 2009. ACM.

[DDH72] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured
Programming. Academic Press, 1972.

[Die08] Bob Diertens. A process algebra software engineering environment.
CoRR, abs/0806.2730, 2008. informal publication.

[Dij68] E. W. Dijkstra. GOTO statements considered harmful. Communica-
tions of the ACM, 11:147–148, 1968.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1976.

277

http://ec.europa.eu/information_society/activities/esafety/ ecall/index_en.htm
http://ec.europa.eu/information_society/activities/esafety/ ecall/index_en.htm

Bibliography

[dKP92] F. deBoer, J. Klop, and C. Palamidessi. Asynchronous communication
in process algebra. In LICS’92: Proceedings of the 7th IEEE Symposium
on Logic in Computer Science. IEEE Computer Society Press, 1992.

[DMN68] Ole-Johan Dahl, Bjorn Myrhaug, and Kristen Nygaard. SIMULA 67.
common base language. Technical Report Publ. No. S-2, Norwegian
Computing Center, Oslo, Norway, May 1968. Revised Edition: Publi-
cation No. S-22.

[DP90] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

[EC81] E.A. Emerson and E.M. Clarke. Characterizing correctness properties
of parallel programs as fixpoints. In ICALP’80: Proceedings of the 7th
International Colloquium on Automata, Languages and Programming,
volume 85 of Lecture Notes in Computer Science, pages 169–181, Berlin,
1981. Springer-Verlag.

[EJS93] E. Allen Emerson, Charanjit S. Jutla, and A. Prasad Sistla. On model-
checking for fragments of mu-calculus. In C. Courcoubetis, editor,
CAV’93: Proceedings of the 5th International Computer-Aided Veri-
fication Conference, volume 697 of Lecture Notes in Computer Science,
pages 385–396. Springer, 1993.

[EL86] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of
the propositional µ-calculus. In LICS’86: Proceedings of the 1st Annual
Symposium on Logic in Computer Science, pages 267–278, Washington,
D.C., USA, June 1986. IEEE Computer Society Press.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specifica-
tion 1. Springer, Berlin, 1985.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall, August 2005. ISBN 0-13-185858-0.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Mathematical Aspects of Computer Science, volume 19 of Pro-
ceedings of Symposia in Applied Mathematics, pages 19–32, Providence,
Rhode Island, 1967. American Mathematical Society.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Springer, 2000.

[GBR08] AUTOSAR GBR. Autosar - automotive open system architecture. Of-
ficial Website, 2008.

278

Bibliography

[GHH07] Alexander Gruler, Alexander Harhurin, and Judith Hartmann. Model-
ing the functionality of multi-functional software systems. In ECBS’07:
Proceedings of the 14th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, pages 349–
358. IEEE CNF, March 2007.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Lan-
guage Specification, Third Edition. The Java Series. Addison-Wesley,
Boston, Massachusetts, 2005.

[GLS08a] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Calcu-
lating and modeling common parts of software product lines. In Birgit
Geppert and Klaus Pohl, editors, SPLC’08: Proceedings of the 12th
International Software Product Line Conference, pages 203–212. IEEE,
2008.

[GLS08b] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Mod-
eling and model checking software product lines. In Gilles Barth and
Frank de Boer, editors, FMOODS’08: Proceedings of the 10th IFIP In-
ternational Conference on Formal Methods for Open Object-based Dis-
tributed Systems, volume 5051 of Lecture Notes in Computer Science,
pages 113–131. Springer, 2008.

[Gmb02] Robert Bosch GmbH. Adaptive Fahrgeschwindigkeitsregelung ACC.
Christiani, Konstanz, Germany, April 2002. ISBN 978-3865220189.

[Gut75] John Guttag. The Specification and Application to Programming of
Abstract Data Types. PhD thesis, University of Toronto, Department
of Computer Science, October 1975.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[HKM06] Peter Höfner, Ridha Khédri, and Bernhard Möller. Feature algebra.
In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, editors, FM,
volume 4085 of Lecture Notes in Computer Science, pages 300–315.
Springer, 2006.

[HKM09] Peter Höfner, Ridha Khedri, and Bernhard Möller. An algebra of prod-
uct families. Software and Systems Modeling, Special Issue, 2009.

[HM84] Ellis Horowitz and John B. Munson. An expansive view of reusable
software. IEEE Transactions on Software Engineering, 10(5):477–487,
1984.

279

Bibliography

[Hoa62] C. A. R. Hoare. Quicksort. The Computer Journal, 5(4):10–15, 1962.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall In-
ternational, London, 1985. Availabe online at: http://www.usingcsp.
com/.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker. Pearson Education,
2003.

[Inc09] The MathWorks Inc. Simulink. http://www.mathworks.com/index.

shtml, January 2009. Visited 2009-01.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a minimal core calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems, 23(3):396–450, May 2001.

[ISS06] Fraunhofer ISST. Modellbasierte entwicklung in der automobilindus-
trie - das MOSES-projekt. Technical Report ISST-Bericht 77/06,
Fraunhofer-Gesellschaft, ISST, April 2006.

[IT96] ITU-TS. ITU-TS recommendation Z.120: Message sequence chart 1996
(MSC96), 1996.

[Jur09] Ronald Jurgen. X-by-Wire automotive systems. SAE International,
2009. ISBN-13 978-0768021004.

[KA08] Christian Kästner and Sven Apel. Type-checking software product lines
- A formal approach. In ASE’08: Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering, pages
258–267. IEEE, 2008.

[Kar53] M. Karnaugh. The map method for synthesis of combinational logic
circuits. AIEE Transactions, Part I Communication and Electronics,
72:593–599, November 1953.

[Kay93] A. C. Kay. The early history of Smalltalk. In J. A. N. Lee and J. E.
Sammet, editors, Proceedings of the 2nd Conference on History of Pro-
gramming Languages, Cambridge (MA), USA, special issue of ACM
SIGPLAN Notices , (28)3, pages 69–95. ACM Press, New York (NY),
USA, 1993.

280

http://www.usingcsp.com/
http://www.usingcsp.com/
http://www.mathworks.com/index.shtml
http://www.mathworks.com/index.shtml

Bibliography

[KHNP90] Sholom G. Cohen Kyo C. Kang, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature oriented design analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21-ESD-90/TR-
222, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 1990.

[Koz83] Dexter Kozen. Results on the propositional [mu]-calculus. Theoretical
Computer Science, 27(3):333 – 354, 1983.

[Kru92] Charles W. Krueger. Software reuse. ACM Computing Surveys,
24(2):131–183, June 1992.

[Lam94] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, May 1994.

[LFT09] Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. A quantitative
characterization of weighted kripke structures in temporal logic. In Petr
Hlinený, Václav Matyáš, and Tomáš Vojnar, editors, Annual Doctoral
Workshop on Mathematical and Engineering Methods in Computer
Science (MEMICS’09), Dagstuhl, Germany, 2009. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Germany.

[LNW07] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal
I/O automata for interface and product line theories. In ESOP’07:
Proceedings of the 16th European Symposium on Programming, volume
4421 of Lecture Notes in Computer Science, pages 64–79, April 2007.

[Loe87] Jacques Loeckx. Algorithmic specifications: a constructive specification
method for abstract data types. ACM Transactions on Programming
Languages and Systems, 9(4):646–661, 1987.

[LPT09] Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking of
domain artifacts in product line engineering. ASE’09: Proceedings of
the 24rd IEEE/ACM International Conference on Automated Software
Engineering, 0:269–280, 2009.

[LS93] G. F. Luger and W. A. Stubblefield. Artificial Intelligence: Structures
and Strategies for Complex Problem Solving. Benjamin-Cummings,
Redwood Cliffs, CA., 1993.

[LT88] K. G. Larsen and B. Thomsen. A modal process logic. In LICS ’88: Pro-
ceedings of the 3rd Annual Symposium on Logic in Computer Science,
pages 203–211, Washington, D.C., USA, July 1988. IEEE Computer
Society Press.

281

Bibliography

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output
automata. CWI Quarterly, 2(3):219–246, September 1989.

[LW94] Barbara Liskov and Jeannette M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and Systems,
16(6):1811–1841, November 1994.

[LZ74] Barbara Liskov and Stephen Zilles. Programming with abstract data
types. ACM SIGPLAN Notices, 9(4):50–59, April 1974.

[Man02] Mike Mannion. Using first-order logic for product line model validation.
In Gary J. Chastek, editor, SPLC, volume 2379 of Lecture Notes in
Computer Science, pages 176–187. Springer, 2002.

[MC01] Mila E. Majster-Cederbaum. Underspecification for a simple process
algebra of recursive processes. Theoretical Computer Science, 266(1-
2):935–950, 2001.

[McI69] M. D. McIlroy. “Mass produced” software components. In P. Naur
and B. Randell, editors, Software Engineering, pages 138–155, Brus-
sels, 1969. Scientific Affairs Division, NATO. Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7th
to 11th October 1968.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeffrey Kramer.
Specifying distributed software architectures. In ESEC’95: Proceedings
of the 5th European Software Engineering Conference, volume 989 of
Lecture Notes in Computer Science, pages 137–153. Springer-Verlag,
September 1995.

[Mey87] B. Meyer. Reusability: The case for object-oriented design. IEEE
Software, 4(2):50–64, 1987.

[Mey97] B. Meyer. Object-Oriented Software Construction. The Object-Oriented
Series. Prentice-Hall, Englewood Cliffs (NJ), USA, second edition, 1997.

[Mil80] R. Milner. A Calculus for Communicating Processes, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

[Mil95] Robin Milner. Communication and concurrency. Prentice Hall Inter-
national (UK) Ltd., Hertfordshire, UK, UK, 1995.

[Mil99] Robin Milner. Communicating and Mobile Systems: The π Calculus.
Cambridge University Press, Cambridge, England, May 1999.

282

Bibliography

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and compar-
ison framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, August 1990.

[New05] News@SEI. Faqs: An introduction to software product lines.
Interview with Paul Clements, Online at http://www.sei.cmu.

edu/news-at-sei/columns/software-product-lines/2005/3/

software-product-lines-2005-3.htm, 2005. Visited 01-2009.

[NR69] P. Naur and B. Randell. Software engineering report of a conference
sponsored by the NATO science committee, Garmisch, Germany, 7th-
11th October 1968, Jan 1969.

[Ort09] Ed Ort. Introducing the Java EE 6 platform. http://java.sun.com/
developer/technicalArticles/JavaEE/JavaEE6Overview.html,
December 2009.

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[Par76] David Lorge Parnas. On the design and development of program fam-
ilies. IEEE Transactions on Software Engineering, 2(1):1–9, March
1976.

[Par81] David Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI-Conference on Theoretical Computer Science,
volume 104 of Lecture Notes in Computer Science, pages 167–183, Lon-
don, UK, 1981. Springer-Verlag.

[Par08] David Lorge Parnas. Multi-dimensional software families: Doc-
ument defined partitions on a set of products. Available on-
line at http://www.lero.ie/download.aspx?f=SPLC08.thumbs.pdf,
September 2008. Keynote Talk, 12th International Software Product
Line Conference, Limerick, Ireland.

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828
of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[Pet62] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University
of Bonn, Bonn, Germany, 1962. (In German).

283

http://www.sei.cmu.edu/news-at-sei/columns/ software-product -lines/2005/3/software-product-lines-2005-3.htm
http://www.sei.cmu.edu/news-at-sei/columns/ software-product -lines/2005/3/software-product-lines-2005-3.htm
http://www.sei.cmu.edu/news-at-sei/columns/ software-product -lines/2005/3/software-product-lines-2005-3.htm
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html
http://java.sun.com/developer/technicalArticles/JavaEE/JavaEE6Overview.html
http://www.lero.ie/download.aspx?f=SPLC08.thumbs.pdf

Bibliography

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS’77: Proceedings
of the 18th Annual Symposium on Foundations of Computer Science,
pages 46–57, Long Beach, Ca., USA, October 1977. IEEE Computer
Society Press.

[Pro99] B. J. Pronk. Medical product line architectures – 12 years of experi-
ence. In Proceedings of the 1st Working IFIP Conference on Software
Architecture, pages 357–367, San Antonio, TX, USA, February 1999.
Kluwer Academic Publishers.

[PS08] Hendrik Post and Carsten Sinz. Configuration lifting: Verification
meets software configuration. In ASE’08: Proceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engi-
neering, pages 347–350. IEEE, 2008.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th International Symposium
in Programming, volume 137 of Lecture Notes in Computer Science,
pages 337–351. Springer, 1982.

[RC04] Nelson Souto Rosa and Paulo Roberto Freire Cunha. A software
architecture-based approach for formalising middleware behaviour.
Electronic Notes in Theoretical Computer Science, 108:39–51, 2004.

[Ros05] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
Series in Computer Science. Prentice-Hall, New York, online edition
2005 edition, 1998, Revised 2005. Online available at http://web.

comlab.ox.ac.uk/people/Bill.Roscoe/publication/68b.pdf.

[Sch98] Bernhard Schätz. Ein methodischer Übergang von asynchron zu syn-
chron kommunizierenden Systemen. PhD thesis, Fakultät für Infor-
matik, Technische Universität München, 1998. in German.

[Sch99] Douglas C. Schmidt. Why software reuse has failed and how to make
it work for you. C++ Report, SIGS, 11(1), Jan 1999.

[Sch01] Uwe Schöning. Algorithmik. Spektrum Akademischer Verlag GmbH,
Heidelberg-Berlin, 2001.

[Sch08] Kathrin Scheidemann. Verifying Families of System Configurations.
PhD thesis, Fakultät für Informatik, Technische Universität München,
April 2008.

284

http://web.comlab.ox.ac.uk/people/Bill.Roscoe/publication /68b.pdf
http://web.comlab.ox.ac.uk/people/Bill.Roscoe/publication /68b.pdf

Bibliography

[SD07] Marco Sinnema and Sybren Deelstra. Classifying variability model-
ing techniques. Information and Software Technology, 49(7):717 – 739,
2007.

[SEI] Carnegie Mellon University Software Engineering Institute. Soft-
ware product line hall of fame. Website, http://www.sei.cmu.edu/
productlines/plp_hof.html. Visited 12-2008.

[SG05] Sharon Shoham and Orna Grumberg. Multi-valued model checking
games. In Doron Peled and Yih-Kuen Tsay, editors, ATVA’05: Pro-
ceedings of the 3rd International Symposium on Automated Technology
for Verification and Analysis, volume 3707 of Lecture Notes in Com-
puter Science, pages 354–369. Springer, October 2005.

[SS71] Dana Scott and Christopher Strachey. Towards a mathematical se-
mantics for computer languages. In Proceedings, 21st Symposium on
Computers and Automata, pages 19–46. Polytechnic Institute of Brook-
lyn, 1971. Also, Programming Research Group Technical Monograph
PRG–6, Oxford University.

[SSP07] Rok Strnisa, Peter Sewell, and Matthew J. Parkinson. The java module
system: core design and semantic definition. In Richard P. Gabriel,
David F. Bacon, Cristina Videira Lopes, and Guy L. Steele Jr, editors,
OOPSLA’07:, pages 499–514. ACM, 2007.

[ST97] Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic
specification and program development. Formal Aspects of Computing,
9(3):229–269, 1997.

[Sta84] Thomas A. Standish. An essay on software reuse. IEEE Transactions
on Software Engineering, 10(5):494–497, 1984.

[Sti95] Colin Stirling. Local model checking games. In CONCUR’95: Proceed-
ings of the 6th International Conference on Concurrency Theory, pages
1–11, London, UK, 1995. Springer-Verlag.

[Sti01] Colin Stirling. Modal and Temporal Properties of Processes. Texts in
Computer Science. Springer, 2001.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. ACM Press and Addison-Wesley, New York, NY, 1998.

285

http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/productlines/plp_hof.html

Bibliography

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its application.
Pacific Journal of Mathematics, 5:285–309, 1955.

[TBK09] Thomas Thüm, Don Batory, and Christian Kästner. Reasoning about
edits to feature models. In ICSE’09: Proceedings of the 31th Interna-
tional Conference on Software Engineering. IEEE Computer Society,
May 2009.

[Tof92] C.M.N. Tofts. Describing social insect behaviour using process algebra.
Transactions of the Society for Computer Simulation, pages 227–283,
1992.

[vHL89] Ivo van Horebeek and Johann Lewi. Algebraic Specifications in Software
Engineering: An Introduction. Springer-Verlag, New York, NY, 1989.
ISBN 3-540-51626-3, 0-387-51626-3.

[VN98] Simone Veglioni and Rocco De Nicola. Possible worlds for process al-
gebras. In Davide Sangiorgi and Robert de Simone, editors, CONCUR,
volume 1466 of Lecture Notes in Computer Science, pages 179–193.
Springer, September 1998.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computa-
tions. Information and Computation, 115(1):1–37, January 1994.

[WG04] Diana L. Webber and Hassan Gomaa. Modeling variability in software
product lines with the variation point model. Science of Computer
Programming, 53(3):305 – 331, 2004. Software Variability Management.

[Wir90] Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, chapter 13, pages 675–788. The MIT Press, New York,
NY, 1990.

[WNSSL05] Cédric Wilwert, Nicolas Navet, Yeqiong Song, and Françoise Simonot-
Lion. Design of automotive X-by-wire systems, January 18 2005.

[Wol] Pierre Wolper. A translation from full branching time temporal logic
to one letter propositional dynamic logic with looping. unpublished
manuscript.

[Zav93] Pamela Zave. Feature interactions and formal specifications in
telecommunications. IEEE Computer, 26(8):20–30, Aug 1993. DOI
10.1109/2.223539.

286

Bibliography

[Zil74] S. N. Zilles. Algebraic specification of abstract data types. Computation
structures group memo 119, Laboratory for Computer Science, MIT,
1974.

[ZLWL07] Guang Zheng, Shaorong Li, Jinzhao Wu, and Lian Li. A non-
interleaving denotational semantics of value passing CCS with action
refinement. In Franco P. Preparata and Qizhi Fang, editors, FAW,
volume 4613 of Lecture Notes in Computer Science, pages 178–190.
Springer, 2007.

287

Bibliography

288

	Introduction
	Software Product Line Engineering
	Challenges and Their Backgrounds
	Requirements for an Improved Engineering Approach

	Contributions
	Related Work
	Thesis Outline

	Formalization of Characteristic Software Product Family Concepts
	Software Product Families and Lines: An Informal View
	Axiomatization of Software Product Family Concepts
	Preliminaries: Algebraic Specification
	Operations for Constructing a Software Product Family
	Core Assets and Neutral Element
	Composition
	Variation Points and Variants
	Example: A Product Family of Stickmen Drawings

	Axioms, Properties and Auxiliary Operations
	Axioms for Constructors
	Term Normal Form of Product Families
	Configuration: Derivation of Products
	Properties of the Variants Operator
	Sub-Families
	Products
	Common Parts
	Optional and Mandatory Parts
	Evolution of Software Product Families
	A General Variants Operator for n Variants

	Complete Algebraic Specification of the Sort SPF

	Modeling Dependencies in Software Product Families
	Discussion
	On the Choice of an Algebraic Specification
	Structural Similarity to an AND/OR-Tree
	Combining the Axiomatization with a Type System

	Related Work

	PF-CCS: Product Family CCS
	Syntax of PF-CCS
	Well-formed PF-CCS programs.

	Semantics of a PF-CCS Program
	Flat Semantics
	Unfolded Semantics
	Configured-transitions Semantics

	Design Decisions for PF-CCS
	Practicability of PF-CCS
	Value-Passing PF-CCS
	Placing PF-CCS in the Development Process

	Related Work

	Verifying Properties of PF-CCS Software Product Families
	The Multi-Valued Modal -calculus
	Syntax of the Multi-Valued Modal -Calculus
	Semantics of the Multi-Valued Modal -Calculus
	Correctness of the Provided Semantics

	Model Checking
	Example: Verifying a Family of Windscreen Wipers
	Specification of the Product Family of Windscreen Wipers
	Verification

	Related Work

	Restructuring PF-CCS Software Product Families
	Algebraic Laws
	Distributivity of Action Prefixing over
	Distributivity of Non-Deterministic Choice over
	Distributivity of Parallel Composition over
	Miscellaneous Laws

	Calculating Commonalities: A Detailed Example
	Common Parts

	Conclusion and Future Work
	Discussion
	Future and Ongoing Work

	Selected Algebraic Specifications
	Uniqueness of the Normal Form: Proofs
	Auxiliary Lemmata

	Lattices
	The Modal -Calculus
	Bibliography

