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1. Introduction

1.1. The beginning

The goal of physics is to understand nature. This endeavor has developed gradually
since man has begun to reason. However, with the discovery of the law of gravitation by
Isaac Newton in 1666 a new era has begun in physics. Since then, nature has taught us
that eventually all of its phenomena can be described by equations of various complexity.
Knowing these equations is, in principle, sufficient to fully understand nature. Every
single detail of our world can then be derived, even those aspects whose connection to
the equations is rather hidden, like the physical properties of the medium this text is
written on. For that purpose, the only requirement is a computer with infinite resources
of memory and computing time. Unfortunately, such a machine is not available to us.
Therefore, a much more practical approach is used, in which even the derivation of the
manifold phenomena from already known equations turns out to be a challenge. This has
begun with mere analytic derivations, done by hand and limited to the simplest physical
configurations. The advent of the computer age has allowed us to go beyond this scope
and to investigate evermore complex scenarios numerically.

In 1915, Albert Einstein generalized Newton’s theory of gravitation. The resulting
equation is Einstein’s field equation. The easiest solution to this equation is an empty
universe, a flat spacetime without any matter. Everything beyond this trivial solution
requires some additional process of understanding. Black holes are those solutions where
gravitation is strongest. This leads to the presence of event horizons and singularities.
They are not only of philosophical interest, but also an obstacle for a straightforward
numerical implementation. However, it turns out that an extra amount of investigation
is required even if only strong gravitation itself is present, without the exotic properties
of black holes. This is the realm of neutron stars, the central topic of this work.

1.2. Neutron stars

The gravitational potential of a neutron star is about eight orders of magnitude stronger
than the gravitational field of Earth. This tremendous difference is a consequence of the
high density of ~ 10'® g/cm? inside of a neutron star (see, e.g., Michel 1991). Such a
density usually comes into being when a large fraction of about 1.4 — 3 solar masses of
a massive star undergoes a gravitational collapse during a supernova (Fig. 1.1). The
collapsing matter is then compressed to a spherical object of only &~ 10km radius, the
neutron star. White dwarfs are compact objects whose mass is lighter than the Chan-
drasekhar limit of ~ 1.4 solar masses. Their gravitational potential is not as strong
as that of neutron stars and therefore not of direct interest in this thesis. On the other
hand, if the mass is above the Tolman-Oppenheimer-Volkoff limit of ~ 3 solar masses, the
compact objects are presumed to be exotic objects like quark stars (Camenzind 2007).
For these stellar configurations, the Pauli exclusion principle still produces a pressure



1. Introduction

high enough to compensate gravitation. However, beyond ~ 5 solar masses, the gravita-
tion pressure becomes so strong that compact objects at the boundary of the validity of
general relativity are generated, which are usually believed to be black holes.

Figure 1.1.: Crab Nebula with pulsar at its center. The Crab Nebula in the constel-
lation Taurus is the remnant of the famous supernova observed by Chinese
astronomers in 1054. The center of this nebula contains a pulsar (marked
by the green arrow), a rotating magnetized neutron star, which periodically
emits pulses of radiation. HubbleSite.

During the creation of a neutron star, its strong gravitational field compresses protons
and electrons of the collapsing stellar matter to neutrons. That way, they become the
main constituent and responsible for the naming ‘neutron star’. The compression is
strongest in the center, where the gravitational pressure is highest. Realistic neutron star
models consist of several concentric layers, the central region being one of them (Shapiro
et al. 1983). The outermost layers are an atmosphere of a few centimeters thickness and
an about one kilometer thick solid crust. The inner layers are not well understood and
subdue to speculations about their actual composition. This is a consequence of the lack
of direct observations.

The majority of the observed neutron stars are pulsars (Fig. 1.1). Pulsars are rotating
neutrons stars, equipped with a strong magnetic field of up to ~ 104 G, whose symmetry
axis is inclined towards the rotation axis. The magnetic field accelerates charged particles
such that synchrotron radiation is emitted along the symmetry axis of the magnetic field
(Kawaler et al. 1997). Whenever Earth lies within the conical radiation field, pulses of
radiation are observed like from a lighthouse. That way, it is possible to detect neutron
stars at galactic distances, which can be pretty old, as long as their magnetic field has
not yet decayed too much.

Hot neutron stars in the vicinity of Earth can be observed also directly via their thermal
radiation. However, these neutron stars have to be young, because the temperature drops
quickly. This is due to the lack of a heat source, like the nuclear burning in the progenitor
star. At its creation, the central temperature of a neutron star is ~ 10 K (Becker 2009).
It cools down to ~ 10 K — 10'° K during the first day, and after several hundred years
the temperature is ~ 10° K. For the first ~ 10° years, the energy loss is mostly due to
neutrinos, and afterwards photon emission dominates.



1.3. Modelling

The temperature distribution inside the neutron star is not uniform: it drops from
the center to the surface. There are also unstable gradients in the temperature and
composition distribution, which are strongest for young neutron stars. These gradients
lead to convection, i.e. an internal motion of the neutron star fluid. Unstable gradients are
only one source for such a fluid motion. The other two possibilities are the influence of the
magnetic field via magnetohydrodynamic effects and, most importantly, the conservation
of angular momentum during the collapse phase. Like a spinning ice-skater pulling the
arms to spin faster, in many cases the collapse leads to a rapid fluid motion around a
certain axis. The observed rotation rates of pulsars range from 1.4ms to 8.5s (Becker
2009). In this thesis, we want to get a deeper insight into the fluid motion of neutron
stars.

1.3. Modelling

There are three ways to augment the knowledge about the internal motion of neutron
stars: the observational, the theoretical and the numerical approach. We do not follow the
observational one, because of the already mentioned difficulties in a direct observation
of the neutron star interior. From the theoretical viewpoint, we do not expect new
knowledge at the current stage, because the required equations of physics are already
known to a sufficiently accurate degree, namely Einstein’s field equation. Therefore, this
work is focused on the numerical' part by means of a simulation.

A common way to investigate a neutron star numerically is to simulate its evolution
in a certain time interval. This is reasonable whenever the neutron star undergoes a
significant change of its internal structure. Typically, this occurs after the creation of the
neutron star or when it interacts with other stellar objects, like during the merging with
a black hole. However, we assume that the neutron star behaves in a quasistationary
manner, i.e. we approximately consider the neutron star to be stationary. In addition
to that, we limit ourselves to axisymmetric configurations.

Both kinds of assumptions do not only reduce the required computational resources,
they also allow a simplification of Einstein’s field equation, used in a general relativis-
tic approach. For that purpose, spacetime is split into a set of spacelike hypersurfaces
according to the 3+1 decomposition of the ADM formalism, introduced by Arnowitt,
Deser and Misner in 1962 (Arnowitt et al. 1962 or Misner et al. 1973). Every spacelike
hypersurface is further split into meridional hypersurfaces, i.e. hypersurfaces containing
the symmetry axis. That way, we arrive at a so-called (2+1)+1 decomposition of space-
time, as worked out by Gourgoulhon & Bonazzola 1993. This approach constitutes the
theoretical fundamentals describing the curvature of spacetime caused by the neutron
star, in our work.

A general relativistic approach always introduces two components: the geometry and
the matter part. We make use of a rather simplified matter model. We assume that the
neutron star matter is being described by a perfect fluid, i.e. there is no viscosity, heat
conduction and so on. The equation of state is limited to the barotropic case, which
means that the total energy density e is a function e (p) of only the pressure p. The
advantage of this restriction is that the equations for the matter part can be solved much
easier than without it. A side effect is that temperature is not required to unambiguously
specify the state of the neutron star. The total energy density ¢, the pressure p and the
fluid velocity ¥ describe the matter part completely. Temperature could then be fixed by

'In this section, all approximations assumed in this thesis are marked in boldface.
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specifying a thermal equation of state, but this is not done in this work (similarly, for
the entropy).

Additional assumptions for the matter part are a homogeneous chemical compo-
sition and only one layer, i.e. there is nothing like a crust. Moreover, there is no
magnetic field in the considered models.

1.4. Current state

There are many investigations about neutrons stars in literature. However, at our level
of approximations they reduce to a manageable amount. They distinguish themselves in
the additional simplifications applied on the fluid matter. For that purpose, we have to
discern the azimuthal fluid motion around the symmetry axis from the meridional fluid
motion inside the meridional planes.

A first simplification is to assume that there exists only an azimuthal fluid motion.
This approach is followed by Nick Stergioulas with his RNS code (=‘Rapidly Rotating
Neutron Star’, Stergioulas & Friedman 1995 and Nozawa et al. 1998). It is based on
the general relativistic method of Komatsu et al. (1989). They essentially rewrite the
geometry equations of the neutron star as Poisson equations in flat space. This means
that every such equation consists of a flat-space Laplacian that acts on a potential and
gives a source. The advantage of this notation is that the Green functions of the flat-
space Laplacians are known. Therefore, these Green functions are used to invert the
flat-space Laplacians and to vice versa compute the potentials from the sources. This is
performed as a fixed point iteration method. At every iteration step, one computes new
sources from old potentials, and afterwards new potentials are determined by inverting
the Laplacians. The initial potentials of this procedure describe a non-rotating neutron
star, given by the Tolman-Oppenheimer-Volkoff equation (FlieBbach 2006). In order to
achieve an azimuthal fluid motion, a rotation profile has to be specified. This is part of
the matter equations, which have to be solved together with the geometry equations. In
Komatsu et al. (1989), they are written in a manner suited to the vanishing meridional
fluid motion. There are also several other groups, who follow slightly different numerical
methods. Here, we refer to the citations in Nozawa et al. 1998.

The second type of simplification applied to the fluid motion is to assume that there
is both an azimuthal and a meridional flow component, but the meridional one is slow.
Then, the meridional fluid motion can be treated in a perturbative manner. This is done
by Ioka & Sasaki (2004) in a general relativistic way. They also include a perturbatively
treated magnetic field in their approach. There is a much earlier work by Roxburgh
(1974), who also uses a perturbation technique, but without any magnetic fields and
only in the Newtonian framework.

The third and last way is to have strong meridional currents, but no magnetic fields. As
already realized by Randers (1941) and Roxburgh (1974), this leads to the following issue.
Let us assume that the neutron star surface rotates. Then, the conservation of angular
momentum causes the neutron star fluid to move faster and faster around the rotation
axis when dragged by the meridional currents closer to the poles. Eventually, the rotation
would become faster than the local speed of light. Therefore, without magnetic fields,
the azimuthal component of the fluid motion has to vanish at the neutron star surface.
The easiest way to fulfill this requirement is to consider a mere meridional fluid motion,
with the azimuthal one vanishing everywhere. This is done by Eriguchi et al. (1986) and
Eriguchi & Miiller (1991). The central constituent of their approach is the usage of a
stream function. The stream function is a scalar function, and it completely defines the

10
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two-dimensional meridional fluid motion. Therefore, they rewrite the matter equations in
a way somewhat different to that of Komatsu et al. (1989). So, it turns out that there are
two ways to write the matter equations, the one fitting better a purely azimuthal and the
other one a purely meridional fluid motion. Eriguchi et al. (1986) solve their equations
with a Newton-Raphson iteration to produce a meridional circulation. However, a strong
limitation of their approach is the usage of Newtonian physics.

1.5. Investigation goals

The goal of this thesis is to go beyond the limitations described in the last section. There-
fore, we investigate the simultaneous presence of both an azimuthal and a meridional fluid
motion. None of these components have to be weak. And, the treatment is performed in
the framework of general relativity. The curvature of spacetime caused by the neutron
star is computed with a generalization of the method of Komatsu et al. (1989), and for
the matter, the stream function method of Eriguchi et al. (1986) is extended to general
relativity.

The generalization of Komatsu et al. (1989) works in the following manner: We use the
same fixed point iteration method idea as in the RNS code, starting from a solution of
the Tolman-Oppenheimer-Volkoff equation. However, the presence of a meridional fluid
motion requires the usage of more geometry fields. Therefore, there are also additional
equations determining these fields, and their shape is more complicated. The exact form
of these equations can be found in Gourgoulhon & Bonazzola (1993). However, they are
not yet given in a shape applicable to the Green function method. Therefore, they are
rewritten as Poisson equations in flat space.

The second part is the extension of the stream function idea of Eriguchi et al. (1986).
For that purpose, we have to rederive the equations in Eriguchi et al. (1986) from scratch,
but in the general relativistic framework. Actually, Eriguchi et al. (1986) still include
an azimuthal fluid motion at the stage where they write down the equations. However,
as soon as the solution method is presented they set the azimuthal part equal to zero.
We, in contrast, include the azimuthal fluid motion at all steps. That way, one simple
additional equation is required, and the remaining equations become somewhat more
complicated, due to the more general treatment.

The above generalizations are implemented in a new code, called GRNS (=‘Generally
Rotating Neutron Star’). It generalizes the RNS code of N. Stergioulas from the mere
azimuthal fluid motion to a general one. The main attention of this thesis lies in the
derivation of the theoretical fundamentals of this code and the creation of the GRNS
code. However, as it generalizes the Newtonian method of Eriguchi et al. (1986), we are
also interested in the fluid motion modes described in that paper extended to general
relativity.

1.6. Outline

In Chapter 2, we present the basic fields, which unambiguously specify the structure of
the neutron star. The rest of this chapter is then devoted to the equations determining
the basic fields, including a derivation of the stream function method in general rela-
tivity. Chapter 3 deals with the rewriting of the equations into a form applicable for
a numerical treatment. Therefore, the geometry equations are converted to flat-space
Poisson equations, and the Green functions are computed. The numerical implementa-
tion into the GRNS code is briefly explained in Chapter 4. Here, also the graphical user

11
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interface of the GRNS code is presented, which is based on OpenGL. In Chapter 5, the
results of convergence and consistency tests performed with the GRNS code are reported.
An analysis of meridional circulation modes is done in Chapter 6. Finally, Chapter 7
summarizes the conclusions of this thesis and discusses possible extensions.

12



2. Theory

2.1. Notations and conventions

Our investigation is based on the framework of general relativity. Therefore, we keep
as close as possible to the notations and conventions of the standard work of Misner
et al. (1973). In addition to that, we include the definitions of Gourgoulhon & Bonaz-
zola (1993), because this paper contains the fundamentals of how we deal with curved
geometry.
We use geometrized units, in which the speed of light ¢ and the gravitational constant
G are set equal to unity:
c=G=1 (2.1)

That way, all general relativistic expressions become as transparent as possible. An
exception to this rule are Chapters 4, 5 and 6. There, the GRNS code is explained and
simulation results are presented in more appropriate cgs-units.

The fundamental quantities of general relativity are tensors. We use the component
notation for tensors throughout this thesis. In this notation, tensors are written as 135
Being a common tool in the context of relativity, we apply Einstein’s sum convention:
Whenever two tensor indices in a term are denoted with the same letter, one has to sum
over all possible values of the indices. We consider three types of indices with different
value domains, discerned by the following letters:

a’/B’ "'7w 6 {t’r’e’qs}
a,b,..,l € {r6,¢}
m,n,..q € {r 06} (2.2)

This definition differs from the convention chosen in Gourgoulhon & Bonazzola (1993),
where a, b, ...,k € {1,2} and i, 4, ...,q € {1,2,3}. The choice (2.2) has two advantages: We
perform two successive slicings of spacetime into hypersurfaces in this thesis. The first
one removes the time index ¢ and the second one removes the angle index ¢. Therefore,
it is more natural to map the spatial indices {r,0,¢} to the first part of the Roman
alphabet and the meridional indices {r, 8} to the second one. Moreover, in Gourgoulhon
& Bonazzola (1993) there are some scalars and vectors denoted with the same symbol,
like the lapse function N and the shift vector N¢. Writing, e.g., the #-component of the
shift vector as N? could be misunderstood as the square of the lapse N. This ambiguity
is resolved with the convention (2.2), in which the numerical index values of Gourgoulhon
& Bonazzola (1993) have been replaced by letters. Note that the usage of the letters for
the meridional indices stops at ¢, because the letters r» and ¢ already denote radial and
temporal indices.

The 3+1 decomposition of the metric is given in equation (21.42) of Misner et al. (1973)
and equation (2.9a) of Gourgoulhon & Bonazzola (1993). Unfortunately, there is a sign
difference in the definition of the shift vector N*. It does not arise from a difference in

13



2. Theory

the signature of the metric, because in both papers the signature is
(_7 +7 +7 +)

and we follow this convention. We use the shift vector definition of Gourgoulhon &
Bonazzola (1993), because then the geometry equations given therein do no have to be

modified.

2.2. Fields and equations

We investigate neutron stars in general relativity. The central difference between New-
tonian physics and general relativity is the treatment of space and time. In Newtonian
physics, spacetime is flat and does not take part in physical phenomena. Gravitation is
therefore a force, whose origin remains mysterious in the Newtonian framework. This
problem is resolved in general relativity. There, spacetime is a curved manifold, and
gravitation is a direct result of its curvature.

The manifold of general relativity is a four-dimensional pseudo-Riemannian manifold
M. Its exact shape is unambiguously specified by the metric tensor g,3. This tensor
is symmetric, which means that g, = ggo. In general relativity, all remaining physical
fields are considered as matter fields. We assume that matter is approximately a perfect
fluid without electromagnetic forces. Thus, it is completely defined by a total energy
density ¢, a pressure p and a 4-velocity u,.

The metric go3 and the matter fields (e, p, ua) are governed by Einstein’s field equation.
Let us quickly recapitulate the quantities required to state this equation. The first step
is to evaluate the Christoffel symbols of the second kind

1
By = 590“5 (9895 + 0v985 — 0593+) (2.3)

where the tensor ¢®? is the inverse of the tensor gap and 0, = 0/0x® the partial derivative
with respect to the coordinates x®. The Christoffel symbols determine the Ricci tensor

§ §
Rag = 0,105 — 0uT0 5+ T2T0, T T,

Q

which can be transformed into the Einstein tensor

1
Gaﬁ = Ra,@ - 5904,8976}%75

On the other hand, the matter fields are represented by the stress-energy tensor

Top = (e + p)uaup + pgas (2.4)

Then, Einstein’s field equation takes the form'

Gap = 8mT,p (2.5)

In the following sections, we will write the metric g,3 and the matter fields (e, p, u,) in
terms of new fields, which we call basic fields. These fields still describe the state of
the considered neutron star completely, but they are more appropriate for a numerical

!There are many mathematical formulas in this thesis. In order to guide the reader, the most important
ones are highlighted with boxes.

14
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solution of equation (2.5).

2.3. Symmetries

The neutron stars analyzed in this dissertation underlie two symmetry assumptions:
e stationarity
e axisymmetry

Therefore, we consider a time coordinate ¢t = z' and an angular coordinate ¢ = z?,
limited to the interval [0,27). These coordinates are chosen in such a manner that the
fields depend only on the meridional coordinates z” and z?:

g = g (37,29

and
Tag = Ta,@ (wr, 1‘0)

In this choice of coordinates, Einstein’s field equation (2.5) simplifies, strongly (Gour-
goulhon & Bonazzola 1993).

2.4. Foliations

The metric g,z consists of ten independent components, due to its symmetry property.
Therefore, any invertible set of ten smooth functions f! = f! (9as) =2 (9ag) , .- can
be used to represent the metric. A trivial example is f' = gy, f> = g4y, ..., which is a
mere renaming of the individual metric components. This does not change the form of
Einstein’s field equation. However, any non-trivial choice makes it look more complex.
We follow a method known as foliation, in order to derive a set of non-trivial functions
fL, f?,.... It originates from the intention to write Einstein’s field equation as an initial
value problem (Arnowitt et al. 1962). In our case, the advantage of this approach is that
Einstein’s field equation can be transformed into a form well suited for numerical work.
A foliation works in the following manner:

Starting with an arbitrary manifold, we split it into a continuous sequence of infinitesi-
mally close hypersurfaces, whose dimension is one lower than that of the original manifold
(Fig. 2.1). Each of the hypersurfaces is given by its own metric, the induced metric.
The hypersurfaces alone are not sufficient to fully specify the original manifold. In addi-
tion to them, knowledge about the length and the attachment points of the perpendicular
connectors between the hypersurfaces is required. The length of the connectors can be
encoded in a scalar, called lapse function, and the socket positions in a so-called shift
vector. Hence, the metric of the original manifold is replaced by three quantities: the
induced metric, the lapse function and the shift vector.

In the following two sections, we use two successive foliations. The first step (Sect.
2.4.1) is a foliation of the whole four-dimensional spacetime M into spacelike 3-surfaces
% of constant time ¢. This way, the ten independent metric components g, are replaced
by the induced 3-metric hy, with six independent components, the 3-lapse function N
and the shift 3-vector N®. In the second step (Sect. 2.4.2), each 3-surface ¥, is foliated
into the 2-surfaces ¥4, which are defined as the intersections between the 3-surfaces ¥
and the 3-surfaces Yy of constant angle ¢. Consequently, the 3-metric hy, is given by the
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Figure 2.1.: Foliation into two hypersurfaces with perpendicular connectors.
For simplicity, we consider only a flat two-dimensional manifold, namely the
mere plane upon which the text of this page is written on. This plane is split
into infinitesimally close hypersurfaces at times ¢ and ¢ + dt¢, represented
by the two horizontal curves. The metric of the original, two-dimensional
manifold defines orthogonality. That way, the black, vertical, perpendicular
connectors of infinitesimal length are unambiguously given. The direction
of these connectors is specified by the unit vector n® and their 1/dt¢-fold
length by the lapse function N. The coordinates on the hypersurfaces may
be chosen, arbitrarily. Hence, the timelike coordinate basis vector df =
(1,0,0,0) can be inclined with respect to the connectors. The amount of
inclination is encoded in the shift vector N®.

induced 2-metric k,,, with three independent components, the 2-lapse function M and
the shift 2-vector M™. The final result of the two foliations are then the fields

N, M, N M", kpn (2.6)

which contain the original ten independent degrees of freedom.

2.4.1. 3+1-foliation of the whole spacetime

We begin by foliating the four-dimensional spacetime M into spacelike 3-surfaces > of
constant time ¢. This so-called 3 + 1-foliation is a well known procedure, for example
performed in Misner et al. (1973) and Straumann (2004). Still, it is reasonable to repeat
it here, to better understand the less familiar, but very similar foliation of the 3-surfaces
>, undertaken in Sect. 2.4.2.

The first step of the foliation is to specify the shape of the individual 3-surfaces X,
independent of how they are arranged against each other. This information is located in
the induced 3-metric, which is simply given by

hab = Gab (27)

The second step is to connect the 3-surfaces ¥;. For that purpose, we specify the perpen-
dicular connectors between them. The 1/d¢-fold length of the connectors is called 3-lapse
N and their direction is denoted by the 4-vector n®. This timelike vector is normalized
to gaﬁnanﬁ = —1. The orthogonality of the connectors implies g,gn®X # =0 for all
spacelike 4-vectors X®. The condition for being spacelike is X* = 0, i.e. gapn®X® = 0.
Looking at Fig. 2.1, we realize that the difference Nn® — 4;* is a 3-vector tangent to the
3-surfaces ;. Therefore, we can write it as Nn® — 5 = (0, N*), with the 3-shift N, or
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2.4. Foliations
vice versa
df = Nn® — (0, N?) (2.8)

The quantity d;* are four components of the Kronecker symbol 63, which is equal to unity
for @« = (§ and zero otherwise. This allows us to compute

it = ga551?‘5f = ga5N2n°‘nﬁ + 29ap NnN® + g,y N°N® = —N? + N,N? (2.9)

and
Gta = 9300 8¢ = g NnP6¢ — g N°6¢ = —N, (2.10)

with N, = hay N?. Introducing the inverse h® of the 3-metric hyp, we can then summarize
the three results (2.7), (2.9) and (2.10) as

< gtt  gtb > _ < Nch—N2 —Ny ) (2 11)
Gat  Yab _Na hab
and
it th _ 1 _N®
( T Jab ) = N7 (2.12)
g g _N® pab _ NenN®
N2 N2

This is the 3 4+ 1-decomposition of the spacetime M, based on the conventions of Gour-
goulhon & Bonazzola (1993).

2.4.2. 2+41-foliation of the ¢ = const 3-surfaces

We proceed by foliating each of the 3-surfaces X; into the meridional 2-surfaces ¥4
of constant time ¢ and constant angle ¢. This procedure is very similar to the 3 + 1-
decomposition performed in section 2.4.1.

In analogy to equation (2.7), we start with the definition of the induced 2-metric

Kmn = hon (2.13)

This metric unambiguously specifies the shape of the 2-surfaces ¥;4. The only remaining
issue are therefore the perpendicular connectors. The 1/dt¢-fold length of the connectors
is called 2-lapse M and the direction is given by the 4-vector m®. However, this time
the direction vector is spacelike and hence normalized to gaﬁmo‘mﬁ = 1. Being spacelike
means that m! = 0, and in addition to that the orthogonality causes gagmaYﬁ =0 for
all 4-vectors Y tangent to the 2-surfaces ;5. This implies Y' = Y? = 0 such that
JammY™ = 0. Similar to the 3+ 1-decomposition, we then use the so-called 2-shift M
to express Mm* — 63 = (0, M™,0) or

5; = Mm® — (O, M™,0) (2.14)
This leads to
h¢¢ = gaﬁég(sqﬁb - gaﬁMQmamB + 2gamMmaMm + gmanMn = M? + M, M™ (2'15)

and
hom = Gandg 0 = GanMm6y, — gon M0y, = — My, (2.16)

with M,, = k., M. The last step is to define the inverse of the 2-metric k,,, as k"".
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Then, we can finally summarize the results (2.13), (2.15) and (2.16) as

hmn hm¢ _ kmn — M,
( h¢n h¢¢ ) - < —M,, M? + M, M?° > (2.17)
and g
< pmn o > i e 7 -
hon  poe | T % # :

just as done in Gourgoulhon & Bonazzola (1993).

2.5. Basic Fields

There are twelve basic fields. Every solution of Einstein’s field equation (2.5) is uniquely
defined by these twelve basic fields. In the following two sections, we will define the basic
geometry and basic matter fields.

2.5.1. Geometry

Let us review the decomposition of a manifold into hypersurfaces from a more general
viewpoint. Each such decomposition consists of a lapse function and a shift vector.
The purpose of the lapse function is to specify the distance between the hypersurfaces,
which are surfaces where one coordinate is constant. Varying this coordinate and fixing
all other ones leads to coordinate lines whose direction is set by the shift vector. It is
obvious that these coordinate surfaces and coordinate lines can be chosen in an arbitrary
manner. Vice versa, this means that there always exists a coordinate transformation
which changes the lapse function and the shift vector arbitrarily. Imagining the 2-metric
kmn being decomposed in a 1 + 1-manner, it is therefore possible to choose meridional
coordinates (z",z%) = (r,6), limited to r € [0,00) and 6 € [0,7), in such a way that

o1 0
b = A <0 T2> (2.19)

with the 2-conformal factor A. This choice of so-called isotropic polar coordinates is
made in Gourgoulhon & Bonazzola (1993).

Using isotropic polar coordinates, the ten degrees of freedom (2.6) of the metric gog
reduce to the eight ones given by

N,M,N® M" A

These quantities define the basic geometry fields

v, NT,N9 N® 3, M" M « (2.20)
with
v = InN (2.21)
= lnri/flé? 2.22)
= InA (2.23)
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The basic geometry fields unambiguously specify the curvature of spacetime caused by the
neutron star. In flat spacetime, the metric has the form g,3 = diag(—1, 1,72, r2sin? 9)
such that the two shift vectors N® and M™ are zero. In addition to that, equations
(2.11), (2.17) and (2.19) show that N =1, A=1 and M = rsiné. That way, it is obvious
that all basic geometry fields vanish in flat spacetime. This property is of advantage for
finding a numerically stable form of the field equations when solved numerically using
Green functions.

2.5.2. Matter

In order to deal with the matter the neutron star consists of, our goal is to extend the
stream function method of Eriguchi et al. (1986) from the Newtonian limit to general
relativity. The central idea of this method is express two components of the Newtonian
velocity 3-vector in terms of a stream function . That way, the continuity equation of
the neutron star fluid matter is fulfilled automatically. We proceed in a similar manner.
Further below, we will show how two degrees of freedom of the 4-velocity u, can be
expressed in terms of the stream function . There, it will also turn out that it is
appropriate to express the third degree of freedom of the 4-velocity as a quantity l4,
the ¢-component of the so-called Lagrangian angular momentum. Note that the
4-velocity u,, has only three degrees of freedom due to the well known velocity constraint
(Misner et al. 1973)

Gopuu’ = —1 (2.24)

So, matter is unambiguously described by its total energy density e (=rest energy den-
sity+thermal energy density), its pressure p, the stream function ¢ and the Lagrangian
angular momentum component ly. In Eriguchi et al. (1986), the Poisson equation of the
stream function method is written using the modified stream function

Y

rsin 6

o)

X0 =

Therefore, we consider

as the basic matter fields.

2.6. Projections

For every basic field, there is one corresponding equation. So, there are eight geometry
equations for the eight basic geometry fields (2.20) and four matter equations for the
four basic matter fields (2.25). Both sets of equations are treated in a different manner
in this thesis. In the following, we will address the basic geometry equations, first.

Einstein’s field equation (2.5) contains ten components, because both sides of that
equation are symmetric tensors of rank 2 in 4-dimensional spacetime. So, it is actually
a set of ten equations. Eight of these ten equations define the eight geometry fields (we
do not need all ten equations due to the coordinate choice (2.19)). However, the ten
equations are not yet given in such a shape that we can assign one equation to each
geometry field. This task is performed in Gourgoulhon & Bonazzola (1993). For that
purpose, these authors project Einstein’s field equation parallelly and orthogonally to
the 4-vectors n® and m®. The projections work in the following manner:

We begin with the 4-vector n®, perpendicular to the hypersurfaces 3; of constant time

19



2. Theory

t. Looking at equation (2.8), we realize that the components of this vector are
1 N¢
o P
()

nn® (Gop — 87Tos) = 0 (2.26)

Then, the expression

is what we call a double parallel projection. A second projection consists of a parallel

projection combined with an orthogonal one. With this in mind, we need the projector
h§ = 05 +n“ng

along the 4-vector n® onto the hypersurfaces >;. This quantity is a projector, because
using the normalization gagno‘nﬁ = —1 we see that

hgnﬁ =n%+ nangnﬁ =0
and
hghf = (5% + n%ng) (55 + nﬁnv) =05 +2n%n, + no‘nﬁnﬁnv =05 +nny, = hJ
Then, we get the projection
honY (Ggy — 87T5,) = 0 (2.27)
The last projection based on the 4-vector n® is the double orthogonal projection
hlh (Gos — 87T,s) =0 (2.28)

So, we have obtained equation (2.26) with only one component, equation (2.27) with
three components and finally equation (2.28) with six components.

The next step is to repeat the parallel and orthogonal projections with equations (2.27)
and (2.28) but this time with the 4-vector m®, perpendicular to the hypersurfaces ¥4 of
constant time ¢ and constant angle ¢. This vector has the components

M™ 1
a_ [ = —
= (057 )
due to equation (2.14). The corresponding projector along the 4-vector m® onto the
hypersurfaces ;4 has the form

ki =65 —m%mg

In contrast to the projector h%‘ (2.26), there is a minus sign in the definition of the

projector k:g, because the 4-vector m® is normalized to gaﬁmo‘mﬁ = 1.

We do not list the equations resulting from the projections based on the 4-vector m®
here. It is sufficient to understand the basic idea. Moreover, Gourgoulhon & Bonazzola
(1993) do not use the resulting projections directly. Instead, some of them are combined
and other ones are simply skipped. It is possible to skip equations, because we need only
eight equations for the eight basic geometry fields, though Einstein’s field equation has
ten components.
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2.7. Ancillary fields

Based on the projection idea described in the last section, Gourgoulhon & Bonazzola
(1993) obtain eight geometry equations from Einstein’s field equation (2.5), one for each
of the eight basic geometry fields. Afterwards, these equations are reformulated such
that their Poisson-like character becomes evident. Note that at this stage the Laplacians
therein are still defined in curved spacetime. That is, the Laplacians consist of covariant
derivatives and not of partial ones.

In principle, we could now repeat all the steps leading to the final results (B3-B7)
in the paper of Gourgoulhon & Bonazzola (1993). Actually, this would be reasonable,
because the paper of these authors is written in such a manner that only important
steps are given, but many intermediate calculations are omitted. These calculations are
definitively not trivial, and they are required for a deeper understanding of this thesis.
However, repeating all the tedious computations here would lead us too far off. Therefore,
we skip all intermediate steps leading to the final form of the geometry equations, and
instead refer only to the results (B3-B7) of Gourgoulhon & Bonazzola (1993).

The equations (B3-B7) of Gourgoulhon & Bonazzola (1993) make use of a large set of
ancillary quantities. Every such ancillary field can be computed from the basic fields. It
is possible to state the equations (B3-B7) merely in terms of the basic fields. However,
then the equations would become unnecessarily long. Therefore, we use the ancillary
fields defined by Gourgoulhon & Bonazzola (1993). There are two kinds of such fields,
the ancillary geometry fields and the ancillary matter fields. In the following, all these
ancillary fields are defined. However, it is beyond the scope of this thesis to give a deeper
explanation of their meaning.

2.7.1. Geometry
2.7.1.1. Logarithm of 2-lapse

We start with the ancillary geometry fields (2.20). Similarly to the quantity v = In N for
the 3-lapse N, we define
w=1InM (2.29)

for the 2-lapse M. Note that we do not use this quantity as one of our basic fields,
because it does not vanish in flat spacetime, in contrast to the basic geometry field .

2.7.1.2. Christoffel symbols
We have already considered the Christoffel symbols of the second kind I, in equation
(2.3). They can be expressed in terms of the Christoffel symbols of the first kind
1
Lagy = 5 (959ay + 019pa — Oagpy)

as
3, = s,
Both Christoffel symbols are defined in the whole 4-dimensional spacetime M. However,

there are also Christoffel symbols for the 3-surfaces ; and for the 2-surfaces ¥;4. The
Christoffel symbols of the first kind on the 3-surfaces 3; are

3I1abc = Fabc (230)
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and on the 2-surfaces ¥4 they have the form
2Pmno = I'mno (231)

The expressions for these Christoffel symbols simplify drastically with our choice of co-
ordinates (see Appendix A). The corresponding Christoffel symbols of the second kind
are given by

3ra _ pad3

Ife = h* T ape (2.32)

and
T = KT, (2.33)

They appear in the definition of covariant derivatives on the 3-surfaces 3; and on the
2-surfaces ¥4, respectively. Similarly to Gourgoulhon & Bonazzola (1993), we use a
single stroke ‘| for the so-called 3-covariant derivative

Ve = 0T PTG T 4 =TT — (2.34)

for every tensor field T on the 3-surfaces ¥, and a double one ‘|| for the 2-covariant
derivative
T:LnHO _ aoT;Ln +2 T TP 4. = QFZOTI:n _ (235)

potm...

for all tensor fields 7}"* on the 2-surfaces ;4. The covariant derivative referring to the
whole spacetime M is written in the usual manner as ;.

2.7.1.3. Exterior curvature

Having introduced the covariant derivatives on the 3-surfaces ¥; and on the 2-surfaces
Y4¢, respectively, we now address the exterior curvature of these hypersurfaces. The
exterior curvature is a different way to encode the information given by the lapse function
and the shift vector. In this thesis, we have to consider the exterior curvature, because
it is part of the equations (B3-B7) in Gourgoulhon & Bonazzola (1993).

Let us start with the exterior curvature on the 3-surfaces ;. It is defined as

1
2N

11
(Na\b + Nb\a) N 5 (8(1Nb + 8bNa) — 3PZch

Kab = N

and its indices are raised with the 3-metric hgp, as shown in
K% = pepb K 4 (2.36)
for example. Similarly, we obtain the exterior curvature
1 1 910
Linn = =37 Mmim) = =37 (Om My = *T7Mo)
on the 2-surfaces ;4. Here, we have to use the 2-metric k,,, for raising indices, i.e.
L™ = E™°K"P L,

2.7.1.4. Projections

As already mentioned above, the equations (B3-B7) in Gourgoulhon & Bonazzola (1993)
are the result of projecting Einstein’s field equation parallelly and orthogonally along the
two 4-vectors n® and m®, respectively. Therefore, several fields are expressed in terms
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of their projections in that paper. Let us begin with the decomposition of the 3-lapse as
N® = wm® + ¢%, in which we assume N° = 0. The resulting projections are

= mgN® (2.37)
¢ = k:gN B
In a similar manner, we split the exterior 3-curvature K, given in equation (2.36). For

that purpose, we extend this quantity to K% by demanding K0 = K% = 0. Then, we
perform the split K = km®m?® + m®k® + k®mP + k*P, with

K = mamgKo‘ﬁ
— kzgmnyﬁy
k0 = KOKE

2.7.1.5. Commutators

We conclude the description of the ancillary geometry fields with three commutators,
which are defined as

(M q]" = M"0,q™ —q"0pM™
M, k)" = M"0,k™ — K"0pM™

= O — K D0q"

2.7.2. Matter
2.7.2.1. Velocity

The second set of ancillary fields are the ancillary matter fields. The three degrees of
freedom of the 4-velocity u®, resulting from the constraint (2.24), can be extracted into
the quantity

v = u/u’ (2.38)
Vice versa, we obtain
ut = !
\/— (gt + 2g1av® + gapv®o®)
u® = utva

2.7.2.2. Projections

We will now project the stress-energy tensor in various ways. The first decomposition is
T8 = En®nf + n*JP + JonP + S8 with the projections

E = ngngT®’

J* = —hgn, 77
— By

S = hSRTY
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The minus above is used in Gourgoulhon & Bonazzola (1993), too. We proceed with the
split J¢ = jm® 4 j*. This time, the projections are given by

j o= maJ®
; _ B
J* = kgt

Finally, we decompose S** = sm®mP + m®s® + s*m?® + s*P, with

s = mamgSo‘ﬁ
¢ = kf;‘mySm
s = koK)

Note that for projections onto the 3-surfaces %, like S, the 3-metric hyp is the tool for
raising and lowering indices, whereas for projections onto the 2-surfaces 4, like s™",
this role is taken by the 2-metric k.

2.8. Geometry equations

We are now equipped with enough ancillary fields to state the eight geometry equations
(B3, Bda, B4b, ..., B7) of Gourgoulhon & Bonazzola (1993) in this thesis. However,
the first three of these equations contain some typos. In Appendix B, we perform a
mathematical derivation, which shows how the first equation has to be corrected. For
the other two erroneous equations, we have used a computer algebra program. The
correct versions of the rather lengthy equations (B3-B7) of Gourgoulhon & Bonazzola
(1993) are listed in Appendix C.

2.9. Matter equations

We proceed with the equations for the four matter fields (2.25). For that purpose, we
recall the contracted Bianchi identity

VG =0

where V, is the covariant derivative. Applying the contracted Bianchi identity on Ein-
stein’s field equation (2.5) leads to the equation of general relativistic hydrodynamics

VT =0 (2.39)

Gourgoulhon & Bonazzola (1993) rewrite the components of this equation in a manner
similar to the geometry equations. The result are equations (4.3), (4.5) and (4.7) of
Gourgoulhon & Bonazzola (1993). The first two of these equations are scalar equations,
and the third one is a 2-vector equation. However, they are not given in an expanded
form like the geometry equations (B3-B7) of Gourgoulhon & Bonazzola (1993), where in
most cases Einstein’s sum convention is written out explicitly. Therefore, it turned out
to be much easier to extend the Newtonian stream function method of Eriguchi et al.
(1986) to general relativity. In the following sections, the general relativistic stream
function method is derived. For that purpose, we project equation (2.39) parallelly and
orthogonally to the fluid 4-velocity u®.
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2.9.1. Energy equation as result of a parallel projection
2.9.1.1. Compact form

We begin with a projection of equation (2.39) parallel to the 4-velocity u,. The resulting
equation
ua VT =0 (2.40)

would lead to the conservation of energy if we neglected p/e terms for a negligibly small
pressure, like in the Newtonian limit. In order to show this, we use the velocity constraint
(2.24), which gives

uaVau® =0 (2.41)

Similar to the projector h%, defined in equation (2.26), we introduce the projector
q3 = 05 + uug (2.42)
along the 4-velocity u®. This quantity obeys
giu’ = (2.43)
Then, equation (2.40) becomes
0 = u,Vg (euo‘uﬁ +pq°‘5>

uau*Vg <eu6) + uapVpa (gaﬁ + u“uﬁ)
= —Va(eu®) —pVou®

That way, we finally arrive at

| Ve l(e+p)u] = uVap| (2.44)

as shown in Friedman & Stergioulas. So, if we neglected p/e terms, this would lead to
the conservation V,, (eu®) = 0 of the total energy density.

2.9.1.2. Expanded form
We expand equation (2.44) as
0o [(€ + P)u®] + (¢ + p) T,u® = u®p
From D’Inverno (1992), we know
Iy = dalny—g
with the determinant g = det g,3, such that stationarity and axisymmetry lead to

O [(e +p)u™] + (e + p) u™ O In /=g = u" O (2.45)

The results (D.1) and (D.2), proven in Appendix D, have the consequence that

OpmIn/—g = 0, <I/—|—ln\/ﬁ) = O (V—i—/t—i-ln\/E)
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We rewrite the ancillary field p = In M as pp = [ + In (rsinf) (see equation (2.22)) and
compute In vk = 2o + Inr with equation (2.19). Then, we arrive at

OmIny/—g =0n[2a+~v+2Inr + In (sinb)]

with the ancillary field
v=0+v (2.46)

We insert this result in equation (2.45):

Onl(c+ P+ (4) (2 4 eot0ul ) =[O (e ) a4, 0

Now, we use the temporal component (2.56) of the relativistic Euler equation, derived
further below in Sect. 2.9.2.2. That way,

2
Om [(e+p)u™] + (e+p) <;ur + cot 9u9> = —(e+p (2a+vy+In ut),m u™
= —In (ezO“L'Yut) e+ p)u™

and hence
2
O [€2°T7 (e + p) wu™] + €2y (€ + p) <—ur + cot 6’u9> =0 (2.47)
T

The first term is the contraction of a partial derivative and a vector. However, this
quantity is not a 3-divergence in flat space, because we do not use Cartesian coordinates,
but spherical ones. Still, it is possible to write the above equation in terms of the flat
space 3-divergence. For that purpose, we recall from D’Inverno (1992) that for a tensor
density of weight +1, like VAX?, with the determinant h = det hy, and an arbitrary
3-vector X?, the covariant derivative can be replaced with the partial one:

(Vi) = (v

‘a 70’

Therefore, we can write the flat space 3-divergence as

3divX = X%, = % (Vax)

having taken into account that h, = 0. For flat space, the 3-metric is hq = diag(r?,
2 sin? §) such that vh = 72 sin § and hence

,a

= 2
3div = X™ + =X + cot X7 (2.48)
’ T

Comparing this result with equation (2.47), we find

3div [e2*T7 (e + p) wl] =0 (2.49)

2.9.1.3. Analytic Solution

In order to solve equation (2.49), we apply a Helmholtz decomposition. A Helmholtz de-
composition is the split of a vector field into the gradient of a scalar field and a solenoidal

26



2.9. Matter equations

field. So, in Cartesian coordinates, denoted with the index ¢, we decompose
2 (e 4 p) wpu™ = 95,0 + A™ (2.50)

with the so called source function o and the solenoidal field A7, i.e. 3divA = 0.
Transforming the decomposition into spherical coordinates, we get

20+ ’LLT _ 37»0—1—14”

with 5
3divA = 9, A" + 95 A% + —A” + cot 9A% =0 (2.51)
This condition is automatically satisfied by the stream function 1, defined as
1
A" =
r2siné i
1
A = — Oy
r2 sin 6 v

similar to Eriguchi et al. (1986). Applying the flat space divergence 3-divergence on both
sides of the decomposition (2.50), the equations (2.49) and (2.51) show us that

3A0=0

The only solution to this equation is
oc=0

Hence, the solution of equation (2.49) is the reduction of the two degrees of freedom of
the meridional velocity v to the single degree of freedom v via

v = 1 o
< v > = 250627 (e + p) gl < o ) (2.52)

This result generalizes equations (2) and (3) of Eriguchi et al. (1986).

2.9.2. Relativistic Euler equation as result of an orthogonal projection
2.9.2.1. Compact form

The relativistic Euler equation is the result of projecting equation (2.39) orthogonally to
the 4-velocity u®, i.e.
VT =0

Using equations (2.41) and (2.43), we find
0 = ¢2Vg (euﬁzﬂ _,_pqﬁv)
= qﬁeuBVBUV + anVgp +q5pVg (uﬁu“’)

= gj‘/‘euﬁVwﬂ + qaﬁVQp + g,oy‘uﬁpVQUV
= euBVmﬂ + qO‘BVgp + puﬁV5u°‘
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This leads to

(e +p) uPVgu® = —¢**Vgp (2.53)

according to Friedman & Stergioulas.

2.9.2.2. Expanded form of temporal component
Equation (2.53) can be expanded as
0 = (e+p) uﬁV5ua + ngQp
= (e+p)u” (Bﬁua — Fgauv) + <5§ + uauﬁ> Jp

= (e+p) (uﬁagua — Fﬁwuﬁuv) + Oap + uauﬁagp

1
= (6 + p) |:umamua - 5 (879604 + aag'yﬁ - aﬁgﬂ/a) uﬁuﬂ/:|
+0up + uqu™ Oy p (2.54)

such that

Oap + uou™0pyp 1
= e_ﬁp e = §u6u“/8agﬁy — U O g, (2.55)

The temporal component of this equation is

o,
Gl Omb —u" O uy
€e+p
Using equation (2.38), it can be written as
‘ V"Omp = — (6 + p) V"0, Inuy (2.56)

2.9.2.3. Azimuthal component

Expanded form

We obtain the spatial components of equation (2.55) by setting o = a:

19) 1
aP —8agﬁ7uﬁuy —u" Oy —

B Uq " O p
e—l—p_ 2

€E+Dp

Using the temporal component (2.56) of the relativistic Euler equation, we rewrite the
spatial components to

Oup 1 U,
e—(il-p = §u5u76agm —u" O + u—jum Ut

1 U
= iuﬁu'yaagm - utumamu—j

Here, it is reasonable to introduce the Lagrangian angular momentum (see, Font & Daigne
2002)

Ue
lo = —— 2.57
.m0 (2:57)
such that 9 1
- j-pp =" Ol + §uﬁu“’6agﬁy (2.58)
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2.9. Matter equations

Setting a = ¢ and taking axisymmetry into account, we see that the azimuthal component

of this equation is
V" Oply =0 (2.59)

This is the general relativistic version of equation (12) of Eriguchi et al. (1986). Aston-
ishingly, it has exactly the same form as in the Newtonian case.

Analytic solution

There are three possible solutions of equation (2.59):
e v = (0 everywhere
e v £ (0 somewhere, but not everywhere
e v #£ (0 everywhere

Note that we perform a slightly different categorization of the solutions of equation (2.59)
than Eriguchi et al. (1986) and Eriguchi & Miller (1991). In the first case, there is no
meridional fluid motion, but merely an azimuthal one. This scenario has already been
extensively investigated by N. Stergioulas with the RNS code. Therefore, we are not
interested in that possibility. The second case is that there is a meridional fluid motion,
but not everywhere in the neutron star. In this thesis, we do not investigate such solutions
nor do we analyze whether they exist at all. Instead, we focus on the third possibility
where there is a meridional fluid motion everywhere. In that case, we have to choose the
¢-component [4 of the Lagrangian angular momentum in such a manner that equation
(2.59) is obeyed. For that purpose, we rewrite the meridional fluid velocity v™ in terms
of the stream function 1 using the result (2.52):

DppO,ly — DpapDyly = 0

This equation is solved by

ly = L (1) (2.60)

in which L (¢) is an arbitrary function of the stream function 1.

2.9.2.4. Meridional components
Expanded form

We obtain the meridional components of equation (2.58) by setting a = m:

Omp
€+p

1
= ww" Oply + §uauﬁ8mgaﬁ (2.61)

In the following, we will write these components in a manner similar to equations (7)
and (8) of Eriguchi et al. (1986). For that purpose, we expand

n o Ta +u (99)
uanlm a ( ”6 —l—udg)l@)

B 89l — Oplp) + u" Ol +u8l9
a 3@[ —819)—1—2/39[ +u 8.919

— ( . > W — u" (Z—’Z) (2.62)
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with 1
w = — (aglr — &»l@) (2.63)
T

The ancillary field w is defined in such a way that its Newtonian limit is equal to the
quantity ‘w’ defined in Eriguchi et al. (1986). Unfortunately, we cannot use the same
symbol here, because in equation (2.37) we have introduced w = m,N®, following the
conventions of Gourgoulhon & Bonazzola (1993).

Next, we rewrite

U 1
w0, | — | = u" Oy + upt 1, Oy —
Ut Ut

Using the 4-velocity constraint wsu® + w,,u™ + u¢u¢ = —1, the second term on the right
hand side of this equation becomes

1 1 1 1
WU U Oy — = — Uy (1 + uput 4+ u¢u¢> Op— = <— + ut) Oy — utu¢u¢(9m—
im Uyt Ut U
That way, we get
n Up, o ¢ ¢ 1
wu" O, | — = OmInu +u®0nuq — u®Onug — uugu® Oy —
Ut Ut
U
= Opnus +u*oy, (ga5u5> — utu¢8m—¢
Ut
Here, the 4-velocity constraint, written as gaguauﬁ = —1, allows us to transform the
second term to
a Ié] a, B 1 a, 3 1 a, B
u®O,, <ga5u ) = uu’Omgas + §ga58m (u u > = §u U Omas
Therefore, we arrive at
1 U
— wu" Oy, <%> + iuauﬁamgag = —0Op Inu; + utud’@m—d) (2.64)
Ut Ut

Eventually, we use the two results (2.62) and (2.64) in equation (2.61). This leads to

€E+p —U

1 Om 0
5(9,% In (ut)2 + P _ rUy < v . ) w— utu¢8ml¢ (2.65)

which is the general relativistic version of the two equations (7) and (8) of Eriguchi et al.
(1986).

Solenoidal part

In order to solve equation (2.65), we proceed similar to Eriguchi et al. (1986) in the
Newtonian limit. For that purpose, we extend equation (15) of Eriguchi et al. (1986) to
general relativity with the help of equation (2.52). We recall v* = u®/u’ and begin with

in 6 1
o2y + 500, (.—W)
r sin 0

= sinf {—& {7’2620”” (e+p) utug] + 9y [T (€ + p) upu"] } (2.66)
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2.9. Matter equations

On the right hand side of this relation, we use the decompositions (2.12) and (2.18) to
rewrite

um:gmaua:<kmn+MM N >un < >u¢

M2 N2 TNt \ e T e

In order to make the resulting equation more compact, we introduce the 2-vector (note
that below o € {r,8} is an index and not a zero)

Cm = ueY (6 + p) kmn [(m"m” —n"n°) u, — ntn"u; + (mnm¢ — n"n¢) u¢]

such that

6_’y
=" | —uyly, + ———— 2.67
’ [ ut"+ut(6+p)cn] 80
Then, equation (2.19) allows us to compute
2 204y 0 o4 e’
O [r7e (€ 4+ p) wu ] = Orq€ (e+p)us |—utlg + m&g

= =0, [ (c+ ) (w)* 1] + Dy

and in a similar manner

2ty o= g gl —
Do |e (e +p) w'| Op {e (e 4+ p) uy [ utlr—i_ut(e—i—p)cr}}

= =00 | () (w)* L] +pes

Inserting these two results into equation (2.66), one finds

924 + Sff@e (ﬁw)
= sind {—e7 (e+p) (ue)* Oy (—lg) — (—1g) O [e’* (€+p) (utﬂ

+¢7 (e p) ()’ Do (=1) + (~1) By |7 (e + ) (w)’] + Doy = Dy}

The Lagrangian angular momentum [,,, appears four times on the right hand side. For
the two occurrences without derivatives in front, we revert equation (2.67) to

—
A [kmnun - eicm}
Uy ug (€ +p)

That way, using the abbreviation (2.63), we obtain

< 1
o2 + 520, (.—m)
r sin @
= —rsinfe’ (e +p) (uy)* w + sin 6 (Bpe, — Drcg)
sin 0 e Y

” {— [/ﬁenu" - ﬁlm%] o + [k‘mun - mcr} 59} [ey (e +p) (Ut)z]
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Here, we focus on the last line. We use equations (2.19) and (2.52) to rewrite

e e 7 e 7 0
kgnu" — —————cp = ulr?e® ! — — ¢y = ( Y + ¢

cp=— -
ur (¢ +p) w(etp) "~ uretp) \sind
and
- - - )
kot — — ¢, = ule® " — — 6 =— ( 2 9.1,!) — CT‘)
ug (€ +p) u (€ +p) ug (€ +p) \r?sinf

Hence, we arrive at the general relativistic extension

sin 0 1
o2y + 205, (.—391/1>
r sin 0
= —¢ (e+p) (w)*rsinOw + sin O (Fpe, — ycq)

+ @0t cosing) o+ (23 cosing ) o] [ (e ) (] (209

of equation (15) of Eriguchi et al. (1986).

The next step is to use the function

(= xr0,) = L0

of equation (16) of Eriguchi et al. (1986). Note that the field x is correlated to the basic
matter field xo by

X0 (T, 6) =X (T, 07 0)
Then, we find that the first squared bracket in the last line of equation (2.68) takes the

form

(0 + cpsind) 0, + <(9;;_2¢ — ¢, sin 9) Oy

_ TSIH@ {|:8r (TX) + C—GCOS¢:| 87' + l2 [M —re, COS¢:| 89}
r r r

cos ¢ sin
such that
i 1
82 + Smfag <.—09¢)
r sin 6
_ rsind —e (e+ )(u)chosgb—FCOS(b(ac — 0rCp)
= cos b p t , 0Cr rCo

+ [(@X + X + c—ecosgb) Or
roor
1
+ 3 (Opx + cot Ox — re, cos @) 89} In [67 (e+p) (ut)2] }

We compare this result with equations (17) and (18) of Eriguchi et al. (1986). That way,
it is obvious that these two equations have to be generalized to
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2.9. Matter equations

A(xocosd) = Sy, cose (2.69)
1
S = ¢ (e D) (W w + - (Bocr — Orco)
X0 Co
+ [(@-Xo + o + ?) Oy

1
+ 2 (Dgxo + cot Oxo — rcr)] Op In [67 (e +p) (ut)2

Note that the expression S, cos ¢ introduced above corresponds to the quantity ‘T(r, 6, ¢)’
defined in Eriguchi et al. (1986).

Finally, we have to constrain the quantity w similarly to equation (13) of Eriguchi
et al. (1986) in such a manner that the solenoidal part of equation (2.65) vanishes. For
that purpose, we restrict ourselves to a barotropic equation of state, from now on.
This means that the total energy density e is a function e (p) of the pressure p only. The
advantage of this limitation is that then the left hand side of equation (2.65) is a mere
gradient field and therefore its solenoidal part is zero. As a result, the solenoidal part
on the right hand side has to vanish, too. We achieve this by choosing the quantity w
appropriately. With this in mind, we use equations (2.52) and (2.60) to rewrite the right
hand side of equation (2.65) to

—u ~ rsin 0e20+7 (€ + p)

rsinfe2at (e 4 p) | Y L' (¥)| 0my (2.70)

0
m < b , > w— utu¢3ml¢ = v O — uu®p, L (v)

The solenoidal part vanishes if the expression in the squared bracket is a mere function
of the stream function 1. We call this function f (¢)) such that

w=e** (e +p)rsind (f (v) — wuL’ (¥)) (2.71)

This is the generalization of equation (13) of Eriguchi et al. (1986).

Gradient part

Inserting (2.71) into equation (2.70) gives

U < u’ ) w — utu¢3ml¢ =—f(¥) Ot

Thus, equation (2.65) becomes

1 Om,
5O n (u)® + Tf; +f () Ot = 0

Due to the limitation to the barotropic case, i.e. € = € (p), we can integrate this equation
to

/

1 2 P dp B ! no_
In (w)? + /0 Tt /O ay'f () = C (2.72)

with an arbitrary integration constant C. This the generalization of equation (14) of
Eriguchi et al. (1986).

33



2. Theory

Analytic solution of gradient part

In order to solve equation (2.72), we introduce the heat function (see, e.g., Friedman &

Stergioulas)
Py
B = [
) o @) +p

P
() = /0 ay' f ()

Then, we can simplify equation (2.72) to

and the ancillary function

S () + H () + 1(0) = C
The constant C' is fixed by the requirement
S0 (u)” + H (pe) + 1(4) = C
with the central pressure p., the central stream function . and the central covariant

temporal component u§ of the 4-velocity. Due to e > 0, the heat function H (p) is
invertible such that we then get the solution

p=HY(H (po) + 3 1n () = §In () + I(e) = 1)) (2.73)

2.9.3. Velocity v*

In section 2.7.2.1, we have expressed the three degrees of freedom of the 4-velocity u®
in terms of the 3-velocity v® = u®/u!. We will now explain how the velocity v* can
be computed from the basic fields. For that purpose, we have a closer look at equation
(2.52). The fields a, €, p and 1 appearing on the right hand side of this equation are basic
fields. The ancillary field ~y is the sum of the basic geometry fields 5 and v. Thus, only the
4-velocity components u; and u’ are an obstacle for a straightforward computation of the
meridional velocity v from the basic fields. In contrast to the Newtonian limit, where
the components u; and u! are equal to unity, general relativity leads to contributions of
the meridional velocity v, hidden in the components u; and w!. In the following, we
will therefore rewrite equation (2.52) in such a manner that the meridional velocity v™
appears only on the left hand side.

In order to rewrite equation (2.52), we have to address the azimuthal velocity v® first.
This velocity component can be expressed in terms of the meridional velocity v™. For
that purpose, we expand the ¢-component of definition (2.57) to

U Gpa¥® Gt + GomV™ + Gpov”

b = Uy 9" gu + gmo™ + GtpV?
such that
oo — 910 T GmoV"™ + (g + grm?™) by
o6 + Giole
or
v? = Ay + Agyv" + Aggr? (2.74)
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with the abbreviations

l
A1:_9t¢+gtt¢ S:RO
9o T Grele

and

Ime + gtml¢ SR

9o + Giole

Further below, we will have to investigate the values of several quantities, like A; and
Ao, in the special relativistic case under the assumptions /g = 0 and 9,1 = 0. Therefore,
we will always compute the values of such quantities in the special relativistic case, and

A2m:_

we denote this by ‘S:R’, as done in the above two definitions.

Next, we consider the component v?. With this in mind, we introduce the quantity

m _ 1 30¢ SR om 47
A5 = ey e+ p) ( —8,0 ) = 0," A3 (2.75)

Then, equation (2.52) allows us to express the component v? as

Al
0 3,r
v = —T’U (276)
‘13

Eventually, we address the radial velocity component v". In order to simplify the
following computations, we introduce the quantity

AY sr
A4 == A_g == O
Then, we can write
v? = A" (2.77)

Using this result, we express equation (2.74) as
U¢ = A1 + A5’UT (278)

with
As = Agy + AggAy 20

Next, we use (2.75) to write equation (2.52) as

m t,,m 02, a,m
AR = wu'v :gm(u) v*v

On the very right hand side of the above line, the 4-velocity constraint tells us

()7 =

1
Gapv®vP?

such that we can write
JraV V" + Aggaﬁvo‘vﬁ =0

Using equation (2.77), the first term in this relation becomes

gtavavr = gttvr + (gtr + A49t9) (Ur)2 + ngrv(b (2-79)
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and for the second one we use the expansion
9ag0°0? = gu + 2950 + 2000” + 20150° + gor (V) + 29090 0"
) 0\> 0,6 6\ 2
+2Gr6v 0 + oo (v ) + 29940 V" + gpo <v )
such that
9ap®® = gy + 2 (g + Asgie) V" + 20150° + |:grr +2449,0 + (A4)® 999} (v")?
2

+2 (grg + 244906) V"0 + oo (v¢) (2.80)

Then, we combine the results (2.79) and (2.80) to

2
Aggtt + A6UT + A7U¢ + Ag (’UT)2 + Ag’[)r’Ud) + A10 <U¢> =0 (281)
with
, SR
As = gy + 245 (gt + Aagy) = —1
Ar = 2450, 20

SR
As = gir + Asgig + Ay |G + 2440,0 + (A1) goo| = A

SR
Ay = grp + 245 (gr¢ + Aagey) = 0
AlO — Agg¢¢ S:R 7"2 sin2 HAS
We will now replace the v?-component with the help of equation (2.78). That way,

equation (2.81) becomes
Bi + Byv" + B3 (v")? =0 (2.82)

with

Bi = ALgy+ A1A7 + (A1)* Ar £l —Aj
By = Ag+ AsA;+ AjAg + 241 A5 A0 = —1
By = As+ AsAg+ (A5)% Ajp = A]

For equation (2.82), we get

1
v = — ( =By +1/(By)? — 4B, B3 (2.83)
2B3
that is two solutions corresponding to the two signs +. In order to find the physically
relevant solution, we investigate the special relativistic limit with the assumptions /4 = 0
and 0,1 = 0. Then, we find

TS_R 1 _ \2
YT <1i 1 4(A3)> (2.84)

Now, we analyze what happens in the limit dg1) — 0. Due to equation (2.75), this means
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that A5 — 0. In this limit, we find

lim
AL—0 2A§

<1+ 1—4(Ag)2> = lim — = oo
3

Therefore, the physically relevant solution of equation (2.83) is

1
’Ur = _2—B3 <BQ + (B2)2 - 4B1B3>

This result together with equation (2.76) defines the velocity component v’. Then, it is
possible to evaluate the component v? by using equation (2.74).

2.9.4. Equation of state

We conclude the theoretical part by having a closer look at the equation of state. In Sect.
2.9.2.4, we have limited ourselves to a barotropic equation of state, where the total energy
density € is an arbitrary function € (p) of the pressure p only. We recall that the reason
for this limitation was a simplification of the solution method of the equation of general
relativistic hydrodynamics. In this investigation, we perform another such simplification.
We restrict ourselves to a special barotropic equation of state (it is easy to extend the
GRNS code to the general barotropic case), namely a polytropic one, i.e.

p=Kp" (2.85)

with the polytropic constant K, the rest mass density p and the polytropic exponent I'.
In Appendix E, we rewrite this equation to the less familiar form (E.2):

1
P P\T
-_r (2 2.
¢ P—1+(K) (2.86)

This equation allows us to compute the total energy density €, one of our basic matter

fields.
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3.1. Basic fields

In Chapter 2, we have introduced the twelve basic fields
v, N",N® N% 3, M", M, cv,€,p, X0, s (3.1)

These fields are governed by Einstein’s field equation (2.5). For three of them, we have
even found an analytic solution. Each such analytic solution allows us to explicitly
compute one of the twelve basic fields under the assumption that the other eleven fields
are known. The three analytic solutions are equations (2.60), (2.73) and (2.86), which
solve for the Lagrangian angular momentum component lg, the pressure p and the total
energy density €. For the remaining nine fields

v, N",N° N? B, M", M?, o, xo (3.2)

no analytic solution is available. However, for each of these fields there is a partial
differential equation, which can be rewritten as a Poisson equation in flat space. Such
equations can be solved via Green functions. That way, we will able to compute each
of the basic fields (3.2) if all other eleven basic fields are known. Eventually, all twelve
basic fields together will be computed via a fixed point iteration method.

3.2. Poisson equations

In the following sections, we will state the Poisson equations. Each such equation has
the structure
0P =S5

in which O, ® and S are a Laplacian, a potential and a source, respectively. The form of
these Poisson equations is not unambiguous. Instead of the potential ®, we can choose
a slightly different potential, like 7®. In that case, we get

O (ré) =29

with some modified source S’. Unfortunately, the numerical stability of the fixed point
iteration method is highly sensitive to such changes of the potential. Therefore, it is
mandatory to find the appropriate way to write the Poisson equations. However, a
deeper analysis of this issue would have gone beyond the scope of this investigation.
Therefore, we simply experimented around, until we found the form of the equations
presented below, which turns out to be numerically stable.
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3.2.1. Poisson equation for v

We start with the Poisson equation for the basic field v. This field is governed by
equation (C.1). Actually, equation (C.1) originates from equation (3.11) of Gourgoulhon
& Bonazzola (1993), which is of the form

Nl = .. (3.3)

a

Here, the index a runs from 1 to 3 and the vertical stroke denotes a 3-covariant derivative.
Therefore, we realize that a covariant 3-scalar Laplacian is applied on the 3-lapce N. This
Laplacian consists of two parts. The first one is the axisymmetric, flat space 3-scalar
Laplacian

cot 6

1 2

3 2 2

A=0%+ 02+ 20, + ——0 3.4
Pt g0+ 0t — 50 (3-4)

This is the commonly known Laplacian A = 9?2 —i—@; +0? rewritten in spherical coordinates
(without ¢-derivatives). The second part are additional terms which account for the
curvature of the 3-surfaces ;. Moving these terms to the right hand side in equation
(C.1), we find

1 2 cot 0
V,rr+_2V,€9+_V,r+ 2 Vo
T T T

— A2 {477 (E +82) + Ky K% + L; — [% + (mr)ﬂ (v,)? - [ L (meﬂ (vp)?

2 0 0\2
—(m") vy —2m"'m Y g — (m > V.06

— <mrmr7r + memrﬁ) Vg — (mrmgﬂ, + mgme,g) vy — 2mrm9y,ry,9}
1 1
+ o Lo |V + 2 (cothd — pg) v

Then,
p=In(rsinf) + g (3.5)

which is a result of equations (2.22) and (2.29), produces

SAv = S, (3.6)
2 a ab L2 1 r\2 2
S, = A*S4n(E+S)) + KK +7— F+(m) (v,)

: [(Ti)z i (m9>1 (v0)* = (m")? vy = 2m"m°v 1 — <m9>2 V00

- <mrmr7r + memr’9> Uy — (mrmaﬂ, + meme’g) Vg — QmeGVmI/’g}

_ﬁ,ry,r

Bove
-~ Do

This is a Poisson equation consisting of the Laplacian A, the potential v and the source
Sy.
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3.2.2. Poisson equations for N¢

The 3-shift N is determined by equations (C.2), (C.3) and (C.4). These three equations
arise from equation (3.12) of Gourgoulhon & Bonazzola (1993), which starts with

alp
NP, = .

So, in contrast to the covariant 3-scalar Laplacian of equation (3.3), we now encounter a
covariant 3-vector Laplacian. The analog in flat space, the flat space 3-vector Laplacian,
has the usual form °A%, = (92 + (95 + 0?) diag (1,1, 1) in Cartesian coordinates (denoted
by the index ¢), in which Cartesian coordinates are correlated to spherical ones via
x = rsinflcos¢, y = rsinfsing and z = rcosf. However, in spherical coordinates,
its form is not very widely known. Therefore, we briefly repeat the computation of
the Laplacian in these coordinates. For that purpose, we consider an arbitrary 3-vector
potential ¢, and then we find

b
e,
= 1[0, (.07 +7T2,07) - 71y, (0.0 +7 T2,07) + 7T, (0.0 +7 TE,07 ) |
= SALPP (3.7)

Choosing the flat space 3-metric

and additionally assuming axisymmetry, the quantity 3A‘g becomes what we call axisym-
metric, flat space 3-vector Laplacian. A somewhat lengthy but still straightforward
computation leads to the result

SA— % 29, —2ctd 0
3Aa, = %89 3A+%6r+1*°r7%'329 0 (3.8)
0 0 SA 4 20, + 2<%429,

Therefore, we have to extract this Laplacian from equations (C.2), (C.3) and (C.4). In
order to do this, we rewrite equation (2.22) to M = rsinfe®. Then, we compute

Mg = re? (cosf + sin63)

such that
Mg, cotf 1

T + =By +cot0B, + B9+ 5,60
T T

and M
2500 1490t 089+ B0 + (5,9)2
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Using these two results together with p = In (rsin #) 4+ and the commutativity of partial
derivatives, we rewrite

1 - M ¢ 1 -
[E —(m )2] M + [ﬁ + (m )2} orfho

r

_ [L _ (mr)2] <COt 0 + %579 + cot 08, + B0 + ﬁ,rﬁ,9>

(540 ) oo+ 20)

1 t0 2
= 5 (2“’ +=Bo+2c0t 68, + B0+ 25,rﬁ,e> — (m")? Bro

in equation (C.2) and
[ﬁ ! <m9)2] (1) + [ﬁ - (meﬂ Moo

= [ﬁ + <m9) 2] (cot§ 4 Bg)?

. [(T;)Q _ (me) 2] [_1 +2cot 059+ B + (5,6)2]

2
[cot? 0+ 4cot 03 +2 (89)* — 1+ Bao| + () (cot? 0+ 1 — Fup)

1
(rAy?

in (C.3). In the latter equation, we also reformulate

( 2 1 ) 1 M,y
r3 A2 (’I“A)Z'UJ,T H.0 (T‘A)2 M

1 { F - (% + Bm)} (cot 0+ Bg) — <C0t ’ + %Bﬂ +cot 058, + Bro + ﬁ,rﬁ,9> }

(TA)Q r T
. (r;)Q (2c0t 05, + B0 +28.,55)

in order to avoid a numerical instability, which otherwise turned out to appear in our
simulation. That way, we eventually arrive at the 3-vector Poisson equation

3AT, Nb = S, (3.9)

where the rather lengthy expressions for the sources S% are given in Appendix F.

3.2.3. Poisson equation for 3

In order to compute the basic field 3, we have to solve equation (C.5). This equation
originates from equation (3.13) of Gourgoulhon & Bonazzola (1993), which has the form

(MN)Im
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3.2. Poisson equations

Here, we have the covariant 2-scalar Laplacian. Hence, we have to identify the flat space
2-scalar Laplacian

on_ 2, 05 1
A=+ -2 +-0, (3.10)
T T

in equation (C.5). This is an easy task, because the Laplacian 2A is directly applied to
the product M N in that equation, which gives the terms

1 1
(MN),,, + = (MN) . + — (MN) 44

However, a problem occurs in the context of the Green function iteration process. Even
though we set the product M N to a positive value at the initial step of the iteration,
the Green function iteration method does not guarantee that positivity is conserved.
Therefore, at later iteration steps, the product M N might become negative. We have to
avoid such outcomes, because physically reasonable lapse functions are always positive.
Therefore, we cannot use M N as the potential of the sought Poisson equation, instead
we have to use a modified potential. For that purpose, we use equations (2.21), (2.22)
and (2.46) to rewrite
MN = rsin e’ = rsinfe?

Then, we get the first derivatives
(MN), = [(r sinfy) , +sind (1 — ,y)] e

and
(MN) 4= {(rsinﬂv)ﬂ +7rcosf(1— 7)] e’

such that the second derivatives are
(MN)M = {(r sin 97)7” + (rsin 97)’7" Yy —sinfy, +sinf (1 — ) 74 e’
and
(MN) 49

= {(r sin6y) gy + (rsindy) gy — rsind (1 — ) —rcosfyg+rcosf (1 —7) 779} e’
As a result of all these derivatives, we find

3030+ Ly, + & 410
= ¢ {(7" sin Hv)ﬂ + T_lz (rsin 67)’99 + % (rsin 07)#
+ (rsingy) . v, —sinbyy, + % sinf (1 — )
—|—% [(r sin@7y) pv,0 — rsind (1 — ) —rcos 97779] }

With the help of equation (3.10), we can then write

1 1 1
(MN) 1 (VMN) -+ 25 (M) = € {28 (rsind) 4 7sind |00 + 5 (10
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3. Numerics

On the right hand side of this relation, the Laplacian ?A is applied on the expression
rsin 6. This quantity leads to physically reasonable configurations even if it is negative.
Therefore, we use rsinf~y (this quantity also appears on the left hand side of equation
(24) of Komatsu et al. (1989)) as the sought modified potential. That way, equation
(C.5) becomes

Alrsing (8+v) = Sp
S = A_2 {STI'MNSmm — 2, [M, q]" — 25 [M, Q]e
=
—M(¢"+wm") Kk, — M (qe + Wme) k.0
+MN (K™ + K2 = Ly L)}
—roind [ + 5 (] (.11

3.2.4. Poisson equations for M™
3.2.4.1. ldentification of potential and source

Equations (C.6) and (C.7) originate from equation (3.14) of Gourgoulhon & Bonazzola
(1993). This equation has the form

mlin  _
Mmin =

which uses the covariant 2-vector Laplacian. So, this time our task is to extract the flat
space 2-vector Laplacian from equations (C.6) and (C.7). In Cartesian coordinates,
this Laplacian is equal to the flat space 2-scalar Laplacian and has the form 02 + 92.
However, in spherical coordinates we have to proceed similarly to equation (3.7). That
way, we find

kJnO QVnQVO(I)m
= k" [0n (o™ 42T @F) — T4, (9g@™ 42 T @) + T (9,07 +2 T4 3P )]
— 2Amq)n
n

Then, we choose the flat space 2-metric

such that we obtain

Nk i
IAm = (3.12)
20y 02+ 50; + 20,

In addition to that, we use equations (2.21) and (2.29) to compute

M M, N — MN
N<N>m: = N 7m:M(M,m_V,m)
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3.2. Poisson equations

and 1 N

With the help of equation (3.5), these two results lead to the components

o), = ()

)

M
N(—) = M(cotf+ Bg—ryp)
N 70 ) )
Louny, = m(tin ¢
N T - r )T Vyr
1
N (MN), = M(cotf+Bo+rp)

Together with

we eventually find
ZA™ M™M= S (3.13)

where

sy = A? [mst —2L""M ( + B — > — 20" M (cot O + Bg — 1)

L 1 M w

+M <; + 6+ V,r> + 25 g, m]" 4 257 [M k]
M oM

+2 (A2 — /{rr> N (Wy —wp ) — 26" ~ (wo —wpp)

—2M (2KTTI€T + 2k" K% — m{r)}
r 6 1 T 0 1 r
-2 O[,r M o M 0 ;M —|— C¥79 M o + EM 0 (314)
and

s, = A2 {mﬂMs — 219" M < + By — ) 2L M (cot 6 + B — vg)
L M
+WM(cot9+ﬁ7e+l/,g)+ N 2 ] +2N [M, /{]
K oo | M or
+ — K| = (wy —w — 2K
[(TA)Q } (o o)

—2M <2/~$g kT 260 k0 — f@/{eﬂ

M
N (wr —wpy)

1 1 1
-2 [ﬁaﬂ (MG,G - M, + ;Mr> + <M9,T + ﬁMﬁ@ﬂ (3.15)

Unfortunately, these Poisson equations suffer from two severe problems. The first one
is that they do not take into account that the geometry fields obey so-called slicing
conditions. We will have a closer look at this issue in the next section. The subsequent
section deals with another obstacle. A straightforward numerical implementation of the
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3. Numerics

above two Poisson equations turns out to be numerically unstable. In order to solve this
problem, we will set the sources to zero in the vicinity of the rotation axis.

3.2.4.2. Slicing condition

The 2-shift M™ has to obey the slicing condition (3.4) of Gourgoulhon & Bonazzola
(1993). According to equation (H.8), this condition can be rewritten as

2div <e2(a+”)M> ~0 (3.16)

where the operator 2div is the flat space 2-divergence. This operator is the analog of
the flat space 3-divergence 2div already encountered in Sect. 2.9.1.2. Similarly to the
calculations performed in that section, we can compute the flat space 2-divergence ?div
in spherical coordinates. The only differences are that we have to replace the 3-vector
X®, the 3-metric hgy, the determinant h and the 3-covariant derivative | with the 2-vector
Y™ the 2-metric ky,y, the determinant k = det k;,;, and the 2-covariant derivative |,
respectively. Then, setting k,,, = diag (7"2,r2 sin? 9) for flat space such that vk =
r2sin @, we obtain the result

. 1
2divy =Y™ +-Y" (3.17)
’ T

The slicing condition (3.16) causes a problem in combination with the Poisson equa-
tion (3.13). In order to see this, we consider the Poisson equation (3.13) in Cartesian
coordinates, i.e.

(24 02) M* =
(07 +02) M*

with the Cartesian components M?* and M? of the 2-shift vector. Having a solution
(M?®, M#*) of this equation, also (M?¥, M? + const) is a solution, in which const is an
arbitrary constant. There is no such constant for the M*-component, because this would
violate axisymmetry. On the other hand, the slicing condition (3.16) has the form

0, (017 4, (A7) =0

in Cartesian coordinates. This equation is not invariant under the transformation M?* —
M? + const, except when (a+v) , = 0. In total, this means that the Poisson equation
(3.13) forces us to somehow fix the constant in M? — M? + const, whereas the slicing
condition tells us that the choice is not arbitrary. Unfortunately, there does not seem
to be a way to directly compute the constant with the help of the slicing condition.
Therefore, we choose a different way and rewrite the Poisson equation (3.13) as

ZAm Xt pm] = S (3.18)

with the new potential e2(@t*)A™ and the new source Shp- This Poisson equation is
invariant under the transformation e2(®t*) )% — e2@+t¥) )% 4 const. As the slicing
condition (3.16) is invariant under that transformation, too, we can then fix the constant
arbitrarily.
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3.2. Poisson equations

In order to determine the new source S}, we compute
Om <e2(a+u) Mo) _ Moam62(a+1/) + e2(a+u) 0, M° = 62(oz+1/) [2M08m (a + I/) + amMO]
and for m =n

amn (62(a+u)Mo) — MoamneQ(a—l—u) + 26m62(a+1/) anMo + eQ(a—l—u) amnMO

= O LN [0 (a4 V) + 20 (o + 1) Dy (0 + V)]
+40y, (a0 + 1) 0, M° + 0y M°}

Then, equation (3.12) tells us that
St
1 1 1 2
_ 2, 92 —9 - 20c+v) agr) 2 2(a+v) p r0
(38 + 508+ 70, - ) (erar) - 2o, (erar)
= o) {zMr [a,% (a+v)+20, (a+ y))ﬂ 40, (a +v) O, M" + 92 M"

2 r 2 4 T 1 r
+5M (07 (a+v) +2(0 (a + )| + 500 (a4 V) pM" + —0FM
4

2 1 1 2
FEMO, (0 v) + =0 M" — —M" — = M3y (o +v) — —agMG}
T T T T T

and
St
_ 2 i 2 § 2(a+v) p r6 3 2(a+v) pgr
- (o 3 (o) B (e
— 2loty) {2M9 [aﬁ (a+v)+2(0 (a+ y))ﬂ 448, (a+ v) 8, M + 92"
2 4 1
+ﬁM6 {83 (a+v)+2(0(a+ 1/))2} + ﬁ(% (o + 1) OpM? + ﬁagMg

6 3 4 2
+=MP0, (v +v) + =0, M° + S M"9p (a +v) + = ang}
r r T r

Due to equations (2.21) and (2.23), we can replace e*(@**) = A2N?._ And, equations
(3.10) and (3.12) allow us to write

4
Sh = A’N? {4M’" (0, (a+v)]* + 40, (o + v) 9, M" + M (09 (o + v)]?
+i2ag (a4 v)0pM" — éMf’a@ (a+v) +2AM" +2M" %A (a + 1/)}
T T
and
4
s, = A’N? {4M€ [0, (o + v)]* + 40, (o + v) 9, M? + EMG CACEROE

4 4 4
+ﬁ80 (o + 1) Dp MY + ;M‘L)@T (a+v)+ T—sMr(% (a+v)

+2AMY +2MO2A (a + u)}
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3. Numerics

Then, equations (3.13) and (3.23), the latter one being derived further below, eventually
give

Sty = AEN?{40, (a+v) [M"0, (o + v) + 9, M"]
4 4
+ﬁ69 (a+v) M0 (a+v)+ 0gM"] — ;MG(% (a+v)
+5" + 2M"So}
S¢, = AN? {4@ (a+ ) [Maar (a+v)+ aTMG}
4
+r_289 (a+v) [Meag (a+v)+ BGMG}

4 4
—i—;Mo@r(a—l—y)—i—ﬁMr@g(a—i—u) + 5%, +2MGS}

3.2.4.3. Rotation axis

Let us have a closer look at the expressions
2 T 1 r0 L 1
Ey=A“-2L"M—- —2L""M cot § + — M — (3.19)
r A2 r

and

1
= A? <—2LGTM— —2L% M cot 6 + —— M cot 0) (3.20)
T

2A2

in equations (3.14) and (3.15). It can be shown (with the computer algebra program
Mathematica) that these two expressions can be written as

1 t6
By =M+ 0,7 — —agMG + a M" + cot 00, M°
T
and te t0 t9
By = 7 0 +- agM” e apM® — 0, M + a M

In Cartesian coordinates, they take the form
1
Ey =— (0, M* — 0,M?)
x

and

By = i (@M + 0, M)

That way, it is obvious that the rotation axis x = 0 is somehow problematic, as there
a division by zero occurs. However, in our numerical approach, we place the cells of
the numerical grid in such a manner that they end on the rotation axis. With the grid
points lying in the center of the cells, the rotation axis does therefore not contain any
grid points. Instead, the innermost radial grid line (grid lines connect grid points) is
given at the radius r = ryiy > 0, and the minimal and maximal angular grid lines are
set at 0 = Opin>0 and 0 = O < 7, respectively. Then, the Cartesian coordinate x is
never zero at anyone of our grid points and no division by zero occurs. Unfortunately,
merely having no grid points on the rotation axis has turned out to still cause the fixed
point iteration method to be divergent. Numerically experimenting with the iteration,
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3.2. Poisson equations

we found out that this problem can be solved by setting S; = 0 on the three grid lines
T = Tmin, @ = Omin and 0 = 0.

3.2.4.4. Numerically optimally suited form of source terms

The final problem is that for very high numerical resolutions the source terms (3.19) and
(3.20) have turned out to cause the fixed point iteration method to become divergent.
Therefore, we had to rewrite them. For the two terms containing the trace L of the
exterior 2-curvature, we do not compute the trace L via L = k™" L,,, but instead use

equation (3.10)

2M™

of Gourgoulhon & Bonazzola (1993), which results from the slicing condition (3.16).
From a perturbative viewpoint, where all basic fields are small and of the order of A, it
is now obvious that L is of the order A2, because it contains the two basic fields M™
and v. Therefore, L does no longer affect stability.

The only remaining problematic expressions are therefore

1
Ej = A? <—2L”‘M— — 2L M cot 9>
r

and

1
E) = A2 <—2LWM— — 2L M cot 9)
T

They can be rewritten as (again with Mathematica)
/ 1 r 0 2 r 2 T 0
By =cotf ( Mg+ M", ) + =M, + = <M ap+ M 0179)

and

1/1 t0 /1
By= 1 (e, ) + 250 (om0 4 b, 4 M) (32

r r

On the other hand, it is also possible to show (with Mathematica by explicitly evaluating
the trace L) that equation (3.21) can be put in the form

1
Mg+ M+ M7 4+ 2M" (o + vp) +2M” (0 + v9) = 0

Then, we can reduce the number of stability relevant terms in expression (3.22) by writing
it as

1/1 cot 0 cot 0
Ey =~ (ﬁMr,e + Mg,r) —2 M, -2 [Mr (ar +2v,) + M (a9 +20,9)

such that we finally obtain
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1 2
Sl?\/l = COta <ﬁMT79 + Meﬂ,) + ;MTJ,

A [167TM57" — LM (B, — v,) — 2L M (Bg — vg)

oM™, M w
e (b V) F 207 [0 R]T 257 (M R]
M M
+2 <% - mrr) ~ (Wy —wpty) — ZIJGW (wo —wpg)

—2M <2/€rrlir + 2K" k! — Iilir>]

2 1 1
—2 [a,r <M - M, - ;Mr> +ag (MG,T + My~ ;Meﬂ

il cot 0
SIG = (=M MG _9 M
M T <r2 o+ My 2 R
A7 [+167TM89 = 2L M (B, —v,) = 2L" M (B — v)
2M™y M w
o (e +ve) + 25 [a )’ + 2 [M, ]
K M M

i {(TA)Q - ”99] N (@o—wmg) = 267 (@ — wpy)

—2M <2/<;9r/<;r +2k% k% — /meﬂ

1 1 1
—2 [ﬁaﬁ (MG,G - MTJ’ + ;Mr> + Qr (Me,r + ﬁMTﬂ)]

cot 0

—2 7 (M7 (o 4+ 200) + MO (g + 20)|

r

3.2.5. Poisson equation for o

Equation (C.8) follows from equation (3.25) of Gourgoulhon & Bonazzola (1993), having
the form
Nlm - —

This equation uses the covariant 2-scalar Laplacian, and so we look for the flat space
2-scalar Laplacian 2A in equation (2.9), which is directly applied to the sum o + v there.
Hence, we immediately obtain

Ala+v) = S, (3.23)
1
S, = A2 {8775 + N [(qr +wm”) Kk, + <q9 + wme) m,g}
2
TN [/@r (M, q]" + kg[M, q]e} + 3kmK™
1

+5 (K™ + K2 + Lanm")}

Uo\2
e = (5)
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3.2. Poisson equations

3.2.6. Poisson equation for Y

For the basic matter field xo, we have already found a Poisson equation (2.69). In order
to invert the Laplacian in that equation, we have to specify boundary conditions. For
that purpose, it is best to rewrite equation (2.69) in coordinates adapted to the
surface of the neutron star. Denoting the radial coordinate of the surface in the old
coordinates (r,0,¢) as R (0), the new coordinates are defined by

"(0.9) = T
o' (r0.¢) = 0
¢ (r.0.9) = ¢

So, we have scaled the coordinates radially, such that in the new coordinates (1,6’ ¢)
the radial coordinate of the surface is equal to unity everywhere, i.e. v/ (R (0'),60',¢') = 1.
Then, the chain rule produces the first derivatives

1

" Re)™

and R (6) 'O R (0')

T0p T Oy
Og = ——— 50+ 0p = Oy — ——F 70
0 R (9) + O (% R (9/)

whereas d, = 04 . That way, we find the two second derivatives
62 - 71 82/
TR0

and

/ / / / / / /
83 _ 83, . 89/ ( 89/ (9 )arl> . r 69/( (9 )8 " r 69/R (9 )arl (’I“ (99/R(9 )87,/>

( ) 0') R(0) R(0)
'a, Yy a, 0
r’ (39/3(9 )’
0 e e K
Using all the above derivatives, we get
1 1 cot 0
A = 2+ ﬁag + ﬂ% + 8 +—50y (3.24)
1 (90 R(O)\* 3@/ (0')
~ R {A +< k@) ) R0
1|, (@0sR(#))*
R |2 R@y R (E) oty R (€)) O

in which A’ is equal to A, except for the replacement (r,6,¢) — (1',0',¢'). Hence, we
finally arrive at
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3. Numerics

A’ (xocos¢') = S;(O cos ¢’ (3.25)
2 A RO\ g R(0)
S = R(0) Sy — (W 9y x0 + 2@@«'9'){0
1 (89’R (91))2 2 / / /
7R (0) ) G R (0") + cot 0'0p R (6') | D x0

So, we have found Poisson equations for all nine basic fields given in the list (3.2).
Therefore, we will focus on how these Poisson equations are solved numerically, in the
following.

3.3. Numerical grid

max

0

max

Figure 3.1.: Numerical grid. Due to axisymmetry, it is sufficient to store the values
of the fields in a single meridional plane. For that purpose, we choose the
(z, z)-plane and a two-dimensional polar grid with the coordinates r and 6.
The figure shows the radial and angular grid lines, given in black color. In
addition to that, the minimal and maximal radial and angular grid lines are
highlighted, denoted with 7min, "max, @min and Gmax, respectively.

In order to solve the Poisson equations for the basic fields in the series (3.2), we have to
specify a numerical grid. The numerical grid consists of the two coordinates r and 6 shown
in Fig. 3.1. The minimal and maximal radial grid lines are denoted with ryi, and rpax,
respectively, in which ry .y is chosen sufficiently larger than the radius of the physically
interesting region around the neutron star. The minimal and maximal angular grid lines
are Opin and 0., connected by the relation 0p,x = ™ — Omin. The angular grid lines
are equidistant, with the angle between two neighboring grid lines being 260,,;,, whereas
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3.4. Boundary

the radial ones can be placed arbitrarily. In many cases, including those studied in this
investigation, the best choice are equidistant radial grid lines. Therefore, the radial grid
lines in Fig. 3.1 are distributed equidistantly, though in our numerical implementation,
the GRNS code, arbitrarily placed radial grid lines are supported in principle.

3.4. Boundary

3.4.1. Ghost zone

IV 11
0 [k
max ® ]
e ]
. ®
111 I
e ]
] (]
] ]
min f7 ==
[ e d |
v rmin II rmax

Figure 3.2.: Ghost zone. In order to compute derivatives on the boundary of the nu-
merical grid of Fig. 3.1, we use a ghost zone. The ghost zone extends the
numerical grid by one zone in both directions of the radial and angular di-
mensions. It consists of four regions, denoted by I, I1, III and IV. The
values of the fields in the ghost zone are specified by the chosen boundary
conditions.

We do not only have to specify the values of the fields on the numerical grid, but we
also have to compute first and second derivatives. For that purpose, we call the radial
and angular grid lines of the numerical grid r; and 6;, where i € {imin, ..., max} and
J € {Jmin, -+, Jmax }» respectively. Then, the value of an arbitrary field F (r,0) at the grid
point (r;,6;) can be written as F; ; (the comma is no partial derivative here). Similarly
to equation (5.69) of Dimmelmeier (2001), we evaluate the derivatives of the field F' (r, )
via

OF|  ArE (Fyy— Fy)+ A (B, - Fiay)

or i Ar;_1Ar; (AT’Z'fl + AT@)

or) By Fija

a0 |, ; 2A0
0’F _ 2ArH (Fit1,j = Fij) + Ari (Fioj — Fijg) (3.26)
or? i Ari—1Ar; (Ari—y + Ary) '
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OF Fiji1 —2F;+ Fija
an A0
O*F Fioyj—Fioign — Fipyj— + Fiin
o, 3 (Ari1 1 Ary) AD
with
Ary = rig1 -y
Af = 0,41 —0; = const

These formulas show that we have to go beyond the computational domain, i.e. i €
{iminy - tmax } and J € {Jmin, ---s Jmax }» i order to compute derivatives on its boundary.
This problem is solved with the help of a ghost zone, as shown in Fig. 3.2. The values

of the ghost zone are specified by the boundary conditions.

3.4.2. Boundary conditions

Boundary conditions are necessary for the four regions of Fig. 3.2. Let us consider region

I first. Similarly to the five equations (3.26), the radial, left, third derivative is

left

PF B 6l
or3 i A (Arig + Ari1) (Arig + Ari_y + Ary)
n 6Fi71,j B 6Fi,j
AT’Z',QA’I“Z‘,l (AT’@'—I + A’I"Z) AT‘Z',l (AT@'—Q + Arifl) A’I“i
6F;1,;

+
Ar; (Ari_l + A?“i) (A?“i_g + Ar,_1 + A?“Z')
We set this quantity equal to zero at the outermost radial grid line iyax, i.e.

PBF left

a5 =0

Tmax,]

That way, we can evaluate Fj . 11, for j € {jmin, .-, jmax }, i-¢. in the ghost zone region

1.
The boundary of region 11 is reflective. This means that
ivjminfl = Eyjmin
and
E7jmax+1 - Eyjm&x
for i € {imin, -y imax + 1}. For region I11, the boundary is reflective, too, i.e.
Z'minflyj = Eminyj

where j € {jmin, -+, Jmax }. In region I'V, the boundary condition has the form

F,

min_ly.]min_1 - min,Jmax

and

imin—L,Jmax+1 — Emin »Jmin
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3.5. Green functions

We do not only have to specify the field values F; ; in the ghost zones to compute the
derivatives in the five equations (3.26), but also the radial grid line distances Ar;. Here,
we use

Armin—1 = Armin

consistent with the reflective nature of the radial boundary.

3.5. Green functions

3.5.1. 2-scalar
3.5.1.1. Analytic solution

The flat space 2-scalar Poisson equation is
A =S (3.27)

with the flat space 2-scalar Laplacian ?A, defined in equation (3.10), a potential ® and
a source S. Due to equation (24) of Komatsu et al. (1989), the Green function of the
Laplacian %A is

G(f,f’) :—ln{x— |

where & = (rsinf,rcosf) and @ = (r'sin@’, 1’ cos§’) are 2-dimensional vectors. This
Green function allows us to write the analytic solution of equation (3.27) as

1
®(7) = 27T/d2 'S(Z) |7 — 7| (3.28)

3.5.1.2. Numerical solution

In order to write equation (3.28) in a form applicable for a numerical evaluation, the
easiest way would be to replace the 2-dimensional integral in that equation with two
Riemann sums. However, this approach is computationally very expensive. Therefore,
we use equation (28) of Komatsu et al. (1989):

2. 1 min’ (r,7)
I max! (r,7")

(cos (1) cos (10") + sin (16) sin (16"))

In | — #| = Inmax (r,r') —
=1
(3.29)
Then, equation (3.28) becomes

D (r,0)

1 00 27
= — dr'/ do'r's (T’,G')
27T 0 0

. lln max (r, 1) — 3 1 min (cos (16) cos (10") + sin (1) sin (16")) | (3.30)

Having a closer look at the angular integral, we realize that the angle # is not restricted
to the usual interval 6 € [0, 7], but instead the upper integration boundary is equal to
27 (see equation (24) of Komatsu et al. 1989). Therefore, we have to specify the value of
the integrand and thus the source S (r,0) in the interval 6 € [r,27]. For that purpose,
we impose boundary conditions.
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3.5.1.3. Von Neumann boundary condition

The von Neumann boundary condition is a result of the requirement
S(rym+60)=S(r,m—0)

such that

2w ™
/ a6's (r',0) = 2 / a9's (. 6)
0

0
Taking into account

cos (L (m+0)) _ cos (=1 (m +0)) o
<sin(l(7r+9))>s(r’ﬂ+6) = <—sin(—l(7r+6’))>s(7 0)

cos (I (m —0) — 2xl)
< —sin (I (r —0) — 2xl) )S(T’W_H)

- COS(Z(T(_G)) r.mw —
- ( —sin (I (r —0)) >5( ,m—0) (3.31)

we additionally find

/0 " d9’< o 83:)) > S (1, 0') =2 /0 " d9/< cos (()zef) )S . 8)

Hence, we obtain

maxt (r,7") J,

1 e 1 60 ) / g
P (’I", 9) = —% E 7 COS (l9) /0 dr/r/w / del Ccos (la/) S (’I"I, 9/)
=1

—{—l/ dr’r’ In max (’I“,’I“I)/ do's (', 6" (3.32)
0

™ 0

We use this equation to solve the Poisson equation (3.23) of the basic field «. In that case,
the potential is ® = a + v and the source S = S,. We are not allowed to use equation
(3.32) for the Poisson equation (3.11) of the basic field 3, because there the potential is
® = rsinf (B + v), which has to vanish on the rotation axis due to the presence of the

factor rsin @. Therefore, we have to apply the Dirichlet boundary condition for the basic
field 3.

3.5.1.4. Dirichlet boundary condition
For the von Dirichlet boundary condition we assume
S(r,m+6)=—=S(r,m—0)
which results in .
/0 465 (1. 0) = 0

Moreover, in analogy to equation (3.31), we get

(miaia) )semeo=( "o,y Jswr-o
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3.5. Green functions

and therefore

2w ™
/ ;[ COS (l@) ool /sl 0 It
/0 df' sin 6 < sin (10/) S(T,G)—Q ; df’sin 6 sin (10/) S(r,@)

Then, we finally arrive at

max! 0

& 00 l / s
(r,0) _%Z% sin (16) / dr’ '%(“;))/ d¢'sin (16') S (', 0') | (3.33)

As mentioned above, we use this equation for the Poisson equation (3.11) of the basic
field 8. The potential is ® = rsinf (3 + v) in that case, and the source is S = Sg.

3.5.2. 3-scalar
3.5.2.1. Analytic solution
The flat space 3-scalar Poisson equation is
Ad =S

where the flat space 3-scalar Laplacian A is given in equation (3.24). For this case, the
Green function is commonly known (see, e.g., Fliebach 1996) to be

1

4|7 - @

(3.34)

in which Z and &’ are 3-dimensional vectors. They are defined as & = (rsinf cos ¢,
rsinfsin ¢, r cos 0), and analogously for Z7. Then, the analytic solution is

1 3./ S(fl)

4 17— &

d(Z) = — (3.35)

3.5.2.2. Numerical solution

Equation (11.38) of FlieSbach (1996) tells us that the analog of equation (3.29) for the
Green function (3.34) is

__ WZ Z min’ (7” 7“’) Y?:n (9/’¢/) Yo, (07¢)

\f i 2l + 1 max!*1 (r,r")

with the spherical harmonics

Yin (0, 0) = \/ (2l47+r (%l %)T)!sz (cos 0) €™ (3.36)

and the associated Legendre polynomials

A =S )

24!
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3. Numerics

That way, equation (3.35) becomes

o) 1 /
_ g2 in” ()
Z Z 2l+1 ¥im ( ’d))/o " naxdtl (r,r")

=0 m=-1
2m
. / a0 sin ¢/ / 'Yy, (0.9') S (7)
0 0

which can be rewritten as

9] l l
1 —m) min® (r,7")
<I) = - 0 mae dp'p2 AL )
47 % mz l +m) " (cosf)e /0 max!*1 (r, ")
2
/ d¢'P™ (cos #') sin 0’/ d¢'S (&) e ime’ (3.37)
0 0

3.5.2.3. Axisymmetry

Now, we assume axisymmetry, i.e.

such that
B (r,0) = _ii j: =)} b (05 ) zmqs/“’d (im0’ (7,77)
- 47Tl0m l+m 0 max"*1 (1, 17)
21
/ d0'P™ (cos ') sin 'S (7‘/,9')/ dg/e= ¢’
0 0
Obviously,

2m 27
/ dgb'e_”nd’/ = / d¢’ (COS (mqb') — isin (qu’)) = 271dy"
0 0
Therefore, using the Legendre polynomials

1 d

l

we finally obtain

max‘*t (r,r') J,

l o min’ (r,7) [T .
0) = —3 lzg P, (cos 9)/0 dr’r’z—H / d0' Py (cos0') sin0'S (r',0")

(3.38)
We use this equation for the Poisson equation (3.6) of the basic field v. For that field,
the potential is ® = v and the source S = 5,,.

3.5.2.4. Azimuthal cosine

Next, we assume that
S (%) =S (r,0)cos ¢ (3.39)
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3.5. Green functions

of which we will make use further below. Then, we acquire

o l 0o l
1 —m) min’ (r,7")
) - E E imao ! /2
(r,9,¢) 4 l +m) (cosf)e /0 dr max!t1 (r, r/)

=0 m=

2m
d9 pm cos 9/) sin 'S (r/, 9') / d¢'e "9 cos ¢/
0
Due to the equations (3.45) and (3.46) further below, we see that
2m o
/ d¢/ e cos ¢ = 7T6|1m|
0

such that we get

B0.0) = 1Y N (b sty

oo ) / s
/ dr'r'QM / d0'P" (cos 0') sin 'S (1, 6')
0

max!*+1 (r, ') J,
We proceed with the relation (equation (3.51) of Jackson 2006)

(I —m)!
(I 4+m)!

P =(=)" I (3.40)

and find
e - A5 T e )
m=1

/ dr'r" min' _min (ryr) e (rr7) / do'P™ (cos 0') sin 'S (r',6')
0 0

such that

 (1—1)!
®(r,0,¢) = _%COS¢Z(Z+1)!Pll(COSH)

o] l T
/ dr/r'? _min () / d0' P} (cos§') sin 'S (1, 6')
0 0

max!*t1 (r,r')

Then, we eventually arrive at

O (r,0,0) = ®(r,0)cosd

Iem 1
o (r,0) = — Z P} (cos )
=1

o0 ! &
. / 21 (1) / d6'P! (cos8') sin0'S (+,6')  (3.41)
0

max‘*t! (r,r') J,
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3. Numerics

3.5.2.5. Vanishing surface potential

Equation (19) of Eriguchi et al. (1986) tells us that for the boundary condition (3.39)
equation (3.35) can be generalized to

O (r,0) =Py (r,0) + Z air' P} (cos 0)
=1

Here, ¢q (r,0) is given by equation (3.41) and the a; are arbitrary coefficients, to allow
for a much larger set of boundary conditions. Let us now assume the boundary condition

S(@) = S(r,0)cos¢
(R0 = 0

with the surface radius R (in surface adapted coordinates, see Sect. 3.2.6). Then, we get
(o.0]
D (R, 0) + Z aiR'P} (cos ) = 0
=1
We define ®; = —aq;R! such that
o0
O (R,0) = _ &P (cos0)
=1

Comparing this with equation (G.1), equation (G.2) gives

SRR .
= 20(1+1) Jg d0®y (R, 0) P} (cosf)sinb

such that
B (20 +1)
20(1+1) R!

Hence, we finally arrive at the solution

a; = / dfdg (R, 0) P! (cos ) sin b
0

e 1
P (r,0) = —§Zmpll(0059)
=1

oo . / ™
o min’ (r, ") 1 (e .
'A m”ﬁa;nzﬁﬁﬂ(wﬂ(wwvwWSO%w

1 20 +1 7l
‘1>(r,9) = ¢O(T’9)_§Zl(l+1 DI
=1

Rl

P} (cos6)

] / dH’Pll (cos 9’) sin &' ¢ (R, 9')
0

which is used for the basic matter field x. For that purpose, we rename the coordinates
(r,0) appearing in the above box to (r/,0) (and those in the integrands to (r”,0")). Then,
we set @ (1,0") = xo (1',0') and S (+',0") = S (r',0"), in which the fields xo (r',6") and
S, (r',0") are the two quantities appearing in equation (3.25).
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3.5. Green functions

3.5.3. 2-vector
3.5.3.1. Analytic solution

We proceed with the flat space 2-vector Poisson equation
2
A™ P = S

where the flat space 2-vector Laplacian 2A™, is encountered already in equation (3.12),
and ®" and S™ are a 2-vector potential and a 2-vector source, respectively. Due to
equation (3.28), it is obvious that in Cartesian coordinates (denoted with the index ¢)

O (x,2) = % /de'SZ:” (2,2') In |z — 2|

The spherical components & (r,0) can be computed from the Cartesian ones via

a(r,0)™

" (r,0) = Do) o7 (z,2)

where 9 (r,0)™ /O (z,2)" is a Jacobian. Using the inverse Jacobian 9 (z,z)™ /0 (r,0)",
we find

m _ 1 a(r,@)m 2 ,a(ﬁﬂl,zl)n ] ! pnl — —/
¢ (T’H)_27T(9(:U,z)"/dx (9(7”,9’)05 (r,@)ln‘x—x

3.5.3.2. Numerical solution

We assume axisymmetry such that we have to specify a boundary condition for 6§ =
0 and 6 = 7, similar to the flat space 2-scalar Poisson equation (see Sect. 3.5.1.2).
Obviously, ®¥ (z,z) has to obey a Dirichlet and ®Z (z,z) a von Neumann boundary
condition. In the following, we use the Jacobians

d(r,0)" < sinf cosf >

aa, "\ et e

and
d(x,2)™ [ sinf rcosf
d(r,0)"  \ cosf —rsind

In addition to that, we recall equations (3.32) and (3.33). Eventually, we apply
T (r,0) = T ( (r,6) , 2 (r,6))

where either T'= S or T' = ¢. Then, we find
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3. Numerics

" (r,0) = sinfd(r,0) + cos § B* (r,0)

o (r0) = (0 - “nacpz (r,0)
r

x _ 11 . > ,,minl(r,r/)/ / cx (1 pl

o7 (r,0) = W; i sm(l@)/o dr'r o (77 s d¢’sin (16") S* (+',6")

z _ loo_ //mml(r’rl) /ﬂ / N &z (0 o

% (r,0) = P lcos(l@)/o d maxd (r.17) Jy d¢’ cos (16") S* (', 0")

—i—l/ dr’r’ In max (r,r)/ dg'S? (,0")

) T Jo 0

S%(r,0) = sin®S"(r,0) +rcosdSY(r,0)

S*(r,0) = cosfS"(r,0) —rsinfS?(r,0) (3.42)

We use this result for the Poisson equation (3.18) of the 2-shift M™, ie. for @™ =
2 ) MM and S™ = ST

3.5.4. 3-vector
3.5.4.1. Analytic solution

The last Poisson equation to be addressed in this investigation is the axisymmetric, flat
space 3-vector one

3Aa bq)b — g9

with the Laplacian 3A%, from equation (3.8), the 3-vector potential ®* and the 3-vector
source S*. Looking at equation (3.35), it is evident that

¥ (r.p7) =~ [ EELE)

|7 — 7|

Hence, using the two 3-dimensional Jacobians 0 (1,6, ¢)* /0 (x,y,2)" and 9 (z,y,2)"*/
a(r, 0, ¢)b, we find

a _ _ia(r’a?gb)a 3 Ia(x,’y’/ Z,)b Sc (T/ 9,)
® (7",9) B 4773(x,y, z)b /d ’ 8(7'/,9',@5/) |7 — 27| (3.43)

3.5.4.2. Numerical solution

The Jacobian inside of the integral of equation (3.43) is

8 (z,y,2)° sinfcos¢ rcosfcos¢ —rsinfsing
&Y, 2) > = | sinfsing rcosfsing rsinfcos¢ (3.44)
d(r,0,0) cos 0 —rsinf 0

Hence, depending on the choice of the indices b and ¢, the integrand of equation (3.43)
(not considering the denominator |# — #’|) depends either on cos ¢, sin ¢ or not at all on
the angle ¢. The latter case has already been treated in equation (3.38). However, the
two possible trigonometric dependencies have to be addressed now. Therefore, we return
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3.5. Green functions

to equation (3.35) and modify it to

n L [ cosel ) S(F)
\\ (T,97¢)——E/dx < Sin(b/ ’f—iﬂ’

We have introduced the new 2-vector W™ here to avoid any confusion with the 3-vector
®? used in this section. It is then obvious from equation (3.37) that

00 l 0o 1
1 —m) - min’ (r, ")
n - . ime¢ / I2—
v (r6,¢) = Z Z l—i—m " (cos ) e /0 dr max‘*! (7, r')
=0m

47
- ol pm / Y o /[ COS ¢/ —img’
/ ' sin 0’ P, (COSH)S(?“,H)/O d¢ sin ¢/ e

For m? # 1, we obtain

2m o’ cos ¢’ —ime’ _ 1 im cos ¢’ — sin ¢/ o—imo
0 sin ¢/ m2 —1 \ imsing¢' + cos ¢’

and for m = +1
o / /i F2ig) 2m
V| ¢+ Let m
de’ C9S¢ Fi¢) _ = 2 L, = ) 3.46
/0 ¢ ( sin ¢/ ¢ 2 Fig) — 1eFH9 . Fim (3.46)

n _ _1 o /I2 mlnl(rr) /ﬂ /s /
U (r,0,¢9) = e 51/ dr e () df’ sind
+1)! —i¢ p—1 / @
. [( _1)!Pl (cos@) e P (cos b)) i

l
+ 8 _T_ 3:Pll (cos0) e P} (cos ¢) < g >} S (.0

Due to relation (3.40), we see

! l1—1)!
‘P_1 (cos0) P! (cos ) = El n 3'

(2)e () (22)
s —iT sin ¢

allows us to continue with
" _ 1/ coso > 1 1
v (r,0,¢9) = —2< sin ¢ >lz;l(l—|—1)Pl (cosf)

e’} ) ! ™
/ drlr/2M / de/ sin H/Pll (COS 9/) S (74/7 9/)
0

max!*+1 (r, ') J,

P} (cos0) P! (cos )

Hence, using
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So, using equation (3.38) and the abbreviations

o 00 l ™
5 P 2 min’ (r, ') / 'p N i pl
Op —3 lEO ) (cos 6) / dr o T o de l(cos@)sm@

. 1 o0 o0 l s
0, = _§Zl l+1 l cos@)/ dr’ QM/ dé?'Pll (COSH') sin @’
=1 0

max!*! (r, ') J,

we obtain

cos ¢/ — cos ¢ A
__/d3 ! smqﬁ' f(x_?q = < sin ¢ >Ol S(W,H')

|¥— 7 Oy

Note that the quantities Op and Oy are no operators in the strict mathematical sense,
but a mere tool to keep the expressions below short. To understand this issue more
thoroughly, we consider a much easier example, like the integral I = [dxf (z)g(z),
where f () and g (z) are arbitrary functions. Then, it is possible to abbreviate O =
J dzf (z) such that I = Og (x). In this example, it is also clear that the integral appearing
in the quantlty O cannot be evaluated unless the function g (z) is included, a fact also
valid for the operators Op and O;.

Next, we use the Jacobian (3.44) such that

a (', y, Z/):Sb (7"/, 9/)
8 (71/7 9/’ ¢/)
sin® cos @’ 1’ cos® cosd —r'sinf sin ¢’ ST (r',0")
= sin@' sin¢’ r’'cosf sing’ r’'sin 9’ cos ¢’ SO (', 6"
cos 6’ —rsin 6’ S? (1,0
sin @’ cos ¢'S™ (r',0") + r cosH’cosqﬁ’Se (r',0") — 7' sin @' sin ¢/ S? (', 0")
= sin @’ sin ¢’ S™ (r',6') + 1/ cos 0’ sin ¢' S? (+/ ,9 ) + ' sin @’ cos ¢’ S? (r ,9 )
cos0'S™ (r',0') — rsin@'S? (+',0")

Hence, we find

L [ A S
4 a0, ¢ 1T -2
O . ( COS¢SX (r',6") — sin ¢r’ sin 0'S? (', 0) )
sin pSX (r',0') + cos ¢r’ sin 0’ S® (1, 6")
00S* (1”,6")
with

SX(r,0) = sin®S" (r,0) 4 rcos0S? (r,0)
5% (r,0) = cos6S" (r,0) —rsindS? (r,0)

Here, the quantity SX (r,0) is the xz-component of the source vector at the angle ¢ =0,
ie. SX(r,0) = S*(r,0,¢ = 0), whereas the z-component S* (r,8) is ¢-independent due
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3.5. Green functions
to the assumed axisymmetry. The last step is to use the second Jacobian

a sinfcos¢ sinfsing cosb
0 (7“, 07 (b) _ cos 0 cos ¢ cos 0 sin ¢ __sinf
8(£C,y,2)b - s€n¢ cog¢> 0
rsinf rsinf
Then,
sinfcos¢ sinflsing cosf
cos 6 cos ¢ cos@sin¢ __sin@
- sqn ) COg ¢
rsinf

: 0
rsin @
o, s $SX (1!, 60") — sin ¢r’ sin 0'S? (1, 0")
U sin ¢SX (+7,0') + cos ¢’ sin 0/S? (r', 6')
OOSZ (7“/, 9’)

sin 6 cos ¢ (cos $SX (1!, 60") — sin ¢r’ sin 0'S? (1, 0")
) M cos ¢ (cos $SX (1',0") — sin ¢r' sin 0'S? (1, 6)
Tsmg sin ¢ (Cos #SX (1!, 60") — sin ¢r’ sin 0'S? (v 9’)

sinfsin ¢ ( sin pS™ (1, 6) + cos ¢r'sin ¢'S? (1", ¢/ >
+O1 M sin ¢ ( sin QSS'X (r’ 9’) + cos (JS’I“/ sin 'S¢ T’, 9/ >
7"51116 cos ¢ (sm ¢SX (r',0") + cos ¢r' sin @ 189 (r',0")

)

cos 0 .
+0o [ -8 | 5% (+,6)
0

such that

_19(n6.9)° / 0y ) 5, 0)
A7 9 (2,y, 2)"

a(r,¢,¢9) |&—2
sin 0S¥ (1, 6) cos
= O =05%X(.0) |+0 | —né | 5%(v,0)
25 (1, 0) 0
Hence, using equation (3.43), we arrive at
(1, 0)
sin 6 0 00
— cos @
= 2 - (1)

l ll 1 Pll(cose)/ood , 5, min' (r,7)
0 rsin 6 =1 (+ ) 0

max!t1 (r, r/)
T
. o1 N o o sin®'ST(r' 0") + 1" cos 'S (+',0")
/0 dé’' P, (cos& ) sin @ < ¥ sin 0/ (17, 0/)
cos 00 00 -1 /
1 sin @ y 2 1IN (7“,7“)
—— | -t ZPZ(COSH)/O dr'r max 1 ()
0 1=0
/ d6' P, (cos 0') sin 6’ (cos 0'S™ (r',0') — r'sin g's? ( 9'))
0

(3.47)
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This result is used for the Poisson equation (3.9) of the 3-shift N%, ie. ®* = N and
S =5%.

3.6. Slicing conditions

In Sect. 3.2.4.2, we mentioned that the 2-shift M™ has to obey a slicing condition. There
is another such slicing condition for the 3-shift N*. Both of these slicing conditions are
specified in Gourgoulhon & Bonazzola (1993). In the following, we will rewrite the two
slicing conditions in terms of our basic fields in flat space. Afterwards, we will explain
how the boxes (3.42) and (3.47) have to be modified to take the slicing conditions into
account.

3.6.1. Maximal time slicing

We begin with the slicing condition for the 3-shift N¢, called maximal time slicing and
given in equation (3.8) of Gourgoulhon & Bonazzola (1993):

N% =0

e

Appendix H.1 shows that this slicing condition can be rewritten to (see equation (H.5))
3div (626”51\7) ~0 (3.48)

In general, the inversion of the Laplacian 3A“b in equation (3.9) with the help of the
result (3.47) does not produce a 3-shift N* which obeys the slicing condition (3.48). The
reason is that the boundary conditions for the Green function were chosen too weak.
However, it is possible to tighten them. For that purpose, we consider the quantity

N, = 20N (3.49)

and apply a Helmholtz decomposition:

. 1 SdiviV, (&) | 1 Srot Ne (7
N (@) =~ [Ty Loy [ g 22Re (D)
4 |Z — & 4 |& — 2|

This result is valid in general, even if the slicing condition (3.48) is not obeyed. Replacing

. 1 3rot N, (7
N. (%) — N/ (&) = —>rot / g/ TN (&) (3.50)

 4rm |& — 2|

leads to a new field N’ (Z) which obeys the slicing condition (3.48), because the divergence
of a curl vanishes. Therefore, the replacement (3.50) is an appropriate tool to enforce
the slicing condition. Actually, we do not use the replacement (3.50) but the analytically
equal one

S _— 1 3divN, (&'

N, (£) — N, (£) + E?’grad/dgx’?}(,‘) (3.51)
because that way we obtain smoother numerical results in the vicinity of » = 0. In the
following we will bring this result in a different form by performing several steps. For
that purpose, we use definitions (2.48) and (3.49). In addition to that, we apply spherical

coordinates and reword the integral by looking at equations (3.35) and (3.38). Then, it

66



3.6. Slicing conditions

is obvious that we eventually arrive at

N” N” Oy 00
N | (r,0) — NO | (r,0) + e 220)=500) %289 Z P, (cos )
N N 0 1=0
R min' (r,7") "o N el
/ dr'r —/ dHPl(cosé?)smé?
0 0

max!+1 (r, ")

NN

. <Nénm (7“',9/) + %N: (7“’,0') + cot H'Nfl (r',@’)) (3.52)

3.6.2. Conformally minimal azimuthal slicing

We proceed with the conformally minimal azimuthal slicing, the slicing condition for the
2-shift M. This condition is given in equation (3.4) of Gourgoulhon & Bonazzola (1993)

and has the form
=0

[lm

(207
In equation (H.8), we show that this slicing condition can be reworded to
2div (62(““)]\2) ~0 (3.53)
The next steps are similar to those of Sect. 3.6.1. We define the quantity
M, = @) pf (3.54)
and apply a Helmholtz decomposition
M, = 2grad¢ + A (3.55)

where ¢ is a scalar and A a 2-dimensional solenoidal vector, i.e. 2divA = 0. Applying a
2-divergence on equation (3.55), we find

2divM, = 2A¢

On the other hand, equations (3.27) and (3.28) tell us that

¢ (T) =

2

! /d%’ln 17— 2| 2A¢ (7)
That way, we see
2grade (7) = %Qgrad/d%' In |f— f" 2divM, (f’)

Hence, equation (3.55) leads to

A=M, - %Qgrad/dzx/ In |7 — 7| *divM, (¥)

Similarly to the replacement (3.51), we apply

o o 1 o
M, (%) — M, (&) — %Qgrad / d*z' In |& — &) *divM, (&)
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Eventually, we bring this result in a form like equation (3.52). For that purpose, we use
definitions (3.54) and spherical coordinates. Moreover, equations (3.28) and (3.32) allow
us to reformulate the integral. Hence, we arrive at

Mr MT — alr v(r a7"
(26 Y = (25 Yimeromn (£

1 0 1 00 sal / T
| = Z —cos (10) / dr'r'w / do’ cos (16")
™= l 0 max! (r,7") Jo

1

——/ dr’r’ In max (’I“,’I“I)/ d9/> 2div M, (r',0)
0 0

™

We do not write the expression 2divM, (r',0") in spherical coordinates by using relation
(3.17), because numerical tests have shown that this leads to a weak convergence in the
iteration process. Instead, we express the divergence in terms of Cartesian coordinates:

M? = sin@M! + rcos O MY

e

M? = cosOM! — rsin MY

(&

M" M _2 5
,0 0 (a(r,0)+u(r,9))< - )
<M'9>(T) — <M9>(T,)+e %29
11 o0 .
(2> qeostin) [T ary B
g =1 ! 0 max (7”77")
—l/ dr’r’ In max (r,r’)/ dg’)
T Jo 0

: <sin oM, (r',0) + cos ' M7, (17,0)

/ : /
+(:0:/9 g/ﬂ/ (r’,@’) B sin @ ez/ﬂ/ (r’,H'))

741

3.7. Final gauge

3.7.1. Origin of the remaining gauge freedom

Let us consider Cartesian coordinates. Then, the d-dimensional (d € {2,3}) scalar and
vector Poisson equations have the simple form

d

d 9¢ = S
;:1
> it = 57
=1

with A = 1,...,d. Having solutions ¢ and ¢?, it is obvious that also ¢ 4+ const and
™ + const? are solutions, respectively. This gauge freedom is fixed in the 3-dimensional
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case by the requirement

lim ¢ (Z) = 0
r—00
lim ¢ (Z) = 0
rT—00

1
A |Z — 7|

However, in the 2-dimensional case the Green’s function is
R~ 1
G(m,x) = —ln{x— {

which is not bounded for |Z — #'| — oo. Therefore, in the 2-dimensional case, we always
have the gauge freedom to add an arbitrary constant to a solution of the scalar Pois-
son equation which obeys a von Neumann boundary condition. For the vector Poisson
equation, we have to care for the axisymmetry, which demands

lim ¢” (¥) =0

z—0

Thus, we are allowed to add an arbitrary constant only to the ¢*-component, where z is
the direction along the symmetry axis.

3.7.2. Final gauge fixing of M™

From equation (3.18), we know that the field M!" obeys a 2-dimensional vector Poisson
equation. Therefore, if M is a solution of equation (3.18), then also

M!* = M? + const

solves this equation, with an arbitrary constant consty;. Due to equation (3.54), this
result can be rewritten as

M'"" = M" + consty cosfe 2tV
sin 6
M = MO - const yy —— e 2(atV)
r

in spherical coordinates. Such a gauge transformation is allowed, because it does not
violate the slicing conditions (3.48) and (3.53). We choose the constant in such a manner
that

M. (r = rpm) =0

with the minimal radius 7, of the computational domain. This leads to
constyy = —MZ (r = Tmin)

such that

constys = —cos @M (7 = rmin) + T'min SiD HMS (r = Tmin)
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3.7.3. Final gauge fixing of «

Due to equation (3.23), the quantity a+v obeys a 2-dimensional scalar Poisson equation.
Moreover, at the end of Sect. 3.5.1.3, we have mentioned that the quantity o + v is
governed by a von Neumann boundary condition. Therefore, we have the gauge freedom
to add an arbitrary constant const, to every solution «, i.e.

/
o = « + const,,

As this gauge transformation does not violate the slicing conditions (3.48) and (3.53), we
can choose the constant in such a manner that

o (T = 7nmin) = B (T = Tmin)

(we have made this choice, because the TOV solutions considered further below meets
this condition). Then, we find

‘consta =7 (7’ = ’I“min) -« (7“ = Tmin) ‘

3.8. Fixed point iteration

In the preceding sections, we have shown how the Laplacian of each Poisson equation
of the nine fields (3.2) can be inverted with Green functions. Together with the three
analytic solutions mentioned in Sect. 3.1, we are thus equipped with the knowledge
to evaluate a new value for every single one of the twelve basic fields (3.1) if we have
old values for all twelve basic fields that do not necessarily represent a valid physical
solution. The remaining sections of the numerical part show how neutron star models
are computed with the already mentioned fixed point iteration method.

3.8.1. Initial configuration

The initial configuration of the fixed point iteration is constructed in the following man-
ner. We take a solution of the Tolman-Oppenheimer-Volkoff (TOV) equation. Such
solutions are spherically symmetric and do not contain any meridional fluid motion. Ap-
pendix [ explains how they can be computed for our choice of basic fields. There, we
also see that the solutions of the TOV-equation are uniquely specified by the polytropic
constant K, the polytropic exponent I' and the central pressure p..

In order to get solutions with a meridional fluid motion from the fixed point iteration,
we do not use the chosen TOV-solution as the initial configuration but a modified variant.
For that purpose, we set the basic field xo (which vanishes for the TOV solution) to

X0 (7“', 9/) = X0 sin [(1 + M,) 7“'71'] sin [(1 + My) 9/] (3.56)

in surface-adapted coordinates (1" = 1 at the surface of the neutron star, see Sect. 3.2.6),
with an arbitrary constant x{** and parameters M,, My € {0,1,...} (Fig. 3.3).

3.8.2. lteration

Let us consider the twelve basic fields (3.1) (geometry fields v, N, N, N¢ 3, M", M? and
matter fields o, €,p, x0,ls). We denote their initial values by vy, ...,14 0, while v, ..., 1y
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3.8. Fixed point iteration
M9

Figure 3.3.: Initial configuration of basic field xy. Each one of the nine panels shows
the distribution of o inside of the neutron star for one choice of the pair
(M,, My) according to equation (3.56). The top, left panel visualizes the
case (M,, My) = (0,0). Proceeding to the right increases the value of the
quantity My, and we have to go down to raise the value of M,. For each
panel, the maximal absolute field value is called max. The values max and
—max are represented by the brightest red and green colors, respectively.

>

represent the values of the twelve basic fields at the iteration step s = 1,2,.... Every
iteration works in the following manner:

We know the values v;_1, ..., s—1 and want to evaluate v, ..., [4 5. For that purpose, we
compute the eight geometry quantities v, ..., ag from the twelve quantities vg_1,...,15 s—1
by inverting the respective Laplacians. Then, we enforce the slicing conditions as ex-
plained in Sect. 3.6, and afterwards we apply the gauge condition of Sect. 3.7.

The next step is to compute the four matter quantities e, ..., [y s using the old values
€s—1, -, lp,s—1 and the newly computed v, ..., as. This method increases the speed of the
iteration process. For the total energy density e¢; and the pressure p,, we use equations
(2.86) and (2.73), respectively. The basic field xq s is computed by inverting its Laplacian.
However, the fixed point iteration has the tendency to gradually either decrease the field
values xo s until they vanish everywhere or to increase them indefinitely. We prevent
this by rescaling the stream function 1 = rsinfy( at every iteration step in such a way
that the maximum value of |1)| stays constant. Eventually, for the last field [, s, we use
equation (2.60).

3.8.3. Removal of lower modes

Let us consider the function f () of equation (2.71), which specifies how the matter in
the neutron star circulates. In this investigation, we consider only the case

f@) = ky" (3.57)
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with some constant k£ and
n=20,1

(n is no tensor index and thus n € {r,0} does not hold here) as done in Eriguchi et al.
(1986). For the choice
fW) =k

there are different meridional circulation modes v,, with m = 0,1,2,... (no tensor
index). However, although our solution method tends towards them during the fixed
point iteration, it eventually always converges to the fundamental mode 1y. Hence, in
order to obtain higher modes, we project the lower modes away. For that purpose, we
assume that we have already evaluated the first n — 1 modes, i.e. we know 1), for
m =0,1,...,n — 1. Then, the fixed point iteration spews out the n-th mode by replacing

n—1
m=1
at every iteration step, with adequately chosen coefficients ¢,,. If an orthogonality relation

/ dr / dfr? sin OW,, (7, 0) YW = O
0 0

exists, the coefficients ¢,, are given by

B fooo dr fow d6r? sin OW,,, (r, 0) Yipp,
cm = Jo© dr [5 dOr2 sin OW, (7, 0) Yymthy,

However, we neither know whether an orthogonality relation exists nor do we know the
weight functions W, (r,0). After some experimenting, we found that the choice

W (r,0) =e+p (3.59)

is sufficient to achieve a convergence to higher modes. This does not necessarily mean
that (3.59) is the correct weight function, but it must be very close to it.!

In addition to the replacement (3.58), we perform two additional steps. The pressure
distribution of the solutions investigated in this thesis is always equatorially symmetric.
However, in our treatment, equatorial symmetry is not obeyed exactly due to the lim-
ited numerical accuracy. Therefore, its asymmetry may increase during the fixed point
iteration, and eventually we obtain an undesired meridional circulation mode. In order
to avoid this, we symmetrize the pressure distribution at every iteration step. A similar
method is performed for the basic field xg, which is either equatorially symmetric or
equatorially antisymmetric, depending on the considered mode.

"Numerical tests have shown that the weight factor W, (r,0) = ev/h/ (r*sin @), with h = dethay, covers
a much wider range of rest mass densities properly than the choice Wy, (r,0) = ¢ + p. However, for
the densities considered in this thesis, the choice (3.59) has turned out to be sufficient, and therefore
all results of the thesis were computed with the weight factor (3.59).
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4. GRNS

The theory and numerics discussed in the previous chapters are implemented in a code,
called GRNS (=‘Generally Rotating Neutron Star’). We chose this name, because the
code generalizes the RNS code of N. Stergioulas from a mere azimuthal fluid motion to
a general one. The GRNS code is programmed in an object oriented manner in C++
under Linux, without parallelization. In this chapter, we will have a closer look at the
GRNS code. We will not explain details of the implementation but focus on how neutron
star models can be computed by using the OpenGL user interface of the GRNS code.
The source code is available from the author on request.

4.1. Neutron star parameters

To use the GRNS code, one has to first specify the parameters of the neutron star by
explicitly setting the parameters in the source code. For that purpose, the user has to edit
a file called ‘Control.h’; which is one of several header files in the GRNS code, containing
the most important control parameters. In order to specify a neutron star model, one
sets the following parameters:

CENTER._ P
POLYTROPE_ GAMMA
POLYTROPE_ K

F(PSI)

MAXIMUM_ PSI

The parameter CENTER,__P gives the central pressure p. of the neutron star, measured
in erg/cm®. The dimensionless parameter POLYTROPE__GAMMA is the polytropic ex-
ponent I'. The choice of this exponent determines the dimension of the parameter POLY-
TYROPE__K, which is the polytropic constant K and has the dimension (erg/ cm3) =
The macro F(PSI) specifies the function f (1) of equation (3.57). As the maximum ab-
solute value of the stream function 1. is kept fixed at the value MAXIMUM_ PSI in
erg/s during the iteration, it does not matter how the constant k is chosen in equation
(3.57). Therefore, we use either

F(PSI) = 1

or

F(PSI) = PSI

Having set all five neutron star parameters, the code must be recompiled.
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4. GRNS

4.2. Start screen

Running the GRNS-code executable, after a short initialization phase, the start screen
appears and the fixed point iteration is launched to compute the fundamental meridional
circulation mode. As soon as this mode is calculated at sufficiently high accuracy, the
iteration stops automatically. Then, the start screen looks as shown in Fig. 4.1.

Press S (=shift + s) to look at the interior mechanisms of the neutron star --->

Press M (=shift + m) to proceed to the next meridional rotation mode

Figure 4.1.: Start screen of GRNS. The (3-dimensional) translucent sphere in the
start screen represents the neutron star, and the white curves indicate the
motion of the fluid inside the star. The start screen is not a still picture but
visualized in OpenGL. Therefore, the white curves are permanently moving
when watched by the user. The background of the start screen is a picture
from Hubble (Hubble).

Moving the mouse while the left or right mouse buttons are pressed, the neutron star can
be shifted around in the OpenGL window. Using instead the middle mouse button, the
neutron star can be rotated. At the bottom right corner of the start screen, four ‘keys’ S,
P, M and I are displayed. Besides the Escape key to leave the program, these four keys
allow the user to interact with GRNS. The key P can be used to disable and enable the
visualization of the white curves shown in Fig. 4.1. As soon as the key M is pressed, the
next higher meridional circulation mode is computed. For that purpose, an appropriate
initial configuration is loaded and afterwards the fixed point iteration is started. The
fixed point iteration is shown in real-time. This means that the start screen is updated
after every iteration step. The iteration can be stopped and restarted by pressing the key
I. As soon as the respective higher meridional circulation mode is obtained, the iteration
stops automatically. The result in shown in Fig. 4.2.
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4.3. Overview screen

Figure 4.2.: First higher meridional circulation mode. Pressing the key M in Fig.
4.1 and waiting until the fixed point iteration stops automatically, leads to
the first higher meridional circulation mode. The fluid moves from the poles
to the center and then along the equator to the surface to get back to the
poles.

Pressing again the key M, we get to the next highest mode, and so on. However, we have
to wait always until the iteration stops automatically before pressing the key M, because
otherwise the higher modes are not computed accurately enough. So, the start screen
can be used to compute all meridional circulation modes.

4.3. Overview screen

Pressing the key S leads us to the overview screen, which shows many more details than
the start screen (Fig. 4.3). Similarly to the start screen, the overview screen is an
OpenGL window and displayed in real-time. That way, it is possible to trace the changes
caused by the fixed point iteration for each physical field used by the GRNS code. The
advantage of this approach is that it simplifies debugging. In addition to that, it is
immediately visible if the fixed point iteration does not converge. This was very helpful
in finding the appropriate Poisson equation for the 2-shift M™ (see Sect. 3.2.4).

Let us have a closer look at the bottom left corner of the overview screen (see Fig.
4.3). All quantities of the GRNS code are represented in dimensionless units. Setting the
stream function ¢ to unity, the quantity f (1) of the overview screen gives the value of
the function f (v) of equation (3.57) in the internal dimensionless units. If the value f (1)
displayed in the overview screen converges to a finite, non-zero value during the fixed
point iteration, the GRNS code was able to find the appropriate value of the constant k
of equation (3.57) automatically (solutions with f (1) = 0 are pathological ones).

The bottom left corner also shows a measure of convergence, defined in the following
manner. Let us consider an arbitrary scalar field F' (r,0) whose value at the grid point
(ri,0;) is called F§; j at the iteration step s = 1,2, .... Then, the convergence indicator
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Cs shown in the GRNS code at the iteration step s is defined as

Zimax jmax |F L F . |
=% i =y 8,1,7 s—1,4,7
C — 100 1 7/11’111’1' J jmln} (s
$ Zlmax Jmax |F . |
1=%min J=Jmin Ly

So, when the scalar field does not change anymore, the convergence indicator becomes
Cs = 0. The value displayed at the bottom left corner of the overview screen (Fig. 4.3) is
the maximum of the convergence indicator Cy of all twelve basic fields (3.1). That way,
the displayed value is most sensitive to the basic field which converges least.

(4.1)

4.4. Field screen

The disadvantage of the overview screen is that the field panels are very small. This
problem is solved by pressing the key A, which magnifies the currently selected field in
the field screen. When the GRNS code is started, the field v is selected by default. Fig.
4.4 shows this scalar field magnified in the field screen. Pressing the page up and page
down keys, the user can change the currently selected field. Fig. 4.5 displays the 3-shift
N® in the field screen.

4.5. Additional features

Several additional features are implemented in the user interface of the GRNS code.
Pressing the key F5 automatically makes a screenshot. The key F6 can be used to start
and stop capturing the visualized OpenGL frames, which are converted into a movie
when the GRNS code is left by the user. In addition to that, it is possible to display the
numerical grid and also the ghost zone. It was very helpful during the debugging phase
to see the field values in the ghost zone in real-time.
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Frame 24 Field name Escape - exit

Ti 2.74 Maxi field vector length:
ime aximum field vector lengths F1 toggle this interface help

FPS 876 Fz hide physics help
F3 hide interface info
Fa hide phyics info

Z

F5 make screenshot
F6 start making movie

.;"w . o .‘... v toggle visualization

Mouse - move observer
[ reset observer

- 90000
.......... a hide axes
9000 - 0000000006
0000 ®: 0060606
S ES
0000000 - 000000
e B . 8 d v
. e X
ey o A
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00660660 0000000
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e 000 (0000000000 i
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erton e 1.4 00000000000000060 show neuonsor
Slicing N*a 52.916 ...... magnify selected field
9 i disable vectors

f(1 4.638e-92
& © add ghost zone

hide field texts
deactivate normalization
hide left field half

Radial mode 1
Angular mode 1

Convergence  99.729 Neutron star parameters
next mode

p_central 1e+33
psi_max Te+54

-z rzZAN <> 0

stop iterating

Figure 4.3.: Overview screen of GRNS. The overview screen shows all physical fields
used in the GRNS code simultaneously. Due to the limited space, the fields are visualized
in a very low resolution as the tiny objects in the middle of the screen. The top row
shows the basic fields (3.1), the first being the scalar field v. Scalar fields or components
of quantities with more than one index are drawn as discs, whose color coding is the same
one as in Fig. 3.3. The next three columns in the top row (between the field v and the first
green disc appearing in that row) contain the components of the 3-lapse N*. However,
even though it is possible to visualize them as three separate scalar fields by pressing the
key V, the above frame shows N in the vector visualization mode (barely visible and
causing white gaps). In that mode, the three components of N are visualized as vectors.
Below the basic fields, 227 ancillary fields are displayed, which can be discerned by the
blue text shown above the fields (barely visable). The blue text at the top of the screen
gives the field name and the length of the longest field vector (scalars are considered as
1-vectors). The top left corner shows the current OpenGL frame, the user time and the
visualization speed (frames per second). Similar to the start screen and all other OpenGL
screens, the overview screen is interactive and changes during the fixed point iteration
in real-time. The panels at the right show possible ways to interact with the overview
screen (not explained in detail here). The blue box at the bottom of the screen displays
the neutron star parameters (including the function L (¢) of equation (2.60), which is
set equal to zero in all models investigated in this thesis). The remaining numbers in the
lower left part of the frame give information about the status of the fixed point iteration
and the currently selected field. In the above example, the basic field v is selected and
therefore the disc belonging to it is somewhat larger than all other ones. Eventually, the
small plots on the left display angularly averaged radial profiles and the deformation of
the stellar surface.
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4. GRNS

Figure 4.4.: Field screen of GRNS with scalar field. The plot shows the scalar

field v in the field screen of the GRNS code for the fundamental meridional
circulation mode. The color encoding is the same one as in Fig. 3.3.

/"' v g w
'i"'\i wmmx

Figure 4.5.: Field screen of GRNS with 3-vector field. The plot shows the 3-shift
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N in the field screen of the GRNS code for the fundamental meridional
circulation mode. The vectors are represented by the short lines, which are
darkest at the head of the vectors. A strongly reduced resolution is used in
the above plot to increase the visibility of the individual vectors.



5. Tests

We use the four parameters

RESOLUTION
POLYNOMIALS
CENTIMETER
GRID_RADIUS

in the file ‘Control.h’ to perform convergence and consistency tests. The following sections
explain each parameter and give the result of the corresponding test. Each such test is
based on the following settings:

_ 33 Crg
pc = 10 E
I = 3
pe = 2-10% -5
cim
f@) = 9
Ymax = 1074025 (5.1)

S

These are the parameters discussed in Sect. 4.1, where the polytropic constant K is
set by the central rest mass density p., which obeys p. = Kp. due to equation (2.85).
As already mentioned in the caption of Fig. 4.3, we choose L (¢)) = 0 such that the
Lagrangian angular momentum component 4 vanishes according to equation (2.60). We
will explain this choice in more detail in Chapter 6.

5.1. Resolution

The resolution of the numerical grid is set by the two parameters RS and THETAS in
the file ‘Control.h’, which give the number of radial and angular grid lines, respectively.
In principle, both quantities can take any value above unity. However, there are certain
constraints (explained in ‘Control.h’) which have to be obeyed to make the OpenGL
visualization work properly. In this investigation, we consider three different resolutions,
which can be selected by setting the parameter RESOLUTION to one of the values
shown in Tab. 5.1. By default, the low resolution 0 is selected in the GRNS code. The
advantage of this choice is that the OpenGL visualization operates fluently on a typical
desktop machine. For the results shown in the Chapter 6, we use the medium resolution
1. The high resolution 2 is used only to test the convergence of the GRNS code as shown
in Fig. 5.1.

In that figure, we see that for the fundamental mode the GRNS code converges for all
three resolutions of Tab. 5.1, i.e. the convergence indicator Cs approaches zero during
the fixed point iteration. For higher modes, the convergence indicator drops initially,
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RESOLUTION | RS | THETAS
0 59 52
1 150 156
2 501 507

Table 5.1.: Standard grid resolutions. The GRNS code possesses three standard res-
olutions for the numerical grid, discerned by the parameter RESOLUTION.
For each resolution, the table shows the number of radial and angular grid
lines, given by the two parameters RS and THETAS.
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0.1 AN SN

Convergence indicator C

x
7

0.01k

| | | | | | | | | | | | |
0.001 10 20 30

Iteration step s

Figure 5.1.: Resolution-dependent convergence behavior. The figure shows the
dependence of the convergence indicator Cs defined in equation (4.1) on
the number of the iteration step s. The three solid lines refer to the three
resolutions of Tab. 5.1, the thickness decreasing with the resolution (highest
resolution corresponding to thinnest line). The corresponding blue, dashed
lines refer to the first higher mode, respectively.

but then starts to fluctuate never reaching the value zero. Improving the weight given in
equation (3.59) might improve this behavior.

5.2. Polynomials

In Chapter 3, we several times encountered sums like

(e}

S

I=...
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5.3. Centimeter

The parameter POLYNOMIALS in the file ‘Control.h’ specifies how many terms of such
sums are actually computed, i.e. we replace

o) POLYNOMIALS

PO DY

l=...

in the GRNS code. Fig. 5.2 shows the result of convergence tests for the three values
POLYNOMIALS = 3,10,50. The default value is

POLYNOMIALS = 10

which is also used for the results of Chapter 6. The convergence behavior visible in Fig.
5.2 is similar to that encountered in Fig. 5.1. The higher modes drop again initially, but
eventually begin to fluctuate. The drop is weakest for POLYNOMIALS = 3, because in
that case the number of terms taken into account in the sums is at the verge of being
sufficient to produce reasonable results.
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Iteration step s

Figure 5.2.: Polynomials-dependent convergence behavior. The figure shows the
dependence of the convergence indicator Cs defined in equation (4.1) on the
number of the iteration step s. The three solid lines refer to the values
POLYNOMIALS = 3,10, 50, where the thickness decreases with the number
chosen for that parameter (highest parameter value corresponding to thinnest
line). The corresponding blue, dashed lines refer to the first higher mode,
respectively.

5.3. Centimeter

As mentioned in equation (2.1), we use geometrized units such that

c=1
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to express seconds in terms of centimeters and
G=1

to do the same for grams. That way, it is possible to write all mathematical quantities
used in this investigation in terms of centimeters. However, in a numerical implementa-
tion, abstract objects like centimeters cannot be used directly. Instead, we have to map
them to numbers. For that purpose, we set

lem = CENTIMETER
where the parameter CENTIMETER is a numerical value. The default choice is
CENTIMETER =1

To check the consistency of the GRNS code, we have investigated the choices CENTI-
METER = 10~!° and CENTIMETER = 10'° without having encountered any problems.

5.4. Grid radius

The last test concerns the parameter GRID_RADIUS, which gives the radial size of the
numerical grid in terms of centimeters. The default value is

GRID RADIUS = 10°

which corresponds to a radius of 10 kilometers. We have considered the value GRID__RA-
DIUS = 6 - 10°, for which the default neutron star of the GRNS code is still fully inside
the numerical grid. And, also the value GRID_RADIUS = 2 - 10° was investigated. In
that case the neutron star is small compared to the numerical grid such that effectively
the grid resolution is small. This has reduced the quality of the convergence behavior
somewhat. However, for all checked values of GRID__RADIUS we have not encountered
any severe problems.
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6. Results

6.1. Assumptions

To close this investigation, we use the GRNS code to actually compute neutron star mod-
els. For that purpose, we consider the settings (5.1) and choose the medium resolution
of Tab. 5.1:

RESOLUTION =1

In addition to that, we limit ourselves to

L()=0 (6.1)

(see equation (2.60)) in all computations below such that the Lagrangian angular mo-
mentum [, vanishes. Consequently, there will be no azimuthal fluid motion but only a
meridional one. We have analyzed other cases than (6.1), too. However, we have not
found solutions except for L (1) = const. In those cases, the modulus of the azimuthal
fluid velocity rises strongly when approaching the symmetry axis. Moreover, this kind of
fluid motion has shown a tendency to increase with increasing resolution. Therefore, we
are unable to determine whether the solutions found for L (1)) = const are truly physical
ones. Hence, we restrict ourselves to the case (6.1).

This does not imply that the GRNS code is limited to a purely meridional fluid motion.
In principle, it can deal with a mixture of stationary meridional and azimuthal flow.
However, in case of objects with spherical topology, nature allows only either a purely
azimuthal fluid motion, as already investigated by N. Stergioulas in his RNS code, or
only meridional circulation. Possible ways to achieve a mixture of both flows requires a
different topology, namely a toroidal one, or the inclusion of the electromagnetic field. A
first step towards the latter direction is discussed in Appendix J. However, any further
investigation in this direction would go beyond the scope of this thesis.

6.2. Case f(¢v) =

6.2.1. Fundamental mode

Having no azimuthal fluid motion, we will present a meridional circulation mode
analysis as performed in Eriguchi et al. (1986), working in the following manner: We
choose

fW)=v
and compute the fundamental meridional circulation mode. For that purpose, we start
the GRNS code with the initial configuration (M,, My) = (0,0) (see equation (3.56)
and the top, left panel of Fig. 3.3) and let it perform 40 fixed point iterations. We
use this number of iterations for the higher modes, too. The basic fields describing the
fundamental mode are shown in Figs. 6.1, 6.2 (left panel) and 6.3 (upper, left panel).
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We do not display the 2-shift M™, because it turns out to be zero everywhere. This is
the case for all models computed in this investigation. Moreover, the relative difference
between the basic geometry fields o and 3 is smaller than 1075, again for all modes.
Therefore, we plot only one of the two fields in Fig. 6.1, namely the field a.

Let us have a closer look at Fig. 6.1. The radial size of the numerical grid is 10
kilometers. In that entire region, the basic geometry field v is negative and the field
« positive. Both fields do not vanish on the boundary of the numerical grid, because
this happens infinitely far away from the neutron star. Moreover, despite the radial
coordinate size being exactly 10 kilometers, the curvature of space has the consequence

that the radial physical size
Tmax
rp (0) :/ ey
0

of the numerical grid is about 10.1 kilometers. The neutron star itself has only a radius
of about 5.7 kilometers, as shown by the lower two panels of Fig. 6.1. These two panels
show the total energy density € and the pressure p. Both fields drop to zero at the surface
of the neutron star, which is the outermost contour in the two panels. Even though the
surface appears to be spherical, the upper panel of Fig. 6.8 shows that the neutron star
is somewhat prolate (fraction between polar and equatorial radial coordinate of surface
is &~ 1.004).

The four panels of Fig. 6.1 are nearly identical to the TOV-solution used to start the
fixed point iteration (not plotted). Therefore, we continue with the left panel of Fig. 6.2,
which shows the 3-shift N*. In contrast to the TOV-solution, where the 3-shift vector
vanishes, there is a significant dragging of spacetime for the fundamental meridional
circulation mode. The 3-shift vector N¢ is longest at the center of the neutron star and
drops to zero at an infinite distance. Moreover, we realize that the vectors in the left
panel of Fig. 6.2 roughly follow the contours of the upper, left panel of Fig. 6.3, which
shows the basic field yg. The field yo specifies the fluid motion. The fluid moves along
the contours of the field x( in a counter-clockwise manner, similar to the 3-shift N¢.

Our fundamental meridional circulation mode is similar to that shown in Fig. 1b of
Eriguchi et al. (1986). However, it is important to be aware that the upper, left panel of
Fig. 6.3 shows the basic field xg, whereas Eriguchi et al. (1986) plot the stream function
1 = rsin fxo.

6.2.2. Higher modes

Having found the fundamental meridional circulation mode, we are now able to compute
the higher modes successively. For that purpose we increase the value of My one by one,
i.e. we consider M, = 0 and My = {1,2,...}. The initial configurations resulting from
equation (3.56) are used to compute the higher modes, respectively. For each mode,
the already computed modes provide the quantities v,,, applied in equation (3.58) to
project lower modes away. The computed modes are shown in Figs. 6.3, 6.4, 6.5 and
6.0, respectively. Each of these modes can be compared to a certain value of the pair
(M,, My) by counting the number of vortices. So, we obtain modes, which belong to
M, > 0 even though we have chosen M, = 0 for all initial configurations. In addition to
that, we do not obtain the modes in an ordered manner but somewhat randomly. Both
effects are a result of the nonlinearity of the field equations. We could also choose, e.g.,
My = 0 for all initial configurations and select M, = {1,2,...}. That way, we would get
the same meridional circulation modes, but in a different order. In addition to that, it
was necessary to modify some of the modes to compare them with Fig. 3.3 by inverting
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6.3. Case f(¢) =1

the sign of the fields yp and N®.

Let us have a closer look at Figs. 6.3, 6.4, 6.5 and 6.6, respectively. The upper and
lower right panels of Fig. 6.3 are similar to Figs. 1d and le of Eriguchi et al. (1986). In
a likewise manner, we compare the upper, left panel of Fig. 6.5 with Fig. 1c of Eriguchi
et al. (1986). So, we are able to qualitatively reproduce the results of Eriguchi et al.
(1986). We have not only computed the four modes of Eriguchi et al. (1986) but in total
twelve meridional circulation modes.

For the mode shown in the upper, left panel of Fig. 6.5, the right panel of Fig. 6.2
shows the corresponding 3-shift N*. Obviously, the 3-shift is strongly influenced by the
shape of the contours of the field xo. This behavior is valid for all modes. Eventually, we
return to Fig. 6.8. There, the lower panel shows the neutron star surface, which contains
an additional kink in the equatorial plane compared to the fundamental mode (upper
panel). This kink is a result of the inner green vortex of the upper, left panel of Fig. 6.5.
This behavior continues on to the other modes, where several kinks can appear on the
neutron star surface.

6.3. Case f(¢) =1

Eventually, we investigate the case
fW)=1 (6.2)

for equation (3.57). The resulting basic geometry field x¢ is shown in Fig. 6.7, which
has a shape similar to Fig. la of Eriguchi et al. (1986). There appears to be only one
single mode for (6.2), because the GRNS code fails to compute higher modes. All in
all, we have been able to qualitatively reproduce the results of Eriguchi et al. (1986) for
spherical topology.
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Basic fields of the fundamental meridional circulation mode. The
upper two panels show the basic geometry fields v and « of the fundamental
meridional circulation mode, and the lower two ones are the corresponding
total energy density € and the pressure p. The color coding is similar to the
one used in the GRNS code as shown in Fig. 3.3, except that black has been
replaced by white. The contours are spaced equidistantly, the distance being
a fifth of the maximal absolute field value maxz, which is shown at the top
of each plot (in blue).
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(=upper two panels of Fig. 6.3). The 3-shift component N? is zero, and
therefore the displayed vectors lie entirely in the meridional (z,z)-plane.
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Figure 6.3.:
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Basic field x( for different meridional circulation modes belonging
to M, = 0. The four panels show the basic field x¢ for the first four merid-
ional circulation modes belonging to the initial configurations M, = 0 and
My = {0,1,2,3} as given in equation (3.56). The color coding is the same
one as in Fig. 6.1. The outermost contour corresponds to the neutron star
surface. In the lower two panels, this contour exhibits some kinks which are
a result of the finite grid resolution. The upper two panels correspond to the
two panels shown in Fig. 6.2.



6.3. Case f(¢) =1
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Figure 6.4.: Basic field yg for different meridional circulation modes belonging
to M, = 0. Continuation of Fig. 6.3 for My = {4,5}.
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Figure 6.5.: Basic field x( for different meridional circulation modes belonging
to M, = 1. The panels show the four meridional circulation modes for which
M, =1 and My = {0,1,2,3}. The color coding is the same one as in Fig.
6.3.
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Figure 6.6.: Basic field y( for different meridional circulation modes belonging
to M, = 2. The panels show the two meridional circulation modes for which
M, =2 and My = {0,1}. The color coding is the same one as in Fig. 6.3.
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Figure 6.8.: Surface radius. The two plots show the surface radius R () for the fun-
damental meridional circulation mode (M,, My) = (0,0) (upper, left plot of
Fig. 6.3) and the mode (M,, My) = (1,1) (upper, right plot of Fig. 6.5).
The surface deformations in the lower plot are responsible for the two dents
visable in the outermost contour of the upper, right plot of Fig. 6.5.
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7. Conclusions

We have computed the first stationary, axisymmetric neutron star models with meridional
circulation in the framework of general relativity. For that purpose, we have constructed
the GRNS code, a new code, which uses a fixed point iteration method starting from a
Tolman-Oppenheimer-Volkoff-like initial configuration, similarly to the RNS code of N.
Stergioulas.

We took the method of Komatsu et al. (1989), used in the RNS code and applicable
only to purely azimuthal fluid motions, and generalized it to include also meridional
ones, based on the theoretical considerations of Gourgoulhon & Bonazzola (1993). This
was possible, because we were able to rewrite the metric equations of Gourgoulhon &
Bonazzola (1993) as Poisson equations in flat space, and we found Green functions for
each of these equations. In contrast to the RNS code, we had to explicitly take slicing
conditions into account, and we had to perform additional gauge fixing conditions not
investigated in Gourgoulhon & Bonazzola (1993). For the matter equations, we extended
the Newtonian stream function method of Eriguchi et al. (1986) to general relativity.
However, we did not adopt the Newton-Raphson iteration scheme used by these authors
but extended the fixed point iteration method to hydrodynamics. The RNS code allowing
only a command line interaction, we created an OpenGL user interface for the GRNS
code. This interface allows the user to directly control the fixed point iteration method
and to oversee the status of all physical fields in real-time. This approach was not only
helpful in the debugging phase, it also helped to solve several issues which prevented
convergence of the fixed point iteration at first stage.

As the RNS code is restricted to azimuthal fluid motions, our initial goal was to use
the GRNS code to compute neutron star models with a mixture of both azimuthal and
meridional fluid motions. However, we were unable to find valid such solutions, not
even some which obey the angular momentum conditions studied by Randers (1941)
and Roxburgh (1974). Therefore, we focused on an investigation of purely meridional
circulation modes as done in the Newtonian case by Eriguchi et al. (1986). Due to the
chosen fixed point iteration method, we were able to compute these modes in a very
automatized manner, not requiring manual parameter adjustments as done by Eriguchi
et al. (1986). However, to find higher modes during the fixed point iteration, we had to
develop a method to project lower modes away.

To validate the GRNS code, we performed several convergence and consistency tests.
We investigated different resolutions of the used numerical grid and found a sufficient
convergence behavior for all modes. For the higher modes, the fixed point iteration ends
in a fluctuating state rather early. Such situations are also known from the RNS code and
not problematic. In our case, the reason for the fluctuations is possibly an inaccuracy of
the method to project lower modes away. Similarly to the RNS code, we have rewritten
integrals used for the Green function method as sums containing Legendre polynomials.
We conducted convergence tests for different numbers of such polynomials taken into
account in the GRNS code.

Eventually, we used the GRNS code to perform a meridional circulation mode analysis
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7. Conclusions

similar to Eriguchi et al. (1986). We found the same qualitative behavior as these authors
in the case of spherical topology. However, we were not able to perform a quantitative
comparison, because of the rather low numerical resolution used by Eriguchi et al. (1986).
Our automatized mode computation allowed us to find a dozen of modes with a sufficient
convergence behavior, being decisively more than those found by Eriguchi et al. (1986).
That way, we were able to identify a two-dimensional classification of the meridional
circulation modes, different from the one found by Eriguchi et al. (1986).

There are clear perspectives for a future application of the outcomes of this investiga-
tion. Perturbing the obtained modes, a dynamical evolution of the neutron star can show
the influence of meridional circulations on gravitational waves, for which a direct detec-
tion is expected in the near future and which are thus a topic currently of widespread
interest in relativistic astrophysics. Another application is investigating the influence of
meridional circulations on neutron star oscillations, which can be observed in the elec-
tromagnetic spectrum. Both methods offer a way to experimentally determine whether
meridional circulations are present in neutron stars. At the current stage we are not able
to eventually determine how widespread such circulations are in nature, because in our
approach we were unable to evaluate stability criteria of the circulation modes.

At the moment, the GRNS code supports only polytropic equations of state. An
extension to barotropes is straightforward and requires only a more general specification
of the total energy density function in the code. However, a generalization to baroclinic
equations of state is not that easy and would require a completely different approach. This
is not even investigated in the Newtonian case, where Eriguchi et al. (1986) have thought
in that direction but never succeeded. Due to having generalized the stream function
method of Eriguchi et al. (1986) and not having applied the approach of Komatsu et al.
(1989) for the hydrodynamical part of the field equations, the GRNS code is not able
to reproduce the models of the RNS code. In principle, it is possible to extend the
GRNS code to these models even with the stream function method. For that purpose,
a constraint on the Lagrangian angular momentum has to be solved. We have not
proceeded in that direction, because this case has already been investigated extensively
with the RNS code.

In the near future, several other ways to go beyond the scope of this investigation
will be important. Originally intended only for spherical topologies, N. Stergioulas has
extended the RNS code to toroidal ones, which are also investigated by Eriguchi et al.
(1986) in their meridional circulation mode analysis. A similar generalization for the
GRNS code will overcome the angular momentum issue found by Randers (1941) and
Roxburgh (1974) and might thus allow for a mixture of azimuthal and meridional fluid
motions. Another step in that direction is the inclusion of a magnetic field. We have
already made a few thoughts in that direction and our theoretical calculations done in
that context show the principle way to go. We have found that the field equation for
the Lagrangian angular momentum is strongly affected by the magnetic field. Hence, it
could be possible that magnetic fields allow a mixture of both fluid motion types even
for spherical topologies.
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A. Christoffel symbols of the first kind

A.1. 2-surfaces >,
The Christoffel symbols of the first kind on the 2-surfaces ;4 of constant time ¢ and
constant angle ¢ are given by equation (2.31) as

2 1

ano — 5 (ankmo + aoknm - amk:no)

with the 2-metric ky,,. Due to the symmetry 2T'yuno = 2Iinon, the only relevant compo-
nents are

Ty = 5 Ok + ke — k)
g = 5 Orkeo + 0ober — ko)
Lrgp = % (Ookro + Ookgr — Orkoo)
Lopr = % (Orker + Orkro — Opkyr)
Lorg = % (Orkoo + Ookiro — Opkiro)
Togg = % (Tokoo + Opkoo — Ogkap)

Using the choice (2.19) for the meridional coordinates, they simplify to

QFT‘T‘T‘ = %ar Fp
2 Frr@ = % 69 krr
Tog = 120,keo
Togp = 20pkeo
Trog = —Torg
2F9TT‘ = _2Frr9
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A. Christoffel symbols of the first kind

A.2. 3-surfaces Y,

The Christoffel symbols of the first kind on the 3-surfaces >; of constant time ¢ are

defined by equation (2.30) as

3
Fabc =

N |

(8bhac + 8chba - 8ahbc)

with the 3-metric h,p. These Christoffel symbols do not only have the symmetry 3T, =
3T 4ep, they also obey 3T nno = 2Iino. Therefore, we have to consider only the components

3T 500
°T400

3
Ly

(Orhrg + Ophyr — Orhyg)
(Oghrg + Ophor — Orhog)
(Ophrp + Ophgr — Orhgg)
(Orhog + Ophrg — Oghrg)
(Ophgg + Ophog — Oohoe)
(Ophos + Dphep — Dohgs)
(Orhgr + Orhyg — Oghiy)
(Orhgo + Oghry — Ophyg)
(Orhgg + Ophrg — Dphrg)
(Opheo + Oohoy — Ophop)

(Oohep + Ophoy — Ophos)

NP RN RN RN RN RN RN RN RN RN RN -

(Ophgs + Ophgg — Ophgg)

Considering axisymmetry, we can simplify them to
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1
2
1
2

(Ophrg — Orhog)
(Ophrg + Orhog)
~50rhgg
—506hge
Orhrg

A.2. 3-surfaces Y
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B. Derivation of correct 3-lapse equation

In our thesis, we have to use equation (B3) of Gourgoulhon & Bonazzola (1993) to
compute the 3-lapse N. Unfortunately, there is a mistake in that equation. Therefore,
we will rederive it, here. For that purpose, we will frequently refer to the equations
in Gourgoulhon & Bonazzola (1993). Such references are denoted by (GB...), i.e., for
example, equation (B3) of Gourgoulhon & Bonazzola (1993) will be referenced merely
as (GBB3). In addition to that, we recall our index convention «, 3, ...,w € {t,r,0, ¢},
a,b, ...l € {r,0,¢} and m,n,...,q € {r,0}, which differs from the one of Gourgoulhon
& Bonazzola (1993), slightly. Note that this Appendix is a self-contained part, i.e., we
do not refer to quantities defined in the rest of this thesis, because then the reader only
requires the paper of Gourgoulhon & Bonazzola (1993) to reproduce the computations.

We start with equation (GB2a)

v=InN
which leads to 1
NN’m = I/7m (Bl)
Hence,
! N ! N B
N mn - N ( va),n = van + vayvn ( 2)
Likewise, equation (GBB2e)
w=InM
results in )
Next, equation (GB3.7) tells us that the 2-metric is
1 0
Kmn = A? ( 0 72 ) (B4)
such that
1 1 0
mn _
o 110 a5

In the following computation, the above relations are used. This computation takes place
on the hypersurfaces >; of constant time ¢. Therefore, we use only spatial indices a, b, ...,
and the 3-metric hy, has to be used for raising and lowering tensor indices. In addition
to that, we are aware that this metric commutes with the 3-covariant derivative |" as
defined in (GB2.5). Then, we obtain

1 1
NNlaa = NhabNMb
1
— < (N,)
N< @)
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B. Derivation of correct 3-lapse equation

axisymmetry

(GB2.20), (B.2)

(B.5), axisymmetry
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N
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N
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E™0 o 4+ (™ +m ™ m") v v + mm 0

1

+V7mhabhcm <§hab,c - hac,b)

(A" Ny = BTN 1)

i (vt 220) |+ 0
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Vor +2m"'m’v 9 + (m > V.06
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The first three lines after the last equality sign appear on the left hand side of equation

(GBB3), too.

rewritten to

Therefore, we focus on the last two lines, where the first one can be

1
Vom <§habhmnhab7n _ pam hbnhab,n)

1 1
_ Vi <§hophmnhop’n + h03 [ ho3,n + §h33 pmn h33,n

— homppn hop,n _ pom h3n ho3,n _ h3m hon h30,n _ h3m h3n h33,n)

(GB2.20),
(GB2.25),
(GB2.24)

= 1% m

)

2
1

2M?

+

1 O o mn m n
[—(kp—i-m mP) (™" +m™m™) kop n —

(k,mn +mmmn) (MQ +MOMO)

mO

,n

— (K" 4+ m°m™) (K" + mPm") kop p,

_"_ (kom _"_ momm)
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B. Derivation of correct 3-lapse equation

M

GB2.:
( B:2 24) kmny,mﬂ,n + mnmr,ny’r + man,ny,e
1
+Vm <§k:°pk:m”k0pm — kamkp"kopm)
M 1 1
+m"v [( M > - M" <M> * §k0pmn (k?()p,n + Enop — kno,p)]
n n
GB2.24), (B.5 1
( :) (B.5) ﬁ (,U'r ; + > (mrmrﬂd + memr,(’) v,

1
+ <mrm07r +m mG 9) v + Vi <§k0pkmn _ komkpn> kop,n

™y (Mn 4 p ) (B.7)
)1 M M pno .

Here, the first three terms in round brackets can be found on the left hand side of equation
(GBB3). The term in the subsequent round bracket simplifies to

1
m <_kopkmn _ komkpn> kop "
2 k)

(B.4), (B.5) L mn rmiyrn 2 1 mn __ 1.0m.6n 242

= Vm <2A2k — K"k )(A ),n""/nn [2(7&4)21{ Kk (7“14)771
(B.5) mn 1

= pk (4%), Vo g (4%),

mn 1
+V’mﬁk (7"2)’71 — Ve (’I“A)4 (T2A2),0
1 . mn

= 2 2k (T2),n

— V7T

B rA?

In addition to that, the last line in equation (B.7) can be rewritten to

M, M
m"v o, < 4 k°P —I’pno>

M M
(GB2.24), (B.1) M™ 1
= 7 Nam M (kOM” k“ﬁMvraﬁ,y)
(GB2.22), stationarity,axisymmetry ~ M 5 ¢
- nare Mkv <MV +I5M )
MCV
= kPN. k5 M7
NM P
(GB2.21) M 1.3
= oz Ve M s
(GB2.36), stationarity,axisymmetry Mm
= —L—=r Njm
NM
(GB3.10) L_2
N 2
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Hence, equation (B.7) becomes
1 abpmn amybn
Vo §h R happ, — KB by p,

1 1 .oV o
- () e
L2

+ <mrmr,r + memrﬂ) vy + (m”mem + memeﬂ) Vo=~

We insert this result in equation (B.6) and arrive at
1
R

1 1 v v 1
i o G R R P L

2 2
+ (m€> ] (1/,9)2 + (mr)2 Vor + QmeGV,Tg + (m€> V.06

L2

" [(ril)Q

+ <mrmr,,, + memr’9> vy + (m”mem + memg’g) veg— — + 2mrm€1/,,~1/79

2
Making use of equation (GB3.11)

Nl — N [477 (E + 59) + KabK“b]

we finally obtain equation (C.1), listed in Appendix C. Comparing equation (C.1) with
(GBB3), we realize that the term 2m"m%v v is missing on the left hand side of equation

(GBB3).

There are mistakes in the equations (GBB4a) and (GBB4b), too. However, we do not
prove this here, because just like Gourgoulhon & Bonazzola (1993) we used a Mathe-
matica program. The correct versions of equations (GBB4a) and (GBB4b) are given in

Appendix C, again.
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C. Geometry equations

In the following, we list the corrected equations (B3-B7) of Gourgoulhon & Bonazzola
(1993). These equations are required to compute the metric gog.

C.1. Equation for v

The equation for the geometry field v = In N is given by equation (B3) in the paper of
Gourgoulhon & Bonazzola (1993). The correct version of this equation is

1 1 Voo MoV 1 2 2
i [rrt (G ) v+ 22 B2 | 2] )

1 2 2
! [mp ()| wal? 2 2 4 (1) v
+ <mrmr,r + mem”79> Vg + (mrmem + meme,(;) vo+2m'mly v,
L2
= 4n (B4 S%) + KoK + - (C.1)

C.2. Equations for N*

There are three equations for the three components of the 3-shift N®. The first of these
equations is

[% ' (mrﬂ {N - (% * ’“‘ﬂ") N = [% + (u,r)Q] NT}
+ [ﬁ + (meﬂ N gg + [ﬁ _ (meﬂ o, _% [% . (mr)ﬂ 0,

1 M 1
_ { |:_ _ (mr)2:| ,r0 + [ﬁ + (mr)2:| M,TM,@} NG + ermGNrme

A2 M
o {2 [ﬁ - (mrﬂ ap+m'm’ (2 — pg) +m"— = +m’—
L % 0 1 mrM’,’@
R G e D
0 e
m @
+ ﬁ (MT,T + 2M€79)} + QN?T |:A_’2€ + (mT)2‘u76 —m" M9:|

1 M,
2|5+ (mr)ﬂ a,+ 2m”m? (o —cp) — ZmTW’
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C. Geometry equations

0 T
m 2110 - ) o 2M
— M7, - M N —
BTG }+ ,0{(TA)2 (10 — )
b 1 (Am')?
TE PRI S C LD (M- nr7,)
A T T )
171 2 1 2
3 [ﬁ — (m")* + <rm9> ] M" 4+ [_AQ + (m")? - <rm9) ] Meﬂn}

et s R [

M A
tmm? (—ppg + o, — 228 — 20,0 + =2 — 2220
) ) ) ) r ) ) M A

I, A m" 1
w2 |5 = () - 2] 4 5 o, (— 0, )

1
— M (g +2ay)+2M°%, (N,r —a, — ;> —2M",, — MGM]

6
+m_ [Mr,r (M,G - 40[79) - MT,TG]

M
2
2 ) a1 ()]

1
M2
+N? {Ea,eﬂ,r +m"m? [406,9/&9 —2(a)® = (1e)” + = — 2=

o A
+2 (mr)Z (M S Qg + 2#79(177« - ,r@)
r r A

T

m 1
+— |:2Mr7r (,u,g — 0479) — 2MT79 (30@ + ;) + M€79 (,u,g — 40479)

M
0
m
— M,y — 2Mr,r0] +3r (M7 g (110 — 4evg) — M o]
1
_ m <M7“70M970 + QMT,TMT,G + TQMG,TMGﬂ) }
= —16nNJ" —2K"N, —2K"'N, (C.2)

This is the corrected version of equation (B4a) of Gourgoulhon & Bonazzola (1993). For
that purpose, in the last but two line, the term M" ,,/M was replaced by M",,. A
similar correction was necessary in equation (B4b)

[; i wﬂ N L% (g . ﬂ,r) T )? (g ) M)} N0
! Mmz ' (mgﬂ (N0 o) = N° { [@2 " Wﬂ (o)

1 21 M 2NT”
" [(TA)2 a (me) ] Z\;e} * 7"%4729 +2m"m N

T 1 0 2 r, 0
+N", -2 -+ <m > ag+2m'm’ (p, —a,)
L[ (M, 0 0 2
= 0O} —omfr Ny | ——
i, [m < r? o) TEA A e
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C.2. Equations for N

+N‘{r{ [% +2(m )2] a,

1
+m™m® (g + dag) + i [mr (QM”W + M 9)

, mGTQMGW]}
—l—NG,@{ [( ) < )2}a9+mm <2a7r—,u7r+%>
( MO+ m’M )}+N%‘fr{iMr (g

0

9 < 9) —9 0 T
+2\m”) py—2m YA

0
1
- Me,rr} + mﬁ [Mr,r <:U'J’ - 404,r — ;) — 6M€ o
1
- 2M0,«9 <_M,7" + Qo + _> - Mr,rr - 2M0,r9:|
1
M2< M" Mg+ M" M, +2M° M° >}

2 «a
+N* {2 |:(’I“A)2 +2 (mg) } Qg+ m"m? {2% —2—= —prpg+ 4o g
M ¢ Arp 2 A
— 20,00+ —— % O, R A ]—Q(me) [(a,g)Q—l—ﬂ}
mT

A
+ It Cda, =) M +ﬁ€[2Mr (1o — ag)
Vi 0\ B T , ro M e ,0

1
- M , <,Uz7'r + 20[77‘ + ;) + 2M€’6 (,U/’g - 40[70) - ]\47‘7 0 — 2M969:|

1 T 2 9

() x|
74 b b b

= —167NJ’ —2K""N, - 2K" N,

(C.3)
where in the last but two line the expression —M" /M —2M? ;) /M — 24 49/A has been
replaced by —M"

—2M 00 The third equation (B4c) does not require any corrections

[%Hm”)ﬂ N%+{1 Uﬁ( )2} +[3

! 5= 002 e f 7,

107



C. Geometry equations

1 2 3 2 ,
+ [W + <m€) :| Ncpﬂe + [W — <m9) :| M,gNsoﬂ +2m mGNsAjre

s

MT,] N7,
T s
T T R o S
1 M" 0 NG 1
~ar (w4 52| 5 [ (e )
N° 1\ M
#2 | oa)—o (as 1) [orl
r r 0 m' r 0
+4m <m a,+m aﬂ) + 5 (4M st M 79)
0
m
+ 573 <2Mr,9 + T2M077,):| + N“’,@ {—mrme,wr + 4m® <mroz7r + meaﬁ)
3 m’ (M, m?
+ ;m"m" +7 <r—2 - 2M97T> + 37 (M + 4M‘{9)}
N7 « 1 M A
+M {mr [2% - 47,7' N ﬁ N (M’T)Q -2 (CM77«)2 + 4&77«,[1477" + ]\2474 —2 IZT:|
) My Ao
+m9 <_:U',T,U',9 + 404,9M,r - 277 - 204,7’(1,49 + ]\; -2 17‘; >
1 r 1 0
+M M g\ B 40&77, - ; - M T (M,G + 20479)
1
+ 2M0,0 <lu’,7' Y ;> - Mr,rr - Me,r9:| }
NY 2 & M A
+M {mr |:_,U/,TIU’79 + (40[774 + ;) ,U,79 — 27’9 — 2(1,7.@70 + ]\747:0 —92 29:|
Mg Ao
+m’ [— (10)° = 2 () + o g + VAR
1 - - 1
g [2M (e —ap) = M7 { pp 420, + —
+ Me,e (1o —4dag) = M" g — Me,ee} }
= —167NJ? —2K¥"N, — 2K*N 4 (C.4)
C.3. Equation for 3
The equation for the basic geometry field § = In (M /rsinf) is
1 1 1
g | (I, 4 TIN5 (M)
0 M
= 8TMNs™, — 2k, [M,q]" —2kg [M,q]” — M <q” twos > Ky
MG
-M <q9 - wﬁ> K+ MN (K™ + &% — Liypn L™) (C.5)
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C.4. Equations for M™

C.4. Equations for M™

For the two components of the 2-shift M™, there are the two equations
1 1 M 2 1
M, + (420, ) M7, N oMy — (= + 2% ) M
A2 72 r
+200M°, —2 < >

r2
M
= 16mMs" —2L""N 20N ( —
- (), - (5),

M - w
+25 g Al + 2 (M ] +2(A2 K" )

—2M <2I€T7J€T + 2K" K% — /m”> (C.6)

MN)T

NAQ(

,,(,MQ w
(37), "~ (31)
M/, N \M/ g

) )

_|_
M?
N

and

M M L
= 16rMs” — 2L N <W> —2L%N <—> + vz (MN),
7T 7

N
[(7«2)2 - K%] MWQ <%> 9

—2M (2l<aerl<;r + 260 k% — /<;/<;9> (C.7)

M
+2— [CL l{]e +

2
w 9 or M <w>
20X i klf — okttt (L
N ~ MRl =26 (7))

)

C.5. Equation for «
The last geometry equation gives the basic geometry field o = In A:

1
A2
1 1 1 M 1 MY
= s |+ 3 |+ (4T ) e (o0 4057 ) e

2 2 1
—i—WRT[M, ql” + N [M, q]9 + 3K+ 5 (nmnnm” + K24+ Lanm") (C.8)

1 1
(@4 0) 4 @t 0), 4 (a0
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D. Determinants

In the following, we will prove two important relations between the three determinants
g = det gog, h = dethg, and k = det kyy,, of the 4-metric g,g, the 3-metric hgy, and the
2-metric ky,y,, respectively. For that purpose, we make use of equation (7.8) of D’Inverno
(1992) for the 4-metric gqs:

9oy = 99" agsy
In a similar manner, there are the equations
duh = hhP0,hy.
and
Omk = hh8,hpe
for the 3-metric hgp, and the 2-metric ky,,, respectively. Then, the decompositions (2.11)

and (2.12) of the 4-metric g lead to

0ug

g

= gﬁﬂ/aagﬁfy

_ tt tb be

= 9091t + 29" 0agtt + 9" OuGe

OuIn(—g) =

= g0 (RN N~ N7 ¢ 2%@% + <th N ;\);];f > Dahbe
- 20“TN ath - % (NbNdhcdaahbc + NbNdthaahbc>
— 20,I0N + 9, Inh — NXT—T (eadah™ + 1" Guhea)
The expression in the round bracket vanishes, because
heOah® + h*4, by = D, <hcdhbc) = 9,00 =0
So, we arrive at the first of the two relations to be proven:
Oy In(—g) = 0, (21/+lnh)‘ (D.1)

For the second relation, we use the decompositions (2.17) and (2.18) of the 3-metric hqp
such that

Omh
OnInh = Zm-
" h
= h%9,ha
no M™M° M" 1 2 no
= (k; + e >amkno_2W8mMn+Wam(M + k"M, M,)
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D. Determinants

M 1
5 Om Omk

= +—+ == (MnMpkopamkno + MnMpkopamk”O)

M k M?

M, MP
= 20mInM + 0 Ink + ———

e (kopOmE"™ 4+ k"0 kop)

The expression in the round brackets is again zero, since
kopOmk"™ + k" Opmkop = O (K" kop) = Omd, =0

Then, we get

(O Inh =0, (21 + k) |

Both relations (D.1) and (D.2) are an immediate result of the equations
v—9=NVh

and

Vh = MVk

presented, but not proven in Gourgoulhon & Bonazzola (1993).
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E. Polytropic equation of state

The polytropic equation of state is
p=Kp" (E.1)

with the pressure p, the polytropic constant K, the rest mass density p and the polytropic
exponent I'. In this section, we will derive a relation between the rest mass density p
and the total energy density € (=rest energy density+thermal energy density) such that
we can express the total energy density € merely in terms of the pressure p. For that
purpose, we use the first law of thermodynamics, written as

de = pT'ds + hdp

with the temperature 7', the specific entropy s and the relativistic enthalpy

€E+Dp
P

h =

Following Friedman & Stergioulas, we ignore entropy gradients such that we can assume
a uniform entropy distribution. Therefore, ds = 0, and the first law of thermodynamics

becomes
€E+Dp

de = dp

or

Then, we demand
lim < = 1
p—0p

such that .

P r—-1

Thus, we find the following relation between the total energy density € and the rest mass
density p:

P I'—
5:1+/ K2 =1+ K72
0

r
-1
Applying equation (E.1), we eventually arrive at

e=p+ K

¢ = % + (%)% (E.2)

This relation expresses the total energy density € in terms of the pressure p.
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F. Sources of 3-shift Poisson equation

In this appendix, we present the sources S% of the Poisson equation (3.9) for the 3-shift
N¢. The three components of the 3-vector S%; are the r-component

SN
= & {_167TNJT —2K""N, —2K"™N g — QmeGNr,re
0 r
1 2 9 M79 eM 79
Ny {2 {(TA)Q +2 <m > ] ag+m'm (M,r + 4o, + ;> —
0 e
m 6 0 ,0 2 0
Y <Mr"‘ +2M 9)} — 2N, [ﬁ +(m") g — m’"—M ]
1 M@g
e {‘2 o+ 02 g ) 2
0 T
m= (o, 0 r > 2M
—_— MY — M _
+ M <T 2 0 } ,0 { (T’A)z (M,@ 7‘9)
6 1 m’ 2
T O R R G BT

o ) i [0t = o) e

v {22 (e = ) = [ - ] 2

« M A
_|_mrm9 — i+ 4o oM r — 2_’9 - 2a,ra o+ = 2ﬂ
o+ r M A

i, A m” 1
+2 (mr)Q [Tr - (a7r)2 - f] + ﬁ |:2Mr,r (M,T - 4a,r - ;)

1
— MGJ (o +2ap)+ QMG,G (M,r — o, — ;) — 2M’"7rr — M67T.9:|
m9

+M [Mr,r (/1,79 - 404,9) - MT,TG]

1 2 2
o o)
2 M A
~N’ {paﬁ#,r +m"m’ [4040%9 —2(ap)” — (1)’ + % - 2%}

o A
+2 (mr)2 <& _ 56 o+ 2090, — ’re>
r r A
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F. Sources of 3-shift Poisson equation

1
+ﬁ [QMT (1o —ag) —2M", (304,7" + ;) + M 5 (g — darg)
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—<m)N,99+(m>N0N9+ (m")? N’y — (m")? B,oN
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+ (20 + 200008, + 8,0+ 20,80 ) N

the 6-component
S
— A {—167TNJ9 — 2K N, — 2K Ny — 2m"mN? ,
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F. Sources of 3-shift Poisson equation
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G. Associated Legendre polynomials

Every function f (0, ¢) can be expanded in terms of spherical harmonics Y;,, (6, ¢) as (p.
128f of Jackson 2006)

%) l
=0 m=-—1

with the coefficients

fin = [ 4925 (6,01, 0,0
Assuming
f(0,9) = f(0)cos o
equation (3.36) tells us

(21 + 1) (l — m)' " m : o —im
flm:\/ Tt m) /0 dé f(0) p, (cos&)sm@/o dp e ™ cos ¢

We evaluate the second integral with the help of equations (3.45) and (3.46) such that

20+1)(l=m)! [T m .
Jim = 7T5|1m|\/ ()] /0 dé f(0) ™ (cos @) sin 0

Then, equation (3.40) gives

fi = W\/(21+1)(l+1)!/0”d9f(9)]311(C089)Sm9

47 (I —1)!
_ﬂ_\/(2l4—7|; (1Z)J(rll—)!1)! /07r d9f () P! (cos ) sind
= —fu1

and together with equation (3.36) we find

V(6.4 — \/(%“)(l“)!p—l(cose)ew

4 (1—1)

(20+1) (I - 1) A\
B _\/ dr (1 + 1) Bl(cosg)(e¢>

= _le‘:(l (97 ¢)
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G. Associated Legendre polynomials

Thus, we arrive at

F0.0) = D (fi1Yi1(0,0) + fi1Yi1 (6,9))

= > fa (W, (0.9) + Vi1 (0,9))

= 2Zfl,1\/%

!
' ) P! (cos 6) cos ¢

with the coefficients

_,JeEne-n[ei+1 -1
Ji= A+ )

Ar (1 +1)!

So, every function f (#) can be expanded as

/7T db f (0) P} (cos ) sin

F0) = > fiP (cost)
=1

(20+1)

L 2 (1+1

) /07r dof () P! (cosf)sinf
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H. Slicing conditions in flat space

In the following, we will rewrite the two slicing conditions (3.8) and (3.9) of Gourgoulhon
& Bonazzola (1993) in terms of our basic fields in flat space.

H.1. Maximal time slicing

The maximal time slicing condition is given in equation (3.8) of Gourgoulhon & Bonazzola
(1993):

N% =0 (H.1)

o =

Due to equations (2.34) and (2.32), we find

b
N* =N®,+°T4HN

la

and

1
379, N¥ = h3T 0, N” = §h‘” (Dahep + Ophae — Ochay) N?

such that

1
N%, =N, + §h‘”8bhach

la

and hence due to axisymmetry
1
= N" + 5h* Onhap N" (H.2)
Next, we expand
h®0nhap = K™ O hmo + K™ Ophopm + K™ Oplime + BP9 Ophsy

and use equations (2.17) and (2.18):

M™M®° MP°
ab o mo
h anhab - <k + M2 ) ankmo - WanMo
m 1
=77 OnMom + 500 (M? + My, M™) (H.3)

Moreover, we apply equation (2.19) and evaluate

K0 kmoN™ = K70,k N + K0, kogN" + K Ok N¥ + K9 0gkigg N°
1 1 1
Ve [& () N7+ 20 (r?A%) N7+ 0 (A7) N + 20 (r?4%) N*
1 2 r A2 2 r 9 9
= o3 200 () N" + 50, (1) N" + 209 (A°) N
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H. Slicing conditions in flat space
such that equation (2.23) leads to
1 mo n r 1 r 0
5k: OnkmoN™ = 20,aN" + =N" + 20paN (H.4)
T

On the other hand, we recall that the 2-metric k,,, has to be used to raise and lower
indices of the 2-shift M™, and compute

M"™M° M° M™ 1
Wankmo - WanMo - Waan ‘|' Wan (MmMm)
M™M° M™ 1 1

- Wankmg - QWaan + WMmaan + WMmaan
M™M®° M™ 1

= 0

Thus, using equations (2.29), (H.3) and (H.4) in the result (H.2), we find

1
N =N™ +N"0pu+—-N"420,aN™
’ T

la
For the second term on the right hand side, we use equation (3.5) such that
N0 = N™0p, [In (rsin@) 4+ 8] = N™0,,8 + %N” + cot ON?
and hence the slicing condition (H.1) becomes
N™ A+ %Nr +cot ON? + (2a + B) ,, N™ = 0
This result can be put into a more compact form. For that purpose, we compute

2
0 — e2a+ﬁ [Nrrfm_i_;Nr—i—cotHN@—i—(Qa—i-ﬁ),mNm]

2
e2oth (Nmm + ZN” + cot 0N9> +e2ot8 N™
b 74 b

_ <62a+/3Nm> 1 e20th <2N7" + cot 9N9>
T

,m

and use the flat space 3-divergence (2.48):

3div (e2“+5z\7) ~0 (H.5)

H.2. Conformally minimal azimuthal slicing

Equation (3.9) of Gourgoulhon & Bonazzola (1993) contains the conformally minimal
azimuthal slicing condition:

(N*M™), =0 (H.6)

[lm
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H.2. Conformally minimal azimuthal slicing

Similarly to Sect. H.1, we will now reword this condition in terms of our basic fields in
flat space. For that purpose, we start with the Leibniz rule, which gives

Then, equation (2.35) leads to

1 N

Due to equation (2.33), the Christoffel symbol becomes
1
2]‘1%11 = kmo 2F0mn = gkmo (amkon + 8nkmo - 8okmn)

such that 1 N .
52 (Nsz)Hm = 2T””Mm + M, + §/<:m°8nkmoM” (H.7)
Next, replacing N™ — M™ in equation (H.4) leads to

1 1
§kmoankmoM" = 20,aM" + =M" + 20paM?
T

Hence, equation (2.21) allows us to write equation (H.7) as

= (VA

1
Nz m:21/7mMm—i—Mm7m—i—2a7mMm+;Mr

such that the slicing condition (H.6) becomes
m 1 T m
M ’m+;M +2(a+v), M™=0
In order to write this result in a more compact manner, we compute
1
0 = ety [M"ﬁm + M +2(a+v),, M™"

1
e2letv) (M"ﬁm + ;M7"> + ety M

= (Hemnm) +62<a+u>%Mr

,m

and apply the flat space 2-divergence (3.17):

2div (62(0‘+”)M) =0 (H.8)
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. Tolman-Oppenheimer-Volkoff solution

In this investigation, we have assumed stationarity and axisymmetry. Tightening ax-
isymmetry to spherical symmetry allows us to rewrite Einstein’s field equation (2.5) to
the Tolman-Oppenheimer-Volkoff (TOV) equation

BoMR0n (B (-2) w

with the TOV-mass

/

M (r') = 4r /0 ' dza’e ()

(see FlieBbach 2006). The radial coordinate appearing in the TOV-equation differs from
the one used in the rest of this thesis, and therefore it is denoted as r’ instead of r.
Assuming a central pressure p (1’ = 0), the TOV-equation can be integrated. This leads
to a pressure profile p (r') and thus to a total energy density profile € (r'). The velocities
v® (r’) have to vanish everywhere, because the TOV-equation describes static solutions.
Hence, merely the geometry fields remain to be evaluated. However, we have to be
careful. The reason is that equation (I.1) is computed from the metric

d32 =_p (74/) dtQ +a (74/) d?”lQ + TIQdQQ (12)
with dQ? = d#? + sin? #d¢?, in contrast to our metric

d82 _ _e2u(r)dt2 + eQa(r) (d?”2 + 7"2d92) + 625(7’)702 sin2 9d¢2

ds? = —e?Mde? + ) (dr? 4 r2d0?)

Assuming
we have

Comparing this with the metric (I1.2) shows that merely the radial coordinate is different.
The correlation between the radial TOV-coordinate ' and our radial coordinate r is

Va (r)dr' = e*Mdr (1.3)

obviously

and
P = ey (1.4)

The latter equation can also be written as

7,,l

a(r):ln?
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I. Tolman-Oppenheimer-Volkoff solution

such that equations (I.3) and (I.4) lead to

da(r)= T~ = (%— ““'))dre%(l— o) '

r r r

Due to equation (39.18) of FlieSbach (2006), we hence arrive at

da (r (1)) 1 1
dr’ R 1 _ 2M()

,r./

Assuming the boundary condition « (r (r’ = 00)) = 0, this equation can be integrated,

which leads to a profile a (r (r')). Then, equation (I.4) tells us the relation between the

TOV-coordinate 7’ and our radial coordinate r such that we obtain « (r) = a (r (' (r))).
Finally, we consider equation (39.23)

db(r’) 2@
dr’  _ _ “Zdr’
b(r) e+p

of FlieBbach (2006). Using the TOV-equation (I.1), it can be rewritten to

d N
@lnb(r)—Q

M (') + 4mr'3p
' (r' —2M (r'))

such that b (') = (") gives

dv(r(r)) M (') + 4nr"3p

dr’ ol (r' = 2M (r))

We again assume v (r (r’ = c0)) = 0. Then, an integration gives a profile v (r (")), which
allows us to compute the last remaining geometry field v (r) = v (r (+' (r))).
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J. Outlook to electromagnetism

One of the possible ways to go beyond the scope of this investigation and to generalize
it is to take the electromagnetic field into account. In this section, we show a few initial
steps in that direction, which will eventually lead to a generalization of equation (2.59).

In order to include the electromagnetic field, we replace the stress-energy tensor (2.4)
with
Taﬁ — To%atter + TOI:%\/I

in which
To%atter = (g + p)uauﬁ + DGas
is the original stress-energy tensor (2.4) of the fluid and

1
T55" = Fon By — ZgaﬁFvéF%

describes the electromagnetic field. The quantity F,g = 0,Ag — 03A, is the electro-
magnetic field strength expressed in terms of the electromagnetic 4-vector potential A,.
Then, we evaluate

1 1
VﬁTgy =V’ <F6WFBPY B ZgaﬁF75F76> = Fa”fvﬁFﬁW +F7 (VBFM - §VaFBv>

(J.1)
The second term of the outcome can be reworded to

1
A (vﬁFcw — 5VQFB,Y>

1
= (VoA - via?) |:Vg (Vad, = Vo Aa) = 5Va (VoA - V,YAB)]

= VBAPY [Vg (vaAv - VvAa) - Vv (vaAﬁ - VﬁAa) —Va (VBAV - VvAﬁ)]
VA AY [(Vq/Vg — ngv) Ay + (VOCVv — VW/VQ) Ag + (nga — VaV5) Ay]

Using equation (6.40) of D’Inverno (1992), we then find
1
F7 (VﬁFaw - §VaFﬁw> = VP A" (Rasys + Rpsay + Rygpa) A° =0
where in the last step we have used the first Bianchi identity (D’Inverno 1992). Hence,

Maxwell’s field equation
Vo F = pquﬁ

in which p, is the charge density, allows us to write equation (J.1) as

VBTQE(}(\A = pFasu”
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Due to this result, it is obvious that equation (2.53) has to be generalized to
(e +p) uPVu® = —¢* Vgp — pqqf/‘Fvﬁuﬁ
and with (see equation (2.42))

qﬁ?‘Fyﬁuﬁ = (5,‘;‘ + uaufy) F7 P = Faﬁuﬁ

B

we arrive at

(e +p)u’Vgu® = —¢*FVgp — quaﬁuﬁ

Then, equation (2.54) becomes

1
0 = (e+p) |u"Onuq — 5 (0v98a + 0agy3 — 039va) uBu?

+8ozp + uaum mP + quaﬁuﬁ

We expand
Fopu’ = (0aAp — 05Aq) u”

and use stationarity together with axisymmetry such that
Fopu’ = 04 Agu® — 0 Agu™
That way, we are able to generalize equation (2.55) to

O+ u ™, + O, Agul — 8, Agu™ 1
(4 o mP Zq_épa 8 ma ) _ 5 agﬂ/ﬁuﬁu'Y _umﬁmua

Setting o = t and taking stationarity into account, we obtain

U Opp — PgOmAsu™
€E+p

= —u" Oy

such that we generalize equation (2.56) to

V" Opp = 0™ %(%LAt — (64 p) O Inuy
t

On the other hand, setting o = a in equation (J.2) leads to

19) 1 UqU" Opp + OaAgu® — O Agu™
aP _t agﬂ/ﬁugu,y U™,y — a mP T Pq ( a3 m{iq )
€e+p 2 e+p
Then, equation (J.3) allows us to reformulate
Oup 1
- _7_ ’ = §8ag,yﬁuﬁuy — UM O g
uguto™ [Z—zBmAt —(e4+p)Omnln ut] + pyq (BaAﬁuﬁ — 8mAaum)
€E+p
1
= §6agwguﬁu“/ — UM O g + gt Oy I uy
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pu (2w O Ay + By Agu® — Oy Agu™)
€+p

. P o i e R
= 3 gyt u) — ugu" Oy — —

Ut €E+p

Eventually, we use the Lagrangian angular momentum (2.57) and get

Oap
€E+p

Pq [um (laOm At + OmAg) — uﬁaaAﬁ]
€E+p

1
= w0l + §8ag,yﬁuﬁu“/ +

such that for a = ¢ stationarity leads to

PqV"™ (1gOm Ar + O Ag)

"l = —
! ¢ ug (€ +p)

(J.4)

This result generalizes equation (2.59).
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