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1. Introduction

1.1. The beginning

The goal of physics is to understand nature. This endeavor has developed gradually
since man has begun to reason. However, with the discovery of the law of gravitation by
Isaac Newton in 1666 a new era has begun in physics. Since then, nature has taught us
that eventually all of its phenomena can be described by equations of various complexity.
Knowing these equations is, in principle, sufficient to fully understand nature. Every
single detail of our world can then be derived, even those aspects whose connection to
the equations is rather hidden, like the physical properties of the medium this text is
written on. For that purpose, the only requirement is a computer with infinite resources
of memory and computing time. Unfortunately, such a machine is not available to us.
Therefore, a much more practical approach is used, in which even the derivation of the
manifold phenomena from already known equations turns out to be a challenge. This has
begun with mere analytic derivations, done by hand and limited to the simplest physical
configurations. The advent of the computer age has allowed us to go beyond this scope
and to investigate evermore complex scenarios numerically.

In 1915, Albert Einstein generalized Newton’s theory of gravitation. The resulting
equation is Einstein’s field equation. The easiest solution to this equation is an empty
universe, a flat spacetime without any matter. Everything beyond this trivial solution
requires some additional process of understanding. Black holes are those solutions where
gravitation is strongest. This leads to the presence of event horizons and singularities.
They are not only of philosophical interest, but also an obstacle for a straightforward
numerical implementation. However, it turns out that an extra amount of investigation
is required even if only strong gravitation itself is present, without the exotic properties
of black holes. This is the realm of neutron stars, the central topic of this work.

1.2. Neutron stars

The gravitational potential of a neutron star is about eight orders of magnitude stronger
than the gravitational field of Earth. This tremendous difference is a consequence of the
high density of ≈ 1015 g/cm3 inside of a neutron star (see, e.g., Michel 1991). Such a
density usually comes into being when a large fraction of about 1.4 − 3 solar masses of
a massive star undergoes a gravitational collapse during a supernova (Fig. 1.1). The
collapsing matter is then compressed to a spherical object of only ≈ 10 km radius, the
neutron star. White dwarfs are compact objects whose mass is lighter than the Chan-
drasekhar limit of ≈ 1.4 solar masses. Their gravitational potential is not as strong
as that of neutron stars and therefore not of direct interest in this thesis. On the other
hand, if the mass is above the Tolman-Oppenheimer-Volkoff limit of ≈ 3 solar masses, the
compact objects are presumed to be exotic objects like quark stars (Camenzind 2007).
For these stellar configurations, the Pauli exclusion principle still produces a pressure
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1. Introduction

high enough to compensate gravitation. However, beyond ≈ 5 solar masses, the gravita-
tion pressure becomes so strong that compact objects at the boundary of the validity of
general relativity are generated, which are usually believed to be black holes.

Figure 1.1.: Crab Nebula with pulsar at its center. The Crab Nebula in the constel-
lation Taurus is the remnant of the famous supernova observed by Chinese
astronomers in 1054. The center of this nebula contains a pulsar (marked
by the green arrow), a rotating magnetized neutron star, which periodically
emits pulses of radiation. HubbleSite.

During the creation of a neutron star, its strong gravitational field compresses protons
and electrons of the collapsing stellar matter to neutrons. That way, they become the
main constituent and responsible for the naming ‘neutron star’. The compression is
strongest in the center, where the gravitational pressure is highest. Realistic neutron star
models consist of several concentric layers, the central region being one of them (Shapiro
et al. 1983). The outermost layers are an atmosphere of a few centimeters thickness and
an about one kilometer thick solid crust. The inner layers are not well understood and
subdue to speculations about their actual composition. This is a consequence of the lack
of direct observations.

The majority of the observed neutron stars are pulsars (Fig. 1.1). Pulsars are rotating
neutrons stars, equipped with a strong magnetic field of up to ≈ 1014 G, whose symmetry
axis is inclined towards the rotation axis. The magnetic field accelerates charged particles
such that synchrotron radiation is emitted along the symmetry axis of the magnetic field
(Kawaler et al. 1997). Whenever Earth lies within the conical radiation field, pulses of
radiation are observed like from a lighthouse. That way, it is possible to detect neutron
stars at galactic distances, which can be pretty old, as long as their magnetic field has
not yet decayed too much.

Hot neutron stars in the vicinity of Earth can be observed also directly via their thermal
radiation. However, these neutron stars have to be young, because the temperature drops
quickly. This is due to the lack of a heat source, like the nuclear burning in the progenitor
star. At its creation, the central temperature of a neutron star is ≈ 1011 K (Becker 2009).
It cools down to ≈ 109 K − 1010 K during the first day, and after several hundred years
the temperature is ≈ 106 K. For the first ≈ 105 years, the energy loss is mostly due to
neutrinos, and afterwards photon emission dominates.

8



1.3. Modelling

The temperature distribution inside the neutron star is not uniform: it drops from
the center to the surface. There are also unstable gradients in the temperature and
composition distribution, which are strongest for young neutron stars. These gradients
lead to convection, i.e. an internal motion of the neutron star fluid. Unstable gradients are
only one source for such a fluid motion. The other two possibilities are the influence of the
magnetic field via magnetohydrodynamic effects and, most importantly, the conservation
of angular momentum during the collapse phase. Like a spinning ice-skater pulling the
arms to spin faster, in many cases the collapse leads to a rapid fluid motion around a
certain axis. The observed rotation rates of pulsars range from 1.4ms to 8.5 s (Becker
2009). In this thesis, we want to get a deeper insight into the fluid motion of neutron
stars.

1.3. Modelling

There are three ways to augment the knowledge about the internal motion of neutron
stars: the observational, the theoretical and the numerical approach. We do not follow the
observational one, because of the already mentioned difficulties in a direct observation
of the neutron star interior. From the theoretical viewpoint, we do not expect new
knowledge at the current stage, because the required equations of physics are already
known to a sufficiently accurate degree, namely Einstein’s field equation. Therefore, this
work is focused on the numerical1 part by means of a simulation.

A common way to investigate a neutron star numerically is to simulate its evolution
in a certain time interval. This is reasonable whenever the neutron star undergoes a
significant change of its internal structure. Typically, this occurs after the creation of the
neutron star or when it interacts with other stellar objects, like during the merging with
a black hole. However, we assume that the neutron star behaves in a quasistationary
manner, i.e. we approximately consider the neutron star to be stationary. In addition
to that, we limit ourselves to axisymmetric configurations.

Both kinds of assumptions do not only reduce the required computational resources,
they also allow a simplification of Einstein’s field equation, used in a general relativis-
tic approach. For that purpose, spacetime is split into a set of spacelike hypersurfaces
according to the 3+1 decomposition of the ADM formalism, introduced by Arnowitt,
Deser and Misner in 1962 (Arnowitt et al. 1962 or Misner et al. 1973). Every spacelike
hypersurface is further split into meridional hypersurfaces, i.e. hypersurfaces containing
the symmetry axis. That way, we arrive at a so-called (2+1)+1 decomposition of space-
time, as worked out by Gourgoulhon & Bonazzola 1993. This approach constitutes the
theoretical fundamentals describing the curvature of spacetime caused by the neutron
star, in our work.

A general relativistic approach always introduces two components: the geometry and
the matter part. We make use of a rather simplified matter model. We assume that the
neutron star matter is being described by a perfect fluid, i.e. there is no viscosity, heat
conduction and so on. The equation of state is limited to the barotropic case, which
means that the total energy density ǫ is a function ǫ (p) of only the pressure p. The
advantage of this restriction is that the equations for the matter part can be solved much
easier than without it. A side effect is that temperature is not required to unambiguously
specify the state of the neutron star. The total energy density ǫ, the pressure p and the
fluid velocity ~v describe the matter part completely. Temperature could then be fixed by

1In this section, all approximations assumed in this thesis are marked in boldface.
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1. Introduction

specifying a thermal equation of state, but this is not done in this work (similarly, for
the entropy).

Additional assumptions for the matter part are a homogeneous chemical compo-
sition and only one layer, i.e. there is nothing like a crust. Moreover, there is no
magnetic field in the considered models.

1.4. Current state

There are many investigations about neutrons stars in literature. However, at our level
of approximations they reduce to a manageable amount. They distinguish themselves in
the additional simplifications applied on the fluid matter. For that purpose, we have to
discern the azimuthal fluid motion around the symmetry axis from the meridional fluid
motion inside the meridional planes.

A first simplification is to assume that there exists only an azimuthal fluid motion.
This approach is followed by Nick Stergioulas with his RNS code (=‘Rapidly Rotating
Neutron Star’, Stergioulas & Friedman 1995 and Nozawa et al. 1998). It is based on
the general relativistic method of Komatsu et al. (1989). They essentially rewrite the
geometry equations of the neutron star as Poisson equations in flat space. This means
that every such equation consists of a flat-space Laplacian that acts on a potential and
gives a source. The advantage of this notation is that the Green functions of the flat-
space Laplacians are known. Therefore, these Green functions are used to invert the
flat-space Laplacians and to vice versa compute the potentials from the sources. This is
performed as a fixed point iteration method. At every iteration step, one computes new
sources from old potentials, and afterwards new potentials are determined by inverting
the Laplacians. The initial potentials of this procedure describe a non-rotating neutron
star, given by the Tolman-Oppenheimer-Volkoff equation (Fließbach 2006). In order to
achieve an azimuthal fluid motion, a rotation profile has to be specified. This is part of
the matter equations, which have to be solved together with the geometry equations. In
Komatsu et al. (1989), they are written in a manner suited to the vanishing meridional
fluid motion. There are also several other groups, who follow slightly different numerical
methods. Here, we refer to the citations in Nozawa et al. 1998.

The second type of simplification applied to the fluid motion is to assume that there
is both an azimuthal and a meridional flow component, but the meridional one is slow.
Then, the meridional fluid motion can be treated in a perturbative manner. This is done
by Ioka & Sasaki (2004) in a general relativistic way. They also include a perturbatively
treated magnetic field in their approach. There is a much earlier work by Roxburgh
(1974), who also uses a perturbation technique, but without any magnetic fields and
only in the Newtonian framework.

The third and last way is to have strong meridional currents, but no magnetic fields. As
already realized by Randers (1941) and Roxburgh (1974), this leads to the following issue.
Let us assume that the neutron star surface rotates. Then, the conservation of angular
momentum causes the neutron star fluid to move faster and faster around the rotation
axis when dragged by the meridional currents closer to the poles. Eventually, the rotation
would become faster than the local speed of light. Therefore, without magnetic fields,
the azimuthal component of the fluid motion has to vanish at the neutron star surface.
The easiest way to fulfill this requirement is to consider a mere meridional fluid motion,
with the azimuthal one vanishing everywhere. This is done by Eriguchi et al. (1986) and
Eriguchi & Müller (1991). The central constituent of their approach is the usage of a
stream function. The stream function is a scalar function, and it completely defines the
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1.5. Investigation goals

two-dimensional meridional fluid motion. Therefore, they rewrite the matter equations in
a way somewhat different to that of Komatsu et al. (1989). So, it turns out that there are
two ways to write the matter equations, the one fitting better a purely azimuthal and the
other one a purely meridional fluid motion. Eriguchi et al. (1986) solve their equations
with a Newton-Raphson iteration to produce a meridional circulation. However, a strong
limitation of their approach is the usage of Newtonian physics.

1.5. Investigation goals

The goal of this thesis is to go beyond the limitations described in the last section. There-
fore, we investigate the simultaneous presence of both an azimuthal and a meridional fluid
motion. None of these components have to be weak. And, the treatment is performed in
the framework of general relativity. The curvature of spacetime caused by the neutron
star is computed with a generalization of the method of Komatsu et al. (1989), and for
the matter, the stream function method of Eriguchi et al. (1986) is extended to general
relativity.

The generalization of Komatsu et al. (1989) works in the following manner: We use the
same fixed point iteration method idea as in the RNS code, starting from a solution of
the Tolman-Oppenheimer-Volkoff equation. However, the presence of a meridional fluid
motion requires the usage of more geometry fields. Therefore, there are also additional
equations determining these fields, and their shape is more complicated. The exact form
of these equations can be found in Gourgoulhon & Bonazzola (1993). However, they are
not yet given in a shape applicable to the Green function method. Therefore, they are
rewritten as Poisson equations in flat space.

The second part is the extension of the stream function idea of Eriguchi et al. (1986).
For that purpose, we have to rederive the equations in Eriguchi et al. (1986) from scratch,
but in the general relativistic framework. Actually, Eriguchi et al. (1986) still include
an azimuthal fluid motion at the stage where they write down the equations. However,
as soon as the solution method is presented they set the azimuthal part equal to zero.
We, in contrast, include the azimuthal fluid motion at all steps. That way, one simple
additional equation is required, and the remaining equations become somewhat more
complicated, due to the more general treatment.

The above generalizations are implemented in a new code, called GRNS (=‘Generally
Rotating Neutron Star’). It generalizes the RNS code of N. Stergioulas from the mere
azimuthal fluid motion to a general one. The main attention of this thesis lies in the
derivation of the theoretical fundamentals of this code and the creation of the GRNS
code. However, as it generalizes the Newtonian method of Eriguchi et al. (1986), we are
also interested in the fluid motion modes described in that paper extended to general
relativity.

1.6. Outline

In Chapter 2, we present the basic fields, which unambiguously specify the structure of
the neutron star. The rest of this chapter is then devoted to the equations determining
the basic fields, including a derivation of the stream function method in general rela-
tivity. Chapter 3 deals with the rewriting of the equations into a form applicable for
a numerical treatment. Therefore, the geometry equations are converted to flat-space
Poisson equations, and the Green functions are computed. The numerical implementa-
tion into the GRNS code is briefly explained in Chapter 4. Here, also the graphical user
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1. Introduction

interface of the GRNS code is presented, which is based on OpenGL. In Chapter 5, the
results of convergence and consistency tests performed with the GRNS code are reported.
An analysis of meridional circulation modes is done in Chapter 6. Finally, Chapter 7
summarizes the conclusions of this thesis and discusses possible extensions.

12



2. Theory

2.1. Notations and conventions

Our investigation is based on the framework of general relativity. Therefore, we keep
as close as possible to the notations and conventions of the standard work of Misner
et al. (1973). In addition to that, we include the definitions of Gourgoulhon & Bonaz-
zola (1993), because this paper contains the fundamentals of how we deal with curved
geometry.

We use geometrized units, in which the speed of light c and the gravitational constant
G are set equal to unity:

c = G = 1 (2.1)

That way, all general relativistic expressions become as transparent as possible. An
exception to this rule are Chapters 4, 5 and 6. There, the GRNS code is explained and
simulation results are presented in more appropriate cgs-units.

The fundamental quantities of general relativity are tensors. We use the component
notation for tensors throughout this thesis. In this notation, tensors are written as Tα...β... .
Being a common tool in the context of relativity, we apply Einstein’s sum convention:
Whenever two tensor indices in a term are denoted with the same letter, one has to sum
over all possible values of the indices. We consider three types of indices with different
value domains, discerned by the following letters:

α, β, ..., ω ∈ {t, r, θ, φ}
a, b, ..., l ∈ {r, θ, φ}

m,n, ..., q ∈ {r, θ} (2.2)

This definition differs from the convention chosen in Gourgoulhon & Bonazzola (1993),
where a, b, ..., k ∈ {1, 2} and i, j, ..., q ∈ {1, 2, 3}. The choice (2.2) has two advantages: We
perform two successive slicings of spacetime into hypersurfaces in this thesis. The first
one removes the time index t and the second one removes the angle index φ. Therefore,
it is more natural to map the spatial indices {r, θ, φ} to the first part of the Roman
alphabet and the meridional indices {r, θ} to the second one. Moreover, in Gourgoulhon
& Bonazzola (1993) there are some scalars and vectors denoted with the same symbol,
like the lapse function N and the shift vector Na. Writing, e.g., the θ-component of the
shift vector as N2 could be misunderstood as the square of the lapse N . This ambiguity
is resolved with the convention (2.2), in which the numerical index values of Gourgoulhon
& Bonazzola (1993) have been replaced by letters. Note that the usage of the letters for
the meridional indices stops at q, because the letters r and t already denote radial and
temporal indices.

The 3+1 decomposition of the metric is given in equation (21.42) of Misner et al. (1973)
and equation (2.9a) of Gourgoulhon & Bonazzola (1993). Unfortunately, there is a sign
difference in the definition of the shift vector Na. It does not arise from a difference in

13



2. Theory

the signature of the metric, because in both papers the signature is

(−,+,+,+)

and we follow this convention. We use the shift vector definition of Gourgoulhon &
Bonazzola (1993), because then the geometry equations given therein do no have to be
modified.

2.2. Fields and equations

We investigate neutron stars in general relativity. The central difference between New-
tonian physics and general relativity is the treatment of space and time. In Newtonian
physics, spacetime is flat and does not take part in physical phenomena. Gravitation is
therefore a force, whose origin remains mysterious in the Newtonian framework. This
problem is resolved in general relativity. There, spacetime is a curved manifold, and
gravitation is a direct result of its curvature.

The manifold of general relativity is a four-dimensional pseudo-Riemannian manifold
M. Its exact shape is unambiguously specified by the metric tensor gαβ . This tensor
is symmetric, which means that gαβ = gβα. In general relativity, all remaining physical
fields are considered as matter fields. We assume that matter is approximately a perfect
fluid without electromagnetic forces. Thus, it is completely defined by a total energy
density ǫ, a pressure p and a 4-velocity uα.

The metric gαβ and the matter fields (ǫ, p, uα) are governed by Einstein’s field equation.
Let us quickly recapitulate the quantities required to state this equation. The first step
is to evaluate the Christoffel symbols of the second kind

Γαβγ =
1

2
gαδ (∂βgδγ + ∂γgβδ − ∂δgβγ) (2.3)

where the tensor gαβ is the inverse of the tensor gαβ and ∂α = ∂/∂xα the partial derivative
with respect to the coordinates xα. The Christoffel symbols determine the Ricci tensor

Rαβ = ∂γΓ
γ
αβ − ∂αΓ

γ
γβ + ΓγγδΓ

δ
αβ − ΓγδαΓδγβ

which can be transformed into the Einstein tensor

Gαβ = Rαβ −
1

2
gαβg

γδRγδ

On the other hand, the matter fields are represented by the stress-energy tensor

Tαβ = (ǫ+ p)uαuβ + pgαβ (2.4)

Then, Einstein’s field equation takes the form1

Gαβ = 8πTαβ (2.5)

In the following sections, we will write the metric gαβ and the matter fields (ǫ, p, uα) in
terms of new fields, which we call basic fields. These fields still describe the state of
the considered neutron star completely, but they are more appropriate for a numerical

1There are many mathematical formulas in this thesis. In order to guide the reader, the most important
ones are highlighted with boxes.
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solution of equation (2.5).

2.3. Symmetries

The neutron stars analyzed in this dissertation underlie two symmetry assumptions:

• stationarity

• axisymmetry

Therefore, we consider a time coordinate t = xt and an angular coordinate φ = xφ,
limited to the interval [0, 2π). These coordinates are chosen in such a manner that the
fields depend only on the meridional coordinates xr and xθ:

gαβ = gαβ

(

xr, xθ
)

and
Tαβ = Tαβ

(

xr, xθ
)

In this choice of coordinates, Einstein’s field equation (2.5) simplifies, strongly (Gour-
goulhon & Bonazzola 1993).

2.4. Foliations

The metric gαβ consists of ten independent components, due to its symmetry property.
Therefore, any invertible set of ten smooth functions f1 = f1 (gαβ) , f

2 = f2 (gαβ) , ... can
be used to represent the metric. A trivial example is f1 = gtt, f

2 = gtr, ..., which is a
mere renaming of the individual metric components. This does not change the form of
Einstein’s field equation. However, any non-trivial choice makes it look more complex.
We follow a method known as foliation, in order to derive a set of non-trivial functions
f1, f2, .... It originates from the intention to write Einstein’s field equation as an initial
value problem (Arnowitt et al. 1962). In our case, the advantage of this approach is that
Einstein’s field equation can be transformed into a form well suited for numerical work.
A foliation works in the following manner:

Starting with an arbitrary manifold, we split it into a continuous sequence of infinitesi-
mally close hypersurfaces, whose dimension is one lower than that of the original manifold
(Fig. 2.1). Each of the hypersurfaces is given by its own metric, the induced metric.
The hypersurfaces alone are not sufficient to fully specify the original manifold. In addi-
tion to them, knowledge about the length and the attachment points of the perpendicular
connectors between the hypersurfaces is required. The length of the connectors can be
encoded in a scalar, called lapse function, and the socket positions in a so-called shift
vector. Hence, the metric of the original manifold is replaced by three quantities: the
induced metric, the lapse function and the shift vector.

In the following two sections, we use two successive foliations. The first step (Sect.
2.4.1) is a foliation of the whole four-dimensional spacetime M into spacelike 3-surfaces
Σt of constant time t. This way, the ten independent metric components gαβ are replaced
by the induced 3-metric hab with six independent components, the 3-lapse function N
and the shift 3-vector Na. In the second step (Sect. 2.4.2), each 3-surface Σt is foliated
into the 2-surfaces Σtφ, which are defined as the intersections between the 3-surfaces Σt

and the 3-surfaces Σφ of constant angle φ. Consequently, the 3-metric hab is given by the

15



2. Theory

Figure 2.1.: Foliation into two hypersurfaces with perpendicular connectors.
For simplicity, we consider only a flat two-dimensional manifold, namely the
mere plane upon which the text of this page is written on. This plane is split
into infinitesimally close hypersurfaces at times t and t + dt, represented
by the two horizontal curves. The metric of the original, two-dimensional
manifold defines orthogonality. That way, the black, vertical, perpendicular
connectors of infinitesimal length are unambiguously given. The direction
of these connectors is specified by the unit vector nα and their 1/dt-fold
length by the lapse function N . The coordinates on the hypersurfaces may
be chosen, arbitrarily. Hence, the timelike coordinate basis vector δαt =
(1, 0, 0, 0) can be inclined with respect to the connectors. The amount of
inclination is encoded in the shift vector Na.

induced 2-metric kmn with three independent components, the 2-lapse function M and
the shift 2-vector Mn. The final result of the two foliations are then the fields

N,M,Na,Mn, kmn (2.6)

which contain the original ten independent degrees of freedom.

2.4.1. 3+1-foliation of the whole spacetime

We begin by foliating the four-dimensional spacetime M into spacelike 3-surfaces Σt of
constant time t. This so-called 3 + 1-foliation is a well known procedure, for example
performed in Misner et al. (1973) and Straumann (2004). Still, it is reasonable to repeat
it here, to better understand the less familiar, but very similar foliation of the 3-surfaces
Σt, undertaken in Sect. 2.4.2.

The first step of the foliation is to specify the shape of the individual 3-surfaces Σt,
independent of how they are arranged against each other. This information is located in
the induced 3-metric, which is simply given by

hab = gab (2.7)

The second step is to connect the 3-surfaces Σt. For that purpose, we specify the perpen-
dicular connectors between them. The 1/dt-fold length of the connectors is called 3-lapse
N and their direction is denoted by the 4-vector nα. This timelike vector is normalized
to gαβn

αnβ = −1. The orthogonality of the connectors implies gαβnαXβ = 0 for all
spacelike 4-vectors Xα. The condition for being spacelike is Xt = 0, i.e. gαbnαXb = 0.
Looking at Fig. 2.1, we realize that the difference Nnα − δαt is a 3-vector tangent to the
3-surfaces Σt. Therefore, we can write it as Nnα − δαt = (0, Na), with the 3-shift Na, or
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vice versa
δαt = Nnα − (0, Na) (2.8)

The quantity δαt are four components of the Kronecker symbol δαβ , which is equal to unity
for α = β and zero otherwise. This allows us to compute

gtt = gαβδ
α
t δ

β
t = gαβN

2nαnβ + 2gαbNn
αN b + gabN

aN b = −N2 +NaN
a (2.9)

and
gta = gβcδ

β
t δ

c
a = gβcNn

βδca − gbcN
bδca = −Na (2.10)

with Na = habN
b. Introducing the inverse hab of the 3-metric hab, we can then summarize

the three results (2.7), (2.9) and (2.10) as

(

gtt gtb
gat gab

)

=

(

NcN
c −N2 −Nb

−Na hab

)

(2.11)

and
(

gtt gtb

gat gab

)

=





− 1
N2 − Nb

N2

−Na

N2 hab − NaNb

N2



 (2.12)

This is the 3 + 1-decomposition of the spacetime M, based on the conventions of Gour-
goulhon & Bonazzola (1993).

2.4.2. 2+1-foliation of the t = const 3-surfaces

We proceed by foliating each of the 3-surfaces Σt into the meridional 2-surfaces Σtφ

of constant time t and constant angle φ. This procedure is very similar to the 3 + 1-
decomposition performed in section 2.4.1.

In analogy to equation (2.7), we start with the definition of the induced 2-metric

kmn = hmn (2.13)

This metric unambiguously specifies the shape of the 2-surfaces Σtφ. The only remaining
issue are therefore the perpendicular connectors. The 1/dt-fold length of the connectors
is called 2-lapse M and the direction is given by the 4-vector mα. However, this time
the direction vector is spacelike and hence normalized to gαβmαmβ = 1. Being spacelike
means that mt = 0, and in addition to that the orthogonality causes gαβmαY β = 0 for
all 4-vectors Y α tangent to the 2-surfaces Σtφ. This implies Y t = Y φ = 0 such that
gαmm

αY m = 0. Similar to the 3+1-decomposition, we then use the so-called 2-shift Mm

to express Mmα − δαφ = (0,Mm, 0) or

δαφ = Mmα − (0,Mm, 0) (2.14)

This leads to

hφφ = gαβδ
α
φδ

β
φ = gαβM

2mαmβ + 2gαmMmαMm + gmnM
mMn = M2 +MmM

m (2.15)

and
hφm = gαnδ

α
φδ

n
m = gαnMmαδnm − gonM

oδnm = −Mm (2.16)

with Mm = kmnM
n. The last step is to define the inverse of the 2-metric kmn as kmn.
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Then, we can finally summarize the results (2.13), (2.15) and (2.16) as

(

hmn hmφ
hφn hφφ

)

=

(

kmn −Mm

−Mn M2 +MoM
o

)

(2.17)

and
(

hmn hmφ

hφn hφφ

)

=





kmn + MmMn

M2

Mm

M2

Mn

M2

1
M2



 (2.18)

just as done in Gourgoulhon & Bonazzola (1993).

2.5. Basic Fields

There are twelve basic fields. Every solution of Einstein’s field equation (2.5) is uniquely
defined by these twelve basic fields. In the following two sections, we will define the basic
geometry and basic matter fields.

2.5.1. Geometry

Let us review the decomposition of a manifold into hypersurfaces from a more general
viewpoint. Each such decomposition consists of a lapse function and a shift vector.
The purpose of the lapse function is to specify the distance between the hypersurfaces,
which are surfaces where one coordinate is constant. Varying this coordinate and fixing
all other ones leads to coordinate lines whose direction is set by the shift vector. It is
obvious that these coordinate surfaces and coordinate lines can be chosen in an arbitrary
manner. Vice versa, this means that there always exists a coordinate transformation
which changes the lapse function and the shift vector arbitrarily. Imagining the 2-metric
kmn being decomposed in a 1 + 1-manner, it is therefore possible to choose meridional
coordinates

(

xr, xθ
)

= (r, θ), limited to r ∈ [0,∞) and θ ∈ [0, π), in such a way that

kmn = A2

(

1 0
0 r2

)

(2.19)

with the 2-conformal factor A. This choice of so-called isotropic polar coordinates is
made in Gourgoulhon & Bonazzola (1993).

Using isotropic polar coordinates, the ten degrees of freedom (2.6) of the metric gαβ
reduce to the eight ones given by

N,M,Na,Mn, A

These quantities define the basic geometry fields

ν,N r, N θ, Nφ, β,M r,Mθ, α (2.20)

with

ν = lnN (2.21)

β = ln
M

r sin θ
(2.22)

α = lnA (2.23)
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The basic geometry fields unambiguously specify the curvature of spacetime caused by the
neutron star. In flat spacetime, the metric has the form gαβ = diag(−1, 1, r2, r2 sin2 θ)
such that the two shift vectors Na and Mm are zero. In addition to that, equations
(2.11), (2.17) and (2.19) show that N = 1, A=1 and M = r sin θ. That way, it is obvious
that all basic geometry fields vanish in flat spacetime. This property is of advantage for
finding a numerically stable form of the field equations when solved numerically using
Green functions.

2.5.2. Matter

In order to deal with the matter the neutron star consists of, our goal is to extend the
stream function method of Eriguchi et al. (1986) from the Newtonian limit to general
relativity. The central idea of this method is express two components of the Newtonian
velocity 3-vector in terms of a stream function ψ. That way, the continuity equation of
the neutron star fluid matter is fulfilled automatically. We proceed in a similar manner.
Further below, we will show how two degrees of freedom of the 4-velocity uα can be
expressed in terms of the stream function ψ. There, it will also turn out that it is
appropriate to express the third degree of freedom of the 4-velocity as a quantity lφ,
the φ-component of the so-called Lagrangian angular momentum. Note that the
4-velocity uα has only three degrees of freedom due to the well known velocity constraint
(Misner et al. 1973)

gαβu
αuβ = −1 (2.24)

So, matter is unambiguously described by its total energy density ǫ (=rest energy den-
sity+thermal energy density), its pressure p, the stream function ψ and the Lagrangian
angular momentum component lφ. In Eriguchi et al. (1986), the Poisson equation of the
stream function method is written using the modified stream function

χ0 =
ψ

r sin θ

Therefore, we consider
ǫ, p, χ0, lφ (2.25)

as the basic matter fields.

2.6. Projections

For every basic field, there is one corresponding equation. So, there are eight geometry
equations for the eight basic geometry fields (2.20) and four matter equations for the
four basic matter fields (2.25). Both sets of equations are treated in a different manner
in this thesis. In the following, we will address the basic geometry equations, first.

Einstein’s field equation (2.5) contains ten components, because both sides of that
equation are symmetric tensors of rank 2 in 4-dimensional spacetime. So, it is actually
a set of ten equations. Eight of these ten equations define the eight geometry fields (we
do not need all ten equations due to the coordinate choice (2.19)). However, the ten
equations are not yet given in such a shape that we can assign one equation to each
geometry field. This task is performed in Gourgoulhon & Bonazzola (1993). For that
purpose, these authors project Einstein’s field equation parallelly and orthogonally to
the 4-vectors nα and mα. The projections work in the following manner:

We begin with the 4-vector nα, perpendicular to the hypersurfaces Σt of constant time
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t. Looking at equation (2.8), we realize that the components of this vector are

nα =

(

1

N
,
Na

N

)

Then, the expression
nαnβ (Gαβ − 8πTαβ) = 0 (2.26)

is what we call a double parallel projection. A second projection consists of a parallel
projection combined with an orthogonal one. With this in mind, we need the projector

hαβ = δαβ + nαnβ

along the 4-vector nα onto the hypersurfaces Σt. This quantity is a projector, because
using the normalization gαβn

αnβ = −1 we see that

hαβn
β = nα + nαnβn

β = 0

and

hαβh
β
γ =

(

δαβ + nαnβ
)

(

δβγ + nβnγ

)

= δαγ + 2nαnγ + nαnβn
βnγ = δαγ + nαnγ = hαγ

Then, we get the projection

hβαn
γ (Gβγ − 8πTβγ) = 0 (2.27)

The last projection based on the 4-vector nα is the double orthogonal projection

hγαh
δ
β (Gγδ − 8πTγδ) = 0 (2.28)

So, we have obtained equation (2.26) with only one component, equation (2.27) with
three components and finally equation (2.28) with six components.

The next step is to repeat the parallel and orthogonal projections with equations (2.27)
and (2.28) but this time with the 4-vector mα, perpendicular to the hypersurfaces Σtφ of
constant time t and constant angle φ. This vector has the components

mα =

(

0,
Mm

M
,

1

M

)

due to equation (2.14). The corresponding projector along the 4-vector mα onto the
hypersurfaces Σtφ has the form

kαβ = δαβ −mαmβ

In contrast to the projector hαβ (2.26), there is a minus sign in the definition of the
projector kαβ , because the 4-vector mα is normalized to gαβmαmβ = 1.

We do not list the equations resulting from the projections based on the 4-vector mα

here. It is sufficient to understand the basic idea. Moreover, Gourgoulhon & Bonazzola
(1993) do not use the resulting projections directly. Instead, some of them are combined
and other ones are simply skipped. It is possible to skip equations, because we need only
eight equations for the eight basic geometry fields, though Einstein’s field equation has
ten components.
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2.7. Ancillary fields

Based on the projection idea described in the last section, Gourgoulhon & Bonazzola
(1993) obtain eight geometry equations from Einstein’s field equation (2.5), one for each
of the eight basic geometry fields. Afterwards, these equations are reformulated such
that their Poisson-like character becomes evident. Note that at this stage the Laplacians
therein are still defined in curved spacetime. That is, the Laplacians consist of covariant
derivatives and not of partial ones.

In principle, we could now repeat all the steps leading to the final results (B3-B7)
in the paper of Gourgoulhon & Bonazzola (1993). Actually, this would be reasonable,
because the paper of these authors is written in such a manner that only important
steps are given, but many intermediate calculations are omitted. These calculations are
definitively not trivial, and they are required for a deeper understanding of this thesis.
However, repeating all the tedious computations here would lead us too far off. Therefore,
we skip all intermediate steps leading to the final form of the geometry equations, and
instead refer only to the results (B3-B7) of Gourgoulhon & Bonazzola (1993).

The equations (B3-B7) of Gourgoulhon & Bonazzola (1993) make use of a large set of
ancillary quantities. Every such ancillary field can be computed from the basic fields. It
is possible to state the equations (B3-B7) merely in terms of the basic fields. However,
then the equations would become unnecessarily long. Therefore, we use the ancillary
fields defined by Gourgoulhon & Bonazzola (1993). There are two kinds of such fields,
the ancillary geometry fields and the ancillary matter fields. In the following, all these
ancillary fields are defined. However, it is beyond the scope of this thesis to give a deeper
explanation of their meaning.

2.7.1. Geometry

2.7.1.1. Logarithm of 2-lapse

We start with the ancillary geometry fields (2.20). Similarly to the quantity ν = lnN for
the 3-lapse N , we define

µ = lnM (2.29)

for the 2-lapse M . Note that we do not use this quantity as one of our basic fields,
because it does not vanish in flat spacetime, in contrast to the basic geometry field β.

2.7.1.2. Christoffel symbols

We have already considered the Christoffel symbols of the second kind Γαβφ in equation
(2.3). They can be expressed in terms of the Christoffel symbols of the first kind

Γαβγ =
1

2
(∂βgαγ + ∂γgβα − ∂αgβγ)

as
Γαβγ = gαδΓδβγ

Both Christoffel symbols are defined in the whole 4-dimensional spacetime M. However,
there are also Christoffel symbols for the 3-surfaces Σt and for the 2-surfaces Σtφ. The
Christoffel symbols of the first kind on the 3-surfaces Σt are

3Γabc = Γabc (2.30)
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and on the 2-surfaces Σtφ they have the form

2Γmno = Γmno (2.31)

The expressions for these Christoffel symbols simplify drastically with our choice of co-
ordinates (see Appendix A). The corresponding Christoffel symbols of the second kind
are given by

3Γabc = had 3Γdbc (2.32)

and
2Γmno = kmp 2Γpno (2.33)

They appear in the definition of covariant derivatives on the 3-surfaces Σt and on the
2-surfaces Σtφ, respectively. Similarly to Gourgoulhon & Bonazzola (1993), we use a
single stroke ‘|’ for the so-called 3-covariant derivative

T a...b...|c = ∂cT
a...
b... +3 ΓadcT

d...
b... + ...− 3ΓdbcT

a...
d... − ... (2.34)

for every tensor field T a...b... on the 3-surfaces Σt, and a double one ‘||’ for the 2-covariant
derivative

Tm...n...||o = ∂oT
m...
n... +2 ΓnpoT

p...
m... + ...− 2ΓpnoT

m...
p... − ... (2.35)

for all tensor fields Tm...n... on the 2-surfaces Σtφ. The covariant derivative referring to the
whole spacetime M is written in the usual manner as ‘;’.

2.7.1.3. Exterior curvature

Having introduced the covariant derivatives on the 3-surfaces Σt and on the 2-surfaces
Σtφ, respectively, we now address the exterior curvature of these hypersurfaces. The
exterior curvature is a different way to encode the information given by the lapse function
and the shift vector. In this thesis, we have to consider the exterior curvature, because
it is part of the equations (B3-B7) in Gourgoulhon & Bonazzola (1993).

Let us start with the exterior curvature on the 3-surfaces Σt. It is defined as

Kab = − 1

2N

(

Na|b +Nb|a

)

= − 1

N

[

1

2
(∂aNb + ∂bNa) − 3ΓcabNc

]

and its indices are raised with the 3-metric hab, as shown in

Kab = hachbdKcd (2.36)

for example. Similarly, we obtain the exterior curvature

Lmn = − 1

M
M(m||n) = − 1

M

(

∂(mMn) − 2ΓomnMo

)

on the 2-surfaces Σtφ. Here, we have to use the 2-metric kmn for raising indices, i.e.

Lmn = kmoknpLop

2.7.1.4. Projections

As already mentioned above, the equations (B3-B7) in Gourgoulhon & Bonazzola (1993)
are the result of projecting Einstein’s field equation parallelly and orthogonally along the
two 4-vectors nα and mα, respectively. Therefore, several fields are expressed in terms
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of their projections in that paper. Let us begin with the decomposition of the 3-lapse as
Nα = ωmα + qα, in which we assume N0 = 0. The resulting projections are

ω = mαN
α (2.37)

qα = kαβN
β

In a similar manner, we split the exterior 3-curvature Kab, given in equation (2.36). For
that purpose, we extend this quantity to Kαβ by demanding Kα0 = K0α = 0. Then, we
perform the split Kαβ = κmαmβ +mακβ + καmβ + καβ , with

κ = mαmβK
αβ

κα = kαβmγK
βγ

καβ = kαγ k
β
δK

γδ

2.7.1.5. Commutators

We conclude the description of the ancillary geometry fields with three commutators,
which are defined as

[M, q]m = Mn∂nq
m − qn∂nM

m

[M,κ]m = Mn∂nκ
m − κn∂nM

m

[q, κ]m = qn∂nκ
m − κn∂nq

m

2.7.2. Matter

2.7.2.1. Velocity

The second set of ancillary fields are the ancillary matter fields. The three degrees of
freedom of the 4-velocity uα, resulting from the constraint (2.24), can be extracted into
the quantity

va = ua/ut (2.38)

Vice versa, we obtain

ut =
1

√

− (gtt + 2gtava + gabvavb)

ua = utva

2.7.2.2. Projections

We will now project the stress-energy tensor in various ways. The first decomposition is
Tαβ = Enαnβ + nαJβ + Jαnβ + Sαβ , with the projections

E = nαnβT
αβ

Jα = −hαβnγT βγ

Sαβ = hαγh
β
δ T

γδ
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The minus above is used in Gourgoulhon & Bonazzola (1993), too. We proceed with the
split Jα = jmα + jα. This time, the projections are given by

j = mαJ
α

jα = kαβJ
β

Finally, we decompose Sαβ = smαmβ +mαsβ + sαmβ + sαβ, with

s = mαmβS
αβ

sα = kαβmγS
βγ

sαβ = kαγ k
β
δ S

γδ

Note that for projections onto the 3-surfaces Σt, like Sab, the 3-metric hab is the tool for
raising and lowering indices, whereas for projections onto the 2-surfaces Σtφ, like smn,
this role is taken by the 2-metric kmn.

2.8. Geometry equations

We are now equipped with enough ancillary fields to state the eight geometry equations
(B3, B4a, B4b, ..., B7) of Gourgoulhon & Bonazzola (1993) in this thesis. However,
the first three of these equations contain some typos. In Appendix B, we perform a
mathematical derivation, which shows how the first equation has to be corrected. For
the other two erroneous equations, we have used a computer algebra program. The
correct versions of the rather lengthy equations (B3-B7) of Gourgoulhon & Bonazzola
(1993) are listed in Appendix C.

2.9. Matter equations

We proceed with the equations for the four matter fields (2.25). For that purpose, we
recall the contracted Bianchi identity

∇βG
αβ = 0

where ∇α is the covariant derivative. Applying the contracted Bianchi identity on Ein-
stein’s field equation (2.5) leads to the equation of general relativistic hydrodynamics

∇βT
αβ = 0 (2.39)

Gourgoulhon & Bonazzola (1993) rewrite the components of this equation in a manner
similar to the geometry equations. The result are equations (4.3), (4.5) and (4.7) of
Gourgoulhon & Bonazzola (1993). The first two of these equations are scalar equations,
and the third one is a 2-vector equation. However, they are not given in an expanded
form like the geometry equations (B3-B7) of Gourgoulhon & Bonazzola (1993), where in
most cases Einstein’s sum convention is written out explicitly. Therefore, it turned out
to be much easier to extend the Newtonian stream function method of Eriguchi et al.

(1986) to general relativity. In the following sections, the general relativistic stream
function method is derived. For that purpose, we project equation (2.39) parallelly and
orthogonally to the fluid 4-velocity uα.
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2.9.1. Energy equation as result of a parallel projection

2.9.1.1. Compact form

We begin with a projection of equation (2.39) parallel to the 4-velocity uα. The resulting
equation

uα∇βT
αβ = 0 (2.40)

would lead to the conservation of energy if we neglected p/ǫ terms for a negligibly small
pressure, like in the Newtonian limit. In order to show this, we use the velocity constraint
(2.24), which gives

uα∇βu
α = 0 (2.41)

Similar to the projector hαβ , defined in equation (2.26), we introduce the projector

qαβ = δαβ + uαuβ (2.42)

along the 4-velocity uα. This quantity obeys

qαβu
β = 0 (2.43)

Then, equation (2.40) becomes

0 = uα∇β

(

ǫuαuβ + pqαβ
)

= uαu
α∇β

(

ǫuβ
)

+ uαp∇β

(

gαβ + uαuβ
)

= −∇α (ǫuα) − p∇αu
α

That way, we finally arrive at

∇α [(ǫ+ p)uα] = uα∇αp (2.44)

as shown in Friedman & Stergioulas. So, if we neglected p/ǫ terms, this would lead to
the conservation ∇α (ǫuα) = 0 of the total energy density.

2.9.1.2. Expanded form

We expand equation (2.44) as

∂α [(ǫ+ p)uα] + (ǫ+ p) Γββαu
α = uα∂αp

From D’Inverno (1992), we know

Γββα = ∂α ln
√−g

with the determinant g = det gαβ , such that stationarity and axisymmetry lead to

∂m [(ǫ+ p)um] + (ǫ+ p)um∂m ln
√−g = um∂mp (2.45)

The results (D.1) and (D.2), proven in Appendix D, have the consequence that

∂m ln
√−g = ∂m

(

ν + ln
√
h
)

= ∂m

(

ν + µ+ ln
√
k
)
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We rewrite the ancillary field µ = lnM as µ = β + ln (r sin θ) (see equation (2.22)) and
compute ln

√
k = 2α+ ln r with equation (2.19). Then, we arrive at

∂m ln
√−g = ∂m [2α+ γ + 2 ln r + ln (sin θ)]

with the ancillary field
γ = β + ν (2.46)

We insert this result in equation (2.45):

∂m [(ǫ+ p)um] + (ǫ+ p)

(

2

r
ur + cot θuθ

)

=
[

∂mp− (ǫ+ p) (2α+ γ),m

]

um

Now, we use the temporal component (2.56) of the relativistic Euler equation, derived
further below in Sect. 2.9.2.2. That way,

∂m [(ǫ+ p)um] + (ǫ+ p)

(

2

r
ur + cot θuθ

)

= − (ǫ+ p) (2α+ γ + lnut),m u
m

= − ln
(

e2α+γut
)

,m
(ǫ+ p)um

and hence

∂m
[

e2α+γ (ǫ+ p)utu
m
]

+ e2α+γut (ǫ+ p)

(

2

r
ur + cot θuθ

)

= 0 (2.47)

The first term is the contraction of a partial derivative and a vector. However, this
quantity is not a 3-divergence in flat space, because we do not use Cartesian coordinates,
but spherical ones. Still, it is possible to write the above equation in terms of the flat
space 3-divergence. For that purpose, we recall from D’Inverno (1992) that for a tensor
density of weight +1, like

√
hXa, with the determinant h = dethab and an arbitrary

3-vector Xa, the covariant derivative can be replaced with the partial one:
(√

hXa
)

|a
=
(√

hXa
)

,a

Therefore, we can write the flat space 3-divergence as

3div ~X = Xa
|a =

1√
h

(√
hXa

)

,a

having taken into account that h|a = 0. For flat space, the 3-metric is hab = diag(r2,

r2 sin2 θ) such that
√
h = r2 sin θ and hence

3div ~X = Xm
,m +

2

r
Xr + cot θXθ (2.48)

Comparing this result with equation (2.47), we find

3div
[

e2α+γ (ǫ+ p)ut~u
]

= 0 (2.49)

2.9.1.3. Analytic Solution

In order to solve equation (2.49), we apply a Helmholtz decomposition. A Helmholtz de-
composition is the split of a vector field into the gradient of a scalar field and a solenoidal
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2.9. Matter equations

field. So, in Cartesian coordinates, denoted with the index c, we decompose

e2α+γ (ǫ+ p)utu
m
c = ∂c

mσ +Amc (2.50)

with the so called source function σ and the solenoidal field Amc , i.e. 3div ~A = 0.
Transforming the decomposition into spherical coordinates, we get

e2α+γ (ǫ+ p)ut

(

ur

uθ

)

=

(

∂rσ +Ar
1
r2
∂θσ +Aθ

)

with
3div ~A = ∂rA

r + ∂θA
θ +

2

r
Ar + cot θAθ = 0 (2.51)

This condition is automatically satisfied by the stream function ψ, defined as

Ar =
1

r2 sin θ
∂θψ

Aθ = − 1

r2 sin θ
∂rψ

similar to Eriguchi et al. (1986). Applying the flat space divergence 3-divergence on both
sides of the decomposition (2.50), the equations (2.49) and (2.51) show us that

3∆cσ = 0

The only solution to this equation is
σ = 0

Hence, the solution of equation (2.49) is the reduction of the two degrees of freedom of
the meridional velocity vm to the single degree of freedom ψ via

(

vr

vθ

)

=
1

r2 sin θe2α+γ (ǫ+ p)utut

(

∂θψ
−∂rψ

)

(2.52)

This result generalizes equations (2) and (3) of Eriguchi et al. (1986).

2.9.2. Relativistic Euler equation as result of an orthogonal projection

2.9.2.1. Compact form

The relativistic Euler equation is the result of projecting equation (2.39) orthogonally to
the 4-velocity uα, i.e.

qαγ∇βT
βγ = 0

Using equations (2.41) and (2.43), we find

0 = qαγ∇β

(

ǫuβuγ + pqβγ
)

= qαγ ǫu
β∇βu

γ + qαβ∇βp+ qαγ p∇β

(

uβuγ
)

= gαγ ǫu
β∇βu

γ + qαβ∇βp+ gαγ u
βp∇βu

γ

= ǫuβ∇βu
α + qαβ∇βp+ puβ∇βu

α
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This leads to
(ǫ+ p) uβ∇βu

α = −qαβ∇βp (2.53)

according to Friedman & Stergioulas.

2.9.2.2. Expanded form of temporal component

Equation (2.53) can be expanded as

0 = (ǫ+ p) uβ∇βuα + qβα∇βp

= (ǫ+ p) uβ
(

∂βuα − Γγβαuγ

)

+
(

δβα + uαu
β
)

∂βp

= (ǫ+ p)
(

uβ∂βuα − Γβγαu
βuγ
)

+ ∂αp+ uαu
β∂βp

= (ǫ+ p)

[

um∂muα − 1

2
(∂γgβα + ∂αgγβ − ∂βgγα) uβuγ

]

+∂αp+ uαu
m∂mp (2.54)

such that
∂αp+ uαu

m∂mp

ǫ+ p
=

1

2
uβuγ∂αgβγ − um∂muα (2.55)

The temporal component of this equation is

utu
m∂mp

ǫ+ p
= −um∂mut

Using equation (2.38), it can be written as

vm∂mp = − (ǫ+ p) vm∂m lnut (2.56)

2.9.2.3. Azimuthal component

Expanded form

We obtain the spatial components of equation (2.55) by setting α = a:

∂ap

ǫ+ p
=

1

2
∂agβγu

βuγ − um∂mua −
uau

m∂mp

ǫ+ p

Using the temporal component (2.56) of the relativistic Euler equation, we rewrite the
spatial components to

∂ap

ǫ+ p
=

1

2
uβuγ∂agβγ − um∂mua +

ua
ut
um∂mut

=
1

2
uβuγ∂agβγ − utu

m∂m
ua
ut

Here, it is reasonable to introduce the Lagrangian angular momentum (see, Font & Daigne
2002)

lα = −uα
ut

(2.57)

such that
∂ap

ǫ+ p
= utu

m∂mla +
1

2
uβuγ∂agβγ (2.58)
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Setting a = φ and taking axisymmetry into account, we see that the azimuthal component
of this equation is

vm∂mlφ = 0 (2.59)

This is the general relativistic version of equation (12) of Eriguchi et al. (1986). Aston-
ishingly, it has exactly the same form as in the Newtonian case.

Analytic solution

There are three possible solutions of equation (2.59):

• vm = 0 everywhere

• vm 6= 0 somewhere, but not everywhere

• vm 6= 0 everywhere

Note that we perform a slightly different categorization of the solutions of equation (2.59)
than Eriguchi et al. (1986) and Eriguchi & Müller (1991). In the first case, there is no
meridional fluid motion, but merely an azimuthal one. This scenario has already been
extensively investigated by N. Stergioulas with the RNS code. Therefore, we are not
interested in that possibility. The second case is that there is a meridional fluid motion,
but not everywhere in the neutron star. In this thesis, we do not investigate such solutions
nor do we analyze whether they exist at all. Instead, we focus on the third possibility
where there is a meridional fluid motion everywhere. In that case, we have to choose the
φ-component lφ of the Lagrangian angular momentum in such a manner that equation
(2.59) is obeyed. For that purpose, we rewrite the meridional fluid velocity vm in terms
of the stream function ψ using the result (2.52):

∂θψ∂rlφ − ∂rψ∂θlφ = 0

This equation is solved by
lφ = L (ψ) (2.60)

in which L (ψ) is an arbitrary function of the stream function ψ.

2.9.2.4. Meridional components

Expanded form

We obtain the meridional components of equation (2.58) by setting a = m:

∂mp

ǫ+ p
= utu

n∂nlm +
1

2
uαuβ∂mgαβ (2.61)

In the following, we will write these components in a manner similar to equations (7)
and (8) of Eriguchi et al. (1986). For that purpose, we expand

un∂nlm =

( (

ur∂r + uθ∂θ
)

lr
(

ur∂r + uθ∂θ
)

lθ

)

=

(

uθ (∂θlr − ∂rlθ) + ur∂rlr + uθ∂rlθ
−ur (∂θlr − ∂rlθ) + ur∂θlr + uθ∂θlθ

)

= r

(

uθ

−ur
)

w − un∂m

(

un
ut

)

(2.62)
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with
w =

1

r
(∂θlr − ∂rlθ) (2.63)

The ancillary field w is defined in such a way that its Newtonian limit is equal to the
quantity ‘ω’ defined in Eriguchi et al. (1986). Unfortunately, we cannot use the same
symbol here, because in equation (2.37) we have introduced ω = mαN

α, following the
conventions of Gourgoulhon & Bonazzola (1993).

Next, we rewrite

utu
n∂m

(

un
ut

)

= un∂mun + utu
nun∂m

1

ut

Using the 4-velocity constraint utut + umu
m + uφu

φ = −1, the second term on the right
hand side of this equation becomes

utu
nun∂m

1

ut
= −ut

(

1 + utu
t + uφu

φ
)

∂m
1

ut
=

(

1

ut
+ ut

)

∂mut − utuφu
φ∂m

1

ut

That way, we get

utu
n∂m

(

un
ut

)

= ∂m lnut + uα∂muα − uφ∂muφ − utuφu
φ∂m

1

ut

= ∂m lnut + uα∂m

(

gαβu
β
)

− utu
φ∂m

uφ
ut

Here, the 4-velocity constraint, written as gαβuαuβ = −1, allows us to transform the
second term to

uα∂m

(

gαβu
β
)

= uαuβ∂mgαβ +
1

2
gαβ∂m

(

uαuβ
)

=
1

2
uαuβ∂mgαβ

Therefore, we arrive at

− utu
n∂m

(

un
ut

)

+
1

2
uαuβ∂mgαβ = −∂m lnut + utu

φ∂m
uφ
ut

(2.64)

Eventually, we use the two results (2.62) and (2.64) in equation (2.61). This leads to

1

2
∂m ln (ut)

2 +
∂mp

ǫ+ p
= rut

(

uθ

−ur
)

w − utu
φ∂mlφ (2.65)

which is the general relativistic version of the two equations (7) and (8) of Eriguchi et al.

(1986).

Solenoidal part

In order to solve equation (2.65), we proceed similar to Eriguchi et al. (1986) in the
Newtonian limit. For that purpose, we extend equation (15) of Eriguchi et al. (1986) to
general relativity with the help of equation (2.52). We recall va = ua/ut and begin with

∂2
rψ +

sin θ

r2
∂θ

(

1

sin θ
∂θψ

)

= sin θ
{

−∂r
[

r2e2α+γ (ǫ+ p)utu
θ
]

+ ∂θ
[

e2α+γ (ǫ+ p)utu
r
]

}

(2.66)
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On the right hand side of this relation, we use the decompositions (2.12) and (2.18) to
rewrite

um = gmαuα =

(

kmn +
MmMn

M2
− NmNn

N2

)

un −
Nm

N2
ut +

(

Mm

M2
− NmNφ

N2

)

uφ

In order to make the resulting equation more compact, we introduce the 2-vector (note
that below o ∈ {r, θ} is an index and not a zero)

cm = ute
γ (ǫ+ p) kmn

[

(mnmo − nnno)uo − ntnnut +
(

mnmφ − nnnφ
)

uφ
]

such that

um = kmn
[

−utln +
e−γ

ut (ǫ+ p)
cn

]

(2.67)

Then, equation (2.19) allows us to compute

∂r

[

r2e2α+γ (ǫ+ p)utu
θ
]

= ∂r

{

eγ (ǫ+ p)ut

[

−utlθ +
e−γ

ut (ǫ+ p)
cθ

]}

= −∂r
[

eγ (ǫ+ p) (ut)
2 lθ

]

+ ∂rcθ

and in a similar manner

∂θ
[

e2α+γ (ǫ+ p)utu
r
]

= ∂θ

{

eγ (ǫ+ p)ut

[

−utlr +
e−γ

ut (ǫ+ p)
cr

]}

= −∂θ
[

eγ (ǫ+ p) (ut)
2 lr

]

+ ∂θcr

Inserting these two results into equation (2.66), one finds

∂2
rψ +

sin θ

r2
∂θ

(

1

sin θ
∂θψ

)

= sin θ
{

−eγ (ǫ+ p) (ut)
2 ∂r (−lθ) − (−lθ) ∂r

[

eγ (ǫ+ p) (ut)
2
]

+eγ (ǫ+ p) (ut)
2 ∂θ (−lr) + (−lr) ∂θ

[

eγ (ǫ+ p) (ut)
2
]

+ ∂θcr − ∂rcθ

}

The Lagrangian angular momentum lm appears four times on the right hand side. For
the two occurrences without derivatives in front, we revert equation (2.67) to

lm = − 1

ut

[

kmnu
n − e−γ

ut (ǫ+ p)
cm

]

That way, using the abbreviation (2.63), we obtain

∂2
rψ +

sin θ

r2
∂θ

(

1

sin θ
∂θψ

)

= −r sin θeγ (ǫ+ p) (ut)
2 w + sin θ (∂θcr − ∂rcθ)

sin θ

ut

{

−
[

kθnu
n − e−γ

ut (ǫ+ p)
cθ

]

∂r +

[

krnu
n − e−γ

ut (ǫ+ p)
cr

]

∂θ

}

[

eγ (ǫ+ p) (ut)
2
]
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Here, we focus on the last line. We use equations (2.19) and (2.52) to rewrite

kθnu
n − e−γ

ut (ǫ+ p)
cθ = utr2e2αvθ − e−γ

ut (ǫ+ p)
cθ = − e−γ

ut (ǫ+ p)

(

∂rψ

sin θ
+ cθ

)

and

krnu
n − e−γ

ut (ǫ+ p)
cr = ute2αvr − e−γ

ut (ǫ+ p)
cr =

e−γ

ut (ǫ+ p)

(

∂θψ

r2 sin θ
− cr

)

Hence, we arrive at the general relativistic extension

∂2
rψ +

sin θ

r2
∂θ

(

1

sin θ
∂θψ

)

= −eγ (ǫ+ p) (ut)
2 r sin θw + sin θ (∂θcr − ∂rcθ)

+

[

(∂rψ + cθ sin θ) ∂r +

(

∂θψ

r2
− cr sin θ

)

∂θ

]

ln
[

eγ (ǫ+ p) (ut)
2
]

(2.68)

of equation (15) of Eriguchi et al. (1986).
The next step is to use the function

χ = χ (r, θ, φ) =
ψ cosφ

r sin θ

of equation (16) of Eriguchi et al. (1986). Note that the field χ is correlated to the basic
matter field χ0 by

χ0 (r, θ) = χ (r, θ, 0)

Then, we find that the first squared bracket in the last line of equation (2.68) takes the
form

(∂rψ + cθ sin θ) ∂r +

(

∂θψ

r2
− cr sin θ

)

∂θ

=
r sin θ

cosφ

{[

∂r (rχ)

r
+
cθ
r

cosφ

]

∂r +
1

r2

[

∂θ (sin θχ)

sin θ
− rcr cosφ

]

∂θ

}

such that

∂2
rψ +

sin θ

r2
∂θ

(

1

sin θ
∂θψ

)

=
r sin θ

cosφ

{

−eγ (ǫ+ p) (ut)
2 w cosφ+

cosφ

r
(∂θcr − ∂rcθ)

+
[(

∂rχ+
χ

r
+
cθ
r

cosφ
)

∂r

+
1

r2
(∂θχ+ cot θχ− rcr cosφ) ∂θ

]

ln
[

eγ (ǫ+ p) (ut)
2
]

}

We compare this result with equations (17) and (18) of Eriguchi et al. (1986). That way,
it is obvious that these two equations have to be generalized to
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∆ (χ0 cosφ) = Sχ0
cosφ (2.69)

Sχ0
= −eγ (ǫ+ p) (ut)

2 w +
1

r
(∂θcr − ∂rcθ)

+
[(

∂rχ0 +
χ0

r
+
cθ
r

)

∂r

+
1

r2
(∂θχ0 + cot θχ0 − rcr)

]

∂θ ln
[

eγ (ǫ+ p) (ut)
2
]

Note that the expression Sχ0
cosφ introduced above corresponds to the quantity ‘T(r, θ, φ)’

defined in Eriguchi et al. (1986).
Finally, we have to constrain the quantity w similarly to equation (13) of Eriguchi

et al. (1986) in such a manner that the solenoidal part of equation (2.65) vanishes. For
that purpose, we restrict ourselves to a barotropic equation of state, from now on.
This means that the total energy density ǫ is a function ǫ (p) of the pressure p only. The
advantage of this limitation is that then the left hand side of equation (2.65) is a mere
gradient field and therefore its solenoidal part is zero. As a result, the solenoidal part
on the right hand side has to vanish, too. We achieve this by choosing the quantity w
appropriately. With this in mind, we use equations (2.52) and (2.60) to rewrite the right
hand side of equation (2.65) to

rut

(

uθ

−ur
)

w − utu
φ∂mlφ = − w

r sin θe2α+γ (ǫ+ p)
∂mψ − utu

φ∂mL (ψ)

= −
[

w

r sin θe2α+γ (ǫ+ p)
+ utu

φL′ (ψ)

]

∂mψ (2.70)

The solenoidal part vanishes if the expression in the squared bracket is a mere function
of the stream function ψ. We call this function f (ψ) such that

w = e2α+γ (ǫ+ p) r sin θ
(

f (ψ) − utu
φL′ (ψ)

)

(2.71)

This is the generalization of equation (13) of Eriguchi et al. (1986).

Gradient part

Inserting (2.71) into equation (2.70) gives

rut

(

uθ

−ur
)

w − utu
φ∂mlφ = −f (ψ) ∂mψ

Thus, equation (2.65) becomes

1

2
∂m ln (ut)

2 +
∂mp

ǫ+ p
+ f (ψ) ∂mψ = 0

Due to the limitation to the barotropic case, i.e. ǫ = ǫ (p), we can integrate this equation
to

1

2
ln (ut)

2 +

∫ p

0

dp′

ǫ (p′) + p′
+

∫ ψ

0
dψ′f

(

ψ′
)

= C (2.72)

with an arbitrary integration constant C. This the generalization of equation (14) of
Eriguchi et al. (1986).
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Analytic solution of gradient part

In order to solve equation (2.72), we introduce the heat function (see, e.g., Friedman &
Stergioulas)

H (p) =

∫ p

0

dp′

ǫ (p′) + p′

and the ancillary function

I (ψ) =

∫ ψ

0
dψ′f

(

ψ′
)

Then, we can simplify equation (2.72) to

1

2
ln (ut)

2 +H (p) + I(ψ) = C

The constant C is fixed by the requirement

1

2
ln (uc

t)
2 +H (pc) + I(ψc) = C

with the central pressure pc, the central stream function ψc and the central covariant
temporal component uc

t of the 4-velocity. Due to ǫ ≥ 0, the heat function H (p) is
invertible such that we then get the solution

p = H−1
(

H (pc) + 1
2 ln (uc

t)
2 − 1

2 ln (ut)
2 + I(ψc) − I(ψ)

)

(2.73)

2.9.3. Velocity va

In section 2.7.2.1, we have expressed the three degrees of freedom of the 4-velocity uα

in terms of the 3-velocity va = ua/ut. We will now explain how the velocity va can
be computed from the basic fields. For that purpose, we have a closer look at equation
(2.52). The fields α, ǫ, p and ψ appearing on the right hand side of this equation are basic
fields. The ancillary field γ is the sum of the basic geometry fields β and ν. Thus, only the
4-velocity components ut and ut are an obstacle for a straightforward computation of the
meridional velocity vm from the basic fields. In contrast to the Newtonian limit, where
the components ut and ut are equal to unity, general relativity leads to contributions of
the meridional velocity vm, hidden in the components ut and ut. In the following, we
will therefore rewrite equation (2.52) in such a manner that the meridional velocity vm

appears only on the left hand side.

In order to rewrite equation (2.52), we have to address the azimuthal velocity vφ first.
This velocity component can be expressed in terms of the meridional velocity vm. For
that purpose, we expand the φ-component of definition (2.57) to

lφ = −uφ
ut

= −gφαv
α

gtβvβ
= −gφt + gφmv

m + gφφv
φ

gtt + gtnvn + gtφvφ

such that

vφ = −gtφ + gmφv
m + (gtt + gtmv

m) lφ
gφφ + gtφlφ

or
vφ = A1 +A2rv

r +A2θv
θ (2.74)
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with the abbreviations

A1 = − gtφ + gttlφ
gφφ + gtφlφ

SR
= 0

and

A2m = −gmφ + gtmlφ
gφφ + gtφlφ

SR
= 0

Further below, we will have to investigate the values of several quantities, like A1 and
A2m, in the special relativistic case under the assumptions lφ = 0 and ∂rψ = 0. Therefore,
we will always compute the values of such quantities in the special relativistic case, and
we denote this by ‘SR

= ’, as done in the above two definitions.

Next, we consider the component vθ. With this in mind, we introduce the quantity

Am3 =
1

r2 sin θe2α+γ (ǫ+ p)

(

∂θψ
−∂rψ

)

SR
= δmr A

r
3 (2.75)

Then, equation (2.52) allows us to express the component vθ as

vθ =
Aθ3
Ar3
vr (2.76)

Eventually, we address the radial velocity component vr. In order to simplify the
following computations, we introduce the quantity

A4 =
Aθ3
Ar3

SR
= 0

Then, we can write
vθ = A4v

r (2.77)

Using this result, we express equation (2.74) as

vφ = A1 +A5v
r (2.78)

with
A5 = A2r +A2θA4

SR
= 0

Next, we use (2.75) to write equation (2.52) as

Am3 = utu
tvm = gtα

(

ut
)2
vαvm

On the very right hand side of the above line, the 4-velocity constraint tells us

(

ut
)2

= − 1

gαβvαvβ

such that we can write
gtαv

αvr +Ar3gαβv
αvβ = 0

Using equation (2.77), the first term in this relation becomes

gtαv
αvr = gttv

r + (gtr +A4gtθ) (vr)2 + gtφv
rvφ (2.79)
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and for the second one we use the expansion

gαβv
αvβ = gtt + 2gtrv

r + 2gtθv
θ + 2gtφv

φ + grr (vr)2 + 2grθv
rvθ

+2grφv
rvφ + gθθ

(

vθ
)2

+ 2gθφv
θvφ + gφφ

(

vφ
)2

such that

gαβv
αvβ = gtt + 2 (gtr +A4gtθ) v

r + 2gtφv
φ +

[

grr + 2A4grθ + (A4)
2 gθθ

]

(vr)2

+2 (grφ + 2A4gθφ) v
rvφ + gφφ

(

vφ
)2

(2.80)

Then, we combine the results (2.79) and (2.80) to

Ar3gtt +A6v
r +A7v

φ +A8 (vr)2 +A9v
rvφ +A10

(

vφ
)2

= 0 (2.81)

with

A6 = gtt + 2Ar3 (gtr +A4gtθ)
SR
= −1

A7 = 2Ar3gtφ
SR
= 0

A8 = gtr +A4gtθ +Ar3

[

grr + 2A4grθ + (A4)
2 gθθ

]

SR
= Ar3

A9 = gtφ + 2Ar3 (grφ +A4gθφ)
SR
= 0

A10 = Ar3gφφ
SR
= r2 sin2 θAr3

We will now replace the vφ-component with the help of equation (2.78). That way,
equation (2.81) becomes

B1 +B2v
r +B3 (vr)2 = 0 (2.82)

with

B1 = Ar3gtt +A1A7 + (A1)
2A10

SR
= −Ar3

B2 = A6 +A5A7 +A1A9 + 2A1A5A10
SR
= −1

B3 = A8 +A5A9 + (A5)
2A10

SR
= Ar3

For equation (2.82), we get

vr =
1

2B3

(

−B2 ±
√

(B2)
2 − 4B1B3

)

(2.83)

that is two solutions corresponding to the two signs ±. In order to find the physically
relevant solution, we investigate the special relativistic limit with the assumptions lφ = 0
and ∂rψ = 0. Then, we find

vr
SR
=

1

2Ar3

(

1 ±
√

1 − 4 (Ar3)
2

)

(2.84)

Now, we analyze what happens in the limit ∂θψ → 0. Due to equation (2.75), this means
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that Ar3 → 0. In this limit, we find

lim
Ar

3
→0

1

2Ar3

(

1 +

√

1 − 4 (Ar3)
2

)

= lim
Ar

3
→0

1

Ar3
= ∞

Therefore, the physically relevant solution of equation (2.83) is

vr = − 1

2B3

(

B2 +

√

(B2)
2 − 4B1B3

)

This result together with equation (2.76) defines the velocity component vθ. Then, it is
possible to evaluate the component vφ by using equation (2.74).

2.9.4. Equation of state

We conclude the theoretical part by having a closer look at the equation of state. In Sect.
2.9.2.4, we have limited ourselves to a barotropic equation of state, where the total energy
density ǫ is an arbitrary function ǫ (p) of the pressure p only. We recall that the reason
for this limitation was a simplification of the solution method of the equation of general
relativistic hydrodynamics. In this investigation, we perform another such simplification.
We restrict ourselves to a special barotropic equation of state (it is easy to extend the
GRNS code to the general barotropic case), namely a polytropic one, i.e.

p = KρΓ (2.85)

with the polytropic constant K, the rest mass density ρ and the polytropic exponent Γ.
In Appendix E, we rewrite this equation to the less familiar form (E.2):

ǫ =
p

Γ − 1
+
( p

K

)
1

Γ (2.86)

This equation allows us to compute the total energy density ǫ, one of our basic matter
fields.
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3.1. Basic fields

In Chapter 2, we have introduced the twelve basic fields

ν,N r, N θ, Nφ, β,M r,Mθ, α, ǫ, p, χ0, lφ (3.1)

These fields are governed by Einstein’s field equation (2.5). For three of them, we have
even found an analytic solution. Each such analytic solution allows us to explicitly
compute one of the twelve basic fields under the assumption that the other eleven fields
are known. The three analytic solutions are equations (2.60), (2.73) and (2.86), which
solve for the Lagrangian angular momentum component lφ, the pressure p and the total
energy density ǫ. For the remaining nine fields

ν,N r, N θ, Nφ, β,M r,Mθ, α, χ0 (3.2)

no analytic solution is available. However, for each of these fields there is a partial
differential equation, which can be rewritten as a Poisson equation in flat space. Such
equations can be solved via Green functions. That way, we will able to compute each
of the basic fields (3.2) if all other eleven basic fields are known. Eventually, all twelve
basic fields together will be computed via a fixed point iteration method.

3.2. Poisson equations

In the following sections, we will state the Poisson equations. Each such equation has
the structure

ÔΦ = S

in which Ô, Φ and S are a Laplacian, a potential and a source, respectively. The form of
these Poisson equations is not unambiguous. Instead of the potential Φ, we can choose
a slightly different potential, like rΦ. In that case, we get

Ô (rΦ) = S′

with some modified source S′. Unfortunately, the numerical stability of the fixed point
iteration method is highly sensitive to such changes of the potential. Therefore, it is
mandatory to find the appropriate way to write the Poisson equations. However, a
deeper analysis of this issue would have gone beyond the scope of this investigation.
Therefore, we simply experimented around, until we found the form of the equations
presented below, which turns out to be numerically stable.
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3.2.1. Poisson equation for ν

We start with the Poisson equation for the basic field ν. This field is governed by
equation (C.1). Actually, equation (C.1) originates from equation (3.11) of Gourgoulhon
& Bonazzola (1993), which is of the form

N |a
a = ... (3.3)

Here, the index a runs from 1 to 3 and the vertical stroke denotes a 3-covariant derivative.
Therefore, we realize that a covariant 3-scalar Laplacian is applied on the 3-lapce N . This
Laplacian consists of two parts. The first one is the axisymmetric, flat space 3-scalar
Laplacian

3∆ = ∂2
r +

1

r2
∂2
θ +

2

r
∂r +

cot θ

r2
∂θ (3.4)

This is the commonly known Laplacian ∆ = ∂2
x+∂

2
y+∂

2
z rewritten in spherical coordinates

(without φ-derivatives). The second part are additional terms which account for the
curvature of the 3-surfaces Σt. Moving these terms to the right hand side in equation
(C.1), we find

ν,rr +
1

r2
ν,θθ +

2

r
ν,r +

cot θ

r2
ν,θ

= A2

{

4π (E + Saa) +KabK
ab +

L2

2
−
[

1

A2
+ (mr)2

]

(ν,r)
2 −

[

1

(rA)2
+
(

mθ
)2
]

(ν,θ)
2

− (mr)2 ν,rr − 2mrmθν,rθ −
(

mθ
)2
ν,θθ

−
(

mrmr
,r +mθmr

,θ

)

ν,r −
(

mrmθ
,r +mθmθ

,θ

)

ν,θ − 2mrmθν,rν,θ

}

+

(

1

r
− µ,r

)

ν,r +
1

r2
(cotθ − µ,θ) ν,θ

Then,
µ = ln (r sin θ) + β (3.5)

which is a result of equations (2.22) and (2.29), produces

3∆ν = Sν (3.6)

Sν = A2

{

4π (E + Saa) +KabK
ab +

L2

2
−
[

1

A2
+ (mr)2

]

(ν,r)
2

−
[

1

(rA)2
+
(

mθ
)2
]

(ν,θ)
2 − (mr)2 ν,rr − 2mrmθν,rθ −

(

mθ
)2
ν,θθ

−
(

mrmr
,r +mθmr

,θ

)

ν,r −
(

mrmθ
,r +mθmθ

,θ

)

ν,θ − 2mrmθν,rν,θ

}

−β,rν,r −
β,θν,θ
r2

This is a Poisson equation consisting of the Laplacian 3∆, the potential ν and the source
Sν .
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3.2.2. Poisson equations for Na

The 3-shift Na is determined by equations (C.2), (C.3) and (C.4). These three equations
arise from equation (3.12) of Gourgoulhon & Bonazzola (1993), which starts with

N
a|b

b = ...

So, in contrast to the covariant 3-scalar Laplacian of equation (3.3), we now encounter a
covariant 3-vector Laplacian. The analog in flat space, the flat space 3-vector Laplacian,
has the usual form c∆a

b =
(

∂2
x + ∂2

y + ∂2
z

)

diag (1, 1, 1) in Cartesian coordinates (denoted
by the index c), in which Cartesian coordinates are correlated to spherical ones via
x = r sin θ cosφ, y = r sin θ sinφ and z = r cos θ. However, in spherical coordinates,
its form is not very widely known. Therefore, we briefly repeat the computation of
the Laplacian in these coordinates. For that purpose, we consider an arbitrary 3-vector
potential Φa, and then we find

hbcΦa
|bc

= hbc
[

∂b

(

∂cΦ
a +3 ΓacdΦ

d
)

− 3Γebc

(

∂eΦ
a +3 ΓaedΦ

d
)

+ 3Γabe

(

∂cΦ
e +3 ΓecdΦ

d
)]

= 3∆a
bΦ

b (3.7)

Choosing the flat space 3-metric

hab =





1 0 0
0 r2 0
0 0 r2 sin2 θ





and additionally assuming axisymmetry, the quantity 3∆a
b becomes what we call axisym-

metric, flat space 3-vector Laplacian. A somewhat lengthy but still straightforward
computation leads to the result

3∆a
b =













3∆ − 2
r2

−2
r
∂θ − 2 cot θ

r
0

2
r3
∂θ

3∆ + 2
r
∂r + 1−cot2 θ

r2
0

0 0 3∆ + 2
r
∂r + 2 cot θ

r2
∂θ













(3.8)

Therefore, we have to extract this Laplacian from equations (C.2), (C.3) and (C.4). In
order to do this, we rewrite equation (2.22) to M = r sin θeβ. Then, we compute

M,θ = reβ (cos θ + sin θβ,θ)

such that
M,θr

M
=

cot θ

r
+

1

r
β,θ + cot θβ,r + β,rθ + β,rβ,θ

and
M,θθ

M
= −1 + 2 cot θβ,θ + β,θθ + (β,θ)

2
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Using these two results together with µ = ln (r sin θ)+β and the commutativity of partial
derivatives, we rewrite

[

1

A2
− (mr)2

]

M,rθ

M
+

[

1

A2
+ (mr)2

]

µ,rµ,θ

=

[

1

A2
− (mr)2

](

cot θ

r
+

1

r
β,θ + cot θβ,r + β,rθ + β,rβ,θ

)

+

[

1

A2
+ (mr)2

](

1

r
+ β,r

)

(cot θ + β,θ)

=
1

A2

(

2
cot θ

r
+

2

r
β,θ + 2cot θβ,r + β,rθ + 2β,rβ,θ

)

− (mr)2 β,rθ

in equation (C.2) and
[

1

(rA)2
+
(

mθ
)2
]

(µ,θ)
2 +

[

1

(rA)2
−
(

mθ
)2
]

M,θθ

M

=

[

1

(rA)2
+
(

mθ
)2
]

(cot θ + β,θ)
2

+

[

1

(rA)2
−
(

mθ
)2
]

[

−1 + 2 cot θβ,θ + β,θθ + (β,θ)
2
]

=
1

(rA)2

[

cot2 θ + 4cot θβ,θ + 2 (β,θ)
2 − 1 + β,θθ

]

+
(

mθ
)2
(

cot2 θ + 1 − β,θθ
)

in (C.3). In the latter equation, we also reformulate
(

2

r3A2
− 1

(rA)2
µ,r

)

µ,θ −
1

(rA)2
M,rθ

M

=
1

(rA)2

{[

2

r
−
(

1

r
+ β,r

)]

(cot θ + β,θ) −
(

cot θ

r
+

1

r
β,θ + cot θβ,r + β,rθ + β,rβ,θ

)}

= − 1

(rA)2
(2 cot θβ,r + β,rθ + 2β,rβ,θ)

in order to avoid a numerical instability, which otherwise turned out to appear in our
simulation. That way, we eventually arrive at the 3-vector Poisson equation

3∆a
bN

b = SaN (3.9)

where the rather lengthy expressions for the sources SaN are given in Appendix F.

3.2.3. Poisson equation for β

In order to compute the basic field β, we have to solve equation (C.5). This equation
originates from equation (3.13) of Gourgoulhon & Bonazzola (1993), which has the form

(MN)||mm = ...
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Here, we have the covariant 2-scalar Laplacian. Hence, we have to identify the flat space
2-scalar Laplacian

2∆ = ∂2
r +

∂2
θ

r2
+

1

r
∂r (3.10)

in equation (C.5). This is an easy task, because the Laplacian 2∆ is directly applied to
the product MN in that equation, which gives the terms

(MN),rr +
1

r
(MN),r +

1

r2
(MN),θθ

However, a problem occurs in the context of the Green function iteration process. Even
though we set the product MN to a positive value at the initial step of the iteration,
the Green function iteration method does not guarantee that positivity is conserved.
Therefore, at later iteration steps, the product MN might become negative. We have to
avoid such outcomes, because physically reasonable lapse functions are always positive.
Therefore, we cannot use MN as the potential of the sought Poisson equation, instead
we have to use a modified potential. For that purpose, we use equations (2.21), (2.22)
and (2.46) to rewrite

MN = r sin θeβ+ν = r sin θeγ

Then, we get the first derivatives

(MN),r =
[

(r sin θγ),r + sin θ (1 − γ)
]

eγ

and
(MN),θ =

[

(r sin θγ),θ + r cos θ (1 − γ)
]

eγ

such that the second derivatives are

(MN),rr =
[

(r sin θγ),rr + (r sin θγ),r γ,r − sin θγ,r + sin θ (1 − γ) γ,r

]

eγ

and

(MN),θθ

=
[

(r sin θγ),θθ + (r sin θγ),θ γ,θ − r sin θ (1 − γ) − r cos θγ,θ + r cos θ (1 − γ) γ,θ

]

eγ

As a result of all these derivatives, we find

(MN),rr +
1

r
(MN),r +

1

r2
(MN),θθ

= eγ
{

(r sin θγ),rr +
1

r2
(r sin θγ),θθ +

1

r
(r sin θγ),r

+ (r sin θγ),r γ,r − sin θγγ,r +
1

r
sin θ (1 − γ)

+
1

r2

[

(r sin θγ),θ γ,θ − r sin θ (1 − γ) − r cos θγγ,θ

]

}

With the help of equation (3.10), we can then write

(MN),rr +
1

r
(MN),r +

1

r2
(MN),θθ = eγ

{

2∆ (r sin θγ) + r sin θ

[

(γr)
2 +

1

r2
(γ,θ)

2

]}
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On the right hand side of this relation, the Laplacian 2∆ is applied on the expression
r sin θγ. This quantity leads to physically reasonable configurations even if it is negative.
Therefore, we use r sin θγ (this quantity also appears on the left hand side of equation
(24) of Komatsu et al. (1989)) as the sought modified potential. That way, equation
(C.5) becomes

2∆ [r sin θ (β + ν)] = Sβ

Sβ =
A2

eγ

{

8πMNsmm − 2κr [M, q]r − 2κθ [M, q]θ

−M (qr + ωmr)κ,r −M
(

qθ + ωmθ
)

κ,θ

+MN
(

κmnκ
mn + κ2 − LmnL

mn
)}

−r sin θ

[

(γr)
2 +

1

r2
(γ,θ)

2

]

(3.11)

3.2.4. Poisson equations for Mm

3.2.4.1. Identification of potential and source

Equations (C.6) and (C.7) originate from equation (3.14) of Gourgoulhon & Bonazzola
(1993). This equation has the form

Mm||n
n = ...

which uses the covariant 2-vector Laplacian. So, this time our task is to extract the flat
space 2-vector Laplacian from equations (C.6) and (C.7). In Cartesian coordinates,
this Laplacian is equal to the flat space 2-scalar Laplacian and has the form ∂2

x + ∂2
z .

However, in spherical coordinates we have to proceed similarly to equation (3.7). That
way, we find

kno 2∇n
2∇oΦ

m

= kno
[

∂n
(

∂oΦ
m +2 Γmop Φp

)

− 2Γqno
(

∂qΦ
m +2 ΓmqpΦp

)

+ 2Γmnq
(

∂oΦ
q +2 Γqop Φp

)]

= 2∆m
n Φn

Then, we choose the flat space 2-metric

kmn =

(

1 0
0 r2

)

such that we obtain

2∆m
n =









2∆ − 1
r2

−2
r
∂θ

2
r3
∂θ ∂2

r + 1
r2
∂2
θ + 3

r
∂r









(3.12)

In addition to that, we use equations (2.21) and (2.29) to compute

N

(

M

N

)

,m

=
M,mN −MN,m

N
= M (µ,m − ν,m)

44



3.2. Poisson equations

and
1

N
(MN),m = M,m +M

N,m

N
= M (µ,m + ν,m)

With the help of equation (3.5), these two results lead to the components

N

(

M

N

)

,r

= M

(

1

r
+ β,m − ν,r

)

N

(

M

N

)

,θ

= M (cot θ + β,θ − ν,θ)

1

N
(MN),r = M

(

1

r
+ β,r + ν,r

)

1

N
(MN),θ = M (cot θ + β,θ + ν,θ)

Together with

M2

N

( ω

M

)

,m
=
M2

N

ω,mM − ωM,m

M2
=
M

N
(ω,m − ωµ,m)

we eventually find
2∆m

nM
n = S′m

M (3.13)

where

S′r
M = A2

[

16πMsr − 2LrrM

(

1

r
+ β,r − ν,r

)

− 2LrθM (cot θ + β,θ − ν,θ)

+
L

A2
M

(

1

r
+ β,r + ν,r

)

+ 2
M

N
[q, κ]r + 2

ω

N
[M,κ]r

+2
( κ

A2
− κrr

)M

N
(ω,r − ωµ,r) − 2κrθ

M

N
(ω,θ − ωµ,θ)

−2M
(

2κrrκ
r + 2κrθκ

θ − κκr
)]

−2

[

α,r

(

M r
,r −Mθ

,θ −
1

r
M r

)

+ α,θ

(

Mθ
,r +

1

r2
M r

,θ

)]

(3.14)

and

S′θ
M = A2

[

16πMsθ − 2LθrM

(

1

r
+ β,r − ν,r

)

− 2LθθM (cot θ + β,θ − ν,θ)

+
L

r2A2
M (cot θ + β,θ + ν,θ) + 2

M

N
[q, κ]θ + 2

ω

N
[M,κ]θ

+

[

κ

(rA)2
− κθθ

]

M

N
(ω,θ − ωµ,θ) − 2κθr

M

N
(ω,r − ωµ,r)

−2M
(

2κθ2 rκ
r + 2κθθκ

θ − κκθ
)]

−2

[

1

r2
α,θ

(

Mθ
,θ −M r

,r +
1

r
M r

)

+ α,r

(

Mθ
,r +

1

r2
M r

,θ

)]

(3.15)

Unfortunately, these Poisson equations suffer from two severe problems. The first one
is that they do not take into account that the geometry fields obey so-called slicing
conditions. We will have a closer look at this issue in the next section. The subsequent
section deals with another obstacle. A straightforward numerical implementation of the
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3. Numerics

above two Poisson equations turns out to be numerically unstable. In order to solve this
problem, we will set the sources to zero in the vicinity of the rotation axis.

3.2.4.2. Slicing condition

The 2-shift Mm has to obey the slicing condition (3.4) of Gourgoulhon & Bonazzola
(1993). According to equation (H.8), this condition can be rewritten as

2div
(

e2(α+ν) ~M
)

= 0 (3.16)

where the operator 2div is the flat space 2-divergence. This operator is the analog of
the flat space 3-divergence 3div already encountered in Sect. 2.9.1.2. Similarly to the
calculations performed in that section, we can compute the flat space 2-divergence 2div
in spherical coordinates. The only differences are that we have to replace the 3-vector
Xa, the 3-metric hab, the determinant h and the 3-covariant derivative | with the 2-vector
Y m, the 2-metric kmn, the determinant k = det kmn and the 2-covariant derivative ||,
respectively. Then, setting kmn = diag

(

r2, r2 sin2 θ
)

for flat space such that
√
k =

r2 sin θ, we obtain the result
2div~Y = Y m

,m +
1

r
Y r (3.17)

The slicing condition (3.16) causes a problem in combination with the Poisson equa-
tion (3.13). In order to see this, we consider the Poisson equation (3.13) in Cartesian
coordinates, i.e.

(

∂2
x + ∂2

z

)

Mx = ...
(

∂2
x + ∂2

z

)

Mz = ...

with the Cartesian components Mx and Mz of the 2-shift vector. Having a solution
(Mx,Mz) of this equation, also (Mx,Mz + const) is a solution, in which const is an
arbitrary constant. There is no such constant for the Mx-component, because this would
violate axisymmetry. On the other hand, the slicing condition (3.16) has the form

∂x

(

e2(α+ν)Mx
)

+ ∂z

(

e2(α+ν)Mz
)

= 0

in Cartesian coordinates. This equation is not invariant under the transformation Mz →
Mz + const, except when (α+ ν),z = 0. In total, this means that the Poisson equation
(3.13) forces us to somehow fix the constant in Mz → Mz + const, whereas the slicing
condition tells us that the choice is not arbitrary. Unfortunately, there does not seem
to be a way to directly compute the constant with the help of the slicing condition.
Therefore, we choose a different way and rewrite the Poisson equation (3.13) as

2∆m
n

[

e2(α+ν)Mn
]

= SmM (3.18)

with the new potential e2(α+ν)Mm and the new source SmM . This Poisson equation is
invariant under the transformation e2(α+ν)Mz → e2(α+ν)Mz + const. As the slicing
condition (3.16) is invariant under that transformation, too, we can then fix the constant
arbitrarily.
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3.2. Poisson equations

In order to determine the new source SmM , we compute

∂m

(

e2(α+ν)Mo
)

= Mo∂me
2(α+ν) + e2(α+ν)∂mM

o = e2(α+ν) [2Mo∂m (α+ ν) + ∂mM
o]

and for m = n

∂mn

(

e2(α+ν)Mo
)

= Mo∂mne
2(α+ν) + 2∂me

2(α+ν)∂nM
o + e2(α+ν)∂mnM

o

= e2(α+ν) {2Mo [∂mn (α+ ν) + 2∂m (α+ ν) ∂n (α+ ν)]

+4∂m (α+ ν) ∂nM
o + ∂mnM

o}

Then, equation (3.12) tells us that

SrM

=

(

∂2
r +

1

r2
∂2
θ +

1

r
∂r −

1

r2

)

(

e2(α+ν)M r
)

− 2

r
∂θ

(

e2(α+ν)Mθ
)

= e2(α+ν)
{

2M r
[

∂2
r (α+ ν) + 2 (∂r (α+ ν))2

]

+ 4∂r (α+ ν) ∂rM
r + ∂2

rM
r

+
2

r2
M r

[

∂2
θ (α+ ν) + 2 (∂θ (α+ ν))2

]

+
4

r2
∂θ (α+ ν) ∂θM

r +
1

r2
∂2
θM

r

+
2

r
M r∂r (α+ ν) +

1

r
∂rM

r − 1

r2
M r − 4

r
Mθ∂θ (α+ ν) − 2

r
∂θM

θ

}

and

SθM

=

(

∂2
r +

1

r2
∂2
θ +

3

r
∂r

)

(

e2(α+ν)Mθ
)

+
2

r3
∂θ

(

e2(α+ν)M r
)

= e2(α+ν)
{

2Mθ
[

∂2
r (α+ ν) + 2 (∂r (α+ ν))2

]

+ 4∂r (α+ ν) ∂rM
θ + ∂2

rM
θ

+
2

r2
Mθ

[

∂2
θ (α+ ν) + 2 (∂θ (α+ ν))2

]

+
4

r2
∂θ (α+ ν) ∂θM

θ +
1

r2
∂2
θM

θ

+
6

r
Mθ∂r (α+ ν) +

3

r
∂rM

θ +
4

r3
M r∂θ (α+ ν) +

2

r3
∂θM

r

}

Due to equations (2.21) and (2.23), we can replace e2(α+ν) = A2N2. And, equations
(3.10) and (3.12) allow us to write

SrM = A2N2

{

4M r [∂r (α+ ν)]2 + 4∂r (α+ ν) ∂rM
r +

4

r2
M r [∂θ (α+ ν)]2

+
4

r2
∂θ (α+ ν) ∂θM

r − 4

r
Mθ∂θ (α+ ν) + 2∆M r + 2M r 2∆ (α+ ν)

}

and

SθM = A2N2

{

4Mθ [∂r (α+ ν)]2 + 4∂r (α+ ν) ∂rM
θ +

4

r2
Mθ [∂θ (α+ ν)]2

+
4

r2
∂θ (α+ ν) ∂θM

θ +
4

r
Mθ∂r (α+ ν) +

4

r3
M r∂θ (α+ ν)

+2∆Mθ + 2Mθ 2∆ (α+ ν)
}
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Then, equations (3.13) and (3.23), the latter one being derived further below, eventually
give

SrM = A2N2 {4∂r (α+ ν) [M r∂r (α+ ν) + ∂rM
r]

+
4

r2
∂θ (α+ ν) [M r∂θ (α+ ν) + ∂θM

r] − 4

r
Mθ∂θ (α+ ν)

+S′r
M + 2M rSα

}

SθM = A2N2
{

4∂r (α+ ν)
[

Mθ∂r (α+ ν) + ∂rM
θ
]

+
4

r2
∂θ (α+ ν)

[

Mθ∂θ (α+ ν) + ∂θM
θ
]

+
4

r
Mθ∂r (α+ ν) +

4

r3
M r∂θ (α+ ν) + S′θ

M + 2MθSα

}

3.2.4.3. Rotation axis

Let us have a closer look at the expressions

E1 = A2

(

−2LrrM
1

r
− 2LrθM cot θ +

L

A2
M

1

r

)

(3.19)

and

E2 = A2

(

−2LθrM
1

r
− 2LθθM cot θ +

L

r2A2
M cot θ

)

(3.20)

in equations (3.14) and (3.15). It can be shown (with the computer algebra program
Mathematica) that these two expressions can be written as

E1 = − 1

r2
M r +

cot θ

r2
∂θM

r − 1

r
∂θM

θ +
1

r
∂rM

r + cot θ∂rM
θ

and
E2 =

cot θ

r3
M r +

1

r3
∂θM

r +
cot θ

r2
∂θM

θ − cot θ

r2
∂rM

r +
1

r
∂rM

θ

In Cartesian coordinates, they take the form

E1 =
1

x
(∂xM

x − ∂zM
z)

and
E2 =

1

x
(∂zM

x + ∂xM
z)

That way, it is obvious that the rotation axis x = 0 is somehow problematic, as there
a division by zero occurs. However, in our numerical approach, we place the cells of
the numerical grid in such a manner that they end on the rotation axis. With the grid
points lying in the center of the cells, the rotation axis does therefore not contain any
grid points. Instead, the innermost radial grid line (grid lines connect grid points) is
given at the radius r = rmin > 0, and the minimal and maximal angular grid lines are
set at θ = θmin>0 and θ = θmax < π, respectively. Then, the Cartesian coordinate x is
never zero at anyone of our grid points and no division by zero occurs. Unfortunately,
merely having no grid points on the rotation axis has turned out to still cause the fixed
point iteration method to be divergent. Numerically experimenting with the iteration,
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3.2. Poisson equations

we found out that this problem can be solved by setting SmM = 0 on the three grid lines
r = rmin, θ = θmin and θ = θmax.

3.2.4.4. Numerically optimally suited form of source terms

The final problem is that for very high numerical resolutions the source terms (3.19) and
(3.20) have turned out to cause the fixed point iteration method to become divergent.
Therefore, we had to rewrite them. For the two terms containing the trace L of the
exterior 2-curvature, we do not compute the trace L via L = kmnLmn but instead use
equation (3.10)

L =
2Mm

MN
N||m = 2mmν,m (3.21)

of Gourgoulhon & Bonazzola (1993), which results from the slicing condition (3.16).
From a perturbative viewpoint, where all basic fields are small and of the order of ∆, it
is now obvious that L is of the order ∆2, because it contains the two basic fields Mm

and ν. Therefore, L does no longer affect stability.

The only remaining problematic expressions are therefore

E′
1 = A2

(

−2LrrM
1

r
− 2LrθM cot θ

)

and

E′
2 = A2

(

−2LθrM
1

r
− 2LθθM cot θ

)

They can be rewritten as (again with Mathematica)

E′
1 = cot θ

(

1

r2
M r

,θ +Mθ
,r

)

+
2

r
M r

,r +
2

r

(

M rα,r +Mθα,θ

)

and

E′
2 =

1

r

(

1

r2
M r

,θ +Mθ
,r

)

+ 2
cot θ

r2

(

1

r
M r +Mθ

,θ +M rα,r +Mθα,θ

)

(3.22)

On the other hand, it is also possible to show (with Mathematica by explicitly evaluating
the trace L) that equation (3.21) can be put in the form

Mθ
,θ +M r

,r +
1

r
M r + 2M r (α,r + ν,r) + 2Mθ (α,θ + ν,θ) = 0

Then, we can reduce the number of stability relevant terms in expression (3.22) by writing
it as

E′
2 =

1

r

(

1

r2
M r

,θ +Mθ
,r

)

− 2
cot θ

r2
M r

,r − 2
cot θ

r2

[

M r (α,r + 2ν,r) +Mθ (α,θ + 2ν,θ)
]

such that we finally obtain
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S′r
M = cot θ

(

1

r2
M r

,θ +Mθ
,r

)

+
2

r
M r

,r

+A2
[

16πMsr − 2LrrM (β,r − ν,r) − 2LrθM (β,θ − ν,θ)

+
2Mmν,m
A2

(µ,r + ν,r) + 2
M

N
[q, κ]r + 2

ω

N
[M,κ]r

+2
( κ

A2
− κrr

)M

N
(ω,r − ωµ,r) − 2κrθ

M

N
(ω,θ − ωµ,θ)

−2M
(

2κrrκ
r + 2κrθκ

θ − κκr
)]

−2

[

α,r

(

M r
,r −Mθ

,θ −
2

r
M r

)

+ α,θ

(

Mθ
,r +

1

r2
M r

,θ −
1

r
Mθ

)]

S′θ
M =

1

r

(

1

r2
M r

,θ +Mθ
,r

)

− 2
cot θ

r2
M r

,r

+A2
[

+16πMsθ − 2LθrM (β,r − ν,r) − 2LθθM (β,θ − ν,θ)

+
2Mmν,m
r2A2

(µ,θ + ν,θ) + 2
M

N
[q, κ]θ + 2

ω

N
[M,κ]θ

+

[

κ

(rA)2
− κθθ

]

M

N
(ω,θ − ωµ,θ) − 2κθr

M

N
(ω,r − ωµ,r)

−2M
(

2κθrκ
r + 2κθθκ

θ − κκθ
)]

−2

[

1

r2
α,θ

(

Mθ
,θ −M r

,r +
1

r
M r

)

+ α,r

(

Mθ
,r +

1

r2
M r

,θ

)]

−2
cot θ

r2

[

M r (α,r + 2ν,r) +Mθ (α,θ + 2ν,θ)
]

3.2.5. Poisson equation for α

Equation (C.8) follows from equation (3.25) of Gourgoulhon & Bonazzola (1993), having
the form

N ||m
m = ...

This equation uses the covariant 2-scalar Laplacian, and so we look for the flat space
2-scalar Laplacian 2∆ in equation (2.9), which is directly applied to the sum α+ ν there.
Hence, we immediately obtain

2∆ (α+ ν) = Sα (3.23)

Sα = A2

{

8πs+
1

N

[

(qr + ωmr)κ,r +
(

qθ + ωmθ
)

κ,θ

]

+
2

MN

[

κr[M, q]r + κθ[M, q]θ
]

+ 3κmκ
m

+
1

2

(

κmnκ
mn + κ2 + LmnL

mn
)

}

− (ν,r)
2 −

(ν,θ
r

)2
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3.2.6. Poisson equation for χ0

For the basic matter field χ0, we have already found a Poisson equation (2.69). In order
to invert the Laplacian in that equation, we have to specify boundary conditions. For
that purpose, it is best to rewrite equation (2.69) in coordinates adapted to the
surface of the neutron star. Denoting the radial coordinate of the surface in the old
coordinates (r, θ, φ) as R (θ), the new coordinates are defined by

r′ (r, θ, φ) =
r

R (θ)

θ′ (r, θ, φ) = θ

φ′ (r, θ, φ) = φ

So, we have scaled the coordinates radially, such that in the new coordinates (r′, θ′, φ′)
the radial coordinate of the surface is equal to unity everywhere, i.e. r′ (R (θ′) , θ′, φ′) = 1.
Then, the chain rule produces the first derivatives

∂r =
1

R (θ′)
∂r′

and

∂θ = −r∂θR (θ)

R (θ)2
∂r′ + ∂θ′ = ∂θ′ −

r′∂θ′R (θ′)

R (θ′)
∂r′

whereas ∂φ = ∂φ′ . That way, we find the two second derivatives

∂2
r =

1

R (θ′)2
∂2
r′

and

∂2
θ = ∂2

θ′ − ∂θ′

(

r′∂θ′R (θ′)

R (θ′)
∂r′

)

− r′∂θ′R (θ′)

R (θ′)
∂r′θ′ +

r′∂θ′R (θ′)

R (θ′)
∂r′

(

r′∂θ′R (θ′)

R (θ′)
∂r′

)

= ∂2
θ′ +

(

r′∂θ′R (θ′)

R (θ′)

)2

∂2
r′ − 2

r′∂θ′R (θ′)

R (θ′)
∂r′θ′

+
r′

R (θ′)

[

2
(∂θ′R (θ′))2

R (θ′)
− ∂2

θ′R
(

θ′
)

]

∂r′

Using all the above derivatives, we get

∆ = ∂2
r +

1

r2
∂2
θ +

1

r2 sin2 θ
∂2
φ +

2

r
∂r +

cot θ

r2
∂θ (3.24)

=
1

R (θ′)2

{

∆′ +

(

∂θ′R (θ′)

R (θ′)

)2

∂2
r′ − 2

∂θ′R (θ′)

r′R (θ′)
∂r′θ′

+
1

r′R (θ′)

[

2
(∂θ′R (θ′))2

R (θ′)
− ∂2

θ′R
(

θ′
)

− cot θ′∂θ′R
(

θ′
)

]

∂r′

}

in which ∆′ is equal to ∆, except for the replacement (r, θ, φ) → (r′, θ′, φ′). Hence, we
finally arrive at
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∆′
(

χ0 cosφ′
)

= S′
χ0

cosφ′ (3.25)

S′
χ0

= R
(

θ′
)2
Sχ0

−
(

∂θ′R (θ′)

R (θ′)

)2

∂2
r′χ0 + 2

∂θ′R (θ′)

r′R (θ′)
∂r′θ′χ0

− 1

r′R (θ′)

[

2
(∂θ′R (θ′))2

R (θ′)
− ∂2

θ′R
(

θ′
)

+ cot θ′∂θ′R
(

θ′
)

]

∂r′χ0

So, we have found Poisson equations for all nine basic fields given in the list (3.2).
Therefore, we will focus on how these Poisson equations are solved numerically, in the
following.

3.3. Numerical grid

Figure 3.1.: Numerical grid. Due to axisymmetry, it is sufficient to store the values
of the fields in a single meridional plane. For that purpose, we choose the
(x, z)-plane and a two-dimensional polar grid with the coordinates r and θ.
The figure shows the radial and angular grid lines, given in black color. In
addition to that, the minimal and maximal radial and angular grid lines are
highlighted, denoted with rmin, rmax, θmin and θmax, respectively.

In order to solve the Poisson equations for the basic fields in the series (3.2), we have to
specify a numerical grid. The numerical grid consists of the two coordinates r and θ shown
in Fig. 3.1. The minimal and maximal radial grid lines are denoted with rmin and rmax,
respectively, in which rmax is chosen sufficiently larger than the radius of the physically
interesting region around the neutron star. The minimal and maximal angular grid lines
are θmin and θmax, connected by the relation θmax = π − θmin. The angular grid lines
are equidistant, with the angle between two neighboring grid lines being 2θmin, whereas
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the radial ones can be placed arbitrarily. In many cases, including those studied in this
investigation, the best choice are equidistant radial grid lines. Therefore, the radial grid
lines in Fig. 3.1 are distributed equidistantly, though in our numerical implementation,
the GRNS code, arbitrarily placed radial grid lines are supported in principle.

3.4. Boundary

3.4.1. Ghost zone

Figure 3.2.: Ghost zone. In order to compute derivatives on the boundary of the nu-
merical grid of Fig. 3.1, we use a ghost zone. The ghost zone extends the
numerical grid by one zone in both directions of the radial and angular di-
mensions. It consists of four regions, denoted by I, II, III and IV . The
values of the fields in the ghost zone are specified by the chosen boundary
conditions.

We do not only have to specify the values of the fields on the numerical grid, but we
also have to compute first and second derivatives. For that purpose, we call the radial
and angular grid lines of the numerical grid ri and θj , where i ∈ {imin, ..., imax} and
j ∈ {jmin, ..., jmax}, respectively. Then, the value of an arbitrary field F (r, θ) at the grid
point (ri, θj) can be written as Fi,j (the comma is no partial derivative here). Similarly
to equation (5.69) of Dimmelmeier (2001), we evaluate the derivatives of the field F (r, θ)
via

∂F

∂r

∣

∣

∣

∣

i,j

=
∆r2i−1 (Fi+1,j − Fi,j) + ∆r2i (Fi,j − Fi−1,j)

∆ri−1∆ri (∆ri−1 + ∆ri)

∂F

∂θ

∣

∣

∣

∣

i,j

=
Fi,j+1 − Fi,j−1

2∆θ

∂2F

∂r2

∣

∣

∣

∣

i,j

= 2
∆ri−1 (Fi+1,j − Fi,j) + ∆ri (Fi−1,j − Fi,j)

∆ri−1∆ri (∆ri−1 + ∆ri)
(3.26)

53



3. Numerics

∂2F

∂θ2

∣

∣

∣

∣

i,j

=
Fi,j+1 − 2Fi,j + Fi,j−1

∆θ2

∂2F

∂r∂θ

∣

∣

∣

∣

i,j

=
Fi−1,j−1 − Fi−1,j+1 − Fi+1,j−1 + Fi+1,j+1

2 (∆ri−1 + ∆ri) ∆θ

with

∆ri = ri+1 − ri

∆θ = θi+1 − θi = const

These formulas show that we have to go beyond the computational domain, i.e. i ∈
{imin, ..., imax} and j ∈ {jmin, ..., jmax}, in order to compute derivatives on its boundary.
This problem is solved with the help of a ghost zone, as shown in Fig. 3.2. The values
of the ghost zone are specified by the boundary conditions.

3.4.2. Boundary conditions

Boundary conditions are necessary for the four regions of Fig. 3.2. Let us consider region
I first. Similarly to the five equations (3.26), the radial, left, third derivative is

∂3F

∂r3

∣

∣

∣

∣

left

i,j

= − 6Fi−2,j

∆ri−2 (∆ri−2 + ∆ri−1) (∆ri−2 + ∆ri−1 + ∆ri)

+
6Fi−1,j

∆ri−2∆ri−1 (∆ri−1 + ∆ri)
− 6Fi,j

∆ri−1 (∆ri−2 + ∆ri−1)∆ri

+
6Fi+1,j

∆ri (∆ri−1 + ∆ri) (∆ri−2 + ∆ri−1 + ∆ri)

We set this quantity equal to zero at the outermost radial grid line imax, i.e.

∂3F

∂r3

∣

∣

∣

∣

left

imax,j

= 0

That way, we can evaluate Fimax+1,j for j ∈ {jmin, ..., jmax}, i.e. in the ghost zone region
I.

The boundary of region II is reflective. This means that

Fi,jmin−1 = Fi,jmin

and
Fi,jmax+1 = Fi,jmax

for i ∈ {imin, ..., imax + 1}. For region III, the boundary is reflective, too, i.e.

Fimin−1,j = Fimin,j

where j ∈ {jmin, ..., jmax}. In region IV , the boundary condition has the form

Fimin−1,jmin−1 = Fimin,jmax

and
Fimin−1,jmax+1 = Fimin,jmin
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3.5. Green functions

We do not only have to specify the field values Fi,j in the ghost zones to compute the
derivatives in the five equations (3.26), but also the radial grid line distances ∆ri. Here,
we use

∆rmin−1 = ∆rmin

consistent with the reflective nature of the radial boundary.

3.5. Green functions

3.5.1. 2-scalar

3.5.1.1. Analytic solution

The flat space 2-scalar Poisson equation is

2∆Φ = S (3.27)

with the flat space 2-scalar Laplacian 2∆, defined in equation (3.10), a potential Φ and
a source S. Due to equation (24) of Komatsu et al. (1989), the Green function of the
Laplacian 2∆ is

G
(

~x, ~x′
)

=
1

2π
ln
∣

∣~x− ~x′
∣

∣

where ~x = (r sin θ, r cos θ) and ~x′ = (r′ sin θ′, r′ cos θ′) are 2-dimensional vectors. This
Green function allows us to write the analytic solution of equation (3.27) as

Φ (~x) =
1

2π

∫

d2x′S
(

~x′
)

ln
∣

∣~x− ~x′
∣

∣ (3.28)

3.5.1.2. Numerical solution

In order to write equation (3.28) in a form applicable for a numerical evaluation, the
easiest way would be to replace the 2-dimensional integral in that equation with two
Riemann sums. However, this approach is computationally very expensive. Therefore,
we use equation (28) of Komatsu et al. (1989):

ln
∣

∣~x− ~x′
∣

∣ = lnmax
(

r, r′
)

−
∞
∑

l=1

1

l

minl (r, r′)

maxl (r, r′)

(

cos (lθ) cos
(

lθ′
)

+ sin (lθ) sin
(

lθ′
))

(3.29)
Then, equation (3.28) becomes

Φ (r, θ)

=
1

2π

∫ ∞

0
dr′
∫ 2π

0
dθ′r′S

(

r′, θ′
)

·
[

ln max
(

r, r′
)

−
∞
∑

l=1

1

l

minl (r, r′)

maxl (r, r′)

(

cos (lθ) cos
(

lθ′
)

+ sin (lθ) sin
(

lθ′
))

]

(3.30)

Having a closer look at the angular integral, we realize that the angle θ is not restricted
to the usual interval θ ∈ [0, π], but instead the upper integration boundary is equal to
2π (see equation (24) of Komatsu et al. 1989). Therefore, we have to specify the value of
the integrand and thus the source S (r, θ) in the interval θ ∈ [π, 2π]. For that purpose,
we impose boundary conditions.
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3. Numerics

3.5.1.3. Von Neumann boundary condition

The von Neumann boundary condition is a result of the requirement

S (r, π + θ) = S (r, π − θ)

such that
∫ 2π

0
dθ′S

(

r′, θ′
)

= 2

∫ π

0
dθ′S

(

r′, θ′
)

Taking into account
(

cos (l (π + θ))
sin (l (π + θ))

)

S (r, π + θ) =

(

cos (−l (π + θ))
− sin (−l (π + θ))

)

S (r, π − θ)

=

(

cos (l (π − θ)− 2πl)
− sin (l (π − θ) − 2πl)

)

S (r, π − θ)

=

(

cos (l (π − θ))
− sin (l (π − θ))

)

S (r, π − θ) (3.31)

we additionally find

∫ 2π

0
dθ′
(

cos (lθ′)
sin (lθ′)

)

S
(

r′, θ′
)

= 2

∫ π

0
dθ′
(

cos (lθ′)
0

)

S
(

r′, θ′
)

Hence, we obtain

Φ (r, θ) = − 1

π

∞
∑

l=1

1

l
cos (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ cos

(

lθ′
)

S
(

r′, θ′
)

+
1

π

∫ ∞

0
dr′r′ ln max

(

r, r′
)

∫ π

0
dθ′S

(

r′, θ′
)

(3.32)

We use this equation to solve the Poisson equation (3.23) of the basic field α. In that case,
the potential is Φ = α + ν and the source S = Sα. We are not allowed to use equation
(3.32) for the Poisson equation (3.11) of the basic field β, because there the potential is
Φ = r sin θ (β + ν), which has to vanish on the rotation axis due to the presence of the
factor r sin θ. Therefore, we have to apply the Dirichlet boundary condition for the basic
field β.

3.5.1.4. Dirichlet boundary condition

For the von Dirichlet boundary condition we assume

S (r, π + θ) = −S (r, π − θ)

which results in
∫ 2π

0
dθ′S

(

r′, θ′
)

= 0

Moreover, in analogy to equation (3.31), we get
(

cos (l (π + θ))
sin (l (π + θ))

)

S (r, π + θ) =

(

− cos (l (π − θ))
sin (l (π − θ))

)

S (r, π − θ)
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3.5. Green functions

and therefore
∫ 2π

0
dθ′ sin θ′

(

cos (lθ′)
sin (lθ′)

)

S
(

r′, θ′
)

= 2

∫ π

0
dθ′ sin θ′

(

0
sin (lθ′)

)

S
(

r′, θ′
)

Then, we finally arrive at

Φ (r, θ) = − 1

π

∞
∑

l=1

1

l
sin (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ sin

(

lθ′
)

S
(

r′, θ′
)

(3.33)

As mentioned above, we use this equation for the Poisson equation (3.11) of the basic
field β. The potential is Φ = r sin θ (β + ν) in that case, and the source is S = Sβ.

3.5.2. 3-scalar

3.5.2.1. Analytic solution

The flat space 3-scalar Poisson equation is

∆Φ = S

where the flat space 3-scalar Laplacian ∆ is given in equation (3.24). For this case, the
Green function is commonly known (see, e.g., Fließbach 1996) to be

G
(

~x, ~x′
)

= − 1

4π |~x− ~x′| (3.34)

in which ~x and ~x′ are 3-dimensional vectors. They are defined as ~x = (r sin θ cosφ,
r sin θ sinφ, r cos θ), and analogously for ~x′. Then, the analytic solution is

Φ (~x) = − 1

4π

∫

d3x′
S (~x′)

|~x− ~x′| (3.35)

3.5.2.2. Numerical solution

Equation (11.38) of Fließbach (1996) tells us that the analog of equation (3.29) for the
Green function (3.34) is

1

|~x− ~x′| = 4π

∞
∑

l=0

l
∑

m=−l

1

2l + 1

minl (r, r′)

maxl+1 (r, r′)
Y ⋆
lm

(

θ′, φ′
)

Ylm (θ, φ)

with the spherical harmonics

Ylm (θ, φ) =

√

(2l + 1) (l −m)!

4π (l +m)!
Pml (cos θ) eimφ (3.36)

and the associated Legendre polynomials

Pml (x) =
(−)m

2ll!

(

1 − x2
)

m
2

dl+m

dxl+m
(

x2 − 1
)l
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3. Numerics

That way, equation (3.35) becomes

Φ (~x) = −
∞
∑

l=0

l
∑

m=−l

1

2l + 1
Ylm (θ, φ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′ sin θ′

∫ 2π

0
dφ′Y ⋆

lm

(

θ′, φ′
)

S
(

~x′
)

which can be rewritten as

Φ (~x) = − 1

4π

∞
∑

l=0

l
∑

m=−l

(l −m)!

(l +m)!
Pml (cos θ) eimφ

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′Pml

(

cos θ′
)

sin θ′
∫ 2π

0
dφ′S

(

~x′
)

e−imφ
′

(3.37)

3.5.2.3. Axisymmetry

Now, we assume axisymmetry, i.e.

S (~x) = S (r, θ)

such that

Φ (r, θ) = − 1

4π

∞
∑

l=0

l
∑

m=−l

(l −m)!

(l +m)!
Pml (cos θ) eimφ

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′Pml

(

cos θ′
)

sin θ′S
(

r′, θ′
)

∫ 2π

0
dφ′e−imφ

′

Obviously,

∫ 2π

0
dφ′e−imφ

′

=

∫ 2π

0
dφ′
(

cos
(

mφ′
)

− i sin
(

mφ′
))

= 2πδm0

Therefore, using the Legendre polynomials

Pl (x) =
1

2ll!

dl

dxl
(

x2 − 1
)l

we finally obtain

Φ (r, θ) = −1

2

∞
∑

l=0

Pl (cos θ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′Pl

(

cos θ′
)

sin θ′S
(

r′, θ′
)

(3.38)
We use this equation for the Poisson equation (3.6) of the basic field ν. For that field,
the potential is Φ = ν and the source S = Sν .

3.5.2.4. Azimuthal cosine

Next, we assume that
S (~x) = S (r, θ) cosφ (3.39)
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3.5. Green functions

of which we will make use further below. Then, we acquire

Φ (r, θ, φ) = − 1

4π

∞
∑

l=0

l
∑

m=−l

(l −m)!

(l +m)!
Pml (cos θ) eimφ

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′Pml

(

cos θ′
)

sin θ′S
(

r′, θ′
)

∫ 2π

0
dφ′e−imφ

′

cosφ′

Due to the equations (3.45) and (3.46) further below, we see that

∫ 2π

0
dφ′e−imφ

′

cosφ′ = πδ
|m|
1

such that we get

Φ (r, θ, φ) = −1

4

∞
∑

l=1

∑

m=−1,1

(l −m)!

(l +m)!
Pml (cos θ) eimφ

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′Pml

(

cos θ′
)

sin θ′S
(

r′, θ′
)

We proceed with the relation (equation (3.51) of Jackson 2006)

P−m
l = (−)m

(l −m)!

(l +m)!
Pml (3.40)

and find

Φ (r, θ, φ) = −1

4

∞
∑

l=1

∑

m=1

(l −m)!

(l +m)!
Pml (cos θ)

(

e−imφ + eimφ
)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′Pml

(

cos θ′
)

sin θ′S
(

r′, θ′
)

such that

Φ (r, θ, φ) = −1

2
cosφ

∞
∑

l=1

(l − 1)!

(l + 1)!
P 1
l (cos θ)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′S
(

r′, θ′
)

Then, we eventually arrive at

Φ (r, θ, φ) = Φ (r, θ) cosφ

Φ (r, θ) = −1

2

∞
∑

l=1

1

l(l + 1)
P 1
l (cos θ)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′S
(

r′, θ′
)

(3.41)
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3.5.2.5. Vanishing surface potential

Equation (19) of Eriguchi et al. (1986) tells us that for the boundary condition (3.39)
equation (3.35) can be generalized to

Φ (r, θ) = Φ0 (r, θ) +

∞
∑

l=1

alr
lP 1
l (cos θ)

Here, φ0 (r, θ) is given by equation (3.41) and the al are arbitrary coefficients, to allow
for a much larger set of boundary conditions. Let us now assume the boundary condition

S (~x) = S (r, θ) cosφ

Φ (R, θ) = 0

with the surface radius R (in surface adapted coordinates, see Sect. 3.2.6). Then, we get

Φ0 (R, θ) +

∞
∑

l=1

alR
lP 1
l (cos θ) = 0

We define Φl = −alRl such that

Φ0 (R, θ) =

∞
∑

l=1

ΦlP
1
l (cos θ)

Comparing this with equation (G.1), equation (G.2) gives

Φl =
(2l + 1)

2l (l + 1)

∫ π

0
dθΦ0 (R, θ)P 1

l (cos θ) sin θ

such that

al = − (2l + 1)

2l (l + 1)Rl

∫ π

0
dθΦ0 (R, θ)P 1

l (cos θ) sin θ

Hence, we finally arrive at the solution

Φ0 (r, θ) = −1

2

∞
∑

l=1

1

l(l + 1)
P 1
l (cos θ)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′S
(

r′, θ′
)

Φ (r, θ) = Φ0 (r, θ) − 1

2

∞
∑

l=1

2l + 1

l (l + 1)
P 1
l (cos θ)

rl

Rl

∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′φ0

(

R, θ′
)

which is used for the basic matter field χ0. For that purpose, we rename the coordinates
(r, θ) appearing in the above box to (r′, θ′) (and those in the integrands to (r′′, θ′′)). Then,
we set Φ (r′, θ′) = χ0 (r′, θ′) and S (r′, θ′) = S′

χ0
(r′, θ′), in which the fields χ0 (r′, θ′) and

S′
χ0

(r′, θ′) are the two quantities appearing in equation (3.25).
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3.5. Green functions

3.5.3. 2-vector

3.5.3.1. Analytic solution

We proceed with the flat space 2-vector Poisson equation

2∆m
nΦ

n = Sn

where the flat space 2-vector Laplacian 2∆m
n is encountered already in equation (3.12),

and Φn and Sn are a 2-vector potential and a 2-vector source, respectively. Due to
equation (3.28), it is obvious that in Cartesian coordinates (denoted with the index c)

Φm
c (x, z) =

1

2π

∫

d2x′Smc
(

x′, z′
)

ln
∣

∣~x− ~x′
∣

∣

The spherical components Φm (r, θ) can be computed from the Cartesian ones via

Φm (r, θ) =
∂ (r, θ)m

∂ (x, z)n
Φn

c (x, z)

where ∂ (r, θ)m /∂ (x, z)n is a Jacobian. Using the inverse Jacobian ∂ (x, z)m /∂ (r, θ)n,
we find

Φm (r, θ) =
1

2π

∂ (r, θ)m

∂ (x, z)n

∫

d2x′
∂ (x′, z′)n

∂ (r′, θ′)o
So
(

r′, θ′
)

ln
∣

∣~x− ~x′
∣

∣

3.5.3.2. Numerical solution

We assume axisymmetry such that we have to specify a boundary condition for θ =
0 and θ = π, similar to the flat space 2-scalar Poisson equation (see Sect. 3.5.1.2).
Obviously, Φx

c (x, z) has to obey a Dirichlet and Φz
c (x, z) a von Neumann boundary

condition. In the following, we use the Jacobians

∂ (r, θ)m

∂ (x, z)n
=

(

sin θ cos θ
cos θ
r

− sin θ
r

)

and
∂ (x, z)m

∂ (r, θ)n
=

(

sin θ r cos θ
cos θ −r sin θ

)

In addition to that, we recall equations (3.32) and (3.33). Eventually, we apply

T̃m (r, θ) = Tmc (x (r, θ) , z (r, θ))

where either T = S or T = φ. Then, we find
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Φr (r, θ) = sin θ Φ̃x (r, θ) + cos θ Φ̃z (r, θ)

Φθ (r, θ) =
cos θ

r
Φ̃x (r, θ) − sin θ

r
Φ̃z (r, θ)

Φ̃x (r, θ) = − 1

π

∞
∑

l=1

1

l
sin (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ sin

(

lθ′
)

S̃x
(

r′, θ′
)

Φ̃z (r, θ) = − 1

π

∞
∑

l=1

1

l
cos (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ cos

(

lθ′
)

S̃z
(

r′, θ′
)

+
1

π

∫ ∞

0
dr′r′ ln max

(

r, r′
)

∫ π

0
dθ′S̃z

(

r′, θ′
)

S̃x (r, θ) = sin θ Sr (r, θ) + r cos θ Sθ (r, θ)

S̃z (r, θ) = cos θ Sr (r, θ) − r sin θ Sθ (r, θ) (3.42)

We use this result for the Poisson equation (3.18) of the 2-shift Mm, i.e. for Φm =
e2(α+ν)Mm and Sm = SmM .

3.5.4. 3-vector

3.5.4.1. Analytic solution

The last Poisson equation to be addressed in this investigation is the axisymmetric, flat
space 3-vector one

3∆a
bΦ

b = Sa

with the Laplacian 3∆a
b from equation (3.8), the 3-vector potential Φa and the 3-vector

source Sa. Looking at equation (3.35), it is evident that

Φa
c (x, y, z) = − 1

4π

∫

d3x′
Sac (x′, y′, z′)

|~x− ~x′|

Hence, using the two 3-dimensional Jacobians ∂ (r, θ, φ)a /∂ (x, y, z)b and ∂ (x, y, z)a /
∂ (r, θ, φ)b, we find

Φa (r, θ) = − 1

4π

∂ (r, θ, φ)a

∂ (x, y, z)b

∫

d3x′
∂ (x′, y,′ z′)b

∂ (r′, θ′, φ′)c
Sc (r′, θ′)

|~x− ~x′| (3.43)

3.5.4.2. Numerical solution

The Jacobian inside of the integral of equation (3.43) is

∂ (x, y, z)a

∂ (r, θ, φ)b
=





sin θ cosφ r cos θ cosφ −r sin θ sinφ
sin θ sinφ r cos θ sinφ r sin θ cosφ

cos θ −r sin θ 0



 (3.44)

Hence, depending on the choice of the indices b and c, the integrand of equation (3.43)
(not considering the denominator |~x− ~x′|) depends either on cosφ, sinφ or not at all on
the angle φ. The latter case has already been treated in equation (3.38). However, the
two possible trigonometric dependencies have to be addressed now. Therefore, we return
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3.5. Green functions

to equation (3.35) and modify it to

Ψn (r, θ, φ) = − 1

4π

∫

d3x′
(

cosφ′

sinφ′

)

S (~x′)

|~x− ~x′|

We have introduced the new 2-vector Ψn here to avoid any confusion with the 3-vector
Φa used in this section. It is then obvious from equation (3.37) that

Ψn (r, θ, φ) = − 1

4π

∞
∑

l=0

l
∑

m=−l

(l −m)!

(l +m)!
Pml (cos θ) eimφ

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′ sin θ′Pml

(

cos θ′
)

S
(

r′, θ′
)

∫ 2π

0
dφ′
(

cosφ′

sinφ′

)

e−imφ
′

For m2 6= 1, we obtain

∫ 2π

0
dφ′

(

cosφ′

sinφ′

)

e−imφ
′

=
1

m2 − 1

(

im cosφ′ − sinφ′

im sinφ′ + cosφ′

)

e−imφ
∣

∣

∣

∣

2π

0

=

(

0
0

)

(3.45)

and for m = ±1

∫ 2π

0
dφ′
(

cosφ′

sinφ′

)

e∓iφ
′

=
1

2

(

φ′ ± i
2e

∓2iφ′

∓iφ′ − 1
2e

∓2iφ′

)∣

∣

∣

∣

2π

0

=

(

π
∓iπ

)

(3.46)

Thus,

Ψn (r, θ, φ) = − 1

4π

∞
∑

l=1

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′ sin θ′

·
[

(l + 1)!

(l − 1)!
P−1
l (cos θ) e−iφP−1

l

(

cos θ′
)

(

π
iπ

)

+
(l − 1)!

(l + 1)!
P 1
l (cos θ) eiφP 1

l

(

cos θ′
)

(

π
−iπ

)]

S
(

r′, θ′
)

Due to relation (3.40), we see

(l + 1)!

(l − 1)!
P−1
l (cos θ)P−1

l

(

cos θ′
)

=
(l − 1)!

(l + 1)!
P 1
l (cos θ)P 1

l

(

cos θ′
)

Hence, using

e−iφ
(

π
iπ

)

+ eiφ
(

π
−iπ

)

= 2π

(

cosφ
sinφ

)

allows us to continue with

Ψn (r, θ, φ) = −1

2

(

cosφ
sinφ

) ∞
∑

l=1

1

l (l + 1)
P 1
l (cos θ)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′ sin θ′P 1

l

(

cos θ′
)

S
(

r′, θ′
)
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So, using equation (3.38) and the abbreviations

Ô0 = −1

2

∞
∑

l=0

Pl (cos θ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′Pl

(

cos θ′
)

sin θ′

Ô1 = −1

2

∞
∑

l=1

1

l (l + 1)
P 1
l (cos θ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′

we obtain

− 1

4π

∫

d3x′





cosφ′

sinφ′

1





S (~x′)

|~x− ~x′| =





(

cosφ
sinφ

)

Ô1

Ô0



S
(

r′, θ′
)

Note that the quantities Ô0 and Ô1 are no operators in the strict mathematical sense,
but a mere tool to keep the expressions below short. To understand this issue more
thoroughly, we consider a much easier example, like the integral I =

∫

dxf (x) g (x),
where f (x) and g (x) are arbitrary functions. Then, it is possible to abbreviate Ô =
∫

dxf (x) such that I = Ôg (x). In this example, it is also clear that the integral appearing
in the quantity Ô cannot be evaluated unless the function g (x) is included, a fact also
valid for the operators Ô0 and Ô1.

Next, we use the Jacobian (3.44) such that

∂ (x′, y,′ z′)a

∂ (r′, θ′, φ′)b
Sb
(

r′, θ′
)

=





sin θ′ cosφ′ r′ cos θ′ cosφ′ −r′ sin θ′ sinφ′
sin θ′ sinφ′ r′ cos θ′ sinφ′ r′ sin θ′ cosφ′

cos θ′ −r sin θ′ 0









Sr (r′, θ′)
Sθ (r′, θ′)
Sφ (r′, θ′)





=





sin θ′ cosφ′Sr (r′, θ′) + r′ cos θ′ cosφ′Sθ (r′, θ′) − r′ sin θ′ sinφ′Sφ (r′, θ′)
sin θ′ sinφ′Sr (r′, θ′) + r′ cos θ′ sinφ′Sθ (r′, θ′) + r′ sin θ′ cosφ′Sφ (r′, θ′)

cos θ′Sr (r′, θ′) − r sin θ′Sθ (r′, θ′)





Hence, we find

− 1

4π

∫

d3x′
∂ (x′, y,′ z′)a

∂ (r′, θ′, φ′)b
Sb (r′, θ′)

|~x− ~x′|

=





Ô1 ·
(

cosφS̃X (r′, θ′) − sinφr′ sin θ′Sφ (r′, θ′)

sinφS̃X (r′, θ′) + cosφr′ sin θ′Sφ (r′, θ′)

)

Ô0S̃
z (r′, θ′)





with

S̃X (r, θ) = sin θSr (r, θ) + r cos θSθ (r, θ)

S̃z (r, θ) = cos θSr (r, θ) − r sin θSθ (r, θ)

Here, the quantity S̃X (r, θ) is the x-component of the source vector at the angle φ = 0,
i.e. S̃X (r, θ) = S̃x (r, θ, φ = 0), whereas the z-component S̃z (r, θ) is φ-independent due
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3.5. Green functions

to the assumed axisymmetry. The last step is to use the second Jacobian

∂ (r, θ, φ)a

∂ (x, y, z)b
=





sin θ cosφ sin θ sinφ cos θ
cos θ cosφ

r
cos θ sinφ

r
− sin θ

r

− sinφ
r sin θ

cos φ
r sin θ 0





Then,





sin θ cosφ sin θ sinφ cos θ
cos θ cosφ

r
cos θ sinφ

r
− sin θ

r

− sinφ
r sin θ

cos φ
r sin θ 0





·





Ô1

(

cosφS̃X (r′, θ′) − sinφr′ sin θ′Sφ (r′, θ′)

sinφS̃X (r′, θ′) + cosφr′ sin θ′Sφ (r′, θ′)

)

Ô0S̃
z (r′, θ′)





= Ô1











sin θ cosφ
(

cosφS̃X (r′, θ′) − sinφr′ sin θ′Sφ (r′, θ′)
)

cos θ
r

cosφ
(

cosφS̃X (r′, θ′) − sinφr′ sin θ′Sφ (r′, θ′)
)

− 1
r sin θ sinφ

(

cosφS̃X (r′, θ′) − sinφr′ sin θ′Sφ (r′, θ′)
)











+Ô1











sin θ sinφ
(

sinφS̃X (r′, θ′) + cosφr′ sin θ′Sφ (r′, θ′)
)

cos θ
r

sinφ
(

sinφS̃X (r′, θ′) + cosφr′ sin θ′Sφ (r′, θ′)
)

1
r sin θ cosφ

(

sinφS̃X (r′, θ′) + cosφr′ sin θ′Sφ (r′, θ′)
)











+Ô0





cos θ

− sin θ
r

0



 S̃z
(

r′, θ′
)

such that

− 1

4π

∂ (r, θ, φ)a

∂ (x, y, z)b

∫

d3x′
∂ (x′, y,′ z′)b

∂ (r′, θ′, φ′)c
Sc (r′, θ′)

|~x− ~x′|

= Ô1





sin θS̃X (r′, θ′)
cos θ
r
S̃X (r′, θ′)

r′ sin θ′

r sin θ S
φ (r′, θ′)



+ Ô0





cos θ

− sin θ
r

0



 S̃z
(

r′, θ′
)

Hence, using equation (3.43), we arrive at

Φa (r, θ)

= −1

2





sin θ 0
cos θ
r

0
0 1

r sin θ





∞
∑

l=1

1

l (l + 1)
P 1
l (cos θ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′P 1

l

(

cos θ′
)

sin θ′
(

sin θ′Sr (r′, θ′) + r′ cos θ′Sθ (r′, θ′)
r′ sin θ′Sφ (r′, θ′)

)T

−1

2





cos θ

− sin θ
r

0





∞
∑

l=0

Pl (cos θ)

∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

·
∫ π

0
dθ′Pl

(

cos θ′
)

sin θ′
(

cos θ′Sr
(

r′, θ′
)

− r′ sin θ′Sθ
(

r′, θ′
)

)

(3.47)
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This result is used for the Poisson equation (3.9) of the 3-shift Na, i.e. Φa = Na and
Sa = SaN .

3.6. Slicing conditions

In Sect. 3.2.4.2, we mentioned that the 2-shift Mm has to obey a slicing condition. There
is another such slicing condition for the 3-shift Na. Both of these slicing conditions are
specified in Gourgoulhon & Bonazzola (1993). In the following, we will rewrite the two
slicing conditions in terms of our basic fields in flat space. Afterwards, we will explain
how the boxes (3.42) and (3.47) have to be modified to take the slicing conditions into
account.

3.6.1. Maximal time slicing

We begin with the slicing condition for the 3-shift Na, called maximal time slicing and
given in equation (3.8) of Gourgoulhon & Bonazzola (1993):

Na
|a = 0

Appendix H.1 shows that this slicing condition can be rewritten to (see equation (H.5))

3div
(

e2α+β ~N
)

= 0 (3.48)

In general, the inversion of the Laplacian 3∆a
b in equation (3.9) with the help of the

result (3.47) does not produce a 3-shift Na which obeys the slicing condition (3.48). The
reason is that the boundary conditions for the Green function were chosen too weak.
However, it is possible to tighten them. For that purpose, we consider the quantity

~Ne = e2α+β ~N (3.49)

and apply a Helmholtz decomposition:

~Ne (~x) = − 1

4π
3grad

∫

d3x′
3div ~Ne (~x′)

|~x− ~x′| +
1

4π
3rot

∫

d3x′
3rot ~Ne (~x′)

|~x− ~x′|

This result is valid in general, even if the slicing condition (3.48) is not obeyed. Replacing

~Ne (~x) → ~N ′
e (~x) =

1

4π
3rot

∫

d3x′
3rot ~Ne (~x′)

|~x− ~x′| (3.50)

leads to a new field ~N ′
e (~x) which obeys the slicing condition (3.48), because the divergence

of a curl vanishes. Therefore, the replacement (3.50) is an appropriate tool to enforce
the slicing condition. Actually, we do not use the replacement (3.50) but the analytically
equal one

~Ne (~x) → ~Ne (~x) +
1

4π
3grad

∫

d3x′
3div ~Ne (~x′)

|~x− ~x′| (3.51)

because that way we obtain smoother numerical results in the vicinity of r = 0. In the
following we will bring this result in a different form by performing several steps. For
that purpose, we use definitions (2.48) and (3.49). In addition to that, we apply spherical
coordinates and reword the integral by looking at equations (3.35) and (3.38). Then, it
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3.6. Slicing conditions

is obvious that we eventually arrive at





N r

N θ

Nφ



 (r, θ) →





N r

N θ

Nφ



 (r, θ) + e−2α(r,θ)−β(r,θ)





∂r
1
r2
∂θ
0





1

2

∞
∑

l=0

Pl (cos θ)

·
∫ ∞

0
dr′r′2

minl (r, r′)

maxl+1 (r, r′)

∫ π

0
dθ′Pl

(

cos θ′
)

sin θ′

·
(

Nm
e ,m

(

r′, θ′
)

+
2

r′
N r′

e

(

r′, θ′
)

+ cot θ′N θ′

e

(

r′, θ′
)

)

(3.52)

3.6.2. Conformally minimal azimuthal slicing

We proceed with the conformally minimal azimuthal slicing, the slicing condition for the
2-shift Mm. This condition is given in equation (3.4) of Gourgoulhon & Bonazzola (1993)
and has the form

(

N2Mm
)

||m
= 0

In equation (H.8), we show that this slicing condition can be reworded to

2div
(

e2(α+ν) ~M
)

= 0 (3.53)

The next steps are similar to those of Sect. 3.6.1. We define the quantity

~Me = e2(α+ν) ~M (3.54)

and apply a Helmholtz decomposition

~Me = 2gradφ+ ~A (3.55)

where φ is a scalar and ~A a 2-dimensional solenoidal vector, i.e. 2div ~A = 0. Applying a
2-divergence on equation (3.55), we find

2div ~Me = 2∆φ

On the other hand, equations (3.27) and (3.28) tell us that

φ (~x) =
1

2π

∫

d2x′ ln
∣

∣~x− ~x′
∣

∣

2∆φ
(

~x′
)

That way, we see

2gradφ (~x) =
1

2π
2grad

∫

d2x′ ln
∣

∣~x− ~x′
∣

∣

2div ~Me

(

~x′
)

Hence, equation (3.55) leads to

~A = ~Me −
1

2π
2grad

∫

d2x′ ln
∣

∣~x− ~x′
∣

∣

2div ~Me

(

~x′
)

Similarly to the replacement (3.51), we apply

~Me (~x) → ~Me (~x) − 1

2π
2grad

∫

d2x′ ln
∣

∣~x− ~x′
∣

∣

2div ~Me

(

~x′
)
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3. Numerics

Eventually, we bring this result in a form like equation (3.52). For that purpose, we use
definitions (3.54) and spherical coordinates. Moreover, equations (3.28) and (3.32) allow
us to reformulate the integral. Hence, we arrive at

(

M r

Mθ

)

(r, θ) →
(

M r

Mθ

)

(r, θ) + e−2(α(r,θ)+ν(r,θ))

(

∂r
1
r2
∂θ

)

·
(

1

π

∞
∑

l=1

1

l
cos (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ cos

(

lθ′
)

− 1

π

∫ ∞

0
dr′r′ ln max

(

r, r′
)

∫ π

0
dθ′
)

2div ~Me

(

r′, θ′
)

We do not write the expression 2div ~Me (r′, θ′) in spherical coordinates by using relation
(3.17), because numerical tests have shown that this leads to a weak convergence in the
iteration process. Instead, we express the divergence in terms of Cartesian coordinates:

Mx
e = sin θM r

e + r cos θMθ
e

Mz
e = cos θM r

e − r sin θMθ
e

(

M r

Mθ

)

(r, θ) →
(

M r

Mθ

)

(r, θ) + e−2(α(r,θ)+ν(r,θ))

(

∂r
1
r2
∂θ

)

·
(

1

π

∞
∑

l=1

1

l
cos (lθ)

∫ ∞

0
dr′r′

minl (r, r′)

maxl (r, r′)

∫ π

0
dθ′ cos

(

lθ′
)

− 1

π

∫ ∞

0
dr′r′ ln max

(

r, r′
)

∫ π

0
dθ′
)

·
(

sin θ′Mx′

e ,r′

(

r′, θ′
)

+ cos θ′Mz′

e ,r′

(

r′, θ′
)

+
cos θ′

r′
Mx′

e ,θ′

(

r′, θ′
)

− sin θ′

r′
Mz′

e ,θ′

(

r′, θ′
)

)

3.7. Final gauge

3.7.1. Origin of the remaining gauge freedom

Let us consider Cartesian coordinates. Then, the d-dimensional (d ∈ {2, 3}) scalar and
vector Poisson equations have the simple form

d
∑

i=1

∂2
i φ = S

d
∑

i=1

∂2
i φ

A = SA

with A = 1, ..., d. Having solutions φ and φA, it is obvious that also φ + const and
φA + constA are solutions, respectively. This gauge freedom is fixed in the 3-dimensional
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3.7. Final gauge

case by the requirement

lim
r→∞

φ (~x) = 0

lim
r→∞

φA (~x) = 0

which is provided by the 3-dimensional Green’s function

G
(

~x, ~x′
)

= − 1

4π |~x− ~x′|

However, in the 2-dimensional case the Green’s function is

G
(

~x, ~x′
)

=
1

2π
ln
∣

∣~x− ~x′
∣

∣

which is not bounded for |~x− ~x′| → ∞. Therefore, in the 2-dimensional case, we always
have the gauge freedom to add an arbitrary constant to a solution of the scalar Pois-
son equation which obeys a von Neumann boundary condition. For the vector Poisson
equation, we have to care for the axisymmetry, which demands

lim
x→0

φx (~x) = 0

Thus, we are allowed to add an arbitrary constant only to the φz-component, where z is
the direction along the symmetry axis.

3.7.2. Final gauge fixing of Mm

From equation (3.18), we know that the field Mm
e obeys a 2-dimensional vector Poisson

equation. Therefore, if Mm
e is a solution of equation (3.18), then also

M ′
e
z

= Mz
e + constM

solves this equation, with an arbitrary constant constM . Due to equation (3.54), this
result can be rewritten as

M ′r = M r + constM cos θ e−2(α+ν)

M ′θ = Mθ − constM
sin θ

r
e−2(α+ν)

in spherical coordinates. Such a gauge transformation is allowed, because it does not
violate the slicing conditions (3.48) and (3.53). We choose the constant in such a manner
that

M ′
e
z
(r = rmin) = 0

with the minimal radius rmin of the computational domain. This leads to

constM = −Mz
e (r = rmin)

such that
constM = − cos θM r

e (r = rmin) + rmin sin θMθ
e (r = rmin)
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3.7.3. Final gauge fixing of α

Due to equation (3.23), the quantity α+ν obeys a 2-dimensional scalar Poisson equation.
Moreover, at the end of Sect. 3.5.1.3, we have mentioned that the quantity α + ν is
governed by a von Neumann boundary condition. Therefore, we have the gauge freedom
to add an arbitrary constant constα to every solution α, i.e.

α′ = α+ constα

As this gauge transformation does not violate the slicing conditions (3.48) and (3.53), we
can choose the constant in such a manner that

α′ (r = rmin) = β (r = rmin)

(we have made this choice, because the TOV solutions considered further below meets
this condition). Then, we find

constα = β (r = rmin) − α (r = rmin)

3.8. Fixed point iteration

In the preceding sections, we have shown how the Laplacian of each Poisson equation
of the nine fields (3.2) can be inverted with Green functions. Together with the three
analytic solutions mentioned in Sect. 3.1, we are thus equipped with the knowledge
to evaluate a new value for every single one of the twelve basic fields (3.1) if we have
old values for all twelve basic fields that do not necessarily represent a valid physical
solution. The remaining sections of the numerical part show how neutron star models
are computed with the already mentioned fixed point iteration method.

3.8.1. Initial configuration

The initial configuration of the fixed point iteration is constructed in the following man-
ner. We take a solution of the Tolman-Oppenheimer-Volkoff (TOV) equation. Such
solutions are spherically symmetric and do not contain any meridional fluid motion. Ap-
pendix I explains how they can be computed for our choice of basic fields. There, we
also see that the solutions of the TOV-equation are uniquely specified by the polytropic
constant K, the polytropic exponent Γ and the central pressure pc.

In order to get solutions with a meridional fluid motion from the fixed point iteration,
we do not use the chosen TOV-solution as the initial configuration but a modified variant.
For that purpose, we set the basic field χ0 (which vanishes for the TOV solution) to

χ0

(

r′, θ′
)

= χmax
0 sin

[

(1 +Mr) r
′π
]

sin
[

(1 +Mθ) θ
′
]

(3.56)

in surface-adapted coordinates (r′ = 1 at the surface of the neutron star, see Sect. 3.2.6),
with an arbitrary constant χmax

0 and parameters Mr,Mθ ∈ {0, 1, ...} (Fig. 3.3).

3.8.2. Iteration

Let us consider the twelve basic fields (3.1) (geometry fields ν,N r, N θ, Nφ, β,M r,Mθ and
matter fields α, ǫ, p, χ0, lφ). We denote their initial values by ν0, ..., lφ,0, while νs, ..., lφ,s
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. . .

...
. . .

Figure 3.3.: Initial configuration of basic field χ0. Each one of the nine panels shows
the distribution of χ0 inside of the neutron star for one choice of the pair
(Mr,Mθ) according to equation (3.56). The top, left panel visualizes the
case (Mr,Mθ) = (0, 0). Proceeding to the right increases the value of the
quantity Mθ, and we have to go down to raise the value of Mr. For each
panel, the maximal absolute field value is called max. The values max and
−max are represented by the brightest red and green colors, respectively.

represent the values of the twelve basic fields at the iteration step s = 1, 2, ... . Every
iteration works in the following manner:

We know the values νs−1, ..., lφ,s−1 and want to evaluate νs, ..., lφ,s. For that purpose, we
compute the eight geometry quantities νs, ..., αs from the twelve quantities νs−1, ..., lφ,s−1

by inverting the respective Laplacians. Then, we enforce the slicing conditions as ex-
plained in Sect. 3.6, and afterwards we apply the gauge condition of Sect. 3.7.

The next step is to compute the four matter quantities ǫs, ..., lφ,s using the old values
ǫs−1, ..., lφ,s−1 and the newly computed νs, ..., αs. This method increases the speed of the
iteration process. For the total energy density ǫs and the pressure ps, we use equations
(2.86) and (2.73), respectively. The basic field χ0,s is computed by inverting its Laplacian.
However, the fixed point iteration has the tendency to gradually either decrease the field
values χ0,s until they vanish everywhere or to increase them indefinitely. We prevent
this by rescaling the stream function ψ = r sin θχ0 at every iteration step in such a way
that the maximum value of |ψ| stays constant. Eventually, for the last field lφ,s, we use
equation (2.60).

3.8.3. Removal of lower modes

Let us consider the function f (ψ) of equation (2.71), which specifies how the matter in
the neutron star circulates. In this investigation, we consider only the case

f (ψ) = kψn (3.57)
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with some constant k and
n = 0, 1

(n is no tensor index and thus n ∈ {r, θ} does not hold here) as done in Eriguchi et al.

(1986). For the choice
f (ψ) = kψ

there are different meridional circulation modes ψm, with m = 0, 1, 2, ... (no tensor
index). However, although our solution method tends towards them during the fixed
point iteration, it eventually always converges to the fundamental mode ψ0. Hence, in
order to obtain higher modes, we project the lower modes away. For that purpose, we
assume that we have already evaluated the first n − 1 modes, i.e. we know ψm for
m = 0, 1, ..., n− 1. Then, the fixed point iteration spews out the n-th mode by replacing

ψ → ψ −
n−1
∑

m=1

cmψm (3.58)

at every iteration step, with adequately chosen coefficients cm. If an orthogonality relation
∫ ∞

0
dr

∫ π

0
dθr2 sin θWm (r, θ)ψmψm′ = δmm′

exists, the coefficients cm are given by

cm =

∫∞
0 dr

∫ π

0 dθr2 sin θWm (r, θ)ψψm
∫∞
0 dr

∫ π

0 dθr2 sin θWm (r, θ)ψmψm

However, we neither know whether an orthogonality relation exists nor do we know the
weight functions Wm (r, θ). After some experimenting, we found that the choice

Wm (r, θ) = ǫ+ p (3.59)

is sufficient to achieve a convergence to higher modes. This does not necessarily mean
that (3.59) is the correct weight function, but it must be very close to it.1

In addition to the replacement (3.58), we perform two additional steps. The pressure
distribution of the solutions investigated in this thesis is always equatorially symmetric.
However, in our treatment, equatorial symmetry is not obeyed exactly due to the lim-
ited numerical accuracy. Therefore, its asymmetry may increase during the fixed point
iteration, and eventually we obtain an undesired meridional circulation mode. In order
to avoid this, we symmetrize the pressure distribution at every iteration step. A similar
method is performed for the basic field χ0, which is either equatorially symmetric or
equatorially antisymmetric, depending on the considered mode.

1Numerical tests have shown that the weight factor Wm (r, θ) = ǫ
√

h/
`

r2 sin θ
´

, with h = dethab, covers
a much wider range of rest mass densities properly than the choice Wm (r, θ) = ǫ + p. However, for
the densities considered in this thesis, the choice (3.59) has turned out to be sufficient, and therefore
all results of the thesis were computed with the weight factor (3.59).
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The theory and numerics discussed in the previous chapters are implemented in a code,
called GRNS (=‘Generally Rotating Neutron Star’). We chose this name, because the
code generalizes the RNS code of N. Stergioulas from a mere azimuthal fluid motion to
a general one. The GRNS code is programmed in an object oriented manner in C++
under Linux, without parallelization. In this chapter, we will have a closer look at the
GRNS code. We will not explain details of the implementation but focus on how neutron
star models can be computed by using the OpenGL user interface of the GRNS code.
The source code is available from the author on request.

4.1. Neutron star parameters

To use the GRNS code, one has to first specify the parameters of the neutron star by
explicitly setting the parameters in the source code. For that purpose, the user has to edit
a file called ‘Control.h’, which is one of several header files in the GRNS code, containing
the most important control parameters. In order to specify a neutron star model, one
sets the following parameters:

CENTER_P

POLYTROPE_GAMMA

POLYTROPE_K

F(PSI)

MAXIMUM_PSI

The parameter CENTER_P gives the central pressure pc of the neutron star, measured
in erg/cm3. The dimensionless parameter POLYTROPE_GAMMA is the polytropic ex-
ponent Γ. The choice of this exponent determines the dimension of the parameter POLY-
TYROPE_K, which is the polytropic constant K and has the dimension

(

erg/cm3
)1−Γ.

The macro F(PSI) specifies the function f (ψ) of equation (3.57). As the maximum ab-
solute value of the stream function ψmax is kept fixed at the value MAXIMUM_PSI in
erg/s during the iteration, it does not matter how the constant k is chosen in equation
(3.57). Therefore, we use either

F(PSI) = 1

or
F(PSI) = PSI

Having set all five neutron star parameters, the code must be recompiled.
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4. GRNS

4.2. Start screen

Running the GRNS-code executable, after a short initialization phase, the start screen
appears and the fixed point iteration is launched to compute the fundamental meridional
circulation mode. As soon as this mode is calculated at sufficiently high accuracy, the
iteration stops automatically. Then, the start screen looks as shown in Fig. 4.1.

Figure 4.1.: Start screen of GRNS. The (3-dimensional) translucent sphere in the
start screen represents the neutron star, and the white curves indicate the
motion of the fluid inside the star. The start screen is not a still picture but
visualized in OpenGL. Therefore, the white curves are permanently moving
when watched by the user. The background of the start screen is a picture
from Hubble (Hubble).

Moving the mouse while the left or right mouse buttons are pressed, the neutron star can
be shifted around in the OpenGL window. Using instead the middle mouse button, the
neutron star can be rotated. At the bottom right corner of the start screen, four ‘keys’ S,
P, M and I are displayed. Besides the Escape key to leave the program, these four keys
allow the user to interact with GRNS. The key P can be used to disable and enable the
visualization of the white curves shown in Fig. 4.1. As soon as the key M is pressed, the
next higher meridional circulation mode is computed. For that purpose, an appropriate
initial configuration is loaded and afterwards the fixed point iteration is started. The
fixed point iteration is shown in real-time. This means that the start screen is updated
after every iteration step. The iteration can be stopped and restarted by pressing the key
I. As soon as the respective higher meridional circulation mode is obtained, the iteration
stops automatically. The result in shown in Fig. 4.2.
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4.3. Overview screen

Figure 4.2.: First higher meridional circulation mode. Pressing the key M in Fig.
4.1 and waiting until the fixed point iteration stops automatically, leads to
the first higher meridional circulation mode. The fluid moves from the poles
to the center and then along the equator to the surface to get back to the
poles.

Pressing again the key M, we get to the next highest mode, and so on. However, we have
to wait always until the iteration stops automatically before pressing the key M, because
otherwise the higher modes are not computed accurately enough. So, the start screen
can be used to compute all meridional circulation modes.

4.3. Overview screen

Pressing the key S leads us to the overview screen, which shows many more details than
the start screen (Fig. 4.3). Similarly to the start screen, the overview screen is an
OpenGL window and displayed in real-time. That way, it is possible to trace the changes
caused by the fixed point iteration for each physical field used by the GRNS code. The
advantage of this approach is that it simplifies debugging. In addition to that, it is
immediately visible if the fixed point iteration does not converge. This was very helpful
in finding the appropriate Poisson equation for the 2-shift Mm (see Sect. 3.2.4).

Let us have a closer look at the bottom left corner of the overview screen (see Fig.
4.3). All quantities of the GRNS code are represented in dimensionless units. Setting the
stream function ψ to unity, the quantity f (1) of the overview screen gives the value of
the function f (ψ) of equation (3.57) in the internal dimensionless units. If the value f (1)
displayed in the overview screen converges to a finite, non-zero value during the fixed
point iteration, the GRNS code was able to find the appropriate value of the constant k
of equation (3.57) automatically (solutions with f (1) = 0 are pathological ones).

The bottom left corner also shows a measure of convergence, defined in the following
manner. Let us consider an arbitrary scalar field F (r, θ) whose value at the grid point
(ri, θj) is called Fs,i,j at the iteration step s = 1, 2, ... . Then, the convergence indicator
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4. GRNS

Cs shown in the GRNS code at the iteration step s is defined as

Cs = 100

∑imax

i=imin

∑jmax

j=jmin
|Fs,i,j − Fs−1,i,j|

∑imax

i=imin

∑jmax

j=jmin
|Fs,i,j|

(4.1)

So, when the scalar field does not change anymore, the convergence indicator becomes
Cs = 0. The value displayed at the bottom left corner of the overview screen (Fig. 4.3) is
the maximum of the convergence indicator Cs of all twelve basic fields (3.1). That way,
the displayed value is most sensitive to the basic field which converges least.

4.4. Field screen

The disadvantage of the overview screen is that the field panels are very small. This
problem is solved by pressing the key A, which magnifies the currently selected field in
the field screen. When the GRNS code is started, the field ν is selected by default. Fig.
4.4 shows this scalar field magnified in the field screen. Pressing the page up and page
down keys, the user can change the currently selected field. Fig. 4.5 displays the 3-shift
Na in the field screen.

4.5. Additional features

Several additional features are implemented in the user interface of the GRNS code.
Pressing the key F5 automatically makes a screenshot. The key F6 can be used to start
and stop capturing the visualized OpenGL frames, which are converted into a movie
when the GRNS code is left by the user. In addition to that, it is possible to display the
numerical grid and also the ghost zone. It was very helpful during the debugging phase
to see the field values in the ghost zone in real-time.
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4.5. Additional features

Figure 4.3.: Overview screen of GRNS. The overview screen shows all physical fields
used in the GRNS code simultaneously. Due to the limited space, the fields are visualized
in a very low resolution as the tiny objects in the middle of the screen. The top row
shows the basic fields (3.1), the first being the scalar field ν. Scalar fields or components
of quantities with more than one index are drawn as discs, whose color coding is the same
one as in Fig. 3.3. The next three columns in the top row (between the field ν and the first
green disc appearing in that row) contain the components of the 3-lapse Na. However,
even though it is possible to visualize them as three separate scalar fields by pressing the
key V, the above frame shows Na in the vector visualization mode (barely visible and
causing white gaps). In that mode, the three components of Na are visualized as vectors.
Below the basic fields, 227 ancillary fields are displayed, which can be discerned by the
blue text shown above the fields (barely visable). The blue text at the top of the screen
gives the field name and the length of the longest field vector (scalars are considered as
1-vectors). The top left corner shows the current OpenGL frame, the user time and the
visualization speed (frames per second). Similar to the start screen and all other OpenGL
screens, the overview screen is interactive and changes during the fixed point iteration
in real-time. The panels at the right show possible ways to interact with the overview
screen (not explained in detail here). The blue box at the bottom of the screen displays
the neutron star parameters (including the function L (ψ) of equation (2.60), which is
set equal to zero in all models investigated in this thesis). The remaining numbers in the
lower left part of the frame give information about the status of the fixed point iteration
and the currently selected field. In the above example, the basic field ν is selected and
therefore the disc belonging to it is somewhat larger than all other ones. Eventually, the
small plots on the left display angularly averaged radial profiles and the deformation of
the stellar surface.
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4. GRNS

Figure 4.4.: Field screen of GRNS with scalar field. The plot shows the scalar
field ν in the field screen of the GRNS code for the fundamental meridional
circulation mode. The color encoding is the same one as in Fig. 3.3.

Figure 4.5.: Field screen of GRNS with 3-vector field. The plot shows the 3-shift
Na in the field screen of the GRNS code for the fundamental meridional
circulation mode. The vectors are represented by the short lines, which are
darkest at the head of the vectors. A strongly reduced resolution is used in
the above plot to increase the visibility of the individual vectors.
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We use the four parameters

RESOLUTION

POLYNOMIALS

CENTIMETER

GRID_RADIUS

in the file ‘Control.h’ to perform convergence and consistency tests. The following sections
explain each parameter and give the result of the corresponding test. Each such test is
based on the following settings:

pc = 1033 erg

cm3

Γ = 3

ρc = 2 · 1014 g

cm3

f (ψ) = ψ

ψmax = 1054 erg

s
(5.1)

These are the parameters discussed in Sect. 4.1, where the polytropic constant K is
set by the central rest mass density ρc, which obeys pc = KρΓ

c due to equation (2.85).
As already mentioned in the caption of Fig. 4.3, we choose L (ψ) = 0 such that the
Lagrangian angular momentum component lφ vanishes according to equation (2.60). We
will explain this choice in more detail in Chapter 6.

5.1. Resolution

The resolution of the numerical grid is set by the two parameters RS and THETAS in
the file ‘Control.h’, which give the number of radial and angular grid lines, respectively.
In principle, both quantities can take any value above unity. However, there are certain
constraints (explained in ‘Control.h’) which have to be obeyed to make the OpenGL
visualization work properly. In this investigation, we consider three different resolutions,
which can be selected by setting the parameter RESOLUTION to one of the values
shown in Tab. 5.1. By default, the low resolution 0 is selected in the GRNS code. The
advantage of this choice is that the OpenGL visualization operates fluently on a typical
desktop machine. For the results shown in the Chapter 6, we use the medium resolution
1. The high resolution 2 is used only to test the convergence of the GRNS code as shown
in Fig. 5.1.
In that figure, we see that for the fundamental mode the GRNS code converges for all
three resolutions of Tab. 5.1, i.e. the convergence indicator Cs approaches zero during
the fixed point iteration. For higher modes, the convergence indicator drops initially,
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5. Tests

RESOLUTION RS THETAS
0 59 52
1 150 156
2 501 507

Table 5.1.: Standard grid resolutions. The GRNS code possesses three standard res-
olutions for the numerical grid, discerned by the parameter RESOLUTION.
For each resolution, the table shows the number of radial and angular grid
lines, given by the two parameters RS and THETAS.
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Figure 5.1.: Resolution-dependent convergence behavior. The figure shows the
dependence of the convergence indicator Cs defined in equation (4.1) on
the number of the iteration step s. The three solid lines refer to the three
resolutions of Tab. 5.1, the thickness decreasing with the resolution (highest
resolution corresponding to thinnest line). The corresponding blue, dashed
lines refer to the first higher mode, respectively.

but then starts to fluctuate never reaching the value zero. Improving the weight given in
equation (3.59) might improve this behavior.

5.2. Polynomials

In Chapter 3, we several times encountered sums like

∞
∑

l=...

...
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5.3. Centimeter

The parameter POLYNOMIALS in the file ‘Control.h’ specifies how many terms of such
sums are actually computed, i.e. we replace

∞
∑

l=...

→
POLYNOMIALS

∑

l=...

in the GRNS code. Fig. 5.2 shows the result of convergence tests for the three values
POLYNOMIALS = 3, 10, 50. The default value is

POLYNOMIALS = 10

which is also used for the results of Chapter 6. The convergence behavior visible in Fig.
5.2 is similar to that encountered in Fig. 5.1. The higher modes drop again initially, but
eventually begin to fluctuate. The drop is weakest for POLYNOMIALS = 3, because in
that case the number of terms taken into account in the sums is at the verge of being
sufficient to produce reasonable results.

10 20 30
Iteration step s

0.001

0.01

0.1

1

10

100

1000

C
on

ve
rg

en
ce

 in
di

ca
to

r 
C

s

Figure 5.2.: Polynomials-dependent convergence behavior. The figure shows the
dependence of the convergence indicator Cs defined in equation (4.1) on the
number of the iteration step s. The three solid lines refer to the values
POLYNOMIALS = 3, 10, 50, where the thickness decreases with the number
chosen for that parameter (highest parameter value corresponding to thinnest
line). The corresponding blue, dashed lines refer to the first higher mode,
respectively.

5.3. Centimeter

As mentioned in equation (2.1), we use geometrized units such that

c = 1
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5. Tests

to express seconds in terms of centimeters and

G = 1

to do the same for grams. That way, it is possible to write all mathematical quantities
used in this investigation in terms of centimeters. However, in a numerical implementa-
tion, abstract objects like centimeters cannot be used directly. Instead, we have to map
them to numbers. For that purpose, we set

1 cm = CENTIMETER

where the parameter CENTIMETER is a numerical value. The default choice is

CENTIMETER = 1

To check the consistency of the GRNS code, we have investigated the choices CENTI-
METER = 10−10 and CENTIMETER = 1010 without having encountered any problems.

5.4. Grid radius

The last test concerns the parameter GRID_RADIUS, which gives the radial size of the
numerical grid in terms of centimeters. The default value is

GRID_RADIUS = 106

which corresponds to a radius of 10 kilometers. We have considered the valueGRID_RA-
DIUS = 6 · 105, for which the default neutron star of the GRNS code is still fully inside
the numerical grid. And, also the value GRID_RADIUS = 2 · 106 was investigated. In
that case the neutron star is small compared to the numerical grid such that effectively
the grid resolution is small. This has reduced the quality of the convergence behavior
somewhat. However, for all checked values of GRID_RADIUS we have not encountered
any severe problems.
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6. Results

6.1. Assumptions

To close this investigation, we use the GRNS code to actually compute neutron star mod-
els. For that purpose, we consider the settings (5.1) and choose the medium resolution
of Tab. 5.1:

RESOLUTION = 1

In addition to that, we limit ourselves to

L (ψ) = 0 (6.1)

(see equation (2.60)) in all computations below such that the Lagrangian angular mo-
mentum lφ vanishes. Consequently, there will be no azimuthal fluid motion but only a
meridional one. We have analyzed other cases than (6.1), too. However, we have not
found solutions except for L (ψ) = const. In those cases, the modulus of the azimuthal
fluid velocity rises strongly when approaching the symmetry axis. Moreover, this kind of
fluid motion has shown a tendency to increase with increasing resolution. Therefore, we
are unable to determine whether the solutions found for L (ψ) = const are truly physical
ones. Hence, we restrict ourselves to the case (6.1).

This does not imply that the GRNS code is limited to a purely meridional fluid motion.
In principle, it can deal with a mixture of stationary meridional and azimuthal flow.
However, in case of objects with spherical topology, nature allows only either a purely
azimuthal fluid motion, as already investigated by N. Stergioulas in his RNS code, or
only meridional circulation. Possible ways to achieve a mixture of both flows requires a
different topology, namely a toroidal one, or the inclusion of the electromagnetic field. A
first step towards the latter direction is discussed in Appendix J. However, any further
investigation in this direction would go beyond the scope of this thesis.

6.2. Case f (ψ) = ψ

6.2.1. Fundamental mode

Having no azimuthal fluid motion, we will present a meridional circulation mode
analysis as performed in Eriguchi et al. (1986), working in the following manner: We
choose

f (ψ) = ψ

and compute the fundamental meridional circulation mode. For that purpose, we start
the GRNS code with the initial configuration (Mr,Mθ) = (0, 0) (see equation (3.56)
and the top, left panel of Fig. 3.3) and let it perform 40 fixed point iterations. We
use this number of iterations for the higher modes, too. The basic fields describing the
fundamental mode are shown in Figs. 6.1, 6.2 (left panel) and 6.3 (upper, left panel).
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6. Results

We do not display the 2-shift Mm, because it turns out to be zero everywhere. This is
the case for all models computed in this investigation. Moreover, the relative difference
between the basic geometry fields α and β is smaller than 10−5, again for all modes.
Therefore, we plot only one of the two fields in Fig. 6.1, namely the field α.

Let us have a closer look at Fig. 6.1. The radial size of the numerical grid is 10
kilometers. In that entire region, the basic geometry field ν is negative and the field
α positive. Both fields do not vanish on the boundary of the numerical grid, because
this happens infinitely far away from the neutron star. Moreover, despite the radial
coordinate size being exactly 10 kilometers, the curvature of space has the consequence
that the radial physical size

rp (θ) =

∫ rmax

0
eα(r,θ)dr

of the numerical grid is about 10.1 kilometers. The neutron star itself has only a radius
of about 5.7 kilometers, as shown by the lower two panels of Fig. 6.1. These two panels
show the total energy density ǫ and the pressure p. Both fields drop to zero at the surface
of the neutron star, which is the outermost contour in the two panels. Even though the
surface appears to be spherical, the upper panel of Fig. 6.8 shows that the neutron star
is somewhat prolate (fraction between polar and equatorial radial coordinate of surface
is ≈ 1.004).

The four panels of Fig. 6.1 are nearly identical to the TOV-solution used to start the
fixed point iteration (not plotted). Therefore, we continue with the left panel of Fig. 6.2,
which shows the 3-shift Na. In contrast to the TOV-solution, where the 3-shift vector
vanishes, there is a significant dragging of spacetime for the fundamental meridional
circulation mode. The 3-shift vector Na is longest at the center of the neutron star and
drops to zero at an infinite distance. Moreover, we realize that the vectors in the left
panel of Fig. 6.2 roughly follow the contours of the upper, left panel of Fig. 6.3, which
shows the basic field χ0. The field χ0 specifies the fluid motion. The fluid moves along
the contours of the field χ0 in a counter-clockwise manner, similar to the 3-shift Na.

Our fundamental meridional circulation mode is similar to that shown in Fig. 1b of
Eriguchi et al. (1986). However, it is important to be aware that the upper, left panel of
Fig. 6.3 shows the basic field χ0, whereas Eriguchi et al. (1986) plot the stream function
ψ = r sin θχ0.

6.2.2. Higher modes

Having found the fundamental meridional circulation mode, we are now able to compute
the higher modes successively. For that purpose we increase the value of Mθ one by one,
i.e. we consider Mr = 0 and Mθ = {1, 2, ...}. The initial configurations resulting from
equation (3.56) are used to compute the higher modes, respectively. For each mode,
the already computed modes provide the quantities ψm, applied in equation (3.58) to
project lower modes away. The computed modes are shown in Figs. 6.3, 6.4, 6.5 and
6.6, respectively. Each of these modes can be compared to a certain value of the pair
(Mr,Mθ) by counting the number of vortices. So, we obtain modes, which belong to
Mr > 0 even though we have chosen Mr = 0 for all initial configurations. In addition to
that, we do not obtain the modes in an ordered manner but somewhat randomly. Both
effects are a result of the nonlinearity of the field equations. We could also choose, e.g.,
Mθ = 0 for all initial configurations and select Mr = {1, 2, ...}. That way, we would get
the same meridional circulation modes, but in a different order. In addition to that, it
was necessary to modify some of the modes to compare them with Fig. 3.3 by inverting
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6.3. Case f (ψ) = 1

the sign of the fields χ0 and Na.
Let us have a closer look at Figs. 6.3, 6.4, 6.5 and 6.6, respectively. The upper and

lower right panels of Fig. 6.3 are similar to Figs. 1d and 1e of Eriguchi et al. (1986). In
a likewise manner, we compare the upper, left panel of Fig. 6.5 with Fig. 1c of Eriguchi
et al. (1986). So, we are able to qualitatively reproduce the results of Eriguchi et al.

(1986). We have not only computed the four modes of Eriguchi et al. (1986) but in total
twelve meridional circulation modes.

For the mode shown in the upper, left panel of Fig. 6.5, the right panel of Fig. 6.2
shows the corresponding 3-shift Na. Obviously, the 3-shift is strongly influenced by the
shape of the contours of the field χ0. This behavior is valid for all modes. Eventually, we
return to Fig. 6.8. There, the lower panel shows the neutron star surface, which contains
an additional kink in the equatorial plane compared to the fundamental mode (upper
panel). This kink is a result of the inner green vortex of the upper, left panel of Fig. 6.5.
This behavior continues on to the other modes, where several kinks can appear on the
neutron star surface.

6.3. Case f (ψ) = 1

Eventually, we investigate the case
f (ψ) = 1 (6.2)

for equation (3.57). The resulting basic geometry field χ0 is shown in Fig. 6.7, which
has a shape similar to Fig. 1a of Eriguchi et al. (1986). There appears to be only one
single mode for (6.2), because the GRNS code fails to compute higher modes. All in
all, we have been able to qualitatively reproduce the results of Eriguchi et al. (1986) for
spherical topology.
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Figure 6.1.: Basic fields of the fundamental meridional circulation mode. The
upper two panels show the basic geometry fields ν and α of the fundamental
meridional circulation mode, and the lower two ones are the corresponding
total energy density ǫ and the pressure p. The color coding is similar to the
one used in the GRNS code as shown in Fig. 3.3, except that black has been
replaced by white. The contours are spaced equidistantly, the distance being
a fifth of the maximal absolute field value max, which is shown at the top
of each plot (in blue).
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Figure 6.2.: 3-shift Na for two meridional circulation modes. The two panels show
the 3-shift Na in the (x, z)-plane for the first two meridional circulation
modes spewed out by the GRNS code, i.e. the modes of Figs. 4.1 and 4.2
(=upper two panels of Fig. 6.3). The 3-shift component Nφ is zero, and
therefore the displayed vectors lie entirely in the meridional (x, z)-plane.
The length max of the longest displayed vector is given at the top of each
panel, respectively (in blue). To increase the visibility, vectors are shown
only for a fraction of the actually used grid points.
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Figure 6.3.: Basic field χ0 for different meridional circulation modes belonging
to Mr = 0. The four panels show the basic field χ0 for the first four merid-
ional circulation modes belonging to the initial configurations Mr = 0 and
Mθ = {0, 1, 2, 3} as given in equation (3.56). The color coding is the same
one as in Fig. 6.1. The outermost contour corresponds to the neutron star
surface. In the lower two panels, this contour exhibits some kinks which are
a result of the finite grid resolution. The upper two panels correspond to the
two panels shown in Fig. 6.2.
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Figure 6.4.: Basic field χ0 for different meridional circulation modes belonging
to Mr = 0. Continuation of Fig. 6.3 for Mθ = {4, 5}.
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Figure 6.5.: Basic field χ0 for different meridional circulation modes belonging
to Mr = 1. The panels show the four meridional circulation modes for which
Mr = 1 and Mθ = {0, 1, 2, 3}. The color coding is the same one as in Fig.
6.3.
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Figure 6.6.: Basic field χ0 for different meridional circulation modes belonging
to Mr = 2. The panels show the two meridional circulation modes for which
Mr = 2 and Mθ = {0, 1}. The color coding is the same one as in Fig. 6.3.
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Figure 6.7.: Basic field χ0 for the case f (ψ) = 1. The color coding is the same one
as in Fig. 6.3.
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6. Results

Figure 6.8.: Surface radius. The two plots show the surface radius R (θ) for the fun-
damental meridional circulation mode (Mr,Mθ) = (0, 0) (upper, left plot of
Fig. 6.3) and the mode (Mr,Mθ) = (1, 1) (upper, right plot of Fig. 6.5).
The surface deformations in the lower plot are responsible for the two dents
visable in the outermost contour of the upper, right plot of Fig. 6.5.
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7. Conclusions

We have computed the first stationary, axisymmetric neutron star models with meridional
circulation in the framework of general relativity. For that purpose, we have constructed
the GRNS code, a new code, which uses a fixed point iteration method starting from a
Tolman-Oppenheimer-Volkoff-like initial configuration, similarly to the RNS code of N.
Stergioulas.

We took the method of Komatsu et al. (1989), used in the RNS code and applicable
only to purely azimuthal fluid motions, and generalized it to include also meridional
ones, based on the theoretical considerations of Gourgoulhon & Bonazzola (1993). This
was possible, because we were able to rewrite the metric equations of Gourgoulhon &
Bonazzola (1993) as Poisson equations in flat space, and we found Green functions for
each of these equations. In contrast to the RNS code, we had to explicitly take slicing
conditions into account, and we had to perform additional gauge fixing conditions not
investigated in Gourgoulhon & Bonazzola (1993). For the matter equations, we extended
the Newtonian stream function method of Eriguchi et al. (1986) to general relativity.
However, we did not adopt the Newton-Raphson iteration scheme used by these authors
but extended the fixed point iteration method to hydrodynamics. The RNS code allowing
only a command line interaction, we created an OpenGL user interface for the GRNS
code. This interface allows the user to directly control the fixed point iteration method
and to oversee the status of all physical fields in real-time. This approach was not only
helpful in the debugging phase, it also helped to solve several issues which prevented
convergence of the fixed point iteration at first stage.

As the RNS code is restricted to azimuthal fluid motions, our initial goal was to use
the GRNS code to compute neutron star models with a mixture of both azimuthal and
meridional fluid motions. However, we were unable to find valid such solutions, not
even some which obey the angular momentum conditions studied by Randers (1941)
and Roxburgh (1974). Therefore, we focused on an investigation of purely meridional
circulation modes as done in the Newtonian case by Eriguchi et al. (1986). Due to the
chosen fixed point iteration method, we were able to compute these modes in a very
automatized manner, not requiring manual parameter adjustments as done by Eriguchi
et al. (1986). However, to find higher modes during the fixed point iteration, we had to
develop a method to project lower modes away.

To validate the GRNS code, we performed several convergence and consistency tests.
We investigated different resolutions of the used numerical grid and found a sufficient
convergence behavior for all modes. For the higher modes, the fixed point iteration ends
in a fluctuating state rather early. Such situations are also known from the RNS code and
not problematic. In our case, the reason for the fluctuations is possibly an inaccuracy of
the method to project lower modes away. Similarly to the RNS code, we have rewritten
integrals used for the Green function method as sums containing Legendre polynomials.
We conducted convergence tests for different numbers of such polynomials taken into
account in the GRNS code.

Eventually, we used the GRNS code to perform a meridional circulation mode analysis
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7. Conclusions

similar to Eriguchi et al. (1986). We found the same qualitative behavior as these authors
in the case of spherical topology. However, we were not able to perform a quantitative
comparison, because of the rather low numerical resolution used by Eriguchi et al. (1986).
Our automatized mode computation allowed us to find a dozen of modes with a sufficient
convergence behavior, being decisively more than those found by Eriguchi et al. (1986).
That way, we were able to identify a two-dimensional classification of the meridional
circulation modes, different from the one found by Eriguchi et al. (1986).

There are clear perspectives for a future application of the outcomes of this investiga-
tion. Perturbing the obtained modes, a dynamical evolution of the neutron star can show
the influence of meridional circulations on gravitational waves, for which a direct detec-
tion is expected in the near future and which are thus a topic currently of widespread
interest in relativistic astrophysics. Another application is investigating the influence of
meridional circulations on neutron star oscillations, which can be observed in the elec-
tromagnetic spectrum. Both methods offer a way to experimentally determine whether
meridional circulations are present in neutron stars. At the current stage we are not able
to eventually determine how widespread such circulations are in nature, because in our
approach we were unable to evaluate stability criteria of the circulation modes.

At the moment, the GRNS code supports only polytropic equations of state. An
extension to barotropes is straightforward and requires only a more general specification
of the total energy density function in the code. However, a generalization to baroclinic
equations of state is not that easy and would require a completely different approach. This
is not even investigated in the Newtonian case, where Eriguchi et al. (1986) have thought
in that direction but never succeeded. Due to having generalized the stream function
method of Eriguchi et al. (1986) and not having applied the approach of Komatsu et al.

(1989) for the hydrodynamical part of the field equations, the GRNS code is not able
to reproduce the models of the RNS code. In principle, it is possible to extend the
GRNS code to these models even with the stream function method. For that purpose,
a constraint on the Lagrangian angular momentum has to be solved. We have not
proceeded in that direction, because this case has already been investigated extensively
with the RNS code.

In the near future, several other ways to go beyond the scope of this investigation
will be important. Originally intended only for spherical topologies, N. Stergioulas has
extended the RNS code to toroidal ones, which are also investigated by Eriguchi et al.

(1986) in their meridional circulation mode analysis. A similar generalization for the
GRNS code will overcome the angular momentum issue found by Randers (1941) and
Roxburgh (1974) and might thus allow for a mixture of azimuthal and meridional fluid
motions. Another step in that direction is the inclusion of a magnetic field. We have
already made a few thoughts in that direction and our theoretical calculations done in
that context show the principle way to go. We have found that the field equation for
the Lagrangian angular momentum is strongly affected by the magnetic field. Hence, it
could be possible that magnetic fields allow a mixture of both fluid motion types even
for spherical topologies.
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A. Christoffel symbols of the first kind

A.1. 2-surfaces Σtφ

The Christoffel symbols of the first kind on the 2-surfaces Σtφ of constant time t and
constant angle φ are given by equation (2.31) as

2Γmno =
1

2
(∂nkmo + ∂oknm − ∂mkno)

with the 2-metric kmn. Due to the symmetry 2Γmno = 2Γmon, the only relevant compo-
nents are

2Γrrr =
1

2
(∂rkrr + ∂rkrr − ∂rkrr)

2Γrrθ =
1

2
(∂rkrθ + ∂θkrr − ∂rkrθ)

2Γrθθ =
1

2
(∂θkrθ + ∂θkθr − ∂rkθθ)

2Γθrr =
1

2
(∂rkθr + ∂rkrθ − ∂θkrr)

2Γθrθ =
1

2
(∂rkθθ + ∂θkrθ − ∂θkrθ)

2Γθθθ =
1

2
(∂θkθθ + ∂θkθθ − ∂θkθθ)

Using the choice (2.19) for the meridional coordinates, they simplify to

2Γrrr = 1
2∂rkrr

2Γrrθ = 1
2∂θkrr

2Γθrθ = 1
2∂rkθθ

2Γθθθ = 1
2∂θkθθ

2Γrθθ = −2Γθrθ

2Γθrr = −2Γrrθ
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A. Christoffel symbols of the first kind

A.2. 3-surfaces Σt

The Christoffel symbols of the first kind on the 3-surfaces Σt of constant time t are
defined by equation (2.30) as

3Γabc =
1

2
(∂bhac + ∂chba − ∂ahbc)

with the 3-metric hab. These Christoffel symbols do not only have the symmetry 3Γabc =
3Γacb, they also obey 3Γmno = 2Γmno. Therefore, we have to consider only the components

3Γrrφ =
1

2
(∂rhrφ + ∂φhrr − ∂rhrφ)

3Γrθφ =
1

2
(∂θhrφ + ∂φhθr − ∂rhθφ)

3Γrφφ =
1

2
(∂φhrφ + ∂φhφr − ∂rhφφ)

3Γθrφ =
1

2
(∂rhθφ + ∂φhrθ − ∂θhrφ)

3Γθθφ =
1

2
(∂θhθφ + ∂φhθθ − ∂θhθφ)

3Γθφφ =
1

2
(∂φhθφ + ∂φhφθ − ∂θhφφ)

3Γφrr =
1

2
(∂rhφr + ∂rhrφ − ∂φhrr)

3Γφrθ =
1

2
(∂rhφθ + ∂θhrφ − ∂φhrθ)

3Γφrφ =
1

2
(∂rhφφ + ∂φhrφ − ∂φhrφ)

3Γφθθ =
1

2
(∂θhφθ + ∂θhθφ − ∂φhθθ)

3Γφθφ =
1

2
(∂θhφφ + ∂φhθφ − ∂φhθφ)

3Γφφφ =
1

2
(∂φhφφ + ∂φhφφ − ∂φhφφ)

Considering axisymmetry, we can simplify them to
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A.2. 3-surfaces Σt

3Γrθφ = 1
2 (∂θhrφ − ∂rhθφ)

3Γφrθ = 1
2 (∂θhrφ + ∂rhθφ)

3Γrφφ = −1
2∂rhφφ

3Γθφφ = −1
2∂θhφφ

3Γφrr = ∂rhrφ

3Γφθθ = ∂θhθφ

3Γθrφ = −3Γrθφ

3Γφrφ = −3Γrφφ

3Γφθφ = −3Γθφφ
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A. Christoffel symbols of the first kind
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B. Derivation of correct 3-lapse equation

In our thesis, we have to use equation (B3) of Gourgoulhon & Bonazzola (1993) to
compute the 3-lapse N . Unfortunately, there is a mistake in that equation. Therefore,
we will rederive it, here. For that purpose, we will frequently refer to the equations
in Gourgoulhon & Bonazzola (1993). Such references are denoted by (GB...), i.e., for
example, equation (B3) of Gourgoulhon & Bonazzola (1993) will be referenced merely
as (GBB3). In addition to that, we recall our index convention α, β, ..., ω ∈ {t, r, θ, φ},
a, b, ..., l ∈ {r, θ, φ} and m,n, ..., q ∈ {r, θ}, which differs from the one of Gourgoulhon
& Bonazzola (1993), slightly. Note that this Appendix is a self-contained part, i.e., we
do not refer to quantities defined in the rest of this thesis, because then the reader only
requires the paper of Gourgoulhon & Bonazzola (1993) to reproduce the computations.

We start with equation (GB2a)
ν = lnN

which leads to
1

N
N,m = ν,m (B.1)

Hence,
1

N
N,mn =

1

N
(Nν,m)

,n
= ν,mn + ν,mν,n (B.2)

Likewise, equation (GBB2e)
µ = lnM

results in
1

M
M,m = µ,m (B.3)

Next, equation (GB3.7) tells us that the 2-metric is

kmn = A2

(

1 0
0 r2

)

(B.4)

such that

kmn =
1

A2

(

1 0
0 1

r2

)

(B.5)

In the following computation, the above relations are used. This computation takes place
on the hypersurfaces Σt of constant time t. Therefore, we use only spatial indices a, b, ...,
and the 3-metric hab has to be used for raising and lowering tensor indices. In addition
to that, we are aware that this metric commutes with the 3-covariant derivative ‘|’ as
defined in (GB2.5). Then, we obtain

1

N
N |a

a =
1

N
habN|ab

=
1

N

(

habN|a

)

|b
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B. Derivation of correct 3-lapse equation

(GB2.5)
=

1

N

(

habhγaN,γ

)

|b

stationarity
=

1

N

(

habhcaN,c

)

|b

=
1

N

(

habN,a

)

|b

=
1

N
habN,a|b

=
1

N
hab
(

N,ab −3 ΓcabN,c

)

axisymmetry
=

1

N

(

hmnN,mn − habΓmabN,m

)

(GB2.20), (B.2)
= (kmn +mmmn) (v,mn + ν,mν,n)

−N,m

2N
habhcm (hcb,a + hac,b − hab,c)

(B.1)
= kmnv,mn + (kmn +mmmn) ν,mν,n +mmmnv,mn

+ν,mh
abhcm

(

1

2
hab,c − hac,b

)

(B.5), axisymmetry
=

1

A2

(

ν,rr +
ν,θθ
r2

)

+

[

1

A2
+ (mr)2

]

(ν,r)
2

+

[

1

(rA)2
+
(

mθ
)2
]

(ν,θ)
2

+ (mr)2 ν,rr + 2mrmθν,rθ +
(

mθ
)2
ν,θθ

+ν,m

(

1

2
habhmnhab,n − hamhbnhab,n

)

+2mrmθν,rν,θ (B.6)

The first three lines after the last equality sign appear on the left hand side of equation
(GBB3), too. Therefore, we focus on the last two lines, where the first one can be
rewritten to

ν,m

(

1

2
habhmnhab,n − hamhbnhab,n

)

= ν,m

(

1

2
hophmnhop,n + ho3hmnho3,n +

1

2
h33hmnh33,n

−homhpnhop,n − homh3nho3,n − h3mhonh3o,n − h3mh3nh33,n

)

(GB2.20),
(GB2.25),
(GB2.24)

= ν,m

[

1

2
(kop +momp) (kmn +mmmn) kop,n −

mo

M
(kmn +mmmn)Mo,n

+
1

2M2
(kmn +mmmn)

(

M2 +MoM
o
)

,n

− (kom +momm) (kpn +mpmn) kop,n

+ (kom +momm)
mn

M
Mo,n +

mm

M
(kon +momn)Mo,n
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−m
mmn

M2

(

M2 +MoM
o
)

,n

]

= ν,m

[

1

2
kop (kmn +mmmn) kop,n +

1

2
mompkmnkop,n

+
1

2
mompmmmnkop,n − kom (kpn +mpmn) kop,n −mommkpnkop,n

−mommmpmnkop,n

+ (−mokmn + kommn +mmkon +mmmnmo)
Mo,n

M

+
1

2M2
kmn

(

M2 +MoM
o
)

,n
− mmmn

2M2

(

M2 +MoM
o
)

,n

]

(GB2.24)
= ν,m

[

1

2
kop (kmn +mmmn) kop,n +

1

2
mompkmnkop,n

−1

2
mmmnmompkop,n − kom (kpn +mpmn) kop,n −mommkpnkop,n

+

(

−1

2
mokmn + kommn +mmkon +

1

2
mmmnmo

)

(kopM
p)
,n

M

+kmn
M,n

M
+

1

2M2
kmnMoM

o
,n

−mmmnM,n

M
− 1

2M2
mmmnMoM

o
,n

]

(GB2.20), (B.3)
= ν,m

[

1

2
kop (kmn +mmmn) kop,n +

1

2
mompkmnkop,n

−1

2
mmmnmompkop,n − kom (kpn +mpmn) kop,n −mommkpnkop,n

+

(

−1

2
mokmn + kommn +mmkon +

1

2
mmmnmo

)

kop,nm
p

+

(

−1

2
mokmn + kommn +mmkon +

1

2
mmmnmo

)

kop
Mp

,n

M

+kmnµ,n +
1

2M2
kmnkopM

pMo
,n

−mmmnM,n

M
− 1

2M2
mmmnkopM

pMo
,n

]

= ν,m

[

1

2
kop (kmn +mmmn) kop,n − komkpnkop,n

+ (kommn +mmkon) kop
Mp

,n

M
+ kmnµ,n −mmmnM,n

M

]

(GB2.24)
= ν,m

[

1

2
kop (kmn +mmmn) kop,n − komkpnkop,n

+ (δmo m
n +mmδno )mo

,n − (δmo m
n +mmδno )Mo

(

1

M

)

,n

+kmnµ,n −mmmnM,n

M

]

(GB2.24)
= ν,m

[

1

2
kop (kmn +mmmn) kop,n − komkpnkop,n
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B. Derivation of correct 3-lapse equation

+mnmm
,n +mmmn

,n +mnmmM,n

M
+ kmnµ,n

]

(GB2.24)
= kmnν,mµ,n +mnmr

,nν,r +mnmθ
,nν,θ

+ν,m

(

1

2
kopkmnkop,n − komkpnkop,n

)

+mmν,m

[

(

Mn

M

)

,n

−Mn

(

1

M

)

,n

+
1

2
kopmn (kop,n + kno,p − kno,p)

]

(GB2.24), (B.5)
=

1

A2

(

µ,rν,r +
µ,θν,θ
r2

)

+
(

mrmr
,r +mθmr

,θ

)

ν,r

+
(

mrmθ
,r +mθmθ

,θ

)

ν,θ + ν,m

(

1

2
kopkmn − komkpn

)

kop,n

+mmν,m

(

Mn
,n

M
+ kop

Mn

M
Γpno

)

(B.7)

Here, the first three terms in round brackets can be found on the left hand side of equation
(GBB3). The term in the subsequent round bracket simplifies to

ν,m

(

1

2
kopkmn − komkpn

)

kop,n

(B.4), (B.5)
= ν,m

(

1

2A2
kmn − krmkrn

)

(

A2
)

,n
+ ν,m

[

1

2 (rA)2
kmn − kθmkθn

]

(

r2A2
)

,n

(B.5)
= ν,m

1

A2
kmn

(

A2
)

,n
− ν,r

1

A4

(

A2
)

,r

+ν,m
1

2r2
kmn

(

r2
)

,n
− ν,θ

1

(rA)4
(

r2A2
)

,θ

= ν,m
1

2r2
kmn

(

r2
)

,n

=
ν,r
rA2

In addition to that, the last line in equation (B.7) can be rewritten to

mmν,m

(

Mn
,n

M
+ kop

Mn

M
Γpno

)

(GB2.24), (B.1)
=

Mm

NM
N,m

1

M

(

konM
n
,o + kαβMγΓαβγ

)

(GB2.22), stationarity,axisymmetry
=

Mα

NM
N,α

1

M
kδγ

(

Mγ
,δ + ΓγδǫM

ǫ
)

=
Mα

NM
kβαN;β

1

M
kδγM

γ
;δ

(GB2.21)
=

Mα

NM
N||α

1

M
Mβ

||β

(GB2.36), stationarity,axisymmetry
= −LM

m

NM
N||m

(GB3.10)
= −L

2

2
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Hence, equation (B.7) becomes

ν,m

(

1

2
habhmnhab,n − hamhbnhab,n

)

=
1

A2

[(

1

r
+ µ,r

)

ν,r +
µ,θν,θ
r2

]

+
(

mrmr
,r +mθmr

,θ

)

ν,r +
(

mrmθ
,r +mθmθ

,θ

)

ν,θ −
L2

2

We insert this result in equation (B.6) and arrive at

1

N
N |a

a

=
1

A2

[

ν,rr +

(

1

r
+ µ,r

)

ν,r +
ν,θθ
r2

+
µ,θν,θ
r2

]

+

[

1

A2
+ (mr)2

]

(ν,r)
2

+

[

1

(rA)2
+
(

mθ
)2
]

(ν,θ)
2 + (mr)2 ν,rr + 2mrmθν,rθ +

(

mθ
)2
ν,θθ

+
(

mrmr
,r +mθmr

,θ

)

ν,r +
(

mrmθ
,r +mθmθ

,θ

)

ν,θ −
L2

2
+ 2mrmθν,rν,θ

Making use of equation (GB3.11)

N |a
a = N

[

4π (E + Saa) +KabK
ab
]

we finally obtain equation (C.1), listed in Appendix C. Comparing equation (C.1) with
(GBB3), we realize that the term 2mrmθν,rν,θ is missing on the left hand side of equation
(GBB3).

There are mistakes in the equations (GBB4a) and (GBB4b), too. However, we do not
prove this here, because just like Gourgoulhon & Bonazzola (1993) we used a Mathe-
matica program. The correct versions of equations (GBB4a) and (GBB4b) are given in
Appendix C, again.
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C. Geometry equations

In the following, we list the corrected equations (B3-B7) of Gourgoulhon & Bonazzola
(1993). These equations are required to compute the metric gαβ .

C.1. Equation for ν

The equation for the geometry field ν = lnN is given by equation (B3) in the paper of
Gourgoulhon & Bonazzola (1993). The correct version of this equation is

1

A2

[

ν,rr +

(

1

r
+ µ,r

)

ν,r +
ν,θθ
r2

+
µ,θν,θ
r2

]

+

[

1

A2
+ (mr)2

]

(ν,r)
2

+

[

1

(rA)2
+
(

mθ
)2
]

(ν,θ)
2 + (mr)2 ν,rr + 2mrmθν,rθ +

(

mθ
)2
ν,θθ

+
(

mrmr
,r +mθmr

,θ

)

ν,r +
(

mrmθ
,r +mθmθ

,θ

)

ν,θ + 2mrmθν,rν,θ

= 4π (E + Saa) +KabK
ab +

L2

2
(C.1)

C.2. Equations for Na

There are three equations for the three components of the 3-shift Na. The first of these
equations is

[

1

A2
+ (mr)2

]{

N r
,rr +

(

1

r
+ µ,r

)

N r
,r −

[

1

r2
+ (µ,r)

2

]

N r

}

+

[

1

(rA)2
+
(

mθ
)2
]

N r
,θθ +

[

1

(rA)2
−
(

mθ
)2
]

µ,θN
r
,θ −

2

r

[

1

A2
+ (mr)2

]

N θ
,θ

−
{[

1

A2
− (mr)2

]

M,rθ

M
+

[

1

A2
+ (mr)2

]

µ,rµ,θ

}

N θ + 2mrmθN r
,rθ

+N r
,r

{

2

[

1

A2
+ (mr)2

]

α,r +mrmθ (2α,θ − µ,θ) +mr
Mθ

,θ

M
+mθ

M r
,θ

M

}

+N r
,θ

{

2

[

1

(rA)2
+ 2

(

mθ
)2
]

α,θ +mrmθ

(

µ,r + 4α,r +
1

r

)

−
mrM r

,θ

r2M

+
mθ

M

(

M r
,r + 2Mθ

,θ

)

}

+ 2N θ
,r

[

α,θ
A2

+ (mr)2 µ,θ −mr
M r

,θ

M

]

+N θ
,θ

{

−2

[

1

A2
+ (mr)2

]

α,r + 2mrmθ (µ,θ − α,θ) − 2mr
Mθ

,θ

M
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+
mθ

M

(

r2Mθ
,r −M r

,θ

)

}

+Nϕ
,θ

{

2M r

(rA)2
(µ,θ − α,θ)

+2
Mθ

A2

[

α,r − µ,r +
1

r
+

(Amr)2

r

]

+ 2mrmθ
(

Mθ
,θ −M r

,r

)

− 1

r2

[

1

A2
− (mr)2 +

(

rmθ
)2
]

M r
,θ +

[

1

A2
+ (mr)2 −

(

rmθ
)2
]

Mθ
,r

}

+N r

{

2

[

1

A2
+ 2 (mr)2

]

α,r

(

µ,r −
1

r

)

−
[

1

A2
− (mr)2

]

M,rr

M

+mrmθ

(

−µ,rµ,θ + 4α,θµ,r − 2
α,θ
r

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

)

+2 (mr)2
[

µ,r
r

− (α,r)
2 − A,rr

A

]

+
mr

M

[

2M r
,r

(

µ,r − 4α,r −
1

r

)

−Mθ
,r (µ,θ + 2α,θ) + 2Mθ

,θ

(

µ,r − α,r −
1

r

)

− 2M r
,rr −Mθ

,rθ

]

+
mθ

M

[

M r
,r (µ,θ − 4α,θ) −M r

,rθ

]

− 1

M2

[

2
(

M r
,r

)2
+M r

,rM
θ
,θ + r2

(

Mθ
,r

)2
]}

+N θ

{

2

A2
α,θµ,r +mrmθ

[

4α,θµ,θ − 2 (α,θ)
2 − (µ,θ)

2 +
M,θθ

M
− 2

A,θθ
A

]

+2 (mr)2
(

µ,θ
r

− α,θ
r

− α,rα,θ + 2µ,θα,r −
A,rθ
A

)

+
mr

M

[

2M r
,r (µ,θ − α,θ) − 2M r

,θ

(

3α,r +
1

r

)

+Mθ
,θ (µ,θ − 4α,θ)

−Mθ
,θθ − 2M r

,rθ

]

+
mθ

M

[

M r
,θ (µ,θ − 4α,θ) −M r

,θθ

]

− 1

M2

(

M r
,θM

θ
,θ + 2M r

,rM
r
,θ + r2Mθ

,rM
θ
,θ

)

}

= −16πNJr − 2KrrN,r − 2KrθN,θ (C.2)

This is the corrected version of equation (B4a) of Gourgoulhon & Bonazzola (1993). For
that purpose, in the last but two line, the term M r

,θθ/M was replaced by M r
,θθ. A

similar correction was necessary in equation (B4b)
[

1

A2
+ (mr)2

]

N θ
,rr +

[

1

A2

(

3

r
+ µ,r

)

+ (mr)2
(

3

r
− µ,r

)]

N θ
,r

+

[

1

(rA)2
+
(

mθ
)2
]

(

N θ
,θθ + µ,θN

θ
,θ

)

−N θ

{[

1

(rA)2
+
(

mθ
)2
]

(µ,θ)
2

+

[

1

(rA)2
−
(

mθ
)2
]

M,θθ

M

}

+
2N r

,θ

r3A2
+ 2mrmθN θ

,rθ

+N r
,r

{

−2

[

1

(rA)2
+
(

mθ
)2
]

α,θ + 2mrmθ (µ,r − α,r)

+
1

M

[

mr

(

M r
,θ

r2
−Mθ

,r

)

− 2mθM r
,r

]}

+N r
,θ

[

2

(rA)2
α,r
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+ 2
(

mθ
)2
µ,r − 2mθ

Mθ
,r

M

]

+N θ
,r

{

2

[

1

A2
+ 2 (mr)2

]

α,r

+ mrmθ (µ,θ + 4α,θ) +
1

M

[

mr
(

2M r
,r +Mθ

,θ

)

−mθr2Mθ
,r

]

}

+N θ
,θ

{

2

[

1

(rA)2
+
(

mθ
)2
]

α,θ +mrmθ

(

2α,r − µ,r +
1

r

)

+
1

M

(

mrMθ
,r +mθM r

,r

)

}

+Nϕ
,r

{

2M r

(rA)2
(α,θ − µ,θ)

+2
Mθ

A2

[

µ,r − α,r −
1

r
− (Amr)2

r

]

+ 2mrmθ
(

M r
,r −Mθ

,θ

)

+
1

r2

[

1

A2
− (mr)2 +

(

rmθ
)2
]

M r
,θ −

[

1

A2
+ (mr)2 −

(

rmθ
)2
]

Mθ
,r

}

+N r

{[

2

r3A2
−
(

1

(rA)2
+
(

mθ
)2
)

µ,r

]

µ,θ −
[

1

(rA)2
−
(

mθ
)2
]

M,rθ

M

+
2

r

[

1

(rA)2
−
(

mθ
)2
]

α,θ +
2

(rA)2
α,rµ,θ +mrmθ

[

2
µ,r
r

− 4
α,r
r

− 1

r2

+ 4α,rµ,r − 2 (α,r)
2 − (µ,r)

2 +
M,rr

M
− 2

A,rr
A

]

+2
(

mθ
)2
[

(2µ,r − α,r)α,θ −
A,rθ
A

]

+
mr

M

[(

µ,r − 4α,r −
3

r

)

Mθ
,r

−Mθ
,rr

]

+
mθ

M

[

M r
,r

(

µ,r − 4α,r −
1

r

)

− 6Mθ
,rα,θ

− 2Mθ
,θ

(

−µ,r + α,r +
1

r

)

−M r
,rr − 2Mθ

,rθ

]

− 1

M2

(

1

r2
M r

,rM
r
,θ +M r

,rM
θ
,r + 2Mθ

,rM
θ
,θ

)}

+N θ

{

2

[

1

(rA)2
+ 2

(

mθ
)2
]

α,θµ,θ +mrmθ
[

2
µ,θ
r

− 2
α,θ
r

− µ,rµ,θ + 4α,rµ,θ

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

]

− 2
(

mθ
)2
[

(α,θ)
2 +

A,θθ
A

]

+
mr

M

[

Mθ
,θ

(

µ,r − 4α,r −
3

r

)

−Mθ
,rθ

]

+
mθ

M

[

2M r
,r (µ,θ − α,θ)

−M r
,θ

(

µ,r + 2α,r +
1

r

)

+ 2Mθ
,θ (µ,θ − 4α,θ) −M r

,rθ − 2Mθ
,θθ

]

− 1

M2

[

(

M r
,θ

r

)2

+ 2
(

Mθ
,θ

)2
+M r

,rM
θ
,θ

]}

= −16πNJθ − 2KθrN,r − 2KθθN,θ (C.3)

where in the last but two line the expression −M r
,rθ/M − 2Mθ

,θθ/M − 2A,θθ/A has been
replaced by −M r

,rθ−2Mθ
,θθ. The third equation (B4c) does not require any corrections:

[

1

A2
+ (mr)2

]

Nϕ
,rr +

{

1

r

[

1

A2
+ (mr)2

]

+

[

3

A2
− (mr)2

]

µ,r

}

Nϕ
,r
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+

[

1

(rA)2
+
(

mθ
)2
]

Nϕ
,θθ +

[

3

(rA)2
−
(

mθ
)2
]

µ,θN
ϕ
,θ + 2mrmθNϕ

,rθ

+2
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,r

M

[

mr (µ,r − α,r) −mθα,θ −
M r

,r

M

]

+
N r

,θ

M

[

2mθµ,r
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M

(

Mθ
,r +

M r
,θ
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)]

+
N θ
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M

[

2mrµ,θ −
1

M

(

r2Mθ
,r +M r

,θ

)

]

+2
N θ

,θ

M

[

mθ (µ,θ − α,θ) −mr

(

α,r +
1

r

)

−
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,θ

M

]

+Nϕ
,r
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−mrmθµ,θ
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(
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)

+
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M

(

4M r
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)

+
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M

(
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,θ + r2Mθ
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)

]

+Nϕ
,θ

[

−mrmθµ,r + 4mθ
(

mrα,r +mθα,θ

)

+
3

r
mrmθ +
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M

(

M r
,θ

r2
+ 2Mθ

,r

)

+
mθ

M

(

M r
,r + 4Mθ

,θ

)

]

+
N r

M

{
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[

2
µ,r
r

− 4
α,r
r

− 1

r2
− (µ,r)

2 − 2 (α,r)
2 + 4α,rµ,r +

M,rr

M
− 2

A,rr
A

]

+mθ

(

−µ,rµ,θ + 4α,θµ,r − 2
α,θ
r

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

)

+
1

M

[

M r
,r

(

µ,r − 4α,r −
1

r

)

−Mθ
,r (µ,θ + 2α,θ)

+ 2Mθ
,θ

(

µ,r − α,r −
1

r

)

−M r
,rr −Mθ

,rθ

]}

+
N θ

M

{

mr

[

−µ,rµ,θ +

(

4α,r +
2

r

)

µ,θ − 2
α,θ
r

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

]

+mθ

[

− (µ,θ)
2 − 2 (α,θ)

2 + 4α,θµ,θ +
M,θθ

M
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A,θθ
A

]

+
1

M

[

2M r
,r (µ,θ − α,θ) −M r

,θ

(

µ,r + 2α,r +
1

r

)

+ Mθ
,θ (µ,θ − 4α,θ) −M r

,rθ −Mθ
,θθ

]}

= −16πNJϕ − 2KϕrN,r − 2KϕθN,θ (C.4)

C.3. Equation for β

The equation for the basic geometry field β = ln (M/r sin θ) is

1

A2

[

(MN),rr +
1

r
(MN),r +

1

r2
(MN),θθ

]

= 8πMNsmm − 2κr [M, q]r − 2κθ [M, q]θ −M

(

qr + ω
M r

M

)

κ,r

−M
(

qθ + ω
Mθ

M

)

κ,θ +MN
(

κmnκ
mn + κ2 − LmnL

mn
)

(C.5)
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C.4. Equations for Mm

For the two components of the 2-shift Mm, there are the two equations

1
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[

M r
,rr +

(

1

r
+ 2α,r

)

M r
,r +

M r
,θθ

r2
+

2

r2
α,θM

r
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(

1
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α,r
r

)
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θ
,r − 2

(

1

r
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)
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,θ

]
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(

M

N

)
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(

M

N

)
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L
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(MN),r
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M
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ω
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(
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(C.6)

and

1

A2

[

Mθ
,rr +
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3

r
+ 2α,r

)

Mθ
,r +

Mθ
,θθ

r2
+

2

r2
α,θM

θ
,θ −

2

r2
α,θM

r
,r

+
2

r2

(

1

r
+ α,r

)

M r
,θ +

2

r3
α,θM

r

]

= 16πMsθ − 2LθrN

(

M

N

)

,r

− 2LθθN

(

M

N

)

,θ

+
L

r2NA2
(MN),θ

+2
M

N
[q, κ]θ + 2

ω

N
[M,κ]θ − 2κθr

M2

N

( ω

M

)
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+

[

κ

(rA)2
− κθθ

]

M2

N

( ω

M

)

,θ

−2M
(

2κθrκ
r + 2κθθκ

θ − κκθ
)

(C.7)

C.5. Equation for α

The last geometry equation gives the basic geometry field α = lnA:

1

A2

[

(α+ ν),rr +
1

r
(α+ ν),r +

1

r2
(α+ ν),θθ

]

= 8πs− 1

A2

[

(ν,r)
2 +

1

r2
(ν,θ)

2

]

+
1

N

(

qr + ω
M r

M

)

κ,r +
1

N

(

qθ + ω
Mθ

M

)

κ,θ

+
2

MN
κr[M, q]r +

2

MN
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1

2

(

κmnκ
mn + κ2 + LmnL
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(C.8)
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D. Determinants

In the following, we will prove two important relations between the three determinants
g = det gαβ , h = dethab and k = det kmn of the 4-metric gαβ , the 3-metric hab and the
2-metric kmn, respectively. For that purpose, we make use of equation (7.8) of D’Inverno
(1992) for the 4-metric gαβ :

∂αg = ggβγ∂αgβγ

In a similar manner, there are the equations

∂ah = hhbc∂ahbc

and
∂mk = hhbc∂ahbc

for the 3-metric hab and the 2-metric kmn, respectively. Then, the decompositions (2.11)
and (2.12) of the 4-metric gαβ lead to

∂a ln (−g) =
∂ag

g

= gβγ∂agβγ

= gtt∂agtt + 2gtb∂agtb + gbc∂agbc

= − 1

N2
∂a

(

hbcNbNc −N2
)

+ 2
N b

N2
∂aNb +

(

hbc − N bN c

N2

)

∂ahbc

= 2
∂aN

N
+
∂ah

h
− 1

N2

(

NbN
dhcd∂ah

bc +N bNdh
cd∂ahbc

)

= 2∂a lnN + ∂a lnh− NbN
d

N2

(

hcd∂ah
bc + hbc∂ahcd

)

The expression in the round bracket vanishes, because

hbc∂ah
cd + hcd∂ahbc = ∂a

(

hcdh
bc
)

= ∂aδ
b
d = 0

So, we arrive at the first of the two relations to be proven:

∂a ln (−g) = ∂a (2ν + lnh) (D.1)

For the second relation, we use the decompositions (2.17) and (2.18) of the 3-metric hab
such that

∂m lnh =
∂mh

h

= hab∂mhab

=

(

kno +
MnMo

M2

)

∂mkno − 2
Mn

M2
∂mMn +

1

M2
∂m
(

M2 + knoMnMo

)
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= 2
∂mM

M
+
∂mk

k
+

1

M2
(MnM

pkop∂mk
no +MnMpk

op∂mkno)

= 2∂m lnM + ∂m ln k +
MnM

p

M2
(kop∂mk

no + kno∂mkop)

The expression in the round brackets is again zero, since

kop∂mk
no + kno∂mkop = ∂m (knokop) = ∂mδ

n
p = 0

Then, we get
∂m lnh = ∂m (2µ+ ln k) (D.2)

Both relations (D.1) and (D.2) are an immediate result of the equations

√−g = N
√
h

and √
h = M

√
k

presented, but not proven in Gourgoulhon & Bonazzola (1993).
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E. Polytropic equation of state

The polytropic equation of state is
p = KρΓ (E.1)

with the pressure p, the polytropic constant K, the rest mass density ρ and the polytropic
exponent Γ. In this section, we will derive a relation between the rest mass density ρ
and the total energy density ǫ (=rest energy density+thermal energy density) such that
we can express the total energy density ǫ merely in terms of the pressure p. For that
purpose, we use the first law of thermodynamics, written as

dǫ = ρTds+ hdρ

with the temperature T , the specific entropy s and the relativistic enthalpy

h =
ǫ+ p

ρ

Following Friedman & Stergioulas, we ignore entropy gradients such that we can assume
a uniform entropy distribution. Therefore, ds = 0, and the first law of thermodynamics
becomes

dǫ =
ǫ+ p

ρ
dρ

or

d

(

ǫ

ρ

)

=
p

ρ2
dρ = KρΓ−2dρ

Then, we demand
lim
p→0

ǫ

ρ
= 1

such that
ǫ

ρ
= 1 +

∫ ρ

0
dρKρΓ−2 = 1 +K

ρΓ−1

Γ − 1

Thus, we find the following relation between the total energy density ǫ and the rest mass
density ρ:

ǫ = ρ+K
ρΓ

Γ − 1

Applying equation (E.1), we eventually arrive at

ǫ =
p

Γ − 1
+
( p

K

)
1

Γ (E.2)

This relation expresses the total energy density ǫ in terms of the pressure p.
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F. Sources of 3-shift Poisson equation

In this appendix, we present the sources SaN of the Poisson equation (3.9) for the 3-shift
Na. The three components of the 3-vector SaN are the r-component

SrN
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(
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(
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+
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(
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)
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+
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(

µ,r −
1

r

)

−
[

1

A2
− (mr)2

]

M,rr

M

+mrmθ

(

−µ,rµ,θ + 4α,θµ,r − 2
α,θ
r

− 2α,rα,θ +
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[
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]
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]
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[
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(
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(
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[

2M r
,r (µ,θ − α,θ) − 2M r

,θ

(

3α,r +
1

r

)

+Mθ
,θ (µ,θ − 4α,θ)

−Mθ
,θθ − 2M r

,rθ

]

+
mθ

M

[

M r
,θ (µ,θ − 4α,θ) −M r

,θθ

]

− 1

M2

(

M r
,θM

θ
,θ + 2M r

,rM
r
,θ + r2Mθ

,rM
θ
,θ

)

}

− (mr)2
{

N r
,rr +

(

1

r
+ µ,r

)

N r
,r −

[

1

r2
+ (µ,r)

2

]

N r

}

−
(

mθ
)2
N r

,θθ +
(

mθ
)2
µ,θN

r
,θ +

2

r
(mr)2N θ

,θ − (mr)2 β,rθN
θ

}

−β,rN r
,r +

[

2

r
β,r + (β,r)

2

]

N r − 1

r2
β,θN

r
,θ

+

(

2

r
β,θ + 2cot θβ,r + β,rθ + 2β,rβ,θ

)

N θ

the θ-component

SθN

= A2
{

−16πNJθ − 2KθrN,r − 2KθθN,θ − 2mrmθN θ
,rθ

−N r
,r

{

−2

[

1

(rA)2
+
(

mθ
)2
]

α,θ + 2mrmθ (µ,r − α,r)

+
1

M

[

mr

(

M r
,θ

r2
−Mθ

,r

)

− 2mθM r
,r

]}

−N r
,θ

[

2

(rA)2
α,r + 2

(

mθ
)2
µ,r − 2mθ

Mθ
,r

M

]

−N θ
,r

{

2

[

1

A2
+ 2 (mr)2

]

α,r +mrmθ (µ,θ + 4α,θ)

+
1

M

[

mr
(

2M r
,r +Mθ

,θ

)

−mθr2Mθ
,r

]

}

−N θ
,θ

{

2

[

1

(rA)2
+
(

mθ
)2
]

α,θ +mrmθ

(

2α,r − µ,r +
1

r

)

+
1

M

(

mrMθ
,r +mθM r

,r

)

}

−Nϕ
,r

{

2M r

(rA)2
(α,θ − µ,θ)

+2
Mθ

A2

[

µ,r − α,r −
1

r
− (Amr)2

r

]

+ 2mrmθ
(

M r
,r −Mθ

,θ

)

+
1

r2

[

1

A2
− (mr)2 +

(

rmθ
)2
]

M r
,θ −

[

1

A2
+ (mr)2 −

(

rmθ
)2
]

Mθ
,r

}

−N r

{

−
(

mθ
)2
µ,rµ,θ +

(

mθ
)2 M,rθ

M
− 1

(rA)2
(2 cot θβ,r + β,rθ + 2β,rβ,θ)

+
2

r

[

1

(rA)2
−
(

mθ
)2
]

α,θ +
2

(rA)2
α,rµ,θ +mrmθ

[

2
µ,r
r

− 4
α,r
r

− 1

r2

+4α,rµ,r − 2 (α,r)
2 − (µ,r)

2 +
M,rr

M
− 2

A,rr
A

]
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+2
(

mθ
)2
[

(2µ,r − α,r)α,θ −
A,rθ
A

]

+
mr

M

[(

µ,r − 4α,r −
3

r

)

Mθ
,r

−Mθ
,rr

]

+
mθ

M

[

M r
,r

(

µ,r − 4α,r −
1

r

)

− 6Mθ
,rα,θ

−2Mθ
,θ

(

−µ,r + α,r +
1

r

)

−M r
,rr − 2Mθ

,rθ

]

− 1

M2

(

1

r2
M r

,rM
r
,θ +M r

,rM
θ
,r + 2Mθ

,rM
θ
,θ

)}

−N θ

{

2

[

1

(rA)2
+ 2

(

mθ
)2
]

α,θµ,θ +mrmθ
[

2
µ,θ
r

− 2
α,θ
r

− µ,rµ,θ + 4α,rµ,θ

−2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

]

− 2
(

mθ
)2
[

(α,θ)
2 +

A,θθ
A

]

+
mr

M

[

Mθ
,θ

(

µ,r − 4α,r −
3

r

)

−Mθ
,rθ

]

+
mθ

M

[

2M r
,r (µ,θ − α,θ)

−M r
,θ

(

µ,r + 2α,r +
1

r

)

+ 2Mθ
,θ (µ,θ − 4α,θ) −M r

,rθ − 2Mθ
,θθ

]

− 1

M2

[

(

M r
,θ

r

)2

+ 2
(

Mθ
,θ

)2
+M r

,rM
θ
,θ

]}

− (mr)2N θ
,rr −

1

A2
β,rN

θ
,r − (mr)2

(

3

r
− µ,r

)

N θ
,r

−
(

mθ
)2 (

N θ
,θθ + µ,θN

θ
,θ

)

+
(

mθ
)2
(

cot2 θ + 1 − β,θθ
)

N θ

}

− 1

r2
β,θN

θ
,θ +N θ 1

r2

[

4 cot θβ,θ + 2 (β,θ)
2 + β,θθ

]

and the φ-component

SφN

= A2
{

−16πNJϕ − 2KϕrN,r − 2KϕθN,θ − 2mrmθNϕ
,rθ

−2
N r

,r

M

[

mr (µ,r − α,r) −mθα,θ −
M r

,r

M

]

−
N r

,θ

M

[

2mθµ,r −
1

M

(

Mθ
,r +

M r
,θ

r2

)]

−
N θ

,r

M

[

2mrµ,θ −
1

M

(

r2Mθ
,r +M r

,θ

)

]

−2
N θ

,θ

M

[

mθ (µ,θ − α,θ) −mr

(

α,r +
1

r

)

−
Mθ

,θ

M

]

−Nϕ
,r

[

−mrmθµ,θ + 4mr
(

mrα,r +mθα,θ

)

+
mr

M

(

4M r
,r +Mθ

,θ

)

+
mθ

M

(

2M r
,θ + r2Mθ

,r

)

]

−Nϕ
,θ

[

−mrmθµ,r + 4mθ
(

mrα,r +mθα,θ

)

+
3

r
mrmθ
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+
mr

M

(

M r
,θ

r2
+ 2Mθ

,r

)

+
mθ

M

(

M r
,r + 4Mθ

,θ

)

]

−N
r

M

{

mr

[

2
µ,r
r

− 4
α,r
r

− 1

r2
− (µ,r)

2 − 2 (α,r)
2 + 4α,rµ,r +

M,rr

M
− 2

A,rr
A

]

+mθ

(

−µ,rµ,θ + 4α,θµ,r − 2
α,θ
r

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

)

+
1

M

[

M r
,r

(

µ,r − 4α,r −
1

r

)

−Mθ
,r (µ,θ + 2α,θ)

+2Mθ
,θ

(

µ,r − α,r −
1

r

)

−M r
,rr −Mθ

,rθ

]}

−N
θ

M

{

mr

[

−µ,rµ,θ +

(

4α,r +
2

r

)

µ,θ − 2
α,θ
r

− 2α,rα,θ +
M,rθ

M
− 2

A,rθ
A

]

+mθ

[

− (µ,θ)
2 − 2 (α,θ)

2 + 4α,θµ,θ +
M,θθ

M
− 2

A,θθ
A

]

+
1

M

[

2M r
,r (µ,θ − α,θ) −M r

,θ

(

µ,r + 2α,r +
1

r

)

+Mθ
,θ (µ,θ − 4α,θ)

−M r
,rθ −Mθ

,θθ

]}

− (mr)2Nϕ
,rr −

[

3

A2
− (mr)2

]

β,rN
ϕ
,r −

(

mθ
)2
Nϕ

,θθ

−
[

3

(rA)2
−
(

mθ
)2
]

β,θN
ϕ
,θ +

(

mθ
)2

cot θNϕ
,θ

}
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G. Associated Legendre polynomials

Every function f (θ, φ) can be expanded in terms of spherical harmonics Ylm (θ, φ) as (p.
128f of Jackson 2006)

f (θ, φ) =
∞
∑

l=0

l
∑

m=−l

flmYlm (θ, φ)

with the coefficients
flm =

∫

dΩ f (θ, φ)Y ⋆
lm (θ, φ)

Assuming
f (θ, φ) = f (θ) cosφ

equation (3.36) tells us

flm =

√

(2l + 1) (l −m)!

4π (l +m)!

∫ π

0
dθ f (θ)Pml (cos θ) sin θ

∫ 2π

0
dφ e−imφ cosφ

We evaluate the second integral with the help of equations (3.45) and (3.46) such that

flm = πδ1|m|

√

(2l + 1) (l −m)!

4π (l +m)!

∫ π

0
dθ f (θ)Pml (cos θ) sin θ

Then, equation (3.40) gives

fl,−1 = π

√

(2l + 1) (l + 1)!

4π (l − 1)!

∫ π

0
dθf (θ)P−1

l (cos θ) sin θ

= −π
√

(2l + 1) (l − 1)!

4π (l + 1)!

∫ π

0
dθf (θ)P 1

l (cos θ) sin θ

= −fl,1

and together with equation (3.36) we find

Yl,−1 (θ, φ) =

√

(2l + 1) (l + 1)!

4π (l − 1)!
P−1
l (cos θ) e−iφ

= −
√

(2l + 1) (l − 1)!

4π (l + 1)!
P 1
l (cos θ)

(

eiφ
)⋆

= −Y ⋆l,1 (θ, φ)
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G. Associated Legendre polynomials

Thus, we arrive at

f (θ, φ) =

∞
∑

l=1

(fl,−1Yl,−1 (θ, φ) + fl,1Yl,1 (θ, φ))

=
∞
∑

l=1

fl,1
(

Y ⋆
l,−1 (θ, φ) + Yl,1 (θ, φ)

)

= 2

∞
∑

l=1

fl,1

√

(2l + 1) (l − 1)!

4π (l + 1)!
P 1
l (cos θ) cosφ

=

∞
∑

l=1

flP
1
l (cos θ) cosφ

with the coefficients

fl = 2

√

(2l + 1) (l − 1)!

4π (l + 1)!
π

√

(2l + 1) (l − 1)!

4π (l + 1)!

∫ π

0
dθf (θ)P 1

l (cos θ) sin θ

So, every function f (θ) can be expanded as

f (θ) =

∞
∑

l=1

flP
1
l (cos θ) (G.1)

fl =
(2l + 1)

2l (l + 1)

∫ π

0
dθf (θ)P 1

l (cos θ) sin θ (G.2)
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H. Slicing conditions in flat space

In the following, we will rewrite the two slicing conditions (3.8) and (3.9) of Gourgoulhon
& Bonazzola (1993) in terms of our basic fields in flat space.

H.1. Maximal time slicing

The maximal time slicing condition is given in equation (3.8) of Gourgoulhon & Bonazzola
(1993):

Na
|a = 0 (H.1)

Due to equations (2.34) and (2.32), we find

Na
|a = Na

,a + 3ΓaabN
b

and
3ΓaabN

b = hac 3ΓcabN
b =

1

2
hac (∂ahcb + ∂bhac − ∂chab)N

b

such that
Na

|a = Na
,a +

1

2
hac∂bhacN

b

and hence due to axisymmetry

Na
|a = Nm

,m +
1

2
hab∂nhabN

n (H.2)

Next, we expand

hab∂nhab = hmo∂nhmo + hϕm∂nhϕm + hmϕ∂nhmϕ + hϕϕ∂nhϕϕ

and use equations (2.17) and (2.18):

hab∂nhab =

(

kmo +
MmMo

M2

)

∂nkmo −
Mo

M2
∂nMo

−M
m

M2
∂nMm +

1

M2
∂n
(

M2 +MmM
m
)

(H.3)

Moreover, we apply equation (2.19) and evaluate

kmo∂nkmoN
n = krr∂rkrrN

r + kθθ∂rkθθN
r + krr∂θkrrN

θ + kθθ∂θkθθN
θ

=
1

A2

[

∂r
(

A2
)

N r +
1

r2
∂r
(

r2A2
)

N r + ∂θ
(

A2
)

N θ +
1

r2
∂θ
(

r2A2
)

N θ

]

=
1

A2

[

2∂r
(

A2
)

N r +
A2

r2
∂r
(

r2
)

N r + 2∂θ
(

A2
)

N θ

]
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such that equation (2.23) leads to

1

2
kmo∂nkmoN

n = 2∂rαN
r +

1

r
N r + 2∂θαN

θ (H.4)

On the other hand, we recall that the 2-metric kmn has to be used to raise and lower
indices of the 2-shift Mm, and compute

MmMo

M2
∂nkmo −

Mo

M2
∂nMo −

Mm

M2
∂nMm +

1

M2
∂n (MmM

m)

=
MmMo

M2
∂nkmo − 2

Mm

M2
∂nMm +

1

M2
Mm∂nMm +

1

M2
Mm∂nM

m

=
MmMo

M2
∂nkmo −

Mm

M2
∂n (kmoM

o) +
1

M2
Mm∂nM

m

= 0

Thus, using equations (2.29), (H.3) and (H.4) in the result (H.2), we find

Na
|a = Nm

,m +Nm∂mµ+
1

r
N r + 2∂mαN

m

For the second term on the right hand side, we use equation (3.5) such that

Nm∂mµ = Nm∂m [ln (r sin θ) + β] = Nm∂mβ +
1

r
N r + cot θN θ

and hence the slicing condition (H.1) becomes

Nm
,m +

2

r
N r + cot θN θ + (2α + β),mN

m = 0

This result can be put into a more compact form. For that purpose, we compute

0 = e2α+β

[

Nm
,m +

2

r
N r + cot θN θ + (2α + β),mN

m

]

= e2α+β

(

Nm
,m +

2

r
N r + cot θN θ

)

+ e2α+β
,mN

m

=
(

e2α+βNm
)

,m
+ e2α+β

(

2

r
N r + cot θN θ

)

and use the flat space 3-divergence (2.48):

3div
(

e2α+β ~N
)

= 0 (H.5)

H.2. Conformally minimal azimuthal slicing

Equation (3.9) of Gourgoulhon & Bonazzola (1993) contains the conformally minimal
azimuthal slicing condition:

(

N2Mm
)

||m
= 0 (H.6)
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H.2. Conformally minimal azimuthal slicing

Similarly to Sect. H.1, we will now reword this condition in terms of our basic fields in
flat space. For that purpose, we start with the Leibniz rule, which gives

1

N2

(

N2Mm
)

||m
= 2

N||m

N
Mm +Mm

||m

Then, equation (2.35) leads to

1

N2

(

N2Mm
)

||m
= 2

N,m

N
Mm +Mm

,m + 2ΓmmnM
n

Due to equation (2.33), the Christoffel symbol becomes

2Γmmn = kmo 2Γomn =
1

2
kmo (∂mkon + ∂nkmo − ∂okmn)

such that
1

N2

(

N2Mm
)

||m
= 2

N,m

N
Mm +Mm

,m +
1

2
kmo∂nkmoM

n (H.7)

Next, replacing Nm →Mm in equation (H.4) leads to

1

2
kmo∂nkmoM

n = 2∂rαM
r +

1

r
M r + 2∂θαM

θ

Hence, equation (2.21) allows us to write equation (H.7) as

1

N2

(

N2Mm
)

||m
= 2ν,mM

m +Mm
,m + 2α,mM

m +
1

r
M r

such that the slicing condition (H.6) becomes

Mm
,m +

1

r
M r + 2 (α+ ν),mM

m = 0

In order to write this result in a more compact manner, we compute

0 = e2(α+ν)

[

Mm
,m +

1

r
M r + 2 (α+ ν),mM

m

]

= e2(α+ν)

(

Mm
,m +

1

r
M r

)

+ e2(α+ν)
,mM

m

=
(

e2(α+ν)Mm
)

,m
+ e2(α+ν) 1

r
M r

and apply the flat space 2-divergence (3.17):

2div
(

e2(α+ν) ~M
)

= 0 (H.8)
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I. Tolman-Oppenheimer-Volkoff solution

In this investigation, we have assumed stationarity and axisymmetry. Tightening ax-
isymmetry to spherical symmetry allows us to rewrite Einstein’s field equation (2.5) to
the Tolman-Oppenheimer-Volkoff (TOV) equation

dp

dr′
= −ǫM (r′)

r′2

(

1 +
p

ǫ

)

(

1 +
4πr′3p

M (r′)

)(

1 − 2M (r′)

r′

)−1

(I.1)

with the TOV-mass

M
(

r′
)

= 4π

∫ r′

0
dxx2ǫ (x)

(see Fließbach 2006). The radial coordinate appearing in the TOV-equation differs from
the one used in the rest of this thesis, and therefore it is denoted as r′ instead of r.
Assuming a central pressure p (r′ = 0), the TOV-equation can be integrated. This leads
to a pressure profile p (r′) and thus to a total energy density profile ǫ (r′). The velocities
va (r′) have to vanish everywhere, because the TOV-equation describes static solutions.
Hence, merely the geometry fields remain to be evaluated. However, we have to be
careful. The reason is that equation (I.1) is computed from the metric

ds2 = −b
(

r′
)

dt2 + a
(

r′
)

dr′2 + r′2dΩ2 (I.2)

with dΩ2 = dθ2 + sin2 θdφ2, in contrast to our metric

ds2 = −e2ν(r)dt2 + e2α(r)
(

dr2 + r2dθ2
)

+ e2β(r)r2 sin2 θdφ2

Assuming
β = α

we have
ds2 = −e2ν(r)dt2 + e2α(r)

(

dr2 + r2dΩ2
)

Comparing this with the metric (I.2) shows that merely the radial coordinate is different.
The correlation between the radial TOV-coordinate r′ and our radial coordinate r is
obviously

√

a (r′)dr′ = eα(r)dr (I.3)

and
r′ = eα(r)r (I.4)

The latter equation can also be written as

α (r) = ln
r′

r
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I. Tolman-Oppenheimer-Volkoff solution

such that equations (I.3) and (I.4) lead to

dα (r) =
dr′

r′
− dr

r
=

(

1

r′
−
√

a (r′)

eα(r)r

)

dr′ =
1

r′

(

1 −
√

a (r′)
)

dr′

Due to equation (39.18) of Fließbach (2006), we hence arrive at

dα (r (r′))

dr′
=

1

r′



1 − 1
√

1 − 2M(r′)
r′





Assuming the boundary condition α (r (r′ = ∞)) = 0, this equation can be integrated,
which leads to a profile α (r (r′)). Then, equation (I.4) tells us the relation between the
TOV-coordinate r′ and our radial coordinate r such that we obtain α (r) = α (r (r′ (r))).

Finally, we consider equation (39.23)

db(r′)
dr′

b (r′)
= − 2 dp

dr′

ǫ+ p

of Fließbach (2006). Using the TOV-equation (I.1), it can be rewritten to

d

dr′
ln b

(

r′
)

= 2
M (r′) + 4πr′3p

r′ (r′ − 2M (r′))

such that b (r′) = e2ν(r) gives

dν (r (r′))

dr′
=
M (r′) + 4πr′3p

r′ (r′ − 2M (r′))

We again assume ν (r (r′ = ∞)) = 0. Then, an integration gives a profile ν (r (r′)), which
allows us to compute the last remaining geometry field ν (r) = ν (r (r′ (r))).
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J. Outlook to electromagnetism

One of the possible ways to go beyond the scope of this investigation and to generalize
it is to take the electromagnetic field into account. In this section, we show a few initial
steps in that direction, which will eventually lead to a generalization of equation (2.59).

In order to include the electromagnetic field, we replace the stress-energy tensor (2.4)
with

Tαβ = Tmatter
αβ + TEM

αβ

in which
Tmatter
αβ = (ǫ+ p)uαuβ + pgαβ

is the original stress-energy tensor (2.4) of the fluid and

TEM
αβ = FαγF

γ
β − 1

4
gαβFγδF

γδ

describes the electromagnetic field. The quantity Fαβ = ∂αAβ − ∂βAα is the electro-
magnetic field strength expressed in terms of the electromagnetic 4-vector potential Aα.
Then, we evaluate

∇βTEM
βα = ∇β

(

FαγF
γ

β − 1

4
gαβFγδF

γδ

)

= Fαγ∇βF γ
β + F βγ

(

∇βFαγ −
1

2
∇αFβγ

)

(J.1)
The second term of the outcome can be reworded to

F βγ
(

∇βFαγ −
1

2
∇αFβγ

)

=
(

∇βAγ −∇γAβ
)

[

∇β (∇αAγ −∇γAα) −
1

2
∇α (∇βAγ −∇γAβ)

]

= ∇βAγ [∇β (∇αAγ −∇γAα) −∇γ (∇αAβ −∇βAα) −∇α (∇βAγ −∇γAβ)]

= ∇βAγ [(∇γ∇β −∇β∇γ)Aα + (∇α∇γ −∇γ∇α)Aβ + (∇β∇α −∇α∇β)Aγ ]

Using equation (6.40) of D’Inverno (1992), we then find

F βγ
(

∇βFαγ −
1

2
∇αFβγ

)

= ∇βAγ (Rαδγβ +Rβδαγ +Rγδβα)Aδ = 0

where in the last step we have used the first Bianchi identity (D’Inverno 1992). Hence,
Maxwell’s field equation

∇αF
αβ = ρqu

β

in which ρq is the charge density, allows us to write equation (J.1) as

∇βTEM
βα = ρqFαβu

β
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Due to this result, it is obvious that equation (2.53) has to be generalized to

(ǫ+ p)uβ∇βu
α = −qαβ∇βp− ρqq

α
γF

γ
βu

β

and with (see equation (2.42))

qαγF
γ
βu

β =
(

δαγ + uαuγ
)

F γβu
β = Fαβu

β

we arrive at
(ǫ+ p)uβ∇βu

α = −qαβ∇βp− ρqF
α
βu

β

Then, equation (2.54) becomes

0 = (ǫ+ p)

[

um∂muα − 1

2
(∂γgβα + ∂αgγβ − ∂βgγα) uβuγ

]

+∂αp+ uαu
m∂mp+ ρqFαβu

β

We expand
Fαβu

β = (∂αAβ − ∂βAα) u
β

and use stationarity together with axisymmetry such that

Fαβu
β = ∂αAβu

β − ∂mAαu
m

That way, we are able to generalize equation (2.55) to

∂αp+ uαu
m∂mp+ ρq

(

∂αAβu
β − ∂mAαu

m
)

ǫ+ p
=

1

2
∂αgγβu

βuγ − um∂muα (J.2)

Setting α = t and taking stationarity into account, we obtain

utu
m∂mp− ρq∂mAtu

m

ǫ+ p
= −um∂mut

such that we generalize equation (2.56) to

vm∂mp = vm
[

ρq
ut
∂mAt − (ǫ+ p) ∂m lnut

]

(J.3)

On the other hand, setting α = a in equation (J.2) leads to

∂ap

ǫ+ p
=

1

2
∂agγβu

βuγ − um∂mua −
uau

m∂mp+ ρq
(

∂aAβu
β − ∂mAau

m
)

ǫ+ p

Then, equation (J.3) allows us to reformulate

∂ap

ǫ+ p
=

1

2
∂agγβu

βuγ − um∂mua

−
uau

tvm
[

ρq

ut
∂mAt − (ǫ+ p) ∂m lnut

]

+ ρq
(

∂aAβu
β − ∂mAau

m
)

ǫ+ p

=
1

2
∂agγβu

βuγ − um∂mua + uau
m∂m lnut
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−
ρq

(

ua

ut
um∂mAt + ∂aAβu

β − ∂mAau
m
)

ǫ+ p

=
1

2
∂agγβu

βuγ − utu
m∂m

ua
ut

−
ρq

[

um
(

ua

ut
∂mAt − ∂mAa

)

+ uβ∂aAβ

]

ǫ+ p

Eventually, we use the Lagrangian angular momentum (2.57) and get

∂ap

ǫ+ p
= utu

m∂mla +
1

2
∂agγβu

βuγ +
ρq
[

um (la∂mAt + ∂mAa) − uβ∂aAβ
]

ǫ+ p

such that for a = φ stationarity leads to

vm∂mlφ = −ρqv
m (lφ∂mAt + ∂mAφ)

ut (ǫ+ p)
(J.4)

This result generalizes equation (2.59).

129



J. Outlook to electromagnetism

130



Bibliography

Arnowitt, R., Deser, S., & Misner, C. W., 1962, The dynamics of general relativity

(L. Witten, Gravitation: An Introduction to Current research; New York: Wiley)

Becker, W., 2009, Neutron Stars and Pulsars (Berlin, Heidelberg: Springer-Verlag)

Camenzind, M., 2007, Compact objects in Astrophysics: White Dwarfs, Neutron Stars

and Black Holes (Berlin, Heidelberg: Springer-Verlag)

Dimmelmeier, H., 2001, General Relativistic Collapse of Rotating Stellar Cores in

Axisymmetry (PhD thesis, Technische Universität München)

D’Inverno, R. A., 1992, Introducing Einstein’s relativity (New York: Oxford University
Press)

Eriguchi, Y. & Müller, E., 1991, Structure of rapidly rotating axisymmetric stars.

I - A numerical method for stellar structure and meridional circulation, A&A 248,
435–447

Eriguchi, Y., Müller, E., & Hachisu, I., 1986, Meridional flow in a self-gravitating

body. I - Mechanical flow in a barotropic star with constant specific angular momentum,
A&A 168, 130–138

Fließbach, T., 1996, Elektrodynamik (Spektrum Akademischer Verlag)

Fließbach, T., 2006, Allgemeine Relativitätstheorie (München: Spektrum Akademis-
cher Verlag)

Font, J. A. & Daigne, F., 2002, The runaway instability of thick discs around black

holes - I. The constant angular momentum case, MNRAS 334, 383–400

Friedman, J. L. & Stergioulas, N., to be published, Rotating Relativistic Stars

(Private communication)

Gourgoulhon, E. & Bonazzola, S., 1993, Noncircular axisymmetric stationary

spacetimes, Phys. Rev. D 48, 2635–2652

Hubble, http://www.phys.ncku.edu.tw/~astrolab/mirrors/

apod/image/0803/lh95_hst_big.jpg

HubbleSite, http://hubblesite.org/gallery/album/nebula/

supernova_remnant/pr2002024a/large_web/

Ioka, K. & Sasaki, M., 2004, Relativistic Stars with Poloidal and Toroidal Magnetic

Fields and Meridional Flow, ApJ 600, 296–316

Jackson, J. D., 2006, Klassische Elektrodynamik (Berlin: Walter de Gruyter)

131

http://www.phys.ncku.edu.tw/~astrolab/mirrors/
apod/image/0803/lh95_hst_big.jpg
http://hubblesite.org/gallery/album/nebula/
supernova_remnant/pr2002024a/large_web/


Bibliography

Kawaler, S. D., Novikov, I., & Srinivasan, G., 1997, Stellar Remnants (Berlin,
Heidelberg: Springer-Verlag)

Komatsu, H., Eriguchi, Y., & Hachisu, I., 1989, Rapidly rotating general relativis-

tic stars. I - Numerical method and its application to uniformly rotating polytropes,
MNRAS 237, 355–379

Michel, F. C., 1991, Theory of neutron star magnetospheres (Chicago: University of
Chicago Press)

Misner, C. W., Thorne, K. S., & Wheeler, J. A., 1973, Gravitation (San Fran-
cisco: W.H. Freeman and Co.)

Nozawa, T., Stergioulas, N., Gourgoulhon, E., & Eriguchi, Y., 1998, Con-

struction of highly accurate models of rotating neutron stars - comparison of three

different numerical schemes, A&AS 132, 431–454

Randers, G., 1941, Large-Scale Motion in Stars, ApJ 94, 109

Roxburgh, I. W., 1974, Non-Uniformly Rotating, Self-Gravitating, Compressible

Masses with Internal Meridian Circulation, Ap&SS 27, 425–435

Shapiro, S. L., Teukolsky, S. A., & Lightman, A. P., 1983, Black Holes, White

Dwarfs, and Neutron Stars: The Physics of Compact Objects (Physics Today)

Stergioulas, N. & Friedman, J. L., 1995, Comparing models of rapidly rotating

relativistic stars constructed by two numerical methods, ApJ 444, 306–311

Straumann, N., 2004, General relativity with applications to astrophysics (Berlin:
Springer)

132



Danksagung

Zum Abschluss dieser Arbeit will ich meinen Dank an diejenigen Menschen ausdrücken,
die mich während meiner Doktorarbeit unterstützt haben. Ich danke meinem Doktorvater
Ewald Müller dafür, dass er mir ein Thema im Bereich der allgemeinen Relativitätstheorie
ermöglicht hat. Die fachlichen Unterredungen mit ihm während der letzten Jahre waren
von wesentlicher Bedeutung für das Zustandekommen dieser Arbeit. Ausserdem bin ich
ihm für die kritische Durchsicht der Entwürfe dieses Manuskripts dankbar.

Diese Doktorarbeit wurde im Rahmen eines IKYDA-Projekts zwischen dem Max-
Planck-Institut für Astrophysik und der Aristoteles Universität Thessaloniki durchge-
führt. Dabei danke ich Nick Stergioulas, ohne dem diese Arbeit nicht möglich gewesen
wäre. Sein RNS Code war der Ausgangspunkt dieser Doktorarbeit. Er hat mir zu Beginn
geduldig dabei geholfen mich in das Thema einzuarbeiten und hat mich bis zum Ende
meiner Promotion mit hilfreichen Ratschlägen unterstützt.

Ausserdem danke ich Thomas Janka für die Unterstützung bei der Untersuchung von
Gamma-Ray-Bursts. In diesem Zusammenhang will ich weitere momentane und ehema-
lige Mitglieder meines Arbeitsumfeldes erwähnen, nämlich Andreas Bauswein, Fei Xi-
ang, Lorenz Hüdepohl, Markus Kromer, Martin Obergaulinger, Nicolay Hammer, Pablo
Cerda-Duran, Paula Jofre Pfeil, Thomas Mädler. Ihnen bin ich für die angenehme Ar-
beitsatmosphäre und die Zusammenarbeit in verschiedener Form dankbar.

Ich danke auch besonders Bernhard Müller für die Fortführung der mittlerweile ein
Jahrzehnt andauernden philosopischen Diskussionen. Die Möglichkeit eines freien Willens
in einer volldeterministischen Welt durch wissenschaftliche Klarstellung der sprachlich
verwendeten Konstrukte ist dabei wohl der wichtigste Punkt, bei dem wir in näherer
Vergangenheit zur Übereinstimmung gekommen sind.

Schließlich will ich zwei Menschen danken, die mir über all die Jahre hinweg uner-
müdliche Unterstützung zukommen liesen: meinen Eltern.

133


	Introduction
	The beginning
	Neutron stars
	Modelling
	Current state
	Investigation goals
	Outline

	Theory
	Notations and conventions
	Fields and equations
	Symmetries
	Foliations
	3+1-foliation of the whole spacetime
	2+1-foliation of the t=const 3-surfaces

	Basic Fields
	Geometry
	Matter

	Projections
	Ancillary fields
	Geometry
	Logarithm of 2-lapse
	Christoffel symbols
	Exterior curvature
	Projections
	Commutators

	Matter
	Velocity
	Projections


	Geometry equations
	Matter equations
	Energy equation as result of a parallel projection
	Compact form
	Expanded form
	Analytic Solution

	Relativistic Euler equation as result of an orthogonal projection
	Compact form
	Expanded form of temporal component
	Azimuthal component
	Meridional components

	Velocity va
	Equation of state


	Numerics
	Basic fields
	Poisson equations
	Poisson equation for 
	Poisson equations for Na
	Poisson equation for 
	Poisson equations for Mm
	Identification of potential and source
	Slicing condition
	Rotation axis
	Numerically optimally suited form of source terms

	Poisson equation for 
	Poisson equation for 0

	Numerical grid
	Boundary
	Ghost zone
	Boundary conditions

	Green functions
	2-scalar
	Analytic solution
	Numerical solution
	Von Neumann boundary condition
	Dirichlet boundary condition

	3-scalar
	Analytic solution
	Numerical solution
	Axisymmetry
	Azimuthal cosine
	Vanishing surface potential

	2-vector
	Analytic solution
	Numerical solution

	3-vector
	Analytic solution
	Numerical solution


	Slicing conditions
	Maximal time slicing
	Conformally minimal azimuthal slicing

	Final gauge
	Origin of the remaining gauge freedom
	Final gauge fixing of Mm
	Final gauge fixing of 

	Fixed point iteration
	Initial configuration
	Iteration
	Removal of lower modes


	GRNS
	Neutron star parameters
	Start screen
	Overview screen
	Field screen
	Additional features

	Tests
	Resolution
	Polynomials
	Centimeter
	Grid radius

	Results
	Assumptions
	Case f()=
	Fundamental mode
	Higher modes

	Case f()=1

	Conclusions
	Christoffel symbols of the first kind
	2-surfaces t
	3-surfaces t

	Derivation of correct 3-lapse equation
	Geometry equations
	Equation for 
	Equations for Na
	Equation for 
	Equations for Mm
	Equation for 

	Determinants
	Polytropic equation of state
	Sources of 3-shift Poisson equation
	Associated Legendre polynomials
	Slicing conditions in flat space
	Maximal time slicing
	Conformally minimal azimuthal slicing

	Tolman-Oppenheimer-Volkoff solution
	Outlook to electromagnetism

