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Abstract
In-medium modifications of hadronic properties have a strong connection to the
restoration of chiral symmetry in hot and/or dense medium. The in-medium spec-
tral functions for vector and axial-vector mesons are of particular interest in this
context, considering the experimental dilepton production data which signal the
in-medium meson properties. In this thesis, finite energy sum rules are employed
to set constraints for the in-medium spectral functions of vector and axial-vector
mesons. Finite energy sum rules for the first two moments of the spectral func-
tions are investigated with emphasis on the role of a scale parameter related to
the spontaneous chiral symmetry breaking in QCD. It is demonstrated that these
lowest moments of vector current spectral functions do permit an accurate sum
rule analysis with controlled inputs, such as the QCD condensates of lowest di-
mensions. In contrast, the higher moments contain uncertainties from the higher
dimensional condensates. It turns out that the factorization approximation for the
four-quark condensate is not applicable in any of the cases studied in this work.
The accurate sum rules for the lowest two moments of the spectral functions are
used to clarify and classify the properties of vector meson spectral functions in a
nuclear medium. Possible connections with the Brown-Rho scaling hypothesis are
also discussed.

Zusammenfassung
Die Eigenschaften von Hadronen erfahren in Materie Abwandlungen, die eng mit
der Wiederherstellung der chiralen Symmetrie in heißer und/oder dichter Ma-
terie verbunden sind. Spektralfunktionen in Materie von Vektor- und Axialvek-
tormesonen sind von besonderem Interesse bei der Analyse von experimentellen
Daten zur Dilepton-Produktion, die mit den Eigenschaften von Mesonen in Ma-
terie verknüpft sind. Summenregeln für endliche Energien werden angewandt, um
Spectralfunktionen von Vektor- und Axialvektor-Mesonen in Materie zu unter-
suchen. Summenregeln für die ersten beiden Momente der Spektralfunktionen
werden abgeleitet mit Hauptaugenmerk auf die Rolle des Skalenparameters für
die spontane Brechung der chiralen Symmetrie in des QCD. Es wird gezeigt, dass
diese beiden niedrigsten Momente der Vektorstrom-Spektralfunktionen eine präzise
Summenregeln-Untersuchung bei Verwendung von bekannten Eingabegrößen, wie
z.B. QCD-Kondensate niedrigster Dimensionen, erlauben.
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Chapter 1

Introduction

The main subject of this thesis is to construct a reliable framework of in-medium
QCD sum rules for hadrons with the aim of providing constraints for the in-medium
spectral properties of the hadrons. In-medium modifications of hadronic properties
are of interest per se in connection with various experiments. This topic also has a
strong connection to the restoration of chiral symmetry in dense and hot hadronic
matters.

Chiral symmetry is spontaneously broken in the QCD vacuum. As it is well-
known from the Goldstone theorem, a spontaneous breaking of a continuous global
symmetry is accompanied by massless Goldstone bosons. In QCD these Goldstone
bosons are identified with the lightest pseudo-scalar mesons (pions and kaons).
The non-trivial vacuum structure originally causes the spontaneous chiral symme-
try breaking and is reflected by the non-zero value of chiral condensate which is
the vacuum expectation value of quark-antiquark operator. Although the chiral
condensate serves as a precise order parameter for spontaneously broken chiral
symmetry, it is not a quantity directly observed from experiments. What we ob-
serve in the hadron spectroscopy are large mass splittings between parity partners
(e.g. ρ(770)-a1(1260) or N(940)-N∗(1535)). Since the spatial parity transforma-
tion exchanges chiralities, all states of the theory should be degenerate with their
parity partners if the chiral symmetry were unbroken.

Theoretical calculations, e.g. lattice gauge theory [1, 2], suggest that the spon-
taneously broken chiral symmetry should be restored in the vicinity of the decon-
finement phase transition, i.e. at a few times normal nuclear matter density and/or
at temperatures around 200 MeV. An important manifestation of chiral symmetry
restoration is then that the hadronic spectral functions are modified with changing

1



2 CHAPTER 1. INTRODUCTION

thermodynamic conditions, and that chiral parity partners such as the ρ and a1

mesons tend to become degenerate. In this context, dilepton production from rel-
ativistic heavy ion collisions has attracted great interest. Dileptons (e+e− or µ+µ−

pairs) as well as photons are believed to be ideal probes carrying pure information
about the colliding regions at high density/temperature because dileptons hardly
interact with the hadronic environments after cooling down. For heavy ion colli-
sions at CERN SPS energies, hot and dense matter is formed in the initial stage
of the collisions. The CERES/NA45 [3, 4, 6, 5] and NA60 [7, 8, 9, 10, 11, 12] ex-
periments have shown a significant enhancement of dilepton yields with invariant
masses between 0.3 GeV to 1 GeV. Dilepton productions from the two-body anni-
hilation processes are dynamically enhanced through the vector meson resonances,
such as ρ, ω and φ mesons, which can directly couple to lepton pairs. There-
fore the invariant mass of the lepton pair emission is equivalent to the in-medium
spectroscopy of the vector mesons. In particular the ρ mesons which are the low-
est dipole excitations of the QCD vacuum, have been used to exploit in-medium
changes of hadron properties.

The issue of in-medium hadronic properties persists as a fundamental theme
ever since the suggestion of Brown and Rho [13] that hadron masses should drop to
zero as a consequence of chiral symmetry restoration. The Brown-Rho’s dropping
mass of non-strange hadrons (BR scaling), based on the broken scale invariance of
QCD, described the low-mass enhancement in the dilepton invariant mass spectra
and was also supported by early studies using QCD sum rules [14]. There have
also been other suggestions for a rising mass [15, 16] or even a structure with
several peaks [17] thereafter. All of those scenarios are however influenced by
strong collisional broadening of the spectral functions. For example, the ρ-meson
spectral function, not to mention the a1-spectrum, has rather broad width already
in the vacuum. The interactions of these mesons with hadrons in the medium
would make their spectral widths even broader and hence the primary issue of a
mass shift physically meaningless.

The controversial arguments of ‘mass shift’ versus ‘broadening’ can be better
focused by introducing the chiral symmetry breaking scale, ΛCSB ≈ 4πfπ, which
characterizes the convergence of the momentum expansion of chiral perturbation
theory, and identifying ΛCSB with the continuum threshold,

√
sV , a scale separating

the low energy resonance region from the high energy continuum in the spectral
representation. The hypothetical relation,

√
sV = 4πfπ, in vacuum is supported

by the time-honored current algebras and spectral sum rules. The extension of
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this relation to finite temperature or density is discussed in this thesis. Such a
scale analysis, rather than the notions of in-medium mass and/or width, provides
a better way to set constraints on the spectral functions in the nuclear medium.

QCD sum rules are often used to set constraints on the spectral properties of
hadrons. The basis of this approach is Wilson’s operator product expansion [18]
(OPE) for the time-ordered product of two (or more) interpolating currents. Non-
perturbative effects are taken into account by the non-zero values of condensates.
The coefficients of the condensates are calculated in perturbation theory. At low
temperature or density, non-perturbative corrections to the in-medium OPE are
contributed by temperature- and density-dependent changes in the condensates.

The OPE includes higher dimensional operators (e.g. four-quark condensates)
with unknown values, which make the sum rule analysis inaccurate. The finite
energy sum rule (FESR) [19, 20, 21], one of the typical branches of QCD sum
rule approaches, has the advantage that, if selecting only the lowest moments of
the sum rules, the higher order condensates are excluded. Furthermore, one can
determine the chiral gap scale

√
sV from the FESR regardless of any unphysical

scale parameters such as the Borel mass. Several in-medium spectral functions
that come from either effective theories or models are taken into account as an
input into the phenomenological side of the sum rule analysis.

This dissertation is organized as follows: After this introduction, the basics of
the strong interaction physics are summarized in chapter 2, focused on aspects
of chiral symmetry. Chapter 3 is devoted by the general review of QCD sum
rules in vacuum. It is shown how the QCD sum rules relate hadronic properties
with QCD degrees of freedom. Current correlation functions as the usual starting
point of the QCD sum rules are analytically continued in the complex energy
plane via a dispersion relation. The extension of the sum rules to finite baryon
density is discussed in chapter 4 [22]. We apply the in-medium FESR to the light
vector mesons (ρ(770) and ω(780)) at normal nuclear matter density (0.17 fm−3)
in order to test the in-medium changes of their hadronic properties. In chapter
5, we analyze properties of the ρ- and a1-mesons at finite temperature using the
in-medium FESR. Conclusions and an outlook are given in chapter 6.



Chapter 2

Theory of the strong interaction

2.1 Basics of QCD

The strong interaction sector of the standard model is described by quantum chro-
modynamics (QCD), a non-abelian SU(3)c gauge theory with quark-gluon degrees
of freedom. The QCD Lagrangian is given by

LQCD = ψ̄(iγµD
µ −m)ψ − 1

4
Ga

µνG
µν
a (a = 1, · · · , 8) , (2.1)

where m = diag(mu,md, · · · ) denotes the diagonal matrix of current quark masses
and Ga

µν is the non-abelian gluonic field-strength tensor,

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + igsf

abcAb
µA

c
ν . (2.2)

The QCD Lagrangian, LQCD, remains unchanged under an arbitrary rotation in
SU(3) color space

ψ → exp

[
iθa λa

2

]
ψ , (2.3)

by introducing the covariant derivative and the eight gluon fields Aµ
a in it,

Dµ = ∂µ − igs
λa

2
Aµ

a . (2.4)

The matrices λa (called the Gell-Mann matrices) are the infinitesimal generators
of the group SU(3), which obey the relation Tr[λaλb] = 2δab.

The running coupling strength, αs(µ) = g2
s(µ)/(4π) depends on an energy scale

µ (renormalization scale) at which the theory is probed. The µ-dependence of the
strong coupling gs(µ) is governed by the QCD β-function

µ
d

dµ
gs(µ) = β(gs) . (2.5)

4



2.2. CHIRAL SYMMETRY 5

As long as gs is small enough, β(gs) can be perturbatively calculated,

β(gs) = − β0

(4π)2
g3

s −
β1

(4π)2
g5

s + · · · , (2.6)

where βi’s are constant coefficients. Thus one arrives at the expression of the
running coupling strength

αs(µ) ' 4π

β0 ln(µ2/Λ2
QCD)

+ · · · , (2.7)

where ΛQCD ∼ 200 MeV is the QCD scale parameter characterizing the change of
αs as a function of µ. As µ increases the coupling strength αs(µ) logarithmically
decreases and then the interactions between quarks and gluons could be treated
perturbatively. This is called the “asymptotic freedom”. In the perturbative cal-
culations, µ should be chosen so that the higher order terms in the expansion are
effectively suppressed. Thus µ should be a characteristic scale of the system.

However, this theory is intricate at low energy scales (comparable to ΛQCD)
where the perturbation expansion is not applicable anymore due to the rapidly
increasing αs(µ). A non-perturbative approach to QCD is lattice QCD which
uses a discrete set of space-time points to reduce the analytically intractable path
integrals of the continuum theory to a numerical computation. Otherwise it has
been necessary in most nuclear physics phenomena to resort to effective theories
or models of QCD that can be solved to some approximation. These effective
methods are constructed by reflecting the symmetries of the QCD Lagrangian and
the observable phenomenology.

2.2 Chiral symmetry

Apart from the local SU(3) gauge symmetry, the QCD Lagrangian has several
global symmetries:

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A . (2.8)

The global U(1)V symmetry yields the conservation of baryon number while the
U(1)A symmetry is broken due to the axial anomaly which causes unexpectedly
large mass of the η′ meson (958 MeV) and can be connected to the instanton.

The QCD Lagrangian is chirally symmetric in the limit of massless quarks.
Taking this limit for the u and d quark is reasonable since their masses are small in
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comparison to characteristic hadronic mass scales, e.g. nucleon mass (∼ 1 GeV).
The strange quark has relatively larger mass but is still smaller than the hadronic
scales. Therefore it is meaningful to examine the limit mu = md = ms = 0. The
quark masses (estimated at a renormalization scale of µ ≈ 2 GeV) from Particle
Data Group [23] are as follows:

mu = 1.5 - 3.3 MeV , md = 3.5 - 6.0 MeV ,

ms = 105+25
−35 MeV .

Chiral symmetry implies that the left- and right-handed quarks have a separate
SU(3) symmetry

LQCD = ψ̄Li /DψL + ψ̄Ri /DψR − 1

4
Ga

µνG
µν
a , (2.9)

where the left- and right-handed quark fields are defined as

ψL =
1

2
(1− γ5)ψ , ψR =

1

2
(1 + γ5)ψ . (2.10)

The Lagrangian in the massless limit is invariant under global SU(3) transforma-
tions in flavor space of the left- and right-handed quarks:

ψL → exp

[
iθa

L

λa

2

]
ψL , ψR → exp

[
iθa

R

λa

2

]
ψR . (2.11)

The conserved Noether currents are the left- and right-handed currents

Jµ
L,a = ψ̄Lγµ λa

2
ψL , Jµ

R,a = ψ̄Rγµ λa

2
ψR , (2.12)

with their vanishing divergences, ∂µJ
µ
L = ∂µJ

µ
R = 0. Alternatively the vector and

axial-vector currents are often used,

Jµ
V,a = Jµ

R,a + Jµ
L,a = ψ̄γµ λa

2
ψ , Jµ

A,a = Jµ
R,a − Jµ

L,a = ψ̄γµγ5
λa

2
ψ . (2.13)

The corresponding charges are

QV
a =

∫
d3x J0

V,a(x) , QA
a =

∫
d3x J0

A,a(x) , (2.14)

which are generators of the SU(3)L × SU(3)R group and satisfy the Lie algebra,
[
QV

a , QV
b

]
= ifabc QV

c ,
[
QV

a , QA
b

]
= ifabc QA

c ,
[
QA

a , QA
b

]
= ifabc QV

c

(2.15)
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with the SU(3) structure constants, fabc.
Chiral SU(3)R×SU(3)L symmetry is explicitly broken by the small but non-zero

quark masses. The divergence of the axial-vector current becomes

∂µJ
µ
A,a = iψ̄

{
m,

λa

2

}
γ5ψ . (2.16)

This is the basis of the partial conservation of the axial-vector current (PCAC) hy-
pothesis which plays a key role in low energy dynamics and also weak interactions.

2.2.1 Spontaneous symmetry breaking

In the limit of vanishing quark masses, chiral symmetry is an exact symmetry of
the QCD Lagrangian. If the ground state (vacuum) of OCD were also symmetric
under the group SU(3)L × SU(3)R, then the chiral symmetry is realized in the so-
called Wigner-Weyl mode. In this realization, one can expect degenerate hadronic
multiplets of opposite parity since, for massless fermions, helicity eigenstates are
also parity eigenstates. However such parity doublets are not observed in hadronic
spectra. For example, the spectral functions of the ρ-meson (JP = 1−), 770 MeV,
is quite different from that of its parity partner, a1 meson (JP = 1+), 1230 MeV

as seen in Fig. 2.1.
This evidence of broken chiral symmetry from the hadron spectrum can be

interpreted via the Nambu-Goldstone realization in which the axial charge does
not annihilate the physical vacuum,

QV
a |0〉 = 0 , QA

a |0〉 6= 0 . (2.17)

Hence the chiral SU(3)L × SU(3)R group is dynamically reduced to the subgroup
SU(3)V . The axial charge acting on the vacuum yields non-vanishing pseudo-scalar
states

QA
a |0〉 = |φa〉 6= 0 , (2.18)

where the states |φa〉 are degenerate with the vacuum |0〉 because [QA
a , HQCD] = 0.

The massless φa are called Goldstone bosons according to the Nambu-Goldstone
theorem [24]: the spontaneous breaking of a continuous global symmetry is accom-
panied by massless Goldstone bosons. The Goldstone bosons for the spontaneous
chiral symmetry breaking are identified with the pseudo-scalar octet mesons (π±,
π0, K±, K0, K̄0 and η) which interact weakly at low energies. In real nature,
the pseudo-scalar mesons acquire their finite masses due to the explicitly broken
degeneracy by small (but non-zero) quark masses mq 6= 0.
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Figure 2.1: Vector and axial-vector spectral functions in vacuum (curves) as pa-
rameterized in Ref. [25], compared to e+e− → nπ data with n even [26, 27] and
data from hadronic τ decays [28, 29].

2.2.2 Chiral order parameter

Spontaneous breaking of the chiral symmetry originates from the fact that the
QCD vacuum has non-trivial structure. An obvious order parameter of the chiral
symmetry breaking is the vacuum expectation value of the scalar (light) quark-
antiquark density,

〈q̄q〉 = 〈q̄RqL + q̄LqR〉 , (2.19)

which mixes the left- and right-handed quarks. This quantity, the so-called chiral
condensate (or quark condensate) must vanish if the QCD vacuum were trivial.
The precise definition of the chiral condensate is

〈q̄q〉 ≡ −iTr lim
y→x+

SF (x− y) , (2.20)

with the quark propagator SF (x− y) = −i〈0|T q(x)q̄(y)|0〉. Using the Wick theo-
rem,

T q(x)q̄(y) = N q(x)q̄(y) + q(x)q̄(y) , (2.21)

the time-ordered product (T ) is represented in terms of the normal-ordered product
(N ) and the contraction of two field operators. The normal-ordered terms vanish
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in perturbative theory. A non-vanishing normal-ordered terms hence stem from
long-range, non-perturbative physics.

Another consequence of the spontaneous symmetry breaking is that the matrix
element of the axial current between the vacuum and a Goldstone boson is non-
vanishing

〈0|Jµ
A,a|πb(p)〉 = ipµδabfπe−ipx . (2.22)

Considering the flavor SU(2) subgroup (a = 1 · · · 3), πa denotes the pion field and
fπ = 92.4 MeV the pion decay constant. The chiral condensate is connected to the
pion decay constant fπ via the Gell-Mann−Oakes−Renner (GOR) relation [30],

m2
πf 2

π = −1

2
(mu + md)〈ūu + d̄d〉+O(m2

u,d) , (2.23)

and thus play the role of chiral order parameter at hadronic level.

2.2.3 Chiral effective Lagrangian

At low energy, processes involving the strong interaction as described by QCD
are best analyzed in effective field theory approaches such as chiral perturbation
theory. The basic idea of effective field theory is to use this pseudo-scalar meson
(Goldstone boson) octet as the effective degrees of freedom at low energy. To
describe the dynamics at low energy the chiral perturbative theory constructs an
effective Lagrangian Leff by an expansion in powers of the meson momenta,

Leff =
f 2

π

4
Tr[∂µU †∂µU ] +

f 2
π

2
B Tr[m(U + U †)] + L(4) + · · · , (2.24)

where fπ denotes the pion decay constant in the chiral limit and m is the quark
mass matrix. The Goldstone bosons are represented in Leff by a 3 × 3 special
unitary matrix,

U = exp [ iΦ(x)/fπ ] (2.25)

with

Φ ≡ πaλa =




π0√
2

+ η√
6

π+ K+

π− − π0√
2

+ η√
6

K0

K− K̄0 − 2η√
6




. (2.26)

This expansion is equivalent to QCD in the sense that it includes all possible
terms permitted by the symmetries. The parameter B in Eq. (2.24) turns out to
be connected with the quark condensate 〈q̄q〉.
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Figure 2.2: The spectrum of low-mass hadronic excitations built on the condensed
QCD ground state. The characteristic gap ΛCSB ∼ 1 GeV is indicated.

The factor (4πfπ)−1 appears in calculations of loop amplitude in the effective
Lagrangian. This factor is generally found in meson loops and introduces the chiral
scale

ΛCSB ∼ 4πfπ ∼ 1 GeV . (2.27)

This choice of ΛCSB as the symmetry breaking scale and the dimensional parameter
that suppresses non-renormalized terms was motivated in Ref. [31], where it also
served as a physically sensible cutoff. The energy scale of ΛCSB, a characteristic
gap, separates between light and heavy particles in the hadron spectrum of Fig. 2.2.

2.3 Currents and vector mesons

2.3.1 Vector mesons as gauge bosons

Before QCD was established as the fundamental theory of strong interactions it
had been attempted to model strong interaction as a gauge theory in which the
vector mesons ρ(770), ω(780), φ(1020) and K∗(890) played the role of the gauge
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→ π π

− as depicted in FIG. 2.

γ
ρ
0

e
+

e
−

π
+

π
−

gργ

gρππ

Figure 1: Diagram of + − annihilation for a pion pair (VMD)
Figure 2.3: e+e− annihilation to π+π−. A virtual photon γ undergoes ρ-conversion
with gργ and ρ-meson dominates the process.

bosons. Starting from the great success of quantum electrodynamics (QED), J. J.
Sakurai in 1960’s predicted the existence of vector mesons coupled to the hadronic
isospin and hypercharge currents.

In QED by introducing the covariant derivative (Dµ = ∂µ − ieAµ), the elec-
tromagnetic field Aµ couples to a conserved electromagnetic current Jem

µ with an
universal charge e. Employing this idea allows the vector field Vµ to couple to a
conserved hadronic current with an universal coupling gV . A typical example is
the ρ-meson that couples to the hadronic isovector current, which is carried by the
nucleon and pion. The interaction vertices of ρ-meson with nucleons and pions
are characterized by universal couplings, gρNN = gρππ ≡ gρ. This phenomena is
usually called the vector meson dominance (VMD).

The measurements of the electromagnetic form factor of the pions were inter-
preted as empirical evidence for an isoscalar vector meson, ω → 3π, by Nambu [32]
in 1957 and for an isovector meson, ρ0 → 2π, by Frazer and Fulco [33] in 1959
(see Fig. 2.3). This interpretation of the form factors was generalized to hold for
all photon-hadron interactions in terms of an operator identity reflecting gauge
invariance. Concentrating on the ργ-interaction, the operator identity, known as
current-field identity, is obtained as

J (3)
µ = gργρ

0
µ(x) , (2.28)

which relates the 3-component of the isospin current, J
(3)
µ , to the ρ0-meson field

with the coupling gργ. The electromagnetic current is identified with a linear
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combination of isovector and isoscalar vector currents,

Jem
µ = J (3)

µ +
1

2
JY

µ . (2.29)

It is clear that such a ργ-interaction will arise from the gauge term Jem
µ Aµ.

The pionic matrix element of the isovectors current,

〈π(q)|J (3)
µ |π(q′)〉 = (q′ + q)µFπ((q′ − q)2) + · · · , (2.30)

defines the pion form factors Fπ(s). The normalization of the vector current im-
poses Fπ(0) = 1, i.e. isovector charge conservation. Assuming that one can write
down an unsubtracted dispersion relation for Fπ(s),

Fπ(s) = gρππ
1

m2
ρ − s

gργ + · · · , (2.31)

and also that the ρ-pole dominates over the continuum, then at s = 0 one finds

gργ =
m2

ρ

gρππ

. (2.32)

This is a second important VMD relation. Eq. (2.28), together with this, is rewrit-
ten as

J (3)
µ =

m2
ρ

gρ

ρ0
µ , (2.33)

where the universality gρππ = gρ is assumed.
The process we are concerned with, ρ0 → 2π, can be described by the amplitude:

T ij
νµ = i

∫
d4x eiq·x〈0|T J i

A,ν(x)J j
A,µ(0)|ρ(p)〉 . (2.34)

Taking its divergence, one obtains

qνT ij
νµ = −

∫
d4x eiq·x〈0|T ∂νJ i

A,0(x)J j
A,µ(0)|ρ(p)〉

−
∫

d4x eiq·xδ(x0)〈0|[J i
A,0(x), J j

A,µ(0)]|ρ(p)〉 .

(2.35)

In the massless limit the first integral of the r.h.s vanishes. Using the relevant
commutation relation, one can deduce the Ward identity

qνT ij
νµ = −if ijk〈0|Jk

V,µ|ρ(p)〉 . (2.36)

The coupling of the ρ0-meson to the isovector current appears as

〈0|JV,µ|ρ(p)〉 = gργεµ =
m2

ρ

gρ

εµ , (2.37)
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where the isospin indices are omitted. Contracting again with the pion momentum
q′, the amplitude becomes

qνq′µTνµ =
m2

ρ

gρ

(q′ · ε) (2.38)

Introducing the ρππ coupling as:

〈π(q′), π(q)|ρ(p)〉 = εν(q′ − q)νgρππ , (2.39)

and taking the limit q′, q → 0, one obtains the soft pion relation:

m2
ρ

gρ

= 2f 2
πgρππ . (2.40)

Assuming ρ-universality from the VMDmodel, one finds the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relation [34, 35]:

g2
ρ ≡

1

f 2
V

=
m2

ρ

2f 2
π

, (2.41)

where fV = 1/gρ is defined for later convenience.

2.3.2 Weinberg sum rules

Further important consequences of the current algebras are the chiral sum rules
derived by Weinberg [36]. These sum rules are based on the asymptotic behavior
of the correlation function, assuming that the SU(2)L × SU(2)R chiral symmetry
is asymptotically realized. Weinberg’s sum rules are derived starting from the
two-point correlation function which is particularly sensitive to properties of chiral
symmetry breaking:

Πµν
LR = i

∫
d4x eiq·x〈0|T Jµ

L(x)(Jν
R(0))†|0〉

= (gµνq2 − qµqν)Π
(1)
LR − qµqνΠ

(0)
LR ,

(2.42)

with left- and right-handed currents defined by

Jµ
L = ūγµ(1− γ5)d , Jµ

R = ūγµ(1 + γ5)d . (2.43)

The correlation function separates into two invariant correlators of the transverse
and longitudinal parts, Π

(1)
LR and Π

(0)
LR. In the asymptotic (Q2 ≡ −q2 → ∞) and

the chiral limit (mq = 0), Πµν
LR tends to vanish since, in those limits, left- and
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right-handedness become totally uncorrelated. The correlators can be expressed in
terms of their spectral representation

Π̃
(j)
LR(Q2) =

∫ ∞

0

ds
Im Π

(j)
LR(s)

π(s + Q2)
. (2.44)

The behavior of Πµν
LR in the asymptotic or chiral limit is converted into correspond-

ing properties of the imaginary parts which are related to the absorption spectrum:
∫ ∞

0

ds
(
Im Π

(1)
LR(s) + Im Π

(0)
LR(s)

)
= 0 ,

∫ ∞

0

ds s Im Π
(1)
LR(s) = 0 .

(2.45)

These are commonly referred to as the first and second Weinberg sum rules.
The correlation function in Eq. (2.42) can be rewritten as the difference of a vec-
tor current correlation function and an axial-vector current correlation function.
Eq. (2.45) can be rewritten as

∫ ∞

0

ds
(
Im Π

(1)
V (s)− Im Π

(1)
A (s)− Im Π

(0)
A (s)

)
= 0 ,

∫ ∞

0

ds s
(
Im Π

(1)
V (s)− Im Π

(1)
A (s)

)
= 0 ,

(2.46)

where Im Π
(0)
V = 0 in vacuum is used.

In his original paper [36], Weinberg assumed that only the lowest resonant state
in the vector and axial-vector spectral functions contribute significantly to the sum
rules,

1

π
Im Π

(1)
V (s) = f 2

V m2
V δ(s−m2

V ) + · · · ,

1

π
Im Π

(1)
A (s) = f 2

Am2
A δ(s−m2

A) + · · · ,

1

π
Im Π

(0)
A (s) = f 2

π δ(s) .

(2.47)

The longitudinal part in the axial-vector spectral function is the contribution from
the massless pion pole. The dots in the spectral functions in Eq. (2.47) implicitly
assume that the sum over all other excited states is globally dual to the onset of
the perturbative continuum. The vector and axial-vector spectral functions of the
perturbative QCD continuum are the same in the chiral limit. Thus the first and
second Weinberg sum rules, Eq. (2.46), constrain the couplings and masses of the
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a1 and ρ resonances as follows

f 2
V m2

V − f 2
Am2

A = f 2
π ,

f 2
V m4

V − f 2
Am4

A = 0 .
(2.48)

The simplified Weinberg sum rules Eq. (2.48), together with the KSRF relation
f 2

V m2
V = 2f 2

π , lead to the prediction for the axial-vector mass,

mA =
√

2 mV , (2.49)

which is satisfied by the known masses within an accuracy of about 10%.

2.4 Partial restoration of chiral symmetry

The spontaneous breaking of the chiral symmetry is signaled by the non-vanishing
values in physical vacuum of the quark condensates. Calculations based on chiral
perturbation theory and QCD sum rules indicate that the magnitudes of these
condensates are reduced when the hadrons are put in a medium, hence giving rise
to partial restoration of chiral symmetry [37, 38].

The chiral condensate, however, is not the quantity that can be directly ob-
served in experiments. Therefore it is important to explore in-medium modification
of hadron properties as consequence of chiral symmetry restoration [39]. There is
a lot of interest to understand the pattern of partial restoration of chiral symmetry
in hot and/or dense medium [40, 41].

2.4.1 Patterns of symmetry restoration

Theoretical studies to modifications of in-medium hadronic masses were spurred
since the suggestion of Brown and Rho [13], namely Brown-Rho (BR) scaling,
based on the restoration of scale invariance of QCD, that masses of hadrons would
scale in a nuclear medium as,

M∗
N

MN

≈ m∗
V

mV

≈ f ∗π
fπ

, (2.50)

where the in-medium quantities are denoted by asterisks. Here MN and mV indi-
cate the masses of nucleon and vector mesons (e.g. ρ, ω) respectively. The pion
decay constant fπ as an order parameter of chiral symmetry is believed to vanish
when the chiral symmetry is completely restored. The in-medium behavior of pole
mass shift was tested by using the QCD sum rule approach [14, 42].
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Figure 2.4: Schematic pictures in Ref. [44] to interpret possible patterns of chiral
symmetry restoration in terms of vector and axial-vector spectral functions.

To get some insight of chiral symmetry restoration, it is useful to study the prop-
erties of a hadron in parallel with those of its parity partner, e.g. ρ(770)-a1(1230),
which become degenerate at some critical point of thermodynamic conditions due
to chiral symmetry. In this context the BR scaling, which suggests masses going
to zero, is not the only possible scenario. The masses of parity partners may move
towards each other [43] but stay non-zero.

The mass shift scenario introduced above is based on the assumption that the
narrow resonances are well defined in medium as well as in vacuum. However this
condition is generally not realized because the imaginary part of the hadron self-
energy usually grows with increasing temperature and/or density. It means that the
decay width of the particle experiences in-medium broadening. This broadening
would also decrease the maximum peak value of the spectral density. There may
be also a decrease in the thresholds s∗V and s∗A of the continuum. Therefore the
vector and axial-vector mesons are expected to melt away into the continuum.
The continuum would merge with the broadened particle poles to give a very
broad distribution of strength in the spectral densities. This disappearance of the
particles into the continuum makes the difference between vector and axial-vector
correlators vanish. Hence it is difficult to judge whether their masses are changed
or not.

In a medium, thermal (or virtual) pions can couple to the vector and axial-
vector current. The correlation function which is connected with the spectral
density through the dispersion relation mixes the vector and axial-vector channel
by absorbing and emitting the pions. Hence increasing temperature or density
makes the mixing important until full chiral symmetry restoration is reached at
which vector and axial-vector correlators become identical. The finite temperature
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correlators are described by the factorization of T -dependence [45]:

Πµν
V (q, T ) = (1− ε(T )) Πµν

V (q, 0) + ε(T ) Πµν
A (q, 0) ,

Πµν
A (q, T ) = (1− ε(T )) Πµν

A (q, 0) + ε(T ) Πµν
V (q, 0) ,

(2.51)

where the T -dependent mixing parameter is obtained by the thermal pion loop

ε(T ) =
2

f 2
π

∫
d3p

E(2π)3

1

eE/T − 1
, (2.52)

with E =
√

m2
π + p2. In the massless limit of pions, ε(T ) is simplified as

ε(T ) =
T 2

6f 2
π

. (2.53)

Although this parity mixing effect contaminates the vector correlator with the
axial-vector and vice versa, remain their pole masses unchanged in distinction
from BR scaling. In this scenario, the critical temperature Tc is determined (up
to corrections of higher order in ε(T )) as the temperature at which the mixing
becomes maximal, i.e. ε(Tc) = 1/2. Interestingly, to this T 2 order, Eq. (2.53) gives
Tc ≈ 160 MeV, not far from values Tc ∼ 170 - 190 MeV deduced from lattice
QCD [1, 2].



Chapter 3

QCD sum rules

The QCD sum rule approach was introduced by Shifman, Vainshtein and Zakharov
(SVZ) in the late 1970’s for the purpose of relating hadron properties to QCD [46].
This framework is powerful to study hadrons in their lowest-mass state with given
quantum numbers. A QCD sum rule is a relation derived from a correlation func-
tion in QCD and its analytic property. In this framework the QCD duality connects
hadronic quantities to the non-perturbative nature of QCD represented by QCD
condensates. In this chapter the general formalism of the QCD sum rules is re-
viewed.

3.1 Overview

The starting point of the QCD sum rule approach is the construction of an inter-
polating current field with quark degrees of freedom that has strong overlap with
the hadron of interest. Such a field is in general constructed guided by the valence
quark content and given quantum numbers such as spin, isospin, parity etc. In our
case the interpolating fields for ρ and ω mesons are simply given by the isovector
and isoscalar current operators:

Jµ
ρ =

1

2

(
ūγµu− d̄γµd

)
, Jµ

ω =
1

6

(
ūγµu + d̄γµd

)
. (3.1)

The interpolating current fields are not saturated by the ground state hadrons
with the given quantum numbers. These interpolating current fields can also an-
nihilate other resonances and continuum states with the same constituent quark
contents and quantum numbers. Therefore one should distinguish one state that

18
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we are interested in from other states with same quantum numbers. One useful pre-
scription for that is the so-called Borel transformation method that is commonly
used in QCD sum rules. As will be shown later, the Borel transformation sup-
presses higher-mass states relative to the lowest-mass state. Consequently, these
Borel sum rules are useful for determining the spectral properties of the lowest-mass
state with a given set of quantum numbers.

Time-ordered correlation functions of the interpolating current fields play the
role of a bridge between hadronic phenomenology and QCD. The generic two-point
correlation function of a scalar interpolating current field has the form

Π(q2) = i

∫
d4x eiq·x〈Ω|T [

J(x)J(0)
]|Ω〉 , (3.2)

where |Ω〉 is the nonperturbative QCD ground state. Additional complications for
the vector interpolating current fields will be addressed later.

The correlation function, Eq. (3.2), can be calculated in terms of the QCD de-
grees of freedom, using the operator product expansion (OPE) on one hand. Using
OPE for large space-like momenta, the correlator is expressed as a sum of coeffi-
cient functions, calculated in QCD perturbation theory, that multiply condensates
of composite operators

ΠOPE(q2) =
∑

n

Cn(q2)〈On〉 , (3.3)

where On are local operators; 1, q̄q, Ga
µνG

µν
a , · · · . The coefficients, Cn(q2), are

c-numbers known as Wilson coefficients and contain information on the short dis-
tance physics. Non-perturbative long distance effects are reflected in the ground-
state expectation values of the local operators, so-called condensates:

〈q̄q〉, 〈Ga
µνG

µν
a 〉, · · · . (3.4)

The quark condensate describes the scalar quark-antiquark density of the vacuum,
which is the order parameter of spontaneous chiral symmetry breaking. The gluon
condensate measures the density of gluon pairs which is a manifestation of the
breaking of scale invariance of QCD by quantum effects. This separation between
short-range dynamics (Wilson coefficients) and long-range dynamics (condensates)
is the essence of the QCD sum rules framework.

On the other hand, the correlation function can also be evaluated phenomeno-
logically with hadronic degrees of freedom such as hadron masses, coupling con-
stants between hadrons, decay constants, etc. Introducing the overlap strength λ



20 CHAPTER 3. QCD SUM RULES

between the interpolating current and the physical hadron field φ by:

J = λφ +
∑
i=1

λ∗i φ
∗
i , (3.5)

where the sum includes excited hadron states, the two-point correlation function
is written as follows:

Πphen(q
2) =

λ2

m2 − q2 − iε
+

∑
i=1

λ∗ 2
i

m∗ 2
i − q2 − iε

. (3.6)

More generally a continuous spectrum can be represented in the form of Källen-
Lehmann spectral representation:

Πphen(q
2) =

∫ ∞

0

ds
ρphen(s)

s− q2 − iε
, (3.7)

where ρphen(s) is the spectral density proportional to the imaginary part of the
correlator

ρphen(s) =
1

π
Im Πphen(s) . (3.8)

In practice the phenomenological spectral density ρphen is parameterized so that
the lowest resonance is separated and higher mass states are incorporated into the
continuum

ρphen(s) = ρres(s) + ρcont(s) . (3.9)

According to the QCD duality, the continuum from which the lowest lying reso-
nance is well-separated is assumed to be given by the result obtained with the OPE.
This assumption is supported by the basic QCD property: asymptotic freedom for
sufficiently large s. The continuum can be estimated by introducing a scale, s0,
below which the continuum contribution vanishes

ρcont(s) = ρOPE(s) Θ(s− s0) . (3.10)

The OPE is valid in the region of large space-like momentum transfer whereas the
spectral density is defined in the time-like momentum region. Thus, by using the
analyticity of the correlation function, ρOPE is written in the form of the correlator

Π̃OPE(Q2) =

∫ ∞

0

ds
ρOPE(s)

s + Q2
, (3.11)

where the analytically continued correlation function, Π̃OPE(Q2), is identified with
ΠOPE(q2) for all Q2 = −q2. The spectral density, ρOPE, is defined as

ρOPE(s) =
1

π
Im ΠOPE(s) . (3.12)
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As mentioned in the beginning of this section, the interpolating current field
J can couple not only to the lowest-mass state but also to the higher-mass ex-
citations that have the same quantum numbers as J . In order to filter out this
high-energy part of the excitations the Borel transformation is often used. The
Borel transformation of a function f(Q2) is defined as

f̂(M2) ≡ lim
Q2,n→∞

(Q2)n+1

n!

(
− d

dQ2

)n

f(Q2) , M2 ≡ Q2

n
= finite , (3.13)

where M is called the Borel mass. By applying the Borel transformation to the
correlation function on the phenomenological side, the contributions from higher
excited states are exponentially suppressed:

Π̃phen(Q
2) =

∫ ∞

0

ds
ρphen(s)

s + Q2
=⇒ Π̂phen(M

2) =

∫ ∞

0

ds e−s/M2

ρphen(s) . (3.14)

Moreover, on the OPE side, the Borel transformation improves the convergence of
the expansion:

Π̃OPE(Q2) ∼
∞∑
n

cn

(Q2)n
=⇒ Π̂OPE(M2) ∼

∞∑
n

cn

(n− 1)!(M2)n−1
. (3.15)

After the Borel transformation, contributions from higher-dimensional operators
(larger n) in the OPE obtain additional factorial suppression factors.

Because of the exponential factor, smaller M2 in Eq. (3.14) make the suppres-
sion stronger and thus the lowest resonance becomes more dominant in the cor-
relation function. Conversely, the suppression in Eq. (3.15) is stronger for larger
M2. Therefore the unphysical parameter M2 is usually determined around the
intermediate region where the sum rules are optimally improved both on the phe-
nomenological side and OPE side.

3.1.1 Operator Product Expansion

Operator product expansion (OPE) is the primary element of QCD sum rules in
order to express the non-perturbative nature of hadronic properties. In 1969 the
OPE by Wilson [18] was investigated to define the time-ordered product of two
fields in the limit x → 0 in Eq. (3.2),

lim
x→0

T J(x)J(0) . (3.16)

In a theory with no divergencies the result would just be J2(0). However, there are
ultra-violet singularities so that the limit is physically ill-defined. Wilson’s idea
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was that J(x)J(0) should behave like a singular function of x times a renormalized
operator as x → 0. The full result is an expansion of the form,

T J(x)J(0) ∼
∑

n

Cn(x)On(0) , (3.17)

as x → 0. The sum is taken over a set of local renormalized composite fields which
constrained by the symmetry properties of J(x) and by the underlying quantum
field theory. The On terms are organized in order of increasing mass dimension,
generally decreasing in importance as the dimension increases. In other words,
because the total mass dimension of J(x)J(0) is fixed. the coefficient Cn(x) are
ordered according to decreasing order of singularity when x → 0. For simplicity
omitting possible anomalous dimensions at this point, one finds

Cn(x) ∝ |x|a , a = dim[On]− dim[J(x)J(0)] . (3.18)

In the calculation of OPE sandwiched by the ground state (vacuum), the Wilson
coefficients are usually computed with the background field method [47, 48, 49].
In QCD sum rules, the external gauge field is introduced using the so-called fixed-
point gauge,

(x− x0)
µAext

µ (x) = 0 , (3.19)

where x0 is an arbitrary fixed point and for simplicity we set x0 = 0 from now on.
The external gauge field Aext

µ can be expressed in terms of gauge covariant terms
such as Ga ext

µν , DαGa ext
µν ,

Aext
µ (x) = xν

∫ 1

0

dα αGa ext
νµ (αx)

=
xν

2
Ga ext

νµ (0) +
xαxν

3
DαGa ext

νµ (0) +
1

8
xαxβxνDαDβGa ext

νµ (0) + · · ·

=
∑

n

1

n!(n + 2)
xα1 · · ·xαnxλDα1 · · ·DαnGa ext

λµ (0) .

(3.20)

Therefore one can directly extract gauge invariant terms in the correlation function.
The external background gauge field is used to evaluate the non-perturbative

quark propagator,

iS(x) = iS0(x)− igs

∫
d4y S0(x− y) /Aext(y) S0(y)

+ ig2
s

∫
d4y′d4y S0(x− y′) /Aext(y′) S0(y′ − y) /Aext(y) S0(y) + · · · ,

(3.21)
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where iS0(x) indicates the free quark propagator. Inserting Eq. (3.20) into Eq. (3.21),
one obtains the quark propagator in the external gauge field. Note that the heavy
quark propagator has to be treated differently because 1/mQ still plays the role
of a perturbative expansion parameter. However the heavy quark is beyond the
scope of this thesis. When a light quark is concerned, the quark propagator itself
involves the non-perturbative effects which would be expressed by the quark con-
densate 〈q̄q〉. The explicit form of the light quark propagator and its derivation
are presented in Appendix B.

3.1.2 Dispersion relation

As mentioned before, Π(q2) in the OPE is calculated in the deep Euclidean domain
(Q2 = −q2 > 0) and in terms of quarks and gluons. On the other hand, the
all physical observables are measured in the Minkowski domain (q2 > 0). The
connection between the Euclidean predictions and the measurable quantities is
established via dispersion relation.

Källen and Lehmann have shown that the two-point function obeys a dispersion
relation which follows from the analytical properties [50, 51],

Π(q2) =
1

π

∫ ∞

0

ds
Im Π(s)

s− q2 − iε
+ a + bq2 + · · · , (3.22)

where Π(q2) is an analytic function in the complex q2-plane but for a cut in the
real axis 0 ≤ q2 ≤ ∞. In general the Cauchy integral formula of Π(q2) leads to
the dispersion relation that the real part of the complex function is expressed as
an integral over the imaginary part,

Re Π(q2) = P 1

π

∫ ∞

0

ds
Im Π(s)

s− q2
, (3.23)

where P stands for the Cauchy principal value.
In Eq. (3.23) good convergence properties have been implicitly assumed, but in

general it may require some subtracted terms in order to improve convergence and
reliability of the sum rule method,

Re Π(q2) = P 1

π

∫ ∞

0

ds
Im Π(s)

s− q2
+ a + bq2 + · · · , (3.24)

where the polynomial terms in the r.h.s. of Eq. (3.24) depend on the convergence
properties of Im Π(s) when s → ∞. The coefficients of the polynomial have no
discontinuities, in other words, the ambiguity of short-distance behavior is reflected
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Figure 3.1: Contour integral in the complex q2-plane.

only in the evaluation of the real part of the two-point function, not in the imagi-
nary part. The physical meaning of these coefficients depends on the choice of the
local operator J(x) in the two-point function. In some cases the coefficients are
fixed by low-energy theorems, e.g. if Π(0) is known, one can replace a in Eq. (3.24)
with Π(0),

Re Π(q2) = Re Π(0) + P 1

π

∫ ∞

0

ds

s

q2

s− q2
Im Π(s) + bq2 + · · · . (3.25)

In other cases, the constants are absorbed by renormalization constants. It is
possible to get rid of the polynomial terms by taking an appropriate number of
derivatives with respect to q2.

3.2 Finite energy sum rules

There exist several different types of QCD sum rule according to the weight factors
applied to the spectral density. One of the most frequently used sum rules is
the Borel sum rule (or equivalently Laplace sum rule), which is presented with
Eqs. (3.14) and (3.15). In this type of the sum rules the exponential form of the
weight factor in Eq. (3.14) enhances the role of the lowest state in the spectral
integral.
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Another type of QCD sum rule is the finite energy sum rule (FESR) [19, 20, 21]
which we shall use throughout this thesis.

Mn =

∫ s0

0

ds sn 1

π
Im Π(s) (n = 0, 1, 2, · · · ) . (3.26)

A standard way to derive the finite energy sum rule is the use of the Cauchy integral
theorem on a finite radius (s0) contour in the complex q2-plane. Avoiding the cut
on the real axis, the Cauchy theorem leads to

1

2πi

∮
dq2 q2nΠ(q2) = 0 . (3.27)

If the contribution of the small circle around the origin is neglected, one deduces
the moment, ∫ s0

0

ds snIm Π(s) = − 1

2πi

∮

|q2|=s0

dq2 q2nΠ(q2) . (3.28)

The l.h.s. of Eq. (3.28) is the contribution from the paths above and below the
real axis which pick up the discontinuity of Π(q2). In practice it can be obtained
from hadronic data or a parametrization of the spectral function. The r.h.s. is the
contribution from the circle of radius s0. This r.h.s. is computed in perturbative
QCD using the explicit form of the running coupling αs(s). However, in contrast to
the Borel sum rules in which the higher excited states are exponentially suppressed,
the FESR has (q2)n as the weight factor multiplying Π(q2) and hence diverges with
increasing n. This high energy behavior that dominates the spectral function with
increasing n is reflected in the non-perturbative corrections, e.g. condensates, to
the r.h.s. of Eq. (3.28).

The FESR is useful to estimate the threshold of the perturbative continuum,
s0, by using a given hadronic spectral function. The continuum threshold has the
meaning of the scale that separates the low-lying resonance region from the high
energy continuum.

3.3 Sum rules for ρ-meson in vacuum

As an simple example, we construct the sum rules for ρ-meson in vacuum. Let us
start with the current-current correlation function,

Πµν(q) = i

∫ ∞

0

d4x eiq·x〈T Jµ(x)Jν(0)〉 (3.29)
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with vector isovector current,

Jµ(x) =
1

2

(
ūγµu− d̄γµd

)
. (3.30)

The tensor structure of Πµν(q) is represented in terms of an invariant (scalar)
correlator Π(q2):

Πµν(q) =

(
gµν − qµqν

q2

)
Π(q2) = (qµqν − q2gµν)Π′(−Q2) , (3.31)

with

Π′(−Q2) =
Π(q2)

−q2
, (3.32)

in order to satisfy the current conservation,

qµΠµν = 0 . (3.33)

Then the OPE result for Π(Q2 = −q2) is obtained as follows:

Π′
OPE(Q2) = − 1

8π2

(
1 +

αs

π

)
ln

(
Q2

µ2

)

+
1

2Q4
(mu〈ūu〉+ md〈d̄d〉) +

1

24Q4

〈αs

π
G2

〉

− παs

2Q6

[
〈(ūγµγ5λ

au− d̄γµγ5λ
ad)2〉

+
2

9
〈(ūγµλ

au + d̄γµλ
ad)

∑

q=u,d,s

q̄γµλaq〉
]

.

(3.34)

After the Borel transformation, the correlator is rewritten as,

Π̃′
OPE(M2) =

1

8π2

(
1 +

αs

π

)
M2

+
1

2M2
(mu〈ūu〉+ md〈d̄d〉) +

1

24M2

〈αs

π
G2

〉

− παs

4M4

[
〈(ūγµγ5λ

au− d̄γµγ5λ
ad)2〉

+
2

9
〈(ūγµλ

au + d̄γµλ
ad)

∑

q=u,d,s

q̄γµλaq〉
]

.

(3.35)
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Using Eqs. (3.14) and (3.15), the master equation of the Borel sum rule is obtained
∫ ∞

0

ds e−s/M2

ρphen =
1

8π2

(
1 +

αs

π

)
M2

+
1

2M2
(mu〈ūu〉+ md〈d̄d〉) +

1

24M2

〈αs

π
G2

〉

− παs

2M4

[
〈(ūγµγ5λ

au− d̄γµγ5λ
ad)2〉

+
2

9
〈(ūγµλ

au + d̄γµλ
ad)

∑

q=u,d,s

q̄γµλaq〉
]

.

(3.36)

The phenomenological spectral density ρphen can be optimized by using either ex-
perimental data or model calculations as an input.

The FESR for ρ-meson in vacuum is derived from Eq. (3.36) by assuming that
the spectral density ρphen separates into a resonance part ρres

phen with s ≤ s0 and a
perturbative continuum,

ρphen = ρres
phenΘ(s0 − s) +

1

8π2

(
1 +

αs

π

)
Θ(s− s0) . (3.37)

The Borel mass M must be sufficiently large so that Eq. (3.36) converges rapidly,
but otherwise it is arbitrary. We choose M >

√
s0 so that e−s/M2 can be expanded

in powers of s/M2 for s < s0,
∫ ∞

0

ds e−s/M2

ρphen =

∫ s0

0

ds e−s/M2

ρres
phen +

1

8π2

(
1 +

αs

π

) ∫ ∞

s0

ds e−s/M2

=

∫ s0

0

ds ρres
phen −

1

M2

∫ s0

0

ds sρres
phen +

1

2M4

∫ s0

0

ds s2ρres
phen + · · ·

+
1

8π2

(
1 +

αs

π

)
M2

(
1− s0

M2
+

s2
0

2M4
+ · · ·

)
.

(3.38)

Then the term-by-term comparison in Eq. (3.36) gives the set of sum rules for the
lowest two moments of the spectral density:

∫ s0

0

ds ρres
phen =

s0

8π2

(
1 +

αs

π

)
,

∫ s0

0

ds sρres
phen =

s2
0

16π2

(
1 +

αs

π

)
+

1

24

〈αs

π
G2

〉
+

1

2
(mu〈ūu〉+ md〈d̄d〉) ,

(3.39)

which are exactly the master equations of the FESR for n = 0, 1.
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3.4 In-medium modifications of the sum rules

In the asymptotic region (Q2 →∞) where the OPE is valid, all non-perturbative
scales are represented as power corrections to the perturbative calculations. These
non-perturbative contributions in the OPE appear to be more clearly separated
into condensates. In the low density or temperature limit, medium-dependence of
the OPE is estimated by corrections solely to the condensates. As far as these
corrections are smaller than the vacuum value of the condensates, it does not spoil
the convergence of the OPE.

3.4.1 Condensates at low density

The Hellmann-Feynman theorem [52] provides a useful way to consider quark den-
sities in terms of the dependence of energies on the current quark mass. The
theorem in quantum mechanics relates the parameter dependence between a given
Hamiltonian (H(λ)) and the total energy (E(λ)),

dE(λ)

dλ
= 〈Ψ|∂H(λ)

∂λ
|Ψ〉 , (3.40)

where λ denotes an arbitrary (adiabatic) parameter and |Ψ〉 is the normalized
ground state. To apply this theorem to the QCD Hamiltonian,

HQCD =

∫
d3xHQCD(x) =

∫
d3x

(Hmassless
QCD + mq(ūu + d̄d)

)
, (3.41)

we regard the light quark mass mq as the small parameter,

∂E(mq)

∂ mq

=

∫
d3x 〈Ψ|∂HQCD(mq)

∂ mq

|Ψ〉 = V 〈Ψ|ūu + d̄d|Ψ〉 , (3.42)

where V is the volume. It reads in terms of the energy density E ≡ E/V ,

∂ E
∂ mq

= 〈Ψ|ūu + d̄d|Ψ〉 ≡ 〈q̄q〉Ψ . (3.43)

Considering the vacuum energy density E0, the difference of 〈q̄q〉Ψ and 〈q̄q〉0 is
written as follows,

〈q̄q〉Ψ = 〈q̄q〉0 +
∂

∂ mq

(E − E0) . (3.44)

The modification in the quark condensate is given by the change of the energy den-
sity with varying quark mass. In order to replace the variable to hadronic masses,
one needs to know the quark-mass dependence of the hadronic masses. Restricting
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ourselves to a system with nucleons and pions, the GOR relation, Eq. (2.23), and
the definition of the nucleon σ-term, ∂ MN/∂ mq = σN/mq, can be used,

〈q̄q〉Ψ
〈q̄q〉0 = 1 +

1

〈q̄q〉0

[
∂ m2

π

∂ mq

∂

∂ m2
π

+
∂ MN

∂mq

∂

∂ MN

+ · · ·
]

(E − E0)

= 1− 1

f 2
π

∂ (E − E0)

∂ m2
π

+
σN

〈q̄q〉0 mq

∂ (E − E0)

∂ MN

+ · · ·

= 1− 1

f 2
π

[
∂

∂ m2
π

+
σN

m2
π

∂

∂ MN

]
(E − E0) + · · · .

(3.45)

Using Eq. (3.45) and the energy density of a Fermi gas of nucleons, E−E0 ' MNρN ,
for example, the density dependence of the quark condensate is expressed in leading
order by the nucleon σ-term (σN ≈ 45 MeV) in the following form,

〈q̄q〉ρN

〈q̄q〉0 ' 1− σN

m2
πf 2

π

ρN , (3.46)

which yields a reduction of the condensate by a factor of about 0.65 at normal
nuclear matter density ρN = ρ0 = 0.17 fm−3. At non-zero temperature the en-
ergy density E can be easily replaced with the thermodynamic potential Ω (grand
canonical ensemble) which is directly related to the pressure of the system via
Ω = −P . Consequently the leading expression in calculating the chiral condensate
for a system of pions and nucleons appears in the form

〈q̄q〉Ψ
〈q̄q〉0 = 1 +

1

f 2
π

(
∂P

∂ m2
π

+
σN

m2
π

∂P

∂ MN

)
+ · · · . (3.47)

A model-independent prediction for the in-medium gluon condensate is derived
through the trace anomaly [53],

θµ
µ = −1

8

(
11− 2

3
Nf

)
αs

π
G2 + mq q̄q , (3.48)

where θµ
µ denotes the trace of the energy momentum tensor and anomalous dimen-

sion has been neglected. The ground-state expectation value of θµ
µ for the nuclear

matter with density ρN is

〈θµ
µ〉ρN

− 〈θµ
µ〉0 = E − E0 ' MNρN . (3.49)

Combining Eq. (3.48) with Eq. (3.49), one can obtain the leading order expression
of the gluon condensate at finite density,

〈αs

π
G2

〉
ρN

−
〈αs

π
G2

〉
0
' −8

9

[
MNρN −mq

(〈q̄q〉ρN
− 〈q̄q〉0

)]

' −8

9
[MNρN − σNρN ]

= −8

9
M

(0)
N ρN ,

(3.50)
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where M
(0)
N is the nucleon mass in the chiral limit and Nf = 3 is used.

3.4.2 Condensates at low temperature

The temperature dependence of the vacuum condensates is known as far as the ther-
mal environment is well approximated by the lowest excitation mode of the hadron
gas, namely pions. The leading behavior of the chiral condensate at low temper-
ature comes just from the pions. The first predictions of the T -dependent quark
condensate were calculated in Ref. [54]. Later in Ref. [55] the thermodynamics of
the pion gas was developed up to three-loop contributions in chiral perturbation
theory. The pressure, as the thermodynamic potential, was derived from the chi-
ral Lagrangian Eq. (2.24). Then Eq. (3.47), derived from the Hellmann-Feynman
theorem, gives the leading expression of the T -dependent quark condensate.

〈q̄q〉T
〈q̄q〉0 = 1 +

1

f 2
π

(
∂P

∂ m2
π

)
, (3.51)

where the pressure of a noninteracting Bose gas of pions can be written as

P =
T 4

2π2

∫ ∞

0

dxx4

√
x2 + m2

π

T 2

(
exp

[√
x2 +

m2
π

T 2

]
− 1

)−1

' 3

(
π2

90
T 4 − m2

π

24
T 2 +

m3
π

12π
T + · · ·

)
.

(3.52)

Substituting the pressure of the non-interacting pion gas in Eq. (3.51), we obtain

〈q̄q〉T = 〈q̄q〉0
(

1− T 2

8f 2
π

+O(T 4)

)
. (3.53)

Higher order terms can be determined by taking into account the pion interactions
in the framework of chiral perturbation theory.

The temperature dependence of the gluon condensate can be determined through
its connection to the trace of the energy-momentum tensor,

〈θµ
µ〉T − 〈θµ

µ〉0 = E − 3P = T 5 d

dT

(
P

T 4

)
, (3.54)

where E and P are the energy density and pressure of the pion gas. Inserting
Eq. (3.48) and Eq. (3.52) into Eq. (3.54), the temperature dependence of the gluon
condensate is found.



Chapter 4

Vector mesons at finite density

4.1 Introduction

As the lowest “dipole” excitations of the QCD vacuum, the light vector mesons (the
ρ meson, in particular) have traditionally played an important prototype role in
calculations and discussions based on QCD sum rules [46]. In-medium versions of
these sum rules have been used to set constraints on the way in which vector me-
son masses undergo possible changes in dense and hot hadronic matter [14, 56, 57].
Questions were raised, however, concerning the interpretation of such studies. In-
medium changes of meson properties, such as their mass shifts in nuclear matter,
have their primary origin in long-distance physics described by meson-nucleon for-
ward scattering amplitudes [58] and not in the short-distance physics represented
by subleading terms of the operator product expansion (see also related discussions
in Refs. [59, 60]). In-medium QCD sum rules have nonetheless been further devel-
oped and applied over the years [61, 15, 62, 63], including studies with emphasis
on the density dependence of four-quark condensates [64, 65]. The present work
aims in a different direction: namely, identifying the spontaneous chiral symmetry
breaking scale, 4πfπ ∼ 1 GeV, and its possible change with increasing baryon den-
sity, in the context of QCD sum rules for the lowest moments of the vector meson
spectral functions.

The issue of in-medium changes of hadron properties persists as a fundamen-
tal theme ever since the Brown-Rho (BR) scaling hypothesis [13] was launched,
establishing a conceptual relationship between the shifts of hadron masses in mat-
ter and the sliding scale of spontaneous chiral symmetry breaking with chang-
ing thermodynamic conditions. Investigations along these lines included various

31
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model calculations of vector meson spectral functions at finite temperatures and
baryon densities (see Refs. [66, 41, 67] and further studies concerning BR scaling
in the context of in-medium QCD sum rules, e.g. in Ref. [68]). Such calcula-
tions were performed with the aim of understanding the “low-mass enhancements”
observed in dilepton spectra produced in high-energy heavy-ion collisions by the
CERES/NA45 [3, 4, 6, 5] and NA60 [7, 8, 9, 10, 11, 12] experiments at the CERN
SPS. These explorations, primarily focused on the behavior of the ρ meson in the
strongly interacting hadronic medium, were conducted for a long time with two
seemingly opposing quests: whether there is an in-medium shift of the ρ meson; or
on the other hand, whether the strong collisional broadening of the spectral func-
tion due to interactions of the ρ meson with nucleons and mesons in the medium
would render the primary issue of a mass shift physically meaningless.

In this chapter we point out that playing the notions of “mass shift” and “broad-
ening” against one another may in fact not be the proper question to ask. For res-
onant states such as the ρ meson, which start out with a large decay width already
in vacuum, identifying a mass in an even broader in-medium spectral distribution
makes sense only in terms of the first moment of this spectral distribution. For
the two lowest spectral moments, however, quite accurate statements can be made
within the framework of QCD sum rules, as we shall demonstrate. We propose
therefore to abandon the “mass shift” versus “broadening” dispute altogether and
concentrate on an analysis of spectral moments in the context of QCD sum rules.
Identifying the chiral symmetry breaking scale in such an analysis, both in vacuum
and in-medium, permits addressing and examining the BR scaling hypothesis in a
refined and better focused way.

The strategy is an update of previous work [69] which is in turn closely related
to finite energy sum rules (FESR) [21, 70]. The advantage of these sum rules
is that they do not have to rely on the existence of a window of stability for
the Borel parameter usually employed in the sum rule analysis. Caution must
nevertheless be exercised with FESR’s [71, 72] concerning their sensitivity to high-
energy properties of spectral functions and the detailed modeling of the transition
between resonance and continuum regions, a question that we shall also address.
We concentrate here on the rho meson. Starting with vacuum sum rules for the ρ

we recall how the delineation of scales between resonance and continuum parts of
the spectral function can be related to the scale for spontaneous chiral symmetry
breaking, 4πfπ ' 1.2 GeV (the “chiral gap”), where fπ = 92.4 MeV is the pion decay
constant. In-medium sum rules are examined using two complementary spectral
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functions as generic examples: the one calculated in Ref. [57] using a chiral meson-
nucleon effective Lagrangian with vector mesons as explicit degrees of freedom; and
the one calculated in Ref. [66] using a model which emphasizes the role of particle-
hole excitations including baryon resonances. Both types of spectral functions
were applied earlier [41, 73] in descriptions of the CERES/NA45 dilepton data [3].
Updated versions of such spectral distributions have been used recently [74, 75] in
comparisons with the more accurate NA60 data [7, 8]. The following sections are
basically identical to our publication, Ref. [22].

4.2 Derivation of QCD sum rules

We begin with a brief introductory recollection (see section 3.3) of the QCD sum
rule approach for excitations carrying the quantum numbers of the ρ-meson (Jπ =

1−, I = 1) and ω-meson (Jπ = 1−, I = 0). The corresponding quark currents

jµ
ρ (x) =

1

2
(ūγµu− d̄γµd) , jµ

ω(x) =
1

6
(ūγµu + d̄γµd) (4.1)

figure in the current-current correlation tensor

Πµν(q) = i

∫
d4x eiq·x〈T jµ

V (x)jν
V (0)〉 . (4.2)

In vacuum this tensor can be reduced to a single scalar correlation function as in
Eq. (3.31),

Π(q2) =
1

3
gµνΠ

µν(q) . (4.3)

In nuclear matter with finite baryon density ρN , since the interaction with the
nuclear environment breaks the Lorentz invariance of the system, the distinction
needs to be made between longitudinal and transverse correlation functions. For
vanishing three-momentum (qµ = (ω, q = 0), the case considered here throughout),
the longitudinal and transverse correlation functions coincide and will again be
denoted as Π(ω, q = 0).

The next step is to write Π(q2) as a twice-subtracted dispersion relation:

Π(q2) = Π(0) + bq2 +
q4

π

∫
ds

Im Π(s)

s2(s− q2 − iε)
. (4.4)

Alternatively, the same quantity is expressed at large spacelike q2 = −Q2 < 0 in
terms of the Wilson operator product expansion (OPE):

12π2 Π(q2 = −Q2) = −c0 Q2 ln

(
Q2

µ2

)
+ c1 +

c2

Q2
+

c3

Q4
+ · · · . (4.5)
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In vacuum, the expansion coefficients are given as:

c0 = dV

(
1 +

αs

π

)
+ · · · ,

c1 = −3 dV (m2
u + m2

d) ,

c2 = dV
π2

3

〈αs

π
G2

〉
+ 4 dV π2

(
mu〈ūu〉+ md〈d̄d〉) ,

(4.6)

with dV = 3/2 for ρ-meson and dV = 1/6 for ω-meson. These three leading coeffi-
cients are well determined. The dominant perturbative QCD piece c0 is shown here
including just the standard O(αs) correction. At a later stage and in all explicit
calculations, the QCD corrections will be further extended up to and including
O(α3

s) (see Appendix C).
The quark mass term c1 is small and can safely be neglected. The coefficient

c2 involves the QCD condensates of lowest dimension four. The quark condensate
times the quark mass is given accurately through the Gell-Mann−Oakes−Renner
(GOR) relation [30] as

〈mu ūu + md d̄d〉 ' mq〈ūu + d̄d〉
= −m2

π f 2
π = −(0.11 GeV)4 .

(4.7)

The gluon condensate 〈(αs/π) G2〉 ∼ (0.3 GeV)4 is (far less accurately) determined
by charmonium sum rules. For a detailed discussion see Ref. [76] where an upper
limit

〈(αs/π) G2〉1/4 . 0.31 GeV

is given.
In-medium corrections to leading order in the baryon density ρN are introduced

by the replacement c2 → c2 + δc2(ρN), with [14, 56, 57]

δc2 = 2 dV π2

[
A1MN − 4

27
M

(0)
N + 2σN

]
ρN . (4.8)

The first term in brackets is the leading density dependent perturbative QCD
correction. It involves the first moment, A1 = 2〈x〉u+d, of the parton distribution
in the nucleon. Given the empirical (MRST) [77, 78] momentum fraction carried
by u and d quarks in the nucleon, 〈x〉u+d ' 0.62 at Q2 = 1 GeV2, we use A1 ' 1.24

(see Appendix D).
The second term on the r.h.s. of Eq. (4.8) is the correction to the gluon conden-

sate at finite density which is derived in Eq. (3.50). It is proportional to the nucleon
mass in the chiral limit for which we use M

(0)
N = 0.88 GeV from Refs. [79, 80]. The
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value reference
MN 939 MeV

mq〈q̄q〉 −(0.11 GeV)4 GOR〈
αs

π
G2

〉
0.005± 0.004 GeV4 [76]

A1 1.237 [78]
M

(0)
N 0.88 GeV [79][80]

σN 45± 8 MeV [81]

Table 4.1: Input summary

third term represents the leading density dependence of the quark condensate in
Eq. (3.46). It is proportional to the nucleon sigma term, σN = (45± 8) MeV [81].
By far the largest contribution to δc2 evidently comes from the A1 term, so that
the large uncertainty in σN has only relatively minor consequences.

Following these considerations the input for c2 and δc2 is summarized in Ta-
ble 4.1. The in-medium sum rule analysis will be done at normal nuclear matter
density, ρN = ρ0 = 0.17 fm−3.

The coefficient c3 involves four-quark condensates in the following combination:

c3 = − dV π3αs

[
〈(ūγµγ5λ

au− d̄γµγ5λ
ad)2〉

+
2

9
〈(ūγµλ

au + d̄γµλ
ad)

∑

q=u,d,s

q̄γµλaq〉
]

.
(4.9)

These condensates of dimension six are not known at any reasonable level of preci-
sion. What is commonly done at this point is to introduce a factorization approx-
imation, truncating intermediate states by the QCD ground state and writing

〈(q̄γµγ5λ
aq)2〉 = −〈(q̄γµλ

aq)2〉 =
16

9
κ 〈q̄q〉2 , (4.10)

with κ introduced to parameterize deviations from exact factorization (κ = 1).
The in-medium analogue including terms linear in the density ρN becomes

c3 = −dV
896

81
κ(ρN) π3αs

(
〈q̄q〉2 +

σN 〈q̄q〉
mq

ρN

)
, (4.11)

with a density dependent κ parameter.
Clearly, any QCD sum rule analysis that aims for accuracy must try to avoid

the uncertain four-quark condensate piece c3 in the OPE hierarchy. This is indeed
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possible when considering only the two lowest moments of the spectral function,
Im Π(s), as follows. We introduce the dimensionless spectral function

R(s) = −12π

s
Im Π(s) . (4.12)

Note that, in vacuum, R(s) is identified with the normalized cross-section,

R(s) =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

, (4.13)

where the cross section of e+e− → µ+µ− simply reads

σ(e+e− → µ+µ−) =
4πα2

em

3 s
. (4.14)

Now assume as usual that there exists a delineation scale s0 which separates the
low-mass resonance region (s ≤ s0) from the high-mass continuum (s > s0):

R(s) = RV (s) Θ(s0 − s) + Rc(s) Θ(s− s0) . (4.15)

This step function delineation between resonance and continuum seems schematic
on first sight. In practice, the transition to the continuum is smooth and s0 should
be considered as an average scale characterizing the transition region. A detailed
analysis, to be described later, shows that the step function ansatz is equivalently
as valid as a more realistic modeling of the threshold "ramp", e.g. by the dotted
line in Fig. 4.2.

Let the high-mass continuum be subject to a perturbative QCD treatment,
following duality considerations:

Rc(s) → c0 for s > s0 . (4.16)

Then perform a Borel transformation on Eqs. (4.4) and (4.5), leading to

12π2Π(0) +

∫ ∞

0

dsR(s) e−s/M2

= c0M
2 + c1 +

c2

M2
+

c3

2M4
+ · · · (4.17)

Choose the (otherwise arbitrary) Borel scale parameter sufficiently large, M >
√

s0,
expand e−s/M2 and arrange term by term in inverse powers of M . The result is a
hierarchy of sum rules for moments of the low-mass part of the spectral function
R(s):

∫ s0

0

dsRV (s) = s0 c0 + c1 − 12π2 Π(0) , (4.18)
∫ s0

0

ds sRV (s) =
s2
0

2
c0 − c2 , (4.19)

∫ s0

0

ds s2RV (s) =
s3
0

3
c0 + c3 . (4.20)
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These equations are written again to first order in αs, with c0 = dV (1 + αs/π).
Corrections to order α3

s are included by the replacements c0 → c0 + dV εn in the
n-th moment, with εn given explicitly in Appendix C. In the detailed calculations
the relevant running coupling is to be taken as αs(s0) with s0 ∼ 1 GeV2, the
onset scale for the (multipion) continuum part of the quark-antiquark excitation
spectrum. We use

αs(s0 ∼ 1 GeV2) = 0.50± 0.03 , (4.21)

referring to the most recent NNLO ( MS ) analysis in [82, 83]. The error in αs(s0)

is actually the major source of uncertainty in the sum rule calculation, all other
corrections being considerably smaller in magnitude relative to the leading term.

The subtraction constant Π(0) in Eq. (4.18) vanishes in vacuum. At finite
density this is the Landau term, Π(0) = ρN/(4MN), analogous to the Thomson
limit in Compton scattering.

Note that even for a broad spectral distribution R(s), a squared “mass” associ-
ated with the low-energy sector of this spectrum can be defined through the ratio
of the first and zeroth moments, Eqs. (4.18) and (4.19) (see also Ref. [62]):

m̄2 =

∫ s0

0
ds sR(s)∫ s0

0
dsR(s)

. (4.22)

4.3 Vacuum sum rules

4.3.1 Identifying the spontaneous chiral symmetry breaking
scale

Consider now first the sum rule for the isovector current-current correlation func-
tion in vacuum. Following Ref. [70] we start from the working hypothesis that
the scale s0 delineating low-energy and continuum parts of the vector-isovector
quark-antiquark spectrum should be identified with the scale for spontaneous chi-
ral symmetry breaking in QCD:

√
s0 = 4πfπ . (4.23)

For illustration, recall the schematic (large Nc) example of a zero-width ρ meson,

Rρ(s) =
12π2 m2

ρ

g2
δ(s−m2

ρ) , (4.24)
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with the vector coupling constant g. Neglecting small quark masses as well as QCD
and condensate corrections in Eqs. (4.18) and (4.19), one arrives at

∫ s0

0

dsRρ(s) =
3

2
s0 = 24π2f 2

π ,

∫ s0

0

ds sRρ(s) =
3

4
s2
0 = 192π4f 4

π ,

(4.25)

and immediately recovers a celebrated current algebra result (the KSRF rela-
tion [34, 35]),

mρ =
√

2 gfπ , (4.26)

together with the universal vector coupling g = 2π.
While this schematic example underlines the validity of the hypothesis, Eq. (4.23),

a more detailed test using a realistic spectral distribution R(s) and the full sum
rule analysis, including corrections, must of course be performed. We do this along
the lines of Ref. [70] and update the results found in that work.

4.3.2 ρ-meson sum rules

The input into the sum rules is now the resonant ρ meson spectral function
Rρ(s) calculated from one-loop chiral ππ dynamics with gauge coupling to vector
mesons [84, 57]. The n-pion continuum Rc(s) (with n ≥ 4 even) is parameterized
as in Eq. (4.15), with the gap scale s0 to be determined by the sum rules for the
lowest two moments, Eqs. (4.18) and (4.19). In order to obtain the ρ meson spec-
tral function, the process, e+e− → π+π− as depicted in Fig. 4.1 was considered.
The cross section of e+e− pair annihilation for a pion pair is calculated as

σ(e+e− → 2π) =
α2

emπ

3s

(
1− 4m2

π

s

)3/2

|Fπ(s)|2 , (4.27)

where αem and s are the electromagnetic fine structure constant and the square of
total energy, respectively and Fπ(s) reads the black blob of Fig. 4.1 as a pion form
factor which, in the case, is taken into account in Vector Meson Dominance model
(VMD).

Including the contribution that photon directly couple to a pion pair, Fπ(s)

with dominantly intermediate ρ meson is represented by the following form:

Fπ(s) = 1− g

gρ

s

s−m2
ρ + imρΓρ(s)

, (4.28)
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Figure 2: Diagram of + − annihilation for a pion pair

Figure 4.1: e+e− annihilation to π+π−. The pion-vertex has the form-factor that
arises mainly through vector dominance.

where g and gρ are coupling constants for ρππ and ργ, respectively and the ρ decay
width, Γρ(s), is given as

Γρ(s) =
g2

48π

s

mρ

(
1− 4m2

π

s

)3/2

. (4.29)

If adopt mπ = 140 MeV and mρ = 770 MeV, we can take g ' 6 from Eq. (4.29),
so that Γρ(

√
s = 770 MeV) may be about 150 MeV experimentally we know.

In addition, gρ = 5.03 is determined from ρ → e+e− decay width, then the cross
section for e+e− → π+π−, Eq. (4.27), is consistently obtained with experimental
data (see Fig. 4.2). Therefore the ρ meson spectral function R(s) with the finite
width is obtained as

R(s) =
1

4

(
1− 4m2

π

s

)3/2

|Fπ(s)|2 . (4.30)

The sum rule analysis proceeds as follows. The equations for the two lowest
moments of R(s),

∫ s0

0

dsRρ(s) = s0

(
c0 +

3

2
ε0

)
+ c1 , (4.31)

∫ s0

0

ds sRρ(s) =
s2
0

2

(
c0 +

3

2
ε1

)
− c2 , (4.32)

are solved to determine s0. For the zeroth moment Eq. (4.31) gives
√

s0 = 1.13±
0.02 GeV. Overall consistency requires that the same s0 results also from Eq. (4.32)
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Figure 4.2: Vector-isovector spectral function in vacuum showing the ρ resonance
and continuum parts as described in the text and compared to e+e− → π+π− (ρ
resonance region) and e+e− → nπ data with n even [26, 27].

within an error band determined by the uncertainties of the input summarized in
Table 4.1 and Eq. (4.21). This test turns out to be successful. The detailed analysis
of uncertainties performed with Eq. (4.32) for the first moment is shown in Fig. 4.3.
The resulting

√
s0 = 1.14±0.01 GeV is within 2% of the empirical 4πfπ ' 1.16 GeV

using the physical value fπ = 92.4 MeV of the pion decay constant. The postulate,
Eq. (4.23) identifying

√
s0 with the scale characteristic of spontaneously broken

chiral symmetry, appears to be working quantitatively.
The relation between first and the zeroth moment,

∫ s0

0

ds sRρ(s) = F(s0)

∫ s0

0

dsRρ(s) , (4.33)

thus involves a uniquely determined function of s0:

F(s0) =
s2
0

(
c0 + 3

2
ε1

)− 2c2

2s0

(
c0 + 3

2
ε0

)
+ 2c1

, (4.34)

up to the estimated uncertainties in the quantities ci and εn (the largest error
being associated with αs(s0)). The squared mass given by m̄2

ρ = F(s0) ' 0.611±
0.013 GeV2 or m̄ρ ' 0.78±0.01 GeV, is very close to the physical ρ meson mass as
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Figure 4.3: QCD sum rule analysis of the ρ meson spectral function in vacuum.
First moment (solid line, left-hand side of Eq. (4.32)) is plotted versus right-hand
side (grey band including uncertainties) as function of the gap scale

√
s0 delineating

low-mass resonance region from high-mass continuum.

expected. In fact the canonical relation m̄ρ =
√

s0/2 =
√

2 · 2πfπ turns out to be
satisfied again at the 2% level, demonstrating the smallness of the next-to-leading
QCD corrections and of the condensate term c2.

4.3.3 Sensitivity to continuum threshold modeling

The question arises whether the quantitatively successful identification of the con-
tinuum threshold

√
s0 with the chiral symmetry breaking scale (i.e. the consistency

of the QCD sum rule analysis with current algebra results) is influenced by the
schematic step-function parametrization, Eq. (4.15). A test can be performed re-
placing the step function by a ramp function to yield a smooth transition between
resonance and continuum region, as follows:

R(s) = Rρ(s) Θ(s2 − s) + Rc(s) W (s) , (4.35)
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Figure 4.4: Dependence of
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s0 [determined from Eqs. (4.37)-(4.39)] on the slope
(s2 − s1)

−1 of the ramp function W (s) describing the onset of the continuum in
the vacuum sum rule. The grey band indicates the uncertainty range of the result
obtained with step function parametrization of the continuum.

where the weight function, W (s), is defined as

W (x) =





0 for x ≤ s1

x− s1

s2 − s1

for s1 ≤ x ≤ s2

1 for x ≥ s2 .

(4.36)

The step function behavior is recovered for W (x) in the limit s1 → s2.
Using the function W (s), the modified sum rules for the lowest two moments

of the spectrum R(s) become
∫ s2

0

dsRρ(s) = s2

(
c0 +

3

2
ε0

)
+ c1 − 12π2Π(0)− (c0 −Rρ(s2))

∫ s2

s1

ds W (s) ,(4.37)
∫ s2

0

ds sRρ(s) =
s2
2

2

(
c0 +

3

2
ε1

)
− c2 − (c0 −Rρ(s2))

∫ s2

s1

ds sW (s) . (4.38)

Sets of intervals [s1, s2] are then determined so as to satisfy both sum rules
[Eqs. (4.37) and (4.38)], and the scale s0 defined by

s0 =
s1 + s2

2
, (4.39)
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is now introduced to characterize the continuum threshold. As shown in Fig. 4.4,
the resulting

√
s0 is stable with respect to variations in the slope (s2 − s1)

−1 of
the ramp function W (s), thus confirming that the step function parametrization
of the continuum is not restrictive: the smooth “ramping” into the continuum1

produces values of
√

s0 that fall within the narrow (less than 1%) uncertainty
band of the step function approach. We note at this point that the best fit to the
empirical spectral function has s2−s1 ' 1 GeV2 (see Fig. 4.2). It can be concluded
that the present sum rule analysis and the observed quantitative agreement of the
continuum threshold with the chiral gap 4πfπ do not depend on details of the
threshold modeling.

4.4 In-medium sum rules

In this section the approach just described is applied analogously to vector current
spectral functions at finite density. We start again from Eqs. (4.31) and (4.32),
now with inclusion of Π(0) =

ρN

4MN
and the density dependent corrections to the

condensate terms, c2 → c2 + δc2 (see Eq. (4.8)).

4.4.1 ρ-meson sum rules

Two generic prototypes of in-medium isovector vector spectral functions, Im Π(ω =√
s, q = 0; ρN), are used for demonstration: the one derived from a chiral effec-

tive Lagrangian with vector meson couplings constrained by vector dominance [57]
(referred to as KKW), and the one calculated with emphasis on particle-hole exci-
tations incorporating baryon resonances [41] (referred to as RW). The analysis is
performed at the baryon density of normal nuclear matter, ρN = ρ0 = 0.17 fm−3.
The KKW and RW spectral functions, taken at this density, are shown in compar-
ison in Fig. 4.5.

The KKW and RW in-medium spectral distributions both consistently show
a strong broadening as compared to the vacuum ρ meson. They differ in details
at the low mass end of the spectrum. While KKW emphasizes the role of chiral
in-medium ππ interactions, RW focuses on the role of nucleon-hole, ∆(1232)-hole
and N∗(1520)-hole excitations. At first sight, none of these broad distributions
permit identifying an “in-medium mass” or a shift thereof with respect to the ρ

1In this test the uncertainties of αs(Q2) and of the gluon condensate have been excluded for
simplicity.
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Figure 4.5: In-medium isovector vector spectral functions at nuclear matter density,
ρ0 = 0.17 fm−3, taken from Refs. [57] (KKW) and [41] (RW). The ρ meson spectrum
in vacuum is also shown for comparison.

meson mass in vacuum. This has generally led to the conclusion of there being
no ρ mass shift at finite density, but just an overwhelmingly large inelastic width
due to interactions of the coupled ρ ↔ ππ system with nucleons in the nuclear
medium.

We now perform the sum rule analysis, first with step function continuum, for
the two leading moments of the KKW and RW spectral distributions:

∫ s∗0

0

dsRρ(s) = s∗0

(
c0 +

3

2
ε0

)
+ c1 − 3π2ρN

MN

, (4.40)
∫ s∗0

0

ds sRρ(s) =
s∗ 2
0

2

(
c0 +

3

2
ε1

)
− (c2 + δc2(ρN)) , (4.41)

where the gap scale
√

s∗0 is permitted to adjust itself to the in-medium situation.
Consistency of the first and zeroth spectral moments is again tested and observed
to be satisfied within the uncertainties of the input. This determines s∗0 at given
density ρN = ρ0. Effects of smooth ramping into the continuum will again be
examined later.

Fig. 4.6 shows the outcome of this procedure for the KKW spectral function.
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Figure 4.6: QCD sum rule analysis of the KKW in-medium ρ spectral function [57].
First moment [solid line, left-hand side of Eq. (4.41)] is plotted versus right-hand
side [grey band including uncertainties] as function of the in-medium gap scale√

s∗0.

In this case, at nuclear matter density ρ0, the in-medium gap scale
√

s∗0 is indeed
seen to be shifted downward from its vacuum position,

√
s0 ' 1.14 GeV ' 4πfπ.

One finds √
s∗0 = (1.00± 0.02) GeV (KKW at ρN = ρ0) . (4.42)

For comparison, the cross check with the sum rule for the zeroth moment gives√
s∗0 = (1.02± 0.03) GeV, consistent with Eq. (4.42).
The analogue of Eq. (4.33) becomes:

∫ s∗0

0

ds sR(s, ρN) = F(s∗0, ρN)

∫ s∗0

0

ds R(s, ρN) (4.43)

with

F(s∗0, ρN) =
s∗ 2
0

(
c0 + 3

2
ε1

)− 2(c2 + δc2(ρN))

2
[
s∗0

(
c0 + 3

2
ε0

)
+ c1 − 3π2ρN/MN

] , (4.44)

The average in-medium “mass” determined from the ratio F(s∗0, ρN) of the first and
zeroth spectral moments is found to be

m̄∗(ρN) =
√
F(s∗0, ρN) = (0.67± 0.02) GeV (4.45)
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Figure 4.7: QCD sum rule analysis of the RW in-medium ρ spectral function [41].
First moment [solid line, left-hand side of Eq. (4.41)] is plotted versus right-hand
side [grey band including uncertainties] as function of the in-medium gap scale√

s∗0.

for the KKW spectral function at density ρN = ρ0. One notes now that the ratio
of in-medium and vacuum 1st spectral moments behaves as

m̄∗

m̄ρ(vac)
=

√
F(s∗0, ρN)

F(s0, ρN = 0)
' 0.85± 0.02 (4.46)

at ρN = ρ0.
The successful identification

√
s0 = 4πfπ in vacuum suggests a corresponding

generalization to the in-medium case:
√

s∗0 = 4πf ∗π , in terms of the pion decay
constant, f ∗π ≡ ft(ρN), related to the time component of the axial current at finite
density. Then one observes

√
s∗0/s0 = f ∗π/fπ = 0.88 ± 0.02. One finds, within

uncertainties,
m̄∗

m̄ρ(vac)
' f ∗π

fπ

∼ 1− (0.15± 0.02)
ρN

ρ0

, (4.47)

suggesting that the BR scaling tendency is indeed visible for the KKW in-medium
spectral function, contrary to first impression when looking just at the very broad
overall spectral distribution [57]. In this context we refer to the subsequent section
for an update on the relationship between the in-medium pion decay constant and
the density dependence of the chiral condensate.
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Figure 4.8: Dependence of
√

s∗0, as in Fig. 4.4, on the slope (s2 − s1)
−1 of the

ramp function W (s), now describing the onset of the continuum in the in-medium
sum rules. Upper panel: result for the KKW spectral function. Lower panel: for
the RW spectral function. The grey bands indicate the uncertainty ranges of the
results obtained with step function parameterizations of the continuum.
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The KKW spectrum is based entirely on chiral pion dynamics with vector
mesons. Baryon resonances are assumed to develop large widths and “dissolve” in
nuclear matter so that they become part of the continuous background. In con-
trast, the RW spectral function starts from a different scenario in which baryon
resonances play a distinguished role, assuming that they maintain their quasiparti-
cle properties in matter. It is thus instructive to conduct, as before, a corresponding
sum rule analysis for the moments of the RW spectrum under such aspects.

The result is displayed in Fig. 4.7. One deduces
√

s∗0 = (1.09± 0.01) GeV (RW at ρN = ρ0) (4.48)

and
√

s∗0/s0 = 0.97 ± 0.01, together with m̄∗
m̄ρ(vac)

' 0.96 ± 0.02 at ρN = ρ0. [For
comparison, the sum rule for the zeroth moment gives

√
s∗0 = (1.11 ± 0.02) GeV,

consistent with Eq. (4.48)]. So the RW spectral function exhibits dominantly broad-
ening with almost no in-medium shift of the ratio of the moments. Notably, both
RW and KKW based spectral functions work quite well in comparison with dilep-
ton data taken at SPS energies (assuming models for the expansion dynamics of
the hot and dense matter which have their own uncertainties). This implies that
it is presumably not possible to distinguish between the BR scaling scenario and
other (opposing) views from those data.

The “ramping” test in order to establish stability with respect to the modeling
of the continuum is performed as for the vacuum case described in the previous
section, with the same ramping function W (s) employed also for the in-medium
case. The results of this test for the KKW and RW spectral functions are shown in
Fig. 4.8. One finds again that the determination of

√
s∗0, using a variety of smooth

transitions to the continuum, is insensitive to details of the threshold modeling
within the narrow band of uncertainties.

4.4.2 ω-meson sum rules

Applying the FESR to the ω-meson spectral function is straightforward. In this
subsection we exhibit the results for the in-medium ω spectrum. The difference
between ρ- and ω-sum rules, which comes from their isospin, is reflected solely in
the overall factor dV of Eq. (4.6).

∫ s∗0

0

dsRω(s) = s∗0

(
c0 +

1

6
ε0

)
+ c1 − 3π2ρN

MN

, (4.49)
∫ s∗0

0

ds sRω(s) =
s∗ 2
0

2

(
c0 +

1

6
ε1

)
− (c2 + δc2(ρN)) , (4.50)
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Figure 4.9: In-medium isoscalar vector spectral functions at nuclear matter den-
sity, ρ0 = 0.17 fm−3, taken from Refs. [57] (KKW) and [17] (LWF). The ω meson
spectrum in vacuum is also shown for comparison.

The isoscalar vector spectral function has been computed using several different
approaches it at finite density. The first one starts from the same frameworks as in
the ρ-meson case (again, referred to as KKW) [57] namely the effective Lagrangian
combining chiral SU(3) dynamics with vector meson dominance. For the KKW
spectrum the ω self-energy was evaluated at tree-level which needs as input the
inelastic reactions ωN → πN and ωN → 2πN to determine the effective couplings.
Furthermore KKW employed a heavy baryon approximation, i.e. an expansion in
inverse power of the nucleon mass. The other approach is based on the coupled
channel method [17] (referred to as LWF) solving the Bethe-Salpeter equation
with local interaction kernels to calculate the ω self-energy. LWF showed that
one additional peak in both the imaginary part of the self energy and the spectral
function can be identified at ∼ 0.55 GeV. This branch of the ω spectral function
is due to the excitation of the S11(1535) resonance. The KKW and LWF spectral
functions at normal nuclear matter density, ρN = ρ0 = 0.17 fm−3, are displayed in
Fig. 4.9. As in the ρ-meson case the broadly distributed spectral functions prevent
a determination of the in-medium mass and also its shift.

Fig. 4.10 displays the result of the in-medium QCD sum rule analysis for the
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Figure 4.10: QCD sum rule analysis of the KKW in-medium ω spectral function [57]
at ρN = ρ0 = 0.17 fm−3. First moment [solid line, left-hand side of Eq. (4.50)] is
plotted versus right-hand side [grey band including uncertainties] as function of
the in-medium gap scale

√
s∗0.

KKW ω spectrum. In consistency with the KKW ρ-meson case, the gap scale
√

s∗0
is found to be reduced at nuclear matter density,

√
s∗0 = (0.99± 0.02) GeV (KKW at ρN = ρ0) . (4.51)

Using Eq. (4.43), the average in-medium ω-meson mass becomes

m̄∗
ω(ρN) = 0.64± 0.02 GeV (4.52)

for the KKW ω-spectral function at density ρN = ρ0, which reproduces the BR
scaling,

m̄∗
ω

m̄ωvac

= 0.86± 0.02 ' f ∗π
fπ

. (4.53)

The LWF method yields a second peak at masses around 0.55 GeV due to a
coupling to N∗(1535)-nucleon hole configuration. Fig. 4.11 shows the result of

√
s∗0

determined from the FESR for the LWF ω-spectrum,

√
s∗0 = (1.09± 0.02) GeV (LWF at ρN = ρ0) . (4.54)
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Figure 4.11: QCD sum rule analysis of the LWF in-medium ω spectral function [17]
at ρN = ρ0 = 0.17 fm−3. First moment [solid line, left-hand side of Eq. (4.50)] is
plotted versus right-hand side [grey band including uncertainties] as function of
the in-medium gap scale

√
s∗0.

In this case there is almost no average in-medium mass shift at ρN = ρ0,

m̄∗
ω

m̄ωvac

' 0.95± 0.02 . (4.55)

The LWF spectral function shows the in-medium behavior of the ω-meson dom-
inated by the width-broadening. Note that such a double peak spectral function
contributed by dynamically generated resonances is beyond the linear density ap-
proximation. It would be also interesting if the theoretical approaches included
the resonance decay process such as N∗ → Nπ0γ, because in case the ω-meson is
identified via its decay mode ω → π0γ.

4.5 In-medium pion decay constant and chiral con-
densate

The present QCD sum rule study asserts that the delineation between low-energy
resonance and high-energy continuum parts of the spectral function is related to
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the chiral scale, 4πfπ, which acts as an order parameter for the spontaneously
broken chiral symmetry of the QCD vacuum. Its in-medium change with increasing
baryon density is of fundamental interest and deserves an added short section with
an updated discussion.

In the nuclear medium, the relevant quantity is the pion decay constant ft(ρN) ≡
f ∗π(ρN) related to the time component of the axial vector current. Its connection
with the density dependent chiral (quark) condensate 〈ψ̄ψ〉ρN

is determined by the
in-medium analogue of the GOR relation,

f ∗ 2
π m∗ 2

π = −mq 〈ψ̄ψ〉ρN
, (4.56)

to leading order in the quark mass. Here m∗
π(ρN) is the (charge averaged) pion

mass in the medium. A low-density theorem gives the leading ρN dependence of
the quark condensate as

〈ψ̄ψ〉ρN
= 〈ψ̄ψ〉0

(
1− σN

f 2
πm2

π

ρN

)
, (4.57)

where σN = 45 ± 8 MeV is the sigma term of the nucleon. Assuming that the
pion mass is protected by its Goldstone boson nature at low density, we expect to
leading order in the baryon density:

f ∗π(ρN)

fπ

' 1− σN

2m2
πf 2

π

ρN ' 1− ρN

6ρ0

' 0.83 (4.58)

at ρN = ρ0 = 0.16 fm−3 and taking σN = 45 MeV for orientation.
A chiral perturbation theory treatment of in-medium pion dynamics [85] sug-

gested instead a difference between m∗
π and the vacuum pion mass mπ, which trans-

lates into a stronger density dependence of the pion decay constant, ft(ρN)/fπ =

1 − (0.26 ± 0.04)ρN/ρ0. On the other hand, the charge averaged in-medium pion
mass to leading order in the baryon density is given by

m∗
π

2(ρN) = m2
π − T (+) ρN , (4.59)

with the isospin-even forward pion-nucleon amplitude T (+) = 4π(1 + mπ/MN) a(+)

taken at threshold, ω = mπ. Empirically [86], the corresponding scattering length
a(+) = (1.6 ± 1.3) · 10−3 m−1

π is compatible with zero. This feature derives from
a subtle cancelation of non-leading terms which cannot be handled accurately in
baryon chiral perturbation theory. Taken as an empirical constraint, T (+)(mπ) ' 0

implies m∗
π(ρN) ' mπ at low density and hence an approximate scaling of f ∗π with
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the square root of the in-medium chiral condensate as in Eq. (4.58). This behavior
is actually consistent with the observed energy shifts in deeply bound states of
pionic atoms [87] and related theoretical calculations [88, 89] (see also Ref. [90]).

A recent theoretical study [91] gives further support to these considerations,
through a more general derivation of ft(ρN) which does not have to rely on a
detailed evaluation of the charge averaged in-medium pion mass. The basic result
of Ref. [91] is

f ∗π(ρN) ≡ ft(ρN) = fπ

√
Z

Z∗
〈ψ̄ψ〉ρN

〈ψ̄ψ〉0
, (4.60)

where Z and Z∗ are the wave function renormalization factors of the pion in vacuum
and in-medium, respectively. Their ratio is determined by the pion self-energy
Π(ω, q, ρN), as follows:

Z

Z∗ = 1− ∂

∂ω2
Π(ω, q = 0, ρN)

∣∣∣
ω=0

. (4.61)

Using the low-density expression Π = −T (+) ρN and the parametrization T (+)(ω) =

−σN/f 2
π + βω2 + . . . one arrives at

f ∗π(ρN)

fπ

' 1−
(

σN

m2
πf 2

π

− β

2

)
ρN , (4.62)

to leading order in the density. With the slope β determined by the constraint
T (+)(ω = mπ) = 0 and assuming higher order terms in the expansion of T (+) to be
small, we arrive back at Eq. (4.58): f ∗π(ρ0)/fπ = 0.83 ± 0.03 when the admittedly
large uncertainty of the nucleon sigma term is included.

Higher order corrections in the density ρN , calculated using in-medium chiral
perturbation theory [92], can be expressed in terms of a density dependent effec-
tive nucleon sigma term with a reduced value at normal nuclear matter density,
σeff

N (ρ0) = (36± 9)MeV, leading to a 3-4% increase of the ratio f ∗π(ρ0)/fπ over the
value, Eq. (4.58).

Notably, the in-medium QCD sum rule analysis assuming
√

s∗0 = 4πf ∗π exhibits
chiral scaling of this sort for the KKW spectral distribution, whereas this is not
observed for the RW spectral function.

4.6 Note on four-quark condensates

Given spectral functions which consistently satisfy the sum rules for the zeroth
and first moments, Eqs. (4.18) and (4.19), one can turn to the second moment,
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Eq. (4.20), and try to deduce constraints for the four-quark condensate term c3,
both in vacuum and in-medium. In particular, one can discuss deviations from
the frequently used factorization assumption for those condensates. As mentioned,
factorization means that the intermediate states produced by the quark opera-
tors entering Eq. (4.9) are truncated by the ground state (vacuum) only. Exact
factorization means κ = 1 in Eqs. (4.10) and (4.11).

When performing the consistency analysis including the sum rule, Eq. (4.20),
for the second moment, it turns out in all cases that the correction c3 is required
to be much larger than the value for a factorized four-quark condensate (with
κ = 1): factorization proves to be unrealistic under any circumstances. For detailed
estimates we take a value 〈q̄q〉 ' −(0.2 GeV)3 and find the following results:

i. In vacuum, a lower limit κ & 4.5 is observed which implies strong deviations
from factorization.

ii. For both types of ρ-meson spectral functions (KKW and RW) the minimal κ

required in-medium (typically κ & 3) is somewhat smaller than in vacuum.

The range of uncertainty is generally large in all cases, with κ typically extend-
ing from its lower limit up to about twice that value.

One concludes that the four-quark condensates, entering the sum rule at the
level of the 2nd moment of the spectral function, remain basically undetermined.
This appears to be at variance with reported attempts to constrain such dimension-
six condensates from Borel sum rules for the nucleon [93]. Our findings confirm
that the assumption of ground state saturation for four quark condensates should
be handled with caution. In the present work the sum rules are released from such
a dispute by restricting procedures to the 0th and 1st moments of the spectral
distribution for which quantitative statements can indeed be made.

4.7 Intermediate summary

The present work re-emphasizes the usefulness of QCD sum rules for moments of
spectral functions (or equivalently, finite energy sum rules), with focus on the ρ

and ω mesons both in vacuum and in the nuclear medium. The sum rules for
the two lowest spectral moments involve only the leading (dimension-four) QCD
vacuum condensates as (small) corrections. With inclusion of perturbative QCD
terms up to order α3

s, these sum rules permit an accurate quantitative analysis,
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unaffected by the large uncertainties from condensates of higher dimension (such
as the four-quark condensates).

An important scale parameter in this analysis is the gap separating low-energy
(resonance) and high-energy (continuum) regions of the spectral function. For the
vector-isovector current correlation function, identifying this gap with the scale for
spontaneous chiral symmetry breaking in vacuum, 4πfπ, reproduces time-honored
current algebra relations and chiral sum rules characteristic of low-energy QCD.
The corresponding in-medium sum rules for the lowest two spectral moments per-
mit to address the “mass shift” versus “collisional broadening” issue from a new,
more quantitative perspective, meaningful even for broad spectral distributions
such as that of the ρ meson at nuclear matter density. Systematic tests have been
performed to confirm that the conclusions drawn from such analysis do not depend
on the detailed threshold modeling of the transition between resonance and contin-
uum parts of the spectral distributions, even with strong in-medium broadening.

Two prototype examples of in-medium rho meson spectral functions have been
examined from this point of view in the present paper. Both of these show sub-
stantial broadening and redistribution of strength into the low-mass region, as
compared to the vacuum spectrum. The sum rule analysis of the lowest spec-
tral moments reveals qualitative differences with respect to their Brown-Rho (BR)
scaling properties. At the same time, both of these spectral distributions account
quite well for the low-mass enhancements observed in dilepton spectra from high-
energy nuclear collisions. So one must draw the conclusion that BR scaling can
presumably not be tested in such measurements.

Given the consistency constraints derived from the first two sum rules for the
spectral moments, one can then proceed to the third sum rule equation in this hi-
erarchy (involving the second spectral moment and QCD condensates of dimension
six) and discuss limits for the four-quark condensates. The outcome of this study
demonstrates that the frequently used factorization approximation for these con-
densates is questionable under any circumstances, both in vacuum and in-medium.



Chapter 5

Meson properties at finite
temperature

5.1 Introduction

In this chapter we analyze the in-medium spectral properties of the vector and
axial-vector correlation functions at finite temperature and zero baryon density.
As discussed in chapter 2, the Weinberg sum rules, based on current algebra,
established the relation between vector and axial-vector spectral functions. Using
the operator product expansion, these sum rules are reproduced in the language
of QCD. In order to explore the implications of the chiral symmetry restoration
with increasing temperature we make an extension of these sum rules to finite
temperature.

At low temperatures, T < Tc (where Tc is the temperature of the hadron−quark-
gluon phase transition), the dynamics of QCD is essentially non-perturbative and is
characterized by the spontaneous breaking of chiral symmetry. It is well known that
the pion in the hadronic phase plays a special role in strong interacting phenomena
due to its small mass in comparison with the typical hadronic scale (∼ 1 GeV). At
finite temperature, T itself appears as a new scale of hadronic system. However,
since even the critical temperature turns out to be Tc ∼ 0.2 GeV, at low temper-
ature the pions dominate the heat bath. Other hadronic states are exponentially
suppressed by the Boltzmann factor exp (−M/T ). Non-perturbative thermal con-
tributions to the sum rules are reflected in terms of the modification of condensates
in the operator product expansion.

On the other hand, the spectral functions in the phenomenological side of the

56
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QCD sum rules are usually given in parameterized form. Several guidelines are
useful for the parametrization of these spectral functions in terms of hadronic res-
onance and continuum contributions. One well-established information is that the
chiral partners become degenerate when the broken chiral symmetry gets restored.

In Ref. [45] it is shown that the thermal pions induce a mixing of vector and
axial-vector correlators at low temperature. We therefore take into account this
mixing ansatz between ρ and a1 mesons, which are chiral partners, keeping in mind
the change of the chiral scale

√
sV ≈ 4πfπ as temperature increases.

5.2 Reminder of QCD sum rules

As in chapter 4, we start from the time-ordered current correlation function, which
in turn is now thermal-expectation valued,

Πµν(q) = i

∫
d4x eiq·x〈T jµ(x)jν(0)〉T , (5.1)

with the vector current jµ
V (x) = 1

2

(
ūγµu− d̄γµd

)
and the axial-vector current

jµ
A = 1

2

(
ūγµγ5u− d̄γµγ5d

)
carrying the quantum numbers of ρ- and a1-meson,

respectively. The bracket 〈O〉T indicates the thermal average of an operator O,

〈O〉T =
TrO exp (−H/T )

Tr exp (−H/T )
, (5.2)

where H is the Hamiltonian and the trace can be evaluated by summing over the
full set of eigenstates of the Hamiltonian.

In vacuum the tensor correlation function, Eq. (5.1), can be related to one
invariant correlator, Π(q2) = 1

3
gµνΠ

µν . In the thermal medium longitudinal and
transverse parts of the correlator have to be distinguished due to the broken Lorentz
invariance. In a preferred reference frame of the medium, i.e. vanishing three
momentum q = 0 of the vector and axial-vector modes, however, longitudinal
and transverse correlation functions coincide and will again be denoted as single
invariant form Π(ω, q = 0). This scalar correlator is written in the form of a
twice-subtracted dispersion relation:

Π(q2) = Π(0) + b q2 +
q4

π

∫
ds

Im Π(s)

s2(s− q2 − iε)
. (5.3)

On the other hand, the operator product expansion (OPE) is used in order to
obtain the theoretical estimates of the correlator at large space-like momentum
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q2 = −Q2 < 0:

12π2Π(Q2) = −c0Q
2 ln

(
Q2

µ2

)
+ c1 +

c2

Q2
+

c3

Q4
+ · · · , (5.4)

with the coefficients in vacuum,

c0 =
3

2
(1 + εN) ,

c1 = −9

2
(m2

u + m2
d),

c2 =
π2

2

〈αs

π
G2

〉
± 6π2

(
mu〈ūu〉+ md〈d̄d〉) ,

(5.5)

where εN in c0 indicates the radiative corrections in perturbative QCD. The explicit
form of εN up to order α3

s(s) is shown in Appendix C. The difference between vector
and axial-vector channel is the sign of the quark condensate part. In the chiral
limit, however, since c1 and the second term of c2 are omitted, first significant
differences appear in c3 involving the four-quark condensates:

c3 = −6π3αs

[
〈(ūγµγ5λ

au∓ d̄γµγ5λ
ad)2〉

+
2

9
〈(ūγµλ

au + d̄γµλ
ad)

∑

q=u,d,s

q̄γµλaq〉
]

.
(5.6)

The four-quark condensates are usually estimated in a factorization approximation,
assuming that intermediate states are saturated by the QCD ground state:

〈(q̄γµγ5λ
aq)2〉 = −〈(q̄γµλ

aq)2〉 =
16

9
κ 〈q̄q〉2 , (5.7)

with κ introduced to parameterize deviation from exact factorization (κ = 1). The
factorization approximation is rather uncertain in medium. In section 4.6, we have
discussed too large value of κ to make the ground-state saturation reliable even in
the vacuum.

To make the QCD sum rule analysis accurate we cut off these unknown four-
quark condensates contributions by arranging the sum rules moment by moment
and adopting the lowest two moments of the spectral function:

∫ s0

0

dsR(s) = s0 c0 + c1 − 12π2 Π(0) , (5.8)
∫ s0

0

ds sR(s) =
s2
0

2
c0 − c2 , (5.9)
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where the dimensionless spectral function is defined as R(s) = −12π
s

Im Π(s). Here
s0 denotes again the characteristic scale that separates the low-mass resonance
region (s ≤ s0) from the high-energy continuum (s > s0). The last term on the
right hand side in Eq. (5.8) stands for the pion pole contribution that vanishes for
the vector and becomes Π(0) = f 2

π for the axial-vector channel at T = 0.
It is instructive to reproduce the Weinberg sum rules, Eq. (2.46), using Eqs. (5.8)

and (5.9). In vacuum and in the chiral limit, direct subtraction of the axial-vector
sum rules from the vector one gives

∫ sV

0

dsRV (s)−
∫ sA

0

dsRA(s) = c0(sV − sA) + 12π2f 2
π , (5.10)

∫ sV

0

ds sRV (s)−
∫ sA

0

ds sRA(s) =
c0

2
(s2

V − s2
A) . (5.11)

Here sV/A indicate the square of the continuum thresholds for vector and axial-
vector channel.

5.3 T -dependence of OPE

In the asymptotic region (Q2 →∞) where the OPE is valid, all non-perturbative
scales are represented as power corrections to the perturbative calculations. These
non-perturbative contributions to the OPE appear to be more clearly separated
into condensates. In the low density or temperature limit, medium-dependence of
the OPE is estimated by corrections solely to the condensates. As far as these
corrections are smaller than the vacuum value of the condensates, it does not spoil
the convergence of the OPE.

To evaluate the T -dependent condensates, we follow the method by Hatsuda
et. al. [42]. Accordingly, in Eq. (5.2) the vacuum state and the lowest excitation of
the hadron gas, namely pions, were taken into account as eigenstates of the Hamil-
tonian in order to calculate the thermal expectation values at low temperature.

〈O〉T = 〈O〉0 +
3∑

a=1

∫
d3p

2E(2π)3
〈πa(p)|O|πa(p)〉nB , (5.12)

where nB =
(
eE/T − 1

)−1 denotes Bose-Einstein distributions of thermal pions and
E2 = m2

π + p2. The pionic matrix element in Eq. (5.12) can be evaluated in the
soft pion limit:

lim
p→0

〈πa(p)|O|πb(p)〉 = − 1

f 2
π

〈0| [Qa
5,

[
Qb

5, O
]] |0〉+ · · · , (5.13)
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where Qa
5 is the axial charge operator defined by

Qa
5 =

∫
d3x q†(x) γ5

λa

2
q(x) . (5.14)

When applied to the scalar quark operator, q̄q, Eq. (5.13) gives

lim
p→0

〈πa(p)|q̄q|πb(p)〉 = − 1

f 2
π

〈0| [Qa
5,

[
Qb

5, q̄q
]] |0〉+ · · ·

= − 1

f 2
π

δab〈q̄q〉0 ,
(5.15)

where the anti-commutation relations of Dirac fields were used:

{qi(x), q† j(y)} = δij δ3(x− y) ,

{q† i(x), q† j(y)} = 0 ,

{qi(x), qj(y)} = 0 .

(5.16)

Inserting Eq. (5.15) into Eq. (5.12), we obtain the leading order T -dependence of
the chiral quark condensate,

〈q̄q〉T = 〈q̄q〉0
(

1− 3

f 2
π

∫
d3p

2E(2π)3

1

eE/T − 1

)

= 〈q̄q〉0


1− 3 T 2

4π2f 2
π

∫ ∞

mπ
T

dy

√
y2 − m2

π

T 2

ey − 1


 .

(5.17)

Eq. (5.17) is consistent with the results from the effective field theories [54, 55, 95].
Application of Eq. (5.12) to the gluon operator,

〈αs

π
G2

〉
T

=
〈αs

π
G2

〉
0
+

T 2

4π2

∫ ∞

mπ
T

dy

√
y2 − m2

π

T 2

ey − 1

∑
a

〈πa|αs

π
G2|πa〉 , (5.18)

is evaluated with the QCD trace anomaly as well as the soft pion theorem,

θµ
µ = −1

8

(
11− 2

3
Nf

)
αs

π
G2 +

∑
q

mq q̄q , (5.19)

which is used to calculate the pionic matrix element of Eq. (5.18) for gluon opera-
tor [94],

−9

8
〈πa|αs

π
G2|πb〉 = 〈πa|θµ

µ|πb〉 − 〈πa|mq q̄q|πb〉
= 2 m2

πδab −m2
πδab

= m2
πδab .

(5.20)
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Then, for Nf = 3, T -dependent gluon condensate reads

〈αs

π
G2

〉
T

=
〈αs

π
G2

〉
0
− 2m2

πT 2

3π2

∫ ∞

mπ
T

dy

√
y2 − m2

π

T 2

ey − 1
, (5.21)

in which the second term of r.h.s. gives a numerically minor contribution to the sum
rules. In the actual calculation the Gell-Mann−Oakes−Renner (GOR) relation is
used for evaluating the value of vacuum quark condensate, mq〈q̄q〉 = −(0.11 GeV)4,
while the charmonium sum rules [76] constrain the gluon condensate,

〈
αs

π
G2

〉
=

0.005± 0.004 GeV4.
Apart from the in-medium modifications of the scalar condensates, new spin-

dependent operators appear in the OPE due to the absence of Lorentz invariance in
the heat bath. Such operators are classified by their canonical dimension and the
twist (τ = dimension− spin). Then the first moment of our sum rules, Eq. (5.11),
involves the twist-2 (dimension 4) operator,

〈ST (ūγµDνu + d̄γµDνd)〉T , (5.22)

where the symbol ST makes the operator symmetric and traceless with respect to
their Lorentz indices. The precise relation between the pion matrix element of the
twist-2 quark operators and the quark distribution function in the pion reads

〈π|ST q̄γµDνq(µ)|π〉 = −i(pµpν − traces)Aπ
1 (µ) , (5.23)

with

Aπ
1 (µ) = 2

∫ 1

0

dxx [ q(x, µ) + q̄(x, µ) ] . (5.24)

Combining this correction with Eqs. (5.21) and (5.17), all the leading T -dependence
of OPE is written by the replacement c2 → c2 + δc2(T ),

δc2 = −3

2

(
2

9
∓ 3 + Aπ

1

)
m2

πT 2

∫ ∞

mπ
T

dy

√
y2 − m2

π

T 2

ey − 1
. (5.25)

The minus sign in front of the second term in the bracket, which is the leading T -
dependence of quark condensate, is for vector channel and plus sign for axial-vector
channel respectively.

5.4 Phenomenology at low T

M. Dey et. al. [45] have presented the mixing scenario of the correlation func-
tions for vector and axial-vector channel which has been well-established at low
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Figure 5.1: Vector continuum threshold
√

sV as a function of T as obtained from 0th

(black solid line) and 1st (red dashed line) moment of the sum rules. T -dependence
of chiral scale ΛCSB ≈ 4πfπ(T ) (blue dotted line) is also displayed.

temperature, and the spectral function inherits this mixing phenomenon:

RV/A(s, T ) = RV/A(s) (1− ε) + RA/V (s) ε . (5.26)

The mixing parameter ε is given by the thermal pion loop

ε =
2

f 2
π

∫
d3p

E(2π)3

1

eE/T − 1
. (5.27)

In the chiral limit (mπ → 0) it reduces to ε = T 2/(6f 2
π). At critical temperature

Tc where ε ' 0.5, the vector and axial-vector spectral functions are fully mixed
and become degenerate, RV (T ) = RA(T ). The authors in Ref. [45] have predicted
the vector meson mass not to change at low temperature using the mixing ansatz
at the order of T 2. To demonstrate this feature, we perform the finite energy sum
rules introduced in the previous sections.
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5.4.1 Spectral function with zero width

It is instructive to first test the simplest spectral ansatz for ρ and a1 mesons
assuming zero width:

RV (s) = 12π2 f 2
V m2

V δ(s−m2
V ) ,

RA(s) = 12π2 f 2
A m2

A δ(s−m2
A) .

(5.28)

The vector and axial-vector couplings, fV/A, are determined by

f 2
V m2

V = 2f 2
π , f 2

A m2
A ' f 2

π +
sA − sV

8π2
, (5.29)

the left one of which is nothing but the KSRF relation and the right one is easily
obtained by inserting Eq. (5.28) and KSRF relation into Eq. (5.10), the first Wein-
berg sum rule, with additional correction due to difference between sA and sV .
Then applying Eqs. (5.26), (5.28) and (5.29) to Eqs. (5.8) and (5.9), the lowest two
moments of the T -dependent vector meson sum rule become:

12π2 f 2
V m2

V (1− ε) =
3

2
sV − 12π2f 2

π ε , (5.30)

12π2 f 2
V m4

V (1− ε) =
3

4
s2

V − c2 . (5.31)

The a1-meson contribution has been omitted because, in actual calculation,
√

sV

is always determined in the range sV ≤ m2
A so that the a1-meson pole does not

affect the integral of the spectral moments.
With this setup,

√
sV ' 1.1 GeV of the vector channel at T = 0 is evaluated

from the sum rules by using fπ ' 87 MeV in the chiral limit and mV = 770 MeV.
The finite temperature behavior of

√
sV from the sum rules is depicted in Fig. 5.1.

The two sum rules give consistent result at low temperature. In comparison with
the chiral scale ΛCSB ≈ 4πfπ that we have identified with

√
sV = 4πfπ from

Eq. (5.30) at T = 0, the temperature evolution of
√

sV tends to progress downward
on a different way from fπ(T ) = fπ(1 − 0.5 ε) in chiral perturbation theory [54].
However it might be possible that some additional spectral effects beyond the
parity mixing that are excluded here, give rise to better agreement.

Defining an average mass as the normalized first moment of the spectral func-
tion,

m̄2 ≡
∫

ds sR∫
dsR

, (5.32)

we confirm that the ρ-meson mass remains unchanged for T 6= 0 and stays at the
vacuum pole position m̄V = 770 MeV.
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Figure 5.2: Axial-vector continuum threshold
√

sA (red dashed line) as a function
of T as obtained from the sum rules. In contrast to the ρ meson mass, the a1-meson
mass (black solid line) decreases with temperature.

In distinction from the ρ-meson case, the left hand side of the sum rules for the
axial-vector channel involve both ρ and a1 meson poles. The first moment of the
sum rules with Eq. (5.29) and mA = 1.26 GeV,

12π2
[
f 2

A m4
A(1− ε) + f 2

V m4
V ε

]
=

3

4
s2

A − c2 , (5.33)

gives
√

sA ' 1.54 GeV at T = 0 and thus f 2
A ' 0.014 which agrees with the

empirical values of f 2
A in Ref. [96]. As seen in Fig. 5.2, the average mass m̄A of

the a1-meson defined by Eq. (5.32) is reduced with temperature as well as the
continuum threshold

√
sA. The a1-meson mass is still m̄A ' 1.09 GeV at the

temperature T0 ' 151 MeV where ε = 0.5. The critical temperature at which m̄V

and m̄A coincide is still considerably higher.

5.4.2 Test on additional pole mass shift

In addition to the parity mixing effect, the resonances themselves may involve
temperature dependence which can be reflected in a shift of their pole positions.
Just for a test, let us assume spectral functions with dropping pole masses instead
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Figure 5.3: Vector continuum threshold
√

sV as a function of T using Eq. (5.34).

of Eq. (5.28),

RV (s) = 12π2 f 2
V m2

V δ
(
s−m2

V (1− 0.5 ε)2
)

,

RA(s) = 12π2 f 2
A m2

A δ
(
s−m2

A(1− 0.5 ε)2
)

,
(5.34)

where we fixed the amplitudes and make pole masses drop with ε = T 2/(6f 2
π)

according to the Brown-Rho scaling,

fπ(T )

fπ

=
mρ(T )

mρ

= · · · . (5.35)

It is remarkable that now the result gives nice agreement with the assertion
√

sV =

4πfπ(T ) as shown in Fig. 5.3 although this prescription of the pole mass shift is
ad hoc and the BR scaling for a1 meson is ambiguous. The modification of the
pole mass is related to the contribution of T 4 order. Therefore Fig. 5.3 can provide
a hint that taking into account interactions in the thermal pion gas may again
establish

√
sV as playing the role of chiral scale.

5.4.3 Spectral function with finite width

Now we examine the empirical spectral functions in vacuum displayed in Fig. 5.4,
which are more realistic than δ-function resonances, but still use the simplifying
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Figure 5.4: Vector (black curve) and axial-vector (red curve) spectral distributions
in vacuum, compared to e+e− → nπ data with n even [26, 27] and data from
hadronic τ decays [28, 29]. Here sV and sA stand for the continuum thresholds
in the vector and axial-vector channels, respectively. The ramping function (blue
dashed line) shows a different example of threshold modeling (see text).

continuum with Heaviside step function. In section 4.3.3, we have shown that the
choice of the modeling of the continuum threshold is not decisive for the results
in the finite density case. Thus the continuum thresholds can be approximated by
step functions although the ramping function, e.g. the blue solid curve in Fig. 5.4,
reproduces the experimental data better. For the finite temperature sum rules, the
results from the sum rules are also consistently stable regardless of the threshold
modeling if the slope of the ramping continuum is larger than a certain minimal
value as will be discussed in the subsequent section.

Fig. 5.5 exhibits the temperature-dependent ρ spectrum generated by Eq. (5.26)
with mπ = 139.6 MeV and fπ = 92.4 MeV. The pole position of the vector meson
stays at the mass pole in vacuum. However when it comes to an average mass
defined by Eq. (5.32):

m̄2
V =

s2
V

2
c0 − c2

sV c0 + c1 − 12π2f 2
πε

, (5.36)

the broad widths affect the mass distributions.
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Figure 5.5: ρ- (solid curve) and a1-meson (dashed curve) resonance at finite temper-
atures are obtained by inserting the vacuum spectral functions depicted in Fig. 5.4
into Eq. (5.26).

As apparent from Fig. 5.6, the average vector mass tends to remain almost
unchanged with temperature as

√
sV moves downward. Note that

√
sV from the

first moment of the sum rules is taken as an optimal value in the Fig. 5.6 because, by
considering 5% inconsistency between l.h.s. and r.h.s. of the sum rules, the results
from the first moment are included within the error range of that from the zeroth
moment. The errors in Fig. 5.6 practically come entirely from the uncertainties of
the gluon vacuum condensate and the running strong coupling αs(s). By identifying
the continuum threshold

√
sV of the vector channel with the chiral scale 4πfπ, the

chiral symmetry restoration can be interpreted in terms of the shift of the scale
sV , and not by pole-mass shift or width broadening. As temperature increases the
scale sV shows evidentally a tendency to reduce.

However, for higher temperature than about 160 MeV, there is no solution for
the continuum threshold sV and hence the average mass at that high T cannot
be determined by Eq. (5.36). Such relatively high temperature is not the valid
region in this consideration because in the OPE as well as in the spectrum the
temperature dependence is induced just by the leading contribution of the thermal
dilute pion gas. Moreover, the continuum at high temperature may contaminate
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Figure 5.6: The average vector masses and its continuum threshold at various
temperature are obtained by Eqs. (5.9) and (5.36). T -dependence of chiral scale
ΛCSB ≈ 4πfπ(T ) (black dashed line) is also displayed.

the resonance part due to the decrease of the continuum threshold with increasing
temperature. For the axial-vector channel, this problem already appears at too
low temperature, T ∼ 60 MeV.

The FESR is suitable for providing a way to relate the lowest hadronic spectral
function with the onset of the perturbative continuum. In contrast to the Borel
sum rule, where the contributions of excited resonances are suppressed with an
exponential weight, the FESR needs to take into account the continuum contri-
butions carefully. Thus, FESR is more sensitive to the spectral information in
the vicinity of the continuum threshold. The a1-spectrum at T = 0 which we use
here has a broad width. At T 6= 0 the resonance comes close to the continuum
threshold which decreases with increasing temperature. Therefore the FESR no
longer makes sense once the continuum at low temperature already melt away the
a1 resonance because there is no scale separation any more.

With physical pion mass (mπ = 139.6 MeV), direct substraction of the FESR
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for axial-vector from that of vector gives
∫ sV

0

dsRV (s, T )−
∫ sA

0

dsRA(s, T ) = c0 (sV − sA) + 12π2f 2
π (1− 2ε) , (5.37)

∫ sV

0

ds sRV (s, T )−
∫ sA

0

ds sRA(s, T ) =
c0

2

(
s2

V − s2
A

)

+12π2
(
mu〈ūu〉T + md〈d̄d〉T

)
. (5.38)

Keeping the mixing ansatz for spectral functions, Eq. (5.26),
√

sV ∼ 1.12 GeV and√
sA ∼ 1.48 GeV at T = 0 are obtained from the above two equations. One notices

that, as in the Weinberg sum rules, assuming sV = sA ≡ s0 makes Eq. (5.37) trivial
for non-vanishing temperatures.

∫ s0

0

ds (RV (s, 0)−RA(s, 0)) = 12π2f 2
π , (5.39)

∫ s0

0

ds s (RV (s, T )−RA(s, T )) = 12π2
(
mu〈ūu〉T + md〈d̄d〉T

)
. (5.40)

The temperature dependence in Eq. (5.37), 1− 2ε, was factored out in both sides
of Eq. (5.39). While the term proportional to the chiral condensates in Eq. (5.38)
implies the contribution of the in-medium shift of non-zero pion mass, the longi-
tudinal contribution from the pion pole in Eq. (5.39) is still oversimplified. The
temperature dependence of this longitudinal contribution must be of more complex
form that would make the zeroth moment of our sum rules more accurate.

5.4.4 Sensitivity to continuum threshold modeling

Now we test how reliable the continuum threshold parameterized by the schematic
step function is. A test can be performed replacing the step function by a ramping
function to yield a smooth transition between resonance and continuum region, as
follows:

R(s) = Rρ(s) Θ(s2 − s) + Rc(s) W (s) , (5.41)

where the weight function, W (s), is defined as

W (x) =





0 for x ≤ s1

x− s1

s2 − s1

for s1 ≤ x ≤ s2

1 for x ≥ s2 .

(5.42)

The step function behavior is recovered for W (x) in the limit s1 → s2.
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Figure 5.7: Dependence of
√

sV (determined from Eqs. (5.43), (5.44) and (5.45))
on the slope (s2 − s1)

−1 of the ramp function W (s) describing the onset of the
continuum at T = 100 MeV. The grey band indicates the uncertainty range of the
result obtained with step function parametrization of the continuum.

Using the function W (s), the modified sum rules for the lowest two moments
of the spectrum R(s) become

∫ s2

0

dsRρ(s) = s2

(
c0 +

3

2
ε0

)
+ c1 − 12π2Π(0)

− (c0 −Rρ(s2))

∫ s2

s1

dsW (s) , (5.43)
∫ s2

0

ds sRρ(s) =
s2
2

2

(
c0 +

3

2
ε1

)
− c2

− (c0 −Rρ(s2))

∫ s2

s1

ds sW (s) . (5.44)

Sets of intervals [s1, s2] are then determined so as to satisfy both sum rules,
Eqs. (5.43) and (5.44), and the scale sV defined by

sV =
s1 + s2

2
, (5.45)

is now introduced to characterize the continuum threshold.
In any temperature region where the sum rules are valid the present analysis

does not depend on details of the threshold modeling. Fig. 5.7 shows an example
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Figure 5.8: ρ-meson resonance at finite temperature from hidden local symmetry
model.

demonstrating that the resulting
√

sV at finite temperature is stable with respect
to variations in the slope (s2 − s1)

−1 of the ramp function W (s). In this test
the uncertainties of αs(Q

2) and of the gluon condensate have been excluded for
simplicity.

5.5 Spectral function from effective field theory

The spectral functions provided from phenomenological chiral models must be
consistent with the finite energy sum rules. In this section we will investigate this
important constraint using the chiral Lagrangian based on generalized hidden local
symmetry (GHLS) [97, 98, 99, 100] which explicitly includes the axial-vector meson
in addition to the pion and vector meson. Details of the formalism at one loop are
found in Refs. [101, 102].

The vector (Vµ) and axial-vector (Aµ) mesons are identified with the GHLS
gauge bosons Lµ and Rµ as Vµ = (Rµ + Lµ)/2 and Aµ = (Rµ − Lµ)/2. The
definition of Nf ×Nf special-unitary matrix U is given as

U = ξ†LξMξR . (5.46)
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Under chiral symmetry, U transforms as

U → gLUg†R , (5.47)

where gL,R ∈ [SU(Nf )L,R]global. Under the chiral transformation, ξ transforms as

ξL,R → hL,R · ξL,R · g†L,R ,

ξM → hL · ξM · h†R ,
(5.48)

with hL,R ∈ [SU(Nf )L,R]local. The GHLS gauge fields Lµ and Rµ transform as

Lµ → ihL∂h†L + hLLµh
†
L ,

Rµ → ihR∂h†R + hRRµh
†
R .

(5.49)

It is convenient to define the Mauer-Cartan one-form by

α̂µ
L,R = DµξL,R · ξ†L,R/i ,

α̂µ
M = DµξM · ξ†M/(2i) ,

(5.50)

which transforms as

α̂µ
L,R → hL,Rα̂µ

L,Rh†L,R ,

α̂µ
M → hLα̂µ

Mh†L .
(5.51)

Using the above quantities, the GHLS Lagrangian is constructed as

L = aLV + bLA + cLM + dLπ + Lkin (Lµ, Rµ) ,

LV = F 2 Tr
[
α̂‖µα̂

µ
‖

]
,

LA = F 2 Tr [α̂⊥µα̂
µ
⊥] ,

LM = F 2 Tr [α̂M µc] ,

Lπ = F 2 Tr [(α̂⊥µ + α̂M µ) (α̂µ
⊥ + α̂µ

M)] ,

Lkin(Lµ, Rµ) = − 1

4g2
Tr [LµνL

µν + RµνR
µν ] .

(5.52)

where α̂‖,⊥ are defined as α̂µ
‖,⊥ =

(
ξM α̂µ

Rξ†M ± α̂µ
L

)
/2. The coefficients a, b, c and

d are dimensionless parameters to be determined by the underlying QCD. The
last term Lkin corresponds to the kinetic term of the gauge bosons with the gauge
coupling constant g and field strength tensors (Lµν and Rµν).

The parity mixing in the ρ-meson spectrum is generated from the diagram
depicted in Fig. 5.9 in which π and a1 mesons propagate inside the loop which
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Figure 5.9: Diagrams contributing to the V -A mixing at one loop. Vector and
axial-vector fields are denoted by V and A and pion by φπ. Here A represents
the transverse components of the a1 meson, while φq stands for the longitudinal
one [102].

traces in-medium modification of the a1 meson. Fig. 5.8 shows the vector spectral
function at several temperatures.

The spectrum exhibits a resonant peak which mainly represents the V → ππ

process at low temperatures. With rising temperature, the energy of the time-like
virtual ρ meson splits into two branches corresponding to the processes, ρ+π → a1

and ρ → a1 + π, with thresholds
√

s = ma1 − mπ and
√

s = ma1 + mπ. This
results in the threshold effects seen as a shoulder at

√
s = ma1 −mπ and a bump

above
√

s = ma1 + mπ. The height of the spectrum gets reduced with increasing
temperature, whereas the a1-meson contribution becomes enhanced via the mixing
effect.

The average mass defined in Eq. (5.32) and the continuum threshold for the
vector meson at finite temperature are summarized in Table 5.1. m̄V stays at the

T [MeV] m̄V [GeV]
√

sV [GeV]
0 0.787± 0.002 1.126± 0.007

40 0.787± 0.002 1.126± 0.007

60 0.787± 0.002 1.124± 0.007

80 0.787± 0.002 1.122± 0.007

100 0.787± 0.002 1.118± 0.008

120 0.786± 0.003 1.111± 0.008

140 0.786± 0.003 1.102± 0.008

Table 5.1: The average ρ-meson mass and its continuum threshold at various tem-
peratures.
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vacuum value in this temperature range, while
√

sV shows a systematic decrease
toward higher temperature.

5.6 Note on higher order corrections

5.6.1 T 4 corrections

The vector mass to the order T 4 turned out to decrease as temperature increases
due to additional pion interaction term [103]. In this consideration the mixing
parameter ε is also modified by ε → ε(1 − ε/2). This modification shifts the
“critical” temperature T0 defined as the temperature at which vector and axial-
vector correlators become identical, i.e., the mixing parameter becomes 1/2.

The interacting pions with non-vanishing momentum contribute to the Lorentz
non-invariant part of the correlation function. According to the Ref. [103] this
contribution can be expressed in the frame of q = 0:

ΠV (T ) = ΠV (0)− ε
(
1− ε

2

)
(ΠV (0)− ΠA(0)) + c

T 4

2Q2
, (5.53)

where c = 8π2M2/15 and M2 is the first moment of quark distributions in the pion:

M2 =
1

2

∫ 1

0

dx x [v(x) + 2s(x)] . (5.54)

Applying Eq. (5.53) to the FESR, only Eq. (5.9) is affected by the new term:

∫ s0

0

ds sR(s) =
s2
0

2
c0 − c2 + 6π2c T 4 . (5.55)

On the OPE side, the T -dependence of the quark condensates is also improved up
to order T 4. The correction is obtained in the chiral perturbation theory as [55]:

〈q̄q〉T = 〈q̄q〉0
(

1− 3

4
ε− 3

32
ε2

)
. (5.56)

However this correction is numerically small in the actual calculation.
The substitution of Eq. (5.55) with the numerator of Eq. (5.36) compensates for

the increase of the vector average mass by the finite width effect. For instance the
average mass at T = 100 MeV is obtained as m̄V ' 0.818 ± 0.009 GeV which is
slightly less than in Fig. 5.6.
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5.6.2 Massive states

For higher temperature T the contributions from massive excitations such as K, η

etc. in Eq. (5.2) become significant. Those contributions to the T -dependence of
the quark- and gluon-condensates are obtained as in the Ref. [42]

〈q̄q〉T
〈q̄q〉0 = 1− T 2

8f 2
π

[
B1

(mπ

T

)
+

7

9
B1

(mK

T

)]
,

〈αs

π
G2

〉
T

=
〈αs

π
G2

〉
0
− T 2

9

[
m2

πB1

(mπ

T

)
+

5

3
m2

KB1

(mK

T

)]
,

(5.57)

with

B1(x) =
6

π2

∫ ∞

x

dy

√
y2 − x2

ey − 1
. (5.58)

In practice the T -dependence of the gluon condensate is just a few percent of its
vacuum value and negligible.

These numerically minor corrections in OPE hardly affect the sum rule equa-
tions and hence an appropriate value of

√
sA for a1-meson is still not determined

even at low temperatures as well as for ρ-meson of which case is relatively better.

5.7 Intermediate summary

In this chapter the finite energy sum rules were analyzed to explore the behavior
of ρ and a1 mesons at finite temperature and thus the pattern of chiral symmetry
restoration. The sum rules for the lowest two spectral moments involve only the
leading QCD condensates as corrections. With inclusion of perturbative QCD
terms up to order α3

s(µ), these sum rules permit an accurate quantitative analysis,
unaffected by the large uncertainties from condensates of higher dimension such as
the four-quark condensates.

The lowest order temperature dependent corrections are obtained by consid-
ering thermal pion loops. Only the parity mixing effect caused by non-vanishing
ρπa1 coupling is considered in the temperature dependence of the ρ-meson spec-
tral function to order T 2. The ρ-meson pole mass can be further modified by
the self energy with two pion intermediate state. However, such a contribution
is of order T 4 because of the derivative in the ρππ coupling. Using the simplest
ansatz (delta-function resonances) of vector and axial-vector vacuum spectrum and
their mixing at finite temperature, the FESR reproduces the renowned current al-
gebra and chiral sum rules. When the empirical decay widths are introduced in
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the spectral functions, there is no solution for sA even at low temperature in the
axial-vector case. This can be interpreted that “resonance” and “continuum” merge
and the a1 dissolves. In this situation, it is hard to interpret the chiral symmetry
restoration in terms of the degeneracy between vector and axial-vector spectral
functions. However, the vector continuum threshold sV in this analysis is an im-
portant scale parameter of spectral behavior through its identification with the
chiral scale,

√
sV = 4πfπ. Although the scale, sV , at finite temperature agrees

with the leading T -dependence of 4πfπ(T ) only in the low temperature region,
it is expected that, when higher order T -corrections are taken into account, the
agreement would improve even at relatively high temperature.



Chapter 6

Conclusion and outlook

In this dissertation we have used the in-medium QCD sum rules in order to ex-
plore the spectral properties of vector and axial-vector mesons at finite density
or temperature. Predictions rely on phenomenological information about the con-
densates and about the form of the spectral function. The in-medium spectral
functions of vector mesons are model dependent. Shifts of the pole mass in the
medium compete with strong collisional broadening effects. The existing experi-
mental dilepton production data do not allow for a discrimination between the mass
shift and broadening. We have therefore stressed the importance of determining
which of the interpretations of in-medium hadronic properties are compatible with
theoretical constraints based on QCD sum rule methodology.

For this purpose, we have used the finite energy sum rule (FESR) to determine
the continuum threshold, the scale separating low-energy (resonance) and high-
energy (continuum) regions of the spectral function. The continuum threshold for
the vector channel is identified with the chiral symmetry breaking scale,

√
sV '

1.14 GeV ' 4π fπ. In vacuum (ρN = 0 and T = 0), the FESR for the vector
current and this hypothetical relation reproduce the celebrated current algebras
such as the Weinberg sum rules and the KSRF relation.

In the nuclear medium, this scale analysis, instead of the discussion on the
mass shift and broadening, was used to analyze the in-medium modification of
the spectral function. In order to extent the sum rules to the dense or hot nuclear
medium, the theoretical estimate in terms of the operator product expansion (OPE)
is modified with the medium-dependent corrections of the condensates and with
new operators due to the broken Lorentz invariance (e.g. twist-2 operator, q̄γνDµq).
We have taken into account the lowest two spectral moments of the FESR which

77
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involve the dimension-four operators (e.g.
〈

αs

π
G2

〉
and mq〈q̄q〉) as non-perturbative

corrections. It is an advantage of the FESR that higher order condensates with
uncertain values (e.g. four-quark condensates) can be excluded by selecting the
lowest two moments of the sum rules.

In chapter 4, two prototype examples of the in-medium ρ-meson spectral func-
tions at normal nuclear matter density (ρN = ρ0 = 0.17 fm−3) and zero temperature
have been examined. The first one (referred to as KKW) from a chiral effective
Lagrangian with vector meson dominance emphasizes the role of chiral in-medium
ππ interactions. The other one (referred to as RW) focuses on the role of nucleon-
hole, ∆(1232)-hole and N∗(1520)-hole excitations. Both of the in-medium spec-
tral distributions show a strong broadening as compared to the vacuum ρ meson.
We obtained from the FESR the in-medium continuum threshold for the KKW ρ

spectral function,
√

s∗V = 1.00 ± 0.02 GeV. Using the hypothetical identification,√
s∗V = 4πf ∗π , the in-medium pion decay constant, f ∗π , is seen to decrease by about

22 % at normal nuclear matter density. The average mass, defined as the square
root of the normalized 1st spectral moment, shows the tendency of Brown-Rho
(BR) scaling. On the other hand, the continuum threshold for the RW ρ spectral
function was obtained as

√
s∗V = 1.09 ± 0.01 GeV, not displaying BR scaling. So

the broadening with almost no average mass shift dominates the RW ρ spectral
function.

The results for the ω meson at ρN = ρ0 are similar to the ρ meson case. For the
KKW ω spectral function, the sum rule analysis has resulted in BR scaling with√

s∗V = 0.99±0.02 GeV. The other approach for the in-medium ω spectral function
(referred to as LWF) is based on the coupled channel method solving the Bethe-
Salpeter equation to calculate the ω self-energy. The LWF ω spectral function
at ρN = ρ0 has a multi-peak structure due to the excitation of the S11(1535)

resonance. For the LWF ω spectral function, we obtained
√

s∗V = 1.09±0.02 GeV.
The LWF spectral function at finite density is broadly redistributed with almost
no average mass shift. The sum rule analysis depends on the shape of in-medium
spectral functions. All of these tested spectral functions at ρN = ρ0 are compatible
with dilepton spectra from relativistic heavy ion collisions. So one can presumably
not distinguish certain scenarios for the in-medium modification of the spectral
functions from those data.

We have also tested the factorization approximation for the four-quark con-
densates which is often used without a more detailed discussion. The continuum
threshold, consistently determined from the first two sum rules for the spectral mo-
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ments, should be a solution of the third sum rule equation which involves the second
spectral moment and four-quark condensates. Inserting the continuum threshold
to the third sum rule equation, we deduced the value for a four-quark condensate
and the parameter κ defined as the ratio between the four-quark condensate and
factorized four-quark condensate. The uncertainty of κ is large in all cases. A
lower limit κ & 4.5 in vacuum has been obtained to satisfy the sum rule equation.
For the in-medium ρ-meson spectral functions (KKW and RW), the minimal κ was
determined to be κ & 3. These values are far from the exact factorization (κ = 1).
This demonstrates that the factorization assumption is unreliable in vacuum and
also in medium.

In chapter 5, the FESR was performed to analyze the behavior of ρ- and a1-
mesons at finite temperature and zero baryon density. The leading expression of
temperature dependence is estimated by the thermal pion loops. We have examined
the in-medium spectral functions generated by the ρ-a1 mixing effect. For the axial-
vector spectral function, the sum rule equations have no solution for the continuum
threshold even at low temperature. A possible interpretation is that the a1 meson
dissolves into the continuum. For the vector channel the continuum threshold,√

sV , from the T -dependent FESR shows a decrease with increasing temperature.
Using the identification of

√
sV = 4πfπ, the result agrees with the leading T -

dependence of fπ(T ) from chiral perturbation theory in the low temperature region.
It is expected that the agreement at relatively high temperature would improve by
higher order T -corrections of the spectral function.

In summary, we repeat that QCD sum rules for the first two moments of (axial)
vector spectral functions, when combined with the spontaneous chiral symmetry
breaking scale of low-energy QCD, permit a quantitatively accurate analysis in
vacuum, consistent with well established current algebra relations. The in-medium
analogues of these sum rules can be used routinely to clarify and classify the prop-
erties of vector meson spectral functions in nuclear matter.
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A Useful formulae

A.1 γ-matrix and trace techniques

The γ matrices satisfy

{γµ, γν} = γµγν + γνγµ = 2gµν (A.1)

with γ0 hermitian, γi anti-hermitian.

γ5 = γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρτγ

µγνγργτ

= −iγ0γ1γ2γ3 = iγ3γ2γ1γ0 = γ†5

(A.2)

γ2
5 = I

{γ5, γ
µ} = 0

(A.3)

Commutators of γ matrices:

σµν =
i

2
[γµ, γν ]

γµγν = gµν − iσµν

[γ5, σ
µν ] = 0

γ5σ
µν =

i

2
εµνρτσρτ

(A.4)

Hermitian conjugates:

γ0γµγ0 = γµ†

γ0γ5γ
0 = −γ†5 = −γ5

γ0(γ5γ
µ)γ0 = (γ5γ

µ)†

γ0σµνγ0 = (σµν)†

(A.5)
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For any two spinors ψ1 and ψ2 and any 4× 4 matrix Γ,

(ψ̄1Γψ2)
∗ = ψ̄2(γ0Γ

†γ0)ψ1 (A.6)

while the corresponding identity for two anti-commutating spin 1
2
fields involves

an extra minus sign.
Charge conjugation matrix:

CΓT C = Γ for Γ = γµ, σµν , γ5σµν (A.7)

CΓT C = −Γ for Γ = γ5, γ5γµ, (/xσµν + σµν/x)

C = C∗ = −C† = −CT = −C−1, C2 = −I (A.8)

Contraction identities:

/a/b = a · b− iσµνa
µbν

γµγµ = 4

γνγµγν = −2γµ

γτγµγνγτ = 4gµν

γτγµγνγργτ = −2γργνγµ

γτγµγνγργσγτ = 2
(
γσγµγνγρ + γργνγµγσ

)

γτσµνγτ = 0

γτσµνγργτ = 2γρσµν

σµνσµν = 12

στργµγνστρ = 4γνγµ + 8gµν = 16gµν − 4γµγν

(A.9)

Traces:

Tr
[
I
]

= 4

Tr
[
γµ

]
= 0

Tr
[
γ5

]
= 0

(A.10)
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The trace of an odd product of γµ matrices vanishes:

Tr
[
σµν

]
= 0

Tr
[
γ5γµ

]
= 0

Tr
[
γ5γµγν

]
= 0

Tr
[
γ5γµγνγργτ

]
= −4iεµνρτ = 4iεµνρτ

Tr
[
γµγν

]
= 4gµν

Tr
[
γµγνγργτ

]
= 4

(
gµνgρτ − gµρgντ + gµτgνρ

)

Tr
[
γαγβγµγνγργτ

]
= 4

(
gαβgµνgρτ − gαβgµρgντ + gαβgµτgνρ

− gαµgβνgρτ + gαµgβρgντ − gαµgβτgνρ

+ gανgβµgρτ − gανgβρgµτ + gανgβτgµρ

− gαρgβτgµν + gαρgβνgντ − gαρgβµgντ

+ gατgβρgµν − gατgβνgµρ + gατgβµgνρ
)

(A.11)

Anti-symmetric tensor:

εµνρτ εµν
ρ′τ ′ = −2

(
gρρ′gττ ′ − gρτ ′gρ′τ)

εµνρτ εµνρ
τ ′ = −6gττ ′

εµνρτεµνρτ = −24

(A.12)
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A.2 Fourier transformation

This Appendix summarizes the explicit formulae of Fourier transformations often
used in the QCD sum rule method. The general form of the Fourier transformation
reads

∫
d4x

eiq·x

(x2)n
=

i(−1)n24−2nπ2

Γ(n− 1)Γ(n)
(q2)n−2 ln(−q2) + Pn−2(q

2) (n ≥ 2) ,

∫
d4x eiq·x xµxν · · ·

(x2)n
=

(
∂

i∂qµ

∂

i∂qν
· · ·

) ∫
d4x

eiq·x

(x2)n
,

(A.13)

where Pm(q2) is a polynomial in q2 of degree m with divergent coefficients. Accord-
ing to Eq. (A.13), explicit formula is tabulated as follows. Note that polynomial
terms and δ-function are neglected because these terms vanish under the Borel
transformation.

∫
d4x

eiq·x

x2
= −4iπ2

q2
,

∫
d4x

eiq·x

x4
= iπ2 ln(−q2) ,

∫
d4x

eiq·x

x6
= −iπ2

8
q2 ln(−q2) ,

∫
d4x eiq·x xµ

x2
= 8π2 qµ

q4
,

∫
d4x eiq·x xµ

x4
= 2π2 qµ

q2
,

∫
d4x eiq·x xµ

x6
= −π2

4
qµ ln(−q2) ,

∫
d4x eiq·x xµxν

x2
= −8iπ2

(
gµν

q4
− 4

qµqν

q6

)
,

∫
d4x eiq·x xµxν

x4
= −2iπ2

(
gµν

q2
− 2

qµqν

q4

)
,

∫
d4x eiq·x xµxν

x6
=

iπ2

4

(
gµν ln(−q2) + 2qµqν

1

q2

)
,

∫
d4x eiq·x xµxν

x8
= −iπ2

48

(
gµνq

2 ln(−q2) + 2qµqν ln(−q2)
)

.

(A.14)
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A.3 Borel transformation

In practical applications of the sum rule method there is a technical prescription
needed in addition to dispersion relations in order to study the low-energy aspects
of QCD. The prescription called Borel transformation consists in applying the
following operator B̂ to the function of concern,

B̂ ≡ lim
Q2,n→∞

(Q2)n+1

n!

(
− d

dQ2

)n

, M2 ≡ Q2

n
(= finite) . (A.15)

Applying the Borel transformation to the sum rules, the correlator can be simplified
as an exponentially weighted function,

B̂
(

1

s + Q2

)
= lim

Q2,n→∞
(Q2)n+1

n!
n!

(
1

s + Q2

)n+1

= lim
n→∞

(
1 +

s

M2n

)−(n+1)

= e−s/M2

.

(A.16)

On the other hand the OPE is expressed in the form of 1/Q2-expansion. It is
practically useful to present the transformation for typical functions in QCD sum
rules,

exp(−zQ2) −→ M2δ(zM2 − 1)

(Q2)n ln Q2 −→ (−1)n+1n!(M2)n+1

αs(Q
2)(Q2)n ln(Q2) −→ (−1)n+1n!αs(M

2)(M2)n+1 + · · ·
1

(Q2)n
−→ 1

(n− 1)!(M2)n−1

αs(Q
2)

(Q2)n
−→ 1

(n− 1)!(M2)n−1

4π

b ln(M2/Λ2)

[
1 +O

(
1

ln(M2/Λ2)

)]

−→ αs(M
2)

(n− 1)!(M2)n
+ · · ·

1

(Q2 + m2)n
−→ 1

Γ(n)(M2)n−1
e−m2/M2

(A.17)

where the dots denote higher order αs corrections.



B. EXPANSION OF THE LIGHT QUARK PROPAGATOR 85

B Expansion of the light quark propagator

= + + +× × × ×

×

+ · · ·

Figure B.1: The light quark propagator.

The quark propagator is diagramatically represented in Fig. B.1. The first term
of r.h.s. in Fig. B.1 indicates that the quark perturbatively propagates in free space,
and it appears in momentum space as

S0(p) =
i

/p−mq

. (B.1)

The perturbative quark propagator can be easily expanded with light quark mass,
mq,

i

/p−mq

' i

/p
+ i

mq

p2
+ i

m2
q

p4
/p . (B.2)

Fourier-transforming to space-time coordinates, it becomes

Eq. (B.2) → i

2π

/x
x4
− mq

4π2x2
+

im2
q

8π2

/x
x2

. (B.3)

The second part of the r.h.s. is the quark propagator that couples with one
external gauge field

Aext
µ (x) = −1

2
Gext

µν (0)xν , (B.4)

or in momentum space,

Aext
µ (k) =

∫
d4x eik·xAext

µ (x) =
i

2
(2π)4Gext

µν ∂νδ4(x) . (B.5)

Therefore the diagram of the quark propagator with one external gluon field is
calculated

∫
d4k

(2π)4

i

/p−mq

(
igsγ

µ i

2
(2π)4Gext

µν ∂νδ4(k)

)
i

/p− /k −mq

= − i

4
gsG

ext
µν

1

(p2 −m2
q)

2
[σµν(/p + mq) + (/p + mq)σ

µν ]

= − i

4
Gext

µν

1

p4
(σµν/p + /pσµν)− i

2
gsG

ext
µν

1

p4
mqσ

µν

− i

2
gsG

ext
µν

m2
q

p6
(σµν/p + /pσµν) +O(m3

q) .

(B.6)
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Then the Fourier transformation gives the expression in coordinate space

Eq. (B.6) → − i

32π2

1

x2
gsG

ext
µν (/xσµν + σµν/x)

− 1

32π2

[
ln

(
−x2Λ2

4

)
+ 2γEM

]
mq gsG

ext
µν σµν

+
i

128π2

[
ln

(
−x2Λ2

4

)
+ 2γEM

]
mq gsG

ext
µν (/xσµν + σµν/x) .

(B.7)

On the other hand, the other terms of the r.h.s. in Fig. B.1 stand for the non-
perturbative contribution to the propagator, obtained via the Taylor expansion of
the normal-ordered operator,

〈qa
i (x) q̄ b

j (0)〉 = 〈qa
i (0) q̄ b

j (0)〉+ xµ〈Dµq
a
i (0) q̄ b

j (0)〉
+

1

2!
xµxν〈(DµDν + DνDµ)qa

i (0) q̄ b
j (0)〉+ · · · ,

(B.8)

where a, b and i, j denote color indices and spinor indices respectively. The vacuum
expectation values of the r.h.s. in Eq. (B.8) are encoded into the condensates. For
example, the second term of Eq. (B.8) corresponds to the quark condensate which
is described by the third diagram in Fig. B.1

〈qa
i (0) q̄ b

j (0)〉 = − 1

12
〈q̄q〉δabδij , (B.9)

〈Dµq
a
i (0) q̄ b

j (0)〉 =
i

48
mq〈q̄q〉δab(γµ)ij . (B.10)

To verify these, perform appropriate contractions for each equation, multiplying
δbaδji to Eq. (B.9) and δba(γµ)ji to Eq. (B.10). The fourth part of Fig. B.1, which
corresponds to the third term of r.h.s. in Eq. (B.8), leads to the quark-gluon mixed
condensate,

1

2!
〈(DµDν +DνDµ)qa

i (0) q̄ b
j (0)〉 = −

(
1

96
gs〈q̄σ ·Gq〉 − m2

q

48
〈q̄q〉

)
gµνδ

abδij . (B.11)

Higher dimension operators are also obtained in the same way. Combining the
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results, the expansion of the light quark propagator finally appears as

Sq,ij
ab (x) ≡ 〈0|T [qi

a(x)q̄j
b(0)]|0〉

=
i

2π2

δab

x4
/xij − δabδ

ij

12
〈q̄q〉 − δabδ

ij

192
x2 g〈q̄σ ·Gq〉

− i

32π2

1

x2
gsG

A
µνt

A
ab

(
/xσµν + σµν/x

)ij

− π2

3327
x4 δabδ

ij〈q̄q〉
〈αs

π
G2

〉

− 1

4π2

mq

x2
δabδ

ij +
i

48
δab mq〈q̄q〉/xij

+
i

3227
x2 δab mq g〈q̄σ ·Gq〉/xij

− 1

32π2

[
ln

(
−x2Λ2

4

)
+ 2γEM

]
mq gsG

A
µνt

A
ab(σ

µν)ij

+
i

8π2

δab

x2
m2

q/x
ij +

δabδ
ij

96
x2 m2

q〈q̄q〉

+
i

27π2

[
ln

(
−x2Λ2

4

)
+ 2γEM

]
m2

q gsG
A
µνt

A
ab (/xσµν + σµν/x)ij

+
δabδ

ij

3228
x4 m2

q g〈q̄σ ·Gq〉

− i

3525
x2 δab g2

s〈q̄q〉2/xij − δabδ
ij

3527
x4 mq g2

s〈q̄q〉2 .

(B.12)

In actual calculations, introducing the dual gluon tensor,

G̃µν ≡ i

2
εµναβ Gαβ , G̃µν = − i

2
εµναβ Gαβ , (B.13)

G̃µνG̃µ′ν′ =
1

12
(gµµ′gνν′ − gµν′gνµ′)G̃

2 , (B.14)

G̃2 =
1

4
εµναβGαβ εµνα′β′Gα′β′

= −1

2
(δ α′

α δ β′
β − δ β′

α δ α′
β )GαβGα′β′

= −1

2
(GαβGαβ −GαβGβα) = −G2 ,

(B.15)

one can write the gluon term as follows,

− i

32π2

1

x2
gsG

A
µνt

A
ab

(
/xσµν + σµν/x

)
= − i

8π2

1

x2
gsG̃

A
µνt

A
ab γνγ5x

µ . (B.16)
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C QCD corrections

Following Ref. [70], the expression for the n-th moment (with n = 0, 1, 2) of the
spectral distribution in the isovector (ρ meson) channel is written

∫ s0

0

ds snRρ(s) =
sn+1
0

n + 1

(
c0 +

3

2
εn

)
+ (−1)ncn+1 − 12π2 Π(0) δn0 . (C.1)

The leading perturbative QCD term on the r.h.s. has c0 = 3
2

(
1 + αs

π

)
. The correc-

tions to O(α3
s) are

εn = a(2)
n

(αs

π

)2

+ a(3)
n

(αs

π

)3

, (C.2)

with

a(2)
n = 1.641 +

2.250

n + 1
,

a(3)
n = −10.28 +

11.38

n + 1
+ 1.69

(
6

(n + 1)2
− π2

)
.

(C.3)

In applications using Eq. (C.1) the relevant coupling is αs(s0) with s0 ∼ 1 GeV2.
In practice we use αs(1 GeV2) = 0.50± 0.03 [82, 83].

C.1 The running coupling αs(µ)

To estimate the αs(s0) effectively optimized from sum rules for the moment with
the theoretical (QCD) prediction, we consider the following form of αs(µ) up to
NNLO.

αs(µ) =
4π

β0 ln(µ2/Λ2)

[
1− 2β1

β2
0

ln[ln(µ2/Λ2)]

ln(µ2/Λ2)

+
4β2

1

β4
0 ln2(µ2/Λ2)

((
ln[ln(µ2/Λ2)]− 1

2

)2

+
β2β0

8β2
0

− 5

4

)]
,

(C.4)

where βi’s are coefficients of the renormalization group beta function of which first
three are given by

β0 = 11− 2

3
nf ,

β1 = 51− 19

3
nf ,

β2 = 2857− 5033

9
nf +

325

27
n2

f in MS scheme ,

(C.5)

with the number of active quark flavors nf .
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In order to calculate αs(µ = 1.16 GeV) we should choose first the dimensional
parameter Λ at high energy region which usually use to be determined at µ = MZ ,
and then drift the Λ to certain energy scale we are interested in. Using the naive
values (αs(MZ = 91.2 GeV) ≈ 0.12), we obtain

Λ
(5)
L = 0.099 GeV ,

Λ
(5)
NL = 0.255 GeV ,

Λ
(5)
NNL = 0.235 GeV ,

(C.6)

where the superscript of Λ
(5)
i indicates nf .

Ideally speaking, as the scale, µ, goes across quark mass thresholds, we can
simply increase the nf . Accordingly, since ms <

√
s0 = 1.16 GeV < mc, we are

interested in the Λ
(nf )
i (i = L, NL and NNL) at nf = 3.

Matching at b-quark mass threshold for continuity, α
(4)
s,i (mb ∼ 4.7 GeV) =

α
(5)
s,i (4.7 GeV), we can obtain the Λ

(4)
i and also α

(4)
s,i from Eq. (C.4):

α
(4)
s,i (4.7 GeV) =





0.21 with Λ
(4)
i = 0.130 GeV for i = L ,

0.22 with Λ
(4)
i = 0.340 GeV for i = NL ,

0.22 with Λ
(4)
i = 0.306 GeV for i = NNL .

(C.7)

If once again we repeat it at c-quark mass threshold, α
(3)
s,i (mc ∼ 1.5 GeV) =

α
(4)
s,i (1.5 GeV), we obtain

α
(3)
s,i (1.5 GeV) =





0.31 with Λ
(3)
i = 0.158 GeV for i = L ,

0.37 with Λ
(3)
i = 0.393 GeV for i = NL ,

0.36 with Λ
(3)
i = 0.353 GeV for i = NNL .

(C.8)

With the parameter Λ
(3)
i ,

α
(3)
s,i (
√

s0 = 1.16 GeV) =





0.35 for i = L ,

0.46 for i = NL ,

0.44 for i = NNL .

(C.9)
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D First moment of quark distribution

An accurate value of A1,

A1 = 2

∫ 1

0

dx x
(
u + ū + d + d̄

)
, (D.1)

which determines the dominant part of the in-medium modifications in our sum
rule analysis, is obtained from the MRST2001 fits [78]. In this analysis parton
distributions of the proton are derived from measurements of structure functions by
the H1 and ZEUS collaborations at HERA, and by the D0 and CDF collaborations
at the Tevatron, performing DGLAP evolution. The parametrization of the parton
distributions at Q2 = 1 GeV2 is:

xuv = 0.158 x0.25(1− x)3.33(1 + 5.61x0.5 + 55.49x) ,

x dv = 0.040 x0.27(1− x)3.88(1 + 52.73x0.5 + 30.65x) ,

xS = 0.222 x−0.26(1− x)7.10(1 + 3.42x0.5 + 10.30x) ,

x∆ ≡ x(d̄− ū)

= 1.195 x1.24(1− x)9.10(1 + 14.05x− 45.52x2) ,

2ū = 0.4S −∆ ,

2d̄ = 0.4S + ∆ , (D.2)

where uv and dv denote the valence u- and d-quark distributions while 2ū and 2d̄

are the sea quark distributions. ∆ denotes the difference between d̄ and ū.
Using this parametrization, A1 at a 1 GeV scale is directly calculated as

A1 = 2

∫ 1

0

dx x
(
uv + dv + 2ū + 2d̄

)
= 1.2373 . (D.3)
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