Fermentatives Verfahren zur Gewinnung von organischen Lösungsmitteln aus Molke

Dominik Stephan Antoni
Danksagung

Diese Arbeit entstand während meiner Zeit als wissenschaftlicher Mitarbeiter am Wissenschaftszentrum Weihenstephan der TU München. In diese Zeit fiel auch die Neuorganisation des Lehrstuhls, an dem ich diese Arbeit begonnen habe. Auch deshalb war die Unterstützung durch eine Vielzahl von Personen notwendig, um diese Arbeit realisieren zu können. Mein besonderer Dank gilt daher:

- meinem Doktorvater, Herrn Univ.-Prof. i. R. Dr.-Ing. Roland Meyer-Pittroff, Ordinarius des Lehrstuhls für Energie- und Umwelttechnik der Lebensmittelindustrie, nicht nur für die wissenschaftliche Betreuung sondern auch für die exzellente, über die universitäre Ausbildung hinausgehende Vorbereitung auf die Tätigkeit auch außerhalb der Universität

- Herrn Univ.-Prof. Dr.-Ing. Martin Faulstich für die Möglichkeit, diese Arbeit an seinem Lehrstuhl für Rohstoff- und Energietechnologie fortzuführen, sowie für die Bereitschaft, an der Prüfung mitzuwirken

- Herrn Präsidenten Univ.-Prof. Dr. rer. nat. Dr. h. c. mult. Wolfgang A. Herrmann für die Mitwirkung an der Prüfung

- Herrn Univ.-Prof. Dr.-Ing. Dr.-Ing. habil. Ulrich Kulozik für die Übernahme des Prüfungsvorsitzes

- Herrn PD Dr.-Ing. Winfried Ruß, der an der Entwicklung der Idee zu dieser Arbeit maßgeblich beteiligt war

- Herrn Dr. Wolfgang Schwarz und Herrn Dr. Vladimir Zverlov vom Lehrstuhl für Mikrobiologie für die freundliche Bereitstellung der Clostridien-Stämme, für die umfassende Unterstützung bei der Handhabe der Clostridien und die vielen und wichtigen fachlichen Diskussionen

- Herrn Dipl.-Ing. Stefan Liebl, der im Rahmen seiner Diplomarbeit half, die Grundlagen für diese Arbeit zu schaffen

- Frau M.Sc. Manuela Stöberl, die durch ihre Diplomarbeit insbesondere bei der Methodenentwicklung unterstützte und nun dieses Forschungsgebiet am Lehrstuhl für Rohstoff- und Energietechnologie weiterführt

- Herrn Dipl.-Ing. Thomas Herfellner für die Unterstützung bei der Planung, dem Aufbau und der Verbesserung des UASB-Reaktors

- alle meinen ehemaligen Kollegen vom Lehrstuhl für Energie- und Umwelttechnik sowie vom Lehrstuhl für Rohstoff- und Energietechnologie, die immer wussten, was gerade noch (technisch) machbar war

- meinen Eltern, für die fortwährende Unterstützung

- und allen Anderen, die eine Hilfe und Unterstützung waren oder unter dieser Arbeit zu leiden hatten.

Leipzig, 2. November 2009

Dominik Antoni
Inhaltsverzeichnis

DANKSAGUNG ... I

ABKÜRZUNGEN, EINHEITEN, FORMELZEICHEN ... IV

1 EINLEITUNG ... 1

2 GRUNDLAGEN ... 3

 2.1 PRODUKTE DER ACETON-BUTANOL-ETHANOL-FERMENTATION ... 3
 2.2 MOLKE ALS RESTSTOFF ... 4
 2.2.1 Ursprung und Zusammensetzung von Molke .. 4
 2.2.2 Verwertungswegs für Molke .. 4
 2.2.2.1 Verwendung unbekleideter Molke .. 5
 2.2.2.2 Fraktionierung von Molke ... 5
 2.2.2.3 Fermentative Molkeverwertung .. 7
 2.2.2.3.1 Methan-Fermentation ... 7
 2.2.2.3.2 Propionsäure-Fermentation .. 7
 2.2.2.3.3 Laktat-Fermentation ... 7
 2.2.2.3.4 Aerobe Molkeverarbeitung ... 8
 2.2.2.3.5 Ethanol-Fermentation ... 8
 2.2.2.3.6 Weitere fermentative Verfahren .. 9
 2.2.3 Der Markt für Molke .. 9

 2.3 STAND VON WISSENSCHAFT UND TECHNIK BEI DER ACETON-BUTANOL-ETHANOL-FERMENTATION 11
 2.3.1 Geschichte der Aceton-Butanol-Ethanol Fermentation ... 11
 2.3.2 Lösungsmittel bildende Mikroorganismen .. 12
 2.3.3 Stoffwechsel von Lösungsmittel bildenden Clostridien ... 14
 2.3.4 Technik und Technologie der industriellen Aceton-Butanol-Ethanol-Fermentation 16
 2.3.5 ABE-Fermentation von Molke .. 18
 2.3.5.1 Einfluss des pH-Wertes ... 18
 2.3.5.2 Einfluss von Butanol .. 19
 2.3.5.3 Einfluss der im Substrat vorhandenen Kohlenhydrate .. 19
 2.3.5.4 Einfluss der Temperatur .. 20
 2.3.5.5 Einfluss von Spurenelementen und Nährstoffen .. 20
 2.3.5.6 Einfluss der Verfahrenstechnik .. 22
 2.3.5.7 Nebenprodukte der Aceton-Butanol-Ethanol-Fermentation .. 23
 2.3.5.8 Übersicht über bisher untersuchte Stämme ... 23

3 MATERIALIEN UND METHODEN ... 27

 3.1 MATERIALIEN ... 27
 3.1.1 Chemikalien und Medienzusätze ... 27
 3.1.2 Laborgeräte ... 28
 3.1.3 Einweg-Artikel ... 28
 3.1.4 Fermenter ... 29
 3.1.4.1 ABE-Fermenter .. 29
 3.1.4.2 UASB-Reaktor ... 29
 3.1.5 Mikroorganismen ... 31
 3.1.6 Molke und Molkepermeat .. 31

 3.2 METHODEN ... 31
 3.2.1 Medienbereitung ... 31
 3.2.2 Sporengewinnung und Stammhaltung .. 32
 3.2.3 Kultivierung ... 33
 3.2.4 Bestimmung der Lösungsmittel und Carbonsäuren ... 33
 3.2.5 Bestimmung der Gaszusammensetzung ... 36
 3.2.6 Bestimmung von Gasvolumina ... 39
 3.2.7 Bestimmung von Zucker ... 41
 3.2.8 Bestimmung von Eisen ... 41
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.9</td>
<td>Bestimmung des pH-Wertes</td>
<td>41</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Bestimmung der optischen Dichte</td>
<td>42</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Bestimmung der Trockensubstanz</td>
<td>42</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Mikroskopische Untersuchung</td>
<td>42</td>
</tr>
<tr>
<td>3.2.13</td>
<td>Bestimmung weiterer für Abwasser relevante Parameter</td>
<td>42</td>
</tr>
</tbody>
</table>

4 ERGEBNISSE UND DISKUSSION

4.1 VORBEREITENDE ARBEITEN...43

4.2 GEEIGNETE MIKROORGANISMEN..44

4.3 EINFLÜSSE DER MEDIEN-ZUSAMMENSETZUNG ..49

4.3.1 Einflüsse der Bestandteile des RCM-Konzentrats....................................49

4.3.2 Einfluss von Hefeextrakt...52

4.3.3 Einfluss von Fleischextrakt..53

4.3.4 Einfluss von Eisen ...57

4.3.5 Einfluss von Ammoniumsulfat ...60

4.3.6 Kombinationen von Zusatzstoffen ...61

4.3.6.1 Kombination von Fleischextrakt mit Eisensulfat...........................61

4.3.6.2 Kombination von Hefeextrakt mit Eisensulfat..............................63

4.3.6.3 Kombination von Ammoniumsulfat mit Eisensulfat..........................65

4.3.6.4 Kombination von Eisensulfat, Ammoniumsulfat und Hefeextrakt.......66

4.4 SPEZIFISCHE EIGENSCHAFTEN DER AUSGEWÄHLTEN STÄMME68

4.4.1 Produkthemmung ..68

4.4.2 Stabilität der Stämme gegen Degeneration70

4.5 EINFLUSS TECHNOLOGISCHER PARAMETER AUF DIE FERMENTATION77

4.5.1 Einfluss der Medienvorbehandlung ...77

4.5.1.1 Pasteurisation der Medien ...77

4.5.1.2 Sterilfiltration der Medien ...82

4.5.2 Einfluss der Fermentationstemperatur auf die Produktbildung84

4.5.3 Einfluss der Laktosekonzentration ..85

4.5.4 Einsatz von Mischkulturen ...89

4.5.5 Einfluss des Ausgangs-pH-Wertes ..90

4.5.6 Einfluss der Rührgeschwindigkeit ...96

4.6 GASBILDUNG BEI DER FERMENTATION..100

4.7 EINFLUSS DES FERMENTERVOLUMENS ...106

4.8 BILDUNG VON BIOMASSE ...107

4.9 VORTEILE EINES PORTLAUFENDEN BETRIEBES108

4.10 RESTSTOFF- UND ABWASSERENTSORGUNG ...111

4.10.1 Rückführung der Zellmasse ..111

4.10.2 Verwertung der Schlempe ...113

4.10.2.1 Gewinnung der Schlempe ..113

4.10.2.2 Auswahl des Systems zur Schlempebehandlung116

4.10.2.3 Schlempebehandlung im Biogas-Reaktor117

4.11 SCHLUSSFOLGERUNGEN UND ANLAGENKONZEPT122

5 ZUSAMMENFASSUNG ...129

6 LITERATUR ...130
Abkürzungen, Einheiten, Formelzeichen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
<th>Einheit</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atom-Absorptions-Spektrometer</td>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>BHKW</td>
<td>Block-Heizkraftwerk</td>
<td>ML</td>
<td>Milliliter</td>
</tr>
<tr>
<td>Butanol</td>
<td>1-Butanol</td>
<td>MS</td>
<td>Massenspektrometer</td>
</tr>
<tr>
<td>COS</td>
<td>Carboxylsulfid</td>
<td>NCIMB</td>
<td>National Collection of Industrial, Marine and Food Bacteria</td>
</tr>
<tr>
<td>CSB</td>
<td>Chemischer Sauerstoffbedarf</td>
<td>NCP</td>
<td>National Chemical Products Ltd.</td>
</tr>
<tr>
<td>D</td>
<td>Deutschland</td>
<td>NRRL</td>
<td>ARS Culture Collection</td>
</tr>
<tr>
<td>dest.</td>
<td>destilliert</td>
<td>ppb</td>
<td>Parts per Billion (10-9)</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethylsulfid</td>
<td>ppm</td>
<td>Parts per Million (10-6)</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
<td>RCM</td>
<td>Reinforced-Clostridal-Medium</td>
</tr>
<tr>
<td>FE</td>
<td>Fleischextrakt</td>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>FID</td>
<td>Flammen-Ionisations-Detektor</td>
<td>Tsd.</td>
<td>Tausend</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
<td>U</td>
<td>Umdrehungen</td>
</tr>
<tr>
<td>HE</td>
<td>Hefextrakt</td>
<td>UASB</td>
<td>Upflow Anaerobic Sludge Blanket</td>
</tr>
<tr>
<td>HMF</td>
<td>Hydroxy-Methyl-Furfural</td>
<td>Vol.-%</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
<td>ZM</td>
<td>Zellmasse</td>
</tr>
<tr>
<td>Hw</td>
<td>Heizwert</td>
<td>k. A.</td>
<td>keine Angabe</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>AS</td>
<td>Ammoniumsulfat</td>
<td>Mio.</td>
<td>Millionen</td>
</tr>
<tr>
<td>a</td>
<td>Jahr</td>
<td>Mass.-%</td>
<td>Masseprozent</td>
</tr>
<tr>
<td>B</td>
<td>ml</td>
<td>Milliliter</td>
<td></td>
</tr>
<tr>
<td>mM</td>
<td>Millimol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butanol</td>
<td>1-Butanol</td>
<td>MS</td>
<td>Massenspektrometer</td>
</tr>
<tr>
<td>COS</td>
<td>Carboxylsulfid</td>
<td>NCIMB</td>
<td>National Collection of Industrial, Marine and Food Bacteria</td>
</tr>
<tr>
<td>CSB</td>
<td>Chemischer Sauerstoffbedarf</td>
<td>NCP</td>
<td>National Chemical Products Ltd.</td>
</tr>
<tr>
<td>d</td>
<td>Tag</td>
<td>ppb</td>
<td>Parts per Billion (10-9)</td>
</tr>
<tr>
<td>D</td>
<td>Deutschland</td>
<td>ppm</td>
<td>Parts per Million (10-6)</td>
</tr>
<tr>
<td>dest.</td>
<td>destilliert</td>
<td>RCM</td>
<td>Reinforced-Clostridal-Medium</td>
</tr>
<tr>
<td>DMS</td>
<td>Dimethylsulfid</td>
<td>tm</td>
<td>Tonne</td>
</tr>
<tr>
<td>DSMZ</td>
<td>Deutsche Sammlung von Mikroorganismen und Zellkulturen</td>
<td>t</td>
<td>Tonne</td>
</tr>
<tr>
<td>FE</td>
<td>Fleischextrakt</td>
<td>TM</td>
<td>Trockenmasse</td>
</tr>
<tr>
<td>FID</td>
<td>Flammen-Ionisations-Detektor</td>
<td>Tsd.</td>
<td>Tausend</td>
</tr>
<tr>
<td>GC</td>
<td>Gaschromatographie</td>
<td>U</td>
<td>Umdrehungen</td>
</tr>
<tr>
<td>HE</td>
<td>Hefextrakt</td>
<td>UASB</td>
<td>Upflow Anaerobic Sludge Blanket</td>
</tr>
<tr>
<td>HMF</td>
<td>Hydroxy-Methyl-Furfural</td>
<td>Vol.-%</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
<td>ZM</td>
<td>Zellmasse</td>
</tr>
<tr>
<td>Hw</td>
<td>Heizwert</td>
<td>k. A.</td>
<td>keine Angabe</td>
</tr>
</tbody>
</table>
1 Einleitung

- Biomasseverbrennung
- Verbrennung fossiler Brennstoffe mit CO₂-Abscheidung und -Lagerung
- Photovoltaik
- Windkraft
- Wasserkraft
- Wellen-/Gezeitenkraft
- Solarthermie
- Geothermie
- Kernfusion und -spaltung.

Daher ist auch der Einsatz alternativer Substrate sinnvoll. Dabei ist Lignocellulose haltige Biomasse das einzige Substrat, das allgemein in sehr großer Menge vorhanden ist und wirtschaftlich sinnvoll gewonnen werden kann [7]. Stroh stellt ein solches Substrat dar und ist auf Grund seines geringen Wasserhaltes auch gut lagerfähig. Jedoch sind in vielen Regionen auch solche Substrate begrenzt. In Bayern beispielsweise stehen lediglich 11 PJ/a (Hₑₐ) an nutzbarem Getreidestroh (ohne Mais) zur Verfügung [8], während z. B. etwa 166 PJ/a an Ottokraftstoff verbraucht werden [9].

Eine der Chemikalien, die in den letzten Jahrzehnten vorrangig aus fossilen Rohstoffen hergestellt worden ist, ist das organische Lösungsmittel n-Butanol (im Folgenden als Butanol bezeichnet).

Neben dem derzeit üblichen Einsatz als Lösungsmittel und Plattformchemikalie ist auch der Einsatz als Kraftstoff möglich.

Die Problemstellung besteht daher in der Entwicklung eines industriell nutzbaren Verfahrens zur Herstellung von organischen Lösungsmitteln aus Molke, die entsprechend folgender Vorgehensweise gelöst werden soll:

- Darstellung des Standes der Technik der Molkeverwertung, des Standes der Technik der industriellen ABE-Fermentation sowie des Standes der Wissenschaft zur ABE-Fermentation von Molke
- Auswahl und Untersuchung geeigneter Mikroorganismen
- Untersuchung von Medienzusätzen
- Verbesserung der Fermentation durch Technik und Technologie mit dem Ziel der Steigerung von Butanolkonzentration und Ausbeute (Masse Produkte bezogen auf die Masse eingesetzter Kohlenhydrate) sowie der Verkürzung der Fermentationsdauer
- Quantifizierung der Nebenprodukte und Reststoffe sowie Erstellung eines Konzept zur Verwertung der Reststoffe
- Erstellung eines Anlagenkonzeptes.
2 Grundlagen

2.1 Produkte der Aceton-Butanol-Ethanol-Fermentation

Weiterhin ist der Einsatz als Kraftstoff in Verbrennungsmotoren möglich. Wesentliche Vorteile von Butanol gegenüber anderen Biokraftstoffen sind die hohe Energiedichte ($H_u = 33,1 \, \text{MJ/kg} = 26,8 \, \text{MJ/l}$), die gute Mischbarkeit mit Diesel- und Ottokraftstoff, die Oktanzahl erhöhenden Eigenschaften, die geringe Korrosivität sowie der geringe Dampfdruck [19, 20]. Konventionelle Ottomotoren können ohne Änderungen an der Motorentechnik sowohl Butanol-Mischungen als auch Butanol als Reinkraftstoff nutzen [20].

Auf Grund des geringen Dampfdruckes und geringer Hygroskopizität sowie geringer Korrosivität könnten im Gegensatz zu Ethanol für Butanol bestehende Infrastrukturen für Ottokraftstoff, z.B. Pipelines, Tankwagen und Tankstellen, genutzt werden [6, 20].

Der Butanol-Preis ist tendenziell dem Rohölpreis gefolgt und lag in den Jahren 2003 bis 2007 im Bereich von 650 bis 1085 €/t [6].
2.2 Molke als Reststoff

2.2.1 Ursprung und Zusammensetzung von Molke

Tabelle 1: Zusammensetzung von Molken [13, 21-24]

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Süßmolke</th>
<th>Sauermolke</th>
<th>Caseinmolke</th>
<th>Molkepermeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH-Wert</td>
<td>6,1 – 6,6</td>
<td>4,5 – 4,7</td>
<td>4,4</td>
<td></td>
</tr>
<tr>
<td>Trockenmasse [%]</td>
<td>6,0 – 6,4</td>
<td>5,7 – 6,2</td>
<td>6,1</td>
<td></td>
</tr>
<tr>
<td>Wasser [Mass.-%]</td>
<td>93 – 94</td>
<td>94 – 95</td>
<td>k. A.</td>
<td></td>
</tr>
<tr>
<td>Fett [Mass.-%]</td>
<td>≤ 0,8</td>
<td>Spuren</td>
<td>< 0,01</td>
<td></td>
</tr>
<tr>
<td>Protein [Mass.-%]</td>
<td>≤ 0,9</td>
<td>≤ 0,9</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Laktose [Mass.-%]</td>
<td>4,5 – 5,0</td>
<td>3,8 – 4,6</td>
<td>4,7</td>
<td>4,00 - 4,48</td>
</tr>
<tr>
<td>Milchsäure [Mass.-%]</td>
<td>Spuren</td>
<td>≤ 0,8</td>
<td>k. A.</td>
<td></td>
</tr>
<tr>
<td>Citronensäure [Mass.-%]</td>
<td>0,1</td>
<td>0,1</td>
<td>k. A.</td>
<td></td>
</tr>
<tr>
<td>Mineralstoffe [Mass.-%]</td>
<td>0,5 – 0,7</td>
<td>0,7 – 0,8</td>
<td>0,90</td>
<td></td>
</tr>
</tbody>
</table>

Die Zusammensetzung der Molke kann abhängig vom hergestellten Produkt, dem Rohstoff Milch und auch von der Jahreszeit schwanken.

2.2.2 Verwertungswege für Molke

Um Molke ohne Qualitätseinbußen weiterverarbeiten zu können, ist eine sofortige Verarbeitung oder eine mikrobielle Stabilisierung notwendig. Dies geschieht durch Kühlung auf unter 4 °C (Haltbarkeit 24 h), durch thermische Behandlung (71 – 74 °C für 15 s) oder durch Zugabe von Konservierungsmitteln (0,05 Mass.-% H₂O₂ oder 0,5 Mass.-% Natrium- oder Magnesiumsulfit) [23].

2.2.2.1 Verwendung unbehandelter Molke

Ein großer Teil der unbehandelten Molke wird bisher in der Tierernährung eingesetzt. Vor allem wird die Molke an Schweinemastbetriebe geliefert, teilweise wird es auch zur Kälbermast oder als Milchleistungsfutter eingesetzt. Die Nährstoffe der Molke sind jedoch nur zu einem geringen Teil in der Tierernährung nutzbar. Eine weitergehende Nutzung soll durch die Verhef tug von Molke erreicht werden (siehe auch 2.2.2.3.4). Weiterhin fallen Kosten für den Transport der Molke an [23, 26]. Die Trocknung der Molke ist eine Möglichkeit, um die Lagerfähigkeit zu erhöhen und Transportkosten zu reduzieren. Die Verfahren sind jedoch energieaufwändig. Selbst bei Verfahren mit Wärmerückgewinnung und Nutzung der Abwärme in anderen Betriebsteilen liegt der Nettowärmebedarf bei etwa 350 kWh/t Frischmolke [27].

Bereits seit langem wird der Molke gesundheitsfördernde Wirkung zugeschrieben. Der Einsatz in der menschlichen Ernährung war jedoch auf Grund des Geschmackes und der kurzen Haltbarkeit bisher gering. Mittlerweile können jedoch in einigen Ländern auch Molke haltige Getränke abgesetzt werden [23].

Dem Einsatz von Molke und Molkepulver in der menschlichen Ernährung stehen jedoch einige Probleme entgegen. Dazu zählen der hohe Salzgehalt, das niedrige Protein/Zucker-Verhältnis, die geringe Süßkraft der Laktose sowie die schlechte Wasserlöslichkeit von Laktose [28].

2.2.2.2 Fraktionierung von Molke

Um die Inhaltsstoffe der Molke nutzbar machen zu können, erfolgt oft eine Fraktionierung der Molke. Eingesetzte Verfahren sind im Einzelnen:

\textit{Entrahmung von Molke}

Bei einem Fettgehalt von über 0,1 Mass.-% kann eine Entrahmung wirtschaftlich sinnvoll sein. Die Entrahmung von Molke erfolgt mit Separatoren, die speziell für die Molkeentrahmung ausgelegt sind [23].

\textit{Abtrennung von Casein-Staub}

Da die Trennung von Käsebruch und Molke nicht immer vollständig erfolgt, befinden sich Casein-Partikel in der Molke (Casein-Staub). Die Gewinnung dieser Caseinfraktion kann mit Hydrozyklonen oder über Siebe erfolgen [23].

\textit{Herstellung von Molkekonzentraten und -pulver}

Gewinnung des Molkenproteins

Die Abtrennung der Molkeproteine kann thermisch erfolgen, indem mit hoher thermischer Belastung (121 °C, 83 min) die Proteinfraktion ausgefällt wird. Dadurch wird jedoch der ernährungsphysiologische Wert reduziert [28].

Bei moderaten Temperaturen kann die Proteinfraktion mittels Ultrafiltration und Diafiltration abgetrennt werden. Dabei entsteht ein Permeat mit hohem Laktosegehalt [28]. Dieses Permeat stellt ein Entsorgungsproblem für die Molkereiindustrie dar [29], während die Proteinfraktion neben vielen weiteren Anwendungen auch in der Käseherstellung mitverarbeitet werden kann [13].

Gewinnung von Laktose

Entsalzen der Molke

2.2.2.3 Fermentative Molkeverwertung

2.2.2.3.1 Methan-Fermentation

Mit unterschiedlichen Fermentertypen wurden CSB-Abbauleistungen von bis zu 30 g/(l·d) bei einem Abbaugrad von bis zu 95% erzielt [28]. Häufig werden jedoch nur deutlich geringere Leistungen erreicht, die meist im Bereich von 5 bis 14 g/(l·d) liegen [30]. Dabei kann aus 1 l Molke üblicher Zusammensetzung Gas mit einem Heizwert von 950 kJ gewonnen werden [13]. Häufig wird ein Upflow Anaerobic Sludge Blanket Reaktor (UASB-Reaktor) erfolgreich eingesetzt, bei dem die Bakterien als Pellets in einem Bett im unteren Teil des Reaktors vorliegen und das Substrat den Reaktor von unten nach oben durchströmt [30].

Vorteilhaft am Verfahren der Methan-Fermentation ist, dass das Produkt Biogas im Werk als Brennstoff genutzt werden kann. Allerdings muss die Wirtschaftlichkeit gegenüber anderen Energieträgern darstellbar sein [29].

2.2.2.3.2 Propionsäure-Fermentation

2.2.2.3.3 Laktat-Fermentation

Auf Grund hoher Abtrennkosten ist jedoch die fermentative Milchsäuregewinnung aus Molke gegenüber anderen Verfahren im Nachteil [29].

Wird die entstehende Milchsäure kontinuierlich mit Ammoniak neutralisiert, so kann das entstehende Ammoniumlaktat in der Tierernährung als N-Quelle eingesetzt werden [25].
2.2.2.3.4 Aerobe Molkeverarbeitung

Ziel der aeroben Molkeverarbeitung ist es, durch Fermentation Zellmasse zu bilden. Die Zellmasse kann durch Separatoren abgetrennt werden, die Abwasserbelastung wird dadurch deutlich reduziert. Außerdem ist der ernährungsphysiologische Wert der Zellmasse gegenüber der Ausgangssubstanz höher [28].

Im industriellen Maßstab haben sich jedoch Prozesse mit Hefen, die Laktose verwerten können, durchgesetzt, insbesondere der Bel-Prozess und der Vienna-Prozess. Beim Bel-Prozess wachsen die drei Hefen Kluyveromyces lactis, Kl. fragilis und Torulopsis bovina in einem kontinuierlichen Prozess auf Molkepermeat. Dabei werden etwa 50 % der Laktose als Zellmasse (bezogen auf Trockenmasse) gewonnen, die zu etwa 50 % aus Protein besteht [28]. Im Vienna-Prozess wird dagegen eine Monokultur eines Stammes von Candida intermedia eingesetzt [28].

Durch die aerobe Molkeverwertung kann der BSB₅ ähnlich wie bei der anaeroben Behandlung reduziert werden [28]. Allerdings ist der Markt für das Produkt begrenzt, da es in der menschliche Ernährung nur geringe Akzeptanz erfährt und die Kosten für den Einsatz in der Tierernährung hoch sind [29].

2.2.2.3.5 Ethanol-Fermentation

Beim Einsatz von Laktose verwertenden Hefen wie Kluyveromyces marxianus, Kl. lactis, Kl. fragilis und Candida pseudotropicalis ist eine Hydrolyse der Laktose vor der Fermentation nicht notwendig. Beim Einsatz dieser Organismen sind Ethanol-Ausbeuten von bis zu 0,5 g Ethanol pro g Laktose möglich [25, 26]. Jedoch sind die Wachstumsraten der Kulturen sowie die Ethanoltoleranz im Vergleich zu Saccharomyces cerevisiae gering. Eine vorherige Hydrolyse mittels β-Galaktosidase aus einem anderen Organismus wäre möglich [28].

Weltweit werden bereits mehrere Anlagen zur Ethanol-Fermentation betrieben. In Neuseeland wird ein Großteil der Molke über diesen Weg verwertet. Weiterhin existieren Anlagen in den USA, in Irland und Deutschland. Meistens wird Kl. fragilis eingesetzt, der im Batch-Verfahren 95 % der Laktose bei einer Ethanol-Ausbeute von 0,54 verwerten kann. Allerdings ist nur der Einsatz von
konzentrierter Molke wirtschaftlich sinnvoll, da ansonsten die Destillationskosten zu hoch wären [28]. Weiterhin ist der Einsatz dieses Verfahrens nur für große Anlagen wirtschaftlich sinnvoll [29].

2.2.2.3.6 Weitere fermentative Verfahren

Außer den bisher genannten Stoffen kann eine Vielzahl weiterer Substanzen mit fermentativen Verfahren aus Molke gewonnen werden. Diese haben jedoch bisher keine großtechnische industrielle Bedeutung gewonnen. Dazu zählen Verfahren zur Herstellung der Vitamine B\textsubscript{12}, B\textsubscript{2} und Riboflavin sowie Verfahren zur Produktion von Amino-Säuren, Glycerin, Aromastoffen (z.B. Diacetyl) oder Fruktose-Diphosphat [28].

Verschiedene organische Säuren lassen sich ebenfalls fermentativ aus Molke herstellen. Dazu zählen Milchsäure, Zitronensäure, Buttersäure und Essigsäure [28, 29].

Auch die Gewinnung von organischen Lösungsmitteln ist möglich. Neben der ABE-Fermentation, die ausführlich in Kapitel 2.3.5 behandelt wird, sowie den beschriebenen Ethanol-Fermentationen ist auch die Gewinnung von 2,3-Butandiol möglich [28].

Aber auch für die fermentative Herstellung von Polysacchariden wie Xanthan kann Molke als Grundstoff dienen so wie für die Herstellung von Enzymen (β-Galaktosidase) oder von Insektiziden (Endotoxin von Bacillus thuringiensis) [29].

2.2.3 Der Markt für Molke

Auch wird der Molkeaufkommen nicht statistisch erfasst. Dieser kann jedoch ausgehend von der produzierten Käsemenge und dem dafür bekannten sortenspezifischen Molkeanfall berechnet werden.

\textbf{Tabelle 2: Sortenspezifischer Molkeanfall [26]}

<table>
<thead>
<tr>
<th>Käsesorte</th>
<th>Spezifischer Molkeanfall [kg Molke/kg Käse]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frischkäse</td>
<td>4,0</td>
</tr>
<tr>
<td>Hartkäse</td>
<td>8,5 – 11,3</td>
</tr>
<tr>
<td>Schnittkäse</td>
<td>8,5 – 9,7</td>
</tr>
<tr>
<td>Weichkäse</td>
<td>7,5</td>
</tr>
<tr>
<td>Sauermilch / Kochkäse</td>
<td>8,0 – 9,0</td>
</tr>
<tr>
<td>Casein / Caseinat</td>
<td>28,0 – 30,0</td>
</tr>
</tbody>
</table>

Das Molkeaufkommen in Deutschland kann entsprechend ausgehend von der produzierten Käsemenge in Übereinstimmung mit anderen Autoren (zusammengefasst in [33]) auf etwa 10 bis
12 Mio. t/a geschätzt werden. Etwa 65 - 70 % der zur Verfügung stehenden Molke werden in Deutschland in der Tierernährung eingesetzt [33, 34].

Die Konzentrierung der Milchverarbeitung auf wenige Standorte ist nicht nur in Deutschland und Europa zu beobachten, sondern ist ein weltweites Phänomen, beispielsweise auch in den USA [37]. Der in Deutschland vornehmlich genutzte Weg der Molkeverwertung in der Tierernährung wird zukünftig auf Grund der Transportkosten unwirtschaftlicher [27]. In Zukunft werden demnach vermehrt große Molkemengen für alternative Verwertungswege zur Verfügung stehen.
2.3 Stand von Wissenschaft und Technik bei der Aceton-Butanol-Ethanol-Fermentation

Es ist eine Reihe von Mikroorganismen bekannt, zu deren Endprodukten der Stoffwechselätigkeit organische Lösungsmittel zählen. Neben der Ethanol-Fermentation mit Hefen wurde in größerem industriellen Umfang bisher lediglich die ABE-Fermentation mit dem anaeroben Bakterium *Clostridium* zur Gewinnung von Aceton und Butanol durchgeführt [38].

2.3.1 Geschichte der Aceton-Butanol-Ethanol Fermentation

Viele der Anlagen wurden über den zweiten Weltkrieg hinaus betrieben [10]. Im Jahr 1945 wurden 66 % des in den USA produzierten Butanols und 10 % des Acetons mittels Fermentation gewonnen [38].

Während in China in den 1990er Jahren noch industriell produziert wurde, wurden in vielen Forschungsgruppen in anderen Ländern Verfahren entwickelt, um der ABE-Fermentation erneut zum Durchbruch zu verhelfen.

2.3.2 Lösungsmittel bildende Mikroorganismen

Bei den meisten zur ABE-Fermentation genutzten und untersuchten Bakterien handelt es sich um Arten der Gattung Clostridium. Das sind obligat anaerobe, stäbchenförmige, Sporen bildende Bakterien. Die Länge der lebenden Zelle liegt bei etwa 4,0 µm, die Spore, die sich am Ende oder Nahe des Endes einer Zelle bildet, ist etwa 1,5 µm groß [38].

In der äußerst heterogenen Gattung der Clostridien sind über 150 Arten beschrieben, jedoch eignen sich nicht alle Arten zur ABE-Fermentation [38]. Mit dem Wachstum der ABE-Industrie in den 1930er Jahren wurden mehrere Clostridien-Arten isoliert und patentiert. Die Nomenklatur erfolgte damals willkürlich und diente vornehmlich dem Zweck, Patente für diese Organismen zu erlangen [44].

In den folgenden Jahrzehnten erfolgten mehrere taxonomische Studien, die zu einer neuen Einstufung der Arten zu C. acetobutylicum, C. beijerinckii (früher C. butylicum) und C. saccharoperbutylacetonicum führten.

Auch die einzelnen Stämme einer Art unterscheiden sich deutlich in den Fähigkeiten zur Lösungsmittelbildung, zur Verwertung unterschiedlicher Substrate und in der Anfälligkeit der Kultur gegenüber Infektionen und variierenden Prozessparametern im industriellen Prozess [38].

Tabelle 3 und Tabelle 4 geben einen Überblick über Stämme Lösungsmittel bildender Clostridien aus bedeutenden Stamm-Sammlungen.
Tabelle 3: Lösungsmittel produzierende Clostridienstämme (Teil 1)

<table>
<thead>
<tr>
<th>ATCC</th>
<th>DSMZ</th>
<th>NCIMB</th>
<th>NRRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. acetobutylicum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>824</td>
<td>792</td>
<td>13357</td>
<td>B-527 Typ Stamm, ehemals: Granulobacter pectinovorum</td>
</tr>
<tr>
<td>4259</td>
<td>1731</td>
<td>619</td>
<td>B-530</td>
</tr>
<tr>
<td>1732</td>
<td>2951</td>
<td>6441</td>
<td></td>
</tr>
<tr>
<td>1733</td>
<td>6442</td>
<td>6443</td>
<td></td>
</tr>
<tr>
<td>10132</td>
<td>1737</td>
<td>B-594</td>
<td>ehemals: Clostridium beijerinckii</td>
</tr>
<tr>
<td>3625</td>
<td>1737</td>
<td>B-529</td>
<td>ehemals: Clostridium beijerinckii</td>
</tr>
<tr>
<td>39058</td>
<td>6228</td>
<td></td>
<td>ehemals: Clostridium beijerinckii</td>
</tr>
<tr>
<td>39236</td>
<td>6228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4259</td>
<td></td>
<td>B-530</td>
<td>ehemals: Bacillus acetobutylicum</td>
</tr>
<tr>
<td>43084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8529</td>
<td>1738</td>
<td></td>
<td></td>
</tr>
<tr>
<td>824</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>824D-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35702</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4685</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-528</td>
<td></td>
<td>ehemals: Clostridium saccharo-acetobutylicum</td>
<td></td>
</tr>
<tr>
<td>B-591</td>
<td></td>
<td>ehemals: Clostridium butylicus</td>
<td></td>
</tr>
<tr>
<td>B-596</td>
<td></td>
<td>ehemals: Clostridium amylobacter</td>
<td></td>
</tr>
<tr>
<td>B-643</td>
<td></td>
<td>aus kommerzieller ABE-Fermentation der NCP Südafrika, von Keis et al. (2001) als C. saccharobutylicum eingeordnet</td>
<td></td>
</tr>
<tr>
<td>B-3179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-23492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-23493</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weitere Stämme, darunter ehemalige Produktions-Stämme, werden am Department of Microbiology der University of Cape Town, Südafrika, und am Department of Microbiology an der University of Otago in Neuseeland vorgehalten. Diese Stämme stammen aus originalen Sporen-Kulturen der industriellen Anlage der National Chemical Products Ltd. (NCP) in Germiston, Südafrika, und waren bisher als *C. acetobutylicum* eingeordnet worden. Sie sind mittlerweile als unterschiedliche Stämme von *C. saccharobutylicum* und *C. beijerinckii* sowie als Mischkulturen eingestuft worden. Dabei konnten die Stämme von *C. saccharobutylicum* in zwei Untergruppen eingeteilt werden, die sich bezüglich ihres DNA-Fingerabdrucks, ihrer Rifampicin- und Phagensensitivität sowie ihrer Fähigkeit zur Hydrolyse von Gelatine unterscheiden [45, 46]. Im Jahr 2000 wurden weitere 58 Sporen-Kulturen bei NCP entdeckt, die ebenfalls der Kulturensammlung an der University of Otago hinzugefügt wurden [46].
2.3.3 Stoffwechsel von Lösungsmittel bildenden Clostridien

Die Einflussfaktoren auf den Wechsel von Säurenbildung auf Lösungsmittelbildung sind vielfältig. Es wurden wesentliche Faktoren identifiziert, die jedoch immer abhängig von Stamm und eingesetztem Substrat sind und sich häufig gegenseitig beeinflussen. So kommen viele Studien, die den Wechsel zur Lösungsmittelbildung erklären wollen, zu widersprüchlichen Ergebnissen. Unbestritten ist der Einfluss folgender Faktoren:

2.3.4 Technik und Technologie der industriellen Aceton-Butanol-Ethanol-Fermentation

Da es sich bei Clostridien um obligat anaerobe Bakterien handelt, wurde vor der Fermentation der gelöste Sauerstoff aus dem Medium entfernt. Dies erfolgte durch Spülen der Maische mit CO₂, bis ein Redoxpotenzial von unter –250 mV erreicht wurde [16, 46].

Eine Methode zur Stammmhaltung war die Lagerung der Sporen in einer Mischung aus getrockneter Erde, Sand und Kalk [52]. Die Keimung der Sporen wurde durch eine Hitzebehandlung von 65 -
100 °C über bis zu 3 Minuten ausgelöst. Dadurch wurden gleichzeitig Sporen von Bakterien selektiert, die sich besonders zur Fermentation eignen [53, 54].

Die Fermentation erfolgte dann nach Heranziehen der Kultur im Labor und in kleineren Vorfermentern in großen Fermentern (200 - 800 m³) über 40 – 60 h [16, 40]. Das Volumen des Inokulums betrug 3 bis 5 % des Fermentervolumens [38]. Die Endkonzentrationen an Lösungsmitteln lagen zwischen 12 und 20 g/l. Das Verhältnis Butanol zu Aceton zu Ethanol lag dabei meist bei 6:3:1. Die Lösungsmittelausbeute betrug zwischen 0,29 und 0,33 [16, 40]. Die dimensionslose Lösungsmittelausbeute ist dabei definiert als das Verhältnis der Masse der gebildeten Lösungsmittel zu der Masse der eingesetzten Kohlenhydrate. Diese Definition gilt auch für diese Arbeit. Die Fermentationstemperatur lag zwischen 30 und 37 °C [41, 50] und der pH-Wert varierte zu Beginn der Fermentation je nach Substrat zwischen 5,5 und 6,5 [38]. Zum Ende der Fermentation lag der pH-Wert zwischen 4,2 und 4,4 [52].

Die Lösungsmittel wurden meist mittels kontinuierlicher Rektifikationskolonnen abgetrennt. Abhängig von der eingesetzten Kolonne beinhaltete das Destillat 20 - 60 Mass.-% Lösungsmittel [38, 46]. Die weitere Trennung erfolgte bei NCP Ltd. mittels Batch-Rektifikation [46]. In der zurückbleibenden Schlempe war das Vitamin Riboflavin in so hohen Konzentrationen vorhanden, dass häufig noch eine wirtschaftlich sinnvolle Gewinnung möglich war [38, 46].

Ein Teil der Schlempe wurde zur Einmischung zurückgeführt. Eine zu hohe Rückführungsrate führte jedoch oft zu einer Anreicherung von nicht fermentierbaren Stoffen [38]. Die Rückführung der Schlempe verbesserte die Fermentation und verringerte das Schaumen in Fermentern [52].

Probleme bei der industriellen ABE-Fermentation

Zum Anderen waren bei der ABE-Fermentation die Infektionen mit Bakteriophagen problematisch, die zu einer verminderten Lösungsmittelausbeute bis hin zu einem Zusammenbruch der Fermentation führen konnten. Dokumentiert sind diese Infektionen in der Anlage der NCP Ltd. in Germiston sowie in weiteren Anlagen in USA und Puerto Rico. Den Infektionen konnte zum Einen erfolgreich mit einem Wechsel der Produktionsstämmke begegnet werden. Zum Anderen konnte die Phageninfektion
Grundlagen

auch mittels Desinfektion und einer verbesserten Arbeitshygiene zurückgedrängt werden, soweit noch unbefallene Kulturen vorhanden waren [46, 56].

Weiterhin ist problematisch, dass bei der ABE-Fermentation große Mengen an Reststoffen und vor allem Abwasser anfallen, die aufwändig aufbereitet werden müssen [41]. Ein Verwertungskonzept für die Reststoffe ist daher notwendig.

Das größte Problem der ABE-Fermentation ist derzeit die nicht darstellbare Wirtschaftlichkeit. Dazu tragen wesentlich hohe Substratkosten in Kombination mit geringen Ausbeuten bei [16]. Die Substratkosten werden auf 75 % der Gesamtkosten geschätzt [43]. Bezogen auf einen C-Quellen-Äquivalenzpreis, der sich am Rohölpreis orientiert, ist jedoch selbst bei optimaler Ausbeute von 42 % die ABE-Fermentation wirtschaftlich nicht sinnvoll [6]. Andere Untersuchungen kommen zu dem Schluss, dass die Wirtschaftlichkeit erreicht wird, wenn der Energiebedarf der Anlagen durch die erzeugten Nebenprodukte weitgehend gedeckt werden kann [57]. Eine Studie, bei der Molkepermeat als Substrat angesetzt wurde, kommt zu dem Ergebnis, dass das Produkt gegenüber fossilen Kraftstoffen konkurrenzfähig wäre [58]. Dabei wird allerdings davon ausgegangen, dass Verfahren wie Immobilisation und kontinuierliche Produktabtrennung einsetzbar sind, die bisher mit Clostridien großtechnisch nicht beherrscht werden.

Der Einsatz kostengünstiger Substrate bei hohen Ausbeuten in Kombination mit einem Konzept zur Reststoffverwertung kann daher zum Erreichen der Wirtschaftlichkeit beitragen.

2.3.5 ABE-Fermentation von Molke

Der Einsatz von Molke als Substrat für ABE-Fermentationen wird bereits seit mehreren Jahrzehnten untersucht. Um die wissenschaftliche Grundlage für eine Verfahrensentwicklung zu schaffen, wurden bereits wichtige Einflussfaktoren auf die Lösungsmittelbildung untersucht.

2.3.5.1 Einfluss des pH-Wertes

Externer pH-Wert

In einer weiteren Studie hatte eine Variation des pH-Wertes zwischen 4,7 und 5,6 bei pH-kontrollierten Kulturen bei der ABE-Fermentation von Molke mit \textit{C. acetobutylicum} keinen Einfluss auf Fermentationszeit, Produktbildung und Ausbeute [60].

Ebenso konnte kein Zusammenhang zwischen den Konzentrationen an undissoziierten Säuren und dem Umschlag zur Solventogenese bei \textit{C. acetobutylicum} festgestellt werden [61, 62]. Für \textit{C. beijerinckii} dagegen war eine pH-Kontrolle bei der Fermentation von Molke zwingend notwendig, um Lösungsmittel gewinnen zu können [63].

\textit{Interner pH-Wert}

Wurde der pH-Wert während der Wachstumsphase einer Kultur von \textit{C. acetobutylicum} konstant gehalten, so setzte nach Beendigung der pH-Regulierung am Ende der Wachstumsphase bei sinkendem pH-Wert die Solventogenese ein, der pH-Wert begann wieder zu steigen. Falls der externe pH-Wert sehr schnell während der Wachstumsphase absank, kam es nicht zum Shift zur Solventogenese, und die Zellen begannen anschließend zu lysieren. Die Differenz zwischen internem und externem pH-Wert betrug dabei immer 1,1 +/- 0,2. \textit{C. acetobutylicum} konnte also seinen internen pH-Wert nicht konstant halten. Dies bedeutet, dass sich die gebildeten Säuren, die in ihrer undissoziierten Form vorliegen und so die Cytoplasmamembran permeieren können, in der Zelle anreicherten. In Folge reicherten sich auch Acetyl-CoA und Butyryl-CoA an, was Einfluss auf den Shift zur Lösungsmittelbildung haben könnte [60].

\subsection{2.3.5.2 Einfluss von Butanol}

Butanol hemmte auch in Laktose haltigen Substraten irreversibel das Wachstum einer aktiven, wachsenden Kultur bei Zugabe von 20 g/l innerhalb weniger Minuten [60].

\subsection{2.3.5.3 Einfluss der im Substrat vorhandenen Kohlenhydrate}

Der Anfangsgehalt an Laktose hat einen wesentlichen Einfluss auf die Fermentation. Übereinstimmend haben Autoren festgestellt, dass bei vielen Stämmen mit steigendem Laktose-Anfangsgehalt die Säurenbildung verringert und die Lösungsmittelbildung verstärkt wurde [61, 62, 64]. Bei manchen Stämmen, z.B. \textit{C. acetobutylicum} NRRL B 3179, wurde jedoch auch das Gegenteil festgestellt [64].

Oft existierte auch ein Optimum in Bezug auf die Lösungsmittelkonzentration, das abhängig vom Laktosegehalt war. Beispielsweise ging die Lösungsmittel-Endkonzentration ab 70 g/l Laktose bei Stamm ATCC 824 wieder deutlich zurück [62]. Beim gleichen Stamm stellte dagegen Gottwald erst ab einer Zuckerkonzentration von mehr als 100 g/l eine Wachstum hemmende Wirkung fest. Dies führte bei einer Zucker-Konzentration von 200 g/l zu einer um 20 % verringerten Wachstumsrate. Jedoch konnten die Zucker schon bei Konzentrationen über 60 g/l nicht mehr vollständig verwertet werden [60].

Bei der Verwertung präferierten alle untersuchten Stämme Glukose vor Galaktose in synthetischen und semi-synthetischen Medien. In diesen Medien zeigte sich ein schnellerer und weitergehender Abbau der Monosaccharide als bei Vorliegen von Laktose [65, 66]. Beispielsweise war die Lösungsmittelproduktivität von \textit{C. beijerinckii} LMD 27.6 bei der Verwertung von Laktose gegenüber
Glukose um den Faktor 3 geringer und lag maximal bei 0,05 g/(l·d) [66]. Dies wurde auch für *C. acetobutylcium* P262 gefunden. Bei diesem Stamm lag die Produktivität für Laktose bei 0,1 g/(l·d) und für Glukose um den Faktor 2 höher [65]. Nicht nur die Lösungsmittelbildung, sondern auch das Zellwachstum war bei Galaktose als einzig vorhandenem Zucker geringer als bei Laktose oder Glukose [60]. Die Ursachen für die geringere Verwertung von Galaktose sind noch nicht geklärt [49].

Eine Mischung von Glukose und Galaktose in synthetischem Medium wurde von *C. saccharobutylicum* DSMZ 13864 schneller verwertet als die Reinsubstanzen. Daher schien eine vorhergehende Hydrolyse der Laktose sinnvoll zu sein. Wurde jedoch Laktose in Molke hydrolysiert, so zeigte sich das Gegenteil. Die hydrolysierten Kohlenhydrate führten zu einer verringerten Ausbeute und annähernd einer 50 % geringeren Produktivität [65]. Auch bei *C. acetobutyllicum* DSMZ 792 ergaben sich geringere Lösungsmittelausbeuten bei längeren Verweilzeiten als bei nicht hydrolysiertem Permeat [60, 65].

Bei der Fermentation von Molke im Vergleich zur Stärkefermentation ergibt sich häufig ein ABE-Verhältnis zu Gunsten des Butanols. In mehreren Versuchsreihen mit synthetischen und semisynthetischen Medien konnte gezeigt werden, dass nicht die Laktose dafür Auslöser ist [67].

2.3.5.4 Einfluss der Temperatur

Für *C. beijerinckii* LMD 27.6 wurde bei der Fermentation von Laktose bei 30 °C eine deutlich höhere Lösungsmittelbildung als bei 37 °C gefunden. Um 5 g/l Butanol zu erreichen war dabei der Einsatz von 13 g/l Hefeextrakt notwendig [66].

In einer Untersuchung der Temperaturabhängigkeit der Lösungsmittelbildung von *C. acetobutyllicum* ATCC 4259 und NRRL B-596 sowie *C. butyricum* NRRL B-592 zeigte sich, dass die optimalen Temperaturen der ABE-Fermentationen mit Molke von den eingesetzten Stämmen abhängig sind. Untersucht wurden Fermentationen bei 30 und 37 °C [68].

Bestätigt wurde der große Einfluss der Temperatur auch bei der Untersuchung der Stämme *C. acetobutylicum* ATCC 4259 und *C. butyricum* NRRL B-592 [69].

2.3.5.5 Einfluss von Spurenelementen und Nährstoffen

Auf das Zellwachstum sowie die Lösungsmittelproduktion können weiterhin Spurenelemente einen erheblichen Einfluss haben. Die Ionen K⁺, Ca²⁺, Mg²⁺ und Na⁺ sind in Molke in großer Menge vorhanden. Diese Substanzen haben keinen weitreichenden Einfluss auf die Lösungsmittelproduktion von *C. acetobutyllicum* [60].

Kalium hat zwar einen positiven Effekt auf die Säurenbildung, ist jedoch selbst nicht Teil der Enzyme zur Lösungsmittelbildung. Außerdem konnte bereits gezeigt werden, dass eine Limitierung von Kalium keinen Einfluss auf die Solventogenese hat [60, 67].
Magnesium zeigte ebenfalls keinen positiven Effekt auf die Lösungsmittelbildung. Dies wurde in einer Phosphat limitierten Kultur festgestellt [60].

Durch Zugabe von Mangan wurde die Acetonbildung von C. acetobutylicum kaum beeinflusst. Bei Zugabe von mehr als 2 mM/l wurde eine leichte Hemmung der Butanolbildung zu Gunsten der Buttersäurebildung festgestellt [60]. Auch eine Limitierung von Mn$^{2+}$ zeigte keine signifikanten Auswirkungen [67]. Molybdän dagegen wirkte bereits bei der Zugabe von 0,5 mM/l zu Molke hemmend auf das Wachstum von C. acetobutylicum [60]. Der Einfluss von Kalzium auf die Fermentation wurde bei C. beijerinckii LMD 27.6 untersucht. Dabei wurde festgestellt, dass bis 5 g/l CaCl$_2$ keine Hemmung auftrat, jedoch durch die Zugabe auch keine Verbesserung feststellbar war [71].

Die Zugabe von Laktat zu einem synthetischen Medium führte bei C. acetobutylicum zu einer Verschiebung des Aceton-Butanol-Verhältnisses hin zum Butanol. Während der Zucker-Verbrauch absank, konnte jedoch ein Teil des Laktats zu Butanol verstoffwechselt werden, so dass die absolute Lösungsmittelbildung vergleichbar blieb [60]. Die Verwertung von Laktat konnte bei den Stämmen C. acetobutylicum DSM 792, 1731 und 1732 auch in Molke nachgewiesen werden [67].

Citrat ist eine weitere organische Verbindung, die in geringen Konzentrationen in Molke gefunden werden kann. Durch Entfernung von Citrat aus Molke konnte die Aceton-Bildung bei Fermentation mit C. acetobutylicum gesteigert werden, und das ABE-Verhältnis verschob sich zu Gunsten des Acetons. In hohen Konzentrationen von über 2,8 g/l hemmte Citrat die Lösungsmittelbildung vollständig. Als mögliche Ursache wurde die Funktion von Citrat als Komplexbildner gesehen, wodurch der Molke für die Lösungsmittelbildung notwendige Metallionen entzogen werden können. Citrat konnte von C. acetobutylicum nicht verstoffwechselt werden [60, 67].

Ebenfalls wurde der Einfluss von Molkenprotein auf die Lösungsmittelausbeute für mehrere Stämme von C. acetobutylicum untersucht. Dabei konnte kein Einfluss festgestellt werden, wenn das Molkenprotein durch thermisches Fällen entfernt wurde [67].

Zugabe von komplexen Nährstoffen

Häufig wurde Hefeextrakt eingesetzt, um die Organismen ausreichend mit Nährstoffen zu versorgen. Durch Zugabe von 5 g/l Hefeextrakt konnte beispielsweise die Ausbeute beim Stamm NCIB 2951 auf Caseinmolke von 13 g/l Butanol auf 15 g/l Butanol gesteigert werden und die Fermentationszeit auf 5 Tage verkürzt werden [72]. Jedoch wurde auch berichtet, dass es bei höherer Fermentationstemperatur zu einer Hemmung durch die Zugabe von Hefeextrakt beim Stamm C. butyricum NRRL B-596 kam [68]. Die Ursachen für dafür konnten jedoch nicht ermittelt werden.

2.3.5.6 Einfluss der Verfahrenstechnik

Inokulum

Die Einflüsse der Hitzebehandlung bei der Bereitung des Inokulums und von wiederholter Passagerung der Kulturen wurden auf dem Substrat Caseinmolke untersucht. Der verwendete Stamm NRRL B-592 zeigte bei den ersten 3 Passagerungen eine Verbesserung der Lösungsmittelbildung, jedoch bereits nach 6 Passagerungen kein Wachstum und keine Produktbildung mehr. Auf Grund dieser Untersuchung gehen Gapes et al. davon aus, dass im Gegensatz zur Glukosefermentation verschiedene Stämme sehr unterschiedlich auf Passagerierung und Hitzebehandlung beim Substrat Molke reagieren können [54].

Einsatz von Mischkulturen

Durch den Einsatz einer Mischkultur von C. beijerinckii und B. cereus konnten Butanol-Konzentrationen bis 7 g/l und damit höhere Lösungsmittelausbeuten als durch den Einsatz von Reinkulturen erzielt werden. Die Ursachen dafür konnten jedoch nicht geklärt werden [63].

Substratbehandlung

Wesentlichen Einfluss auf die Fermentation kann die Vorbehandlung des Substrates haben. Es konnte gezeigt werden, dass durch Autoklavieren von Molke die Lösungsmittelausbeute gegenüber der unbehandelten Molke verdreifacht werden konnte [73]. Dabei kam es bei der unbehandelten Molke zu einem raschen pH-Sturz, der Ursache für die geringe Lösungsmittelbildung sein könnte. Die Ursachen für dieses Verhalten wurden nicht weiter untersucht, insbesondere wurde nicht untersucht, ob eine Infektion Ursache war.

Einfluss der Rührgeschwindigkeit

Entprechend der Ergebnisse bei anderen Substraten wurde auch beim Einsatz von Molke und Molkepermeaten festgestellt, dass durch Rühren in den Reaktoren die Lösungsmittelausbeuten verringert wurden [62, 72, 73].
Nicht nur die Lösungsmittelausbeute, sondern auch die absolute Lösungsmittelkonzentration war bei ungerührten Fermentationsgefäßen größer, jedoch stieg dabei auch die Fermentationsdauer an. Das Absetzen von Zellen während der Fermentation stellte kein Problem dar, weil durch die Gasproduktion für ausreichend Durchmischung gesorgt wurde [62]. Beispielsweise verringerte sich bei C. acetobutylicum DSMZ 792 die Endkonzentration an Gesamtlösungsmitteln im gerührten Fermenter (100 U/min) um 43 % [73].

Einsatz immobilisierter Zellen

Auch der Einsatz von kontinuierlichen Verfahren mit immobilisierten Zellen des Stammes LMD 27.6 wurde untersucht. Bei genau definierten Versuchsbedingungen konnten abhängig von Temperatur und Verdünnungsrate hohe Reaktorproduktivitäten von bis zu 1,0 g/(l·h) erreicht werden. Allerdings war die absolute Lösungsmittelkonzentration mit 2 g/l Butanol sehr gering [71].

Einsatz kontinuierlicher Produktabtrennung

Gas-Stripping ist eine Möglichkeit der kontinuierlichen Produktabtrennung. Im Batch-Versuch konnte dadurch bei C. acetobutylicum P262 die Produktivität um 50 % gesteigert werden. Notwendig waren dafür ein Gasdurchsatz (CO₂) von 2,7 l/(l·min) sowie eine Kältefalle bei −60 °C. Durch verstärkte Säurebildung sank allerdings die Lösungsmittelausbeute von 0,39 auf 0,27 [74]. Durch kontinuierliche Lösungsmittelabtrennung mittels Membranen konnte mit C. acetobutylicum P262 auch konzentriertes Molkepermeat verwertet werden. Dadurch wurden Produktivitäten von bis zu 0,22 g/(l·h) erreicht. Allerdings konnte eine vollständige Laktoseverwertung nicht erzielt werden [75].

2.3.5.7 Nebenprodukte der Aceton-Butanol-Ethanol-Fermentation

2.3.5.8 Übersicht über bisher untersuchte Stämme

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. beijerincki / butylicum</td>
<td>LMD 27.6 (Universität Delft)</td>
<td>Molkepermeat + HE (13 g/l)</td>
<td>(6,5)</td>
<td>30</td>
<td>1:2,3</td>
<td>2,1</td>
<td>3,0</td>
<td>0,24</td>
<td>6</td>
<td>0,05</td>
<td>[66]</td>
</tr>
<tr>
<td></td>
<td>DSMZ 6422</td>
<td>Molke</td>
<td>30</td>
<td>1:2,3</td>
<td>2,1</td>
<td>3,0</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:3,5</td>
<td>1,4</td>
<td>1,8</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:3,5</td>
<td>1,4</td>
<td>1,8</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:3,5</td>
<td>1,4</td>
<td>1,8</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>30</td>
<td>1:3,2</td>
<td>5,5</td>
<td>7,2</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:3,5</td>
<td>4,5</td>
<td>5,8</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
<td>[68]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + Malzkeime</td>
<td>6,8 (6,2)</td>
<td>30</td>
<td>6,4</td>
<td>7,5</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + Malzkeime</td>
<td>6,8 (6,2)</td>
<td>37</td>
<td>1,5</td>
<td>1,5</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + Corn Steep</td>
<td>6,8 (6,2)</td>
<td>30</td>
<td>4,5</td>
<td>5,3</td>
<td>0,25</td>
<td></td>
<td></td>
<td></td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + Corn Steep</td>
<td>6,8 (6,2)</td>
<td>37</td>
<td>5,9</td>
<td>7,7</td>
<td>0,31</td>
<td></td>
<td></td>
<td></td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caseinmolkepermeat</td>
<td>30</td>
<td>1:4:0,2</td>
<td>8,6</td>
<td>11,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[70]</td>
</tr>
<tr>
<td>C. saccharobutylicum</td>
<td>DSMZ 13864 (P262)</td>
<td>Molke</td>
<td>37</td>
<td>1:2,8</td>
<td>7</td>
<td>9,5</td>
<td>0,42</td>
<td>2</td>
<td>0,24</td>
<td>[65]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caseinmolkepermeat + HE (5g/l)</td>
<td>30</td>
<td>1:2,8</td>
<td>7</td>
<td>9,5</td>
<td>0,42</td>
<td>2</td>
<td>0,24</td>
<td>[65]</td>
<td></td>
</tr>
<tr>
<td>C. butyricum</td>
<td>DSMZ 10702</td>
<td>Molke</td>
<td>37</td>
<td>1:2,8</td>
<td>7</td>
<td>9,5</td>
<td>0,42</td>
<td>2</td>
<td>0,24</td>
<td>[65]</td>
<td></td>
</tr>
<tr>
<td>C. thermobutylicum</td>
<td>DSMZ 4928</td>
<td>Molke</td>
<td>37</td>
<td>1:2,8</td>
<td>7</td>
<td>9,5</td>
<td>0,42</td>
<td>2</td>
<td>0,24</td>
<td>[65]</td>
<td></td>
</tr>
</tbody>
</table>

C. thermobutylicum: Kein Wachstum nachweisbar

C. butyricum: Wachstum, nur Säurebildung

C. saccharobutylicum: Wachstum, Spuren von Butanol

Lit.: [65, 66, 68, 70, 78, 79]
Tabelle 6: Untersuchungen zur Fermentation von Molke im Batch-Verfahren (Teil II)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C. acetobutylicum</td>
<td>DSMZ 792</td>
<td>Molke, Protein entfernt</td>
<td>7,0 (7,0)</td>
<td>37</td>
<td>1:124:24</td>
<td>8,7</td>
<td>10,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sauermolke</td>
<td>6,0 (5,8)</td>
<td>37</td>
<td>1:13:1:4,4</td>
<td>6,5</td>
<td>9,2</td>
<td>0,23</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caseinmolkepermeat + HE</td>
<td>30</td>
<td>1:4:0</td>
<td>3,1</td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caseinmolkepermeat + HE</td>
<td>37</td>
<td>1:4:0</td>
<td>3,5</td>
<td>4,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke</td>
<td>37</td>
<td>1:100</td>
<td>8,6</td>
<td>8,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DSMZ 1731</td>
<td>Molke</td>
<td>30</td>
<td>1:5,2</td>
<td>2,1</td>
<td>2,6</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke</td>
<td>37</td>
<td>1:12,4</td>
<td>6,2</td>
<td>6,7</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>30</td>
<td>1:3,4</td>
<td>2,2</td>
<td>2,9</td>
<td>0,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:4,8</td>
<td>7,8</td>
<td>9,4</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molkepulver + Malzkeime</td>
<td>6,8 (6,2)</td>
<td>30</td>
<td>1,5</td>
<td>1,9</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molkepulver + Malzkeime</td>
<td>6,8 (6,2)</td>
<td>37</td>
<td>5,6</td>
<td>7,2</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molkepulver + Corn Steep</td>
<td>6,8 (6,2)</td>
<td>30</td>
<td>2,2</td>
<td>2,7</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molkepulver + Corn Steep</td>
<td>6,8 (6,2)</td>
<td>37</td>
<td>4,5</td>
<td>6,1</td>
<td>0,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRRL B-596</td>
<td>Molke</td>
<td>30</td>
<td>1:2,8</td>
<td>2,8</td>
<td>3,8</td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke</td>
<td>37</td>
<td>1:3,8</td>
<td>3,8</td>
<td>4,8</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>30</td>
<td>1:3,3</td>
<td>6,0</td>
<td>7,8</td>
<td>0,35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Molke + HE</td>
<td>37</td>
<td>1:3,5</td>
<td>1,4</td>
<td>1,8</td>
<td>0,20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sauermolkepermeat</td>
<td>(6,1)</td>
<td>35</td>
<td>1:3,2</td>
<td>8,7</td>
<td>11,4</td>
<td>0,28</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caseinmolkepermeat + HE</td>
<td>5,0</td>
<td>1:3,8:0,12</td>
<td>6,6</td>
<td>8,5</td>
<td>0,41</td>
<td>2,5</td>
<td>0,21</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>DSMZ 1732</td>
<td>Caseinmolkepermeat + HE</td>
<td>6,5 (5,35)</td>
<td>30</td>
<td>1:15:1</td>
<td>15</td>
<td>17</td>
<td>0,29</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATCC 39058</td>
<td>Sauermolkepermeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. acetobutylicum: ATCC 39058 Sauermolkepermeat Schlechte Lösungsmittelbildung als DSMZ 13864
Problematisch ist bei vielen Untersuchungen, dass die Randbedingungen nicht genau beschrieben sind, obwohl diese einen wesentlichen Einfluss auf die Ergebnisse haben. Beispielsweise ist oft nicht beschrieben, welche Art von Molke eingesetzt wurde (z.B. bei den umfangreichen Ergebnissen aus [67]).

Insgesamt zeigt die Auswertung der bisherigen Arbeiten, dass Ergebnisse zum Einfluss einzelner Faktoren nicht von einem Stamm auf den anderen übertragen werden können.

Bei allen weiteren Untersuchungen wurden weder befriedigende Lösungsmittelabgaben und Fermentationszeiten noch ausreichend hohe Butanolkonzentrationen erzielt, die eine weitergehende Umsetzung in ein technisches Verfahren erlaubt hätten.

Ausgehend von diesen Ergebnissen zeichnet sich auch kein Stamm ab, der besonders für die Molke-Fermentation geeignet zu sein scheint.

Daher müssen im ersten Schritt zur Entwicklung eines Verfahrens geeignete Stämme identifiziert werden. Die Verfahrensbedingungen müssen dann in systematischen Versuchsreihen auf die ausgewählten Stämme angepasst werden.
3 Materialien und Methoden

3.1 Materialien

3.1.1 Chemikalien und Medienzusätze

Für die Herstellung der Medien und der Kalibrierlösungen sowie in der Analytik wurden die Chemikalien und Stoffe entsprechend Tabelle 7 verwendet.

Tabelle 7: Verwendete Chemikalien und Medienzusätze

<table>
<thead>
<tr>
<th>Chemikalientitel</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Butanol, zur Synthese, ≥ 99 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>3-Methylvaleriansäure, zur Synthese, > 98 %</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Aceton, p. a., ≥ 99,5 %</td>
<td>Fluka Chemie, Buchs, Schweiz</td>
</tr>
<tr>
<td>Biotin 99 %</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Buttersäure, zur Synthese, ≥ 99 %</td>
<td>Merck Schuchardt OHG, Hohenbrunn</td>
</tr>
<tr>
<td>D-(+)-Glukose, Sigma Cellculture</td>
<td>Sigma Chemical Co., St. Louis, USA</td>
</tr>
<tr>
<td>D-Tagatose 99 %</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Eisen(II)-sulfat-Heptahydrat, p. a.</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Epi-Laktose (4-O-beta-D-galactopyranosyl-D-mannose) 95 %</td>
<td>Sigma-Aldrich Chemie GmbH, Steinheim</td>
</tr>
<tr>
<td>Essigsäure, p. a., 100 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>Ethanol, p. a., ≥ 99,8 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>FeSO₄ · 7 H₂O p. a.</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Fleischextrakt „For Laboratory Use“</td>
<td>Gibco Europe Limited, Paisley, Schottland</td>
</tr>
<tr>
<td>HCl-Maßlösungen, 0,1 M</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Hefeextrakt Bacto Yeast Extract, Autolysed Yeast Cells</td>
<td>Becton, Dickinson and Company, Sparks, USA</td>
</tr>
<tr>
<td>Helipur, Desinfektionsmittel</td>
<td>B. Braun Melsungen AG, Melsungen</td>
</tr>
<tr>
<td>Isobutanol, zur Synthese, > 99 %</td>
<td>Merck Schuchardt OHG, Hohenbrunn</td>
</tr>
<tr>
<td>K₂HPO₄ · 3 H₂O p. a.</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>KH₂PO₄ p. a.</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>konzentrierte H₂SO₄, 96 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>L-Cysteinhdrochlorid (Monohydrat), 99 %</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Laktose Monohydrat, 98 %</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Methanol, p. a., ≥ 99,9 %</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>Methylorange-Natriumsalz</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>MgSO₄ · 7 H₂O p. a.</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>MnSO₄ · H₂O p. a.</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>m-Phosphorsäure, p. a., stabil. d. Natriummetaphosphat</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Na₂SO₄ · 10 H₂O p. a.</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>NaOH-Maßlösungen, 0,1 M</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Natriumacetat-Trihydrat, p. a.</td>
<td>Merck KGaA, Darmstadt</td>
</tr>
<tr>
<td>Natriumchlorid „Baker Analyzed“, mind. 99,5 %</td>
<td>Mallinckrodt Baker Inc., Phillipsburg, USA</td>
</tr>
<tr>
<td>p-Aminobenzoesäure > 99 %</td>
<td>Sigma-Aldrich GmbH, München</td>
</tr>
<tr>
<td>Pepton, Bacto</td>
<td>BD, Franklin Lakes, USA</td>
</tr>
<tr>
<td>Tryptose „Difco“ Certified</td>
<td>Difco Laboratories, Detroit, Michigan, USA</td>
</tr>
</tbody>
</table>
3.1.2 Laborgeräte

In Tabelle 8 sind die verwendeten Laborgeräte zusammengestellt.

Tabelle 8: Verwendete Laborgeräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller/Lieferant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zentrifuge Sorvall RC 3b Plus (6 x 1,0 l)</td>
<td>Sorvall, Bad Homburg</td>
</tr>
<tr>
<td>Zentrifuge 5415C (18 x 1,5 ml)</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Wasserbad Typ 1041</td>
<td>Gesellschaft für Labortechnik mbH, Burgwedel</td>
</tr>
<tr>
<td>Brutschrank BD 240</td>
<td>Binder GmbH, Tuttlingen</td>
</tr>
<tr>
<td>CO₂-Brutschrank CB 210</td>
<td>Binder GmbH, Tuttlingen</td>
</tr>
<tr>
<td>Klein-Brutschrank CRT Incubat</td>
<td>Melag OHG, Berlin</td>
</tr>
<tr>
<td>Klein-Brutschrank Thermoexakt 55</td>
<td>Leo Kübler GmbH, Karlsruhe</td>
</tr>
<tr>
<td>Magnetrührer/Heizplatte IKAMAG RCT</td>
<td>IKA-Werke GmbH & Co. KG, Staufen</td>
</tr>
<tr>
<td>Waage Sartorius 1204 MP</td>
<td>Sartorius AG, Göttingen</td>
</tr>
<tr>
<td>Präzisionswaage Precisa 125 ASCS</td>
<td>Precisa Gravimetrics AG, Dietikon, Schweiz</td>
</tr>
<tr>
<td>Thermometer und Messdatenerfassung Almemo</td>
<td>Ahlborn Mess- und Regelungstechnik GmbH, Holzkirchen</td>
</tr>
</tbody>
</table>

3.1.3 Einweg-Artikel

Für die Probenaufbereitung sowie für sterile Arbeiten wurden die Artikel aus Tabelle 9 verwendet.

Tabelle 9: Verwendete Einwegartikel

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller/Lieferant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilfilter 0,22 µm</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>Gewinde-Mikrozentrifugenröhren Super-Clear 2,0 ml</td>
<td>VWR International GmbH, Darmstadt</td>
</tr>
<tr>
<td>Reaktionsgefäße (1,5 ml) aus Polypropylen, Plastibrand</td>
<td>Brand GmbH & Co. KG, Wertheim</td>
</tr>
<tr>
<td>Spritze 2,0 ml bis 50,0 ml (steril) Luer-Ansatz</td>
<td>Terumo Europe N. V., Leuven, Belgien</td>
</tr>
<tr>
<td>Kanüle Terumo 20 G x 1½" (0,9 x 40 mm) Luer-Lock</td>
<td>Terumo Europe N. V., Leuven, Belgien</td>
</tr>
<tr>
<td>Rotalibo 2,0 ml Probenflasche mit Bördelrand</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
</tbody>
</table>
3.1.4 Fermenter

3.1.4.1 ABE-Fermenter

Zur ABE-Fermentation wurden folgende Fermenter in Größen von 50,0 ml bis 2000 ml Nutzvolumen eingesetzt:

- 50,0 ml Nutzvolumen: 100 ml Serumflaschen (H. Brennstein Laborbedarf, Markt Schwaben), verschlossen mit Butyl-Septen für Hals N 20 und Alu-Bördelkappen Ø 20 mm (beides Ochs Laborbedarf, Bovenden/Lengeln)
- 200 ml bis 2000 ml Nutzvolumen, ohne Rührer: Duran Gewindeglasflaschen in verschiedenen Größen (Schott AG, Mainz)
- 1000 ml Nutzvolumen, mit Rührer: Glas-Reaktionsgefäß 2000 ml mit Planflansch (Schott AG, Mainz), Rührer RZR 2020 (Heidolph Elektro GmbH & Co. KG), Aluminiumdeckel (eigene Herstellung) mit Kabeldurchführungen PG 21 für Rührer-Welle, Gasleitungen und Sonden.

3.1.4.2 UASB-Reaktor

Ein Verfahrensfließbild des eingesetzten Upflow Anaerobic Sludge Blanket Reaktors (UASB-Reaktors) ist in Abbildung 2 zu sehen.

Abbildung 2: Verfahrensfließbild des Labor-UASB-Reaktors

Das Substrat wurde im doppelwandigen, gerührten Behälter (1) vorgelegt und durch die Umlaufkühlung (2) auf 5 °C temperiert, um mikrobiologisches Wachstum und daraus resultierenden CSB-Abbau im Vorlagebehälter zu vermeiden. Die Zuführung des Substrates zum Reaktor erfolgte mit der Dosier-Pumpe (3). Die manuelle Bedienung des Reaktors erfolgte über 3-Wege-Ventile (4).

Da der Reaktor weder über ein Einlaufsystem verfügte, welches das zugeführte Substrat über die Grundfläche verteile, noch Dreiphasenabscheider vorhanden waren, die auftreibende Pellets, Gas und Flüssigkeit trennten, wurde ein Rüttler (17) installiert. Dadurch konnte zum Einen die Ausbildung von Strömungskanälen verhindert werden, zum Anderen konnte das Aufschwimmen von Pellets minimiert werden, da sich bereits kleine Gasblasen einen Weg durch das Festbett bahnen konnten.

Technische Daten und Hersteller zu den einzelnen Bauteilen des Reaktors sind in Tabelle 10 zu finden.

Tabelle 10: Technische Daten der Bauteile des UASB-Reaktors

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bauteil</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glasbehälter mit Aluminiumdeckel, 15 l, beheizbar</td>
<td>KGW Isotherm GmbH, Karlsruhe</td>
</tr>
<tr>
<td>2</td>
<td>Kühlung FC 600</td>
<td>JULABO Labortechnik GmbH, Seelbach</td>
</tr>
<tr>
<td>3</td>
<td>Dosierpumpe Gamma 4</td>
<td>ProMinent Dosiertechnik GmbH, Heidelberg</td>
</tr>
<tr>
<td>4</td>
<td>Ventile, Rotalibo</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>5</td>
<td>Stickstoff-Versorgung N₂ 5,0</td>
<td>Linde AG – Linde Gas, Pullach</td>
</tr>
<tr>
<td>6</td>
<td>Filter FP-50</td>
<td>Schleicher und Schüll, Dassel</td>
</tr>
<tr>
<td>7</td>
<td>Glasbehälter TRGN 7029, 5,0 l, beheizbar</td>
<td>KGW Isotherm GmbH, Karlsruhe</td>
</tr>
<tr>
<td>8</td>
<td>Heizung Haake N3</td>
<td>Thermo Fisher Scientific Inc., Waltham, USA</td>
</tr>
<tr>
<td>9</td>
<td>pH-/Redox-Sonde</td>
<td>Almemo GmbH, Holzkirchen</td>
</tr>
<tr>
<td>10</td>
<td>Dosierpumpe Gamma 4</td>
<td>ProMinent Dosiertechnik GmbH, Heidelberg</td>
</tr>
<tr>
<td>11</td>
<td>Gasleitung, Rotalibo</td>
<td>Carl Roth GmbH + Co. KG, Karlsruhe</td>
</tr>
<tr>
<td>12</td>
<td>Gasabscheider</td>
<td>Entspricht ABE-Fermenter 1000 ml mit Rührer</td>
</tr>
<tr>
<td>13</td>
<td>Volumenzähler Milligascounter</td>
<td>Dr.-Ing. Ritter Apparatebau GmbH, Bochum</td>
</tr>
<tr>
<td>14</td>
<td>Glasbehälter TRGN 6931, 6,0 l</td>
<td>KGW Isotherm GmbH, Karlsruhe</td>
</tr>
<tr>
<td>15</td>
<td>Gasmaus</td>
<td>Schott AG, Mainz</td>
</tr>
<tr>
<td>16</td>
<td>Rüttler Vibrax-VXR, 100 U/min</td>
<td>IKA-Werke GmbH & Co. KG, Staufen</td>
</tr>
</tbody>
</table>
3.1.5 Mikroorganismen

Bei den zwölf eingesetzten Stämmen handelte es sich um Lösungsmittel bildende Clostridien aus der Stammsammlung von Herrn Dr. W. Schwarz und Herrn Dr. V. Zverlov (Lehrstuhl für Mikrobiologie, TU München). Die Stämme sind mit den Ziffern I bis XII bezeichnet.

Die Mikroorganismen-Pellets zur Inbetriebnahme des UASB-Reaktors stammten aus dem UASB-Reaktor der Privatbrauerei Erdinger Weißbräu Werner Brombach GmbH.

3.1.6 Molke und Molkepermeat

Die Substrate wurden in PET-Flaschen mit 0,7 l Inhalt bei –20 °C gelagert. Bei Bedarf wurden einzelne Behälter bei 4 °C aufgetaut.

3.2 Methoden

3.2.1 Medienbereitung

In Anlehnung an das Reinforced Clostridial Medium (RCM) wurden das Medium „RCM(L)“ sowie das Nährstoff-Konzentrat „RCM-Konz.“ eingesetzt (Tabelle 11). Als Sporulationsmedium wurde Monot®-Medium verwendet.

Material und Methoden

Tabelle 11: Zusammensetzung der Medien Monot⁺, RCM(L) und des Nährstoff-Konzentrates RCM-Konz.

<table>
<thead>
<tr>
<th></th>
<th>Monot⁺</th>
<th>RCM(L)</th>
<th>RCM-Konz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptose [g/l]</td>
<td>---</td>
<td>10,0</td>
<td>50,0</td>
</tr>
<tr>
<td>Fleisch Extrakt [g/l]</td>
<td>---</td>
<td>10,0</td>
<td>50,0</td>
</tr>
<tr>
<td>Hefe Extrakt [g/l]</td>
<td>10</td>
<td>3,0</td>
<td>15,0</td>
</tr>
<tr>
<td>Natriumchlorid [g/l]</td>
<td>---</td>
<td>5,0</td>
<td>25,0</td>
</tr>
<tr>
<td>Cysteinhydrochlorid [g/l]</td>
<td>---</td>
<td>0,5</td>
<td>2,5</td>
</tr>
<tr>
<td>Natriumacetat [g/l]</td>
<td>2,2</td>
<td>3,0</td>
<td>15,0</td>
</tr>
<tr>
<td>Laktose [g/l]</td>
<td>---</td>
<td>40,0</td>
<td>---</td>
</tr>
<tr>
<td>Glukose [g/l]</td>
<td>45</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pepton [g/l]</td>
<td>10</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KH₂PO₄ [g/l]</td>
<td>0,5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>K₂HPO₄ · 3 H₂O [g/l]</td>
<td>0,5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MgSO₄ · 7 H₂O [g/l]</td>
<td>0,2</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FeSO₄ · 7 H₂O [g/l]</td>
<td>0,1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MnSO₄ · H₂O [g/l]</td>
<td>0,1</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>p-Aminobenzoesäure [mg/l]</td>
<td>1,0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Biotin [mg/l]</td>
<td>0,01</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Soweit nicht anders beschrieben, wurden die Medien im Dampf-Autoklaven (Typ FVS 2, Tecnomara, Fernwald) für 20 min bei 121 °C in feuchter Hitze sterilisiert.

3.2.2 Sporengewinnung und Stammhaltung

Material und Methoden

Abbildung 3: Sporenbildung von Stamm VIII in Monot⁺-Medium nach 3 d

Um eine möglichst vollständige Sporulation aller Bakterien zu gewährleisten, wurden die Sporenkulturen 7 d inkubiert. Der Inhalt der vier Flaschen wurde gleichmäßig auf zwei sterile 1,0 l Zentrifugenbecher verteilt und 30 min bei 5000 U/min bei 10 °C zentrifugiert (Sorvall-Zentrifuge). Mit einer sterilen Glaspipette wurde der Überstand abgenommen und das Pellet mit sterilem Wasser (H₂O bidest.) dreimal gewaschen, um Medien- und Zellreste sowie Enzyme abzutrennen und somit die Haltbarkeit der Sporensuspension zu verbessern. Nach der letzten Waschung wurden die Pellets vereinigt in 200 ml steriles destilliertes Wasser suspendiert. So wurde gegenüber der Ausgangskultur eine 10-fach konzentrierte Sporensuspension erzeugt. Die Sporensuspensionen aus beiden Zentrifugenbechern wurden homogenisiert und in Eppendorf-Mikrotubes (mit Schraubdeckel und Silikondichtung) zu je 2 ml portioniert. Die Lagerung erfolgte bei 4 °C.

3.2.3 Kultivierung

Das Animpfen der Medien sowie die Entnahme von Inokulum oder Probe erfolgte mit steriler Spritze und Kanüle in Umgebung einer Bunsenbrennerlamme, bei Fermentern mit 50 ml Nutzvolumen durch das Butyl-Septum hindurch.

Bei einer Überimpfung mit Hitzeschock wurde das anzupfende Medium im Wasserbad auf 80 °C erhitzt. Anschließend erfolgte die sterile Überimpfung an der Flamme. Nach 2 min Haltezeit im Wasserbad bei 80 °C erfolgte in einem weiteren Wasserbad unter Schwenken die Abkühlung auf Fermentationstemperatur.

3.2.4 Bestimmung der Lösungsmittel und Carbonsäuren

Die Lösungsmittel Aceton, Ethanol und Butanol sowie die Carbonsäuren wurden gaschromatografisch bestimmt.

Auf Grund der großen Probenanzahl wurde eine schnelle Analysenmethode entwickelt. Schwierig hierbei war, dass mit der selben Methode sowohl die Bestimmung der Lösungsmittel Aceton, Ethanol und Butanol in hohen Konzentrationen von bis zu 15 g/l bei gleichzeitiger Bestimmung von Carbonsäuren in geringen Konzentrationen, beispielsweise von 25 mg/l bei der Önansäure, möglich
sein sollte. Dies wurde mit der Säule Stabilwax DA, Länge 30 m, Innendurchmesser 250 µm, Filmdicke 0,5 µm (Restek GmbH, Bad Homburg) erreicht.

Eingesetzt wurde der schnell kühlende Gaschromatograph Clarus 600 (PerkinElmer LAS GmbH, Rodgau) mit programmierbarem Split/Splitless Kapillar-Injektor und Flammen-Ionisations-Detektor (FID). Das Gerät verfügte über einen Autosampler mit 82 Stellplätzen.

Tabelle 12: Injektor-Konditionen Clarus 600

<table>
<thead>
<tr>
<th>Injektortemperatur</th>
<th>[°C]</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injektionsvolumen (Spritze 0,5 µl)</td>
<td>[µl]</td>
<td>0,1</td>
</tr>
<tr>
<td>Injektionsgeschwindigkeit</td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Säulenfluss</td>
<td>[cm/s]</td>
<td>50</td>
</tr>
<tr>
<td>Split</td>
<td>50:1</td>
<td></td>
</tr>
<tr>
<td>Trägergas-Steuerung</td>
<td>Programmed Velocity</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 13: Temperaturprogramm Clarus 600

<table>
<thead>
<tr>
<th>Heizgeschwindigkeit</th>
<th>Ziel-Temperatur</th>
<th>Haltezeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>[°C/min]</td>
<td>[°C]</td>
<td>[min]</td>
</tr>
<tr>
<td>Anfangstemperatur</td>
<td>70</td>
<td>1,0</td>
</tr>
<tr>
<td>Rampe 1</td>
<td>60,0</td>
<td>150</td>
</tr>
<tr>
<td>Rampe 2</td>
<td>30,0</td>
<td>220</td>
</tr>
<tr>
<td>Rampe 3</td>
<td>20,0</td>
<td>250</td>
</tr>
<tr>
<td>Gesamtdauer:</td>
<td>12,17</td>
<td></td>
</tr>
</tbody>
</table>

Die Flüsse im Detektor betrugen 45 ml/min für H₂ und 450 ml/min für Druckluft, die Detektortemperatur betrug 300 °C. Das FID-Signal wurde zwischen 1,0 und 1,95 min sowie zwischen 2,25 und 2,70 min um den Faktor 10 abgeschwächt. Ansonsten erfolgte die Aufzeichnung ohne Abschwächung. Ein Lösungsmittel-Carbonsäure Standard führte mit diesen Konfigurationen zu einem Chromatogramm entsprechend Abbildung 4.
Abbildung 4: Chromatogramm des Lösungsmittel-Carbonsäure Standards

Kalibriert wurde mittels 3-Punkt Kalibrierung nach jedem Liner-Wechsel. Beispielhaft sind in Abbildung 5 die Kalibriergeraden für Aceton und Butanol mit der Standardabweichung einer 5-fach Bestimmung dargestellt. Kalibriert wurde mit internem Standard auf die Lösungsmittel Aceton, Ethanol, Butanol und auf die Carbonsäuren Essigsäure, Propionsäure, Isobuttersäure, Buttersäure, Isovaleriansäure, Valeriansäure, Hexansäure und Önanthsäure. Als interner Standard wurde eine wässrige Lösung (H₂O dest.) mit 10,0 g/l Iso-Butanol für die Lösungsmittel und 5,0 g/l Methyl-Valeriansäure für die Carbonsäuren verwendet.

Abbildung 5: Kalibrierung des Gaschromatographen auf Aceton und Butanol mit Standardabweichung

Die Standardabweichungen lagen bei den Lösungsmitteln unter 1,0 %, bei den Carbonsäuren unter 2,0 % und sind daher in der Abbildung nicht sichtbar. Eine ebenso hohe Reproduzierbarkeit konnte auch bei realen Proben nach entsprechender Probenaufbereitung erreicht werden.
Von Fermentations-Proben waren 1,5 ml für die Analyse notwendig. Diese wurden in 1,5 ml Reaktionsgefäßen bei 14000 U/min für 10 min in der Laborzentrifuge zentrifugiert.

Die weitere Aufbereitung war abhängig von der Probenart. Bei Proben aus dem UASB-Reaktor war eine Säurebehandlung notwendig, damit die Carbonsäuren vollständig wiedergefunden wurden. Dazu wurde 1,0 ml Überstand entnommen und mit 100 µl m-Phosphorsäure-Lösung (gesättigt bei 4 °C) in einem Reaktionsgefäß vermischt. Anschließend wurde erneut bei 14000 U/min für 10 min zentrifugiert. Die weitere Behandlung erfolgte wie bei den Proben aus den ABE-Fermentationen.

Die Auswertung erfolgte auf Grund der unterschiedlichen Probenaufbereitung und der daraus resultierenden verschiedenen Verdünnung mit zwei Methoden.

3.2.5 Bestimmung der Gaszusammensetzung

Zur Bestimmung der Gaszusammensetzung wurde ein System zur Spurengasanalytik (ausführlich von M. Härtl beschrieben in [82]) entsprechend Abbildung 6 modifiziert.

Das Träergas wurde in die Ventilbox (3) geführt. An den vier in der Ventilbox (JAS Valvebox, joint analytical systems GmbH, Moers) vorhandenen Ventilen waren sowohl die Probenaufgabe (4) sowie die Probenschleifen (5-8) angeschlossen. Während der Probenaufgabe wurden die Probenschleifen mit Gasprobe gefüllt. Anschließend erfolgte die Probenaufgabe auf die Säulen nach zwei Methoden:

- Methode Gaszusammensetzung (Einzelgase im Bereich 0,1 bis 80,0 Vol.-%): Die Probe aus der Schleife (5) mit einem Volumen von 50 µl wurde über einen Split/Splitless-Injektor auf die Säule (9) aufgegeben, die zum Massenspektrometer führte. Die Probe aus der Schleife (6) mit einem Volumen von 5 µl wurde auf die Säule (11) aufgegeben, die zurück zur Valvebox führte. Der weitere Weg führte über Säule (12) zum Helium-Ionisations-Detektor HID (Valco Instruments Co. Inc., Houston, USA). Die Proben in den Schleifen (7) und (8) wurden verworfen.

- Methode Spurenanalytik: Hierbei wurden entsprechend die Proben aus den Schleifen (7) und (8) auf die Säulen aufgegeben. Die Schleifen hatten je ein Volumen von 500 µl.

Die Valvebox wurde stets auf 110 °C gehalten, um Kondensatbildung in Leitungen, Probenschleifen und Säulenenden zu vermeiden.

Die verwendeten Säulen und Flüsse sind in Tabelle 14 zu finden.

Tabelle 14: Säulen und Träergasprogramme sowie kalibrierte Substanzen bei der Gasanalytik

<table>
<thead>
<tr>
<th>Analysenweg</th>
<th>Massenspektrometer</th>
<th>Helium-Ionisations-Detektor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säulen</td>
<td>Supelco SPB-1, 60 m, 320 µm, 4,00 µm</td>
<td>JAS Molesieve, 30 m, 530 µm, 50 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GS-CarbonPlot, 30 m, 530 µm, 3 µm</td>
</tr>
<tr>
<td>Trägergasprogramm</td>
<td>Programmed Ramp</td>
<td>Constant Pressure</td>
</tr>
<tr>
<td></td>
<td>1,3 ml/min</td>
<td>0,77 bar =5,0 ml/min bei 0,0 min</td>
</tr>
<tr>
<td></td>
<td>bei 8,5 min Steigerung um 30 ml/s auf 2,0 ml/min</td>
<td></td>
</tr>
<tr>
<td>Calibrierung auf</td>
<td>Gaszusammensetzung: N₂, CH₄, CO₂, H₂S</td>
<td>Gaszusammensetzung: H₂, O₂, N₂, CH₄</td>
</tr>
<tr>
<td></td>
<td>Spurenanalytik: Aceton, Ethanol, Butanol, Acetaldehyd, Ethylacetat, Methanol, Ethan, Propan, i-Butan, n-Butan, Benzol, Toluol, Ethylbenzol, m-/ p-/ o-Xylol, H₂S, Carbonylsulfid, Dimethylsulfid, SO₂, NH₃</td>
<td>Spurenanalytik: Ethan, CH₄, Propan, i-Butan, n-Butan, NO, CO, H₂O, O₂, SO₂</td>
</tr>
</tbody>
</table>
Das Temperaturprogramm startete nach der Aufgabe der Proben auf die Säulen bei der Messung der Gaszusammensetzung bei 80 °C, bei der Spurenanalytik bei 40 °C. Bei beiden Methoden erfolgte nach 5,8 min ein Aufheizen um 20 K/min auf 260 °C. Diese Temperatur wurde bis zum Analysenende nach 20,13 min gehalten.

Beim Analysenweg zum HID erfolgte eine Kaskadentrennung durch Säulenschaltung. Die Säulen (12) und (13) wurden nach 3,8 min im Analysenweg durch Schaltung der Ventile in der Valvebox ausgetauscht. Die dabei auftretende Druckschwankung ist als Peak im Chromatogramm in Abbildung 7 zu sehen.

Abbildung 7: Chromatogramm des Helium-Ionisations-Detektors

Abbildung 8: Chromatogramm der summierten Ionenkonzentration des Massenspektrometers (A) und der Massenspektren von N₂ bei 3,727 min (B) und CH₄ bei 3,773 min (C)
Im Chromatogramm des Massenspektrometers überlagerten sich Peaks von N\textsubscript{2} und CH\textsubscript{4} (Abbildung 8 A). Auf Grund der unterschiedlichen Zielmassen (Abbildung 8 B und C) war jedoch eine Trennung eindeutig möglich, ohne dass Trägergasfluss oder Anfangstemperatur reduziert werden mussten.

Die Kalibrierung bei der Methode zur Bestimmung der Gaszusammensetzung erfolgte mit Mischungen von Gasen (alle Linde AG, Pullach) der Qualität 5.0 im Bereich von 0 bis 100 Vol.-% in Schritten von 10 Vol.-%. Lediglich bei H\textsubscript{2}S erfolgte eine 1-Punkt Kalibrierung bei 1,0 Vol.-%. Die Kalibrierkurven waren im Gegensatz zur Methode zur Spurenanalytik nicht linear (siehe Abbildung 9). Weiterhin war das Signal (Response) abhängig von Wechselwirkungen zwischen vorhandenen Gasen, wie ebenfalls in Abbildung 9 am Beispiel CO\textsubscript{2} gesehen werden kann. Da eine korrekte Auswertung solcher Kalibrierkurven mit der vorhandenen GC-Software nicht möglich war, erfolgte die Berechnung der Gaszusammensetzung mit Microsoft Excel.

Dargestellt in Abbildung 9 ist weiterhin die sich durch Mehrfachbestimmung ergebende Standardabweichung.

Die Methode zur Spurenanalytik sowie die dazu notwendige Kalibrierung erfolgten bis auf die geänderte Steuerung der Valvebox wie bei M. Härtl beschrieben [82].

3.2.6 Bestimmung von Gasvolumina

Gasvolumina wurden zum Einen mit dem digitalen Gaszähler Milligascounter (Dr.-Ing. Ritter Apparatebau GmbH, Bochum) gemessen.

Abbildung 10: Schematische Darstellung der Gas-Volumen Messung

Wesentliche Bauteile waren das Flüssigkeits-Reservoir (4) mit Sperrflüssigkeit und der Messzylinder mit Skalierung (3). Über die Wasserstrahl-Pumpe (5) wurde Gas aus dem Zylinder entnommen, bis der Flüssigkeitsspiegel das gekennzeichnete Nullniveau am oberen Ende erreicht hatte. Über das Drei-Wege-Ventil (6) war die Feinjustierung möglich.

Anschließend wurde der Gassack (1) an das 3-Wege-Ventil (2) angeschlossen. Durch Öffnen des Ventils (2) und des Ventils am Gasbeutel konnte das Gas in den Zylinder (3) strömen. Durch den hydrostatischen Druck der Flüssigkeit im Zylinder konnten die Gassäcke vollständig entleert werden. Bei der Flüssigkeit handelte es sich um eine Sperrflüssigkeit entsprechend DIN 38414 Teil 8 mit der Zusammensetzung entsprechend Tabelle 15, die eine Lösung von CO₂ nicht erlaubte.

Tabelle 15: Zusammensetzung Sperrflüssigkeit

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Menge</th>
</tr>
</thead>
<tbody>
<tr>
<td>konzentrierte H₂SO₄</td>
<td>[ml] 30</td>
</tr>
<tr>
<td>dest. H₂O</td>
<td>[ml] 1000</td>
</tr>
<tr>
<td>Na₂SO₄ · 10 H₂O</td>
<td>[g] 200</td>
</tr>
<tr>
<td>Methylorangelösung</td>
<td>einige</td>
</tr>
<tr>
<td>(0,1 g Methylorange-Natriumsalz + 100 ml H₂O)</td>
<td>Tropfen</td>
</tr>
</tbody>
</table>

3.2.7 Bestimmung von Zuckern

Die Bestimmung von Zuckern erfolgte mittels Hochleistungs-Flüssigkeitschromatographie (HPLC). Die Proben wurden bei 0,22 µm Porengröße filtriert. Anschließend folgte die Analyse entsprechend den Geräteparametern aus Tabelle 16.

Tabelle 16: Geräteparameter Hochleistungs-Flüssigkeitschromatographie

<table>
<thead>
<tr>
<th>Gerät (HPLC)</th>
<th>Prominence 20° (Shimadzu Europe GmbH, Duisburg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detektor</td>
<td>Refraktionsindex-Detektor (Shimadzu Europe GmbH, Duisburg)</td>
</tr>
<tr>
<td>Säule</td>
<td>Supelcogel Pb, 30 cm x 7,8 mm, + Vorsäule (Supelco/Sigma-Aldrich Gmbh, München)</td>
</tr>
<tr>
<td>Eluent</td>
<td>deionisiertes Wasser</td>
</tr>
<tr>
<td>Fluss [ml/min]</td>
<td>0,5</td>
</tr>
<tr>
<td>Säulentemperatur [°C]</td>
<td>60</td>
</tr>
<tr>
<td>Injektionsvolumen [µl]</td>
<td>25</td>
</tr>
</tbody>
</table>

![Chromatogramm von Molke](image)

Abbildung 11: Chromatogramm von Molke

3.2.8 Bestimmung von Eisen

3.2.9 Bestimmung des pH-Wertes

3.2.10 Bestimmung der optischen Dichte

Um das Zellwachstum zu verfolgen, wurde die optische Dichte der Kultur bei 600 nm gemessen (OD\textsubscript{600}). Die OD\textsubscript{600} wurde in Polystyrol-Küvetten (Carl Roth GmbH + Co. KG, Karlsruhe) bei 600 nm in einem PE Lamda 25 Photometer gemessen (Perkin Elmer LAS GmbH, Rodgau-Jügesheim). Die Kulturen wurden für die Messung im Verhältnis 1:20 mit destilliertem Wasser verdünnt.

3.2.11 Bestimmung der Trockensubstanz

Die Trockensubstanz wurde nach Trocknung bis zur Massenkonstanz bei 105 °C im Trockenschrank UT 5042 (Heraeus, Hanau) bestimmt.

Die Messung der gebildeten Zelltrockenmasse erfolgte, indem die Trockensubstanzen sowohl vom Medium mit Kultur als auch vom Medium nach Abtrennung der Zellen durch Sterilfiltration (0,22 µm) bestimmt wurden. Die Differenz ergab die gebildete Zellmasse. Diese Methode konnte bei Medien aus Molkepermeat angewendet werden, da hier keine Ausfällungen > 0,22 µm vorhanden waren.

3.2.12 Mikroskopische Untersuchung

Die Kulturen wurden lichtmikroskopisch mit dem Durchlicht-Mikroskop B 1 (Motic Deutschland GmbH, Wetzlar) mit Triokulartubus und digitaler Kamera untersucht (Okular Weitfeld WF10x / 18 mm; Objektive: Plan PL4x/0.10, Achromatische Super Kontrast Objektive ASC10x/0.25, ASC40x/0.65, ASC100x/1.25 (Öl)). Die Kamerasteuerung erfolgte über die Software Motic Images 2000 Version 1.3.

Eine Färbung der Zellen wurde nicht durchgeführt.

3.2.13 Bestimmung weiterer für Abwasser relevante Parameter

Die Bestimmung weiterer für Abwasser relevanter Parameter erfolgte mit Dr. Lange Küvetten-Tests (Hach-Lange GmbH, Düsseldorf). Der Aufschluss erfolgte im Thermostat LT1W, die Auswertung im Photometer LP2W. Untersucht wurden:

- Gesamt-Stickstoff: LCK388 (Messbereich 20-100 mg/l)
- Chemischer Sauerstoff Bedarf: LCK 014 (Messbereich 1-10 g/l) und LCK 514 (Messbereich 0,1 – 2 g/l)
- \(\text{NH}_4 \): LCK 302 (Messbereich 47 - 130 mg/l \(\text{NH}_4 \)-N)
4 Ergebnisse und Diskussion

4.1 Vorbereitende Arbeiten

<table>
<thead>
<tr>
<th>Tabelle 17: Untersuchungsergebnisse der Molken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauermolke</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Trockensubstanz [Mass.-%]</td>
</tr>
<tr>
<td>Asche [Mass.-%]</td>
</tr>
<tr>
<td>D-Galaktose [g/l]</td>
</tr>
<tr>
<td>Laktose [g/l]</td>
</tr>
<tr>
<td>Essigsäure [mg/l]</td>
</tr>
<tr>
<td>Önanthsäure [mg/l]</td>
</tr>
<tr>
<td>pH-Wert</td>
</tr>
</tbody>
</table>

Nach Gewinnung der Sporen wurden Sporensuspensionen in RCM(L)-Medium reaktiviert, um die Keimfähigkeit der Sporen sowie die Fermentationsleistung der daraus entstandenen Kulturen zu überprüfen. Weiterhin wurden die Kulturen auf Süßmolke, Sauermolke und Molkepermeat eingesetzt. Dabei zeigte sich, dass eine Fermentation ohne Zusatzstoffe nur zu geringfügiger Lösungsmittelbildung führte.

In den Vorarbeiten konnte ebenfalls eine sehr gute Reproduzierbarkeit gezeigt werden. In den Versuchsreihen wurde deshalb auf eine Mehrfachbestimmung verzichtet. Wurde dennoch eine Mehrfachbestimmung durchgeführt, so zeigte sich wiederholt eine hohe Übereinstimmung (z.B. bei den Versuchsreihen in Kapitel 4.3.1 oder in Kapitel 4.5.2). Vereinzelt wurden auch ganze Versuchsreihen wiederholt (z.B. die Versuchsreihe aus Kapitel 4.3.6.1). Auch wenn Medien und Inokulum von Original und Wiederholung aus unterschiedlichen Chargen stammten, zeigte sich ebenfalls die hohe Reproduzierbarkeit.

4.2 Geeignete Mikroorganismen

Abbildung 12: Fermentation von Süßmolke (A, B), Sauermolke (C, D) und Molkepermeat (E, F) mit Stamm I bei 30 °C (A, C, E) und 37 °C (B, D, F). ◆ Aceton, ▲ Butanol, ■ Ethanol, □ Essigsäure, ∆ Buttersäure
Entsprechend den Ergebnissen in Abbildung 12 wurden für alle Stämme die zeitlichen Verläufe der Konzentrationen der Fermentationsprodukte aufgezeichnet. Da bei Stamm VIII bei einer Temperatur von 30 °C zwischen 144 h und 240 h, insbesondere bei der Sauermolke, noch eine starke Steigerung der Lösungsmittelbildung feststellbar war, wurde die Fermentation bis zu einer Gesamtdauer von 430 h weitergeführt, um die Endkonzentration der Produkte feststellen zu können (Abbildung 13).

Abbildung 14: Konzentrationen an Fermentationsprodukten bei Erreichen der höchsten Butanol-Konzentration während der Fermentation von Süßmolke (A), Sauermolke (B) und Molkepermeat (C) bei einer Fermentationstemperatur von 30 °C.

Tabelle 18: Zeit bis zum Erreichen der höchsten gemessenen Butanol-Konzentration bei der Fermentation von Molke bei 30 °C

<table>
<thead>
<tr>
<th>Stamm</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit bei Süßmolke [h]</td>
<td>144</td>
<td>240</td>
<td>72</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>430</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Zeit bei Sauermolke [h]</td>
<td>144</td>
<td>240</td>
<td>72</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>430</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>Zeit bei Molkepermeat [h]</td>
<td>144</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>144</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>

In Abbildung 15 und Tabelle 19 sind die Ergebnisse der Fermentationen bei einer Temperatur von 37 °C zusammengestellt.
Ergebnisse und Diskussion

Abbildung 15: Konzentrationen an Fermentationsprodukten bei Erreichen der höchsten Butanol-Konzentration während der Fermentation von Süßmolke (A), Sauermolke (B) und Molkepermeat (C) bei einer Fermentationstemperatur von 37 °C

Tabelle 19: Zeit bis zum Erreichen der höchsten gemessenen Butanol-Konzentration bei der Fermentation von Molke bei 37 °C

<table>
<thead>
<tr>
<th>Stamm</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit bei Süßmolke [h]</td>
<td>240</td>
<td>240</td>
<td>144</td>
<td>144</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>144</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Zeit bei Sauermolke [h]</td>
<td>240</td>
<td>72</td>
<td>240</td>
<td>144</td>
<td>240</td>
<td>72</td>
<td>240</td>
<td>144</td>
<td>144</td>
<td>240</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>Zeit bei Molkepermeat [h]</td>
<td>240</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>240</td>
<td>240</td>
<td>240</td>
<td>144</td>
<td>72</td>
<td>144</td>
<td>240</td>
<td></td>
</tr>
</tbody>
</table>

Für die Verfahrensentwicklung ist zu Beginn die Auswahl geeigneter Stämme aus den zwölf zur Verfügung stehenden Stämmen notwendig. Bei den bisher veröffentlichten Arbeiten zeigte sich, dass unterschiedliche Molkearten bei sonst gleichen Bedingungen zu erheblich unterschiedlichen Ergebnissen führen. Ebenso haben der Zusatz oder der Entzug von Nährstoffen sowie die Temperatur
bedeutenden Einfluss. Alle diese Einflussfaktoren sind dazu noch vom Stamm abhängig (siehe Tabelle 5).

Unter den verbleibenden Stämmen arbeitete herausragend Stamm I, der bei 30 °C bei allen Substraten Butanol-Konzentrationen von 11,6 g/l bis 12,5 g/l erreichte. Die Gesamtmenge an Lösungsmitteln lag dabei zwischen 15,7 g/l und 17,0 g/l, die Gesamtmenge an Produkten (Lösungsmittel und Fettsäuren) zwischen 18,8 g/l und 23,3 g/l. Bei 37 °C zeigte Stamm I bezogen auf die Butanol-Konzentration das zweitbeste Ergebnis. Daher wurde dieser Stamm weiter untersucht.

Die verbleibenden Stämme VIII bis XI bildeten bei 30 °C bei allen Substraten über 11,0 g/l Gesamtlösungsmittel. Im Durchschnitt der drei Substrate war Stamm VIII Bester. Weiterhin vorteilhaft war die gute Verwertung der Sauermolke durch Stamm VIII, so dass für die weitere Verfahrensentwicklung neben Stamm I auch Stamm VIII untersucht wurde.
4.3 Einflüsse der Medien-Zusammensetzung

4.3.1 Einflüsse der Bestandteile des RCM-Konzentrats

Die Auswahl der Organismen erfolgte auf verschiedenen Molkearten mit Zusätzen, die für Clostridien ein optimales Wachstum erlauben sollen. Für ein industrielles Verfahren ist es notwendig, die Menge an Zusatzstoffen auf ein Minimum zu reduzieren, um einen wirtschaftlich sinnvollen Prozess zu erreichen. Um die für die Fermentation von Molke notwendigen Zusatzstoffe zu identifizieren, wurden entsprechend Tabelle 20 Molke-Medien durch Zugabe von Konzentraten entsprechend dem RCM-Medium zubereitet.

Tabelle 20: Zusammensetzung der Medien zur Bestimmung des Einflusses der RCM-Komponenten auf die Lösungsmittelbildung („+“= Zusatz ist enthalten / „-“=Zusatz ist nicht enthalten)

<table>
<thead>
<tr>
<th>Zusatz</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RCM ohne Tryptose ohne Fleischextrakt ohne Hefeextrakt ohne NaCl ohne Cystein-HCl ohne Na-Acetat</td>
</tr>
<tr>
<td>Tryptose (10 g/l)</td>
<td>+</td>
</tr>
<tr>
<td>Fleischextrakt (10 g/l)</td>
<td>+</td>
</tr>
<tr>
<td>Hefeextrakt (3 g/l)</td>
<td>+</td>
</tr>
<tr>
<td>NaCl (5 g/l)</td>
<td>+</td>
</tr>
<tr>
<td>Cystein-HCl (0,5 g/l)</td>
<td>+</td>
</tr>
<tr>
<td>Na-Acetat (3 g/l)</td>
<td>+</td>
</tr>
</tbody>
</table>

Durch die Versuchsreihe mit nur jeweils einem zugesetzten Stoff konnte festgestellt werden, welchen Einfluss dieser Stoff auf die Fermentation hat. Da jedoch Stoffe auch synergistisch wirken können, wurde in einer zweiten Versuchsreihe jeweils eine Komponente gegenüber dem RCM-Konzentrat weggelassen.

Als Substrat diente Molkepermeat. Bei allen Medien wurde eine Dreifachbestimmung durchgeführt, d.h. es wurden drei Serumflaschen angeimpft, um die in Vorarbeiten erreichte Reproduzierbarkeit zu überprüfen. Die Fermentationstemperatur war 30 °C, das Inokulum (1,0 ml) wurde 24 h in RCM(L)-Medium aus Sporen herangeführt.

In den folgenden Abbildungen sind die gebildeten Lösungsmittelmengen nach 5 d und 10 d zusammengefasst. In Abbildung 16 sind die Ergebnisse von Stamm I bei Medien mit allen sowie mit jeweils einer fehlenden Komponente zu sehen. An der dabei dargestellten Standardabweichung ist zu erkennen, dass die Reproduzierbarkeit sehr gut war. Die größte relative Standardabweichung lag beim Butanol bei 4,3 %.
Ergebnisse und Diskussion

Abbildung 16: Lösungsmittelbildung von Stamm I aus Molkepermeat mit RCM-Konzentrat sowie mit Teilen von RCM-Konzentrat nach 5 d (linker Balken) und nach 10 d (rechter Balken)

Wurden die Komponenten Hefeextrakt, Natriumchlorid und Cysteinhydrochlorid dem Medium nicht zugesetzt, konnte keine signifikante Verringerung der Lösungsmittelbildung gegenüber der Fermentation mit RCM-Konzentrat festgestellt werden (Abbildung 16). In den Serumflaschen ohne Natriumacetat war nach 10 d eine geringfügig verminderte Lösungsmittelbildung feststellbar. Wesentliche Unterschiede waren bei den Komponenten Tryptose und Fleischextrakt feststellbar. Die Menge an Lösungsmitteln war beim Medium ohne Tryptose nach 5 d um 22 % (ohne Fleischextrakt um 38 %), nach 10 d um 11 % geringer (ohne Fleischextrakt um 19 %) als im Vergleichsmedium mit vollem RCM-Konzentrat.

Abbildung 17: Lösungsmittelbildung von Stamm I aus Molkepermeat mit Einzelkomponenten von RCM-Konzentrat nach 5 d (linker Balken) und nach 10 d (rechter Balken)

Wurde der Molke ausschließlich Natrium-Chlorid, Cysteinhydrochlorid oder Natriumacetat zugesetzt, überstieg die Menge an gebildeten Lösungsmitteln bei Stamm I den Wert von 1,0 g/l nicht (siehe Abbildung 17).
Natriumacetat wirkt in synthetischen Medien als Puffersubstanz. Da Molke bereits ausreichend gepuffert ist, insbesondere durch Phosphat, ist der Einfluss des Puffers Natriumacetat auf die Fermentation gering. Ebenso sind in Molke bereits ausreichend Natrium- und Chlorid-Ionen vorhanden, so dass ein weiterer Zusatz nicht notwendig ist. Eine deutliche Steigerung der Lösungsmittelbildung konnte durch die Zusätze Tryptose, Fleischextrakt und Hefeextrakt erreicht werden. Bezogen auf 1,0 g/l zugesetzte Komponente konnte die Lösungsmittelbildung mit Tryptose um 0,35 g/l, mit Fleischextrakt um 0,79 g/l und mit Hefeextrakt um 1,13 g/l gesteigert werden. Diese Komponenten bestehen aus einer Vielzahl an Einzelsubstanzen (beispielsweise Peptiden, Aminosäuren, Spurenelementen) und gelten insbesondere als wichtige N-Lieferanten. Weiterhin werden Vitamine (beispielsweise besonders Vitamine der B-Gruppe durch Hefeextrakt) bereit gestellt.

![Abbildung 18: Lösungsmittelbildung von Stamm VIII aus Molkepermeat mit RCM-Konzentrat sowie mit Teilen von RCM-Konzentrat nach 5 d (linker Balken) und nach 10 d (rechter Balken)](image1)

![Abbildung 19: Lösungsmittelbildung von Stamm VIII aus Molkepermeat mit Einzelkomponenten von RCM-Konzentrat nach 5 d (linker Balken) und nach 10 d (rechter Balken)](image2)
Ergebnisse und Diskussion

Tendenzial waren die Ergebnisse bei Stamm VIII ähnlich wie bei Stamm I. Die Ergebnisse sind in Abbildung 18 und Abbildung 19 zusammengestellt.

Abweichend von Stamm I war bei Stamm VIII jedoch das Maximum der Lösungsmittelbildung häufig bereits nach 5 d erreicht. Wurde dem Molkepermeat ausschließlich Natriumchlorid, Cysteinhydrochlorid oder Natriumacetat zugesetzt, konnten nach 10 d maximal 1,7 g/l Lösungsmittel gebildet werden. Dagegen zeigten analog zum Stamm I die Komponenten Tryptose, Fleischextrakt sowie Hefeextrakt einen deutlich positiven Einfluss auf die Fermentation. Bezogen auf 1,0 g/l zugesetzte Komponente konnte die Lösungsmittelbildung um 0,35 g/l durch Tryptose, um 0,54 g/l durch Fleischextrakt und um 0,80 g/l durch Hefeextrakt gesteigert werden.

4.3.2 Einfluss von Hefeextrakt

Da sowohl bei Stamm I wie auch bei Stamm VIII durch den alleinigen Zusatz von Hefeextrakt die größte spezifische Steigerung der Endkonzentration an Lösungsmitteln erreicht werden konnte, wurde der Einfluss verschiedener Hefeextrakt-Konzentrationen auf die Gesamtlösungsmittelbildung und die Fermentationsdauer untersucht.

Dazu wurden zu Süßmolke, Sauermolke und Molkepermeat eine Hefeextrakt-Lösung (15,0 Mass.-% Hefeextrakt) und Wasser zugegeben, so dass in den Medien Hefeextrakt-Konzentrationen zwischen 0,65 g/l und 12,1 g/l bei gleichem Laktose-Gehalt erreicht wurden. Alle Proben wurden auf einen pH-Wert von 6,4 eingestellt und jeweils mit 1,0 ml aus einer 24 h alten Vorkultur angeimpft. Die Fermentationstemperatur betrug 30 °C.

Abbildung 20: Lösungsmittelbildung bei verschiedenen Zusätzen an Hefeextrakt aus Süßmolke durch Stamm I
Abbildung 21: Lösungsmittelbildung bei verschiedenen Zusätzen an Hefeextrakt aus Sauermolke durch Stamm I

Abbildung 22: Lösungsmittelbildung bei verschiedenen Zusätzen an Hefeextrakt aus Molkepermeat durch Stamm I

Durch eine Steigerung der Zugabe an Hefeextrakt konnte bei Stamm I sowohl bei Süßmolke (Abbildung 20) als auch bei Sauermolke (Abbildung 21) und Molkepermeat (Abbildung 22) zum Einen eine Steigerung der Ausbeute und zum Anderen eine Steigerung der Fermentationsgeschwindigkeit (bezogen auf die Produktbildungsrate) erreicht werden. Während die Fermentationsgeschwindigkeiten bei gleichem Hefeextrakt-Gehalt und verschiedenen Medien unterschiedlich waren, so waren die erreichten Endkonzentrationen annähernd gleich. Beispielsweise lagen die maximalen Gesamtlösungsmittel-Konzentrationen bei den drei Medien bei Zugabe von 12,1 g/l Hefeextrakt zwischen 15,5 g/l und 15,9 g/l.
Abbildung 23: Lösungsmittelbildung bei verschiedenen Zusätzen an Hefeextrakt aus Süßmolke durch Stamm VIII

Abbildung 24: Lösungsmittelbildung bei verschiedenen Zusätzen an Hefeextrakt aus Sauermolk durch Stamm VIII

Bei Stamm VIII konnte ebenfalls durch eine Steigerung der Hefeextraktzugabe eine Zunahme der Lösungsmittelbildung erreicht werden. Bei Süßmolke (Abbildung 23) und Molkepermeat (Abbildung 25) konnte jedoch durch die Erhöhung der Hefeextrakt-Konzentration von 6,3 g/l auf 12,1 g/l keine weitere Zunahme der Lösungsmittel-Maximalkonzentrationen erreicht werden. Dagegen führte bei Sauermolke (Abbildung 24) erst eine Hefeextraktkonzentration von 12,1 g/l zu einer wesentlichen Intensivierung der Fermentation.

4.3.3 Einfluss von Fleischextrakt

Auf Grund des ebenfalls positiven Einflusses von Fleischextrakt auf die Lösungsmittelbildung wurde auch der Einfluss unterschiedlicher Fleischextrakt-Konzentrationen auf die Fermentationsdauer sowie die Endkonzentration an Lösungsmitteln untersucht.

Dazu wurden in Serumflaschen zu 40 ml Süßmolke Fleischextrakt-Lösung (Stammlösung mit einer Konzentration von 10 Mass.-%) und destilliertes Wasser pipettiert, so dass Fleischextrakt-Konzentrationen zwischen 0,0 g/l und 20,0 g/l erreicht wurden (Konzentrationsunterschied zwischen zwei Stufen: 2,5 g/l). Die Animpfung erfolgte jeweils mit 1,0 ml einer 24 h alten Kultur in RCM(L)-Medium, die mit Sporen angeimpft wurde.

Durch die Zugabe von Fleischextrakt konnten sowohl die Endkonzentrationen an Gesamtlösungsmitteln nach 252 h als auch die Fermentationsgeschwindigkeiten gesteigert werden (siehe Abbildung 26). Eine Gabe von mehr als 15,0 g/l Fleischextrakt führte jedoch zu keiner weiteren Erhöhung der Maximalkonzentration, eine Zugabe von mehr als 17,5 g/l zu keiner weiteren Steigerung der Fermentationsgeschwindigkeit während der Phase der Lösungsmittelbildung.
Ergebnisse und Diskussion

Abbildung 26: Einfluss unterschiedlicher Konzentrationen von Fleischextrakt auf die Lösungsmittelbildung bei Stamm I

Mit Steigerung der Fleischextraktzugabe stieg auch der prozentuale Lösungsmittelanteil von Ethanol von 4,4 Mass.-% ohne Extrakt-Zugabe bis auf 8,8 Mass.-% bei der höchsten Extraktzugabe an (siehe Abbildung 27). Der prozentuale Butanol-Anteil an den Lösungsmitteln lag bei den Fermentationen mit Fleischextrakt zwischen 77,8 und 80,2 Mass.-%. Bei der Kontroll-Fermentation ohne Extraktzusatz lag der Butanolanteil zu Gunsten des Acetons nur bei 61,0 Mass.-%.

Abbildung 27: Zusammensetzungen der Gesamtlösungsmittel zum Zeitpunkt höchster Lösungsmittelkonzentrationen bei Zugabe unterschiedlicher Konzentrationen an Fleischextrakt bei Stamm I

Bei Stamm VIII konnte die Lösungsmittelbildung nicht in dem Maße wie bei Stamm I gesteigert werden. Die höchste Lösungsmittelkonzentration wurde beim Einsatz von 17,5 g/l Fleischextrakt mit 9,5 g/l bei einem A:B:E-Verhältnis von 11:23:1 erreicht.
Wie auch beim Hefeextrakt müsste bei der alleinigen Zugabe von Fleischextrakt annähernd soviel Extrakt zugegeben werden, wie letztlich Lösungsmittel entstehen. Allein durch die Kosten für die Extraktzugabe wäre ein Verfahren bei alleiniger Zugabe dieser Stoffe wirtschaftlich nicht sinnvoll.

4.3.4 Einfluss von Eisen

Abbildung 28: Einfluss der Zugabe von Fe²⁺-Ionen (0 mg/l – 200 mg/l) zu Süßmolke vor dem Autoklavieren (A) und nach dem Autoklavieren (B) auf die Lösungsmittelbildung bei Stamm I

Um den Einfluss von Eisenzusatz zu Molke auf die Lösungsmittelbildung zu untersuchen, wurden Medien mit unterschiedlichen Konzentrationen an Eisenionen durch Zugabe einer Eisen-(II)-Sulfat-Lösung hergestellt. Bei allen Versuchsreihen mit Eisen-(II)-Sulfat als alleiniger Medienergänzung
Ergebnisse und Diskussion

wurden jeweils 1,0 ml einer Vorkultur ausgehend von Sporen auf RCM(L)-Medium nach 24 h überimpft. Die Fermentationstemperatur betrug 30 °C.

Abbildung 29: Einfluss der Zugabe von Fe²⁺-Ionen (0 mg/l – 200 mg/l) zu Süßmolke vor dem Autoklavieren (A) und nach dem Autoklavieren (B) auf die Lösungsmittelbildung bei Stamm VIII

In Abbildung 28 ist deutlich der positive Einfluss der Eisenzugabe zum Medium Süßmolke bei Stamm I zu erkennen. Im Vergleich zur Kontrolle ohne Zusatz, in dem nach 250 h 1,8 g/l Lösungsmittel gefunden wurden, konnten in den beiden Versuchsreihen A und B aus Abbildung 28 bis zu 9,4 g/l Gesamtlösungsmittel gefunden werden. Dabei streuten die Werte nach 250 h Fermentationsdauer bei den Proben, in welchen die Zugabe vor dem Autoklavieren erfolgte mit Werten zwischen 6,3 g/l und 9,4 g/l deutlich stärker. Die höchsten Lösungsmittelausbeuten wurden bei der Eisenzugabe vor dem Autoklavieren nicht mit den höchsten Eisenkonzentrationen erreicht, sondern mit einer Dosis von 10 mg/l Eisenionen.
Mit Stamm VIII konnten durch die Zugabe von Eisen Lösungsmittelkonzentrationen von bis zu 6,8 g/l gegenüber 4,0 g/l ohne Zusatz erreicht werden (Abbildung 29). Dabei konnte kein signifikanter Unterschied zwischen der Eisenzugabe vor und nach dem Autoklavieren festgestellt werden.

Bei beiden Stämmen konnte eine deutliche Verbesserung der Fermentationsgeschwindigkeit und der nach 240 h erreichten Lösungsmittelkonzentrationen erreicht werden.

Aus Abbildung 28 und Abbildung 29 ist erkennbar, dass bei beiden Stämmen eine weitere Reduzierung der Eisen-Konzentration bei gleicher Lösungsmittelausbeute möglich sein sollte. Daher wurde eine weitere Versuchsreihe durchgeführt, in der Eisen-Konzentrationen zwischen 0,1 mg/l und 10,0 mg/l eingesetzt wurden. Die Ergebnisse sind in Abbildung 30 zu sehen.

Abbildung 30: Einfluss der Zugabe von Fe$^{2+}$-Ionen (0 mg/l – 10 mg/l) zu Süßmolke auf die Lösungsmittelbildung bei Stamm I

Bei den eingesetzten Eisenmengen wurde die höchste Lösungsmittelmenge am Ende der Fermentation bei der Zugabe 1,0 mg/l Eisen erreicht.

Abbildung 31: Einfluss der Zugabe von Fe$^{2+}$-Ionen (0 mg/l – 200 mg/l) zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I

Die Versuchsreihe wurde ebenfalls mit Molkepermeat als Substrat durchgeführt. Eine Übersicht über die Ergebnisse der Fermentationen bei Zugabe des Eisens (0 – 200 mg/l) vor dem Autoklavieren gibt Abbildung 31.
Auch beim Molkepermeat konnte durch alleinige Zugabe von Eisensulfat eine Vervielfachung der Lösungsmittelbildung erreicht werden. Allerdings lagen die erreichten Lösungsmittel-Konzentrationen deutlich unter den Werten der Süßmolke. Dies könnte auf den geringeren Protein-Gehalt des Molkepermeats gegenüber der Süßmolke zurückgeführt werden, was zur limitierenden Stickstoffversorgung durch das Medium geführt hat.

4.3.5 Einfluss vom Ammoniumsulfat

Da bei Molkepermeat auf Grund der Abtrennung von großen Teilen des Molkenproteins eine Limitierung der Stickstoff-Versorgung vorliegen könnte, wurde untersucht, in wie weit die alleinige Zugabe von Stickstoff in Form von Ammoniumsulfat die Fermentation beeinflusst.

Dazu wurden Medien durch Zugabe von Ammoniumsulfat-Lösungen hergestellt, so dass Konzentrationen von 0,1 bis 2,0 g/l Ammoniumsulfat erreicht wurden.

Tabelle 21: Fermentationsbedingungen zur Untersuchung des Einflusses von Ammoniumsulfat

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM(L), mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 24</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur</td>
<td>[°C] 30</td>
</tr>
<tr>
<td>Medium</td>
<td>Molkepermeat + Ammoniumsulfat (AS)</td>
</tr>
</tbody>
</table>

In Abbildung 32 sind die Ergebnisse der Fermentationen entsprechend den Bedingungen aus Tabelle 21 zu sehen.

Abbildung 32: Einfluss der Zugabe von Ammoniumsulfat zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I
Durch die Zugabe von Ammoniumsulfat konnten die Lösungsmittelkonzentrationen gegenüber dem unveränderten Molkepermeat (vgl. beispielsweise Kurve „0 g/l“ aus Abbildung 31) vervielfacht werden. Jedoch liegen selbst nach 160 h die höchsten Gesamtkonzentrationen bei lediglich 2,6 g/l. Zieht man die Ergebnisse aus Kapitel 4.3.4 mit in Betracht, so scheint die Limitierung des Stickstoffes im Molkepermeat nicht ein allgemeines Problem dieses Substrates zu sein, sondern vor allem ein Problem für Stamm I. So erreichte Stamm I auch bei mit reichlich Protein ausgestatteter Süßmolke lediglich Lösungsmittelkonzentrationen von etwa 1 g/l nach 150 h. Bei der Versorgung mit Ammoniumsulfat werden Konzentrationen von bis zu 2,6 g/l gemessen. Dieser Wert liegt in dem Bereich, den Stamm VIII in Molkemedien ohne Zusätze erreichen kann. Die in Molke vorhandenen N-Quellen sind also für Stamm I deutlich schwerer zu erschließen als für Stamm VIII.

Die Ausstattung von Molkepermeat mit einer leicht verfügbaren Stickstoffquelle ist also für Stamm I ein wesentlicher Faktor zum Erreichen einer schnellen und vollständigen Lösungsmittelfermentation.

4.3.6 Kombinationen von Zusatzstoffen

In den Kapiteln 4.3.2 bis 4.3.5 wurde ausgehend vom RCM-Medium der Einsatz der Einzelsubstanzen untersucht, die die Lösungsmittelausbeute erhöhten und die Fermentationsgeschwindigkeit steigerten. Ausgehend von diesen Ergebnissen wurde im Folgenden der Einfluss von Kombinationen ausgewählter Stoffe untersucht. Ziel war dabei, den notwendigen Einsatz an Zusatzstoffen zu verringern. Dabei sollten die Fermentationszeit möglichst kurz und die Lösungsmittelausbeute möglichst hoch gehalten werden.

Für alle in Kapitel 4.3.6 beschriebenen Fermentationen galten einheitlich die in Tabelle 22 zusammengefassten Bedingungen.

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM(L), mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur [h]</td>
<td>24</td>
</tr>
<tr>
<td>Inokulum [ml]</td>
<td>1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur [°C]</td>
<td>30</td>
</tr>
</tbody>
</table>

4.3.6.1 Kombination von Fleischextrakt mit Eisensulfat

Bei der Untersuchung der Kombinationen von Eisen und Fleischextrakt wurde die Eisenkonzentration auf 1,0 mg/l festgesetzt. Es wurde ein Konzentrat aus Fleischextrakt und Wasser zudosiert, so dass Fleischextraktkonzentrationen von 0 g/l bis 10,0 g/l in den Medien erreicht wurden. In Abbildung 33 ist die Gesamtlösungsmittelbildung bei Molkepermeat, in Abbildung 34 bei Süßmolke zu sehen.
Sowohl bei Süßmolke als auch bei Molkepermeat konnte durch die Kombination beider Zusatzstoffe die Fermentationsdauer gegenüber allen vorhergegangenen Versuchsreihen deutlich verkürzt werden. So war bei Zusatz von 4,0 g/l Fleischextrakt bereits nach etwa 80 h die maximal erreichbare Konzentration an Gesamtlösungsmitteln beim Einsatz von Süßmolke gebildet. Dabei wurden bei Molkepermeat im Durchschnitt 2,0 g/l mehr Lösungsmittel als bei Süßmolke gebildet. Von diesen 2,0 g/l waren im Durchschnitt 50 Mass.-% Butanol.

Hohe Lösungsmittelkonzentrationen bei kurzer Fermentationsdauer wurden auch beim Zusatz von 4,0 g/l oder mehr Fleischextrakt in Kombination mit 1,0 mg/l Eisen erreicht. Weiterhin wurde untersucht, ob durch eine Steigerung der Eisenkonzentration zum Einen die notwendige Fleischextraktkonzentration reduziert werden kann und zum Anderen eine weitere Beschleunigung der Fermentation möglich war. Daher wurden in einer weiteren Versuchsreihe unterschiedliche Kombinationen von Eisen und Fleischextrakt eingesetzt. Die Fleischextraktkonzentrationen betrugen 2,0 g/l, 4,0 g/l und 6,0 g/l, während die Eisen-Konzentrationen auf 2,5 mg/l und 10,0 mg/l gesteigert
wurden. In Abbildung 35 können diese Ergebnisse mit den Ergebnissen der vorhergegangenen Versuchsreihe mit 1,0 mg/l Eisen verglichen werden.

Abbildung 35: Einfluss der Zugabe unterschiedlicher Kombinationen von Fe2+-Ionen und Fleischextrakt zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I

Es ist zu erkennen, dass durch die weitere Steigerung der Eisenzugabe keine signifikante Steigerung der Lösungsmittelausbeute beim Einsatz von 2,0 g/l Fleischextrakt erreicht werden konnte. Ebenso war auch keine weitere Beschleunigung der Fermentationsgeschwindigkeit durch die verstärkte Eisenzugabe möglich. Bei 4,0 g/l und 6,0 g/l Fleischextrakt konnte durch die Steigerung der Eisenkonzentration auf 2,5 mg/l die Fermentationsgeschwindigkeit gesteigert werden, die weitere Steigerung auf 10,0 g/l brachte keine weitere Verbesserung.

4.3.6.2 Kombination von Hefeextrakt mit Eisensulfat

Parallel zur Versuchsreihe in Abschnitt 4.3.6.1 wurden Kombinationen der Zusatzstoffe Eisensulfat und Hefeextrakt untersucht.

Abbildung 36: Einfluss der Zugabe von 1,0 mg/l Fe2+-Ionen und Hefeextrakt (0 g/l – 10,0 g/l) zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I
Die Eisenkonzentration wurde wiederum auf 1,0 mg/l festgesetzt, die Hefeextraktkonzentration variierte zwischen 0 g/l und 10,0 g/l. Die Ergebnisse beim Einsatz auf Molkepermeat finden sich in Abbildung 36, die von Süßmolke in Abbildung 37.

Wie auch bei Fleischextrakt konnte durch die Kombination von Hefeextrakt mit Eisen die Fermentationsgeschwindigkeit deutlich gesteigert werden. Die für eine bestimmte Ausbeute notwendige Menge an Hefeextrakt lag dabei unter dem Wert für Fleischextrakt. Insbesondere beim Einsatz von 1,0 g/l und 2,0 g/l Extrakt waren sowohl Fermentationsgeschwindigkeit als auch Lösungsmittelausbeute bei Hefeextrakt deutlich größer als bei Fleischextrakt. Bezogen auf die eingesetzte Masse an Extrakt lag die Lösungsmittelausbeute beim Einsatz von Hefeextrakt in Kombination mit Eisen um bis zu 39 % höher als beim Einsatz von Fleischextrakt.

Abbildung 37: Einfluss der Zugabe von 1,0 mg/l Fe$^{2+}$-Ionen und Hefeextrakt (0 g/l – 10,0 g/l) zu Süßmolke auf die Lösungsmittelbildung bei Stamm I

Auch bei Hefeextrakt wurde untersucht, ob durch eine Erhöhung der Eisenkonzentration die notwendige Extraktkonzentration reduziert werden kann (Abbildung 38).

Abbildung 38: Einfluss der Zugabe unterschiedlicher Kombinationen von Fe$^{2+}$-Ionen und Hefeextrakt zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I
Dabei zeigte sich ebenfalls, dass eine Erhöhung der Eisenkonzentration auf 2,5 mg/l zu einer Verbesserung der Fermentation führte, eine weitere Steigerung auf 10 mg/l keinen weiteren Effekt zeigte. So konnte insbesondere zu Beginn der Fermentation durch eine höhere Eisengabe die Fermentationsgeschwindigkeit erhöht werden, bei höheren Lösungsmittelkonzentrationen näherten sich die Kurven allerdings wieder einander an, so dass der höhere Umsatz bei höherem Eisenzusatz nur ausgenutzt werden kann, falls die Fermentation vor vollständigem Laktose-Umsatz abgebrochen wird.

4.3.6.3 Kombination von Ammoniumsulfat mit Eisensulfat

Tabelle 23: Einfluss der Extraktzugabe auf die Eisenkonzentration im Permeat-Medium

<table>
<thead>
<tr>
<th>Extrakteinsatz [g/l]</th>
<th>4,0</th>
<th>6,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eisenkonzentration durch Hefeextrakt [mg/l]</td>
<td>1,88</td>
<td>2,82</td>
</tr>
<tr>
<td>Eisenkonzentration durch Fleischextrakt [mg/l]</td>
<td>1,72</td>
<td>2,58</td>
</tr>
</tbody>
</table>

Die durch die Extrakte in die Medien eingebrachten Eisenmengen wurden per AAS ermittelt. Auf Grund der Ergebnisse aus Tabelle 23 wurde die Eisenkonzentration auf 2,5 mg/l festgelegt. Aus diesen Ergebnissen ist auch erkennbar, dass im verwendeten Molkepermeat nur geringe Mengen an Eisen vorhanden sind. Die Ammoniumsulfat-Konzentration wurde zwischen 0 g/l und 2,0 g/l variiert.

Abbildung 39: Einfluss der Zugabe unterschiedlicher Kombinationen von Ammoniumsulfat und Eisensulfat zu Molkepermeat auf die Lösungsmittelbildung bei Stamm I
Wie in Abbildung 39 zu sehen ist, konnten durch die alleinige Ausstattung von Molkepermeat mit Eisen- und Ammoniumsulfat erhebliche Mengen an Lösungsmitteln gewonnen werden. Eine Steigerung der Ammoniumsulfatkonzentration über 1,0 g/l führte dabei zu keiner wesentlichen Steigerung der Umsatzgeschwindigkeit. Die Fermentationsgeschwindigkeit war im Vergleich zu den Versuchen mit Extrakt und Eisen deutlich verlangsamt. So lagen die höchsten Werte an Gesamtlösungsmitteln bei dieser Versuchsreihe bei 48 und 72 h um bis zu 38 % unter den Ergebnissen der Versuchsreihen mit Extrakten. Folglich wirken Hefe- und Fleischextrakt nicht nur als Stickstoffquellen, sondern liefern auch weitere Stoffe wie Spurenelemente und Vitamine, die bei gleicher Lösungsmittelmaximalkonzentration zu einem beschleunigten Umsatz führen.

4.3.6.4 Kombination von Eisensulfat, Ammoniumsulfat und Hefeextrakt

Durch eine Kombination von Eisensulfat, Ammoniumsulfat und Extrakt könnten sowohl die Fermentationsdauer als auch die spezifischen Kosten für die Zusatzstoffe verringert werden, da die Extrakte zum Teil durch Ammoniumsulfat ersetzt werden können. Eingesetzt wurde in dieser Versuchsreihe Hefeextrakt, da zum Einen die Ergebnisse aus Kapitel 4.3.6.1 und 4.3.6.2 zeigen, dass weniger Hefeextrakt als Fleischextrakt für die gleiche Steigerung der Lösungsmittelbildung notwendig ist, und da zum Anderen Hefeextrakt kostengünstiger als Fleischextrakt ist.

Abbildung 40: Einfluss der Zugabe unterschiedlicher Konzentrationen von Hefeextrakt zu Molkepermeat mit Eisen- und Ammoniumsulfat auf die Lösungsmittelbildung bei Stamm I

Entsprechend den Ergebnissen aus 4.3.6.3 wurden die Ammoniumsulfatkonzentration auf 2,0 g/l und die Eisenkonzentration auf 2,5 mg/l festgesetzt. Durch Zugabe einer Lösung aus Hefeextrakt wurden Hefeextraktkonzentrationen von 0,1 g/l bis 3,5 g/l im Medium realisiert. In Abbildung 40 ist die Bildung der Gesamtlösungsmittel dargestellt. Hierbei ist zu erkennen, dass durch die Steigerung des
Hefeextrakteinsatzes von 0,1 g/l auf 3,5 g/l eine Erhöhung der Lösungsmittelkonzentration um 12 % zum Zeitpunkt 117 h und um 7 % zum Zeitpunkt 165 h erreicht werden konnte.

Eine hohe Fermentationsgeschwindigkeit wird insbesondere in den ersten 70 h durch einen höheren Zusatz an Hefeextrakt begünstigt. So wurden zum Zeitpunkt 69 h im Fermenter mit 3,5 g/l Hefeextrakt um 41 % mehr Lösungsmittel gebildet als im Fermenter mit 0,1 g/l Hefeextrakt. Beim Einsatz von 3,5 g/l Hefeextrakt wird die maximale Lösungsmittelkonzentration nach bereits 93 h erreicht, während bei der Kombination von ausschließlich Hefeextrakt und Eisen diese erst später erreicht wird.

Durch die Kombination der drei Zusatzstoffe Eisensulfat, Hefeextrakt und Ammoniumsulfat lassen sich also unter Erfüllung der Forderung nach möglichst kurzer Fermentationsdauer die spezifischen Kosten für die Medienzusätze durch Verringerung der notwendigen Menge an Hefeextrakt reduzieren.
4.4 Spezifische Eigenschaften der ausgewählten Stämme

4.4.1 Produkthemmung

Die Hemmung der Fermentation durch das Produkt Butanol ist ein wesentliches Hindernis bei der Entwicklung eines Prozesses zur Butanolgewinnung aus Molke. Daher ist die Kenntnis der Grenze der Butanoltoleranz der einzelnen Stämme im verwendeten Medium für die Verfahrensentwicklung wesentlich. Die Toxizität von Butanol in Molkemedien wurde untersucht, indem Medien hergestellt wurden, die bereits Butanol enthielten. Dazu wurden in 100 ml Messkolben 1,0 g Butanol eingewogen. Weiterhin wurden 2,0 ml einer Hefeextraktlösung zugegeben, so dass im Medium eine Hefeextrakt-Konzentration von 6,7 g/l erreicht wurde. Anschließend wurde der Messkolben mit Molke aufgefüllt und in Serumflaschen abgefüllt. Die weiteren Fermentationsbedingungen sind in Tabelle 24 zusammengefasst.

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM(L) mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fermentationsdauer Vorkultur [h]</td>
<td>24</td>
</tr>
<tr>
<td>Inokulum [ml]</td>
<td>1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur [°C]</td>
<td>30</td>
</tr>
<tr>
<td>Medium</td>
<td>Süß-, Sauermolke, Molkepermeat, auf pH 6,4 eingestellt</td>
</tr>
</tbody>
</table>

Eingesetzt wurden Stamm I und Stamm VIII. Die Butanolkonzentrationen wurden nach dem Animpfen überprüft und waren in den Kulturen bei Süßmolke 9,3 g/l, bei Sauermolke 9,2 g/l und bei Permeat 9,3 g/l.

In Abbildung 41 sind die Konzentrationsverläufe der Lösungsmittel und Säuren während der Fermentationen dargestellt. Bei keiner der Fermentationen konnte die Bildung von Ethanol nachgewiesen werden.

Bei beiden Stämmen wurde nach 48 h eine hohe Essigsäurekonzentration von bis zu 2,9 g/l festgestellt, die in den folgenden 100 h auf etwa 2,0 g/l abgebaut wurde, um zum Ende hin wieder bis auf 2,4 g/l anzusteigen.

Dagegen ergaben sich bei der Bildung von Buttersäure Unterschiede zwischen beiden Stämmen. Stamm I bildete in den ersten 48 h bis zu 1,1 g/l Buttersäure und verringerte die Konzentration in den folgenden Stunden um bis zu 0,7 g/l. Bei Stamm VIII dagegen stieg die Buttersäurekonzentration von Anfang an kontinuierlich bis zu 2,4 g/l (bei Süßmolke) an.
Abbildung 41: Produktbildung von Stamm I (A, B, C) und Stamm VIII (D, E, F) bei Süßmolke (A, D), Sauermolke (B, E) und Molkepermeat (C, F) in Butanol-haltigen Medien

In Abbildung 42 sind die zusätzlich zur Ausgangskonzentration gebildeten Lösungsmittel zusammengestellt. Bei beiden Stämmen wurden im Medium aus Molkepermeat die meisten zusätzlichen Lösungsmittel gebildet. Insgesamt wurde jedoch nur wenig zusätzliches Butanol gebildet und die Fermentation war stark gehemmt, was sich auch in einer geringen Gasbildung widerspiegelte.
Abbildung 42: Lösungsmittelbildung von Stamm I und Stamm VIII nach 240 h in Butanol haltigen Medien

Die Mechanismen dieser Produkthemmung könnten bei den Stämmen I und VIII ähnlich wie bei dem häufig untersuchten Stamm C. acetobutylicum ATCC 824 sein, bei dem Butanol mehrere Prozesse behindert, die in der Zellmembran angesiedelt sind. Verursacht wird dieser Einfluss durch eine Steigerung der Fluidität der Zellmembran durch Einlagerung von Butanol. Die Zellen können bis zu einem gewissen Grad die Fluidität reduzieren, indem verstärkt gesättigte Fettsäuren für die Zellmembran gebildet werden [86]. Im Einzelnen kann in Folge dessen der interne pH-Wert bei höheren Butanolkonzentrationen nicht mehr gehalten werden, die interne ATP-Konzentration wird durch Hemmung der Membran-ATPase verringert und davon unabhängig wird die Glukoseaufnahme behindert [87]. Während der Sturz des inneren pH-Wertes bei Butanol-Konzentrationen unter 150 mM (entspricht 10,8 g/l) nach Literaturangaben gering ist, fällt der innere pH-Wert ab 150 mM stark ab [88] und führt zu einer Hemmung des Wachstums von 50 % [89]. Die Lösungsmittel Ethanol und Aceton haben dagegen in Konzentrationen, wie sie bei ABE-Fermentations üblich sind, keinen hemmenden Einfluss [88].

Die maximal erreichbaren Butanol-Konzentrationen liegen im Bereich der in der Literatur beschriebenen Stämme bei der Fermentation von Glukose. Allerdings zeigt sich bei Stamm I im Vergleich mit der Versuchsreihe aus Kapitel 4.3.2 auch, dass abhängig vom Medium die Anfangskonzentration an Butanol einen Einfluss auf die Fermentation hat. Während bei Süßmolke und Molkepermeat auch mit Butanol im Medium beim Animpfen annähernd gleiche Ergebnisse wie in Versuchsreihe 4.3.2 erzielt wurden, ist die Butanolbildung bei Sauermolke ohne Butanol im Medium beim Animpfen deutlich höher (33 %).

4.4.2 Stabilität der Stämme gegen Degeneration

Unter Stabilität der Stämme wird hier die Fähigkeit eines Stammes verstanden, auch nach vielen Passagierungen die Fähigkeit zur Solventogenese zu behalten. Der schnelle Verlust dieser Fähigkeiten würde im industriellen Prozess einen erheblichen Mehraufwand zur Bereitstellung des Inokulums für die Fermenter bedingen.

Tabelle 25: Fermentationsbedingungen zur Untersuchung der Stammstabilität

<table>
<thead>
<tr>
<th>Stamm</th>
<th>I</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Vorkultur</td>
<td>RCM (L) mit Sporen beimpft</td>
<td>RCM (L) mit Sporen beimpft</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 24</td>
<td>24</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur</td>
<td>[°C] 30</td>
<td>30</td>
</tr>
<tr>
<td>Medien</td>
<td>Molkepermeat + 17,5 g/l FE</td>
<td>Molkepermeat + 17,5 g/l FE</td>
</tr>
</tbody>
</table>

Abbildung 43: Einfluss der Anzahl an Passagierungen (56 h) auf die Lösungsmittelbildung bei Stamm I bei Molkepermeat mit 17,5 g/l Fleischextrakt

Bei Stamm VIII dagegen war bereits nach der ersten Überimpfung die Lösungsmittelbildung deutlich reduziert. In Folge war zu beobachten, dass nach 5 d meist nur Spuren von Lösungsmitteln feststellbar waren, nach 10 d wurden bis zu 4 g/l gemessen. Es etablierte sich jedoch keine stabile Lösungsmittel bildende Kultur.
Um den Einfluss der Medienzusätze zu untersuchen, wurde die Versuchsreihe mit Stamm VIII auch auf einem Medium mit Hefeextrakt durchgeführt (Abbildung 45).

Bei diesem Medienzusatz konnten in beiden Kulturreihen vier Fermentationen mit hohen Lösungsmittelausbeuten durchgeführt werden, ab der fünften Überimpfung wurden nur noch geringfügig Lösungsmittel gebildet.

Abbildung 46: Einfluss der Anzahl an Passagierungen ohne Hitzeschock (7 d) auf die Lösungsmittelbildung bei Stamm I bei Molkepermeat mit 17,5 g/l Fleischextrakt

Wurde dagegen die Überimpfung mit Hitzeschock (wie in 3.2.3 beschrieben) durchgeführt, so konnte längerfristig eine stabile Lösungsmittelbildung beobachtet werden (siehe Abbildung 47).

Allerdings konnte auch bei dieser Versuchsreihe ab der 14. Überimpfung eine Reduktion der Lösungsmittelbildung beobachtet werden. Dies kann dadurch erklärt werden, dass die Parameter der Hitzebehandlung nicht ausreichten, um alle vegetativen Zellen abzutöten und sich daher trotz der Hitzebehandlung langfristig Zellen anreicherten, die die Fähigkeit zur Lösungsmittelbildung verloren hatten.
Abbildung 47: Einfluss der Anzahl an Passagierungen mit Hitzeschock (7 d) auf die Lösungsmittelbildung bei Stamm I bei Molkepermeat mit 17,5 g/l Fleischextrakt

Abbildung 48: Einfluss der Anzahl an Passagierungen ohne Hitzeschock (7 d) auf die Lösungsmittelbildung bei Stamm VIII bei Molkepermeat mit 17,5 g/l Fleischextrakt

Stamm VIII zeigte auch bei der Überimpfung nach 7 d nicht die Fähigkeit zur kontinuierlichen Lösungsmittelproduktion (Abbildung 48). Die Konzentrationen der Gesamtlösungsmittel fielen bereits nach 3 Passagierungen auf unter 3 g/l. Nach 5 Passagierungen wurde die Versuchsreihe abgebrochen und erneut aus einer Kultur angeimpft, die frisch aus Sporen herangezogen worden war. Wiederum war bei beiden Kulturreihen die Lösungsmittelbildung nach 3 Passagierungen nahezu eingestellt. Im weiteren Verlauf setzten sich teilweise Kulturen durch, die Lösungsmittel bildeten, eine stabile Lösungsmittelbildung über mehrere Passagieren konnte jedoch nicht etabliert werden.
Ergebnisse und Diskussion

Abbildung 49: Einfluss der Anzahl an Passagierungen mit Hitzeschock (7 d) auf die Lösungsmittelbildung bei Stamm VIII bei Molkepermeat mit 17,5 g/l Fleischextrakt

Auch bei der Überimpfung mit Hitzeschock war zu beobachten, dass nach drei Überimpfungen die gemessenen Lösungsmittelkonzentrationen (nach 10 d) nur noch unter 2 g/l lagen (Abbildung 49). Auch diese Versuchsreihe wurde abgebrochen und erneut mit einer frischen Kultur aus Sporen gestartet. In Folge war zu beobachten, dass nach jeder zweiten Überimpfung wieder deutlich mehr Lösungsmittel gebildet wurden, die Konzentrationen jedoch um 30 % geringer als die der Ausgangskultur waren. Bei der Bildung der Säuren konnte keine Tendenz festgestellt werden.

Abbildung 50: Einfluss der Anzahl an Passagierungen ohne Hitzeschock (7 d) auf die Lösungsmittelbildung bei Stamm VIII bei Molkepermeat mit 15,0 g/l Hefeextrakt

Erfolgte die Kultivierung von Stamm VIII nicht im Medium mit Fleischextrakt, sondern mit Hefeextrakt, so war ohne den Einsatz der Hitzebehandlung nach vier Passagierungen die Lösungsmittelbildung deutlich reduziert (siehe Abbildung 50). Allerdings setzte sich in Kulturreihe Nr. 2 nach 8 Passagierungen wieder eine Kultur durch, die bis zu 6,4 g/l Lösungsmittel bildete.
Deutlich bessere Ergebnisse ließen sich beim Einsatz der Hitzebehandlung erzielen, wie in Abbildung 51 zu sehen ist. So konnten in Kulturreihe Nr. 1 über 9 Passagierungen hinweg annähernd 10 g/l Lösungsmittel erreicht werden. In Reihe 2 nahm die Fähigkeit zur Lösungsmittelbildung allerdings stetig ab, bis nach 11 Passagierungen nur noch unter 1,0 g/l Lösungsmittel gebildet wurden.

4.5 Einfluss technologischer Parameter auf die Fermentation

4.5.1 Einfluss der Medienvorbehandlung

Die thermische Behandlung der Medien könnte daher einen wesentlichen Einfluss auf die Lösungsmittelbildung haben.

4.5.1.1 Pasteurisation der Medien

Tabelle 26: Fermentationsbedingungen zur Untersuchung des Einflusses der Pasteurisations-Bedingungen

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM(L) mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I / VIII</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 24</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur</td>
<td>[°C] 30</td>
</tr>
<tr>
<td>Medium</td>
<td>Süß-, Sauermolke, Permeat +</td>
</tr>
<tr>
<td></td>
<td>12 g/l HE bei Stamm I</td>
</tr>
<tr>
<td></td>
<td>+ 6.0 g/l HE bei Stamm VIII</td>
</tr>
</tbody>
</table>

Anschließend erfolgte die Pasteurisation in mehreren Wasserbädern in folgenden Schritten:

- Erhitzen in Wasserbad 1 (jeweils mit Schüttler, 40 U/min) bei einer Temperatur von 10 K über der Heißhaltetemperatur
- Halten der Temperatur in Wasserbad 2 bei Heißhaltetemperatur
Abkühlen in einem Kühlbad, das von Leitungswasser durchströmt wurde; um das Zerbersten der Flaschen zu verhindern, wurde die Temperatur des Kühlbads während des Abkühlens von ca. 50 °C auf ca. 20°C gesenkt.

![Temperaturverlauf in den Serumflaschen bei einer Heißhaltetemperatur von 80 °C](image)

Abb. 52: Temperaturverlauf in den Serumflaschen bei einer Heißhaltetemperatur von 80 °C

Tabelle 27: Einfluss der Pasteurisationsbedingungen auf die Kohlenhydratzusammensetzung der Permeat-Medien (Glukose, Laktulose, Epi-Laktose, Tagatose waren in keiner Probe nachweisbar)

<table>
<thead>
<tr>
<th>Bedingungen</th>
<th>80 °C / 1 min</th>
<th>80 °C / 5 min</th>
<th>80 °C / 10 min</th>
<th>90 °C / 1 min</th>
<th>90 °C / 5 min</th>
<th>90 °C / 10 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laktose [g/l]</td>
<td>43,06</td>
<td>45,33</td>
<td>45,58</td>
<td>42,85</td>
<td>42,25</td>
<td>44,78</td>
</tr>
<tr>
<td>Galaktose [g/l]</td>
<td>0,95</td>
<td>0,98</td>
<td>0,94</td>
<td>1,08</td>
<td>1,03</td>
<td>1,10</td>
</tr>
<tr>
<td>Fruktose [g/l]</td>
<td>0,06</td>
<td>0,06</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Wie in Tabelle 27 zu sehen ist, war bei den angewendeten Erhitzungsbedingungen kaum Degeneration von Laktose zu beobachten. In den Proben, die bei 80 °C behandelt wurden, war im Chromatogramm ein Peak in Nähe des Laktulose-Peaks zu beobachten (Retentionszeitverschiebung 0,1 min), der nicht zugeordnet werden konnte. Der Peak wurde mit Zunahme der thermischen
Belastung geringer und trat ab 90 °C und 5 min nicht mehr auf, was dagegen spricht, dass es sich um Laktulose gehandelt hat. Weiterhin konnte durch Zudosierung von Laktulose eine Retentionszeitverschiebung durch die Probenmatrix ausgeschlossen werden.

Die Lösungsmittelbildung bei Stamm I verlief in den pasteurisierten Proben schleppend. Nach 90 h bis 180 h wurden in keiner der Proben mehr als 5,5 g/l Gesamtlösungsmittel gefunden (siehe Abbildung 53 A). Dabei wurden nur geringe Mengen an Aceton und Ethanol gebildet (siehe Abbildung 54).

![Abbildung 53: Einfluss der Pasteurisationsbedingungen auf die Lösungsmittelproduktion durch Stamm I (A) und durch Stamm VIII (B) bei Molkepermeat](image)

Bei allen mit Stamm I durchgeführten Fermentationen war eine Abnahme der Acetonkonzentration nach ca. 100 h zu beobachten, so dass das A:B:E-Verhältnis während der maximalen Acetonkonzentration bei etwa 2:24:1 und am Ende der Fermentation (nach 186 h) bei etwa 1:640:40 lag. Das Verhältnis lag insgesamt zu Gunsten des Butanols. Die maximal erreichte Butanolkonzentration lag jedoch bei maximal 5,5 g/l. Zu beobachten war jedoch auch, dass mit Einstellen der Butanolsynthese erneut Buttersäure bis zu einer Endkonzentration von bis zu 6 g/l gebildet wurde.

![Abbildung 54: Produktbildung in pasteurisiertem Molkepermeat durch Stamm I (80 °C / 10 min)](image)
Ergebnisse und Diskussion

Im Gegensatz dazu verliefen die Fermentationen der pasteurisierten Proben mit Stamm VIII entsprechend der typischen ABE-Fermentation (siehe Abbildung 53 B). In Abbildung 55 sind die Lösungsmittelkonzentrationen nach 240 h bei der Fermentation von Süßmolke zu sehen. Hierbei konnte bei den pasteurisierten Proben eine Steigerung der Lösungsmittelbildung mit steigender thermischer Belastung des Mediums beobachtet werden. Die höchste Gesamtlösungsmittelkonzentration war 17,3 g/l bei der 10 Minuten Pasteurisation bei 90 °C. Mit weiter steigender thermischer Belastung (Autoklavieren) nahm die Lösungsmittelkonzentration wieder auf 15,1 g/l ab.

Abbildung 55: Einfluss der Pasteurisationsbedingungen auf die Lösungsmittelproduktion durch Stamm VIII bei Süßmolke

Mit steigender thermischer Belastung des Mediums zeigte sich auch eine Verschiebung der Verhältnisse der Lösungsmittel wie in Tabelle 28 zu sehen ist. Mit steigender thermischer Belastung verschoben sich die Verhältnisse zu Gunsten des Acetons, d.h. die Steigerung der Lösungsmittelbildung erfolgte vorrangig durch eine gesteigerte Acetonbildung.

Tabelle 28: Änderung der Lösungsmittelverhältnisse bei unterschiedlichen Erhitzungsbedingungen bei Stamm VIII (A = Aceton, E = Ethanol, B = Butanol)

<table>
<thead>
<tr>
<th></th>
<th>80 °C / 1 min</th>
<th>80 °C / 5 min</th>
<th>80 °C / 10 min</th>
<th>90 °C / 1 min</th>
<th>90 °C / 5 min</th>
<th>90 °C / 10 min</th>
<th>Autoklaviert</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/E</td>
<td>11</td>
<td>17</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>B/E</td>
<td>34</td>
<td>35</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>B/A</td>
<td>3,1</td>
<td>2,1</td>
<td>2,1</td>
<td>1,9</td>
<td>1,9</td>
<td>1,8</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Bei der Verwertung von Sauermolke zeigte sich, dass eine Pasteurisation bei 90 °C zu wesentlich höheren Lösungsmittelausbeuten führte als die Pasteurisation bei 80 °C (siehe Abbildung 56). Bei diesem Substrat wurde das beste Ergebnis bei einer Behandlung bei 90 °C für 5 min erreicht. Gegenüber dem autoklaviertem Medium konnte die Lösungsmittelbildung um 173 % gesteigert
werden, die Butanolbildung verbesserte sich um 139 %. Das Butanol-Aceton-Verhältnis verschob sich dabei von im Mittel 5,5 bei 80 °C auf 3,4 bei 90 °C zu Gunsten des Acetons.

Abbildung 56: Einfluss der Pasteurisationsbedingungen auf die Lösungsmittelproduktion durch Stamm VIII bei Sauermolke

Beim Einsatz von Molkepermeat als Medium zeichnete sich eine ähnliche Tendenz ab. Im Durchschnitt ergaben die bei 90 °C pasteurisierten Medien die höchsten Lösungsmittelkonzentrationen. Diese lagen auch über den Werten für die autoklavierten Medien (siehe Abbildung 57). Mit steigender Haltedauer wurden bei 90 °C jeweils höhere Lösungsmittelkonzentrationen erreicht. Auch beim Permeat verringerte sich jedoch das Butanol-Aceton-Verhältnis von im Durchschnitt 2,5 bei 80 °C auf 1,8 bei 90 °C.

Abbildung 57: Einfluss der Pasteurisationsbedingungen auf die Lösungsmittelproduktion durch Stamm VIII bei Molkepermeat

Die beiden eingesetzten Stämme verhielten sich auf pasteurisierten Medien stark unterschiedlich. Während bei Stamm I eine verstärkte Buttersäurebildung bei geringer Lösungsmittelbildung auftrat, konnte bei Stamm VIII eine Steigerung der Lösungsmittelbildung erreicht werden. Festzuhalten ist, dass im Batch-Prozess eine Sterilisation mit 120 °C nicht zwingend notwendig ist, jedoch abhängig vom Stamm die Erhitzungsbedingungen optimiert werden müssen. In industriellen Anlagen kann
jedoch zeitweise eine Sterilisation bei über 100 °C notwendig sein, wenn Infektionen mit hitzetoleranten Bakteriophagen auftreten.

Eine verstärkte Bildung von mit vorhandener Analytik nachweisbaren Abbauprodukten der Laktose war bei den angewendeten Pasteurisationsbedingungen nicht feststellbar und kann daher als Ursache für das unterschiedliche Verhalten weitgehend ausgeschlossen werden.

Auch wenn im Rahmen der Entwicklung eines Verfahrens zur Gewinnung von Lösungsmitteln aus Molke eine weitere Untersuchung der genauen Einflussfaktoren auf Grund der hohen Komplexität des Substrates Molke nicht möglich war, trugen die Ergebnisse wesentlich zur Verfahrensentwicklung bei. Diese Ergebnisse können auch zu weiteren Arbeiten im Bereich der Medienvorbereitung führen, um eine gesteigte Produktausbeute sowie einen reduzierten Energiebedarf für die Medienbereitung zu erreichen. Bisher ist der Einfluss der thermischen Medienbehandlung zur Keimreduktion auf die ABE-Fermentation wenig untersucht.

4.5.1.2 Sterilfiltration der Medien

Durch die Sterilfiltration kann eine Keimfreiheit der Medien ohne thermische Belastung erreicht werden. Insbesondere für ein Substrat wie Molke wäre ein solches Verfahren auch großtechnisch realisierbar. Um die Auswirkungen der Sterilfiltration zu untersuchen, wurden Medien zubereitet, die zum Einen autoklaviert wurden, und zum Anderen über einen sterilen Filter (0,22 µm) anaerob in leer autoklavierte Serumflaschen eingebracht wurden. Gleichzeitig wurde über eine zweite Kanüle, die ebenfalls mit einem Sterilfilter versehen war, überschüssiges Inertgas aus der Flasche abgelassen. Weitere Fermentationsbedingungen sind in Tabelle 29 zu finden. Es wurden jeweils zwei Flaschen pro Sterilisationsmethode und pro Stamm angeimpft.

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM(L) mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I / VIII</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 48</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur</td>
<td>[°C] 30</td>
</tr>
<tr>
<td>Medium</td>
<td>Permeat (17,5 g/l FE),</td>
</tr>
</tbody>
</table>

141In Abbildung 58 sind die gebildeten Lösungsmittel nach 186 h gegenübergestellt. Bei Stamm I war deutlich die Vorteilhaftigkeit des Autoklavierens gegenüber dem Sterilfiltrieren zu erkennen, während bei Stamm VIII kein wesentlicher Unterschied zwischen beiden Methoden zu erkennen war.
Weiterhin war zu beobachten, dass die Fermentation bei Stamm I im sterilfiltrierten Medium erstmals nicht reproduzierbar war. So überstieg die höhere Gesamtlosungsmittelkonzentration der einen Flasche die der Anderen um 44 %. Eine Infektion könnte Ursache gewesen sein, war jedoch mikroskopisch nicht nachweisbar.

Abbildung 58: Einfluss der Sterilisationsmethode (S=Sterilfiltrieren, A=Autoklavieren) auf die Lösungsmittelbildung in Doppelbestimmung (-1/-2) durch Stamm I und Stamm VIII

Abbildung 59: Zeitlicher Konzentrationsverlauf von Essig- und Buttersäure bei einem sterilfiltrierten (S) und einem autoklaviertem (A) Medium bei Fermentation mit Stamm I

Werden die Konzentrationsverläufe von Essig- und Buttersäure betrachtet, so fällt auf, dass bei Stamm I beim sterilfiltrierten Medium über 3,5 g/l Säuren gebildet wurden, die im weiteren Verlauf der Fermentation nicht mehr abgebaut werden konnten (Abbildung 59). Zeitgleich mit Erreichen der Maximalkonzentration an Säuren wurde auch die Lösungsmittel-Bildung weitestgehend eingestellt. Bei einem solchen Verhalten wird vom Säure-Crash einer Population gesprochen. Dagegen zeigten
die Säuren beim autoklavierten Medium den typischen Verlauf einer ABE-Fermentation mit einem Maximum zu Beginn der Fermentation und einer Reduktion der Konzentrationen im weiteren Verlauf.

Bei Stamm VIII dagegen war zwischen autoklaviertem und sterilfiltriertem Medium in Bezug auf die Säurebildung kein Unterschied erkennbar. Bei der Lösungsmittelbildung war bei den sterilfiltrierten Proben eine leicht verstärkte Acetonbildung zu beobachten, die in einer leicht erhöhten Bildung an Gesamtlösungsmitteln resultierte (siehe Abbildung 58).

4.5.2 Einfluss der Fermentationstemperatur auf die Produktbildung

Bereits bei der Auswahl der Mikroorganismen zeigte sich, dass die Fermentationstemperatur einen wesentlichen Einfluss auf die Lösungsmittelbildung hat (siehe Kapitel 4.2.). So war die Lösungsmittelbildung bei 37 °C gegenüber den Fermentationen bei 30 °C deutlich verringert. Entgegengesetzte Ergebnisse sind für die bisher in der Literatur beschriebenen Stämme bekannt (siehe Tabelle 5). Um eine für den eingesetzten Stamm günstige Fermentationstemperatur wählen zu können, wurden Fermentationen bei unterschiedlichen Temperaturen durchgeführt.

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>Permeat (2,5 mg/l Fe; 4,0 g/l HE), mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur [h]</td>
<td>24</td>
</tr>
<tr>
<td>Inokulum [ml]</td>
<td>1,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur [°C]</td>
<td>30</td>
</tr>
<tr>
<td>Medium</td>
<td>Permeat (2,5 mg/l Fe; 4,0 g/l HE)</td>
</tr>
</tbody>
</table>
Untersucht wurden 7 Temperaturstufen. Zu jeder Temperaturstufe wurden drei Flaschen beimpft. In Abbildung 60 sind die Gesamtlösungsmittelkonzentrationen nach jeweils 72 h und 144 h dargestellt. Zusätzlich ist die Standardabweichung der Konzentrationen in den drei Flaschen eingetragen.

Abbildung 60: Einfluss der Temperatur auf die Lösungsmittelbildung durch Stamm I

4.5.3 Einfluss der Laktosekonzentration

Da bei C. acetobutylicum ATCC 824 und P262 ein Einfluss der Laktosekonzentration auf die Lösungsmittelausbeute festgestellt wurde (siehe 2.3.5.3), wurde untersucht, inwieweit ein solcher Einfluss auch bei Stamm I und Stamm VIII besteht.

Dazu wurden Medien aus Molkepermeat mit unterschiedlichen Konzentrationen an Laktose hergestellt. Es sollten durch Verdünnung des Permeats mit Wasser Konzentrationen von 15 g/l, 25 g/l, 35 g/l, 45 g/l und 55 g/l Laktose erreicht werden. Durch die Verdünnung wurde jedoch auch der Gehalt an sonstigen Nährstoffen und Spurenelementen reduziert, was ebenfalls einen Einfluss auf die Lösungsmittelausbeute haben könnte. Daher wurde eine Vergleichsreihe angesetzt. Diese Medien wurden aus Permeat hergestellt, das auf 15 g/l Laktose verdünnt war. Anschließend wurden Laktose und destilliertes Wasser zugegeben, um die Zielwerte 25 g/l, 35 g/l, 45 g/l und 55 g/l Laktose zu erreichen. Als weitere Ergänzung wurde bei allen Medien 17,5 g/l Fleischextrakt zugegeben. Als Übersicht findet sich die Medienzusammensetzung in Tabelle 31.
Tabelle 31: Zusammensetzung der Medien zur Bestimmung des Einflusses der Laktosekonzentration

<table>
<thead>
<tr>
<th>Laktose Medium [g/l]</th>
<th>A: verdünnte Molkepermeatmedien</th>
<th>B: Medien mit reduzierten sonstigen Molkeinhaltsstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 25 35 45 55</td>
<td>15 25 35 45 55</td>
</tr>
<tr>
<td>Permeat [ml/l]</td>
<td>58,59 97,66 136,72 175,78 214,84</td>
<td>58,59 58,59 58,59 58,59 58,59</td>
</tr>
<tr>
<td>Fleischextrakt [g/l]</td>
<td>17,50 17,50 17,50 17,50 17,50</td>
<td>17,50 17,50 17,50 17,50 17,50</td>
</tr>
<tr>
<td>Laktose [g/l]</td>
<td>- - - - -</td>
<td>- 10 20 30 40</td>
</tr>
</tbody>
</table>

Abbildung 61: Einfluss der Laktosekonzentration auf die Lösungsmittelbildung bei verdünnten Molkepermeatmedien (A) sowie Medien mit reduzierten sonstigen Molkeinhaltsstoffen (B) durch Stamm I

Wie bereits für andere Stämme beschrieben (siehe Kapitel 2.3.5.3), existiert auch für Stamm I ein Optimum der Laktosekonzentration, bei dessen Überschreiten die Lösungsmittelbildung gehemmt wird. Im Gegensatz zu den in der Literatur beschriebenen Stämmen zeigte sich bei Stamm I jedoch keine Reduktion der Säurenbildung mit steigender Laktosekonzentration. Vielmehr stieg die
Säurenproduktion mit der Laktosekonzentration an (Abbildung 62). Dabei zeigte sich, dass am Ende der Fermentation die Säurenkonzentrationen bei den verdünnten Medien deutlich höher sind als bei den Medien, bei welchen die sonstigen Molkeinhaltstoffe reduziert sind. Dies zeigt, dass die weiteren Molkeinhaltstoffe Ursache einer verringerten Umsetzung der Säuren zu Lösungsmitteln sind.

Abbildung 62: Einfluss der Laktosekonzentration auf die Säurenkonzentrationen am Fermentationsende bei verdünnten Molkepermeatmedien (A) sowie Medien mit reduzierten sonstigen Molkeinhaltstoffen (B) durch Stamm I

Es zeigte sich bei der Auswertung der beiden Vergleichsreihen von Stamm I, dass eine Reduktion der sonstigen Molkeinhaltstoffe durch die Verdünnung und anschließende Zugabe von Laktose geringfügig vorteilhaft für die Lösungsmittelbildung war. So lagen die Lösungsmittelendkonzentrationen nach 186 h bei diesen Medien im Mittel um 6,6 Mass.-% höher. Während der Fermentation wurden in diesen Medien bis zu 18,8 Mass.-% mehr Lösungsmittel gemessen.

Bei Stamm VIII stieg mit der Laktosekonzentration der Anteil von Aceton und Ethanol an den Gesamtlösungsmitteln nicht an, wie in Abbildung 63 zu sehen ist, sondern blieb konstant im Bereich von 27 ± 2 Mass.-%, auch im Verlauf der Fermentation. Bei der Steigerung der Laktosekonzentration von 45 g/l auf 55 g/l war zwar keine erhebliche Steigerung der Lösungsmittelbildung zu beobachten, jedoch kam es auch nicht zu einer Hemmung des Umsatzes wie bei Stamm I.
Wie Stamm I zeigte auch Stamm VIII eine höhere Lösungsmittelbildung, wenn die sonstigen Molkeinhaltsstoffe reduziert wurden. Im Durchschnitt lagen die Endkonzentrationen an Lösungsmitteln dieser Medien um 9 Mass.-% höher.

Wichtiges Bewertungskriterium für einen industriellen Prozess ist die Lösungsmittelausbeute Y_{ABE}. Diese lässt mit den gebildeten Massen an Lösungsmitteln (m_A, m_B und m_E für Aceton, Ethanol und Butanol) und der Masse der fermentierten Kohlenhydrate (m_{KH}) wie folgt berechnen:

$$ Y_{ABE} = \frac{m_A + m_B + m_E}{m_{KH}} $$

In Tabelle 32 sind die Lösungsmittelausbeuten von Stamm I aus dieser Versuchsreihe zusammengefasst.

Tabelle 32: Lösungsmittelausbeuten bei unterschiedlichen Laktosekonzentrationen bei der Fermentation von Molkepermeat durch Stamm I

<table>
<thead>
<tr>
<th>Laktose vor Fermentation berechnet [g/l]</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laktose vor Fermentation HPLC [g/l]</td>
<td>11,2</td>
<td>19,7</td>
<td>27,8</td>
<td>36,9</td>
<td>45,1</td>
</tr>
<tr>
<td>Laktose nach Fermentation HPLC [g/l]</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>2,1</td>
<td>13,7</td>
</tr>
<tr>
<td>Gesamtlösungsmittel [g/l]</td>
<td>5,1</td>
<td>8,3</td>
<td>11,6</td>
<td>13,2</td>
<td>11,4</td>
</tr>
<tr>
<td>Y_{ABE}</td>
<td>0,43</td>
<td>0,42</td>
<td>0,42</td>
<td>0,38</td>
<td>0,36</td>
</tr>
<tr>
<td>Y_{ABE} bezogen auf hydrolysierte Laktose</td>
<td>0,41</td>
<td>0,40</td>
<td>0,40</td>
<td>0,36</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Um die Ergebnisse mit anderen Substraten und ABE-Fermentations-Prozessen vergleichbar zu machen, wurde ebenfalls die Lösungsmittelausbeute bezogen auf die hydrolysierte Laktose angegeben. Dieser Wert kann beispielsweise mit Lösungsmittelausbeuten verglichen werden, die sich auf Glukose beziehen.
Zu sehen ist, dass bereits bei 45 g/l Laktose die Umsetzung selbst nach 186 h nicht vollständig erfolgt war. Die theoretisch maximal mögliche Ausbeute ist abhängig von den Lösungsmittelverhältnissen und liegt rechnerisch bei 0,412. Bis zu einer Konzentration von 35 g/l wurde dieser Wert nahezu erreicht. Bei 45 g/l lag er nur noch bei 0,36, damit aber immer noch so gut wie bei industriellen Anlagen auf Stärkebasis. Zurückzuführen ist dies vorrangig darauf, dass mit steigender Ausgangskonzentration an Laktose zwar die Säurebildung nahezu proportional gestiegen ist, der Säureabbau jedoch bei höheren Konzentrationen gehemmt war. So verblieben am Ende der Fermentation beispielsweise bei 55 g/l Laktose bezogen auf 1 g Laktose 50 Mass.-% mehr Säuren im Medium als bei 45 g/l.

Tabelle 33: Lösungsmittelausbeuten bei unterschiedlichen Laktosekonzentrationen bei der Fermentation von Molkepermeat durch Stamm VIII

Laktose vor Fermentation berechnet [g/l]	15	25	35	45	55
Laktose vor Fermentation HPLC [g/l]	9,3	19,4	27,9	37,4	46,6
Laktose nach Fermentation HPLC [g/l]	0,0	0,0	0,0	1,4	14,0
Gesamtlösungsmittel [g/l]	3,0	6,8	8,6	10,2	10,3
\(Y_{\text{ABE}}\)	0,32	0,35	0,31	0,28	0,32
\(Y_{\text{ABE}}\) bezogen auf hydrolysierte Laktose	0,31	0,33	0,29	0,27	0,30

Deutlich schlechter lagen die Lösungsmittelausbeuten bei Stamm VIII, wie in Tabelle 33 zu erkennen ist. Wie auch Stamm I konnte Stamm VIII ab einer Konzentration von 45 g/l die Laktose nicht mehr vollständig verwerten. Eine eindeutige Tendenz zur Verschlechterung der Lösungsmittelausbeute bei steigender Laktosekonzentration ist jedoch nicht erkennbar.

4.5.4 Einsatz von Mischkulturen

Da die beiden ausgewählten Stämme I und VIII über unterschiedliche Eigenschaften verfügen, die sich ergänzen könnten, wurde untersucht, ob eine Mischkultur beider Stämme Vorteile bei der Verwertung von Molke hat. Stamm VIII bildete in vorangegangenen Versuchsreihen zu Beginn der Fermentation schneller und in höheren Konzentrationen Essig- und Buttersäure als Stamm I. Dadurch könnte bei Stamm I die Solventogenese früher eingeleitet werden. Stamm I könnte dann für ein schnelles Erreichen der Maximalkonzentration an Lösungsmitteln sowie einen vollständigen Laktoseumsatz sorgen..

Tabelle 34: Fermentationsbedingungen zur Untersuchung des Einflusses von Mischkulturen

Medium Vorkultur	RCM (L) mit Sporen beimpft
Stamm	Stamm I / Stamm VIII
Fermentationsdauer Vorkultur [h]	24
Inokulum je Stamm [ml]	1,0
Fermentationstemperatur Vorkultur [°C]	30
Medium	Süßmolke (17,0 g/l FE)

\[\text{Abbildung 64: Einsatz von Mischkulturen bei der Fermentation von Süßmolke}\]

4.5.5 Einfluss des Ausgangs-pH-Wertes

Der pH-Wert des Mediums ist wesentlicher Einflussfaktor beim Shift zur Solventogenese (siehe Kapitel 2.3.5.1). Durch die aufwändige Kontrolle des pH-Wertes während der Fermentation von Molke konnten bei den bisher in der Literatur beschriebenen Untersuchungen keine wesentlichen Verbesserungen erzielt werden.

\[\text{Tabelle 35: Fermentationsbedingungen zur Untersuchung des Einflusses des Anfangs-pH-Wertes}\]

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>RCM (L) mit Sporen beimpft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I / Stamm VIII</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 24</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 1.0</td>
</tr>
<tr>
<td>Fermentationstemperatur</td>
<td>[°C] 30</td>
</tr>
<tr>
<td>Medium</td>
<td>Molkepermeat (12,0 g/l HE)</td>
</tr>
</tbody>
</table>

Abbildung 65: Titrationskurven für 50 ml Molkepermeat (+ 12,0 g/l Hefeextrakt) mit 1 N HCl und 1 N NaOH

Tabelle 36: Tatsächliche pH-Werte der Serumflaschen für die Stämme I und VIII

<table>
<thead>
<tr>
<th>Soll-pH-Wert</th>
<th>Ist-pH-Wert Stamm I</th>
<th>Ist-pH-Wert Stamm VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,0</td>
<td>4,05</td>
<td>4,02</td>
</tr>
<tr>
<td>4,5</td>
<td>4,60</td>
<td>4,49</td>
</tr>
<tr>
<td>5,0</td>
<td>4,98</td>
<td>4,99</td>
</tr>
<tr>
<td>5,5</td>
<td>5,54</td>
<td>5,51</td>
</tr>
<tr>
<td>6,0</td>
<td>5,97</td>
<td>5,99</td>
</tr>
<tr>
<td>6,5</td>
<td>6,35</td>
<td>6,46</td>
</tr>
<tr>
<td>7,0</td>
<td>6,81</td>
<td>6,84</td>
</tr>
<tr>
<td>7,5</td>
<td>7,44</td>
<td>7,23</td>
</tr>
<tr>
<td>8,0</td>
<td>7,79</td>
<td>7,67</td>
</tr>
</tbody>
</table>
Die pH-Werte der Medien lagen zwischen 4,0 und 8,0 im Schritt von 0,5. Die erforderliche Menge an Säure bzw. Lauge wurde aus den Titrationsskurven ermittelt und über einen Sterilfilter in die bereits verschlossenen und autoklavierten Serumflaschen gegeben. Die Ist-pH-Werte wurden vor dem Animpfen überprüft und sind in Tabelle 36 zusammengefasst.

Abbildung 66: Einfluss des Anfangs-pH-Wertes auf die Lösungsmittelbildung bei Stamm I (Teil 1)

Abbildung 67: Einfluss des Anfangs-pH-Wertes auf die Lösungsmittelbildung bei Stamm I (Teil 2)

Während mit Stamm I bei einem Ausgangswert von pH 4,0 eine Produktbildung nur in Spuren zu beobachten war, waren die Unterschiede in der Lösungsmittelbildung bei allen anderen Start-pH-Werten nur gering. Die höchste Butanolkonzentration von 11,5 g/l wurde bei pH 5,5 erzielt.
Abbildung 68: Einfluss des Anfangs-pH-Wertes auf die Lösungsmittelbildung bei Stamm VIII (Teil 1)

Bei Stamm VIII war gegenüber Stamm I auch bei einem pH-Ausgangswert von 4,0 Lösungsmittelbildung zu beobachten. Allerdings wurden gegenüber den Vergleichsfermentationen deutlich weniger Lösungsmittel gebildet. Die Gesamtlösungsmittelkonzentration bei pH 4,0 war um 48 % niedriger als der Mittelwert bei allen weiteren Ausgangs-pH-Werten.
Abbildung 69: Einfluss des Anfangs- pH-Wertes auf die Lösungsmittelbildung bei Stamm VIII (Teil 2)

Beide Stämme zeigten sich im verwendeten Medium tolerant gegenüber Schwankungen des Anfangs-

Auffällig ist sowohl bei Stamm I als auch bei Stamm VIII, dass unabhängig vom Anfangs-pH-Wert am Ende der Fermentation jeweils annähernd der gleiche pH-Wert erreicht wurde. Dieser lag bei Stamm I bei zwischen 5,5 und 6,0 und bei Stamm VIII zwischen 4,5 und 5,0.

Die Ergebnisse zeigen sowohl für Stamm I als auch für Stamm VIII, dass ein Verfahrensschritt zur Einstellung des pH-Wertes des Mediums nicht zwingend notwendig ist.
Allerdings führen bei Stamm I pH-Werte zwischen 4,5 und 5,5 zu etwa 5 % bis 10 % größeren Lösungsmittelausbeuten als höhere pH-Werte, so dass eine pH-Wert-Absenkung zu Beginn der Fermentation im Verfahren vorteilhaft ist.

4.5.6 Einfluss der Rührgeschwindigkeit

Tabelle 37: Fermentationsbedingungen zur Untersuchung des Einflusses der Rührgeschwindigkeit

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>Permeat + 2,5 mg/l Fe / 4,0 g/l HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur [h]</td>
<td>24</td>
</tr>
<tr>
<td>Inokulum [ml]</td>
<td>12,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur [°C]</td>
<td>30</td>
</tr>
<tr>
<td>Medium</td>
<td>Permeat + 2,5 mg/l Fe / 4,0 g/l HE</td>
</tr>
</tbody>
</table>
In Abbildung 71 bis Abbildung 73 sind die Ergebnisse der Fermentationen mit 0 bis 160 U/min dargestellt.

Abbildung 70: Produktbildung bei der Fermentation von Molkepermeat in einem ungerührten Reaktor

Hierbei zeigte sich, dass bei der Butanol-Bildung zwischen 0 und 40 U/min kein wesentlicher Unterschied feststellbar war. Die Aceton- und Ethanolbildung war jedoch bei 40 U/min (Abbildung 71) etwa dreimal stärker als im unbewegten Reaktor. Außerdem war eine Steigerung der Maximal-Konzentrationen an Essig- und Buttersäure bei 40 U/min während der solventogenen Phase feststellbar. Die Endkonzentrationen der Säuren unterschieden sich jedoch nicht wesentlich vom ungerührten Fermenter.

Bei Steigerung der Rührgeschwindigkeit auf 80 U/min war die Konzentration an Gesamtlösungsmitteln ebenso hoch wie im ungerührten Behälter und bei 40 U/min. Jedoch verschob sich das A:B:E-Verhältnis von 1:3,8:1,2 bei 40 U/min auf 1,5:3,6:1,0 bei 80 U/min. Die Verhältnisse
Ergebnisse und Diskussion

verschoben sich zu Gunsten des Acetons. Die Endkonzentrationen der Essig- und Buttersäure stiegen ebenfalls an (Abbildung 72).

Abbildung 72: Produktbildung bei der Fermentation von Molkepermeat in einem Rührreaktor bei einer Drehzahl von 80 U/min

Bei einer weiteren Steigerung der Rührgeschwindigkeit auf 160 U/min wurden anfangs verstärkt Säuren gebildet. Nach 23 h lagen 3,1 g/l Buttersäure und 1,8 g/l Essigsäure vor. Diese Werte blieben die nächsten 40 h annähernd konstant, die Säuren wurden nicht abgebaut.

Abbildung 73: Produktbildung bei der Fermentation von Molkepermeat in einem Rührreaktor bei einer Drehzahl von 160 U/min

Die Lösungsmittelbildung kam wie bei 40 und 80 U/min ebenfalls nach 14 h in Gang, verlief jedoch langsamer, die Lösungsmittelkonzentrationen erlangten bereits nach 37 h annähernd die Maximalwerte, die mit 1,4 g/l für Butanol und 0,8 g/l für Aceton sehr niedrig lagen (Abbildung 73).

Dieses Verhalten spiegelte sich auch in den Verläufen von Redoxpotenzial und pH-Wert wieder (siehe Abbildung 74). Bei 160 U/min fiel der pH-Wert auf Grund der Säurenbildung ab, stieg in der
Folgezeit im Gegensatz zu den weiteren Reaktoren nicht mehr an, da Essig- und Buttersäure nicht abgebaut werden konnten.

\[\text{Abbildung 74: Redoxpotenzial und pH-Wert bei der Fermentation von Molkepermeat in einem Rührkesselreaktor bei verschiedenen Drehzahlen} \]

Auch im Verlauf der Redoxpotenziale zeigte sich, dass die Fermentation bei einer Rührgeschwindigkeit von 160 U/min nach 24 h abgebrochen ist. Das Redoxpotenzial stieg in den folgenden Stunden an, da im Fermenter kein Gas mehr gebildet wurde und daher Eindringen von Luft-Sauerstoff in den Fermenter möglich wurde, da die Rührreaktoren an der Durchführung der Schraubenwelle nicht vollständig gasdicht waren.

\[\text{Abbildung 75: Wasserstoffgehalt des Gases im Kopfraum der gerührten Fermenter} \]

Weiterhin wurden die Kulturen während jeder Probenahme mikroskopisch untersucht. Dabei konnte festgestellt werden, dass die Zellen der Kultur bei 160 U/min die Fähigkeit zur selbstständigen Bewegung verloren haben.
In Abbildung 75 ist der Wasserstoffgehalt des Gärsgases im Kopfraum der gerührten Fermenter zu drei Zeiten dargestellt. Erkennbar ist, dass mit Steigerung der Drehzahl auch der Wasserstoffgehalt im Kopfraum der Fermenter stieg.

Besonders stark waren die Unterschiede zum Zeitpunkt 40 h, während sich die mit 40 U/min und 80 U/min gerührten Fermenter in der solventogenen Phase befanden. Die Wasserstoffkonzentration im mit 40 U/min gerührten Fermenter lag während der Phase der Lösungsmittelbildung im Bereich des ungerührten Fermenters. Eine quantitative Messung der Gasbildung war auf Grund der geringen Undichtigkeit des Fermenters am Rührerlager nicht möglich. Jedoch bestätigten auch die Analysen der in Gasäcken aufgefangenen Gase die Messungen aus Abbildung 75.

Durch das Rühren wurde verstärkt Wasserstoff in die Gasphase überführt; der Partialdruck des Wasserstoffes in der Flüssigkeit sank. Die Steigerung des Anteils an Butanol erfolgt einhergehend mit der Verringerung der Wasserstoffkonzentration in der Flüssigkeit. Diese Ergebnisse stimmen mit einer Vielzahl von Veröffentlichungen zu C. acetobutylicum ATCC 824 überein, die eine verstärkte Butanolbildung bei geringerer Wasserstoffkonzentration durch eine verstärkte NADPH-Bildung durch die NADPH-Ferredoxin-Oxidoreduktase erklären, was wiederum eine verstärkte Aktivität der NAPH-abhängigen Butanol-Dehydrogenase zur Folge hat (zusammengefasst in [46]).

Die Fermentation sollte daher möglichst in ungerührten Fermentern ohne Umwälzung erfolgen, um einen möglichst hohen Wasserstoffpartialdruck in der Flüssigkeit aufrecht zu halten. In den hier dargestellten Versuchsreihen erfolgte die Fermentation nahezu bei Atmosphärendruck. Durch eine Fermentation in Druckbehältern könnte die Wasserstoffkonzentration in der Flüssigkeit gesteigert werden und die Butanolsynthese durch verstärkte Aktivität der Butanol-Dehydrogenase sehr wahrscheinlich gesteigert werden.

4.6 Gasbildung bei der Fermentation

Der Wasserstoff ist ein verwertbares Koppelprodukt bei der ABE-Fermentation von Molke. Daher ist für die Bewertung des Gesamtverfahrens die Kenntnis der CO₂- und H₂-Bildung notwendig.

Die Fermentationen zur Untersuchung der Gasbildung erfolgte entsprechend den Bedingungen in Tabelle 38 in Fermentern mit 2,0 l Flüssigkeitsvolumen (siehe 3.1.4.1).

<table>
<thead>
<tr>
<th>Medium Vorkultur</th>
<th>Permeat + 2,5 mg/l Fe / 4,0 g/l HE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
<td>Stamm I</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
<td>[h] 24</td>
</tr>
<tr>
<td>Inokulum</td>
<td>[ml] 25,0</td>
</tr>
<tr>
<td>Fermentationstemperatur Vorkultur</td>
<td>[°C] 30</td>
</tr>
<tr>
<td>^Medium</td>
<td>Permeat + 2,5 mg/l Fe + 2,0 g/l AS + unterschiedliche Konzentrationen HE</td>
</tr>
</tbody>
</table>

Eingesetzt wurden 0,5 g/l, 1,0 g/l und 4,0 g/l Hefeeextrakt. Die Medien wurden vor dem Animpfen 30 min mit sterillem Stickstoff gespült. Das Fermentationsgas wurde in Gasäcken aufgefangen und
Ergebnisse und Diskussion

auf die Zusammensetzung sowie auf die Spurengase analysiert. Weiterhin wurden die Volumina an gebildetem Gas gemessen. Die flüssigen und gasförmigen Produkte als Summenkurven beim Einsatz von 4,0 g/l HE sind in Abbildung 76 zu sehen.

Abbildung 76: Gas- und Produktbildung bei der Fermentation von Molkepermeat (2,5 mg/l Fe, 2,0 g/l AS, 4,0 g/l HE) mit Stamm I

Die Zuckerinkonzentrationen während der Fermentation mit 4,0 g/l HE sowie Verlauf des pH-Wertes finden sich in Abbildung 77.

Abbildung 77: Produktbildung und Zuckerverwertung bei der Fermentation von Molkepermeat (2,5 mg/l Fe, 2,0 g/l AS, 4,0 g/l HE) mit Stamm I
Bei der in Abbildung 78 gezeigten Fermentation wurde die Hefeextraktkonzentration auf 1,0 g/l reduziert, in der in Abbildung 79 dargestellten Fermentation weiter auf 0,5 g/l vermindert. Aus den Abbildungen ist ein Einfluss der Hefeextraktzugabe auf die Fermentationsgeschwindigkeit und damit in Zusammenhang auf die Gasbildung zu sehen. Erwartungsgemäß sank die Fermentations- und Gasbildungsgeschwindigkeit mit geringerem Hefezusatz.
Abbildung 80: Einfluss von Hefeextrakt auf Gasbildung und Lösungsmittelausbeute

Abbildung 81: Einfluss von Hefeextrakt auf Lösungsmittelzusammensetzung

Auch auf die Maximal-Konzentrationen an Lösungsmitteln sowie auf die Lösungsmittelzusammensetzung am Fermentationsende wirkte sich die unterschiedliche Menge Hefeextrakt aus. In der Übersicht ist dies in Abbildung 80 und Abbildung 81 zu sehen.

Die Lösungsmittelzusammensetzung zwischen den drei Fermentationen war unterschiedlich. Die Acetonkonzentration nahm mit steigendem Hefeextrakt zu Gunsten der Menge an Butanol ab. Dieses Ergebnis aus den 2,0 l Fermentern gleicht damit den Ergebnissen aus den 50 ml Fermentern, jedoch ist insgesamt die Acetonbildung stärker.

Von den Fermentationen mit 1,0 g/l und 4,0 g/l Hefeextrakt wurden die Anfangs- und Endkonzentrationen der Kohlenhydrate bestimmt, aus welchen die Lösungsmittelausbeuten berechnet wurden. Die Lösungsmittelausbeuten bezogen auf die Gesamtlösungsmittel lagen annähernd gleich, bezogen auf Butanol lag die Ausbeute beim Einsatz von 4,0 g/l Hefeextrakt um 0,022 höher bei 0,302 (siehe Abbildung 80).
Abbildung 82: Gasverhältnisse während der Fermentation von Molkepermeat

Entsprechend den konventionellen Verfahren mit Saccharose, Stärke oder Glukose war zu Beginn der Fermentationen das volumetrische Verhältnis CO$_2$ zu H$_2$ annähernd ausgeglichen oder lag zu Gunsten des Wasserstoffs. Im weiteren Verlauf, insbesondere zu Beginn der Lösungsmittelbildung, verschob sich das Verhältnis zum CO$_2$ hin (Abbildung 82). Während in konventionellen Verfahren und vielen Untersuchungen das Verhältnis CO$_2$ zu H$_2$ während der solventogenen Phase mit linearer Zunahme der Lösungsmittelkonzentrationen im Bereich von 2 liegt, wurden in den untersuchten Fermentationen Verhältnisse bis annähernd 12 gemessen. Insbesondere zum Ende der Fermentation bei sinkendem Stoffumsatz stieg das Verhältnis weiter bis auf 12 bei Zugabe von 4,0 g/l HE an.

Aus der Bildung der flüssigen Stoffwechselprodukte konnte die theoretisch zu erwartende CO$_2$-Menge berechnet werden. Diese ist zusammen mit der gemessenen Menge beispielhaft für den Einsatz von 4 g/l HE in Abbildung 83 dargestellt.

Abbildung 83: Theoretische und tatsächliche CO$_2$-Bildung bei der Fermentation von Molkepermeat bei Stamm I

Abbildung 84: Spurengase bei der Fermentation von Molkepermeat durch Stamm I

Da in industriellen Anlagen erhebliche Mengen an Lösungsmitteln über das Fermentationsgas ausgetragen werden [12], wurden die Fermentationsgase auf die enthaltenen Lösungsmittel und weitere Spurengase untersucht. Bis auf Wasser sind die gefundenen Spurengase in Abbildung 84 zusammengestellt. Neben den Lösungsmitteln Aceton, Ethanol und Butanol wurden die Stoffe Carbonylsulfid (COS), Dimethylsulfid (DMS), Methanol und Acetaldehyd gefunden.

Tabelle 39: Lösungsmittelmengen im Fermentationsgas

<table>
<thead>
<tr>
<th>Versuch Gasbildung (4 g/l HE) [mg/m³ Gas]</th>
<th>Industrielle Anlage [12] [mg/m³ Gas]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceton</td>
<td>455,3</td>
</tr>
<tr>
<td>Ethanol</td>
<td>24,6</td>
</tr>
<tr>
<td>Butanol</td>
<td>0,23</td>
</tr>
</tbody>
</table>

In Tabelle 39 sind die Lösungsmittelmengen bezogen auf 1,0 m³ aus dem durchgeführten Versuch den Literaturwerten einer industriellen Anlage gegenüber gestellt. Im Laborversuch wurden wesentlich weniger Lösungsmittel durch das Fermentationsgas aus dem Fermenter ausgetragen als bei der industriellen Anlage. In der industriellen Anlage wurde im Fermentationsgas 12 mal mehr Aceton als im Laborversuch gefunden, bei Ethanol und Butanol liegen die Werte der industriellen Anlage noch um ein Vielfaches höher. Zurückzuführen ist dies im Wesentlichen darauf, dass die Flüssigkeitssäulen der industriellen Fermenter wesentlich höher als die der Laborfermenter waren und daher die
Ergebnisse und Diskussion

Kontaktzeit zwischen Gasbläschen und Flüssigkeit im Labor wesentlich kürzer war und so weniger Lösungsmittel in die Gasphase übergehen konnten.

4.7 Einfluss des Fermentervolumens

Durch die Vergrößerung von Fermentern kann es zur Änderung von Druck, Scherkräften, Stoffgradienten, Durchmischung, Stoffaustausch und anderen Größen kommen. Diese Größen wiederum haben einen wesentlichen Einfluss auf den Ablauf der Fermentation [98].

Daher wurde der Einfluss der Maßstabsvergrößerung von 50 ml auf 2,0 l Flüssigkeit untersucht. Durchgeführt wurden jeweils 3 Fermentationen mit unterschiedlichen Nährstoffkombinationen entsprechend den weiteren Bedingungen aus Tabelle 38.

Abbildung 85: Einfluss des Fermentervolumens (50 ml und 2,0 l) auf die Lösungsmittelbildung nach 70 h bei unterschiedlichem Gehalt an Hefeeextrakt (HE) im Substrat

In Abbildung 85 sind die Lösungsmittelkonzentrationen nach jeweils 70 h Fermentationsdauer zu sehen. Bei allen Nährstoffkombinationen war die Fermentation nach 70 h im großen Fermenter weiter fortgeschritten. Einflussfaktor könnte zum Einen das größere Volumen und die aus der Behälterform resultierende kleinere spezifische Kontaktfläche zwischen Flüssigkeit und Gas sein. Zum Anderen ist das Substrat im größeren Fermenter auf Grund längerer Aufheiz- und Abkühlzeit einer höheren thermischen Belastung beim Autoklavieren ausgesetzt. Dies könnte sich positiv auswirken, da sich eine höhere thermische Belastung bei Stamm I positiv auf die Lösungsmittelbildung ausgewirkt hat (siehe Kapitel 4.5.1.1).

Um diesen Einfluss zu untersuchen, wurden Serumflaschen mit Medium bei unterschiedlichen Bedingungen autoklaviert. Zum Einen wurde der Temperaturfühler des Autoklaven in eine mit 50 ml Wasser gefüllte Flasche gegeben, zum Anderen in einen mit 2,0 l Wasser gefüllten Fermenter. Die Gesamtbehandlungsdauer wurde dadurch mehr als verdreifacht. Die weiteren Bedingungen entsprachen ebenfalls den Angaben in Tabelle 38. Das Medium war mit 1,0 g/l Hefeeextrakt angereichert. Es wurden jeweils 3 Serumflaschen autoklaviert und angeimpft.
Ergebnisse und Diskussion

In Abbildung 86 sind die Mittelwerte und Standardabweichungen der 3 Serumflaschen aufgetragen. Zu sehen ist, dass zwischen den beiden unterschiedlich behandelten Medien kein Unterschied bestand. Die Beschleunigung der Lösungsmittelbildung im Fermenter mit 2,01 Inhalt gegenüber den Serumflaschen mit 50 ml bei sonst gleichen Bedingungen ist folglich nicht auf eine erhöhte thermische Belastung während des Autoklavierens zurückzuführen.

Abbildung 86: Auswirkung der Autoklavierbedingungen (Vergleichsgefäße mit 50 ml und 2,0 l Wasser gefüllt) auf die Lösungsmittelbildung bei Stamm I

Unterschiede zwischen den 50 ml und 2,01 Fermentern lagen zum Einen in der höheren Flüssigkeitssäule und zum Anderen in dem daraus resultierenden unterschiedlichen Verhältnis von Volumen zu Grenzfläche zwischen Gas und Flüssigkeit. Dieses war im 50 ml Fermenter um den Faktor 4,6 größer als im 2,0 l Fermenter. Dies konnte zu einer schnelleren Sättigung des Fermenters mit gelöstem Wasserstoff und Kohlendioxid führen. Eine erhöhte Wasserstoff-Konzentration in der Flüssigkeit kann zu erhöhten Lösungsmittelausbeuten führen [99, 100].

4.8 Bildung von Biomasse

Bei den Versuchreihen zur Untersuchung der Gasbildung wurde daher auch die Bildung von Biomasse in Form von Zellen untersucht. In Abbildung 87 sind die Bildung von Zelltrockenmasse, die Veränderung der optischen Dichte sowie der Verlauf der Konzentration an Gesamtlösungsmitteln dargestellt.

4.9 Vorteile eines fortlauenden Betriebes

Nachteilig an diesem Verfahren ist jedoch, dass Steuerung und Kontrolle der Fermentation aufwändig sind. Insbesondere ist ein Eingreifen bei einer fehlerhaften Fermentation schwierig, da alle Fermenter untereinander verbunden sind. Eine Infektion oder eine degenerierte Kultur können sich daher in die gesamte Kaskade ausbreiten, bevor dies bemerkt werden kann.

Daher wird im Folgenden ein fortlauendes Verfahren beschrieben, das der in der Brauindustrie angewendeten Technologie entspricht. Dabei wird aus einem Fermenter das Inokulum für den Nächsten entnommen, die Fermenter werden jedoch im Batch-Betrieb gefahren. Durch Animpfen mit einem großen Volumen könnte dabei ebenfalls annährend ein Feed-Batch Betrieb realisiert werden,
ohne die Gefahr, dass sich eine Infektion oder eine degenerierte Kultur unkontrolliert ausbreiten. Stamm I hat sich für einen solchen Betrieb als geeignet gezeigt (siehe Kapitel 4.4.2).

Abbildung 88: Versuchablauf zum fortlaufenden Betrieb mit Fermenterinhalt (Gesamtvolumen aus Substrat und Inokulum) und Animpfmenge

Eingesetzt wurde ausschließlich Molkepermeat mit 2,5 mg/l Eisen, 2,0 g/l Ammoniumsulfat und 1,0 g/l Hefeextrakt. Fermentiert wurde mit Stamm I bei 30 °C. Die Mengen an Inokulum, die Fermenterinhalte, die Zeitpunkte der Überführung sowie die Überführungswege sind in Abbildung 88 dargestellt. Bei den Fermentern handelte es sich um Schottflaschen, das Medium wurde nicht mit Stickstoff gespült. Die Überführung erfolgte durch Umfüllen unter der Sterilbank, wobei Sauerstoff-Eintrag nicht vermieden werden konnte.
Abbildung 89 zeigt die Fermentationsverläufe der in Abbildung 88 mit 1 bis 4 bezeichneten Fermenter sowie jeweils den Zeitpunkt, zu dem die Teilmenge in den nächsten Fermenter überführt wurde.

Tabelle 40: Lösungsmittelbildung und Butanolproduktivität während des fortlauenden Betriebes

<table>
<thead>
<tr>
<th>Fermenter</th>
<th>Zeit [h]</th>
<th>Lösungsmittel-Konzentrationen</th>
<th>Gebildetes Butanol [g/l]</th>
<th>Produktivität Butanol [g/(l·h)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>10,5 6,8 0,8 9,5</td>
<td>6,6</td>
<td>0,138</td>
</tr>
<tr>
<td></td>
<td>72</td>
<td>13,6 10,6 1,6 9,5</td>
<td>10,5</td>
<td>0,145</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
<td>14,4 11,1 2,5 49,5</td>
<td>9,3</td>
<td>0,194</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>15,1 11,7 2,7 49,5</td>
<td>9,8</td>
<td>0,152</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>14,4 10,8 2,8 49,5</td>
<td>5,6</td>
<td>0,117</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>13,0 9,7 2,4 44,5</td>
<td>6,4</td>
<td>0,134</td>
</tr>
</tbody>
</table>

Tabelle 40 zeigt die Lösungsmittelkonzentrationen und die durchschnittliche Butanolproduktivität während der angegebenen Fermentationsdauer. Dabei wurde im Fermenter 2 die höchste Butanol-Produktivität erreicht. Offensichtlich ist dabei, dass bei annähernd gleichem Inokulum die Produktivität höher war, wenn sich die Kultur in der Wachstumsphase befand und die Anfangskonzentration an Butanol niedrig war (in diesem Fall unter 2,0 g/l).
4.10 Reststoff- und Abwasserentsorgung

4.10.1 Rückführung der Zellmasse

Um den Einfluss dieser Rückführung zu untersuchen, wurde die Biomasse entsprechend Tabelle 41 aus mehreren 1,0 l Fermentern gewonnen.

<table>
<thead>
<tr>
<th>Tabelle 41: Fermentationsbedingungen zur Zellrückführung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stamm</td>
</tr>
<tr>
<td>Fermentationsdauer Vorkultur</td>
</tr>
<tr>
<td>Inokulum</td>
</tr>
<tr>
<td>Fermentationstemperatur</td>
</tr>
<tr>
<td>Medien Vorkultur</td>
</tr>
<tr>
<td>Gewinnung Biomasse</td>
</tr>
<tr>
<td>Grundmedium</td>
</tr>
</tbody>
</table>

Die Fermentationen in den 1,0 l Behältern wurden durchgeführt, bis die Konzentrationen an Butanol über 10,5 g/l und an Gesamtlösungsmittel über 12,0 g/l lagen. Anschließend wurde die Biomasse in der Sorvall-Zentrifuge bei 4500 U/min bei 20 °C für 30 min abgetrennt. Die Gewinnung der Pellets erfolgte über zwei Methoden. Zum Einen erfolgte eine schonende Trocknung bei 50 °C für 4 h und eine anschließende Vermahlung im Achat-Mörser. Zum Anderen wurde das Pellet mit Molkepermeat soweit gelöst, bis eine exakte Flüssigdosierung möglich war. Sowohl vom Zellmassepulver als auch von der Suspension wurden die Trockenmassen bestimmt.
Anschließend wurden zum Grundmedium Zellmassepulver oder -suspension und Wasser zudosiert, so dass Konzentrationen bezogen auf die Zelltrockenmasse von 2,0 g/l, 4,0 g/l und 8,0 g/l erreicht wurden. Weiterhin wurden Medien mit 2,0 g/l Zellmasse und 0,5 g/l bis 3,0 g/l Hefeextrakt hergestellt. In Abbildung 90 ist die Bildung der Gesamtlösungsmittel bei den Medien mit Zugabe der Zellmasse als Suspension dargestellt.

Abbildung 90: Einfluss der Rückführung von Zellmasse (ZM) in Suspension auf die Fermentation mit Stamm I

Zu beobachten war, dass durch die alleinige Zugabe der Zellmasse vor dem Autoklavieren eine deutliche Steigerung der Lösungsmittelbildung möglich war. Während bei alleiniger Zugabe von 2,5 mg/l Eisen (Kapitel 4.3.4) maximal 2,5 g/l Gesamtlösungsmittel gebildet wurden, ließen sich bei der Zugabe von Zellmasse bis zu 8,0 g/l Lösungsmittel finden. Eine Erhöhung der Konzentration der Zellmasse führte jedoch bei den eingesetzten Konzentrationen nicht zu einer proportionalen Erhöhung der Lösungsmittel-Konzentrationen. Erst bei der Kombination von Zellmasse mit Hefeextrakt konnten nach 150 h wieder hohe Lösungsmittelkonzentrationen erreicht werden. Beim Einsatz von 1,0 g/l Hefeextrakt konnte die Lösungsmittelkonzentration nach 150 h um 24 % gesteigert werden. Der alleinige Einsatz von 2,0 g/l und 3,0 g/l Hefeextrakt mit Eisen führte bereits zu schnellem und vollständigem Umsatz der Laktose zu Lösungsmitteln (Kapitel 4.3.6.2). Durch die zusätzliche Zugabe von Zellmasse konnte jedoch die Fermentationsgeschwindigkeit weiter gesteigert werden. So wurde bei sonst gleichen Fermentationsbedingungen nach 45 h und 1,0 g/l Hefeextrakt bei durch Zugabe von 2,0 g/l Zellmasse die Lösungsmittel-Konzentration um 30 % gesteigert.

Die Ergebnisse beim Einsatz der getrockneten und vermahlenen Zellmasse waren ähnlich (Abbildung 91). Beispielsweise beim Einsatz von Zellmasse ohne Hefeextrakt stimmten die Endkonzentrationen der Lösungsmittel für die getrocknete Zellmasse und die Zellsuspension im Bereich von +/- 0,2 g/l überein.
Abbildung 91: Einfluss der Rückführung von getrockneter Zellmasse (ZM) auf die Fermentation mit Stamm I

Gezeigt werden konnte, dass durch die Rückführung der Zellmasse eine Beschleunigung der Fermentation möglich war. Um jedoch hohe Lösungsmittel-Konzentrationen zu erreichen, war weiterhin der Zusatz von Hefeextrakt notwendig. Dies zeigt, dass durch Hefeextrakt ein essentieller Nährstoff oder ein Spurenelement zur Verfügung gestellt wird, was prinzipiell in der rückgeführten Zellmasse ebenfalls vorhanden sein sollte, in der vorliegenden Form jedoch offensichtlich nur schwer für die wachsenden Zellen verfügbar ist. Durch einen Zellaufschluss könnte die Verfügbarkeit dieser Stoffe verbessert werden. Allerdings brachte ein einfacher mechanischer Aufschluss im Achatmörser keine Verbesserung. Grundsätzlich ist eine Rückführung eines Teiles der während der Fermentation gebildeten Biomasse sinnvoll, um eine weitere Beschleunigung der Fermentation zu erreichen.

4.10.2 Verwertung der Schlempe

4.10.2.1 Gewinnung der Schlempe

Um das Abwasser aus der Lösungsmittelfermentation von Molke bewerten und die weitere Verwertung untersuchen zu können, war die Abtrennung der Lösungsmittel notwendig, da diese wesentlichen Einfluss auf für Abwasser relevante Parameter (z.B. Chemischen Sauerstoffbedarf, CSB) haben. Die Gewinnung von ausreichend Substrat für diese Untersuchungen erfolgte entsprechend dem semikontinuierlichen Verfahren aus Kapitel 4.9. Eingesetzt wurde Stamm I auf einem Medium aus Molkepermeat mit 2,0 g/l Ammoniumsulfat, 2,5 mg/l Eisensulfat und 1,0 g/l Hefeextrakt. Die Fermentationen erfolgten in Schottflaschen mit Volumina von 1,0 l, 2,5 l und 5,0 l, die zur Hälfte mit Molkepermeat gefüllt waren. Alle 24 h konnten neue Flaschen angeimpft werden, indem diese mit 24 h alter Kultur auf 80 Vol.-% aufgefüllt wurden, um ausreichend Steigraum für Schaumbildung zu lassen. Nach 48 h erfolgte eine Untersuchung auf Fermentationsprodukte, um sicherzustellen, dass die Lösungsmittelbildung abgeschlossen war.

Anschließend erfolgte die Biomasseabtrennung durch 30 min Zentrifugation mit 5000 U/min bei 10 °C (Sorvall-Zentrifuge). Die Lösungsmittelabtrennung erfolgte über Destillation im Batch-Prozess.

Abbildung 92: Temperaturverlauf im Kopfraum der Destillationskolonne bei der Abtrennung der Lösungsmittel

Abbildung 93: Lösungsmittelkonzentrationen im Sumpf und Kopfraum in Abhängigkeit von der Kopfraumtemperatur

Im vorliegenden Fall hätte die Destillation 25 min, nachdem erstmals Dampf im Kopfraum messbar war, beendet werden können (Temperatur Kopfraum 98 °C). Die Gesamtkonzentration an
Lösungsmitteln im Sumpf betrug 0,22 g/l. Um den Aufwand bei den folgenden Destillationen zu reduzieren, erfolgte die Steuerung über die Temperatur im Kopfraum. Da die Siedetemperatur jedoch vom Luftdruck abhängig ist, wurde die Destillation abgebrochen, wenn die Kopfraumtemperatur für 5 min konstant blieb.

Durch Aufstellen der Massenbilanz der Destillation konnte festgestellt werden, dass die Lösungsmittel im Kopfraum vollständig kondensiert wurden und dass 25 Mass.-% der Medien verdampft werden mussten, um eine Lösungsmittelkonzentration im Sumpf von unter 0,5 g/l zu erreichen.

Im Gegensatz zu Anlagen, die mit stärkehaltigen Substraten arbeiten, ist eine Kreislaufführung des Wassers nicht möglich, da kontinuierlich Wasser durch die Molke eingebracht wird. Der Reststoff im Sumpf, die Schlempe, muss entsorgt werden.

Wesentlicher Parameter bei der Bewertung von Abwasser ist der CSB. Der CSB und weitere Ergebnisse aus der Untersuchung der Schlempe finden sich in Tabelle 42.

Tabelle 42: Parameter von Schlempe aus der ABE-Fermentation von Molke

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSB [g/l]</td>
<td>20,1</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>5,6</td>
</tr>
<tr>
<td>(\text{NH}_4^+) [mg/l]</td>
<td>422,5</td>
</tr>
<tr>
<td>(N_{\text{Gesamt}}) [mg/l]</td>
<td>549</td>
</tr>
<tr>
<td>Aceton [mg/l]</td>
<td>15,3</td>
</tr>
<tr>
<td>Ethanol [mg/l]</td>
<td>190,1</td>
</tr>
<tr>
<td>Butanol [mg/l]</td>
<td>258,7</td>
</tr>
<tr>
<td>Essigsäure [mg/l]</td>
<td>289,2</td>
</tr>
<tr>
<td>Propionsäure [mg/l]</td>
<td>6,0</td>
</tr>
<tr>
<td>Isobuttersäure [mg/l]</td>
<td>17,3</td>
</tr>
<tr>
<td>Buttersäure [mg/l]</td>
<td>191,4</td>
</tr>
<tr>
<td>Isovaleriansäure [mg/l]</td>
<td>7,4</td>
</tr>
<tr>
<td>Valeriansäure [mg/l]</td>
<td>1,9</td>
</tr>
<tr>
<td>Hexansäure [mg/l]</td>
<td>1,3</td>
</tr>
<tr>
<td>Önanthäsäure [mg/l]</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Der CSB des Molkpermeates mit Zusatzstoffen lag vor der Fermentation bei 130 g/l. Durch die Fermentation konnte also eine erhebliche Reduzierung des CSB erreicht werden. Für die Entsorgung als Abwasser ist jedoch noch eine weitere Behandlung notwendig.
Auswahl des Systems zur Schlempebehandlung

| Tabelle 43: Industriell eingesetzte Verfahren zur anaeroben Abwasserbehandlung [104] |
|---------------------------------|---------------------------------|
| **Vorteile** | **Nachteile** |
| Ausschwemmreaktor (Continuously Stirred Tank Reaktor) | geringer Aufwand | lange Verweilzeit |
| Anaerobe Belebung | positiv bei Feststoffen (z.B. anorganischen Bestandteilen, wie Kalk) | nur geringe CSB-Belastung möglich |
| Membranunterstützte Anaerobreaktoren | Biomasseerhöhung im Reaktor | nur geringfügig höhere CSB-Belastung als in der anaeroben Belebung möglich |
| Schlammbettreaktoren (Upstream Anaerobic Sludge Blanket, UASB) | Biomasseanreicherung durch Pelletbildung, hohe CSB-Belastungen möglich, robustes System | Pelletbildung nicht bei allen Abwässern möglich |
| Hochleistungs-UASB-Reaktor (Expanded Granular Sludge Bed) | hohe Schlammbetthöhen möglich, hohe Aufströmgeschwindigkeit, sehr hohe CSB-Belastungen möglich | Kosten für Rezirkulations-Pumpe |
| Festbettreaktoren | hohe Raumbelastungen möglich | hohe Kosten für Trägermaterial |
| Fließbettreaktoren | sehr hohe Raumbelastungen möglich, geringer Platzbedarf | geringe Erfahrung mit industriellen Anlagen |

Gewählt wird der UASB-Reaktor, da eine hohe CSB-Belastung möglich sein sollte. Die Anfälligkeit gegenüber Störungen, z.B. durch schwankende Abwasserqualität, sollte nur eine geringe Rolle

4.10.2.3 Schlempebehandlung im Biogas-Reaktor

Zu Beginn wurden 1,4 l Pellets mit den Eigenschaften entsprechend Tabelle 44 in den Versuchsreaktor eingebracht.

<table>
<thead>
<tr>
<th>Tabelle 44: Eigenschaften des UASB-Reaktors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil Pellets am Festbett (nass) [Mass.-%]</td>
</tr>
<tr>
<td>70,0</td>
</tr>
<tr>
<td>Organische Trockensubstanz Festbett (nass) [Mass.-%]</td>
</tr>
<tr>
<td>6,7</td>
</tr>
<tr>
<td>Organische Masse Festbett [g]</td>
</tr>
<tr>
<td>94,1</td>
</tr>
</tbody>
</table>

Weiterhin wurden die Rohrleitungen mit Brauereiabwasser gefüllt. Es folgte ein Spülen des gesamten Systems mit Stickstoff. Dabei wurde Stickstoff am tiefsten Punkt eingebracht. Gespült wurden sowohl alle Gasleitungen als auch alle Flüssigkeitsleitungen sowie der Reaktorinhalt, bis ein Redoxpotenzial von unter −300 mV im UASB-Reaktor erreicht wurde. Die Gasbildung setzte umgehend ein. Während der ersten 24 d wurde der Reaktor im Kreislauf gefahren. Der Reaktorinhalt wurde dabei 4 mal täglich umgewälzt. Während dessen wurden geringe Mengen Substrat (ABE-Schlempe) zudosiert. Die Raumbelastung wurde dabei von 0,5 g/(l·d) nach 15 d auf 1,0 g/(l·d) und nach 20 d auf 2,0 g/(l·d) gesteigert. Die Raumbelastung ist dabei definiert als die Menge Belastung in g CSB, die je Zeit- und Volumeneinheit dem Reaktor zugeführt wird.

Während dieser Zeit pendelten sich Gasbildung, CSB des Ablaufes und Fettsäurespektrum auf konstante Werte ein. Anschließend erfolgte eine Umschaltung des Reaktors auf Durchflussbetrieb, d.h. das am Boden zugeführte Substrat wurde nach Durchlaufen des UASB-Reaktors umgehend aus dem System entnommen. Durch Anpassung der Pumpenleistung wurde die Raumbelastung 3 d lang auf 2,0 g/(l·d) beibehalten.

\[Tabelle \text{ 45: Pumpenleistung und Verweilzeit im UASB-Reaktor} \]

<table>
<thead>
<tr>
<th>Volumen Flüssigkeit + Festbett [l]</th>
<th>4,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumpenleistung [l/d]</td>
<td>4,5</td>
</tr>
<tr>
<td>Verweilzeit UASB-Reaktor [h]</td>
<td>21,3</td>
</tr>
<tr>
<td>Verweilzeit Festbett [h]</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Während der Versuchsphase wurde die Raumbelastung dann entsprechend Tabelle 46 gesteigert.

\[Tabelle \text{ 46: Raumbelastungen des UASB-Reaktors während der Versuchsphase} \]

<table>
<thead>
<tr>
<th>Tag Versuchsphase [Nr.]</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raumbelastung [g/(l·d)]</td>
<td>2,25</td>
<td>4,5</td>
<td>6,75</td>
<td>9,0</td>
<td>10,125</td>
<td>11,25</td>
<td>13,5</td>
<td>11,25</td>
<td>5,625</td>
</tr>
</tbody>
</table>

Abbildung 94: CSB-Abbau und Raumbelastung im UASB-Reaktor

In Abbildung 94 sind CSB-Abbau und Raumbelastung während der 16 d Versuchsphase dargestellt. In diesem und den folgenden Diagrammen sind die Kurven teilweise zeitversetzt dargestellt, damit Ursache (in Form von Raumbelastung) und Wirkung (beispielsweise CSB-Abbau) direkt übereinander dargestellt sind.

Zu sehen ist, dass die CSB-Verringerung während der ersten 14 d im Bereich zwischen 85 % und 90 % und damit im Bereich industrieller Anlagen lag (vgl. [104]). Im Bereich des 12./13. Tages erfolgte die Überlastung des Reaktors, die CSB-Verringerung fiel in Folge auf unter 80 % ab. Selbst nach deutlicher Reduzierung der CSB-Fracht konnte die gute Abbauleistung des Reaktors nicht innerhalb weniger Tage wieder hergestellt werden.
Nach den dargestellten 16 Versuchstagen wurde der Reaktor für weitere 5 d betrieben. Dabei konnte die Raumbelastung wieder gesteigert werden, die CSB-Abbauleistung stieg wieder auf über 85 %.

Abbildung 95: Verlauf von Raumbelastung und von Konzentrationen von organischen Säuren im UASB-Reaktor

Abbildung 96: Verlauf der Raumbelastung und der Verhältnisse von organischen Säuren im UASB-Reaktor

Wesentliches Ergebnis des anaeroben Abbauprozesses ist die Bildung des Biogases. Dessen Bildung ist neben der Raumbelastung in Abbildung 98 dargestellt.

Neben der Gasmenge ist vorrangig auch die Gaszusammensetzung wesentliches Beurteilungskriterium. Wichtig sind die Gehalte an CH₄, CO₂, H₂S und H₂. Die Zusammensetzung des Gases ist in Abbildung 99 zu finden.
Abbildung 99: Raumbelastung und Zusammensetzung des Biogases des UASB-Reaktors

Der Verlauf der Fettsäurekonzentrationen spiegelt deutlich die Raumbelastung wieder. Bei der ersten deutlichen Steigerung der Raumbelastung vervielfachte sich die Essigsäurekonzentration; Propionsäure konnte erstmals mit 44 mg/l nachgewiesen werden. Im Vergleich zur Essigsäure unterproportional stiegen auch die Konzentrationen der weiteren organischen Säuren an. Bei den weiteren Steigerungen der Raumbelastung erfolgte immer auch ein Anstieg der Säurenkonzentrationen. Entsprechend entgegengesetzt reagierte der pH-Wert. Wurde die Raumbelastung konstant gehalten, wie zwischen dem 6. und 10. Tag auf 9,0 g/(l · d), so erfolgte eine leichte Reduzierung der Fettsäurenkonzentrationen. Dies ging auch mit einer leichten Steigerung der CSB-Abbaurate sowie einer Steigerung der spezifischen Gasausbeute einher. Die Gasqualität blieb dabei nahezu konstant. Der Proteinabbau pendelte sich nach 2 Tagen auf einen konstanten Wert ein, wie an der H₂S- und Ammoniumkonzentration zu erkennen ist. Die Mikrobiologie konnte also bei einer Raumbelastung von 9,0 g/(l · d) stabile Abbauverhältnisse schaffen, eine weitere leichte Verbesserung wäre noch zu erwarten gewesen.

Bei der folgenden Steigerung auf bis zu 13,0 g/(l · d) Raumbelastung erfolgte ein Zusammenbruch der Abbauleistung. Sowohl die Essig- als auch die Propionsäurekonzentration stiegen stark an, die Gesamtsäurekonzentration lag im Maximum bei 1,4 g/l. Das Verhältnis Essigsäure zu Propionsäure sank von 12 auf einen Wert von 3. Während aus Erfahrungswerten ein Wert von über 8 für eine stabile Methanisierung spricht, gilt ein Wert von unter 3 als kritisch. Der CH₄-Gehalt sank in dieser Phase zu Gunsten des CO₂-Gehaltes ab. H₂ war jedoch im Gas zu keiner Zeit nachweisbar.

Der Zusammenbruch der Abbauleistung und der damit verbundene Einbruch bei der spezifischen Gasbildung standen in Zusammenhang mit dem starken Konzentrationsanstieg der Essigsäure auf annähernd 1000 mg/l. Dies führte zu einer Reduzierung des Propionsäureabbaus, wie es auch von vielen anderen Autoren gezeigt wurde (z.B. bei Mawson [105]). In Folge stieg die Propionsäurekonzentration auf über 290 mg/l an. Selbst nach Reduzieren der CSB-Fracht auf 5,625 g/(l · d) innerhalb von 2 d dauerte es über 4 d, bis die Hemmung wieder abgebaut war. Diese Ergebnisse stimmen mit Ergebnissen von van Lier et al. [106] überein, die ebenfalls im UASB-

Auf Grund der sinkenden Methanproduktion während der Überlast erfolgte eine Anreicherung von H₂S im Biogas. An Versuchstag 12 wurden 2,5 Vol.-% H₂S gemessen. Durch eine solche Konzentration kann eine Hemmung der Methanbildung bereits eingeleitet werden. Nach Reduzierung der Raumbelastung sank die H₂S-Konzentration innerhalb von 4 d wieder auf unter 2,0 Vol.-% ab. Durch die Reduzierung der CSB-Fracht konnte eine totale Hemmung der Methanbildung verhindert werden, die sich ergeben kann, weil die Hemmung der Methanisierung und die daraus resultierende Steigerung der H₂S-Konzentration ein selbstverstärkender Prozess ist (vgl. [104]).

Die Konzentration an Ammonium (als NH₄⁺) lag während der gesamten Versuchsphase unter 400 mg/l und führte daher beim vorherrschenden pH-Wert zu keiner Hemmung (vgl. [104]).

Zusammenfassend zeigte sich, dass die eingesetzte ABE-Schlempe im UASB-Reaktor gut verwertet werden kann. Bei einer Raumbelastung von 9,0 g/(l·d) konnten sehr gute Werte bezüglich Gasmenge und Gaszusammensetzung erzielt werden. Eine weitere Steigerung kann möglich sein, wenn die Raumbelastung langsamer gesteigert wird. Die Geschwindigkeit der Steigerung in der Versuchsphase (Steigerung der CSB-Raumbelastung um 50 % in 3 d) war zu hoch, und die Methanisierung wurde gehemmt.

4.11 Schlussfolgerungen und Anlagenkonzept

Für die Entwicklung des Anlagenkonzeptes wird eine Molkerei mit einem Molkeanfall von 306 kt/a zu Grunde gelegt. Das entspricht 840,0 t/d oder 37,8 t/d Laktose bei einem Laktosegehalt von 4,5 Mass.-% bei 365 Betriebstagen pro Jahr. Verwertet werden soll Molkepermeat. Dabei wird davon ausgegangen, dass das Molkepermeat bei einer Temperatur von 30 °C verfügbar ist. Die Laktosekonzentration wird auf Grund der Ergebnisse aus Kapitel 4.5.3 auf 45 g/l eingestellt.

In den Versuchsreihen aus Kapitel 4.3.1 bis 4.3.6 wurde eine sinnvolle Kombination an Zusatzstoffen gefunden. Die Zugabe dieser Kombination (2,0 g/l Ammoniumsulfat, 2,5 mg/l Eisensulfat und 1,0 g/l Hefeextrakt) soll vor der Sterilisation des Substrates erfolgen, wie in Abbildung 100 dargestellt ist. Das Substrat wird anschließend thermisch bei 120 °C behandelt (entsprechend der Ergebnisse aus Kapitel 4.5.1). Die Temperaturhaltezeit von 20 min wird in einem 13 m³ Behälter realisiert, anschließend erfolgen die Abkühlung auf die Fermentationstemperatur von 30 °C und die Zwischenlagerung in einem Pufferbehälter mit 450 m³. Die Massenbilanz findet sich in Tabelle 47.
Abbildung 100: Verfahrensfließbild der Medienbereitung (1 Molkepermeat, 2 Ammoniumsulfat, 3 Eisensulfat, 4 Hefeextrakt, 5 Mischstrecke, 6 Wärmezufuhr, 7 Verweilzeitbehälter, 8 Rückkühlung, 9 Puffertank, 10 Einstellen der Fermentationstemperatur)

Tabelle 47: Massenbilanz der Substratbereitung

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molkepermeat</td>
<td>35,0 [t/h]</td>
</tr>
<tr>
<td>Ammoniumsulfat</td>
<td>70,0 [kg/h]</td>
</tr>
<tr>
<td>Eisensulfat</td>
<td>87,5 [g/h]</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>35,0 [kg/h]</td>
</tr>
<tr>
<td>Substrat für Fermentation</td>
<td>35105,1 [kg/h]</td>
</tr>
</tbody>
</table>

Auf Grund der Ergebnisse der vorhergehenden Kapitel (4.2, 4.4.1 und 4.4.2) wird Stamm I als Produktionsstamm gewählt. Wesentlicher Vorteil gegenüber Stamm VIII ist neben der hohen Fermentationsgeschwindigkeit und des vollständigen Laktoseumsatzes die hohe Stabilität des Stammes bei der Molkefermentation. Darüber hinaus zeigte Stamm I bei richtiger Handhabung auch
weitere Vorteile im Prozess wie Toleranz gegenüber Sauerstoff oder einfache Stammhaltung und Kultivierung.

Die Kulturen sollen 6 mal weitergeführt werden, das heißt alle 288 h soll die Produktionskultur durch eine frische Kultur aus Sporen ersetzt werden. Bei zwei parallelen Fermenterlinien ist eine neue Kultur alle 144 h notwendig. Dazu sollen ein 1 m³ und ein 25 m³ Behälter (Pre-Fermenter) dienen. Der 1 m³ Pre-Fermenter soll mit einer Laborkultur angeimpft werden und nach 12 h in den 25 m³ Behälter überführt werden, aus dem nach weiteren 12 bis 24 h die Überführung in die Produktionsfermenter erfolgt.

Abbildung 101: Zeitlicher Verlauf der Fermentationen

Zwischen Fermentation und der kontinuierlichen Produktabtrennung ist ein Pufferbehälter notwendig, der mit 450 m³ die Produktion von 2 Fermentern aufnehmen kann. Die Produktkonzentrationen am Ende der Fermentation sollen 11,6 g/l Butanol, 2,7 g/l Aceton und 0,8 g/l Ethanol betragen. In Tabelle 48 ist die Massenbilanz der Fermentation dargestellt.

Tabelle 48: Massenbilanz der Fermentation

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrat für Fermentation [kg/h]</td>
<td>35105,1</td>
</tr>
<tr>
<td>CO₂ [kg/h]</td>
<td>817,8</td>
</tr>
<tr>
<td>H₂ [kg/h]</td>
<td>15,6</td>
</tr>
<tr>
<td>Fermentiertes Substrat [kg/h]</td>
<td>34271,6</td>
</tr>
</tbody>
</table>

Die Fermentation ist nach 42 h noch nicht vollständig abgeschlossen. Es verbleiben nicht fermentierte Zucker, insbesondere Galaktose, im Fermenter. Die Ausbeute beträgt 34,7 %, das bedeutet 85 % der stöchiometrisch möglichen Ausbeute von 42 % werden erreicht. Es wird auf Ausbeute zu Gunsten der Reduzierung der Fermentationszeit verzichtet.
Ein Teil des CO\textsubscript{2} liegt in gebundener Form vor. Dieses wird vor oder während der Produktabtrennung in die Gasphase überführt und dem Fermentationsgasstrom zugeführt. In Tabelle 48 ist das im Medium gebundene CO\textsubscript{2} eingerechnet. Wird die Gasbildung der 8 Fermenter simuliert, so ergibt sich der zeitliche Verlauf des Volumenstroms von Fermentergas aus Abbildung 102.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure}
\caption{Abbildung 102: Zeitlicher Anfall an Fermentationsgas-Volumenstroms}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{lcc}
\hline
 & Input & Output \\
\hline
Fermentiertes Substrat & 34271,6 kg/h & 92,5 kg/h \\
Aceton & & \\
Ethanol & & 27,5 kg/h \\
Butanol & & 339,5 kg/h \\
Schlempe & & 33754,1 kg/h \\
\hline
\end{tabular}
\caption{Tabelle 49: Massenbilanz der Produktabtrennung}
\end{table}

Die heiße Schlempe wird in einem Wärmeübertrager auf 37 °C abgekühlt, im Gegenstrom wird das fermentierte Substrat vorgewärmt. Es folgt anschließend die Abtrennung der Biomasse durch eine Zentrifuge.
Tabelle 50: Massenbilanz der Zentrifuge

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schlempe [kg/h]</td>
<td>33754,1</td>
<td></td>
</tr>
<tr>
<td>Zentrifugat [kg/h]</td>
<td></td>
<td>1786,9</td>
</tr>
<tr>
<td>davon Trockennasse [kg/h]</td>
<td></td>
<td>121,5</td>
</tr>
<tr>
<td>Zentrifugierte Schlempe [kg/h]</td>
<td></td>
<td>31967,1</td>
</tr>
</tbody>
</table>

Die zentrifugierte Schlempe wird entsprechend der Ergebnisse aus Kapitel 4.10.2 im UASB-Reaktor verwertet, der mit einer Raumbelastung von 11 g/(l d) betrieben werden soll. Daraus ergibt sich ein Raumbedarf für den UASB-Reaktor von 1400 m³. Das Biogas hat die voraussichtliche mittlere Zusammensetzung von 60,3 Vol.-% Methan, 37,7 Vol.-% CO₂ und 2,0 Vol.-% H₂S. Der CSB Abbau liegt bei ca. 90 %, das aufbereitete Wasser ist mit ca. 2000 mg/l CSB belastet und kann in die kommunale Abwasserentsorgung oder nach einer aeroben Nachbehandlung in einen Vorfluter abgegeben werden. Das Biogas kann z.B. in einem Dampfkessel genutzt werden, um den Dampfbe darf des Prozesses zu decken.

Der zu deckende thermische Energiebedarf ergibt sich im Wesentlichen aus dem Energiebedarf der Produktabtrennung (648 kW), der Substratsterilisation (190 kW) und dem sonstigen Energiebedarf, wie z.B. für Reinigung. Da bei der Produktabtrennung Abwärme bei hoher Temperatur verfügbar sein wird, wird der sonstige Energiebedarf mit 10 % der beiden Hauptwärmenesenken angenommen. Der sonstige Wärmebedarf ergibt sich zu 84 kW, in der Summe liegt der thermische Energiebedarf der Anlage bei 922 kW.

Der thermische Energiebedarf des Prozesses kann durch die Nebenprodukte Fermentationsgas und Biogas gedeckt werden. Durch das Biogas kann eine Brennstoffwärmeleistung von 732 kW zur Verfügung gestellt werden. Das Fermentationsgas liefert eine Brennstoffwärmeleistung von 568 kW, so dass in Summe 1300 kW zur Verfügung stehen. Werden ein Kesselwirkungsgrad von 93 % und ein Wirkungsgrad der Wärmeerteilung und Übertragung von 92 % angesetzt, so ergibt sich ein Brennstoffwärmebedarf von 1077 kW zur Deckung des thermischen Energiebedarfs des Prozesses. Der Brennstoffwärmebedarf kann gedeckt werden, wenn aus dem die Fermentation ein Teil des Gasstroms des UASB-Reaktors zugeführt wird. Neben den 591 m³/h Fermentationsgas wären
dafür 84,3 m³/h Biogas notwendig. In dieser Mischung ergibt sich ein Gas-Heizwert von 6,0 MJ/m³. Es handelt sich um ein „Schwachgas“, das mit einem konventionellen Gasbrenner nicht verbrannt werden kann. Da die Anlage in räumlichem Zusammenhang mit einer Molkerei betrieben wird, wäre die Nutzung dieses Gases in einem gemeinsamen Dampfkessel möglich. Der Einsatz wäre dann unter Verwendung eines Schwachgasbrenners möglich [110]. Für den Einsatz ohne Stützflamme könnte das Verfahren der flammlosen Oxidation (FLOX-Brenner) eingesetzt werden, das sich für Schwachgase bis zum Heizwert von 2,5 MJ/m³ eignet [111].

In der Übersicht ergibt sich so ein Prozess zur Verwertung von Molkepermeat zu den Lösungsmitteln ABE entsprechend Abbildung 103.

Soll das hergestellte Butanol als Kraftstoff eingesetzt werden, so ist eine Bewertung der Treibhausgasemissionen nach der Richtlinie zur Förderung der Nutzung von Energie aus erneuerbaren

Abbildung 103: Übersicht über den Prozess der ABE-Fermentation aus Molke
Quellen notwendig [112]. Die Treibhausgasemissionen werden dabei nach folgender Formel berechnet:

\[E = e_{ec} + e_l + e_p + e_{td} + e_u - e_{sca} - e_{ccs} - e_{ccr} - e_{ee} \]

Für Butanol aus dem beschriebenen Prozess würde sich folgende Bewertung ergeben:

- **\(e_{ec} \)** - Emissionen zur Gewinnung der Rohstoffe: Molke ist ein Abfallstoff, für den eine Notwendigkeit zur Entsorgung besteht. Molke fällt am Ort der Verwertung an, Emissionen für die Bereitstellung fallen nicht an. Die Emissionen für die Bereitstellung der benötigten Fermentationshilfsstoffe wurden entsprechend den Daten des Umweltbundesamtes berechnet [113]. Für Hefeextrakt lagen keine Daten vor. Die Emissionen wurden auf Grund des Energiebedarfs der Trocknung bei Herstellung von Hefeextrakt auf Melasse abgeschätzt. Die summierten Emissionen ergeben sich auf unter 1 g/MJ. Nicht eingerechnet sind Chemikalien für die Reinigung der Anlage.

- **\(e_l \)** – Emissionen infolge geänderter Flächennutzung: nicht relevant.

- **\(e_{td} \)** – Emissionen für Transport und Vertrieb: die Emissionen werden entsprechend den Emissionen bei Bioethanol aus heimischen Rohstoffen auf 2 g/MJ festgelegt.

- **\(e_u \)** - Emissionen bei der Nutzung des Kraftstoffs: werden für reine Biokraftstoffe auf 0 gesetzt.

- **\(e_{sca} \)** – Emissionseinsparung durch Bodenkohlenstoffspeicherung infolge besserer landwirtschaftlicher Bewirtschaftungspraktiken: nicht relevant.

- **\(e_{ccs} \)** – Emissionseinsparung durch Kohlenstoffabscheidung und geologische Speicherung: nicht relevant.

- **\(e_{ccr} \)** – Emissionseinsparungen durch Kohlenstoffabscheidung und -ersetzung: nicht relevant.

- **\(e_{ee} \)** – Emissionseinsparungen durch überschüssigen Strom aus Kraft-Wärme-Kopplung: nicht relevant, da die elektrische Energie in der Modell-Rechnung komplett benötigt wird.

5 Zusammenfassung

Daher wurden 12 Stämme der Gattung *Clostridia* experimentell auf ihre Fähigkeit untersucht, Laktose aus drei Molkesorten bei verschiedenen Temperaturen zu Butanol umzusetzen. Dabei wurden die zwei Stämme mit den internen Nummern I und VIII identifiziert, die für diese Aufgabe besonders geeignet waren. Die in der Literatur geäußerte Vermutung, dass diese Eignung bei unterschiedlichen Medien und Temperaturen auch bei nahe verwandten Stämmen deutlich unterschiedlich ausgeprägt sein kann, konnte bestätigt werden.

Die Stämme I und VIII wurden daraufhin auf ihre Stabilität gegen Stammdegeneration im Medium Molke untersucht. Stamm I stellte sich als der deutlich stabileren Stamm heraus. Weiterhin konnte nachgewiesen werden, dass das Medium und insbesondere Zusatzstoffe wesentlichen Einfluss auf die Stammstabilität haben können.

Über systematische Versuchsreihen wurden ausgehend vom Reinforced Clostridia Medium (RCM) geeignete Zusatzstoffkombinationen für ein Verfahren ermittelt.

Die technologischen Parameter der Medienvorbehandlung, die Fermentationstemperatur, die Laktosekonzentration, die Rührgeschwindigkeit im Rührreaktor und das Fermentervolumen wurden optimiert. Ein zugleich sicherer und effizienter semikontinuierlicher Betriebsablauf wurde entwickelt.

Erstmals wurde bei der ABE-Fermentation von Molke eine Bilanz nicht nur über die Lösungsmittel oder die Fermentationsgase H_2 und CO_2, sondern über alle relevanten Fermentationsprodukte erstellt.

Bisher war die Verwertung der Schlempe aus der ABE-Fermentation von Molke noch nicht untersucht worden. Das entwickelte neue Konzept beinhaltet die Abtrennung der Biomasse, die als Futtermittel verwertet werden kann, sowie die anaerobe Fermentation der Klarschlempe in einem Upstream Anaerobic Sludge Blanket Reaktor (UASB). Die bei diesem Konzept möglichen Raumbelastungen des Reaktors wurden ebenso untersucht wie die Zusammensetzung des Fermentationsgases und der aufbereitete Klarschlempe.

Basierend auf den vorgenannten Versuchsreihen wurde ein Verfahrenskonzept entwickelt. Der für das Verfahren notwendige Energiebedarf wurde überschlägig ermittelt. Durch die Verwertung der unterschiedlichen Fermentationsgase in einem Dampfkessel und einem Blockheizkraftwerk kann das Verfahren energieautark betrieben werden.

Dadurch kann mit dem entwickelten Verfahren ein Biokraftstoff erzeugt werden, der verglichen mit Ottokraftstoff über ein Treibhausgas-Einsparpotential von über 90 % verfügt.
6 Literatur

110. Lindner, W., *Einsatz alternativer Brennstoffe und Energiesparmaßnahmen bei Kessel-Feuerung*, in *Energie- und Umwelttechnik in der Lebensmittelindustrie*, VDI Fortschritt-

