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Abstract

In a tokamak plasma, a population of superthermal particles generated by heating meth-
ods can lead to a destabilization of various MHD modes. Due to nonlinear wave-particle
interactions, a consequential fast particle redistribution reduces the plasma heating and can
cause severe damages to the wall of the fusion device.

In order to describe the wave-particle interaction, the drift-kinetic perturbative HAGIS
code is applied which evolves the particle trajectories and the waves nonlinearly. For a
simulation speed-up, the 6-d particle phase-space is reduced by the guiding centre approach
to a 5-d description. The eigenfunction of the wave is assumed to be invariant, but its am-
plitude and phase is altered in time. A sophisticated δf -method is employed to model the
change in the fast particle distribution so that numerical noise and the excessive number of
simulated Monte-Carlo points are reduced significantly. The original code can only calculate
the particle redistribution inside the plasma region. Therefore, a code extension has been
developed during this thesis which enlarges the simulation region up to the vessel wall.

By means of numerical simulations, this thesis addresses the problem of nonlinear wave-
particle interactions in the presence of multiple MHD modes with significantly different
eigenfrequencies and the corresponding fast particle transport inside the plasma. In this
context, a new coupling mechanism between resonant particles and waves has been identi-
fied that leads to enhanced mode amplitudes and fast particle losses.

The extension of the code provides for the first time the possibility of a quantitative and
qualitative comparison between simulation results and recent measurements in the experi-
ment. The findings of the comparison serve as a validation of both the theoretical model
and the interpretation of the experimental results. Thus, a powerful interface tool has been
developed for a deeper insight of nonlinear wave-particle interaction.
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1. Introduction

The controlled nuclear fusion of hydrogen isotopes provides a possibility of an energy source
which is practically inexhaustible. Future fusion power plants will possess an available power
of 1−3GW as nuclear fission devices but in addition offer much higher environmental safety.
In order to reach a burning plasma, among all reactions the fusion between Tritium (T ) and
deuterium ions (D) is most favourable,

D + T →
(
4He+ 3.5MeV

)
+ n+ 14.1MeV .

If the plasma temperature is large enough, T ≥ 20 keV, the probability of the production
of energetic α-particles is sufficiently increased to keep the plasma in the burning state.
However, this state can only be reached if the Lawson criterion [1] is fulfilled,

nτE > 1.5 · 1020m−3s

where n is the D-T fuel density. The quantity τE is the energy confinement time which
is defined as the ratio between the stored plasma energy to the heat loss rate.

The most advanced approach to achieve the required fusion parameters is the confinement
of the plasma in a tokamak configuration [2] as shown in figure 1.1. The tokamak is an ax-
isymmetric device which consists of magnetic field coils (green). These coils generate a large
toroidal magnetic field. A transformer in the centre of the torus induces a toroidal current
within the plasma which creates a poloidal magnetic field that is usually smaller compared
to the toroidal magnetic field. Together, both magnetic fields form helical field lines. Such
a configuration has the crucial advantage that it avoids open field lines in the plasma com-
pared to linear devices and therefore has favourable plasma confinement properties.

However, auxiliary heating must be applied to the plasma before a burning state is reached.
This is done by the injection of highly energetic beam ions or by launching electromagnetic
waves which accelerate the plasma particles. Since energetic ions move approximately along
the magnetic field lines and their orbits are closed in a tokamak, they are in principle well
confined. Unfortunately, the fast particle confinement is diminished by particle transport
due to turbulence [3], static perturbations like field ripples [4] or dynamical instabilities like
shear Alfvén waves [5]. Due to the tokamak configuration, extended global modes [6, 7] in
the frequency range of O(10−100 kHz) with phase velocities of the order of the fast particles
velocity are of particular interest since they resonate with the highly energetic particles [8].
Experiments have shown that these modes are driven unstable by the fast particle distribu-
tion due to inverse Landau damping leading to significantly increased ion losses [9]. Such a
particle ejection can cause severe damages to the vessel wall. Furthermore, the efficiency of
the heating is reduced due to the particle redistribution.

9



1. Introduction

plasma current

main field coils
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Figure 1.1.: Tokamak configuration

In this PhD thesis, resonant wave-particle interactions due to dynamical instabilities are
discussed. The general shear Alfvén wave [5] describes a perpendicular plasma oscillation
which propagates along the magnetic field lines with the Alfvén speed,

vA =
B√
µ0ρ

where B and ρ are the magnetic field strength and the plasma mass density, respectively.
Due to the high phase velocity of the order O(106m/s), the waves only resonate with the
highly energetic ions. Therefore, it is appropriate to separate the total particle population
into a thermal background component which represents the bulk plasma and a smaller frac-
tion of supra-thermal ions. The background ions are strongly magnetized and are described
by the magnetohydrodynamic (MHD) approach [10]. However, the highly energetic ions
are best treated by a kinetic description. The assumption of a guiding centre motion [11]
neglects the rapid circular motion around the magnetic field lines. It reduces the particle
trajectory to a parallel motion along the field line and a slow drift motion perpendicular to it.

Due to the fact that the trajectory of the highly energetic ions is determined by the
magnetic field, a coordinate system is applied which is aligned on the field lines. Based
on this coordinate system, the wave-particle interactions are calculated by the drift-kinetic,
perturbative HAGIS code [12, 13]. The spatial structure of the Alfvén eigenmodes is as-
sumed to be invariant but its amplitude and phase changes in time. Both the wave and the
particle distribution are evolved nonlinearly and they interact due to inverse Landau damp-
ing. Therefore, a sophisticated Monte-Carlo method known as δf -method [14] is applied to
calculate the change in the distribution function rather than the whole particle ensemble
and the corresponding mode evolution. This leads to a reduction of numerical noise without
using an excessive number of particles.
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However, the calculation of the wave-particle interactions and the corresponding fast par-
ticle redistribution [15, 16] is limited to the plasma region in the original HAGIS code. For
this reason, this PhD thesis deals with the extension of the HAGIS code into the region
between the plasma and the vessel wall. This provides the possibility to simulate fast par-
ticle losses up to the wall. Due to a large proposed α-particle population in future fusion
devices like ITER and DEMO, this is of enhanced importance. Therefore, energetic parti-
cle losses are compared to experimental measurements [17] by the fast ion loss diagnostic
FILD [18] installed at ASDEX Upgrade [19]. The fundamental connection between nu-
merical predictions and experimental results allows the elucidation of physical mechanisms
and a validation of theoretical assumptions. Beside the comparison of fast ions losses to
the experiment, this thesis addresses the questions of various coupling mechanisms between
modes and the collective fast particle redistribution due to multiple modes with significantly
different eigenfrequencies.

This thesis is organized as follows: In chapter 2, the physical background is presented by
introducing the equilibrium magnetic field representation with the problem-adapted coor-
dinate system, the MHD model as well as the fast ion generation with the corresponding
particle motion. At the beginning of chapter 3, the implementation of the model in the
original HAGIS code is summarized shortly. Based on this, the code extension is described
in detail. In chapter 4, the experimental measurements are presented briefly. They con-
stitute the basis for extensive numerical simulations investigating the fast particle losses
due to nonlinear wave-particle interactions. In this context, coupling mechanisms between
eigenmodes and different fast particle distributions are examined. Afterwards, the results
are compared to the experiment. In chapter 5, a summary is given and conclusions with
indications for future work are drawn.
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2. Theoretical Background

In order to investigate the complex, physical problem of resonant wave-particle interaction, it
is favourable to first introduce the models used in the following. Due to its relative simplicity,
the MHD approach provides the possibility to treat the plasma as a continuous medium.
The corresponding equations describe the plasma behaviour which can easily be separated
into equilibrium and a perturbative part. A coordinate system is applied to the equilibrium
which represents the magnetic field configuration adequately and simplifies the description
of the perturbation significantly. In the presence of the equilibrium, the behaviour of the
energetic ions due to given forces is evolved by the equations of motion. These equations
are derived from a kinetic approach known as guiding centre motion. Both models allow for
the calculation of the wave-particle interaction which is influenced by the initialization of
the fast particle distribution in the plasma.
Therefore, the outline of this chapter is as follows: after the introduction of the MHD model
[10], the representation of the equilibrium field and the problem-adapted coordinate system
[20] is shown. Afterwards, the perturbations which are relevant in the following are presented
with their features in the plasma. At the end, the equations of motion for the energetic ions
and the particle properties are briefly outlined following the description of Pinches [12] in
the broadest sense. With respect to the energetic ions, a particular interest is also directed
on their generation of the fast particle population in the plasma due to various heating
methods. Therefore, the properties of the fast particle distributions are presented.

2.1. MHD Model

By taking the velocity moments of the kinetic equations for the ion and electron distribution
function, a moment approach is used which describes the plasma behaviour adequately. It
reduces the kinetic equations to a single fluid model but still consists of the main physi-
cal conservation laws. This is known as the magnetohydrodynamic (MHD) approach [10].
Together with Maxwell’s equations, the ideal MHD equations allow for the analysis of the
plasma confinement in a complex magnetic configuration,
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2. Theoretical Background

∂ρ

∂t
+ ∇ · (ρv) = 0 (Mass continuity) (2.1a)

ρ
∂v

∂t
+ ρv · ∇v + ∇p− j × B = 0 (Momentum balance) (2.1b)

∂p

∂t
+ v · ∇p+ γp∇ · v = 0 (Adiabatic equation of state) (2.1c)

E + v × B = 0 (Ohm’s law) (2.1d)

∇ · B = 0 (Divergence-free magnetic field) (2.1e)

∇×B − µ0j = 0 (Ampère’s law) (2.1f)

∂B

∂t
+ ∇× E = 0 (Faraday’s law) (2.1g)

where ρ is the mass density of the plasma, v is the plasma velocity, p is the plasma pressure,
γ is the adiabatic index, t is the time, j is the current density, µ0 is the permeability, B

and E are the magnetic and electric field, respectively. The MHD equations are valid under
the condition that the scale lengths are greater than the Debye length. Furthermore, the
plasma is treated to be quasi-neutral, i.e. ne = Zni, and is assumed to possess an infinite
plasma conductivity.

2.2. Equilibrium Magnetic Field and Coordinate Systems in a

Tokamak

As described at the beginning of chapter 2, the ideal MHD equations of zeroth order describe
the plasma equilibrium. In order to generate a plasma first, the magnetic field is of crucial
importance. In the introduction, it has been explained how the magnetic field of the plasma
is generated in a tokamak. Due to several external field coils for the plasma shaping and
position, the total magnetic field is divided into a magnetic field connected to the plasma
and a vacuum field as shown in figure 2.1. Whilst the helical magnetic field lines inside the
plasma constitute closed surfaces (red closed lines), the vacuum field lines (red dashed lines)
are open and intersect with the vessel wall. The closed and open field lines are separated by
the separatrix (bold solid line). The intersection of the separatrix with itself is called the
X-point.

Considering the magnetic field configuration inside the separatrix for a static equilibrium
only, the closed surfaces are determined by momentum balance (Eqn. 2.1b),

∇p = j × B , (2.2)

It is obvious by dotting with both j and B that both vectors lie in surfaces of constant
pressure. For this reason, these surfaces are usually referred to as magnetic surfaces or flux
surfaces since the magnetic flux within each surface is constant.
In this case, it is appropriate to use flux coordinates which constitute a non-orthogonal,
curvi-linear coordinate system. This involves the use of both a covariant and a contravariant
representation. The radial coordinate ψ is chosen so that it is constant over each flux surfaces

14



2.2. Equilibrium Magnetic Field and Coordinate Systems in a Tokamak

Figure 2.1.: ASDEX Upgrade discharge #21083 at t = 1.19 s: Closed (solid) and open
(dashed) surfaces inside the vessel. The bold line is the separatrix. The green
and red cross represent the geometric and magnetic axis, respectively.

as shown in figure 2.2. This means that ψ is a flux label of the surface. Due to this definition
ψ = const., the flux surfaces form nested tori with

B · ∇ψ = Bψ = 0 . (2.3)

The other two coordinates are determined to be the angles ζ and θ which close upon
themselves in toroidal and poloidal direction.

Since the magnetic field in radial direction vanishes (2.3), the divergence-free magnetic
field implies that

∇ · B =
1

J

[
∂

∂θ

(

JBθ
)

+
∂

∂ζ

(

JBζ
)]

= 0 , (2.4)

where J is the Jacobian of the coordinate system defined by

J =
1

∇ψ · ∇θ ×∇ζ . (2.5)

Equation (2.4) is expressed by introducing a stream function ν [20] so that

15



2. Theoretical Background

Figure 2.2.: General curvi-linear flux coordinates with the radial coordinate ψ, the poloidal
angle θ and the toroidal angle ζ (from [21], p. 22).

JBθ = −∂ν
∂ζ

, JBζ =
∂ν

∂θ
. (2.6)

To ensure that the magnetic field is single-valued, the stream function ν(ψ, θ, ζ) is a sum
of terms which are linear or periodic in θ and ζ,

ν = u(ψ)θ + v(ψ)ζ + w(ψ, θ, ζ) . (2.7)

Such a definition of a function like ν is known as a surface potential, i.e. the gradient of
the function only is of physical significance,

∇ν =
∂ν

∂ψ
∇ψ +

∂ν

∂θ
∇θ +

∂ν

∂ζ
∇ζ . (2.8)

Using the contravariant representation of the magnetic field B and substituting the field
components by the expressions (2.6) yields

B =
∂ν

∂θ
∇ψ ×∇θ +

∂ν

∂ζ
∇ψ ×∇ζ .

This implies with (2.8) that the magnetic field can be represented [21] by

B = ∇ψ ×∇ν , (2.9)

where ψ is an arbitrary flux label. The function ν need to be determined now and it is
expected that the linear functions u and v are related to the toroidal and poloidal flux, ψt
and ψp. Calculating the toroidal flux gives

16



2.2. Equilibrium Magnetic Field and Coordinate Systems in a Tokamak

ψt =

∫

B · ∇ζ d3x

= dψ

∫ 2π

0

∫ 2π

0
BζJ dθ dζ

= dψ

∫ 2π

0

∫ 2π

0

∂ν

∂θ
dθ dζ

= dψ

∫ 2π

0

∫ 2π

0

(

u(ψ) +
∂w

∂θ

)

dθ dζ

⇒ dψt = u(ψ)dψ .

A similar procedure for the poloidal flux yields for the functions u and v,

u(ψ) =
dψt
dψ

and v(ψ) = −dψp
dψ

. (2.10)

Since the poloidal and the toroidal angle have not been specified yet, it is possible to
construct coordinates in which the magnetic field lines appear straight (Fig. 2.3). Such a
representation is obtained if the equation of the field line, i.e. ν = const. for a constant ψ,
is linear in θ and ζ. From equation (2.7), it can be seen that this occurs when the periodic
function w is cancelled. Typically, the toroidal angle is deformed,

θnew = θold and ζnew = ζold −
w

v(ψ)
,

so that the new flux potential is expressed by

ν = u(ψ)θ + v(ψ)ζ .

0

Toroidal angle ζ
0

Po
lo

id
al

 a
ng

le
 θ

B

0
0

2π

2π

Figure 2.3.: Flux surface which shows a straight magnetic field line if the angles θ and ζ
are chosen adequately.
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2. Theoretical Background

Inserting this expression into the contravariant representation of B gives

B = u(ψ) · ∇ψ ×∇θ − v(ψ) · ∇ζ ×∇ψ ,

which can be further rewritten by the expressions (2.10) to

B =
∂ψt
∂ψ

∇ψ ×∇θ +
∂ψp
∂ψ

∇ζ ×∇ψ . (2.11)

It can be shown [20] that the field line in a straight field line representation is described
by contours of a constant linear flux potential ν on a flux surface, i.e.

ζ − qθ = const for ψ = const.

where q is the safety factor and denotes the reciprocal slope of the magnetic field line,
1/q = dθ/dζ, in figure 2.3. Thus, it is also the ratio between the contravariant components
of the magnetic field, q = Bζ/Bθ. Substituting (2.10) into equation (2.11), it reveals that

q =
dψt
dψp

. (2.12)

Thus in every straight field line coordinate representation, the derivative of the toroidal
flux with respect to the poloidal flux is constant on a flux surface.

Altogether, such a flux coordinate system represents the equilibrium magnetic field in
a tokamak inside the separatrix appropriately. The form of the flux surfaces in realistic
geometry is calculated by the HELENA code [22] that solves the Grad-Shafranov equation
[2]. The calculated grid which is expressed in straight field line coordinates is given to the
HAGIS code. This grid serves as the basis on which the nonlinear interaction between the
energetic particles and the perturbations are evolved.

2.3. Stability and MHD Modes

In this section, the stability of the equilibrium and the corresponding instabilities are inves-
tigated. In order to understand the phenomena of the nonlinear equations and its properties,
it is advisable to apply them to the simplest physical background first and to extend the
model by additional effects gradually. At the end, the existence criteria and the properties
of the eigenmodes relevant for the following wave-particle investigations are outlined.

Since the ideal MHD equations are nonlinear, an analysis is simplified by linearizing them
to identify the classes of instabilities. This proceeding [10] is justified by the fact that the
plasma remains static and occurring perturbations are small compared to the equilibrium
quantities, Q(r, t) = Q0(r) + δQ(r, t). Furthermore, the time scale on which the plasma
evolves, i.e. O(10−1 s), is long in contrast to the instabilities which oscillate on the Alfvén

18



2.3. Stability and MHD Modes

time scale of O(10−6 s). Introducing the fluid displacement vector ξ(r, t),

v =
∂ξ

∂t
,

the complete linearized set of equations can be further reduced to three equations

ρ0
∂2ξ

∂t2
+ ∇δp+ [δB × (∇× B0)] + [B0 × (∇× δB)] = 0 ,

δp+ ξ · ∇p0 + γp0∇ · ξ = 0 ,

δB −∇× (ξ ×B0) = 0 .

The first equation is the linearized momentum balance equation. Using the other two
equations to eliminate the perturbed plasma pressure δp and the perturbed magnetic field
δB, the force-operator equation is given by

ρ0
∂2ξ

∂t2
= F(ξ) (2.13)

with the force-operator

F(ξ) = ∇(ξ · ∇p0 + γp0∇ · ξ) + (∇×∇× (ξ × B0)) × B0

+ (∇× B0) × (∇× (ξ × B0)) .

Analyzing the linear stability and the waves, it is advantageous to apply the following
ansatz to the force-operator equation,

δQ(r, t) = Q(r)e−iωt . (2.14)

This form represents periodic perturbations with amplitude Q and frequency ω which
have always been present in the plasma and do not require an initial condition. With this
mode representation, equation (2.13) becomes

−ω2ξ =
1

ρ0
F(ξ) . (2.15)

The equation is no longer time-dependent explicitly and represents an eigenvalue problem
for the eigenvalue ω2 with the boundary conditions on the fluid displacement vector ξ. Since
the force-operator F(ξ) is Hermitian [23], the eigenvalues ω2 are always real. However, the
spectrum of the force-operator is confined to both the imaginary and the real axis. This
implies that within the MHD model modes are obtained which are either oscillatory, ω2 > 0,
or exponentially growing/decaying, ω2 < 0. A further distinction can be made by
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2. Theoretical Background

Im ω > 0 (unstable)

Im ω ≤ 0 (stable) .

For the first case, the mode will grow exponentially (Eqn. 2.14) whereas in the latter
case, the modes decays exponentially.

Applying these previous considerations to an infinite, homogeneous plasma slab where all
equilibrium quantities are constant, the force-operator equation (2.15) can be simplified by
a Fourier transform in space,

ω2ρ0ξ + γP0(k · ξ)k +
1

µ0
[k× [k × (ξ × B0)]] × B0 = 0 ,

where k is the wave vector. Due to the Fourier transform, the set of differential equations
is transferred to simpler, algebraic equations. Assuming that the magnetic field is oriented
in one direction, B = B0ẑ and the wave vector is decomposed into k = k⊥ŷ + k‖ẑ, the
equation above is written as






ω2 − k2
‖v

2
A 0 0

0 ω2 − k2
⊥v

2
S − k2v2

A −k2
⊥k

2
‖C

2
S

0 −k2
⊥k

2
‖v

2
S ω2 − k2

‖v
2
S










ξx
ξy
ξz



 = 0,

where vA and vS are the Alfvén and the sound velocity, respectively, defined by

v2
A =

B2
0

µ0ρ0
and v2

S =
γp0

ρ0
. (2.16)

Solutions from the set of equations are obtained if the determinant of the matrix is zero.
This gives the dispersion relation,

(ω2 − k2
‖v

2
A)
[
ω4 −

(
v2
A + v2

S

)
k2ω2 + (kk‖vAvS)2

]
= 0 . (2.17)

Each solution represents an oscillation in the plasma. Since in the equation (2.17) the
quantity ω2 is a cubic polynomial, three different solution branches are expected. The
simplest solution is

ω2 = k2
‖v

2
A , (2.18)

which denotes the shear Alfvén branch. The waves are independent of k⊥, even if k⊥ ≫
k‖. They are incompressible transverse modes with both v and δB perpendicular to the
equilibrium magnetic field B0. The shear Alfvén wave represents the balance between the
plasma inertia and the field line tension. Since the wave is incompressible (δp = δρ = 0),
the plasma is carried along the magnetic field lines simultaneously.
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2.3. Stability and MHD Modes

Figure 2.4.: Propagation of a transverse Alfvén wave within the equilibrium magnetic field
B0 (from [2]).

The second term of equation (2.17) yields two further solutions which are the fast and slow
magnetoacoustic waves. They arise from the coupling between the magnetic compression -
Alfénic branch - and the fluid compression - sonic branch - which gives

ω2
2,3 =

k2

2

[

v2
S + v2

A ±
√
(
v2
S + v2

A

)2 − 4v2
Sv

2
A cos2 θ

]

, (2.19)

where θ denotes the angle between the wave vector and the equilibrium magnetic field as
shown in figure 2.5 here.

Figure 2.5.: Propagation of a magnetoacoustic wave across the magnetic field B0 (from [2]).

The positive sign in (2.19) corresponds to the fast magnetoacoustic wave and oscillates at
frequencies always greater than the Alfvén wave (Eqn. 2.18). The negative sign corresponds
to the slow magnetoacoustic waves which oscillates at frequencies always smaller than vA.
Both waves are compressional, i.e. they possess perturbative components in both parallel
and perpendicular direction compared to B0.

A useful parameter to characterize a plasma is the plasma beta defined by

β =
2µ0p

B2
. (2.20)

It describes the ratio between the plasma energy density to the plasma field line density
and is also related to the significant velocities [2] through

β =
2

γ

v2
S

v2
A

. (2.21)

This parameter indicates if most of the compression is carried out by the magnetic field, i.e.
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in the low-β limit with β ≪ 1, or if both the magnetic field and the plasma are compressed
equally, vA ≈ vS .

2.3.1. Continuum Spectrum

In figure 1.1, it is shown that the magnetic field is bend to a torus. The magnetic field is
inhomogeneous and decrease with 1/R from the torus axis. Thus, the dispersion relation in
a homogeneous plasma (2.18) is modified to

ω2 = k2
‖(r)v

2
A(r) , (2.22)

where r is the minor plasma radius which is related to the flux label ψ (Fig. 2.2). This
shows that shear Alfvén waves with a radial extent are dispersive due to different phase
velocities. Thus, excited Alfvén waves are strongly damped by resonant absorption from
the shear Alfvén continuum (Eqn. 2.22), also known as continuum damping [24].

2.3.2. Toroidicity-induced Alfvén Eigenmodes

A further modification in the dispersion relation appears due to toroidicity. A wave per-
turbation ξ which propagates along the magnetic field line can be described by a Fourier
decomposition in poloidal and toroidal harmonics due to the periodicity. However, the torus
is rotational symmetric so that the toroidal harmonics decouple. So, the Fourier decompo-
sition is given by

ξ(r, θ, ζ) =
∑

m

ξm(r)ei(nζ−mθ−ωt) , (2.23)

where m and n are the poloidal and toroidal mode numbers, respectively. Due to an
inhomogeneous magnetic field, B is a function of the poloidal angle θ. Thus, a coupling
between different poloidal harmonics appear for the perturbation ξ.
Considering a particular toroidal mode number n, for a small inverse aspect ratio ǫ =
r0/R0 ≪ 1 it can be assumed that the poloidal harmonic ξm couples to its neighbouring
harmonic ξm+1 only. Then, the force-operator equation (2.15) can be rewritten as a set of
coupled equations [25],

(
Pm K
K Pm+1

)(
ξm
ξm+1

)

= 0

with

Pm =
d

dr
r3
(
ω2

v2
A

− k2
‖,m

)
d

dr
− (m2 − 1)r

(
ω2

v2
A

− k2
‖,m

)

+

(
ω2

v2
A

)′

r2

K =
5

2
ǫ

d

dr

ω2

v2
A

r4

r0

d

dr
.
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The subscripts m and m+ 1 denote the two dominant poloidal mode numbers. The final
dispersion relation is given by

ω2 = k2
‖,m(r) v2

A(r)

=
v2
A(r)

R2

(

n− m

q(r)

)2

+ O(ǫ2) (2.24)

with

q =
r

R

Btor
Bpol

+ O(ǫ) .

This means that solutions for the eigenvalue ω2 still exist in the torus which form a
continuous spectrum for the shear Alfvén waves. In the cylindrical limit, i.e. ǫ = 0, the
two poloidal harmonics decouple. Considering a monotonically increasing safety factor in a
cylinder, both harmonics m and m + 1 are expected to cross for ω2

dc = ω2 (Eqn. 2.24) as
shown in figure 2.6 (left; dashed lines) at the surface r0 determined by the condition

k‖,m(r0) = −k‖,m+1(r0) .

m m+1

ω
dc

 = -k
||,m+1

(r) v
A

(r)

ω
dc
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||,m

(r) v
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Figure 2.6.: Left: Coupling of the poloidal harmonics m and m + 1 in a torus (blue) pro-
ducing a gap in the shear Alfvén continuum. Additionally, two discrete global
eigenmodes, TAE, exist within the gap. In the cylindrical limit, the shear
Alfvén continua k‖,m (green) and −k‖,m+1 (red) cross at the surface r0. Right:
The corresponding TAE eigenfunction of the two dominant poloidal harmonics
is plotted.

This is approximately equivalent to the position where the safety factor is

q(r0) =
m+ 1

2

n
. (2.25)
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However, toroidicity resolves this degeneracy at the intersection point and produces gaps,
called TAE gaps, in the shear Alfvén continuum (Fig. 2.6 left; blue curved lines) due to the
poloidal coupling. The gap is located at the frequency,

ωTAE =
vA

2q(r0)R
. (2.26)

It has been found [6] that within the TAE gap two discrete eigenmodes, called TAEs,
above the maximum and below the minimum of the shear Alfvén continuum are present as
shown in figure 2.6 (left; blue straight lines). The corresponding eigenfunctions of the two
dominant poloidal harmonics are shown in figure 2.6 (right). Since each TAE lies within
the gap and does not satisfy the local shear Alfvén resonance condition, it is not subject to
continuum damping. It is extended globally and weakly damped [26].

2.3.3. Beta-induced Alfvén Eigenmodes

It has been shown in equation (2.19) that the inclusion of plasma compressibility within the
MHD equations introduces a coupling between the shear Alfvén waves and the compressible
acoustic waves in the low frequency range. Due to finite β (Eqn. 2.21), this leads to a
coupling between the shear Alfvén continuum with the poloidal mode number m and the
sound continuum with the mode numbers m− 1 and m+ 1. The coupling condition [27] is
given by

ω =
vA
R

∣
∣
∣
∣
n− m

q(r0)

∣
∣
∣
∣
=
vS
R

∣
∣
∣
∣
n− m± 1

q(r0)

∣
∣
∣
∣
.

As explained in section 2.3.2, the coupling produces gaps which are approximately local-
ized at the beta-induced Alfvén eigenmode frequency ωBAE,MHD,

ω2
BAE,MHD =

2v2
S

R2
0

(

1 +
1

2q2

)

. (2.27)

Including kinetic effects, the dispersion relation ω2
BAE,kin [28, 29] is given by

ω2
BAE,kin =

v2
th,i

R2
0

[
7

4
+ τ

(

1 +
1

2q2

)]

(2.28)

where vth,i is the thermal speed of the background ions and τ = Te/Ti is the ratio between
the electron and the ion background temperature.
Within the gap, a discrete global BAE eigenmode [7, 30] is present. In contrast to the TAE,
the coupling produces an eigenfunction with one dominant poloidal harmonic m for the
perpendicular component ξ⊥ which corresponds to the shear Alfvén continuum. Due to the
compressibility, the eigenmode has an additional parallel component ξ‖ with the poloidal
harmonics m − 1 and m + 1. However, in the low β-limit, the perpendicular displacement
is larger than the parallel displacement, ξ⊥ > ξ‖. So, this eigenmode is similar to the TAE
but it is neither pure Alfvénic nor pure acoustic.
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2.3.4. Growth and Damping of Alfvén Eigenmodes

The following discussion describes the dominant damping mechanisms which can be expe-
rienced by Alfvénic waves due to the bulk plasma. Due to the consideration of gap modes,
most damping mechanisms however are of the order of a few per cent of less. Afterwards, the
driving mechanism which acts as an energy source for the waves and the required conditions
for a wave-particle interactions are introduced.

Continuum damping

It was mentioned in section 2.3.2 that due to an inhomogeneous plasma the dispersion
relation (Eqn. 2.24) leads to a resonant absorption of Alfvénic waves, known as continuum
damping [24]. Since toroidal Alfvén eigenmodes are localized within toroidal gaps where the
continuum damping associated to the poloidal mode numbers m and m+ 1 is absent, these
modes are weakly damped. However, if the eigenmode spreads over a large radial range, it
is possible that the tail of the eigenfunction intersects with a local Alfvén resonance. It can
experience a small residual amount of continuum damping [31, 32]. By the consideration of
toroidicity induced gaps which spread to the plasma edge, this damping effect vanishes.

Ion Landau damping

In the plasma, a Maxwellian distribution of thermal ions contains a vanishing amount of
background ions which can resonate with Alfvénic waves due to high velocities, v‖ = vA
(Eqn. 2.22). However, it has been shown [8] that the resonance condition due to the
magnetic curvature is modified to

ω − k‖v‖ − k⊥ · vdi = 0 ,

where vdi is the magnetic drift velocity. The last term reduces effectively the frequency
of the eigenmode so that the bulk particle are able to resonate at the v‖ = vA/3 resonance.

Electron Landau Damping

For typical tokamak plasma parameters, the background electron velocity is much greater
than the Alfvén velocity, ve ≫ vA. Thus, electron Landau damping [33] is present only
due to a small fraction of electrons with v⊥,e ≫ v‖,e so that the toroidal electron velocity
is comparable to the wave velocity. These electrons satisfy the resonance condition ω −
k‖,m±1ve ≈ 0. The resonance layer is radially localized beside the TAE gap so that the tails
of the TAE eigenfunction only are affected. Similar to continuum damping, this effect can
be neglected for not too large radial eigenmode extents.

Radiative Damping of TAE

Due to the inclusion of finite Larmor radius effects (FLR), the ideal MHD TAE can couple
to a kinetic Alfvén wave so that the dispersion relation modifies to [34]

ω = ±k‖,mvA
[

1 +

(
3

4
+
Te
Ti

)

(k⊥ρi)
2

]

.
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The dispersion relation reveals a finite radial group velocity for the term within the squared
bracket. This indicates the coupling to a radiative kinetic Alfvén wave. It carries energy
away from the TAE localization so that the effect is known as radiative damping [35].

Linear Theory of the Mode Growth

For the drive of an Alfvénic instability, it is assumed that the energy of the eigenmode is
small compared to the energy of the background plasma [10]. In this case, a perturbative
approach as described in section 2.3 can be applied which adds a small imaginary value,
the growth rate γ, to the frequency of the eigenmode with γ ≪ ω. Under the consideration
of an exponentially growing wave, the increasing wave amplitude A and the corresponding
wave energy, E ∼ A2, can be expressed by

A = A0e
γt and E = E0e

2γt .

Since the growth rate can be described by the power transfer P from the fast particles to
the mode, it follows

∂E

∂t
= 2γE

⇒ γ =
1

2E

∂E

∂t
=

P

2E

where P = Pfp − Pdamp is the difference of power transfers from the fast particle Pfp
and the background damping Pdamp. Thus, the linear growth rate consists of contributions
driving the mode unstable and damping the wave,

γ = γfp − γdamp =
Pfp − Pdamp

2E
.

To contribute to the growth of the Alfvén wave, the fast particles have to be resonant
with the eigenmode. It is known [36] that the resonance condition can be written as

ω − nωtp − pωpo ≈ Ωn,p , (2.29)

where ω is the frequency of the Eigenmode, ωtp the toroidal precession frequency and
ωpo the poloidal orbit frequency. The toroidal mode number and the poloidal orbit number
are given by n and p, respectively. A bidirectional energy exchange is possible if Ωn,p is
approximately zero.
If the resonance condition is fulfilled the growth of a TAE mode driven by fast particles for
a typical slowing-down distribution can be estimated [25] as

γ

ω0
=

9

4
βfp

(
ω∗,i

ω
− 1

2

)

F (2.30)
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where ω∗,i is the ion diamagnetic drift frequency

ω∗,i =
mic

eB
k× B

∇f0

f0
(2.31)

and

F (x) = x
(
1 + 2x2 + 2x4

)
e−x

2

with x =
vA
vi

.

In equation (2.30), the first term in the brackets denotes the energy source which is asso-
ciated to the radial gradient in the fast particle distribution in ω∗,i. The fixed second term
is due to the damping of the energetic ions for a slowing-down or Maxwellian distribution
since ∂f0/∂E < 0. The function F is an approximation for the more complicated expression
of the growth rate. Thus, a further condition for the modes to be unstable is ω∗,i/ω > 1/2.

The expression for the growth rate (Eqn. 2.30) was derived for a small particle orbit
width ∆b

1. If the particle orbit width is comparable to the mode width ∆m, the growth
rate scales linearly [37] with the poloidal mode number m, i.e. γ ∼ ω∗,i ∼ m. The mode
width is defined as

∆m =
r2m
msR

≈ ǫ
rm
m

(2.32)

where s is local magnetic shear and rm is the radial position of the TAE mode. For
particle orbit widths larger than the mode width, it was found [34] that the growth rate
decreases with m−2 so that a maximal mode growth is obtained for ∆b/∆m ≈ 1.

With respect to the linear growth rate, many assumptions are required for an analytical
description. For an arbitrary magnetic field geometry and a general fast particle distribution,
the linear growth rate must be determined by means of numerical simulations.

2.3.5. Neoclassical Tearing Mode

A variety of MHD instabilities can be excited in an equilibrium plasma causing changes
in its topology. These changes occur at surfaces with rational values of the safety factor
q as explained for the TAE (section 2.3.2) or the BAE (section 2.3.3). However, it is also
possible that due to a so-called tearing mode the magnetic field lines break and reconnect
to form magnetic islands (Fig. 2.7). It has been found [38, 39] that these formations cause
a significant reduction of fast particles in the centre and thus reduce the plasma heating.
Therefore, it is necessary that the interaction between the magnetic island and the fast
particles is understood.
In this section the theoretical background and the island properties are introduced. Later
in section 4.6, the experimental results are compared to the numerical simulations of a NBI
distribution in the presence of a magnetic island.

1This expression will be clarified in connection with the particle motion in section 2.4.
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The excitation of the islands is associated with resistivity in the plasma. Their dynamical
evolution is determined by the Rutherford equation [40] but for the following investigations
the topology of the island only is of interest. Since toroidicity is a so-called ’neoclassical’
effect, the island formations present in a tokamak are referred to as neoclassical tearing
modes (NTM) [2].

magnetic island

Resonant surface Ψs

Perturbed
magnetic
field lines

X-point

O-point

Figure 2.7.: Magnetic islands and the resulting magnetic field.

As shown in figure 2.7, the perturbation constitutes an island chain at the resonant surface
ψs with qs = m/n which stretches along the unperturbed magnetic field line. Due to the
toroidal and poloidal periodicity, the island chain forms m islands at a poloidal cross section.
The point between different islands is called X-points, the centre of the island is the O-point.
The resulting magnetic field within the island forms a helix around the O-point so that a
helical angle ξ can be defined as

ξ = θ − n

m
ζ. (2.33)

The helical angle is directed parallel to the line which connects neighbouring O-points as
shown in figure 2.8.

For a large aspect ratio, R0/r0 ≫ 1, the helical component of the magnetic field is
approximately given by

Bh = Bθ

(

1 − n

m
q(ψ)

)

where Bθ is the poloidal component of the magnetic field. The tearing mode represents
the mainly radial field component to generate this formation which can be written as

δB = Bψ sinmξ (2.34)

Due to these assumptions, the magnetic field line is determined by the equation [2]
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ψ ψs

ξ Ω const.

ψ

2π

 π

0

2W

Separatrix

Figure 2.8.: Definition of the helical angle ξ, the half island width w and the flux label Ω
of the NTM.

1

ψs

dψ

dξ
=
δB

Bh
.

The magnetic field perturbation caused by the NTM is small except for the vicinity of
the resonant surface. Deriving the equation for the field lines by a Taylor’s series yields

Ω =
2(ψ − ψs)

2

w2
− cosmξ

where Ω is a perturbed flux surface label, as shown in figure 2.8. The value Ω = 1 defines
the label at the X-point. For −1 < Ω < 1, the flux surface is within the magnetic island
whereas for Ω > 1 a flux surface is determined which is beyond the island separatrix. The
crucial value is the half island width w,

w = 2

√

ψqBψ
mBθq′s

, (2.35)

which determines the radial extension of the perturbation. The half width is derived under
the assumption of a constant perturbation Bψ generating a symmetric island. However, it
has been detected in the experiment [41] that asymmetric islands are present in ASDEX
Upgrade. This requires an asymmetric radial perturbation profile which will be described
in section 4.6 in detail.
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2.4. Fast Particles in a Tokamak

After the description of the background ions in the MHD model, the highly energetic ions
are described by an kinetic approach in this section. This allows for an adequate treatment
of the resonant wave-particle interactions. It is assumed that no dissipative processes like
collisions are present since the mean free path of the energetic ions is of the order of O(103 m)
compared to the mode size O(m). In tokamak geometry, this leads to the particle’s con-
stants of motion. At the end, the guiding centre approach is introduced which will reduce
the simulation time significantly.

The general equation of motion of a non-relavistic charged particle in the presence of an
electromagnetic field and an external force F is given by

m
dv

dt
= F + e (E + v × B) . (2.36)

Considering only the effect of the magnetic field upon the fast particle, the equation of
motion is

m
dv

dt
= ev × B . (2.37)

The magnetic force cannot change the particle velocity and thus its energy. This is
obtained by dotting equation (2.37) with v,

m
dv

dt
· v =

d

dt

(m

2
v2
)

=
dE

dt
= 0. (2.38)

This result is valid for an arbitrary magnetic field B = B(r) but requires that the magnetic
field does not vary with the time. Thus, the particle energy E is a constant of motion.
Nevertheless, an accelerated charged particle looses energy in form of an electromagnetic
wave due to the gyration and the curvature of the torus. This effect is very small [42] and
can be neglected in this thesis.

Homogeneous Magnetic Field

In a homogeneous magnetic field, the particle motion is determined by equation (2.37) which
can be separated in a motion parallel and perpendicular to the magnetic field,

dv‖

dt
= 0 , (2.39a)

dv⊥

dt
=

e

m
(v⊥ × B) . (2.39b)

This shows that the parallel velocity along the field line is constant. The equation (2.39b)
can be rewritten as
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dv⊥

dt
= v⊥ × ωc with ωc =

eB

m

where ωc is the cyclotron- or gyro frequency. It describes the rotation with a constant
angular velocity around the magnetic field line. Taking v⊥ = dρ⊥/dt, the integration of the
equation above yields

v⊥ = ρ⊥ × ωc

with ρ⊥ being the particle position vector with respect to the centre of the rotation in a
plane perpendicular to the magnetic field. The superposition of the parallel and the per-
pendicular particle velocities reveals a helical trajectory around the magnetic field line.

In a typical tokamak plasma, the magnetic field has a magnitude of a few Tesla. This
indicates that the ion cyclotron frequency is of order O(108 s−1). The absolute value for the
radius of the circular orbit, called gyro radius, is given by

ρ⊥ =
mv⊥
|e|B

so that the gyro radius has a magnitude of a few millimetres for a particle energy of the
order of O(102 keV).

External Force

Including an external force and taking the cross product with B, the equation of motion
(2.37) gives

m
dv

dt
× B = e

[
F

e
× B + (v ·B)B −B2v

]

.

Averaging over one complete circular orbit yields

0 =
F

e
× B−B2v⊥,ave ⇒ v⊥,ave = vD =

F × B

eB2
. (2.40)

This velocity vD is an averaged drift perpendicular to the magnetic field due to a given
force F. It is independent of the mass so that the magnitude is the same for electrons and
single-ionized ions.

E × B Force

Considering now an electric field E which is perpendicular to the magnetic field, a charged
particle experiences a change in its motion due to the electric force. The particle is acceler-
ated if the perpendicular particle motion is in the same direction as the electric field and it
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is decelerated in the opposite direction. As shown in figure 2.9, the gyro radius increases as
the particle is accelerated and conversely. Therefore, a change in the gyration is produced so
that the centre of the gyration drifts in the direction perpendicular to both fields. Inserting
the electric force F = eE in expression (2.40) yields

vE×B =
E × B

B2
.

This implies that the drift is in the same direction for electrons and ions without respect
to mass and charge.

Figure 2.9.: E× B drift of an ion and an electron (from [12]).

Mirror Force

Due to the circular motion around the magnetic field line, the gyrating particle is associated
to a circular electric current, I. This enables the possibility to define a magnetic moment µ
for the charge particle

µ = I ·A =
eωc
2π

· π
(
v⊥
ωc

)2

=
1
2mv

2
⊥

B
=
E⊥

B
, (2.41)

whereby A is the surface which is surrounded by the circular motion. It can be shown [2]
that under the assumption of a slowly varying magnetic field for a complete gyro orbit the
magnetic moment is invariant and is therefore a constant of motion,

∆

(
E⊥

B

)

= ∆µ = 0 . (2.42)

In the presence of a varying magnetic field, it can be derived that a charged particle
experiences a force [43] of the form

F = −µ∇B .

Inserting this expression into the general form yields
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v∇B = −E⊥
∇B × B

eB3

which is known as the grad-B drift.

As a consequence of the magnetic moment’s invariance, the perpendicular particle velocity
increases as the charged particle moves into a region of increased magnetic field strength.
Simultaneously, the parallel velocity decreases to keep the total energy constant. This
implies that if the magnetic field strength is strong enough the parallel motion reduces to
zero. Then, the particle is accelerated in the direction of the weaker field. This effect is
known as Mirror force.

Curvature Force

Since the magnetic field lines wind helically around the toroidal plasma, the curvature [20]
defined by

κ = (B · ∇)B

gives rise to a centripetal force onto the particle

Fκ = −mv‖κ = −mv‖ (B · ∇)B

where the curvature radius can be determined as the distance between the torus axis to
the actual particle position in lowest order. From equation (2.40), the curvature drift is
given by

vκ =
mv‖

eB2
(B · ∇B ×B − B×∇× B)

Although in the straight field line representation no curvature term is present, it is con-
sidered because the drift is hidden in the transformation to the laboratory reference frame.

Guiding Centre Motion

In this section so far, it has been shown that the particles gyrate around the magnetic field
lines whilst the centre of the gyration, called guiding centre, experiences drifts perpendicular
to the magnetic field due to various forces. The 6-dimensional description of the particle
motion can be reduced to 5-dimensions by a coordinate transform [44] (Appendix A.2). If
the gyro radius is much smaller than then scale length on which the field varies and the
gyro frequency is much larger than any characteristic field frequency, the guiding centre
approximation can be applied. In this approach it is assumed that the helical particle
motion can be reduced to a drift motion of the guiding centre as shown in figure 2.10.
The corresponding guiding centre equations of motion were first derived by Alfvén [5]. This
5-d description of the motion is much more computational feasible than the full particle

33



2. Theoretical Background

motion. Since the gyration is neglected, the treatment allows for larger time steps for the
particle evolution. Involving all drift mechanisms it has been found [11] that the guiding
centre velocity can be written as

v = v‖b̂+
b̂

eB
×
[

mv2
‖

(

b̂ · ∇
)

b̂+ µ∇B + e∇Φ
]

(2.43)

where b̂ is the unit vector of the magnetic field. The first term represents the guiding
centre motion along the magnetic field line. The second term consists of the three drifts
perpendicular to B. The first drift is due to the curvature, the second due to the inhomoge-
niety in the magnetic field strength and the last due to an electric field expressed by the
electric potential Φ.

Figure 2.10.: Helical particle trajectory around a magnetic field line with the corresponding
guiding centre trajectory (from [12]).

Characteristic Fast Particle Trajectories

The curvature and the ∇B-drift determine the characteristic classes of the fast particles -
passing and trapped. Due to the poloidal magnetic field, the particles follow the helical
magnetic field line and traverse the poloidal cross section. Since the upper and lower half
of the torus have the same effects in the same direction for each particle, the drifts cancel
after a complete particle orbit, i.e. no net drift.

For trapped particles, the parallel velocity is too small to penetrate into the high field
(HF) side of the torus. The condition for particle trapping [2] is

v‖

v⊥
<

√

Bmax
Bmin

− 1 (2.44)

where Bmax and Bmin are the maximal magnetic field strength experienced by the particle
at the HF side and the minimal magnetic field strength at the low field (LF) side, respectively.
The particle is reflected at the particular magnetic field strength Bmax due to the mirror
force and is therefore mainly located at the LF side as shown in figure 2.11 (left). The
energetic ions bounce forwards and backwards between their turning points which results
in a net toroidal motion due to the inhomogeneous magnetic field. The projection of the
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particle trajectory into the poloidal cross section reveals an orbit which is appropriately
named banana orbit.
The orbit width ∆b is determined by the difference between the largest to the lowest flux
surface (red arrow in figure 2.11) on which the guiding centre is present. For low magnetic
shear, it has been found analytically [15],

∆b,trapped ≈ 2qρ⊥ , (2.45)

so that the banana orbit width is proportional to the gyro radius ρ⊥.

Passing particles are not reflected anywhere. Therefore, the guiding centres propagate
around the torus on helical trajectories. Like the trapped particles, the trajectory is super-
imposed by drifts but the poloidal projection (Fig. 2.11 right) reveals a nearly circular orbit
with an orbit width of

∆b,passing ≈ qρ⊥ (2.46)

which is approximately half the size of the banana orbit width (Eqn. 2.45) [15]. A further
particle distinction can be made depending on the direction of propagation. If a parti-
cle propagates with the magnetic field it is named co-passing, against the magnetic field
counter-passing.
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Figure 2.11.: Poloidal projection of the guiding centre trajectories for a trapped (left) and
a co-passing as well as a counter-passing particle (right).
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2.5. Heating Systems and Diagnostics at ASDEX Upgrade

In a future fusion device, the energy losses in an ignited D− T plasma have to balanced by
the plasma heating from the slowing down process of the α-particles which are generated
by fusion reactions. However, the fusion rate is strongly dependent on the temperature
and is ineffective for low temperatures. Thus, additional heating is necessary to reach the
required temperature. In this section two important heating methods with the underlying
physics are presented which generate fast particles to heat the background plasma. Due to
wave-particle interactions, a part of these energetic ions is lost and is detected by the fast
ion loss diagnostic also introduced here.

2.5.1. Ion Cyclotron Resonance Heating

Radio frequency heating transfers energy from an external source to the plasma via electro-
magnetic waves. These waves propagate through the plasma and accelerate charged particles
which heat the plasma via collisions subsequently. In general, there are three radio frequency
heating schemes possible in a fusion device: ion cyclotron resonance heating at frequencies of
30−80MHz, lower hybrid resonance heating at a frequency of a few Giga Hertz and electron
resonance heating at a frequency in the range of 100 GHz. But for the investigation of fast
particle losses during this thesis only the ion cyclotron resonance heating (ICRH) [45] is of
interest.

An antenna launches a wave into the plasma with a frequency which matches the ion
cyclotron frequency. Since the cyclotron frequency (section 2.4) depends mainly on the
toroidal magnetic field B ≈ B(R), a resonant absorption of the charged ions is spatially
localized at a major radius R as shown in figure 2.12. The resonance condition ω(R) is
given by

ω − k‖v‖ ≈ lωc

where l = 1, 2, . . . is the number of the harmonic. Due to Doppler broadening, a spatial
region with a resonance width δR is induced,

δR =
k‖vi

ωc
R .

Since the resonance width is much smaller than the plasma extent, ICRH has the desirable
feature that the absorption region can be controlled by matching the wave frequency to the
magnetic field.

With respect to the absorption, a crucial property is the polarization of the wave. Due
to the gyro motion of the particles, the wave must have a circularly polarized component.
With inclusion of finite Larmor radius (FLR) effects, it has been shown [46] that the ab-
sorption at the fundamental harmonic (l = 1) is small due to an unfavourable polarization.
The absorption has its maximum at the second harmonic (l = 2) and decreases for higher
harmonics. The mean energy exchange 〈δE〉 for l = 2 is given by
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〈δE〉 ∼
∣
∣
∣
∣

k⊥v⊥
ωc

∣
∣
∣
∣

2

(E+)2

where E+ is the circularly polarized component of the wave electric field in the direction
of the ion gyro motion. The equation shows that the harmonic heating accelerates particles
with k⊥ρ⊥ ≫ 1 better than the bulk ions. So, it creates a tail in the distribution function
for high energies deviating from the Maxwellian.
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Figure 2.12.: Resonance region (shaded blue box) of the fast particles due to on-axis ICRH.

Minority Heating

If the plasma (deuterium) consists of a further particle species (hydrogen) in a low con-
centration, the absorption at the minority resonance becomes very strong. All frequencies
and absorption parameters are determined by the deuterium ions. This implies that in the
vicinity of the hydrogen resonance a considerable fraction of the wave power is left polarized
because of the polarization caused by the deuterium. This heating scheme is called minority
heating. Since the frequency is set so that all the power is absorbed by the hydrogen, a
strong tail is created in the distribution function. The ions relax by collision with back-
ground electrons because of the high velocities.

Due to the absorption, the perpendicular energy of the particle is increased. This means
that not only the total energy is increased but also the ratio v‖/v⊥ (Eqn. 2.44) decreases.
Due to this, former passing particles change their orbit topology to a trapped orbit as shown
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in figure 2.12. Furthermore, the turning points of the trapped particles shift to the LF side
since the orbit is still within the absorption region. This continues until the turning points
are located at the edge of the resonance region. Therefore, ICRF heating creates a highly
anisotropic fast particle distribution in both energy and orbit topology.

2.5.2. Neutral Beam Injection

The neutral beam injection (NBI) is a fast particle source which injects a beam of fast neu-
tral atoms with high energy into the plasma. The energetic neutral atoms are created by
extracting positive hydrogen or deuterium ions from an ion source. These ions are acceler-
ated by an electric field to high velocities and neutralized by collisions with a gas target.
However, not only hydrogen H+ or deuterium D+ ions are produced in the ion source but
also ionized molecules like H+

2 , H+
3 , D+

2 and D+
3 . Since the electric potential is constant

during the acceleration, the injected beam consists of atoms and molecules with an acceler-
ation energy Ea according to the number of atoms, i.e. Ea, Ea/2 and Ea/3. Afterwards, the
atoms and molecules propagate on straight lines into the plasma unaffected by the magnetic
field. In the plasma, the atoms and molecules are ionized by collisions and charge exchange.

For the ASDEX Upgrade discharge #20853, deuterium was injected by NBI delivering
a total power of 20MeV. The acceleration energies were E = 93keV, E = 46.5 keV and
E = 31keV for D+, D+

2 and D+
3 . The corresponding fast particle distribution can be

calculated by the FAFNER code [47]. For discharge #20853 at the time t = 5.0 s, the NBI
distribution [48] for approximately 19.000 particles is shown in figure 2.13.
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Figure 2.13.: ASDEX Upgrade: Fast particle distribution in the plasma due to neutral
beam injection for discharge #20853 at time t = 5.0 s.
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The particles are injected from the low field side (from the right side) at midplane. The
deposited particle density decays exponentially with respect to the distance from its injection
point into the plasma. The particles are mainly passing particles since the ratio between
the parallel to the total velocity v‖/v is between 0.3 till 0.8.
Such a particle distribution is able to interact with a NTM introduced in section 2.3.5. As
a consequence, the heating of the background plasma is reduced at the NTM position. This
will be investigated in section 4.6.

2.5.3. Fast Ion Loss Detector

Due to wave-particle interaction, it is possible that highly energetic particles are pushed
onto loss trajectories, i.e. the ions leave the plasma and are lost at the vessel wall. These
particles can be detected with a fast ion loss detector FILD [18] which is installed at ASDEX
Upgrade. From the properties of the lost particles, it can be deduced where the particle
orbits were located before they were lost and which particular wave has ejected the parti-
cles. For a better understanding of the deduced information, a short introduction into the
functionality and the parameter range of the FILD is presented here.

At ASDEX Upgrade, the detector is located within the vessel above midplane on the LF
side as shown in figure 2.14. The detector consists of a collimator, a scintillator plate and
a CCD camera. It is able to measure gyro radii and pitch angles of highly energetic ions
with a high temporal resolution. The sampling rate of 10 MHz gives the opportunity to
determine in addition the loss frequency. This allows identifying the wave which ejects the
ions. The spatial resolution is determined by a CCD camera recording the light pattern of
the losses on the scintillator plate.

Figure 2.14.: Position of the FILD in the vessel of ASDEX Upgrade (sector 8). The detector
head is movable towards the plasma.
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The energetic ions enter the detector through the aperture slit and strike on the scin-
tillator plate as shown in figure 2.15. The gyro radius of the fast particles determines the
distance from the slit (Fig. 2.15 left). The pitch angle α defines the striking point on the
plate (Fig. 2.15 right). With these values, the particle loss orbit in a reconstructed plasma
equilibrium can be simulated.
The chosen geometry of the collimator enables the detection of fast ions with a gyro radius
of ρ⊥ ∈ [3 cm, 12 cm] and a pitch angle between α = 30◦ (passing) and α = 87◦ (trapped).

α

Figure 2.15.: Schematic outline of the FILD functionality (left: side view, right: top view).
The fast particles enter through the aperture slit and strike on the scintillator
plate (green).

Due to the magnetic field geometry introduced in section 2.2, the field line next to the
detector is tilted against the horizontal plane. Therefore, the detector head is aligned parallel
to B, i.e. tilted by an angle of γ ≈ 13◦, and is fixed during a discharge. Since the magnetic
field evolves during a discharge, the slope of the magnetic field line next to the detector can
vary by a small deviation of ±2◦.
Furthermore, it has been assumed [18] that the fast particles which enter the detector slit are
propagating exactly along the magnetic field lines, i.e. no drifts. This is only valid in lowest
order. In section 4.5, it will be shown that drifts have to be considered for a comparison
between numerical simulations and experimental results.
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Based on the theoretical background introduced in the previous chapter a numerical model
will be presented to study the interactions between highly energetic particles and Alfvén
Eigenmodes. It is apparent that the wave-particle interaction is non-linear since both the
MHD modes and the particles evolve in response to the collective motion of each other and
thus require a self-consistent approach. Especially, the consequential change in the wave
amplitude and the redistribution of fast particles are of tremendous interest. The model
presented here is implemented in the non-linear, drift-kinetic, perturbative HAGIS code
(HAmiltonian GuIding centre System) [12, 13] which is very well adapted to the problem.
A limit of the original code is the spatial restriction of the simulation domain up to the
separatrix. The redistributed particles crossing the last closed flux surface are not followed
up to the first wall so that the determination of the wall load and the comparison with
experimental fast ion loss diagnostics are impossible. In addition, not all particles are
lost immediately, but re-enter the plasma again. Neglecting these fast ions corresponds to a
serious underestimation of the mode drive. Furthermore, the conditions for the initialization
of a particle distribution driving the modes unstable are not developed to full extent for the
various heating schemes.
In this chapter the original state of the HAGIS code will be presented, followed by the
code extension introducing a new coordinate system, the equations of motion outside the
separatrix and an additional functional form for a fast particle distribution. A comparison
between both coordinate systems implemented in the code will reveal the advantages and
limits.

3.1. Introduction to the HAGIS code

Originally, the HAGIS code was developed by Simon Pinches in 1996. A similar implemen-
tation of the physics was carried out in the ORBIT code by White [49] before but the code
uses different integration methods. For a better understanding of the following extension
and improvements, the main aspects of the HAGIS code (version 2007) are summarized in
this section. The depictions are leant to the work [12] in the broadest sense.

The HAGIS code solves a system of first order ordinary differential equations with ini-
tial conditions. Evolving the equations simultaneously advances the spatial location of the
particles, their parallel velocity and the change in the particle distribution as well as the
amplitude and the phase of the modes on the simulation grid. The domain and its appending
equilibrium quantities are supplied by the equilibrium code HELENA [22] that solves the
Grad-Shafranov equation [2]. Furthermore, the stability code CASTOR [50] provides the
frequency and the spatial profiles of the MHD perturbation which is maintained to be fixed
in its shape. The initial distribution and conditions of the energetic particles are specified
in an input file supplied by the user.
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Dealing with such a complex problem a representation has to be chosen that simplifies
the equilibrium description and exploits as much as possible the symmetry properties of the
magnetic field. As a consequence the equations of motion will be simplified but require a
non-orthogonal coordinate system.
Using a Hamiltonian approach, the dynamical equations will be found by Newton’s second
law evolving the particle’s coordinates under the influence of a given force and determining
the constants of motion. An analogous procedure will reveal the wave equations for the
evolution of the amplitudes and phases. The fast particle distribution represented by the
particles acts on the waves and is modified by them, simultaneously. The representation of
the distribution function will close the self-consistent description.

3.1.1. Boozer Coordinates

The coordinate system was primarily developed for the approximation of the guiding cen-
tre equations of motion. However, the coordinate construction becomes more important
because it constitutes the neighbourhood conditions for the vacuum extension. For this
reason, particular attention must be emphasized to the coordinate generation to reveal the
best connection between both grids.

As indicated in section 2.2, an adoption of flux coordinates which are suited to the geom-
etry of the magnetic field simplifies the dynamical equations significantly. A coordinate sys-
tem which represents the magnetic field line as straight lines and expresses their components
in flux functions as much as possible enables a desired description. Such a representation -
referred to as Boozer coordinates - was found by Boozer [51] by using a specific choice of
the Jacobian.
In general, the magnetic field determines the nested flux surfaces in a plasma. If in ad-
dition the magnetic field has a toroidal symmetry all equilibrium quantities such as the
metric tensor and the magnetic field components are independent of the toroidal angle ζ,
i.e. ∂B/∂ζ = 0, so that the magnetic field (2.9) can be represented [21] in an equilibrium
by

B = ∇ψ ×∇θ + ∇ζ ×∇ψp , (3.1)

where ψp and ψ are radial flux labels determined by the poloidal and toroidal flux, respec-
tively. The poloidal angle is given by θ. Assuming that the contravariant radial magnetic
field component vanishes, i.e. B · ∇ψ = 0, B can also be described by any two vectors
orthogonal to the radial gradient [52],

B = BG∇ψp ×∇θ +BH (∇ψp ×∇θ) ×∇ψp . (3.2)

The magnetic components BG and BH are functions of ψp and θ only and need to be
determined. From ∇ · B = 0, it is found that

BH =
h

J (∇ψp ×∇θ)2
and BG =

g

J (∇ψp ×∇θ)2
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with h = h(ψp) and g = g(ψp) being flux labels. Rewriting equation (3.2) yields

B =
1

J (∇ψp ×∇θ)2
[

g(ψp)∇ψp ×∇θ + h(ψp) (∇ψp ×∇θ) ×∇ψp
]

. (3.3)

The poloidal flux Ψpol = 2πψp can be calculated from the poloidal magnetic field compo-
nent,

2πψp =
1

2π

∫ ∫ ∫

(B · ∇θ) J dψp dθ dζ ,

which is determined by equation (3.3) to be,

B · ∇θ =
h(ψp)

J . (3.4)

Inserting into the integral reveals that

2πψp =
1

2π

∫ ∫ ∫

h(ψp) dψp dθ dζ

= 2π

∫

h(ψp) dψp

⇒ h(ψp) = 1 . (3.5)

Using the covariant notation of a vector, the magnetic field can also be written as

B = Bψp∇ψp +Bθ∇θ +Bζ∇ζ .

The covariant component can be found by taking the scalar product of equation (3.3)
with the corresponding contravariant basis vectors,

Bψp =
1

(∇ψp ×∇θ)2
[

g (∇ψp ×∇θ) · (∇θ ×∇ζ) − (∇ψp ×∇θ)
J

]

, (3.6)

Bθ =
1

(∇ψp ×∇θ)2

[

g (∇ψp ×∇θ) · (∇ζ ×∇ψp) +
(∇ψp)2

J

]

, (3.7)

Bζ = g(ψp) , (3.8)

whereby it shows up that the toroidal covariant field component is already a flux label.
One can choose the coordinate ζ so that the field lines are straight by defining

ζ = −φ− ν(ψ, θ) (3.9)

where φ is the cylindrical angle and ν is a toroidal shift angle depending on the radial and
poloidal position. Then, the local helicity dζ/dθ is defined via the magnetic fluxes derived
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from equation (3.1),

dζ

dθ
=

∂ψp
∂ψ

B · ∇ζ
B · ∇θ =

Bζ

Bθ
= q(ψp) . (3.10)

The resulting safety factor q(ψp) is independent of the poloidal angle θ and yields with
(3.4) and (3.5) for the contravariant magnetic field components to

Bθ =
1

J and Bζ =
q(ψp)

J . (3.11)

Calculating the absolute value of the magnetic field by B2 = BθB
θ + BζB

ζ together
with some straight-forward calculation [12] and reorganizing the poloidal magnetic field
component carries out that

Bθ(ψp, θ) = JB2 − gq . (3.12)

Since the Jacobian is yet not defined, the quantity Bθ is set to a flux function Bθ ≡ I(ψp)
by choosing the Jacobian J to be

J =
I + gq

B2
. (3.13)

So, the final covariant representation of B is given by

B = δ(ψp, θ)∇ψp + I(ψp)∇θ + g(ψp)∇ζ , (3.14)

whereby the covariant component δ is a measure of non-orthogonality of the coordinate
system and vanishes for circular equilibria. Again, it is worth to mention that the dependence
of the covariant quantities g and I on the radial coordinate ψp only is due to the choice of
the Jacobian. This is the important fact to simplify the following Hamiltonian formalism
significantly. Furthermore, both quantities are related by definition to the toroidal current
2πI/µ0 inside the flux surface ψp and the poloidal current 2πg/µ0, respectively.
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Figure 3.1.: Boozer grid generation for ASDEX Upgrade discharge #21083. The last closed
flux surface represents 99.9% of the radial distance from the magnetic axis to
the separatrix.

3.1.2. Wave-Particle Equations

After providing an equilibrium-adopted coordinate system, the wave-particle equations are
derived from the Lagrangian of the complete system. For completeness, a short overview
over the Lagrangian’s constituents and the final set of equations are presented in this sec-
tion. (For a detailed derivation see Appendix A.2 or [12])

The complete system can be expressed by a total Lagrangian Lsys which consists of four
components: a fast particle Lagrangian Ltraj describing the unperturbed trajectory of the
ions, a wave-particle interaction Lagrangian Lint calculating the perturbation for both in the
presence of each other, a bulk Lagrangian Lbulk taking into account the contributions of the
background plasma and an electromagnetic Lagrangian Lem involving the electromagnetic
Alfvén wave itself.
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Lsys =

Particle
Lagrangian

Lfp
︷ ︸︸ ︷

Ltraj +
︸ ︷︷ ︸

Wave equations

Lint +

Wave
Lagrangian

Lw
︷ ︸︸ ︷

Lbulk + Lem (3.15)

The only channel over which particles and waves can interact with each other is by trans-
ferring energy or toroidal momentum via the interaction Lagrangian. The transferred con-
tributions are placed either into Ltraj or Lem which depends on the gradients of the fast
particle distribution and the resonance condition as explained in section 2.3.4. The bulk
Lagrangian Lbulk is considered to be static due to an invariant equilibrium.

Starting with the Lagrangian of the fast particles, the gyro-averaging procedure of Lit-
tlejohn [53] which reduces the canonical phase-space coordinates to be evolved, has shown
that the guiding centre Lagrangian can be written as,

Lfp = e

(

A +
v‖

ωc
B

)

· ẋ +
m

e
µξ̇ −H , (3.16)

where H is the guiding centre Hamiltonian and x and ξ are the spatial coordinates and
the gyro-phase, respectively. The term inside the brackets is known as the modified vector
potential A∗ = A + ρ‖B [11] using the parallel gyro radius ρ‖ = v‖/ωc. The corresponding
Hamiltonian is defined by

H =
m

2
v2
‖ + µB , (3.17)

From the Lagrangian, the derived constants of motion for a guiding centre are the energy
E which coincides with the Hamiltonian (3.17), the toroidal angular momentum Pζ and the
magnetic moment µ,

Pζ = ρ‖g − eψp (3.18)

µ =
mv2

⊥

2B
. (3.19)

By a straight-forward derivation of the Hamiltonian done by White and Chance [49], the
guiding centre equations of motions are
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ψ̇p =
1

D

[

ρ‖B
2

(

g
∂α̃

∂θ
− I

∂α̃

∂ζ

)

−
(

g
∂Φ̃

∂θ
− I

∂Φ̃

∂ζ

)

+
(

ρ2
‖B + µ

)(

I
∂B

∂ζ
− g

∂B

∂θ

)]

, (3.20)

θ̇ =
1

D

[

ρ‖B
2
(
1 − ρcg

′ − gα′
)

+ g
{(

ρ2
‖B + µ

)

B′ + Φ̃′
}]

, (3.21)

ζ̇ =
1

D

[

ρ‖B
2
(
ρcI

′ + q + Iα′
)
− I

{(

ρ2
‖B + µ

)

B′ + Φ̃′
}]

, (3.22)

ρ̇‖ =
1

D

[(

I
∂α̃

∂ζ
− g

∂α̃

∂θ

){(

ρ2
‖B + µ

)

B′ + Φ̃′
}

−
(
ρcI

′ + q + Iα′
) ∂Φ̃

∂ζ

−
(
1 − ρcg

′ − gα′
)

{
(

ρ2
‖B + µ

) ∂B

∂θ
+
∂Φ̃

∂θ

}]

− ∂α̃

∂t
, (3.23)

whereby α̃ is the amplitude of the vector potential along the magnetic field. The perturbed
parallel gyro radius ρc and the denominator D are defined as

ρc = ρ‖ + α̃ and D = ρc
(
gI ′ − g′I

)
+ I + gq .

The prime denotes the derivation with respect to the radial coordinate ψp. If the equilib-
rium functions g(ψp), I(ψp), q(ψp) and B(ψp, θ) and the perturbation variable α̃(ψp, θ, ζ, t)
are given a particle trajectory in a magnetic field with an electromagnetic wave present can
be calculated.

The corresponding wave is described by the wave Lagrangian and can be written in general
[43] as

Lw =
∑

i

[m

2
v2
i + e (Ai · vi − Φi)

]

︸ ︷︷ ︸

Lbulk

+
1

2µ0

∫

V

(
1

c2
E2 −B2

)

d3x

︸ ︷︷ ︸

Lem

. (3.24)

The equation expresses that a MHD perturbation is a balance between the plasma inertia
represented by the bulk plasma particles labelled with i and the magnetic field line tension.
It is assumed that the electrostatic potential Φi is cancelled everywhere in the plasma due
to mobile electrons. The resulting Lagrangian [34] is expressed by

Lw =
∑

k

A2
kσ̇k
ωk

Ek with Ek =
1

2µ0

∫

V

|∇⊥Φk|2
v2
A

d3x , (3.25)

where Ek is referred to as the wave energy of the k-th wave. The waves’ degrees of
freedom are described by the amplitude Ak and the phase σk which are combined in a
complex amplitude term, Ak(t) · exp[−iσk(t)], so that the phase is expressed by
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σk = arctan

(Im{Ake−iσk}
Re{Ake−iσk}

)

= arctan

(
Rk
Ik

)

⇒ σ̇k =
Rk İk − ṘkIk

A2
k

. (3.26)

It is worth to mention that only Ak and σk are able to vary but the eigenfunction of the
mode which is supplied by the code CASTOR is fixed. Its representation is explained in the
following.

The interaction Lagrangian for a particle ensemble np consists of two parts related to the
vector and the scalar potential,

Lint =

np∑

j=1

(

Ãj · vj − Φ̃j

)

, (3.27)

where the subscript j denotes the particle index. The quantity vj is the inherent velocity
of the particle whereas the perturbed vector and scalar potential Ãj and Φ̃j represent all
contributions of the wave ensemble nw acting on the particle j. Each wave labelled with k
is composed by a sum of distinct poloidal eigenfunctions φ̃km determined by the poloidal
mode number m,

Φ̃k =
∑

m

φ̃km(ψp)e
i(nkζ−mθ−ωkt) =

∑

m

φ̃km(ψp)e
iΘ (3.28)

with the wave vector k and the corresponding parallel wave number k‖,

k = n∇ζ −m∇θ and k‖ = nkζ −mθ . (3.29)

so that the vector potential of the wave can be expressed by

α̃km =
k‖

ωkB
φ̃km . (3.30)

Substituting all expressions into the interaction Lagrangian (3.27) yields

Lint =

np∑

j=1

nw∑

k=1

1

ωk

∑

m

(
k‖v‖j − ωk

)
φ̃km(ψp)e

iΘ . (3.31)

The Lagrangian calculates the full potential of all perturbations nw at the position of each
particle. Together with the wave Lagrangian, the Lagrangian becomes to

Lw+int =

nw∑

k=1

1

ωk





np∑

j=1

∑

m

(
k‖v‖j − ωk

)
φ̃km(ψp)e

iΘ + Ek

(

Rk İk − ṘkIk

)



 . (3.32)
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Varying the Lagrangian with respect to Rk and Ik results in

Ṙk =
1

2Ek

np∑

j=1

∑

m

(
k‖v‖j − ωk

)
Im{φ̃km(ψp)e

iΘ} , (3.33)

İk =
1

2Ek

np∑

j=1

∑

m

(
k‖v‖j − ωk

)
Re{φ̃km(ψp)e

iΘ} . (3.34)

The wave equations form a set of 2 × nw first order differential equations evolving the
amplitude Ak and the phase σk in time.

3.1.3. The δf Method

Although the set of equations for the fast particles and the waves has been derived, the model
is still inappropriate for the simulation of a particle distribution in the presence of multiple
waves. Initialising each particle of a realistic ensemble to fill the phase-space adequately,
large computer resources are required leading into unfeasibility. Therefore, an approach is
applied to reduce the number of differential equations by introducing quasi-particles which
represent a particular ensemble of particles. The ansatz and the incorporation into the wave
equations is described in this section.

In the ansatz of quasi-particles, called markers, it is assumed that each marker possesses a
weight representing a different part of particle distribution function. This removes the initial
condition of loading the markers as required for the fast particle distribution but gives rise
of the possibility to accumulate in the region where the wave is present. The weight can
alter in time, depending on the marker position governed by the equations of motion so that
the represented part of the distribution changes. This technique is known as the δf method
[14, 54, 55]. The crucial approach is the decomposition of the fast particle distribution into
two parts: an analytically described background part f0 and a small varying component δf ,

f = f0(Γ
(p))

︸ ︷︷ ︸

analytic

+ δf(Γ(p))
︸ ︷︷ ︸

markers

, (3.35)

where Γ(p) denotes the physical six dimensional phase-space consisting of the space and
velocity components. The advantage of the δf method is that only the change of the distri-
bution function f is represented by the markers. This method assumes that the background
distribution f0 is only slightly distorted through any interaction with a perturbation which
is usually valid. This assumption leads to a substantial noise reduction in simulations [56].

The background part f0 will be described by the unperturbed constants of motions,

f0 = f0

(

P
(0)
ζ , E(0), µ

)

, (3.36)

and yields in absence of any wave integrating over the whole phase-space to
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n0 =

∫

V
f0(P

(0)
ζ , E(0), µ) dΓ(p) ,

where n0 is the total number of particles which is time-independent. So, it follows that
without a sink or source

δn =

∫

V
δf dΓ(p) = 0 .

At that point it is obvious why δf has the property to be the change in the value of the
distribution function describing the difference in the number of particles. It is supposed that
a particle redistribution will occur due to a perturbation but without particle losses. The
assumption is valid as long as the losses are much smaller than the total number of particles.

The evolution of δf is derived from the Vlasov equation which in the absence of sources
and sinks becomes

0 =
df

dt
=

df0

dt
+

dδf

dt
⇒ dδf

dt
= −df0

dt
.

Rewriting δf with respect to the ensemble of markers labelled with j and associated with
distinct energies Ej and toroidal angular momentum Pζj leads to

˙δfj = Ėj
∂f0

∂Ej
+ ˙Pζj

∂f0

∂Pζj
, (3.37)

whereby Ej and Pζj of each marker can vary due to wave-particle interaction, however
the total energy of the system is conserved. The temporal change of both the energy and
toroidal momentum is given [57] by

dEj
dt

=
∂Φ̃j

∂t
− ρ‖B · ∂α̃j

∂t
and

dPζj
dt

= ρ‖B · ∂α̃j
∂ζ

− ∂Φ̃j

∂ζ
. (3.38)

Due to a finite number of markers the change in the number of particles δnj by the
discretization of the integral gives

δnj(t) = δfj(t) · ∆Γ
(p)
j (t) . (3.39)

After defining the change in the distribution function, the physical phase-space Γ
(p)
j for

each marker position needs to be determined revealing the difficulty that the volume element
is compressible, i.e. it changes with the marker flow. The problem can be solved by defining

the marker volume within the canonical phase-space Γ
(c)
j which is incompressible due to

Liouville’s theorem and only needs to be calculated once. The canonical volume element
relates to the physical phase-space by a Jacobian J (pc),
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∆Γ
(p)
j = J (pc) · ∆Γ

(c)
j . (3.40)

Due to different particle distribution functions both in energy and space which are gener-

ated by several heating mechanisms described in section 2.5, an additional phase-space Γ
(u)
j

is required in which the markers are uniformly loaded due to their heating prerequisites.
This offers the possibility to choose the phase-space coordinates adapted to the problem so
that they coincide with the quantities in which the fast particle distribution, f0 = f0(s,E, λ),
is determined. The total relationship between the phase-spaces gives

∆Γ
(p)
j = J (pc) · J (cu) · ∆Uj , (3.41)

The uniformly loaded phase-space volume element is determined by

∆Uj =

∫
dU

np
=

(2π)2 (vmax − vmin) (λmax − λmin) (smax − smin)

np
, (3.42)

where λ = v‖/v is the ratio between parallel to total velocity and s =
√

ψp/ψp(a) is the
normalized radial coordinate. The index a denotes the last closed flux surface.

The derivation of the Jacobians J (pc) and J (cu) is straight-forward [12] but is not unique
due to different initial velocity conditions. In general, for an isotropic distribution the
Jacobians are expressed as

J (pc) =
JB2

D
and J (cu) =

4πsψp(a)Dv
2

B2
. (3.43)

The inclusion of the δf method derived above into the wave equations is implemented
intuitively yielding to

Ṙk =
1

2Ek

np∑

j=1

δfj∆Γ(p)
∑

m

(
k‖v‖j − ωk

)
Im{φ̃km(ψp)e

iΘ} , (3.44)

İk =
1

2Ek

np∑

j=1

δfj∆Γ(p)
∑

m

(
k‖v‖j − ωk

)
Re{φ̃km(ψp)e

iΘ} . (3.45)

The only difference to the wave equations (3.33) - (3.34) is a weighting factor δfj∆Γ(p)

representing the change in the distribution function. This means that a fifth equation of
motion (3.37) for each marker must be evolved in addition. The set of equations is now
complete.

51



3. Code Development

3.2. Extension of the HAGIS Code

In the previous section the relevant concepts with the corresponding model implemented in
the original HAGIS code were introduced. But as mentioned before the code is only able to
follow particle trajectories up to the last closed flux surface. Thus, significant information
about the fast particle losses due to the wave-particle interactions is forfeit. They represent
the crucial connection between the experimental measurements at the first wall and the
redistribution of fast particles in the plasma centre. In addition, it allows a calculation of
the heat loads to the walls by energetic ions. The extension in the vacuum region is not only
relevant for a detailed comparison with fast ion losses in the experiment but it also gives the
possibility to improve the initialization of a fast particle distribution deduced from ion losses.

In the following the concept of the vacuum coordinates will be presented which are ex-
tended from the Boozer coordinates. Together, both coordinates systems cover the whole
domain up to the first wall. Then, the additional equations of motion required in the vacu-
um system will be derived from the general formalism [11] and validated with respect to the
constants of motion’s conservation. Finally, a implementation of an ICRH-generated fast
particle distribution will provide the opportunity to simulate the wave-particle interactions
under more realistic conditions. This allows for comparison to isotropic and NBI-generated
distribution functions.

3.2.1. Vacuum Coordinates

Inside the vessel as shown in figure 2.1 the whole space can be divided into two regions: the
plasma with closed flux surfaces and the vacuum region with open magnetic field lines. As
shown in the section 3.1.1, inside the last closed flux surface the advantage of the Boozer
coordinate system is the alignment to the magnetic field lines. Due to the problem-adaption,
the equations of motion are simplified which results in a speed-up of the simulation time.
Since the safety factor q increases to infinity at the separatrix, the coordinate system is
not defined at the singularity which refuses a description by a solitary Boozer coordinate
system. Nevertheless, field-aligned coordinates can still be applied in the vacuum region
which necessitates a separation of the whole simulation domain into at least three particular
coordinate systems under the retention of the singularity. This would produce numerical
errors for particle trajectories crossing the coordinate boundaries several times.

However, the vacuum region can be represented by a single coordinate system if field
alignment is given up. Thus, the speed-up in the simulation time related to field-aligned
coordinates is lost but the coordinate system is extended consistently from the Boozer coordi-
nates inside the plasma. The advantages of such a representation are not only the simulation
of the wall load but also to account for fast particles with broad orbits re-entering into the
plasma without numerical errors in particular. So, the complete fast particle distribution
driving the mode unstable is considered. For these reasons, a consistent field-unaligned co-
ordinate system is chosen.

The notation of the new vacuum coordinate system {ψv, θv, ζv} denoting the radial,
poloidal and toroidal coordinate resembles to the Boozer coordinate system {ψp, θ, ζ} but
differs significantly in its content. The key point is to remove the flux label predefinition
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applied to straight-field line coordinates but to retain the radial coordinate label approxi-
mately in the vacuum region for an exact contiguous connection to the Boozer coordinates
at an intersection surface ψi. This chosen flux surface is both the outermost radial Boozer
coordinate ψmax and the innermost radial vacuum coordinate ψv,min as shown in figure 3.2.
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Figure 3.2.: Vacuum grid generation for an ASDEX Upgrade discharge. Exemplary radial
Boozer coordinate lines are prolongated into the vacuum region.

It is favourable to define the radial curves in the cylindrical coordinate system {R,φ, z} by
analytical functions which connect exactly to each Boozer coordinate line and thus prolon-
gate smoothly from the intersection surface. The continuity conditions for the prolongation
of a radial coordinate line into the vacuum region referring to the cylindrical coordinate R
are summarized under

Ri|ψi = Rv,min|ψi ,
∂R

∂ψp

∣
∣
∣
∣
ψi

=
∂R

∂ψv

∣
∣
∣
∣
ψi

,
∂2R

∂ψ2
p

∣
∣
∣
∣
ψi

=
∂2R

∂ψ2
v

∣
∣
∣
∣
ψi

, Rv,max , (3.46)

whereby these conditions are also applied to z and φ, respectively. The left-hand sides of
the first three conditions, the position and the derivatives, are known on the Boozer coordi-
nate system. The fourth condition determines the outermost radial point on the last pseudo
flux surface (Fig. 3.2). This surface is an enlargement of the intersection surface including
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the vessel wall. The corresponding (Rv,max, φv,max, zv,max)-coordinates to each radial coor-
dinate line on this surface ψv,max are generated by a straight line through the magnetic
axis and the coordinates (Ri, φi, zi) on the intersection surface. The procedure avoids grid
coarsening at the outboard midplane as shown in figure 3.1 where significant fast particle
losses are expected.

It is convenient to apply cubic polynomials Rj = Rj(ψv), φ
j = φj(ψv) and zj = zj(ψv)

to the set conditions. The analytical functions trace out each radial vacuum coordinate line
denoted by the index j. All coordinate lines only depend on the vacuum coordinate ψv

which is determined to be,

ψv ∈ [ψv,min = ψi, ψv,max] , (3.47)

to avoid radial discontinuities at the intersection surface. The maximal limit ψv,max can
be greater than the flux ψa at the last closed flux surface. It is worth to mention that an
equal spacing of the radial coordinate ψv for all polynomials creates nested pseudo surfaces
(Figure 3.3)! Finally, the whole simulation domain inside the vessel is divided among the
Boozer and the vacuum grid.
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Figure 3.3.: Final vacuum grid with nested pseudo surfaces.

54



3.2. Extension of the HAGIS Code

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
Maior axis R [m]

-1

-0.5

0

0.5

1

H
ei

gh
t z

 [
m

]

Boozer grid

Vacuum grid

Intersection
surface

Magnetic
field lines

Vessel wall

X-point

Figure 3.4.: Electron trajectories which coincide with the magnetic field lines are calculated
on the vacuum grid. The X-point is clearly visible.

Although the radial pseudo surfaces in the vacuum region diverge from the open flux sur-
faces (Fig. 2.1), especially near the X-point, particle trajectories can be precisely followed
in the vacuum region. This is shown at the example of simulating electron trajectories (Fig.
3.4) near the separatrix which coincide with the magnetic field lines nearly perfectly due
to their small mass. So, the X-point becomes visible as a repulsion point for each particle
trajectory.

Near the intersection surface, a part of the Boozer coordinate system is replaced by the
vacuum grid. This is due to the fact that the metric coefficients given on the Boozer grid
(3.46) exhibit a strong oscillatory behaviour as the safety factor increases strongly near the
separatrix, q → ∞. By a truncation, the more inward located metric coefficients from which
the derivatives are extracted provide a sufficient basis.
As mentioned before, the first derivatives, together with the absolute value on the inter-
section surface, determine the condition for a consistent grid extension. However, the pre-
scription of the second derivative accounts for the consistent extension of the magnetic field
because the components of the magnetic field are composed with the metric coefficients.

After the generation of the vacuum grid, the corresponding basis vectors of the vacuum
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coordinate system are derived from the cylindrical basis vectors via the transformation rule,

ei′ = ej
∂uj

∂ui′
, (3.48)

where the prime denotes the tangent-basis vector of the new coordinate system. (If the
subscript and the superscript appear in an equation on the same side always the summation
convention is used as in (3.48).) Written explicitly, the vacuum tangent-basis vectors are

eψv
= eR

∂R

∂ψv
+ eφ

∂φ

∂ψv
+ ez

∂z

∂ψv
,

eθv = eR
∂R

∂θv
+ eφ

∂φ

∂θv
+ ez

∂z

∂θv
,

eζv = eR
∂R

∂ζv
+ eφ

∂φ

∂ζv
+ ez

∂z

∂ζv
.

Since a poloidal cross section of the Boozer coordinate system for a fixed toroidal angle
ζ is curved, the poloidal vacuum plane has also to be curved for an contiguous extension.
Therefore, the toroidal vacuum angle is determined similar to Boozer coordinates (3.9) by

ζv = −φ− νv(ψv, θv) , (3.49)

where νv is a toroidal shift angle. The transformation rules simplify to

eψv
= eR

∂R

∂ψv
− eφ

∂ν

∂ψv
+ ez

∂z

∂ψv
, (3.50)

eθv = eR
∂R

∂θv
− eφ

∂ν

∂θv
+ ez

∂z

∂θv
, (3.51)

eζv = −eφ . (3.52)

All derivatives which appear in equation (3.50) are calculated analytically due to the cubic
polynomials whereas the derivations with respect to the poloidal angle in equation (3.51)
are determined by bi-cubic splines evaluated at each vacuum grid node.

Generating the metric coefficients gij = ei · ej for the vacuum coordinate system is sim-
plified because the tangent-basis vectors within the cylindrical coordinates are orthogonal
and defined to be unit vectors, except the angular basis vector,

eφ =
1

R
êφ ,

so that the metric coefficients are written as
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gψvψv
=

(
∂R

∂ψv

)2

+R2

(
∂ν

∂ψv

)2

+

(
∂z

∂ψv

)2

,

gψvθv =
∂R

∂ψv

∂R

∂θv
+R2 ∂ν

∂ψv

∂ν

∂θv
+

∂z

∂ψv

∂z

∂θv
,

gψvζv = R2 ∂ν

∂ψv
,

gθvθv =

(
∂R

∂θv

)2

+R2

(
∂ν

∂θv

)2

+

(
∂z

∂θv

)2

,

gθvζv = R2 ∂ν

∂θv
,

gζvζv = R2 .

So, the determinant g of the metric is defined as

g =

∣
∣
∣
∣
∣
∣

gψvψv
gψvθv gψvζv

gθvψv
gθvθv gθvζv

gζvψv
gζvθv gζvζv

∣
∣
∣
∣
∣
∣

=

((
∂R

∂ψv

)2

+

(
∂z

∂ψv

)2
)((

∂R

∂θv

)2

+

(
∂z

∂θv

)2
)

−
(
∂R

∂ψv

∂R

∂θv
+

∂z

∂ψv

∂z

∂θv

)2

=

(
∂R

∂ψv

)2( ∂z

∂θv

)2

+

(
∂z

∂ψv

)2( ∂R

∂θv

)2

− 2
∂R

∂ψv

∂R

∂θv

∂z

∂ψv

∂z

∂θv
.

Further simplification leads to

g =

(

gψvψv
−
g2
ψvζv

gζvζv

)(

gθvθv −
g2
θvζv

gζvζv

)

− 2

(

gψvθv −
gψvθvgθvζv
gζvζv

)

= g∗ψvψv
g∗θvθv − 2g∗ψvθv . (3.53)

revealing that g does not depend on the toroidal shift angle νv or its derivatives. The
angle was introduced to the vacuum coordinates for an contiguous connection. Since its
original function for straight-field lines in the Boozer coordinate system is dispensable, the
angle is chosen in such a way that the extreme values of the Jacobian are minimized for a
well-behaved metric.

It has been shown that the generation of the vacuum grid and its metric represents a
contiguous connection to the Boozer coordinate system and its magnetic field components.
Nevertheless, the X-point behaviour is covered. It has to be mentioned that a experimental
sign convention for all quantities has been carried out strictly so that a comparison to the
experiment is possible.

57



3. Code Development

3.2.2. Connection of two Equilibrium Reconstructions

After the generation of the vacuum grid, the required magnetic field components have to
be provided by an equilibrium code. The original code implementation only requires an
equilibrium reconstruction within the separatrix which is not extendable into the vacuum
region. Therefore, two equilibria have to be mapped at the intersection surface.

For the whole simulation domain, an equilibrium reconstruction is supplied by the CLISTE
code [58] which solves the Grad-Shafranov equation,

∇∗ψp = R
∂

∂R

(
1

R

∂ψp
∂R

)

+
∂2ψp
∂z2

= −µ0R
2p′ − µ2

0ff
′ (3.54)

where the prime denotes the derivation with respect to the poloidal flux label ψp. The two
scalar functions p = p(ψp) and f = f(ψp) are the pressure and the relation to the toroidal
magnetic field,

f =
RBφ
µ0

. (3.55)

The profiles of the right-hand side in equation (3.54) are supplied by measurements and
assumptions about their shape. The poloidal flux label on the left-hand side is solved for
the profiles with a free boundary. The final result ψp and the corresponding equilibrium
quantities depend on (R, z). The last closed flux surface ψa and the profiles serve as input
to the equilibrium code HELENA [22] which solves the Grad-Shafranov equation for a fixed
boundary condition. The key point is that the results are given inverted, i.e. R(ψp, θ). So,
the transformation from a straight field line coordinate system to the Boozer coordinates is
much less influenced by interpolation errors than a transformation from the cylindrical to
the Boozer coordinate system. This procedure generates a sufficiently well-behaved metric
in the Boozer coordinate system from which an extension into the vacuum region is possible.
So, the HELENA-generated equilibrium is maintained inside the intersection surface, the
CLISTE-generated equilibrium [59] provides the magnetic field components required for the
vacuum region.

Due to the equilibrium representation, a tiny discontinuity appears at the intersection
surface which has to be fixed. Although the deviation in the sub-per cent area in the poloidal
flux is very small, discontinuities in the second derivative may become intolerably large.
Thus, an adaption of the CLISTE-generated poloidal flux Ψpol given on a rectangular (R, z)-
grid to the radial flux function ψp = Ψpol/2π within the intersection surface is required. The
modification is accomplished in such a way that following conditions

2πψp
∣
∣
ψi

= Ψpol

∣
∣
ψi
,

∂

∂ψp
(2πψp)

∣
∣
∣
∣
ψi

=
∂Ψpol

∂ψv

∣
∣
∣
∣
ψi

,

∂2

∂ψ2
p

(2πψp)

∣
∣
∣
∣
ψi

=
∂2Ψpol

∂ψ2
v

∣
∣
∣
∣
ψi

= 0 ,
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are fulfilled exactly at the intersection surface. The so constructed poloidal flux Ψ∗
pol

deviates slightly from the originally generated flux matrix by CLISTE near the intersection
surface. Away from the intersection surface at larger radial coordinates, the flux matrix ap-
proaches the equilibrium reconstruction by CLISTE again. This approximate quantity also
deviates from the equilibrium reconstruction only in the sub-per cent area and represents
the basis of the magnetic field components’ derivation.

According to Maxwell’s equation, a divergence-free magnetic field is ensured at each node
of the vacuum grid. Due to axisymmetry, ∂/∂ζv = 0, the equation is

∇ · B =
1

Jv

∂

∂ui
(
JvB

i
)

=
∂

∂ψv

(

JvB
ψv

)

+
∂

∂θv

(

JvB
θv
)

= 0 , (3.56)

where Jv is the Jacobian in the vacuum coordinate system,

Jv = eψv
· eθv × eζv =

√

g(gi,j) . (3.57)

The equation (3.56) is fulfilled by the fact that the radial and poloidal contra-variant
components are defined by the modified poloidal flux,

Bψv = −2π

Jv

∂Ψ∗
pol

∂θv
and Bθv =

2π

Jv

∂Ψ∗
pol

∂ψv
. (3.58)

It is worth to mention that at the intersection surface the radial contra-variant component
equals zero due to the definition of Ψ∗

pol being a flux function,

0 = Bψp = B · ∇ψp = Bv · ∇ψv = Bψv , (3.59)

but this is not valid on the residually vacuum grid due to the absence of flux surface
alignment so that

Bv · ∇ψv = Bψv(ψv, θv) 6= 0 for ψv ∈]ψi, ψv,max] . (3.60)

This arising radial magnetic field components highlights that the coordinate grid is not a
straight-field line system, in contrast to the Boozer system.

Furthermore, the toroidal magnetic component is supplied by the function f (equation
3.55) yielding the co-variant component,

Bζv = RBφ , (3.61)

which is connected to the corresponding Boozer component by the conditions,
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Bζ |ψi = Bζv |ψi and
∂Bζ
∂ψp

∣
∣
∣
∣
ψi

=
∂Bζv
∂ψv

∣
∣
∣
∣
ψi

. (3.62)

The other co- and contravariant magnetic field components are generated via the trans-
formation equation, Bi = Bjgij , and the metric coefficients,

Bζv =
(

Bζv −Bψvgψvζv −Bθvgθvζv

)

/gζvζv , (3.63)

Bψv
= Bψvgψvψv

+Bθvgψvθv +Bζvgψvζv , (3.64)

Bθv = Bψvgψvθv +Bθvgθvθv +Bζvgθvζv . (3.65)

In contrast to straight-field line systems, the magnetic field depends on both the radial
and poloidal coordinate. Accordingly, this also applies to the total magnetic field strength
which is calculated by

B2
v = BψvBψv

+BθvBθv +BζvBζv . (3.66)

Since the modified poloidal flux and the grid of the vacuum coordinate system coincide up
to the second derivative with the corresponding quantities of the Boozer coordinate system
at the intersection surface, all vacuum magnetic field components match to their correspon-
dents up to the first derivative. This supplies a continuous and differentiable magnetic field
everywhere.

The procedure for the combination of two reconstructed equilibria has created an ap-
proximate equilibrium which satisfies the condition of a consistent, slowly locally-varying
magnetic field connection allowing for the conservation of the magnetic moment [2],

dµ

dt
= 0 . (3.67)

This constitutes the requirement for the invariance of the guiding centre energy [53] in the
absence of a perturbation. Due to the modification of the poloidal flux Ψpol and the function
f , the Grad-Shafranov equation is not fulfilled up to the precision the original reconstructed
CLISTE equilibrium but the sub-per cent deviation does not interfere relevant physics.

In contrast to that negligible deviation, an unfavourable issue arises due to the interpo-
lation of physical quantities. As shown before, the magnetic field is divergence-free at the
vacuum grid points. At intermediate grid points, the components and the Jacobian are
calculated by separate bi-cubic splines. This procedure generates a resulting magnetic field
which is not divergence-free exactly so that the over-all numerical error affects the invari-
ance of the toroidal angular momentum Pζ . However, increasing the grid resolution allows
to control the invariance of Pζ .
So, it has to be validated by benchmarks between the Boozer and the vacuum coordinate
system (section 3.3) that the usage of the constructed magnetic field in the vacuum region
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is applicable. It will be demonstrated that the deviation from the invariance of Pζ is accept-
able and much less than the effects of an MHD perturbation. Thus, the vacuum coordinate
system justifies its application for the simulation of fast particles beyond the separatrix.

3.2.3. Equations of Motion

The gyro-averaging procedure which leads to the drift kinetic equations of motion has been
described by Littlejohn [60, 53] and Northrop [61] explicitly. The resulting equations and
the corresponding constants of motion are used as a starting point and transferred into the
vacuum coordinate system.

By the derivation of the gyro-averaged Lagrangian (Appendix A.2), the guiding centre
equations of motion (in normalized units) are

Ẋ =
1

B∗
‖

[

UB∗ + ǫb̂× µ∇B
]

, (3.68)

U̇ = − µ

B∗
‖

B∗ · ∇B , (3.69)

with

B∗ = ∇× A∗ = B + ǫU∇× b̂ , (3.70)

B∗
‖ = B + ǫU

(

b̂ · ∇ × b̂
)

, (3.71)

whereby X and U are the three components of the spatial location and the parallel velocity
of the guiding centre along the magnetic field line in general. The quantity B∗ is the modified
magnetic field and its absolute value along the field line is described by B∗

‖ . The quantity ǫ
is defined as

ǫ =
ρ⊥
L

with L =
|∇B|
B

. (3.72)

It is the ratio of the particle’s gyro radius to scale length L over which the magnetic field
varies but acts to describe the order of various terms.

A closer investigation of the modified magnetic field (3.70) has to be undertaken to clarify
its meaning. In the Boozer coordinate system, the additional term results in

ǫU∇× b̂ =
ǫU

JB






0

− ∂g
∂ψp

∂I
∂ψp

− ∂Bψp
∂θ




 ,

which is the deviation of the equilibrium field line within the flux surface. Since the
toroidal angular momentum (3.18) in the absence of a perturbation only consists of vari-
ables depending on the radial coordinate, this small additional term would only marginally
affect Pζ .
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Due to the misalignment of the vacuum coordinate surfaces with the flux surfaces, the term
has still to be maintained although it is of order O(ǫ). The neglection would corrupt the
conservation of the angular momentum Pζ [53] in an axisymmetric system.

Starting from the basic equation (3.68)

Ẋ =
U
(

B + ǫU∇× b̂
)

B∗
‖

+
ǫµb̂×∇B

B∗
‖

,

the first term can be converted via the vector relation (A.1) so that the equation of motion
is written as

Ẋ =
U
{

B + ǫU
[

b̂
(

b̂ · ∇ × b̂
)

+ b̂×
(

b̂ · ∇
)

b̂
]}

B + ǫU
(

b̂ · ∇ × b̂
) +

ǫµb̂×∇B
B∗

‖

= Ub̂+
ǫµb̂×∇B

B∗
‖

+
ǫU2b̂×

(

b̂ · ∇
)

b̂

B∗
‖

. (3.73)

It can be seen that the parallel velocity U can be separated from the modified magnetic
field B∗ and is parallel to B exactly. Using vector relation (A.1) for the third term again
the equations are rewritten to

Ẋ = Ub̂
︸︷︷︸

Parallel motion

+
ǫµb̂×∇B

B∗
‖

︸ ︷︷ ︸

Mirror force

+
ǫU2

B∗
‖

[

∇× b̂− b̂
(

b̂ · ∇ × b̂
)]

︸ ︷︷ ︸

Curvature force

(3.74)

As mentioned before, the first term represents the guiding centre propagation along the
magnetic field line. The second and third term are drift terms due to the mirror force acting
on the perpendicular velocity and the curvature force κ = (B · ∇)B, respectively. The cur-
vature force appears due to toroidicity and pressure induced effects which are represented
by the first and the second part of the third term.

Considering the equation of motion (3.69) for the parallel velocity U , it would be advan-
tageous to transform the equation of motion to the parallel gyro radius ρ‖ implemented in
the code yet. The result is

ρ̇‖ =
d

dt

(
U

B

)

=
1

B

dU

dt
− U

B2

dB

dt

=
1

B

(

U̇ − ρ‖v · ∇B
)

.

A detailed decomposition into co- and contravariant components which are implemented
in the HAGIS code is shown in the appendix A.3. The final equations of motion in physical
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units are given by

vsv = (C1 − C3K) bsv − C2

Jv
· bζv

∂B

∂θv
+
C3

Jv

∂bζv
∂θv

(3.75a)

vθv = (C1 − C3K) bθv +
C2

Jv
· bζv

∂B

∂sv
− C3

Jv

∂bζv
∂sv

(3.75b)

vζv = (C1 − C3K) bζv +
C2

Jv
·
(

bsv
∂B

∂θv
− bθv

∂B

∂sv

)

+
C3

Jv

(
∂bθv
∂sv

− ∂bsv
∂θv

)

(3.75c)

ρ̇‖ =
1

ωc

[

v̇‖ − ρ‖
qce

m

(

vsv
∂B

∂sv
+ vθv

∂B

∂θv

)]

. (3.75d)

with the equation of motion for the parallel velocity v̇‖ written as

v̇‖ = C‖

[(

bsv +
ρ‖

Jv

∂bζv
∂θv

)
∂B

∂sv
+

(

bθv −
ρ‖

Jv

∂bζv
∂sv

)
∂B

∂θv

]

. (3.76)

The variables are determined by

K = b̂ ·
(

∇× b̂
)

,

and

C‖ = − µ

m
(
1 + ρ‖K

) , C1 = ρ‖ωc ,

C2 =
µ

qceB
(
1 + ρ‖K

) , C3 =
ωcρ

2
‖

(
1 + ρ‖K

) .

Here, the radial coordinate ψv (3.47) is finally transformed to

sv =

√

ψv

ψa
with sv ∈ [si, sv,max] (3.77)

for normalization advantages. A smooth connection for the normalized coordinate sv is
also guaranteed whereby the maximal value can exceed 1.

Given the equilibrium function B and the unit vectors bsv , bθv , bζv , bsv , bθv and bζv , particle
trajectories can be accurately followed in the vacuum region. This is achieved by remaining
the constants of motion invariant during the integration path. The magnetic momentum
and the energy of the guiding centre were obtained before
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µ =
mv2

⊥

2B
, E =

mv2
‖

2
+ µB . (3.78)

The toroidal angular momentum can be derived directly from the Lagrangian by

Pζv =
∂L
∂ζ̇v

=
∂

∂ζ̇v

[

e
(
A + ρ‖B

)
· v − m

2
v2
‖ − µB

]

=
∂

∂ζ̇v

[m

2
v2
‖ + eA · v − µB

]

= mbζvv‖ + eAζv

= mbζvv‖ − eRAφ,phys

= e
(
ρ‖bζvB − Ψpol

)
. (3.79)

It seems that the result is identical to equation (3.18) which is applied for Boozer coor-
dinates. The subtle difference is that all variables are functions of the radial and poloidal
coordinate, bζv = bζv(ψv, θv), B = B(ψv, θv) and Ψpol = Ψpol(ψv, θv). This implies a more
difficult conservation of Pζ due to more dependencies. Its conservation is investigated when
the vacuum region is benchmarked against the original version.

3.2.4. Virtual Fast Ion Loss Diagnostic

Having derived the equations which describe the motion of highly energetic ions in the
vacuum region and the corresponding constants of motion it is almost possible to perform
simulations and the corresponding losses. But due to the fact that the equations are derived
for the guiding centre of a particle, the gyro motion has to be dealt with separately. The
geometrical and physical effects related to this aspect are discussed in the following.

From the equations of motion (3.74) it can be clearly seen how the guiding centre evolves
in the magnetic field. However, the particle gyrates around the guiding centre. So, the
strike point of a lost particle on the vessel first wall (Fig. 3.5) is a point which is separated
from the position of the guiding centre trajectory by the current gyro radius. Therefore,
the treatment of the gyro radius is important over the whole vacuum region to determine
realistic losses.
Without the treatment of gyromotion, some particles in the vacuum region would be treated
as confined which are actually lost as shown in figure 3.6. This is especially valid for highly
energetic particles with energies of E ≥ 1MeV with a corresponding gyro radius of approx-
imately ρ⊥ ≥ 9 cm. In addition, an unrealistic interaction of these particles with the MHD
modes would result in an unphysical drive mechanism. If these ions are finally lost, the
strike points on the vessel wall can be different.

Simulating the gyrating particles as a ring which is oriented perpendicular to the mag-
netic field line and propagates along the guiding centre resolves the problem. This is a good
approximation to the helix because the gyro frequency ωc = eB/mi is at least one order
higher than the poloidal precession frequency ωθ, ωc ≫ ωθ. If a particle is lost, the inter-
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Figure 3.5.: Trajectory of a lost trapped ion with an energy E = 800 keV taking into
account its gyro motion. Further hitting points of lost particles are displayed
for slightly different start conditions. The entrance slit of the fast ion loss
diagnostic FILD (section 2.5.3) is plotted.

section of the ring with the first wall determines its hitting point (Rfw, zfw). Furthermore,
the following values are determined for each marker:

• t : Time after the initialization

• E : Energy E = E(t) which might deviate from the initial energy E0 = E(t0)

• ρ⊥ : Gyro radius of the lost particle

• λ : Cosine of the pitch angle α, λ = cosα = v‖/v

• δf : Change in the fast particle distribution

• Bgc : Magnetic field at the last guiding centre position

The lost particle positions are distributed over the whole vessel so that a virtual fast
particle diagnostic exists everywhere, not only at the position of the entrance slit of the
FILD as shown in figure 3.5. However, a single point will not deliver sufficient loss data
due to its spatial restriction. Therefore, an extended range at the first wall must be chosen.
Regarding to the figure 3.6, a trapped energetic ion with an energy of E = 800 keV is lost
which has been started at its bounce point, i.e. λ = 0. Changing either the starting position
horizontally or vertically by 1 cm or the energy by 20 keV, different impacts points over a
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Figure 3.6.: Trapped particles having their bounce points above the magnetic axis are
initialized for various vertical positions z and energies E. The confinement of
the guiding centres without (left) and with inclusion of FLR effects (right) are
shown. Only the latter leads to the correct loss boundary.

vertical range at the first wall of ∆z ≈ 13 cm appear. The hitting points are very sensitive
to small deviations at the particle initialization. Therefore, the detector range has to be
considered accordingly.

3.2.5. ICRH-generated Fast Particle Distribution

Auxiliary heating methods like ICRH or neutral beam injection are applied for the produc-
tion of a hot plasma in ASDEX Upgrade. Thereby, different distribution functions of fast
particles are generated which differ significantly in space, energy and pitch angle regarding
to the heating method. As a consequence, MHD modes which are present in the plasma will
be driven unstable [25, 34] in differential manner by the varying fast particle initializations
so that the losses of energetic particles can also differ strongly. In the original version of the
HAGIS code, two distributions of fast particles are available: a NBI-generated function and
an isotropic function in the pitch angle variable. Thus, an implementation of a distribution
generated by ICRF heating is advantageous and allows for comparison to existing distribu-
tion functions.

The distribution functions implemented in the original HAGIS code are described by
analytical functions and are separable in space, energy and pitch variable λ,

f0 (Pζ , E, µ) → f (s) · f (v) · f (λ) (3.80)

Both initializations allow for arbitrary functions in energy E and radial coordinate s but
fill the angular phase-space equally. The unique difference is determined by the pitch variable
λ. For the isotropic case, the distribution is f(λ) = const. whereas for the NBI-generated
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distribution the pitch variable is singular at λ = 1.
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Figure 3.7.: The resonance area of the on-axis ICRF heating (red) is represented by a spa-
tial distribution function which is limited in poloidal angle (cyan). Most par-
ticles (magenta) which are not inside the resonance layer are lost immediately.
Thus, only particles (blue) are maintained which represent the ICRH-generated
distribution in good approximation.

The mechanism of an on-axis ICRF heating was explained in section 2.5.1. Due to a local-
ized resonance conditions at the magnetic axis, the resulting fast particle distribution differs
from both functions above, especially in the spatial poloidal initialization. The red square in
figure 3.7 illustrates the plasma region at which the ICRH power is deposited, i.e. where the
bounce points of the trapped particles are located. In practice, a distribution function which
represents such an area exactly can not be described by an analytical function. For the sake
of feasibility, two poloidal angle segments are chosen which represent the upper and lower
half of the ICRF heated region. Near the magnetic axis the segments coincide sufficiently
whereas the condition is not fulfilled at larger radial positions. Fortunately, many particles
whose turning points are on the high field side are promptly lost (magenta) so that the
ICRH-generated distribution is represented in good approximation [45].

The functions f(θ) and f(λ) are shown in figure 3.8 and correspond to the spatial distri-
bution as shown in figure 3.7. The markers are isotropically initialized around two angles,
θ1 = 1.4 and θ2 = 4.9, within an interval of ∆θ = 0.3 poloidally and around λ = 0.0 within
an interval of ∆λ = 0.2 for the pitch variable in the uniformly distributed phase-space ∆Uj
(3.42). Determining the phase-space adapted to a single marker yields

67



3. Code Development

0 1 2 3 4 5 6
Poloidal angle θ

0

5000

10000

15000

20000

N
um

be
r 

of
 m

ar
ke

rs

ICRH
isotropic

-1 -0.5 0 0.5 1
λ = v

||
/v

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r 

of
 m

ar
ke

rs

ICRH
isotropic

Figure 3.8.: Initial functions f(θ) and f(λ) for an isotropic and an ICRH generated fast
particle distribution in the uniformly-loaded phase-space U . The integral of
the curves equals the total number of initialized markers (315000).

∆U =

∫
dU

np

=
2π
∑

i (θi,max − θi,min) (smax − smin) (vmax − vmin) (λmax − λmin)

np

=
4π∆θ (smax − smin) (vmax − vmin) ∆λ

np
. (3.81)

Although the markers are loaded around two poloidal angles, the whole poloidal domain on
the low field side will be rapidly filled after the initialization by particles. Since the poloidal
angle ranges between 0 and 2π, the poloidal domain consists of two poloidal segments
between [0, θ1 + ∆θ/2] and [θ2 − ∆θ/2, 2π]. The equi-distribution of the fast particles in
space is the sufficient criterion to maintain the Jacobians (3.43) derived for an isotropic
distribution. Thereby, integral boundaries for the poloidal and pitch variable has to be
taken into account for the determination of the volume-averaged fast particle beta, 〈βf 〉,

〈βf 〉V = C ·
〈

2p

B2

〉

= C ·
〈

2n0

∫
v2f0 d3v

B2

〉

= C ·
〈

8π2n0f(s)f(θ) ·
∫
v2f(v)f(λ) d3v

B2

〉

= C · 8π2n0

∫
θ1+

∆θ
2∫

θ2−
∆θ
2
−2π

∫
∆λ
2∫

−∆λ
2

(
v
B

)2
f0 J ds dθ dv dλ

VTorus
(3.82)

with the separation of the fast particle distribution of
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f0 → f(s) · f(θ) · f(v) · f(λ) . (3.83)

The fast particle beta determines the number of particles represented by a marker and
therefore has an influence on the mode drive. The parameter C in equation (3.82) is a
normalization quantity determined by a prescribed 〈βf 〉.

The implementation of a simplified ICRH generated distribution function implies a first
step for a realistic fast particle distribution. But for the current status of the code, it is
more important that it gives the opportunity for a comparison to an isotropic distribution
function. This allows for an inspection which particle species is responsible for the drive of
an MHD mode and to which amount.

3.3. Validation of Vacuum Coordinates

The drift kinetic particle orbits of the HAGIS code were benchmarked extensively against
the analytical theory [12]. Since the extension of the HAGIS code exhibits a completely
different representation of the coordinate system and the equations of motion, the first step
is to compare the particle trajectories and the constants of motion in particular with orbits
calculated on the Boozer coordinate system.

The first investigation directs to particle trajectories performed on the vacuum and the
Boozer coordinate grid separately. Therefore, a large inward-extension of the vacuum co-
ordinates is performed to verify an entire particle trajectory as shown in figure 3.9. Only
the simulation domain between the intersection surface and the last closed flux surface is
important because only this space is covered by both grids. It can be observed that the
poloidal projection of the particle orbit simulated on the vacuum grid matches nearly per-
fectly the trajectory on the Boozer grid. The difference accounts for the use of two different
equilibrium reconstructions from CLISTE and HELENA for the different coordinate systems.

In this context, a key issue for the treatment of fast particles is the conservation of the
constants of motion, the magnetic momentum µ, energy E and the toroidal angular momen-
tum Pζ . As pointed out in section 3.2.2, the magnetic field is exactly divergence-free at the
grid points only. Since, the magnetic momentum is conserved intrinsically and the particle
energy does not depend on the magnetic field strength, the toroidal angular momentum only
is affected. The effect can be minimized by a high grid resolution.
To test the angular momentum conservation, a trapped highly energetic particle (Fig. 3.9)
with an energy of E = 800 keV is simulated for several poloidal orbits on both grids inves-
tigating the deviation of the energy δE and the momentum δPζ defined by

∣
∣δE

∣
∣ =

∣
∣
∣
∣
∣

E(t) − E(t0)

E(t0)

∣
∣
∣
∣
∣

and
∣
∣δPζ

∣
∣ =

∣
∣
∣
∣
∣

Pζ(t) − Pζ(t0)

Pζ(t0)

∣
∣
∣
∣
∣
. (3.84)

From figure 3.10 it can be seen that both constants of motion are conserved up to
δE = δPζ ≈ 10−8 on the Boozer coordinate system for a radial and poloidal grid reso-
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Figure 3.9.: Two trapped particle trajectories with identical start conditions (E = 800
keV) but one is performed within the Boozer grid (blue), the other within the
vacuum grid (magenta).

lution of (200x256). The conservation of the energy in the vacuum grid is guaranteed at
least to the same order, mostly better. This is due to the inclusion of order O(ǫ) within the
modified magnetic field (3.70) in the equations of motion.
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Figure 3.10.: Deviation of the constants of motion, energy (a) and toroidal momentum (b),
for a trapped particle with E = 800 keV (Fig. 3.9) performed for different
vacuum grid resolutions.
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On the contrary, the time traces for the conservation of Pζ show a different accuracy and
shape. Within the curve calculated on the Boozer grid, a single particle orbit can be well
detected. After a complete orbit, the deviation in Pζ is minimal and at least one orders of
magnitude smaller than at the position of greatest radial distance from the start position.
The changes in the curve on the vacuum grid are however sharp and refer to the particle
motion along a pseudo surface. This indicates that the poloidal spacing is more relevant
than the radial resolution.
Altogether, the toroidal momentum is only conserved up to an order of 10−5 for the lowest
and 10−6 for the highest grid resolutions. The difference to the Boozer coordinate system
amounts to two till three orders of magnitude. The size of the grid cell varies from four
times to half the size of the corresponding Boozer grid cell. If the distribution of the whole
simulation domain between both coordinate systems is chosen as shown in figure 3.3, the
size of the grid cells in a (200x256)-Boozer grid resembles to a resolution of (512x512) in
the vacuum grid. Such a resolution is sufficient to ensure a maximal deviation of 10−6 in
the toroidal angular momentum so that changes of at least δPζ ≈ 10−3 due to MHD modes
can be well-distinguished.

Since no mode and therefore no wave-particle interaction are present on the vacuum coor-
dinate grid, a very poor resolution would be sufficient in principle. The constants of motion
for lost particles would only exhibit a small numerical error due to the resolution. However,
the conservation for the particles which enter the plasma again is crucial so that the mode
drive inside the plasma is not corrupted. It would be underestimated in the original code
version without the vacuum extension as these particles are not taken into account.
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Figure 3.11.: Co-passing (left) and counter-passing (right) particle traces with identical
start conditions (E = 800 keV, midplane, low field side). In each case one
trace is performed within the Boozer grid (blue), the other within the vacuum
grid (magenta).
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Furthermore, trajectories of passing particles at various radial positions are performed,
both on the Boozer and the vacuum grid with a grid resolution of (256x256). The particle
trajectories at radial surfaces near the intersection surface are nearly congruent but tra-
jectories at larger radial positions are only slightly deviating as well. The reason for the
deviation is the use of different equilibrium reconstructions which resemble in the vicinity
of the intersection surface better than near the separatrix.

0 5e-06 1e-05 1.5e-05 2e-05
Time [s]

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

D
ev

ia
tio

n 
| δ

E
|

Boozer out
Vacuum out
Boozer in
Vacuum in

0 5e-06 1e-05 1.5e-05 2e-05
Time [s]

1e-13

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

D
ev

ia
tio

n 
| δ

P
ζ|

Boozer out
Vacuum out
Boozer in
Vacuum in

Figure 3.12.: Deviation of the energy and the toroidal momentum for the co-passing par-
ticles (Fig. 3.11 left) performed on both coordinate grids with the same
resolution (256x256).
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Figure 3.13.: Deviation of the energy and the toroidal momentum for the counter-passing
particles (Fig. 3.11 right) performed on both coordinate grids with the same
resolution (256x256).

The corresponding conservation of the constants of motion reveals the same behaviour as
for the trapped particles. The particle energy is conserved at the same order of magnitude
on both grids for particles which are near the last closed flux surface. For particles located
more at the centre, the energy conservation is better by one order of magnitude on the
vacuum grid. Again, the reason is due to higher terms in the equations of motion whose
effects diminish on a greater grid cell near the last closed flux surface.
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Considering the angular momentum, the discrepancy between the conservation on both coor-
dinate systems is three orders of magnitude. For counter-passing particles, the conservation
is worse compared to co-passing ions and degrades even more for a larger radial position.

After the comparison of an identical particle trajectory on both coordinate grids, the
spatial grid distribution as in figure 3.3 is considered. Examples of possible trajectories
for energies of E = 300 keV and E = 800 keV for all three particle species are simulated
crossing the intersection surface multiple times. Assuming a similar cell size for both grids,
the resolution for the Boozer coordinate system amounts to (256x256), for the vacuum co-
ordinate system to (256x512).
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Figure 3.14.: Trajectories of ions with E = 300 keV (left) and E = 800 keV (right) for all
three particle species (counter-passing, co-passing, trapped).

The corresponding graphs (Fig. 3.15) for the conservation of the constants of motion
exhibit the same behaviour as shown before for each particle species on a grid separately.
The invariants are conserved at the order of magnitude according to the worse properties of
each grid. So, the energy is conserved at the order of magnitude which corresponds to the
resolution of the Boozer coordinate system, the deviation of the toroidal angular momentum
depends on the vacuum grid resolution.
In figure 3.15 (right) the crossing of the particle trajectory over the intersection surface is
visible. The deflections in the graphs mark the time which the particle is within the vac-
uum region. Thereby, an unfavourable increase of the deviation after each poloidal orbit
is detected for all particle species. The reason is that the particle cannot fulfil a complete
orbit on the vacuum grid over which the deviation is minimized (figures 3.10, 3.12, 3.13) but
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Figure 3.15.: Deviation of the constants of motion, δE and δPζ , for the particle trajectories
as shown in figure 3.14.

pick up an error during the orbit leg. Except the highly energetic counter-passing particle
with E = 800 keV, all particles degrade the conservation of Pζ by an amount of a few 10−7.
Thus, it is not negligible if the error approaches the order of an excursion due to an MHD
mode, δPζ ≈ 10−3. In the worst case, this has to be taken into account for re-entry particles
first when at least 1000 orbits are completed. This corresponds to a mean simulation time
of ∆t ≈ 2 · 10−3 s and therefore provides a sufficiently long time.

After the validation that the constant of motion are conserved sufficiently by controlling
the grid resolution, the equations of motions are now allowed to be applied in the vacuum
region. Together with the inclusion of the gyro motion effects, the implemented model
supplies a complete system to simulate fast particle losses over the whole vessel first wall.
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After the implementation of the model, the extended code is used to simulate fast particle
driven modes in particular discharges at ASDEX Upgrade. The main goal of the nonlinear
simulations is the comparison of the simulated fast ion losses with the experimental measure-
ments of the FILD [18]. For the first time, not only quantitative, but qualitative statements
are aimed for. The comparison however is restricted due to limitations of the model. In
the experiment, a continuous heating source generates a quasi steady-state fast particle dis-
tribution that is balanced by dissipation. In the simulation, the distribution function is
initialized at the beginning and will be altered due to wave-particle interaction. An imple-
mentation of a self-consistent fast particle distribution generated by a continuous source is
being developed in the frame work of another PhD thesis at the moment. Nevertheless, the
present fast particle distribution permits qualitatively correct fast ion losses in energy and
pitch angle but restricts the quantitative validity. The results allow for conclusions about
the evolution of the fast ion loss distribution and the comparison to the experiment.

The model is applicable for the understanding of surprising recent FILD results [17] in
detail. In the experiment, MHD modes like the BAE and the TAE have been detected which
oscillate at very different frequencies, but generate enhanced fast particle losses. Although
it is extensively reported in the literature [15, 16] that a significantly increased fast particle
redistribution is caused by multiple modes with radial overlap and similar frequencies, it is
has to be proven if the same behaviour can be observed in the simulations due to modes
with different frequencies. For this reason, the experimental data represent a fundamental
challenge not only for the comparison of the fast ion losses but also for an investigation of
open questions concerning collective fast ion redistribution in the plasma. In this context, a
new coupling mechanism of two waves due to double-resonant particles has been identified
which differs significantly from the conventional fast particle transport.

In the first simulations shown in this chapter, a fast particle population which is isotropic
in the pitch variable λ has been used to include all possible topologies of fast particle orbits.
In contrast to these simulations, in the experiment the auxiliary ICRF heating method is
applied to generate a highly anisotropic fast particle population. For this reason, the first
implementation of an ICRF-generated distribution introduced in section 3.2.5 is used as a
first approach to reproduce the physical drive and loss mechanisms more realistically.

The fast particle losses cannot only be used for a comparison to the experimental loss data
but also provide a validation of the initialized fast particle distribution in the simulations.
Thus, a powerful tool has been developed that allows to benchmark theoretical models of
the fast particle distribution function against the experiment. Additionally, this means that
the wall load can be calculated over the whole vessel correctly which gives information about
possible vessel damages.
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In this chapter, the experimental measurements of a selected discharge in ASDEX Upgrade
will be presented in section 4.1 which constitutes the modelling input for the numerical
simulations. In section 4.2, the influence of a single TAE is investigated to explain the
conventional drive mechanism in the presence of an isotropic fast particle distribution. The
fast particle losses are analysed for different points in time. In section 4.3, the results of the
nonlinear simulations of multiple modes in the presence of the same isotropic fast particle
distribution are discussed. In this context, both the new drive mechanism and the change
in the loss distribution compared to a single TAE are explained in detail. In the following
section, the same mode constellation is investigated in the presence of a simple model for
an ICRF-generated distribution. The fast ion losses will be compared to the previous cases.
At the end, the fast particle losses of all cases are compared to the experimental results in
section 4.5. This allows for conclusions concerning the validity and accuracy of the initialized
distribution functions. Beside the shear Alfvén eigenmodes, the fast particle redistribution
caused by neoclassical tearing modes is also studied in section 4.6.

4.1. Experimental Measurements

This section summarizes the experimental set-up for a specific discharge in ASDEX Up-
grade. Especially, the experimental results of the fast ion loss detector FILD [18] are of
interest. Together with soft X-ray measurements for mode localization and its amplitude as
well as results from the Mirnov pick-up coils for the mode frequency, the physics mechanisms
involved can be deduced.

The plasma discharge #21083 in ASDEX Upgrade is chosen due to the fact that informa-
tive measurements of fast ion losses and multiple MHD modes are present at the same time.
The results were extensively described by Garćıa-Muñoz [17]. The discharge was performed
with a toroidal plasma current Ip = 1.2 MA, a toroidal field Btor = 2.0 T and a safety factor
at the edge of q95 = 3.6. As main heating method, on-axis minority ICRH with a power
of 5 MW was applied generating highly energetic hydrogen ions in a deuterium background
plasma (nH/nD ≈ 6%) with a fast particle beta of βf = 0.3%.
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Figure 4.1.: Spectrogram of a Mirnov pick-up coil. Several TAEs with toroidal mode num-
bers n = 3 − 7 and a n = 4-BAE are visible.

Figure 4.1 shows the Fourier spectrogram for a magnetic pick up coil located at mid plane.

76



4.1. Experimental Measurements

It measures the magnetic fluctuation at the plasma edge. Since a TAE is globally extended
over a large radial range up to the plasma edge, several dominant TAEs [26] with toroidal
mode numbers of n = 3−7 at frequencies ωTAE = 160−200 kHz are clearly visible at about
t = 1.19 s. Due to its core-localization, the BAE [7] with a toroidal mode number n = 4 at
a frequency ωBAE = 70 kHz is hardly visible. It is clearly detected by the high resolution
multichord soft X-ray system [62]. In figure 4.2 the spectrogram of a soft X-ray channel
whose line of sight is near to the magnetic axis shows an explicit signal of the BAE.
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Figure 4.2.: Spectrogram of a soft X-ray measurement (line of sight near the plasma centre).
The BAE is clearly visible, together with TAEs n = 3−5 due to the line of sight.

Figure 4.3.: Mode reconstruction by the MHD-IC code [63] based on soft X-ray measure-
ments. Since the line of sight crosses the magnetic axis, positive and negative
values for the radial coordinate denote positions on both sides of the plasma
centre.

It has been detected by a soft X-ray reconstruction of the MHD-IC code [63] that the
BAE is approximately located around the magnetic surface ρpol = 0.25, as shown in figure
4.3. Up to the time t = 1.2 s, the mode frequency is nearly unaffected neither by changes
of the magnetic field nor by changes in the electron density. This indicates that the mode
is a gap mode as introduced in section 2.3.3. As the equilibrium evolves in time, the mode
frequency is almost fixed. This is consistent with the dispersion relation (Eqn. 2.28) [29].
Later for time t > 1.2 s, sawtooth crashes appear due to a safety factor q < 1 at the plasma
centre which results in rapid frequency changes. This confirms the fact that the mode is
core-localized.
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4. Simulation Results

The n = 4-TAE is a global mode with the maximum of the amplitude at about ρpol = 0.55,
and an amplitude of δBr/Btor = 0.2 − 5.0 · 10−4 was deduced from the radial displacement
measured by the soft X-ray system.

The fast ion losses measured by the FILD detector (Fig. 4.4) can be divided into two
distinct spots. The ’small’ spot is determined by a pitch angle α ≈ 69◦ − 70◦ and gyro radii
of ρ⊥ ≈ 40 − 50 mm which corresponds to energies E = 240 − 380 keV. The measurements
of the ’large’ spot yield pitch angles between α ≈ 62◦ − 68◦ and gyro radii of ρ⊥ ≈ 60− 100
mm (energy E = 550 − 1300 keV).
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Figure 4.4.: Measurements of the FILD at time t = 1.19 s (figure from [17]).

Compared to other ASDEX Upgrade discharges where exclusively TAEs were present, the
’small’ spot only emerges in the presence of a BAE and the total loss amplitude due to the
TAEs is increased by a factor of 3. The Fourier spectrogram of the fast ion losses shows
that the losses of the small ’spot’ are only ejected at frequencies corresponding to the TAEs
seen in figure 4.1. The fast particles of the ’large’ spot are ejected at the frequency of both
the BAE and the TAE. Due to the increased loss amplitude caused by the TAE it is claimed
by reference [17] that fast particles are redistributed from the position of the BAE towards
the TAE because of their radial overlap.
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Figure 4.5.: Fourier spectrograms of the particular photomultiplier channels in FILD.
Channel 9 is detecting particles with smaller gyro radii, channel 13 ions with
larger gyro radii.

In the next sections, these experimental results and the corresponding assumption are
investigated by means of numerical simulations with the extended HAGIS code.

78



4.2. TAE-induced Fast Particle Losses

4.2. TAE-induced Fast Particle Losses

In order to understand the complete loss mechanism observed in the experiment and dis-
cussed before, it is important to describe first the influence of a single TAE on the fast
particle redistribution [25] first. Therefore, the mode drive and the saturation behaviour
of a single TAE are investigated. Since no self-consistent background damping mechanism
such as Landau damping is implemented in the code, a saturation of the mode is achieved
by the gradient flattening [15] in the fast particle distribution. This is the best available
model at the moment. Nevertheless, detailed drive mechanisms like resonant wave-particle
interaction [25, 16] can be understood by the nonlinear simulations. The coherent particle
redistribution and the TAE-induced fast particle losses are analyzed to confirm the known
mechanisms. The results constitute the basis which is compared to possible enhanced losses
due to multiple modes investigated in the later sections.

4.2.1. Initial Conditions and Mode Drive

At first, the stability code CASTOR [50] is applied to provide the shear Alfvén continuum
(2.24) and the corresponding eigenmodes for the equilibrium of AUG discharge #21083 at
time t = 1.19 s. The required profile of the reconstructed safety factor is shown in figure 4.6.
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Figure 4.6.: Profile of the safety factor q. The q = 1-surface is located at the radial position
ρpol = 0.4.

Due to the determination of the sawtooth inversion radius ρinv by electron cyclotron
emission (ECE) measurements and the relation q(ρinv) ≈ 1, the q = 1-surface is located
at the radial position ρpol ≈ 0.40. The corresponding shear Alfvén frequency continuum is
shown in figure 4.7. As explained in section 2.3.2, gaps are generated within the continua
due to poloidal coupling where discrete TAE modes can be excited. It is found that the
TAEs with a toroidal mode number n = 3−5 have frequencies of ω = 145 kHz, ω = 150 kHz
and ω = 153 kHz in the rest frame of the plasma. This coincides with the experimental
findings if an additional plasma rotation of 5 kHz per toroidal mode number is added. The
plasma rotation frequency has been deduced from measurements of sawtooth precursors.
The eigenfunctions (Fig. 4.8) of the modes are provided by the CASTOR code. The TAEs
consists of two dominant poloidal harmonics, m and m + 1, which couple to further outer
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TAE gaps due to higher harmonics, i.e. (m+ 1,m+ 2), (m+ 2,m + 3), etc. The maximal
amplitude of the TAE is located between ρpol ≈ 0.55 − 0.60 which fits to the experimental
data (ρpol,exp ≈ 0.55) detected by the soft X-ray system [17].
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Figure 4.7.: Frequency spectrum showing the shear Alfvén continua for several toroidal
mode numbers. In addition, the radial extents of the TAE eigenfunctions
(Fig. 4.8) which are defined by the drop of the amplitude to a tenth of its
maximal amplitude are plotted at their discrete frequencies in this figure.
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Figure 4.8.: Eigenfunctions of the TAEs with toroidal mode numbers n = 3 − 5 (corre-
sponding to figure 4.7).

For the interaction of the mode with the fast particles, the resonance condition [36] has
to be fulfilled, as introduced in section 2.3.4. For trapped particles, it is defined by

ω − nωtp − pωb = Ωn,p , (4.1)

where ω is the frequency of the Eigenmode, ωtp the toroidal precession frequency and
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4.2. TAE-induced Fast Particle Losses

ωb the bounce frequency of the trapped ions. The toroidal mode number and the bounce
number are given by n and p, respectively. A bidirectional energy and momentum exchange
is possible if Ωn,p is approximately zero.

In figure 4.9, trapped particles which have their bounce points above the magnetic axis
Rmag are initialized for different energies E and vertical positions z. The corresponding res-
onance lines (red) for a n = 4-TAE with a frequency of ω = 150 kHz and bounce harmonics
between p = −2 and p = 1 (from left to right) are shown. The intersection of the resonance
lines with the loss boundary is expected to be the fast particle loss region. With the inclusion
of FLR effects, the loss boundary shifts significantly (Fig. 4.9 right) as shown in figure 3.6
in section 3.2.4. Therefore, the intersection of the p = 1-resonance with the loss boundary
at an energy of E ≈ 500 keV (Fig. 4.9 left) changes to an energy of E ≈ 800 keV (Fig. 4.9
right). Furthermore, the p = 0-resonance forms an intersection with the loss boundary now.

Confined Particles

Loss Region

Figure 4.9.: AUG discharge #21083 at time t = 1.19 s: The resonance lines of a single
n = 4-TAE. The confinement of the guiding centres without (left) and with
inclusion of FLR effects (right) are shown. The latter figure shows clearly the
increase of the loss region.

For the nonlinear simulation, first a fast particle distribution function f0 (3.80) represented
by 315000 markers is used which is isotropic in the pitch variable λ, i.e. f(λ) = const .
This allows for the investigation of the mode drive caused by all particles, i.e. co-passing,
counter-passing and trapped particles. The fast particle beta is βf = 0.3% consistent with
the experimental measurements. The radial Fermi-like distribution function is described by

fs = (1 − s)3 (4.2)

whereby the particles are loaded between s = 0.01 − 0.9.

81



4. Simulation Results

0 0.2 0.4 0.6 0.8 1
Radial coordinate s

0

0.2

0.4

0.6

0.8

1

f 0(s
)

Figure 4.10.: Initialized radial distribution function f(s).
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Figure 4.11.: Slowing-down distribution function in energy f(E), in total (left)
and enlarged in the lower ordinate range (right).

Furthermore, a slowing-down distribution in energy [64] is chosen. However, it is adjusted
to the ASDEX Upgrade parameters,

fE =
1

E3/2 + E
3/2
c

erfc

(
E − E0

∆E

)

, (4.3)

whereby E0 = 1MeV is the most probable maximal energy generated by ICRF heating.
The spread of energy around E0 is given by ∆E which depends on the background plasma
temperature. The cross-over energy Ec denotes the drag of the electrons on the fast ions
depending on the background electron temperature Te. This is due to the fact that the
electron collisions dominate for highly energetic particles. For Te = 2keV, the values are
Ec = 14.4 keV and ∆E = 129.8 keV.
The cross-over energy also determines the gradient of the distribution function, ∂f/∂E, for
lower energetic particles, i.e. the smaller Ec, the steeper the gradient. The gradient de-
creases significantly at energies above E ≈ 400 keV due to the vanishing effect of Ec in the
denominator of equation (4.3).

It has been shown [25] that the mode growth described by equation (2.30) is propor-
tional to γ ∼ ω∗. From equation (2.31), this indicates that the gradient of a slowing-down
distribution function in energy damps the mode,
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4.2. TAE-induced Fast Particle Losses

∂f0

∂E
< 0 ⇒ ω∗ < 0 , (4.4)

whereas the gradient of the radial Fermi-like distribution function drives the mode unsta-
ble since Pζ ∼ −ψp (Eqn. 3.18),

− ∂f0

∂ψp
∼ ∂f0

∂Pζ
> 0 ⇒ ω⋆ > 0 . (4.5)

With respect to equation (2.30), the mode is growing if ω∗/ω0 ≥ 0.5. The total distribution
function f0 leads to a mode growth and a saturation at amplitudes between δbr/B0 =
5.5 − 6.7 · 10−4 for various toroidal mode numbers n (Fig. 4.12). The simulated amplitudes
coincide very well with the experimental TAE amplitudes. During the linear growth phase
up to the time t < 3.0 · 10−4 s, the growth rate is around γ/ω0 ≈ 2% . Afterwards, the
growth rate decreases until it is γ ≈ 0% at time t > 6.0 · 10−4 s (saturation phase). The
behaviour is very similar for the n = 3, . . . , 5-TAEs but in the following only the physical
mechanisms caused by the n = 4-TAE are discussed in detail.
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Figure 4.12.: Evolution of the TAE amplitudes and the corresponding growth rates.

Due to the interaction of the fast particle distribution with the mode, energy of the
resonant hydrogen ions is transferred due to the radial gradient to the wave [15]. In response,
the resonant fast ions are redistributed radially outwards since for a single particle j in the
presence of a perturbation it is valid [12] that

Ej −
ω

n
Pζ,j = const.

It is worth to note here that the relative change in toroidal momentum is much larger than
the relative change in the particle energy. Due to the equation above, the relative change is
given by

∆Pζ
Pζ

=
n

ω

E

Pζ
· ∆E

E
.
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Typically, for Alfénic waves like the TAEs with v‖ ≈ vA/3 and ω = vA/2qR (section
2.3.2), the term reduces to

n

ω

E

Pζ
≈ n

ω

mi

(
vA
3

)2

miR
vA
3

=
n

ω

vA
3R

≈ n .

This reveals that for large toroidal mode numbers n the relative change in energy compared
to the relative change in toroidal momentum [65] is of the order

∆E

E
= O

(

0.1
∆Pζ
Pζ

)

. (4.6)

So, the change in the distribution function provides direct information about the regions
in the fast particle phase-space which are interacting with the MHD modes. In figure 4.13,
the radial change in the fast particle distribution given by the perturbed particle density δn
(Eqn. 3.39) is shown over the total simulation time.

Figure 4.13.: Radial fast particle redistribution in time due to a n = 4-TAE. Resonant fast
particles change their phase-space position from a smaller (magenta/yellow)
to larger radial position (blue).

Fast particles are redistributed from s = 0.2 − 0.6 (magenta) to s = 0.6 − 0.8 (blue) for
a time t > 4.0 · 10−4 s since the mode amplitude is too small before. The redistribution
stretches over a wide plasma range due to the large radial extent of the global TAE. In
plasma physics, it is common to represent the change in the fast particle distribution by the
perturbed fast particle pressure defined by

δp = C · n
∫

v2δf d3v (4.7)
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4.2. TAE-induced Fast Particle Losses

where n is the total particle density at the radial position. The quantity C is a normaliza-
tion factor. The fast particle pressure profile and the profile of the radial particle population
are related to each other.

In figure 4.14 (left), the perturbed particle density δn is plotted with respect to the radial
coordinate. The corresponding fast particle pressure p + δp is shown in figure 4.14 (right).
Both graphs are averaged over the time interval t = 1.9−2.1 ·10−3 due to large fluctuations
in the density δn or δf at a point in time. It is seen that the radial gradient in the fast
particle pressure profile at the position of the maximal TAE amplitude flattens. Since the
gradient of the fast particle pressure ∇p is also proportional to the diamagnetic frequency,

ω∗ =
Tc

eB2
k × B

∇p
p

, (4.8)

the mode drive decreases. For the time t > 6.0 · 10−4 s, the mode drive due to gradients
both in energy and radius cancel each other (Eqn. 4.4 and 4.5) and the mode saturates.
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Figure 4.14.: Mean radial redistribution of the fast particles between t = 1.9 − 2.1 · 10−3 s
caused by the single TAE (left). The fast particle redistribution caused by
a TAE generates a flattened gradient in the fast particle pressure (right)
compared to the initial state.

Simultaneously, the change in the density of the energy distribution function δn (Fig.
4.15) shows the resonant fast particles. A broad particle population up to an energy of
E ≈ 800 keV is affected. Especially, fast ions with energies of E ≈ 130 keV and E ≈ 420 keV
(yellow regions) have transferred energy to the mode. As a consequence, the particles change
their localization in the phase-space from higher to lower energies.
Since for the fast particles, the relative change in the energies (4.6) is much smaller than
the radial change, the increase of the gradient in the distribution function in energy due to
the fast particle redistribution is negligible. This indicates that the saturation of the mode
is mainly determined by the flattening of the gradient in the radial distribution or the fast
particle pressure profile, respectively.
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Figure 4.15.: Redistribution of fast particles in energy caused by a n = 4-TAE. The eigen-
mode interacts with fast ions of E ≈ 130 keV and E ≈ 420 keV (yellow
regions). The particles transfer energy to the mode and change their phase-
space position to lower energies as a consequence.

Up to this point, the mode growth and the redistribution mechanisms are analysed by
available tools in the original HAGIS code. Due to a recently incorporated diagnostic, more
detailed information about the driving mechanisms in energy and space can be obtained
when the redistributions in energy and radial space are combined. In addition, the particles
of the total ensemble are classified with respect to their orbit topology.
It turns out that the mode drive is mainly due to trapped particles compared to the mode
drive by co- or counter-passing particles as shown in figure 4.16. According to the fast
particle redistribution in energy (Fig. 4.15), three particle regions within the (s,E)-phase-
space are of interest: particles at energies between E = 300− 500 keV in the radial range of
s = 0.4−0.9, at an energy of E ≈ 130 keV between s = 0.3−0.6 and between s = 0.65−0.85.
Only the first region is clearly visible, and fast particles are redistributed from an inner (blue)
to an outer (yellow/red) radial position.
Under the assumption that the fast particle density n is constant in each phase-space region,
the quantity δf · v2 is a measure for the fast particle pressure (4.7) and therefore for the
mode drive. This indicates that for particle energies of E = 300 − 500 keV, the mode drive
due to these fast ions is much more important than the mode drive due to fast particles
with E ≈ 130 keV. Nevertheless, the resonant fast ions of both energies are redistributed
(Fig. 4.15).
Although fast particles with energies up to E = 1.4MeV have been initialized, particles with
higher energies do not contribute to the mode drive and therefore are neglected in figure
4.16. Furthermore, it is clearly seen that the outward shift in the radial position which
corresponds to a change in Pζ is larger than the loss of the fast particle energy as indicated
in equation 4.6.
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Figure 4.16.: Change in the distribution function, δf · v2, due to the n = 4-TAE at time
t = 8.0 · 10−4 s separated by each particle species. The mode drive due to
trapped particles is much stronger than the drive due to passing particles
(colour scale). The red lines denote the radial position of the n = 4-TAE
amplitude.

Comparing the results to the resonance plots of trapped particles (Fig. 4.9 right) shows
that the resonance lines coincide very well with the redistribution regions (Fig. 4.17). Since
the trapped particles in the resonance plot have their bounce point above the magnetic axis
Rmag at a vertical position z, it can be approximately assumed that the normalized poloidal
flux ρpol corresponds to the normalized radius r̂, s = ρpol ≈ r̂ = z/zmax. This relation allows
for comparison between the resonance plot and the redistribution in phase-space (E, s).
The regions of the redistributed particles for E = 300−500 keV are located at the resonance
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line with the bounce harmonic p = 0, i.e. the mode frequency is equal to a multiple of the
precession frequency of the trapped particles, ω ≈ n · ωtp (Eqn. 4.1). For particles with
energy E = 130 keV, two intersections with the resonance line p = −1 exist. Especially, the
outer redistribution region shows exact radial agreement between figure 4.16 (lower box) and
4.17. For all three resonant phase-spaces, trapped fast particle from these regions have been
simulated. The characteristic orbits are shown in figure 4.19. It is seen that the localization
of the orbit width ∆b for the trapped particle with E = 420 keV (red) coincides with the
mode width. For the trapped particles with E = 130 keV, either the localization of the orbit
(blue) is at another radial position or the orbit width (cyan) is smaller compared to the
mode width.

p=0

p=-1

1.0

0.8

0.6

0.4

0.2

0.0

r̂

Figure 4.17.: Resonance plot for trapped particles in the presence of the n = 4-TAE. The
yellow regions show the regions of the redistributed particles. (The black line
denotes the energy E = 130 keV.)

With regard to figure 4.16, the resonance line with p = 0 is decisive for the mode drive for
two reasons: First, the resonance depends on the precession frequency only due to p = 0.
For p = −1, both the toroidal precession and the bounce frequency are involved. For high
energies, the frequencies are given [39] by

ωtp =
qv2

⊥

2ǫR2ωc
and ωb =

v⊥
qR

√
ǫ

2
. (4.9)

so that ωtp ∼ E⊥ and ωb ∼
√
E⊥. Rewriting equation (4.1) reveals the relation for deeply

trapped particles, E⊥ ≫ E‖,

C1 · nE⊥ − C2 · p
√

E⊥ ≈ C3 · (Ewave + ∆E) , (4.10)

where ∆E denotes the deviation in energy and C1, . . . , C3 are normalization factors. If
the resonance condition is fulfilled exactly, the deviation in energy is zero. In figure 4.18,
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4.2. TAE-induced Fast Particle Losses

the graph shows the dependence of the resonance condition on frequency and ∆E. For a
particular deviation in the particle energy ∆E, a greater deviation in frequency is obtained
for the p = −1-resonance compared to p = 0 due to the additional term of

√
E. It has been

demonstrated [66] that a maximal frequency mismatch of ∆ω ≈ 7 kHz for TAEs are allowed
to still fulfil the resonance condition (4.1). For this reason, the resonance condition for p = 0
is satisfied for a greater range in the particle energy compared to the p = −1-resonance.
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Figure 4.18.: Dependence of the resonance condition (4.1) on the particle energy. A devia-
tion in energy results in a smaller deviation in frequency for p = 0 compared
to the p = −1-resonance so that the resonance condition is still fulfilled for
greater ∆E.

The second reason for the decisive mode drive of the p = 0-resonance is due to finite orbit
width effects. It has been found [37] that the growth rate for small orbit widths ∆b (2.45) is

γ ∼ ∆b

∆m
≈ m

q
ρ⊥ ≈ kθρ⊥ , (4.11)

where ∆m is the scale length of the eigenmode and kθ = m/q is the poloidal wave number.
The growth rate for large orbit widths scales with m−2 [34]. An optimum in the mode drive
is reached for kθρ⊥ ≈ 1.
In figure 4.19 it can be seen that the particle orbit width for the resonance p = 0 (red) is
comparable with the mode width. For the p = −1-resonance, the orbit widths of the fast
particles are smaller than the mode width (cyan) or localized at a different radial position
(blue). The mode is thus driven less effectively by the p = −1-resonance than by the p = 0-
resonance (4.11). Therefore, the mode is still slightly growing after the saturation of the
main resonance (Fig. 4.12).
Due to the m−2-scaling for kθρ⊥ > 1, trapped particles with an energy of E ≥ 1MeV do not
contribute to the mode drive. Thus, no particle redistribution is detected for these energies.
For this reason, the corresponding phase-space region has been neglected in the previous
plots (Fig. 4.16).
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Figure 4.19.: Examples of unperturbed particle trajectories for each redistribution region
as shown in Fig. 4.17. The magenta line shows the radial extension of the
n = 4-TAE.

4.2.2. Fast Particle Losses

In this section the fast particle losses caused by a TAE mode are investigated at different
points in time. It is expected in the simulations that fast particles are ejected by the mode
as the amplitude of the eigenmode increases. Due to the fact that no particle source is
available, the fast ion losses will stop as the mode saturates.

From figure 4.21 it can be seen that at the beginning of the linear growth phase no fast
particles are ejected due to the TAE. As an amplitude of A ≈ 5.0 · 10−5 at t = 3.2 · 10−4 s
is reached, particle losses appear (red). The maximal loss amplitude occurs at time t =
5.0 · 10−4 where the mode amplitude has almost reached a saturated level. Thereby, the
fast particle losses show an over-shoot due to weakly-confined particles in the outer plasma
region. After the ejection of these particles, a mean loss amplitude of δf = 1.5 · 1012 is
still present due to the continuing growth of the amplitude caused by the p = −1-resonance
(section 4.2.1). Although the amplitude increases slightly further, the period t > 6.5 · 10−4 s
is denoted as saturation phase (Fig. 4.20).
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Figure 4.20.: Mode evolution of the TAE amplitude (left) with toroidal mode number n = 4
and the corresponding growth rate (right). The vertical lines mark the time
intervals over which the fast particle losses are examined.
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Figure 4.21.: Total fast particle losses over the vessel wall caused by the n = 4-TAE.

In figure 4.22 it is shown that almost all fast particle losses are located in the lower half of
the vessel. Especially on the high field (HF) side, the wall load is below the mid plane. The
main losses are concentrated on the low field (LF) side slightly above the mid plane, i.e. the
position of the FILD is well-chosen. This is due to the fact that the first wall has the smallest
distance to the plasma at this position. Further loss regions are detected on the HF side
above and at the position of the inner divertor as well as on the LF side below the mid plane.

The investigation of the total fast particle losses as a function of energy reveals that
hydrogen ions between E = 200 keV to E = 1.1MeV are lost as shown in figure 4.23.
The total losses at the vessel wall are divided into two ranges: a low energetic range from
E ≈ 200 − 500 keV and a highly energetic range from E ≈ 500 − 1100 keV. Particles of the
first range are lost over the whole lower half of the vessel. However, particles with high
energy E > 500 keV are only lost near the detector due to the small plasma-wall distance.
The fast particle losses are divided into intervals between characteristic points in time
(t1 = 2.0 · 10−5 s, t2 = 6.5 · 10−4 s, t3 = 1.3 · 10−3 s, t4 = 2.0 · 10−3 s ) to investigate the loss
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4. Simulation Results

Figure 4.22.: Fast particle losses δf at the vessel wall over the total simulation time. (The
colourbar is scaled logarithmically.)

behaviour. The ratio between low and highly energetic particles changes from the overshoot
(red) to the saturation phase (violet). The losses at large energies decrease significantly
whereas the loss amplitude at small energies remains the same over the total simulation
time.

The loss distribution as a function of the pitch angle α (Fig. 4.24) shows that fast particles
with a pitch angle of α = 47◦ up to α = 82◦ are lost at the vessel wall (dashed line). The
main particle losses at the detector position are concentrated between α = 55◦ − 70◦. The
outer peaks of the fast ion losses at the vessel wall (dashed black) for α = 50◦ and α = 80◦

refer to low energetic particles at the pronounced loss regions below the mid plane, i.e. inner
divertor region and the LF side below the mid plane (Fig. 4.22).

The corresponding resonance plot (Fig. 4.25) for trapped particles with energies of E =
10−1400 keV and a single n = 4-TAE shows two possible, separate loss regions at an energy
range of E = 650 kev to E = 1.1MeV and between E = 200 − 300 keV. Since the TAE
amplitude is too small, the loss region of the low energetic range (p = 0) does not occur.
However, the observed losses at the detector (Fig. 4.23) coincide very well with the expected
loss region due to the p = 1-resonance for highly energetic particles. These lost ions do not
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Figure 4.23.: Integrated fast particle losses δf as a function of energy between characteristic
points in time. The dashed lines denote the particle losses over the whole
vessel wall, the solid lines at the position of the FILD. The colours refer to
the time intervals in figure 4.21.

50 60 70 80
Pitch angle α [deg.]

0.0e+00

5.0e+12

1.0e+13

1.5e+13

2.0e+13

2.5e+13

Pa
rt

ic
le

 lo
ss

 δ
f

Vessel wall (t
1
<t<t

4
)

Detector (t
1
<t<t

4
)

Detector (t
1
<t<t

2
)

Detector (t
2
<t<t

3
)

Detector (t
3
<t<t

4
)

Figure 4.24.: Integrated fast particle losses δf as a function of pitch angle between char-
acteristic points in time. The solid lines denote the fast ion losses at the
detector position. The colours refer to the time intervals in figure 4.21. The
dashed black line shows the total particle loss at the vessel wall over the total
simulation time.

contribute to the mode drive due to kθρ⊥ > 1 [34], as explained in section 4.2.1. This shows
that there can be a significant difference between particles that drive the mode and ejected
particles.
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Figure 4.25.: Loss region of trapped fast particles caused by a single n = 4-TAE those
bounce points are located at the radial position Rmag. The energetic ions are
ejected by the p = 1-resonance but the mode is driven via the p = 0-resonance.

4.3. Enhanced Fast Particle Losses due to Multiple Modes

As shown in section 4.1, multiple TAEs with different toroidal mode numbers are present at
the same time in most ASDEX Upgrade discharges. Including finite compressibility effects
as described in section 2.3.3 results in the coupling of the shear Alfvén waves with the
acoustic waves. Due to the coupling, BAE gaps are generated whose gap widths scale with
the plasma beta. A kinetic analysis has shown that a global BAE [7] can be excited in this
gap [29, 67] which is also present in the experiment.
It is well-documented [15, 16] that multiple TAEs excited at similar eigenfrequencies lead to
a broader redistribution of fast particles due to their radial overlap. However, the interplay
between a TAE and a BAE has not been investigated by means of numerical simulations so
far. Therefore, in this section the mode drive of both modes and the corresponding particle
redistribution in the presence of a fast particle population are examined. In this context, two
aspects are of particular interest: It is open if significantly different mode eigenfrequencies
(factor of 3 between the TAE and the BAE) also lead to a collective transport inside the
plasma and if the redistribution caused by the BAE and TAE results in an enhanced fast
particle loss. The corresponding particle losses are analysed in the following.

4.3.1. Mode Drive and Transport Phenomena

The inclusion of finite compressibility effects into the calculation of the frequency spectrum
with CASTOR gives rise to a coupling between the shear Alfvén and the sound continuum.
From the Mirnov pick-up coils, the determination of the toroidal mode number for the
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BAE reveals that the mode signal consists of a mixture of eigenmodes with a dominant
(n,m) = (4, 4) component.
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Figure 4.26.: Frequency spectrum showing the Alfvén and sound continuum (left) and the
corresponding eigenfunctions of the BAE and the TAE, both n = 4 (right).
The radial extensions of the BAE and TAE eigenfunctions are drawn at their
discrete frequencies.

The frequency continua for n = 4 are shown in figure 4.26. The BAE is found at the
upper edge of the BAE gap. The corresponding eigenfunction only consists of one dominant
poloidal harmonic m = 4. The mode is localized at the radial position ρpol ≈ 0.45 and
overlaps radially with the n = 4-TAE. The radial position of the BAE amplitude deviates
from the experimental measurement ρpol,exp ≈ 0.25 (Fig. 4.2). The difference can be caused
by an inexact q-profile from the equilibrium reconstruction or by the missing of kinetic ef-
fects in the MHD code CASTOR. Calculations with the gyrokinetic code LIGKA [68] have
shown that the radial BAE position shifts to the plasma centre [29]. Since the mode is also
detected clearly at ρpol ≈ 0.45 in the experiment (Fig. 4.27), this allows for the application
of the simulated MHD eigenmode for the following simulations.
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Figure 4.27.: Spectrogram of a soft X-ray measurement (line of sight at half minor radius).
The n = 4-BAE and the TAEs with toroidal mode number n = 3 − 5 are
clearly visible.
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As for the single n = 4-TAE in section 4.2, the same simulation conditions (315000 mark-
ers, fast particle beta βf = 0.3%) and the same fast particle distribution functions in real
space and energy (Fig. 4.10 and 4.11) are applied.
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Figure 4.28.: Mode evolution of the BAE and the TAE, both n = 4, which are simulated
simultaneously (left). Right: Enlargement of the mode evolution (black box
on the left side).

At the beginning (Fig. 4.28), the TAE amplitude grows nearly with the same growth
rate as for the single TAE case and starts to saturate. However, the BAE starts at a
higher growth rate compared to the single simulation (dashed blue line) which saturates
at an amplitude of A = 3.4 · 10−4. The BAE amplitude grows up to the TAE amplitude,
A = 5.4 · 10−4. From this point on, t ≈ 9.0 · 10−4 s, both mode amplitudes increase further
and do not reach a saturated level. For the time t > 2.3 · 10−3 s both modes also show an
additional nonlinear growth.
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Figure 4.29.: Temporary and mean growth rate of the BAE and the TAE, both n = 4,
which are simulated simultaneously. For comparison, the growth rates for
the single eigenmodes are also displayed.

Superimposed on both amplitudes is an oscillation with a frequency of ω ≈ 100 kHz which
is phase-shifted by π between the BAE and the TAE (Fig. 4.28, right). The oscillation is
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seen in the growth rates for both modes clearly (Fig. 4.29). The maximal oscillation in
the BAE growth ranges from γ/ω0 = −60% to 60% and is at the point in time when the
ratio between the BAE to the TAE amplitude is minimal. Simultaneously, the oscillation
amplitude for the TAE is minimal. If both modes have the same amplitude, the excursion
of the oscillation is equal for both modes.
The mean growth rates which are calculated by an averaging procedure are shown in figure
4.29 (right). During the linear growth phase for t < 4.0 ·10−4 s, the mean growth rate of the
BAE is increased but approaches the value of its single simulation at a time t > 6.0 · 10−4 s.
After t > 1.0 · 10−3 s the mean growth rate is larger than zero and deviates from the single
BAE value in the saturated phase. On the contrary, the mean growth rate of the TAE is
not affected significantly by the presence of the BAE till the nonlinear behaviour sets in.

To exclude numerical errors, the oscillation has been resolved by a scan in the marker
number (Fig. 4.30). It has been found that for all marker numbers the amplitude oscilla-
tions in both modes are present. For a marker number N > 63000, the oscillation amplitude
between t = 3.0 − 5.0 · 10−4 s where the oscillation in the BAE growth rate is largest con-
verges to a maximal excursion value of |γ/ω0| ≈ 50%. This indicates that the oscillation is
not subject to numerical resolution.
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Figure 4.30.: Temporal evolution of the TAE and BAE amplitudes, both n = 4, for different
marker resolutions (left). Right: Enlargement of the BAE growth rate for the
time interval with the largest oscillations.

According to the known collective particle transport phenomenon [15], both eigenmodes
should increase to higher amplitudes compared to their single simulations. Due to their ra-
dial overlap and the corresponding redistribution of energetic particles, the modes interact
with a larger fast ion volume in phase-space which results in a broader total redistribution.
After the gradient is flattened, the modes should saturate. However, the observed mode be-
haviour (Fig.4.28) cannot be explained completely with the described conventional theory.
Therefore, an additional phenomenon has to be present simultaneously. In order to distin-
guish both mechanisms and to estimate their influence on the mode drive, the conventional
gradient-driven mode growth with the coherent collective particle transport is investigated
first.
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Gradient-driven Mode Growth

At the beginning, the TAE is driven unstable by the p = 0-resonance for highly energetic
trapped particles (Fig. 4.31) as discussed for the single TAE case (Fig. 4.16). The BAE
amplitude is one order of magnitude smaller than the TAE and therefore does not affect
the TAE induced redistribution significantly. On the contrary, the BAE mode is influenced
significantly by the redistribution caused by the TAE due to the radial localization as shown
in figure 4.32. At the position of the BAE mode an increased radial gradient is generated
by the TAE compared to the initial distribution function. This implies a stronger growth
compared to a single BAE since ω∗ ∼ ∇p (Eqn. 4.8).
The fast particles are redistributed by the BAE within a radial range of s = 0.5 − 0.7 only
(Fig. 4.32 left). This radial region is partially located between both modes so that the TAE
redistributes the ions further radially outwards if the fast particles are also in resonance
with the TAE. This mechanism continues until the gradient flattens over the whole radial
BAE-TAE range generating a broader radial plateau than for a single mode [15]. It has to
be emphasized that the radial overlap of the modes is necessary for the collective particle
transport. If the BAE eigenfunction is localized much more to the plasma centre, both the
collective transport and the increased mode growth of the BAE caused by the TAE induced
particle redistribution vanish.
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Figure 4.31.: Redistribution of trapped particles caused by the BAE and the TAE in the
linear growth phase for time t = 4.0 · 10−4 s . The TAE amplitude is one
order of magnitude larger than that of the BAE. The horizontal lines denote
the radial positions of both modes.

Such a collective transport is to be expected for fast particles which are resonant with
both modes simultaneously. Since the main contribution to the mode drive is due to trapped
particles, the resonance lines for both modes are drawn in the same resonance plot (Fig. 4.33
left). Intersections of resonance lines indicate the phase-space regions where fast ions can
be further redistributed by the TAE. As the BAE amplitude increases up to t = 8.0 · 10−4 s,
the fast particle phase-space at the radial BAE position s = 0.47 and an energy around
E = 130 keV (Fig. 4.33 right, black ellipse) is redistributed due to the enhanced BAE mode
growth caused by the increased gradient (Fig. 4.32, right). The fast particles are further
redistributed by the TAE so that the radial gradient at the BAE position remains.
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Figure 4.32.: Total radial redistributions of the fast particles at time t = 2.0 · 10−3 s (aver-
aged over t = 1.9−2.1·10−3 s) caused by a single TAE (black; as shown in Fig.
4.14) and a single BAE (blue). If both modes are present, the BAE induced
particle ensemble between both modes is further redistributed by the TAE.
Right: Due to the radial localization of the BAE, the BAE mode growth is
increased because of an increased radial gradient caused by the TAE.
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Figure 4.33.: Resonance lines for the BAE and the TAE for different bounce harmonics p
(left). Right: The redistribution of trapped particles caused by the BAE and
the TAE for the point in time, t = 8.0 · 10−4 s (left). The redistribution for
the low energetic ions with E = 130 keV is increased due to the larger radial
gradient and the intersection of the resonance lines (left).

This process increases the mean gradient in the fast particle pressure profile ∇p from
equation (4.8) at the radial BAE position by about 8% but does not explain the increase
of the BAE growth rate by about 14%. An additional drive mechanism must be present
simultaneously to resolve all observations.
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4. Simulation Results

Double-resonant Mode Coupling

Regarding the oscillation in the mode growth as seen in figure 4.28, the behaviour indicates
that a particular particle ensemble is exchanging energy and momentum in a bidirectional
way. It is found by loading only trapped or passing particles that trapped particles cause
this modulation in the amplitude. A specific ensemble of particles (Fig. 4.34) is radially
localized between both waves whereby their trajectories pass through both modes. These
particles are resonant with both modes so that equation (4.1) is satisfied for each mode
simultaneously. This leads to

ωtp (nTAE − nBAE) − ωb (pTAE − pBAE) = ωTAE − ωBAE = ∆ω , (4.12)

where ∆ω is the beat frequency of the two modes.
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Figure 4.34.: Example of the specific trapped particle ensemble which is localized radially
between both mode amplitudes with a bounce frequency of ωb = 100 kHz.
The red line denotes the radial localization where the particle orbits have to
be located to generate an oscillatory behaviour.

In figure 4.35, the resonance plot for the general resonance condition (4.1) is shown for the
TAE and the BAE, both with n = 4, and for comparison also with n = 3 and n = 4. The
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4.3. Enhanced Fast Particle Losses due to Multiple Modes

BAE frequency is ω = 50kHz, for the n = 3- and n = 4-TAEs the corresponding frequencies
are ω = 145 kHz and ω = 150 kHz, respectively. Due to the radial localization of the trapped
particles, the bounce harmonics for both mode combinations are p = 0 for the BAE and
p = −1 for the TAE. This simplifies the resonance condition (4.12) to

ωb = ∆ω = 100 kHz (both n=4)

−ωtp + ωb = ∆ω = 95kHz (n = 4-BAE, n = 3-TAE)

In both cases, the resonance line of the beat frequency is crossing the resonance lines of the
single modes at their intersections. But only if the toroidal mode numbers are equal, an os-
cillatory behaviour was found in the simulation. This phenomenon has also been seen for all
pairs of eigenmodes with the same toroidal mode number n = 3, . . . , 5. This indicates that
different particle precession drifts with respect to each mode corrupt the ’double-resonant’
interaction between both modes via fast particles.

= 100 kHz

BAE
(n,p) = (4,0)

TAE
(n,p) = (4,-1)

TAE
(n,p) = (4,0)

∆ω

ω = 100 kHzb

= 95 kHz
TAE

BAE
(n,p) = (4,0)

(n,p) = (3,-1)

∆ω

ωb= 107 kHz

Figure 4.35.: The beat frequency ∆ω (white) is displayed in the resonance plot for the TAE
and the BAE, both n = 4 (left) and n = 3 as well as n = 4 (right), crossing
the general resonance intersections (yellow ellipses). But only for the first
case, the particles in the yellow ellipses generate the oscillations.

Transforming into the frame of reference which moves with the BAE ωBAE = n · wtp,
the banana centres of these double-resonant particles and the BAE phase are fixed for
the p = 0-resonance (Fig. 4.36). In this reference frame, the TAE propagates with the
frequency difference of the modes, the beat frequency. A trapped particle from the phase-
space (Fig. 4.35 left, yellow solid ellipse) is passing through both radial mode localizations
and it is resonant with both modes. The energetic ion is considered to be started at the
TAE position at the midplane, its bounce time is T . The TAE is initialized with a certain
phase φ0. At time T/2, the particle completes half of its poloidal orbit, leaves the wave
potential of the TAE due to its radial drift and is trapped in the wave potential of the BAE.
After a complete orbit at time T , it returns to the radial TAE position.
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4. Simulation Results

If ωb and ∆ω are equal (Fig. 4.35 left), the particle re-enters the TAE position with the
initial phase φ0 (Fig. 4.36). For the case of different toroidal mode numbers (Fig. 4.35
right), the bounce frequency of a double-resonant fast particle (yellow dashed circles) is
larger than the beat frequency ∆ω. Thus, the particle experiences a different phase of the
TAE after one bounce orbit.
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Figure 4.36.: 3D schematic view of the frame of reference for the BAE and a particle from
figure 4.35 (left; yellow ellipse). In this system, the TAE propagates toroidally
with the beat frequency ∆ω whereas the particle propagates with the bounce
frequency, ωb = ∆ω. The particle is trapped in both wave potentials with a
fixed phase.

This means that the toroidal precession drift of the particle has to be equal with respect
to both modes so that the resulting resonance condition for energy exchange is defined by

−(p1 − p2) · ωb = ∆ω

P · ωb = ∆ω for n1 = n2 , (4.13)

where P is the difference of both bounce harmonics. However, not all particles which fulfil
the above mentioned conditions exchange energy between both modes. Only the particles
with an initial phase φ0 that gain energy from the TAE (slight inwards ’shift’) and transfer
the energy to the BAE (slight outwards ’shift’) stay in resonance (no net shift). The parti-
cles that loose part of their energy to the TAE are redistributed radially outwards.

In figure 4.28, the BAE amplitude is smaller than that of the TAE before t = 9.0 · 10−4 s
and the BAE oscillation is the largest when the ratio between both modes is largest. The
double-resonant particles transfer an amount of energy which is small compared to the TAE
energy but large compared to the BAE energy. Therefore, the BAE amplitude modulation
is large. Not before both wave energies are equal, the opposite oscillation amplitude is
also nearly equal but is slightly larger for the mode which gains energy. This balancing phe-
nomenon is depending on the difference in amplitude for the interacting modes and transfers
net energy to the eigenmode whose amplitude is smaller.
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4.3. Enhanced Fast Particle Losses due to Multiple Modes

Due to the phase locking of the energetic ions, a redistribution of the double-resonant par-
ticles does not happen which is in significant contrast to the gradient-driven mode growth.
A further distinction between both mechanisms is the radial direction of the transfer. Whilst
the radially outward redistributed particles transfer their energy to the waves at the radial
mode position, the particles trapped in the exchange mechanism can transfer net energy
radially both inwards and outwards depending on the ratio of the amplitudes. The crucial
condition is only a double-resonant wave-particle-coupling. However, the process is always
superposed by the gradient-drive mode growth and cannot be treated separately. Consid-
ering a radially constant fast particle distribution, the wave-particle interaction Lagrangian
determined by the equations (3.44) and (3.45) would be zero since the change in the fast
particle distribution δf (Eqn. 3.37) is governed by the gradients.

Change in phase−space for trapped particles δf⋅v2

Energy [keV]

R
ad

ia
l c

oo
rd

in
at

e 
s

 

 

100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
18

TAE

BAE

TAE
p=−1

TAE p=0

BAE p=0

Figure 4.37.: Various mode resonances are responsible for the redistribution of fast particles
caused by the BAE and the TAE at time t = 2.0 · 10−3 s. The collective
particle redistribution is caused by the interplay between the p = 0-BAE and
p = −1-TAE resonance.

Because of both transfer mechanisms which are of the same order in this case, the BAE
amplitude approaches the TAE amplitude at the time t = 8.0 · 10−4 s and continues to
grow. It is found that the fast particle redistribution caused by the p = 0-BAE resonance is
enlarged radially due to the increased BAE amplitude (Fig. 4.37). Again, the particles are
further shifted by the TAE via the p = −1-resonance so that an extended plateau is created
between both modes as shown in figure 4.38.
Due to the enlarged mode amplitude and the radial extension of the TAE, fast particles are
redistributed by various TAE resonances with a bounce number from p = −1, ..., 1. At time
t = 2.0 · 10−3 s, the redistribution strength due to the p = −1-resonance is as large as the
strength due to the p = 0-resonance (Fig. 4.37). This differs from the redistribution due to
p = 0 at the beginning (Fig. 4.31) and is caused by the previously explained interplay with
the p = 0-BAE resonance as shown in figure 4.33.
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Figure 4.38.: Fast particle redistribution in density (left) and pressure (right) at the time
t = 2.0 · 10−3 s.

At times t > 2.0 · 10−3 s, the fast particle redistribution extends over the whole plasma
radius showing a remarkable drop at the magnetic axis (Fig. 4.38). Due to large amplitudes,
both modes continue to redistribute particles.

4.3.2. Fast Ion Losses

Compared to the single mode case, the fast ion losses are expected to be strongly increased
due to the large mode amplitudes which give also rise to diffusive losses [69, 70, 71]. The
stochastic threshold for a single mode is δBψ/B ≈ 10−3 although that may be greatly re-
duced to δBψ/B ≈ 10−4 in the multiple mode case [69]. With respect to these findings, the
simulated fast ion losses are investigated and compared to the single mode case.
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Figure 4.39.: Time evolution of the fast ion losses caused by the both modes and by a
single TAE (left). At the detector, the loss amplitude due to both modes is
already enhanced by a factor of 3 during the saturation phase of the single
TAE (right).

Again, the fast ion losses at the virtual detector position (Fig. 4.39) are divided into
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4.3. Enhanced Fast Particle Losses due to Multiple Modes

three time intervals (t1 = 2.0 · 10−5 s, t2 = 6.5 · 10−4 s, t3 = 1.3 · 10−3 s, t4 = 2.0 · 10−3 s)
to compare the results to the losses of a single TAE. During the overshoot phase, the loss
signals of both modes (red) and the single mode (blue) match up nearly perfectly because
the amplitude of the BAE is still small compared to the TAE amplitude. When the BAE
amplitude approaches the order of magnitude of the TAE amplitude during the time interval
t = 0.65 − 1.30 · 10−3 s of the saturation phase, the mean fast ion losses are already larger
by a factor of 3. Afterwards, the losses continue to grow exponentially.
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Figure 4.40.: Dependence of the fast particle loss δf at the detector position on the mean
TAE amplitude.

It was shown [69] that the stochastic fast ion losses scale with (δBψ/B)2 if the mode
amplitude is above the threshold. To investigate at which mode amplitudes stochastic losses
are observed, the fast particle losses δf at the detector position (Fig. 4.39 left; red line) are
compared with the corresponding mean TAE amplitudes (4.28) for the same points in time.
In figure 4.40, the fast particle losses show a quadratic dependence. Since the stochastic
behaviour is clearly seen only after the TAE has reached an amplitude of δBr/B0 ≈ 10−3,
the threshold for a single mode seems to be valid in this case. The reduction of the threshold
[69] to 10−4 in the presence of multiple modes was detected for modes with similar mode
amplitudes and radial positions. Since the BAE is core-localized and the BAE amplitude is
one order of magnitude smaller than the TAE amplitude as the TAE amplitude reaches the
threshold of δBr/B0 ≈ 10−4 at t ≈ 4.0 · 10−4 s, the threshold conditions for stochastic losses
due to multiple modes are not satisfied.

In figure 4.41 (left), the fast ion losses at the detector position with respect to the energy
are shown. During the overshoot phase for t1 < t < t2 (red), the loss signals caused by both
modes (solid) compared to the single mode (dashed) match up nearly perfectly because of
the small BAE amplitude. In the linear saturation of t = 0.65− 1.30 · 10−3 s (blue), the loss
distribution due to both modes which ranges from E = 200 keV - E = 1.2MeV is different
from the fast ion losses caused by the single TAE. The loss amplitude is larger by a factor of
3 as seen in the time trace before (Fig. 4.39). The range of the main losses between energies
of E = 500 keV and E = 1MeV has increased compared to the peak around E = 800 keV
for the single mode. After t3 = 1.30 · 10−3 s, the loss amplitude for E = 250 − 400 keV has
increased significantly compared to the losses around E = 400− 1100 keV. Compared to the
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Figure 4.41.: Fast ion loss signal of the energy (left) and the pitch angle (right) during
the specific time intervals. The dashed lines show the corresponding detector
signals caused by a single TAE.

single mode case, the increase of the fast ion losses with energies E = 250 − 400 keV is the
main difference, in addition to the large total amount of the fast ion losses.
In figure 4.41 (right), the pitch angle of the loss signal ranges from α = 48◦ − 72◦ after
the overshoot which deviates significantly from the loss distribution (Fig. 4.24) caused by a
single TAE, α = 54◦ − 71◦. Especially with the start of the nonlinear fast ion losses, most
fast particles are ejected at a pitch angle around α = 52◦. In the saturation phase of the
single mode case, the fast ion losses are concentrated between 58◦ − 70◦.

Normalizing the amplitudes of the fast ion losses to unity for different points in time reveals
a qualitative change in the energy distributions as shown in figure 4.42. It is seen that during
the linear growth phase the main losses are detected at an energy around E = 900 keV. Dur-
ing the saturation phase, the amplitude maximum changes from E = 750 keV to E = 550 keV
at the end of the nonlinear growth (t = 2.9 · 10−3 s). The loss range in energy during these
three stages widens as the minimum limit is decreased to lower energies, from E = 550 keV
to E = 200 keV. The maximal loss energy remains around 1.1MeV. A further difference is
the form of the distribution which changes from distinct peaks to a broader shape with two
small peaks at E = 250 keV and around E = 800 keV. Because of the large mode amplitudes
δBψ/B > 10−3, such a change in the distribution can result from stochastic losses for which
all fast particles are ejected without a preference in energy [70].

A comparison of the lost fast ions (Fig. 4.42) to the corresponding resonances shows that
the distinct peak at an energy around E = 800 keV which is present for all points in time
coincides very well with the intersection of the p = 1-TAE resonance with the loss boundary
(Fig. 4.43 left). The loss region at E = 250 keV caused by the p = 0-TAE resonance
appears when the TAE amplitude reaches δBψ/B ≈ 10−3. Then, fast particles in the outer
plasma region are expelled by the dominant poloidal harmonics in the outer TAE gaps at
s = 0.7 − 0.9 (Fig. 4.8 mid). Since the trapped particle orbit width ∆b for E = 300 keV
in the outer plasma region is larger than the mode width ∆m for the poloidal harmonics
m + 2, . . . ,m + 4 and therefore the mode interaction scales with m−2 [34], these lost fast
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Figure 4.42.: Normalized loss distributions with respect to the energy for different states
of the modes. The main loss amplitude changes its dependence on the energy
to a lower value. The distribution in energy is broader for a later point in
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particles are only present for a large TAE amplitude. This is in contrast to the single mode
case (Fig. 4.23) where no significant fast ion losses are detected.
Although the BAE resonance line (Fig. 4.43 right) intersects with the loss boundary, the
mode cannot eject fast particles at E = 250 keV due to its core-localization, even for mode
amplitudes above δBψ/B = 10−3. However, at the end of the nonlinear growth the main
fast particle losses are detected at energies E = 400 − 700 keV (Fig. 4.42, black line).
These particles can partly be expelled by the p = 1-BAE resonance due to the large BAE
amplitude.

4.3.3. Summary

In this section it has been shown that a radial transport of fast particles between modes of
different types due to resonance overlap at very different eigenfrequencies is as possible as for
multiple TAEs [16]. The gradient in the radial fast particle distribution drives both modes
unstable. However, the mode drive due to the increased gradient at the radial position of
the BAE amplitude caused by the TAE mode is larger than that compared to the single
BAE case. The collective particle transport due to both modes generates a flat gradient
region at the position of the modes. An additional mechanism has been identified that
transfers energy and momentum via double-resonant trapped particles between two modes.
The mode that has the smaller amplitude is driven by the mode with the larger amplitude
independently on the radial mode position. Since the increase of the mode drive for the
BAE is approximately twice as large as the increase of the radial gradient in the particle
distribution, the influence of the double-resonant mode coupling on the mode drive is of the
same order as that of the gradient-driven mode growth.
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Figure 4.43.: Resonance plots of both modes but the fast ion losses caused by the TAE (left)
and the BAE (right) are treated separately. A difference between fast particles
that drive the modes and particles which are ejected is clearly observed.

Due to both mechanisms, the TAE amplitude is increased further as the BAE amplitude
reaches the TAE amplitude. Due to the significantly increased TAE amplitude, an additional
region in the low energetic fast ion loss range appears as the TAE reaches the stochastic
threshold for a single mode. A broader shape of the loss distribution indicates an increasing
influence of stochastic losses. Nevertheless, a striking difference is observed between fast
particles that drive the modes and particles that are ejected (Fig. 4.43).

4.4. Fast Particle Losses for ICRH-generated distributions

In order to compare the fast ion losses with the experimental data, an implemented ICRH-
generated fast particle distribution is used in the following. It has to be investigated how
realistic the implemented distribution is and if all experimental observations can be ex-
plained. Therefore, both single modes and multiple modes in the presence of the anisotropic
distribution function are studied. The results of the mode drive and the fast ion losses are
compared to the simulated results of the isotropic loading first.

The anisotropic ICRH-generated fast particle distribution was introduced in section 3.2.5
and deviates from its isotropic counterpart especially by the narrow initialization of the pitch
angle variable around λ = 0 as shown in figure 3.8. In addition, the particles are loaded
within small poloidal angle segments which are localized around the magnetic axis position
(Fig. 3.7). The same slowing-down distribution in energy as for the isotropic distributions
is used (Eqn. 4.3).
The volume-averaged fast particle beta 〈βf 〉 (Eqn. 3.82) which is related to the distribution
function determines the particle density. Due to the anisotropy in poloidal space and in the
pitch angle in an ICRH-generated distribution, an increased particle density increases the
constant C in the equation so that an enhanced weight is represented by each marker for
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a given 〈βf 〉 compared to the isotropic distribution. For this reason, the growth rates of a
single TAE are investigated in dependence on different fast particle pressures first.
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Figure 4.44.: Evolution of the amplitudes and the growth rates for different fast particle
betas using the example of a single TAE.

From figure 4.44 it can be seen that for the same 〈βf 〉 = 0.3% as used in the isotropic
case a single TAE which is driven by an ICRH-generated distribution does not saturate.
Its amplitude reaches a value of A > 10−2. At such amplitudes the code is out of validity
since the perturbation is not small compared to the background magnetic field any longer,
δBψ = O(10−2−10−1 ·B). The same fast particle beta for an isotropic distribution increases
the mode’s amplitude up to A ≈ 6.0 · 10−4 followed by a saturation phase which agrees very
well with the experimental findings in section 4.1. For an ICRH-generated distribution, the
same behaviour is seen approximately for 〈βf 〉 = 0.08% (Fig. 4.44). This result shows that
the fast particle beta that generates the same mode amplitude in the simulation is far below
the experimental value. The mismatch is probably due to the lack of a background damping
mechanism and a continuous fast particle source.
In the following, all simulations with an ICRH-generated distribution are carried out with
a fast particle beta of 〈βf 〉 = 0.08%. A difference compared to the isotropic loading with
〈βf 〉 = 0.3% is seen in the evolution of the growth rates. The ICRH-driven mode increases
slower but over a longer time scale compared to the mode driven by an isotropic distribution.
Decreasing the fast particle beta by a factor of 10 to 〈βf 〉 = 0.03% shows that the amplitude
decreases approximately about four orders of magnitude.

The mode is driven unstable by the same trapped particle ensembles as in the isotropic
case (Fig. 4.16). The fast ions with an energy between E = 420 − 550 keV interact with
the TAE via the p = 0-resonance as well as particles with energies around E = 130 keV via
the p = −1-resonance. However, the amount of redistributed particles changes for the two
specific particle ensembles as shown in figure 4.45 in comparison to the isotropic case (Fig.
4.15). The resulting radial fast particle redistribution for the anisotropic case is similar to
that for the isotropic case (Fig. 4.13).

The initial distribution in the pitch angle variable (Fig. 3.8 right) which is centred around
λ = 0 broadens as the particles evolve in time. The final range is λ ∈ [−0.6, 0.4]. As shown
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Figure 4.45.: Temporal redistribution in energy for an ICRH-generated fast particle distri-
bution in the presence of a single n = 4-TAE. Fast particles are redistributed
around E ≈ 130 keV (from blue/magenta to green/yellow) and from the en-
ergetic range E ≈ 420 − 550 keV to E ≈ 350 − 420 keV.

in figure 4.46 (left), two peaks at λ = 0.1 and λ = −0.4 evolve. Since a trapped particle
propagates in co- and counter-passing direction with respect to the magnetic field lines, it
changes its sign of the parallel velocity (λ = v‖/v). The extremum values of λ are both the
minimum and maximum between the bounce points (λ = 0). Thus, the peaks denote the
temporary values at the minimal and the maximal radial position. At these radial positions,
the ions interact with the TAE.

Figure 4.46.: Temporal pitch angle redistribution in the presence of a single n = 4-TAE
for an initial ICRH-generated distribution (left) and an isotropic distribution
(right).

Comparing with the isotropic marker loading (Fig. 4.46 right), the whole range of the
pitch angle variable is affected but the peaks are still visible. As mentioned before, the main
drive is due to trapped particles in the isotropic initialization. The absolute values of the
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4.4. Fast Particle Losses for ICRH-generated distributions

peaks are smaller by a factor of 2 compared to the ICRH-loading, and the difference between
both peaks refers to the additional contribution of co-passing particles. These particles in-
crease the amplitude at λ = 0.1.

For the following simulations, the same parameters as for the BAE and the TAE with a
toroidal mode number n = 4 are considered. Exceptions are the fast particle distribution
and the smaller absolute value of the fast particle beta.
In figure 4.47 both mode amplitudes increase nearly equally during the linear growth phase,
i.e. γTAE is smaller whereas γBAE is higher compared to the isotropic distribution. This
implies that the decrease of the fast particle beta is overcompensated by the ICRH specific
loading. The decrease in the TAE growth is due to the absence of passing particles. Since
trapped fast particles are loaded which have been identified to cause the main mode drive as
shown for the isotropic loading, both modes reach a higher amplitude after the linear growth
phase. In addition, the same oscillatory behaviour (Fig. 4.47 right) is detected which drives
both modes further unstable without a saturation. The excursions are much smaller than
in the isotropic case because both amplitudes are roughly equal.

0.0e+00 5.0e-04 1.0e-03 1.5e-03
Time [s]

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

M
od

e 
am

pl
itu

de

TAE (isotropic)
BAE (isotropic)
TAE (ICRH)
BAE (ICRH)

0.0e+00 5.0e-04 1.0e-03 1.5e-03
Time [s]

-4

-2

0

2

4

6

8

10

G
ro

w
th

 r
at

e 
γ/

ω
0 [

%
] TAE

BAE

Figure 4.47.: Evolution of the amplitudes for a BAE and a TAE, both n = 4, caused by
a ICRH-generated and an isotropic distribution (left). The growth rates of
both modes due to the ICRH-generated distribution show the same oscillatory
behaviour as for the isotropic case (right).

Due to the higher amplitudes after the linear growth phase, the temporal evolution of the
loss rate is increased compared to the isotropic initialization (Fig. 4.48). Since there is no
saturation phase (Fig. 4.47), the fast ion losses increase exponentially after the overshoot
for the time t > 10−3 s. For this reason, only two time intervals are chosen, the overshoot
phase (t < 10−3 s) and the nonlinear growth phase (t > 10−3 s). For these time intervals,
an analysis with respect to energy and pitch angle is carried out.

In figure 4.49, the energies of the lost particles range from E = 400 keV to E = 1.2MeV.
In the overshoot phase, the particles are mainly ejected at E = 850 keV. This value changes
significantly to a lower energy E = 650 keV during the nonlinear growth phase. The former
peak is due to the resonant losses for p = 1-TAE (Fig. 4.43 left). As indicated in the section
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Figure 4.48.: Evolution of the fast particle losses at the detector for the ICRH-generated
and the isotropic distribution.
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Figure 4.49.: Fast particle loss distribution in dependence on the energy caused by a BAE
and a TAE, both n = 4. The results are compared to the isotropic case at
the end of the nonlinear growth. For a better comparison, the amplitude of
the isotropic case is renormalized.

before, the large mode amplitudes of δBψ/B > 10−3 give rise to a stochastic loss behaviour.
For this reason, the peak for t > 10−3 s is mainly due to the p = 1-BAE resonance (Fig.
4.43 right) and stochastic losses.
For a qualitative comparison of the fast particle losses with the isotropic case at the end
of the nonlinear growth phase (Fig. 4.42), the amplitude of the isotropic case has been
increased significantly and plotted in figure 4.49. The loss distributions deviate significantly
from each other since the main fast ion losses are detected at an energy E ≈ 700 keV for
the anisotropic loading compared to E ≈ 500 keV for the isotropic loading. Furthermore,
the minimal energy of the ICRH-generated distribution, E ≈ 400 keV, is larger than in the
isotropic case, E ≈ 200 keV. Remember that in the isotropic case these particles are ejected
by the dominant poloidal harmonics in the outer TAE gaps (section 4.3.2) because they are
located at the outer plasma edge on the LF side. Due to the different loading (Fig. 3.7), such
particles do not exist. Thus, the peak at E ≈ 250 keV due to resonant p = 0-TAE losses in
the isotropic case cannot appear but there is still a considerable amplitude at E ≈ 800 keV
due to the p = 1-TAE resonance at all points in time.
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4.5. Comparison of Fast Ion Losses: Simulation vs Experiment

A further difference to the isotropic initialization is shown in figure 4.50. The losses
with respect to the pitch angle caused by the ICRH-generated fast particle distribution lie
between α = 56◦ − 66◦ which deviates significantly from the isotropic distribution (Fig 4.41
right) at the end of the nonlinear growth phase. The particles tend to be ejected at smaller
pitch angles in both cases for later points in time but this does not increase the range in
case of the ICRH-generated distribution. The resonantly lost particles with an energy of
E = 800 keV are ejected at a pitch angle of α ≈ 60◦ and superpose with the main losses at
t > 10−3 s.
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Figure 4.50.: Fast particle losses in dependence on the pitch angle caused by an ICRH-
generated (blue and red) and an isotropic distribution (black). For a better
comparison, the amplitude of the isotropic case is renormalized.

4.5. Comparison of Fast Ion Losses: Simulation vs Experiment

The fast ion losses caused by different mode activity and initial fast particle distributions
were compared to each other in the previous sections. In this section, it is investigated
which fast particle distribution agrees best with the experimental measurement. Since the
experimental diagnostic FILD measures the pitch angle and the gyro radius of the ejected
particles simultaneously on one loss pattern, the separate simulated loss distributions are
combined. Afterwards, the simulated fast ion losses are compared to the experimental data.

For the following comparison, only these particle loss distributions of different configura-
tions are investigated in which all loss processes due to resonant or stochastic behaviour are
present. This means that each time interval after or at the end of the saturation phase is
examined, i.e. for the single TAE with an isotropic distribution at t = 1.3 − 2.0 · 10−3 s, for
the BAE and the TAE with an isotropic distribution at t = 1.3 − 2.0 · 10−3 s as well as for
the BAE and the TAE with an ICRH-generated distribution at t = 1.0 − 1.5 · 10−3 s. Since
the FILD measures the gyro radius of a lost particles, the energy distributions has to be
expressed with respect to ρ⊥,
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ρ⊥ =

√

2mE[eV ](1 − λ2)

q2eB2
.

The corresponding distributions in gyro radius for the above specified time intervals are
shown in figure 4.51 (left). For a better comparison, the fast ion losses for different initial-
izations are renormalized. Therefore, the losses with respect to the pitch angle are plotted
in figure 4.51 (right) again.
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Figure 4.51.: Loss distributions in gyro radius (left) and pitch angle (right) for the single
TAE with isotropic loading (black), the BAE and the TAE with isotropic
loading (red) as well as the BAE and the TAE with an ICRH-generated
distribution (blue). The distributions are renormalized.

The combination of both distributions in a contour plot gives more detailed information
about the phase-space from which the fast particles are lost. In figure 4.52 (left), the com-
bined distribution of the pitch angle and the gyro radius for a single TAE and an isotropic
distribution is shown colour-coded and normalized to the maximal loss amplitude. Investi-
gations on the pitch angles of the lost trapped particle orbits reveal that fast particles with
a pitch angle of α ≈ 63◦ independent of their energy have their bounce points near the
magnetic axis before they are lost. This means that fast particles with a higher pitch angle
at the detector are completely located on the LF side, trapped ions with a lower pitch angle
have their bounce points at the HF side.

Two separated spots are detected, a small spot for a gyro radius from ρ⊥ = 30mm to
45mm and pitch angles between α = 48◦ − 52◦ and a large spot for ρ⊥ = 45 − 90mm and
pitch angles between α = 52◦ − 71◦. The small spot consists of lost particles which are
barely co-passing. These fast ions change their orbit topology due to the interaction with
the mode (Fig. 4.54, red).
The large spot consists of trapped particles only. The black ellipse corresponds to resonant
losses with energies between E ≈ 750 − 900 keV due to the p = 1-resonance and coincides
very well with the resonance plot (Fig. 4.52 right) made for the radial position of the mag-
netic axis Rmag. The loss peak with an energy of E = 500 keV is due to lost particles whose
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4.5. Comparison of Fast Ion Losses: Simulation vs Experiment

turning points are at the HF side, R < Rmag. For these particles, the bounce and the
toroidal precession frequency are smaller than for trapped particles which have their bounce
points at the magnetic axis. Therefore, the corresponding resonance lines (Eqn. 4.1) shift
to the left side so that these particles are also ejected by the p = 1-TAE resonance.
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Figure 4.52.: Left: Fast particles losses due to a single TAE in the presence of an isotropic
distribution. The main losses are detected due to the p = 1-TAE resonance
as well as for particles with E = 500 keV with their bounce points on the HF
side. Right: The resonance region due to the p = 1-resonance coincides very
well with the main losses.

The simulated loss pattern changes significantly if additionally a BAE mode is present,
again an isotropic distribution is considered here. One continuous loss region is observed in
figure 4.53 which consists of different loss areas. The red ellipse denotes lost particles which
change their orbit topology. This was detected for the single TAE (Fig. 4.52 left) before.
Furthermore, two peaks are detected for a gyro radius from ρ⊥ ≈ 60 − 80mm with a pitch
angle of α ≈ 63◦ (green ellipse) and at a gyro radius of ρ⊥ ≈ 45mm with a pitch angle of
α ≈ 67◦ (magenta ellipse). These peaks correspond to the loss regions due to the p = 0 and
p = 1 TAE-resonance shown in figure 4.43. The corresponding guiding centre trajectories
for each ellipse are shown in figure 4.54.
Both modes eject particles at an ρ⊥ ≈ 52mm at a pitch angle of α ≈ 54◦ which correspond
to a particle energy of E ≈ 600 keV. The peak was also detected before due to the single
TAE and is slightly shifted. The loss peak at a gyro radius ρ⊥ ≈ 85mm (E ≈ 1MeV) with
a pitch angle of α ≈ 68◦ (cyan ellipse) is also caused by both modes. The highly energetic
particles have large orbit widths which are completely on the LF side and traverse the BAE
and the TAE amplitude with the inner leg (Fig. 4.54; cyan trajectory).
In total, the loss areas are not strictly separated. Due to stochastic losses, a broadening
[69] in the loss pattern can be possible since no clear association of the losses between the
resonant loss regions to any resonance can be made.

The behaviour of the fast ion losses (Fig. 4.51 blue) caused by both modes changes for an
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Figure 4.53.: Fast particles losses due to the BAE and the TAE in the presence of an isotropic
distribution. The main losses are detected due to the p = 0, 1-TAE resonances
as well as for particles with E = 600 keV which are ejected by both modes.
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Figure 4.54.: Trajectories of typical fast ions with energies of E = 300 keV, E = 800 keV
and E = 1 MeV which contribute to the loss distribution (Fig. 4.53). For
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initial trapped one (magenta) on the LF side are lost with an pitch angle of
α = 51◦ and α = 67◦. For E = 800 keV (green) and E = 1 MeV (cyan), the
highly energetic ions are lost with α = 63◦ and α = 68◦, respectively.
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4.5. Comparison of Fast Ion Losses: Simulation vs Experiment

ICRH-generated distribution as shown in figure 4.55. Only one large loss region is detected
with gyro radii between ρ⊥ ≈ 50 − 90mm and pitch angles between α ≈ 56◦ − 66◦ which
correspond to energies between E = 500 keV (upper left corner) to E = 1.1MeV (lower right
corner). The main particles are lost at an energy of E ≈ 700 keV whose bounce points are
slightly beyond the magnetic axis on the HF side. In general, the particles are ejected from
orbits whose bounce points are near the magnetic axis due to the initialization of the ICRH-
generated distribution (Fig. 3.7). Therefore, particle losses which are related to bounce
points far away from the magnetic axis as in the isotropic case (Fig. 4.53) are missing.
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Figure 4.55.: Fast particles losses due to the BAE and the TAE in the presence of an ICRH-
generated fast particle distribution. The main losses are detected due to the
p = 1-TAE resonance near the magnetic axis because of the chosen spatial
loading (Fig. 3.7).

For the following comparison between the simulated and the experimental results, a pecu-
liarity corresponding to the FILD and the fast particle motion has to be taken into account.
The ratio between the drifts and the parallel motion (Eqn. 3.74) is of order O(ǫ) (Eqn.
3.72) so that

vD
v‖

∼ ǫ =
ρ⊥
R

≈ 5% .

Since the main losses are obtained for deeply trapped particles, the perpendicular velocity
is larger than the parallel velocity, v⊥ > v‖. Assuming that v⊥ = 4v‖ yields for the angle
β (Fig. 4.56) which determines the deviation of the guiding centre motion from the motion
along the magnetic field line in −z-direction

vD
v‖

. ǫ

√

v2
‖ + 1

2v
2
⊥

v‖
= 3ǫ ⇒ β ≈ 9◦ ,

which is the maximum value of the deviation.
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Figure 4.56.: View of a flux surface in the region of the outboard midplane: Motion vgc of
the guiding centre across the magnetic field lines B within the flux surface.
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Figure 4.57.: Experimental set-up of the FILD loss pattern: Since the side of the pattern
responsible for the pitch angle is assumed to be parallel to v‖, the gyro radius
ρ⊥,exp and the pitch angle α are determined as plotted in the figure.

As introduced in section 2.5.3, the detector is located at midplane and is tilted against
the horizontal plane by γ ≈ 13◦ (Fig. 4.56). So, the loss pattern is parallel to the magnetic
surface at midplane and the side of the loss plate responsible for the pitch angle is parallel
to the magnetic field line (Fig. 2.15). It is assumed in the experimental analysis that the
particle is propagating along the magnetic field line with v‖ without a drift so that the gyro
radius ρ⊥,exp and the pitch angle α are measured as shown in figure 4.57. Including the
drift motion for deeply trapped particles is however very important and leads to a deviation
from the measurement. Since the diagnostic is located at midplane, the drift motion (−z-
direction) is in poloidal direction, i.e. a drift within the flux surface. This indicates that
the guiding centre motion vgc does not coincide with the parallel motion any longer which
results in a smaller pitch angle and a smaller gyro radius as shown in figure 4.58.

Comparing the angle between the magnetic field line and the vector of the fast particle
shown in 4.58 reveals that the experimentally detected angle α is

α = α′ + β .

This means that each simulated pitch angle α′ has to be increased by β for comparison.
Since β depends on the fast particle’s energy and pitch angle, a numerical simulation has
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Figure 4.58.: Including drift motion shows that the real gyro radius ρ⊥ and the real pitch
angle α′ are smaller than the measured quantities α and ρ⊥,exp.

to be carried out to determine its value. Therefore, trapped particles with energies up to
1.5MeV have been started over the complete upper half of the plasma with λ = 0 (Fig.
4.59) but only the lost particles which are detected by the virtual fast ion loss detector are
important for the comparison. For better visualization, only 3 energies (300 keV, 700 keV,
1MeV) are plotted. For the ions which are lost due to interaction with the waves the last
position of the bounce point is shown.
In figure 4.59 (a) the shaded areas within the plasma show the initial positions of trapped
particles for various energies. The corresponding colour at the (R, z)-position denotes the
actual pitch angle α′ determined at the detector area. Including the drift motion, the pitch
angle α which is measured by the FILD is shown in figure 4.59 (b). The drift correction
increases for higher pitch angles α′ due to the rising relevance of the drift terms in equation
(3.74) and affects fast particles at the low field side up to a correction of β ≈ 8◦ in particu-
lar. The corresponding change in the gyro radius is within the same percentage range. So,
the particle energies which are calculated from the measurements are overestimated up to
∆E = 140 keV.

As shown in section 4.1 (Fig. 4.4), the experimental fast ion losses are separated in two
spots (’large’ spot: ρ⊥ ≈ 60 − 100 mm, α ≈ 62◦ − 68◦; ’small’ spot: ρ⊥ ≈ 40 − 50 mm,
α ≈ 69◦−70◦). In figure 4.60, these original experimentally observed spots (red) are plotted
into the simulated fast ion losses due to a TAE (left) and both modes (right) for an isotropic
fast ion distribution. With inclusion of the drift effect, the spots shift to smaller pitch angles
and gyro radii (blue ellipses). For a single TAE, the corrected ’large’ spot coincides very well
with the fast ion losses due to the p = 1-resonance. However, the small spot is missing. In
the presence of both modes (Fig. 4.60 right), losses with E ≈ 300 keV due to the p = 0-TAE
resonance appear and agree with the corrected ’small’ spot. It was found in section 4.3.2
that the p = 1-BAE resonance does not eject fast ions of the same energy due to the core-
localization of the mode, although the resonance line intersects the loss boundary at the
same position in phase-space as the TAE resonance(Fig. 4.43). This is in good agreement
with the FILD spectrogram for low energetic losses (Fig. 4.5) where BAE-induced losses
are only detected for high energies. Nevertheless, beside the spots further loss regions are
present which are not detected in the experiment.
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Figure 4.59.: The colour-shaded area denotes the initial positions of the trapped particles
with λ = 0 and energies of E = 300 keV, E = 700 keV and E = 1 MeV
which reach the FILD position. The actual pitch angle at the detector to the
corresponding starting position is colour-coded and shown on the left side (a),
the expected pitch angle measured experimentally and including drifts on the
right side (b).
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Figure 4.60.: The loss patterns of a single TAE (left) and of both modes (right) are compared
to the experimental data (red ellipses) as shown in figure 4.4. With inclusion
of the drift effect, the measurements are shifted to smaller gyro radii and pitch
angles (blue ellipses). The simulated fast ion losses are normalized to unity.

The reason for this deviation is the use of ICRF heating in the experiment. This gener-
ates a highly anisotropic distribution located on-axis which is in contrast to the isotropic
fast particle distribution used in the simulation. Due to the increase of perpendicular en-
ergy and the corresponding shift of the bounce points to the resonant layer as explained in
section 2.5.1, only lost fast particles that have their bounce points near the magnetic axis
are relevant for a comparison with the experiment. Assuming that only ions with bounce
points between R = 1.60 − 1.80m cause all losses, pitch angles of α ≤ 57◦ and α ≥ 70◦

vanish, as shown in figure 4.61. Under this assumption, the two simulated loss regions due
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4.5. Comparison of Fast Ion Losses: Simulation vs Experiment

to resonant TAE losses coincide very well with the experimental measurements. The lost
ions with E ≈ 300 keV are still included as shown in figure 4.54 (blue trajectory).
The small deviation in pitch angle and the absence of even higher energetic losses of the
’large’ spot can be explained by two reasons: On the one hand, the assumption that the
FILD detector is parallel to the magnetic field lines might not be exactly correct. Increas-
ing γ by only 1◦ (Fig. 4.56) would result in a perfect line up and is within the error bar
for a deviation of ±2◦. On the other hand, the distribution function in energy (Eqn. 4.3)
underestimates high energies since it is assumed that a maximum energy of E0 = 1MeV is
created by the ICRF heating. An increase of E0 to larger values could bring the desirable
effect.
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Figure 4.61.: Loss pattern of selected fast ion losses caused by both modes in the presence
of an isotropic fast particle distribution. Only trapped particles which have
their bounce points between R = 1.6 m −1.8 m are plotted in contrast to the
total losses shown in figure 4.60 (right).

The initialization of the ICRH-generated distribution should avoid the need for a loss
selection. In figure 4.62, the losses for the two mode case are shown. The loss region co-
incides partly with the experiment (blue ellipses). The ’small’ spot is however missing as
for the single TAE with an isotropic loading. The simulated loss region partly agrees with
the ’large’ spot but has a wrong distribution in pitch angle. The lost particles with smaller
pitch angles and the absence of low energetic particles are due to the chosen loading of the
fast ions (Fig. 3.7). If trapped particles are initialized near to the plasma edge, they have
their turning points at the HF side. This results in smaller pitch angles when the particles
are lost (Fig. 4.59). Furthermore, the fast particle initialization near Rmag excludes trapped
ions with low energies located on the LF side.

Although the ’ICRH-generated’ distribution is more realistic, the fast ion losses caused
by both modes in the presence of an isotropic distribution coincide much better after the
particle selection. This is due to the inclusion of all possible trapped particle orbits but
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Figure 4.62.: Loss pattern due to both modes in the presence of an ICRH-generated distri-
bution. The corrected, experimental losses are plotted into the figure (blue
ellipses) for direct comparison. The ’small’ spot from the experiment is miss-
ing, the simulated fast ion losses coincide partly with the ’large’ spot.

it also generates fast particle losses which are not present in the experiment. It indicates
that a connection between the radial and the poloidal coordinate is mandatory to represent
on-axis heating. Only in this case and with the inclusion of the drift motion, the simulated
fast ion losses can be expected to be equal to the experimental measurements.

4.6. Particle Redistribution due to NTMs

In present-day tokamaks, a fast particle population is often generated by Neutral Beam
Injection (NBI) which interacts with a variety of MHD modes. It has been observed that
changes in the distribution are caused by Alfvén waves [65] but also by tearing modes [38, 39].
In the context of a NTM, the perturbation generates a beam ion depletion [72] over its radial
extension which leads to a significant decrease in the plasma heating. Beside the calculation
of the fast particles with shear Alfvén eigenmodes, the HAGIS code can also be applied to
simulate an NBI-generated fast particle distribution in the presence of a static tearing mode.
Here, particular emphasis is given to the island structure and its displacement mechanism.

For the simulation of a particle distribution in the presence of a single NTM, a recon-
structed equilibrium with a slowly increasing safety factor has to be chosen. Otherwise,
multiple islands can be excited due to close rational surfaces. Therefore, the ASDEX Up-
grade discharge #21083 has been modified so that the monotonic safety factor profile passes
through q(ψs = 0.35) = 1.5 (Fig. 4.63, left). This indicates that a NTM with a poloidal
and toroidal mode number of (m,n) = (3, 2) can be present at the resonant surface ψs.
In section 2.3.5, the structure of the magnetic island was introduced (Fig. 2.8). The island
is symmetric under the assumption that the growth of the safety factor q is linear and the
radial perturbation Bψ is constant. However, it has been found in the experiment [41] that
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4.6. Particle Redistribution due to NTMs

the island structure is asymmetric in the radial coordinate, i.e. the island half width w
(Eqn. 2.35) on the inside (towards the centre) is larger than on the outside (towards the
plasma edge). Therefore, an asymmetric Gaussian profile for the vector potential Ã has been
implemented in the HAGIS code which is determined by the left and right radial width, ∆L

and ∆R and its amplitude, Ã0,

Ã(ψp) =







Ã0 · exp
[

− (ψp−ψs)
2

∆L

]

ψp ≤ ψs ,

Ã0 · exp
[

− (ψp−ψs)
2

∆R

]

ψp > ψs .

In figure 4.63 (right), both a symmetric profile (blue) with ∆L = ∆R = 2.0 · 10−2 and an
asymmetric profile (red) with ∆L = 5.0 · 10−2 and ∆R = 3.0 · 10−3 are shown. These vector
potentials cause a maximal radial perturbation of Bψ/B0 ≈ 2.0 · 10−3.
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Figure 4.63.: Left: Radial profile of the safety factor q and its derivative q′. Right: Radial
profile of the normalized vector potential ÃN for a symmetric (blue) and an
asymmetric (red) NTM. The dashed, violet line denotes the resonant surface.
The other dashed lines represent the minimal and maximal radial surfaces of
the corresponding tearing modes.

The corresponding magnetic islands within the magnetic equilibrium field are displayed
in figure 4.64 by a Poincaré plot. The island width is ∆Rsym = 10.1 cm in the symmetric
case and ∆Rasym = 9.5 cm in the asymmetric case at the outboard miplane. Since the reso-
nant surface is fixed (violet) at ψs = 0.35, the radial limits of both islands do not coincide.
The asymmetric perturbation profile is much larger towards the plasma centre than in the
symmetric case so that the asymmetric island extends more to the centre. In figure 4.63
(right), the radial extents of the islands are plotted into the vector potential to show how
large the amplitude Ã for such a generation has to be. The vector potential at the symmet-
ric island separatrix is nearly equal since the boundaries are nearly equidistantly away from
the resonant surface. This indicates that the smaller the island separatrix is away from the
resonant surface, the smaller is the required vector potential.
However, the field lines are also perturbed outside but close to the island. The excursion is
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4. Simulation Results

largest for the asymmetric case due to the large remaining vector potential and remains up
to the centre (Fig. 4.64 (right), black dots). Reversely, the Poincaré plot of the magnetic
field line between the island separatrix and the plasma edge matches perfectly with the flux
surfaces in a small radial distance again in the asymmetric case.
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Figure 4.64.: Poincaré plot of a symmetric (left) and an asymmetric (right) island chain due
to the corresponding radial perturbation profile shown in figure 4.63 (right).
The black dots denote perturbed but not reconnected magnetic field lines in
the vicinity of the island chain (magenta).

A tearing perturbation with a nearly constant potential was implemented in the HAGIS
code before. However, the introduced radial perturbation profile is an enhancement since
the experimental measurements of the perturbed field lines excursions [41] decreases more
quickly with increasing distance from the NTM than in the original implementation of the
code. Furthermore, the magnetic field strength and the island structure can be treated
separately now.

For the simulation, the deuterium NBI distribution which is represented by approximately
19000 markers shown in figure 2.13 is used. The simulation time is ∆t = 3.0·10−4 s. Without
a NTM present, the radial distribution averaged over t = 2.8− 3.0 · 10−4 s is shown in figure
4.65 (black). In the presence of the NTM, a change in the radial distribution is detected for
the symmetric (Fig. 4.65, left) and the asymmetric case (Fig. 4.65, right). Beam particles
are redistributed from the inner of the island in both directions, inwards and outwards. This
agrees with experimental observations [72] where an increase of the beam ions at the island
separatrix has been detected. The increase in the distribution near ψ = 1.0 is due to losses
caused by unconfined orbits or wave-particle interactions.
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4.6. Particle Redistribution due to NTMs
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Figure 4.65.: Averaged radial distribution of the beam ions without a NTM (black) and
with a NTM (red) at the end of the simulation time for a symmetric (left)
and an asymmetric island (right).
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Figure 4.66.: Redistribution of the beam ions in the presence of a symmetric NTM (left)
and an asymmetric NTM (right).

Subtracting the perturbed from the unperturbed NBI distribution reveals a better insight
of the particle redistribution (Fig. 4.66). Surprisingly, the maximal depletion of the beam
ions is not located at the resonant surface for both cases but on the inside of the magnetic
island. The particle accumulation points are for the symmetric island (Fig. 4.66 left) out-
side the island separatrix but for the other case the outward peak is partly within the island
boundary (Fig. 4.66 right). The total redistribution and the particle losses are larger for
the asymmetric case compared to the symmetric case although the total radial island width
∆R is smaller.

For a better understanding of the redistribution mechanism, the particle orbits of the sin-
gle deuterium ions in the presence of a symmetric island are investigated. Without island,
it is well-known (section 2.4) that drift orbits can be separated into a parallel motion along
the magnetic field line and a slow drift motion perpendicular to it. Since the magnetic field
perturbation of the island is large, the parallel guiding centre motion is along the perturbed
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4. Simulation Results

field line. This indicates that a Poincaré plot of the particle at a poloidal cross section rep-
resents approximately the island structure which is superposed by the radial drift as shown
in figure 4.67. The whole formation of the perturbed particle trajectory is shifted towards
the LF side. The particle is phase-locked to the island structure.
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Figure 4.67.: Poincaré plot of the island (magenta) and the perturbed particle trajectories
(E = 93 kev, black and red dots) which is phase-locked to the mode structure
particle. The violet line denotes the resonant surface whereas the dashed lines
are the unperturbed trajectories of each particle.

During the investigation of the particle trajectories, it turns out that a part of the passing
particles whose mean radial position of the unperturbed trajectory is located within the
inner half of the island is redistributed to a larger mean radial position (Fig. 4.67, black).
This is clearly seen by plotting the radial position of the perturbed trajectory with respect
to the helical angle, as shown in figure 4.68. It has been detected by means of numerical
simulations [73] that the closer the ratio v‖/v is to the trapped-passing boundary, the larger
is the radial shift between the resonant island surface and the perturbed mean radial posi-
tion (Fig. 4.68).
A particle whose mean radial position of the unperturbed trajectory is localized within the
outer half of the island can also be phase-locked to the island (Fig. 4.68, red) as the par-
ticle discussed before. In this case, the mean radial position of perturbed trajectory can
be even slightly smaller than that of the unperturbed trajectory. The particle trajectory is
similar to the particle trace initialized on the island inside. Therefore, the particle exhibits
a similar formation for a poloidal cross section, as shown in figure 4.67 (red). Both particles
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4.6. Particle Redistribution due to NTMs

are located at the outboard side of the island separatrix forming the outer peak in figure 4.66.

Furthermore, it can be shown by numerical simulations that due to the sign of the parallel
velocity more counter-passing particles which are located at the island inside are phase-
locked with respect to the NTM compared to those which are located at the island outside.
Only due to the sign of the parallel velocity, the radial shift of the passing particles is
outwards on average whereas the opposite sign would cause an inward radial shift with a
particle depletion on the island outside.
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Figure 4.68.: Perturbed particle trajectories (black and red) in the presence of a NTM
(magenta) whose mean radial positions do not coincide with the resonant
island surface. The particles (E = 93 keV) are phase-locked with respect to
the mode.

The comparison of the particle redistribution to the experimental measurements of a
similar ASDEX Upgrade discharge [72] where a beam ion depletion from the island centre of
about 40 − 50% was observed reveals a significant deviation. The simulated depletion near
the resonant surface is around 10% only. The depletion can be increased by a stronger vector
potential Ã. However, the resulting magnetic field would be of the order O(10−2 ·B0) which
is not realistic. This indicates that the particle redistribution in the experiment cannot be
explained by phase-locking with respect to a single NTM only. Further effects, e.g. the
influence of multiple NTMs which are present in the experiment and the shape of the safety
factor, have to be examined. In addition, the consideration of island rotation would include
the resonance condition, ω − k‖v‖ = 0, which can give rise to a larger redistribution. Since
these results were obtained recently, ongoing investigations are already in progress.
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5. Summary and Outlook

5.1. Summary

In this thesis, nonlinear effects due to energetic particle driven Alfvén eigenmodes have been
investigated. The consequential fast particle redistribution has been calculated by the drift-
kinetic perturbative HAGIS code. The original HAGIS code has been extended to follow
fast particles beyond the separatrix up to the vessel wall. This improvement provides a
powerful tool for the comparison between numerical simulations and experimental measure-
ments concerning fast ion losses.

A main aspect has been the gradient-driven mode growth and the collective fast parti-
cle transport [15, 16] for multiple shear Alfvén eigenmodes. The assumption that the same
transport mechanism and flattening in the fast particle distribution for significantly different
eigenfrequencies is present has been validated for the interplay of a BAE and a TAE. The
investigation revealed an enormous influence of the core-localized BAE on the TAE leading
to enhanced fast particle losses caused by the TAE.

Furthermore, a new nonlinear coupling effect has been identified. This mechanism trans-
fers energy and toroidal momentum between two eigenmodes due to double-resonant par-
ticles. Only if eigenmodes with the same toroidal mode number are present, both mode
amplitudes couple. In contrast to the gradient-driven mode growth, the orbit size of the
double-resonant particles determines the radial coupling width, not the radial overlap of the
modes. Moreover, the double-resonant particles are not redistributed by this mechanism.
The balancing effect of the coupling mechanism is independent on the radial directions and
thus can cause a significant increase of the amplitude for core-localized Alfvén eigenmodes.
Both the coupling mechanism and the conventional gradient-driven mode growth are super-
posed and of the same order of magnitude.

During the code extension, a non-flux coordinate system has been developed which enables
a contiguous connection to the Boozer coordinate system. Such an implementation allows
the possibility for a single grid in the vacuum region on which fast particles are followed
beyond the separatrix with a defined control of numerical errors. The coordinate system has
been validated by the comparison of guiding centre trajectories against the Boozer coordi-
nate system for different ASDEX Upgrade divertor discharges. It can easily be extended to
arbitrary toroidally symmetric geometries.

Both nonlinear wave-particle mechanisms cause a significant fast particle loss at the ves-
sel wall which were compared to recent experimental results [17]. The implementation of a
virtual fast ion loss diagnostic allows for direct comparison in pitch angle and gyro radius.
In this context, it has been shown that the recent loss results can be explained and that the
experimental diagnostic overestimates slightly both pitch angle and gyro radius due to the
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neglection of the fast particle drift motion.

Further development of the HAGIS code towards a more realistic fast particle initialization
has been made by the implementation of an ICRH-generated distribution. The comparison
to an isotropic distribution showed the limitations of both approaches but a spatial restric-
tion within the isotropic loading due to the ICRH resonance region revealed a nearly perfect
match to the experimental measurements of the FILD.

The onset of stochasticity in the presence of multiple evolving Alfvén eigenmodes has
been studied numerically. It has been shown [69] that the threshold for diffusive fast parti-
cle losses decreases when multiple extended modes with similar eigenfrequencies, amplitudes
and a large radial overlap are present. Since the BAE however is core-localized and both
mode amplitudes are different by at least on order of magnitude during the mode evolution,
the threshold for multiple modes is not applicable in this case. The onset is larger than that
for the multiple mode case.

Furthermore, neoclassical tearing modes in the presence of a beam ion distribution have
been investigated. A radial profile of the vector potential has been implemented to in-
vestigate the particle depletion over the radial mode width. It has been shown that an
asymmetric magnetic island which is present in the experiment causes larger particle redis-
tribution than a symmetric NTM. A new mechanism for the fast particle redistribution has
been identified. The energetic ions are shifted to the island separatrix but are phase-locked
onto the island structure.

5.2. Conclusions and Further Work

The main conclusion of this thesis is the demonstration of a fast ion loss comparison between
the simulation and the experiment. This introduces the extended HAGIS code as a power-
ful interface tool. It had been applied to understand both theory and experiment in more
detail. On the one hand, it has been shown that the interpretation of the experimental fast
ion loss results have to be slightly corrected. On the other hand, the nonlinear wave-particle
interaction have been investigated with a deeper insight revealing new coupling mechanisms
between multiple waves and fast particle.

Concerning the double-resonant mode coupling, the influence of the radial overlap has to
be investigated. Although the mechanism is expected to be independent of the radial mode
positions, it has to be proven that only finite orbit width effects are responsible. Especially,
the fast particle redistribution caused by each mode and the assumed vanishing collective
transport effect due to less radial mode overlap is a subject for future investigations.

The first approach of a ICRH-generated distribution has shown from where fast parti-
cles are mainly lost due to the heating method. However, the assumed static distribution
function in this thesis is not able to predict exactly the loss pattern observed in the ex-
periment. In order to compare the fast particle losses quantitatively fully accurate, both a
self-consistent background damping and a particle source have to be included.
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Since the eigenfunction is assumed to be invariant, the combination of the linear gy-
rokinetic code LIGKA [68] with the HAGIS code is a promising approach to represent a
self-consistent wave-particle interaction since it is expected that the structure of the eigen-
mode evolves in the presence of the fast particle population. By doing so, a further step
should be undertaken for a simulation of a fully self-consistent system including sources,
sinks and the evolution of the fast particle distribution function as well as the mode struc-
ture.

With respect to the neoclassical tearing modes, a detailed comparison of the fast particle
redistributions between the experiment and the simulations has to be carried out. Since the
energetic ion depletion caused by a single NTM is smaller by a factor of at least 3 compared
to similar experimental results, further effects have to be examined. Simulations are planned
investigating the influence of multiple islands, radial profile shaping and island rotation.
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A. Appendix

A.1. Useful Vector- and Tensor Transformation

From the book of D’haeseleer [20]:

(

b̂ · ∇
)

b̂ = −b̂×
(

∇× b̂
)

b̂×
(

b̂ · ∇
)

b̂ = −b̂×
(

b̂×
(

∇× b̂
))

= −
[

b̂
(

b̂ · ∇ × b̂
)

−∇× b̂
(

b̂ · b̂
)]

= −b̂
(

b̂ · ∇ × b̂
)

+ ∇× b̂

⇒ ∇× b̂ = b̂×
(

b̂ · ∇
)

b̂+ b̂
(

b̂ · ∇ × b̂
)

(A.1)

A.2. Guiding Centre Lagrangian and Equations of Motion

Gyro averaging procedure of the single particle Lagrangian

In a magnetic field, the motion of a charged particle is strongly anisotropic: it gyrates around
the field lines whereas it is free to propagate along the field line. Since the gyromotion is
much faster than the parallel motion along the field lines and the drifts caused by the mag-
netic field, a separation between the gyro motion and the rest is plausible.

The most formal technique to carry out the transformation from single particle to guiding
centre coordinates is the Lie-transform [60, 44] which allows a rigorous proceeding. Since
for a guiding centre transformation the Lie-transform is too laborious, the same result can
be achieved by a more physical approach. The procedure was introduced by Littlejohn [53]
and bases upon Hamilton’s variational principle,

δ

∫

L dt = 0 .

As the Lie-transform method, the transformation is completely rigorous up to any order
and the averaging procedure is systematic. In general, the Lagrangian L for a single

particle in canonical coordinates can be specified as

L(q,p, q̇, t) = pq̇−Hcan(q,p, t) , (A.2)

where q, p and t denote the spatial coordinates, the coordinate-conjugate momenta and
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the time, respectively. The dot represents the derivation with respect to the time. In the
case of a particle in an electromagnetic field, the canonical Hamiltonian Hcan is

Hcan(q,p, t) =
1

2

(

p− 1

ǫ
A(q, ǫt)

)2

+ Φe(q, ǫt) , (A.3)

where Φe is the electromagnetic potential and A the vector potential. The variable ǫ is
the adiabatic ordering parameter,

ǫ =
ρ⊥
L

with L =
|∇B|
B

. (A.4)

Physically, it is the ratio of the particle’s gyro radius to scale length L over which the
magnetic field differs. Mathematically, it is a reminder of the order of various terms. (Do
not confound the parameter with the aspect ratio!)
The radial position and velocity of the particle are related to the canonical variables by
x = q and v = p− A/ǫ. So, the particle Lagrangian (A.2) becomes

L(x,v, ẋ, t) =

[
1

ǫ
A(x, ǫt) + v

]

· ẋ−
[

Φe(x, ǫt) +
1

2
v2

]

. (A.5)

Deriving the guiding centre Lagrangian from (A.5) you have to decompose the position
vector of the particle and the velocity vector,

x = X + ǫ
wâ

B
−O(ǫ2) and v(x, t) = ub̂+ wĉ , (A.6)

where X is the guiding centre position. In the second term, the position vector â describes
the gyromotion (oscillatory behaviour) of the particle with its perpendicular velocity w. The
velocity is split into the parallel velocity u along the unit vector b̂ of the magnetic field and w
is the perpendicular velocity along unit vector ĉ. Both unit vectors, â and ĉ are perpendicular
to the magnetic field and defined by

â = cos θê1 − sin θê2 (A.7)

ĉ = − sin θê1 − cos θê2 (A.8)

where ê1 and ê2 are two arbitrary unit vectors perpendicular to the magnetic field line.
The angle θ is the gyro phase around the guiding centre. Inserting these assumptions into
the Lagrangian yields

L =

[
1

ǫ
A

(

X + ǫ
wâ

B
−O(ǫ2)

)

+ ub̂+ wĉ

]

·
[

Ẋ +
d

dt

(

ǫ
wâ

B
−O(ǫ2)

)]

−
[

Φe

(

X + ǫ
wâ

B
−O(ǫ2)

)

+
1

2
u2 +

1

2
w2

]

. (A.9)

134



A.2. Guiding Centre Lagrangian and Equations of Motion

Now, the result is sorted order by order. The Lagrangian up to order O(ǫ0) is

L0 =
1

ǫ
A(X) · Ẋ +

wâ

B
· ∇A(X) · Ẋ + A(X) · d

dt

(
wâ

B

)

+
(

ub̂+ wĉ
)

· Ẋ− Φe(X) − 1

2
u2 − 1

2
w2 . (A.10)

To proceed, a general property of Lagrangians is applied by the rule that the equations
of motions are invariant under the gauge transformation of the form,

L → L +
dS

dt
.

Here, S can be an arbitrary scalar function. This transformation rule will be exploited to
simplify the Lagrangian by choosing,

S0 = −w
B
â · A(X) ,

which involves all gyro motion terms. In particular, the temporal derivation evaluated at
X yields

dS0

dt
= −A(X) · d

dt

(
wâ

B

)

− wâ

B
·
(

Ẋ · ∇A(X)
)

,

so that the result of the gauge transformation inserted in (A.10) is given by

L0 =
1

ǫ
A · Ẋ +

wâ

B
·
(

∇A · Ẋ− Ẋ · ∇A
)

+ wĉ · Ẋ + ub̂ · Ẋ

−Φe −
1

2
u2 − 1

2
w2

=
1

ǫ
A · Ẋ +

wâ

B
·
(

Ẋ ×B
)

+ wâ× b̂ · Ẋ + ub̂ · Ẋ

−Φe −
1

2
u2 − 1

2
w2

=
1

ǫ
A · Ẋ + ub̂ · Ẋ− Φe −

1

2
u2 − 1

2
w2 . (A.11)

It is important to note that oscillatory terms of order O(ǫ) have to be inserted in equation
(A.9), otherwise the gyro motion terms in the Lagrangian (A.11) would not cancel in zeroth
order.
The next term to be considered is the Lagrangian of first order in ǫ written as

L1 =
(

ub̂+ wĉ
)

· d

dt

(
wâ

B

)

+
wâ

B
∇A(X) · d

dt

(
wâ

B

)

− wâ

B
∇Φe(X) . (A.12)
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Choosing the scalar function S1 to be

S1 = −ǫ w
2

2B2
â · ∇A · â ,

the temporal derivation is

dS1

dt
= −ǫ w

2

2B2

(
dâ

dt
· ∇A · â+ â · ∇A · dâ

dt

)

.

Following the gauge transformation in phase-space, equation (A.12) becomes

L1 = wĉ
d

dt

(
wâ

B

)

+
w2

B2
â∇A · dâ

dt
− w2

2B2

(
dâ

dt
· ∇A · â+ â · ∇A · dâ

dt

)

+ub̂
d

dt

(
wâ

B

)

− wâ

B
∇Φe

=
w2

B
ĉ
dâ

dt
+

w2

2B2
â∇A · dâ

dt
− w2

2B2

(
dâ

dt
· ∇A · â

)

+ub̂
d

dt

(
wâ

B

)

− wâ

B
∇Φe

=
w2

B
ĉ
dâ

dt
− w2

2B2
(∇A · â− â∇A)

dâ

dt

+ub̂
d

dt

(
wâ

B

)

− wâ

B
∇Φe

=
w2

B
ĉ
dâ

dt
− w2

2B2
(â× B)

dâ

dt
+ ub̂

d

dt

(
wâ

B

)

− wâ

B
∇Φe

=
w2

2B
ĉ
dâ

dt
+ ub̂

d

dt

(
wâ

B

)

− wâ

B
∇Φe .

Applying the definitions (A.7) and (A.8) on the first term of the first order Lagrangian
leads to

L1 =
w2

2B
θ̇ + ub̂

d

dt

(
wâ

B

)

− wâ

B
∇Φe . (A.13)

Substituting all results into equation (A.9), the total Lagrangian up to order O(ǫ) can be
written as

L =

[
1

ǫ
A(X) + ub̂+ O(ǫ)

]

· Ẋ +

[

ǫ
w2

2B
+ O

(
ǫ2
)
]

· θ̇

+
[
O
(
ǫ2
)]
u̇+

[
O
(
ǫ2
)]
ẇ −

[

Φe(X) +
1

2
u2 +

1

2
w2 + O(ǫ)

]

. (A.14)
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A.2. Guiding Centre Lagrangian and Equations of Motion

The order of all neglected terms is shown and the Lagrangian only retains terms of O(ǫ0)
with one exception. Due to the independence of the Lagrangian on the gyro phase θ, it is
stated by Noether’s theorem that the quantity

∂L
∂θ̇

= ǫ
w2

2B
= ǫµ (A.15)

is a constant, i.e. an invariant of the equations of motion, and is denoted as the magnetic
momentum.

To finish the gyro averaging procedure, all variables referring to the particle have to be
replaced by the corresponding variables of the guiding centre. In this context, the gyro
phase of the particle can be expressed by the gyro phase Ξ of the guiding centre,

θ(x) = Ξ(X) + O(ǫ) , (A.16)

so that the guiding centre Lagrangian can be written as

Lgc =
1

ǫ
A∗ · Ẋ + ǫµΞ̇ −H (A.17)

with the ‘modified vector potential‘ A∗ defined by

A∗ = A + ǫUb̂ . (A.18)

The Hamiltonian H is expressed as

H = Φe + µB +
1

2
U2 . (A.19)

Note that everything is evaluated at the guiding centre position X, now. Therefore, every
quantity is written in capital letters now. The variables (U,µ,X,Ξ) and (u,w,x, θ) are equal
at least to the lowest order in ǫ.

Derivation of the guiding centre equations of motion

The gyro averaging procedure has supplied a Lagrangian from which the guiding centre
equations of motion can easily be derived. The Lagrangian (A.17) is a function of the
guiding centre variables z = (X, U,Ξ, µ) and their time derivatives ż = (Ẋ, Ξ̇). Using the
Euler-Lagrange equations,

d

dt

(
∂L
∂żi

)

− ∂L
∂zi

= 0 , (A.20)

and taking zi = U,Ξ, µ, it follows that
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A. Appendix

U = b̂ · Ẋ , Ξ̇ =
B

ǫ
and µ̇ = 0 . (A.21)

This shows again that U is indeed the parallel velocity along the magnetic field, the
gyrophase Ξ evolves rapidly and the magnetic moment µ is a constant of motion. Taking
zi = Xi, i = 1, 2, 3, we find

E∗ +
1

ǫ
Ẋ× B∗ = U̇ b̂+ µ∇B , (A.22)

with the modified fields B∗ and E∗,

B∗ = ∇× A∗ = B + ǫU∇× b̂ ,

E∗ = − ∂A∗

∂(ǫt)
−∇Φe = E − ǫU

∂b̂

∂(ǫt)
,

Equation (A.22) can be solved for Ẋ by crossing with b̂ giving

Ẋ =
1

B∗
‖

[

UB∗ + ǫb̂× (µ∇B − E∗)
]

. (A.23)

Dotting (A.22) with B∗ gives

U̇ = − 1

B∗
‖

B∗ · (µ∇B − E∗) , (A.24)

which is the equation for the parallel acceleration. The quantity B∗
‖ is defined as,

B∗
‖ = B + ǫU

(

b̂ · ∇ × b̂
)

. (A.25)

The equations (A.23) and (A.24) can be further simplified by considering that the velocity
of the electrons is fast enough to equal arising macroscaling electric fields. So, the resulting
equations are

Ẋ =
1

B∗
‖

[

UB∗ + ǫb̂× µ∇B
]

, (A.26)

U̇ = − µ

B∗
‖

B∗ · ∇B , (A.27)
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with

B∗ = ∇× A∗ = B + ǫU∇× b̂ , (A.28)

B∗
‖ = B + ǫU

(

b̂ · ∇ × b̂
)

. (A.29)

The equations (A.26) and (A.27) are the equations of motions derived from the guiding
centre Lagrangian (A.17). Although the Lagrangian appears to depend on six phase-space
coordinates, only four are independent. This four-dimensional phase-space is called the
’reduced’ phase-space and consists of the three components of the spatial location X and
the parallel velocity of the guiding centre, U , along the magnetic field line. The phase-space
has reduced due to the fact that the magnetic moment µ is a constant of motion (A.21).
The gyrophase Ξ is the coordinate conjugated to µ and therefore it is irrelevant to the
guiding motion. The constants of motion are conserved exactly within the guiding centre
coordinates and deviate from the constants of motion in real space by an order ǫ.

A.3. Decomposition of the Equations of Motion in the Vacuum

The equations of motion (3.74) use general vector expressions that must be decomposed in
co- and contra-variant components explicitly. In this context, a gradient of a value can only
be expressed by reciprocal-basis vectors ei. Due to axisymmetry, ∂B/∂ζv = 0, the gradient
of the magnetic field is given by

∇B =
∂B

∂sv
esv +

∂B

∂θv
eθv . (A.30)

The notation of a cross product can be chosen to be

F × G = FiGje
i × ej =

ǫijk
√

g(gij)
FiGjek , (A.31)

so that all equation terms are expressed by tangent-basis vectors. Then, no additional
metric coefficients are used.

The magnetic unity field components are

b̂ =
B

|B| =
Bsv

B
esv +

Bθv

B
eθv +

Bζv

B
eζv

= bsvesv + bθveθv + bζveζv

b̂ =
B

|B| =
Bsv
B

esv +
Bθv
B

eθv +
Bζv
B

eζv

= bsve
sv + bθve

θv + bζve
ζv .

So, the vector expression b̂×∇B is written as
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b̂ ×∇B =





bsv
bθv
bζv



×





∂B
∂sv
∂B
∂θv
0





=
1

√

g(gij)





−bζv
∂B
∂θv

bζv
∂B
∂sv

bsv
∂B
∂θv

− bθv
∂B
∂sv



 . (A.32)

The result is a contravariant representation of the whole vector expression!

Next, ∇× b̂ has to be expressed using (A.31),

∇× b̂ =





∂
∂sv
∂
∂θv
0



×





bsv
bθv
bζv





=
1

√

g(gij)





∂
∂θv

bζv
− ∂
∂sv

bζv
∂
∂sv

bθv − ∂
∂θv

bsv



 . (A.33)

Furthermore, the rule for a scalar product, F · G = FiG
i, is used to decompose the

expression in the fourth term, K = b̂ ·∇× b̂. The curl term components are the contravariant
ones and

√

g(gij) = J so that

b̂ · ∇ × b =





bsv
bθv
bζv



 · 1

J





∂
∂θv

bζv
− ∂
∂sv

bζv
∂
∂sv

bθv − ∂
∂θv

bsv





=
1

J

[

bsv
∂bζv
∂θv

− bθv
∂bζv
∂sv

+ bζv

(
∂bθv
∂sv

− ∂bsv
∂θv

)]

= K .

Decomposing the vector B∗, the use of the contravariant representation due to ∇ × b̂ is
advantageous leading to

B∗ = B + ǫU∇× b̂ =





Bsv

Bθv

Bζv



+
ǫU

J





∂
∂θv

bζv
− ∂
∂sv

bζv
∂
∂sv

bθv − ∂
∂θv

bsv



 .

Recalling the equations of motion (3.69) and (3.74), it can be seen that every term has
been decomposed.

The next step is to remove the ordering parameter ǫ and recover the physical constants.
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The modified magnetic field B∗
‖ is

B∗
‖ = B +

mv‖

qce
K = B +

v‖B

ωc
K = B + ρ‖BK = B

(
1 + ρ‖K

)

and

B∗ = B +
mv‖

qce
∇× b̂ = B +

v‖B

ωc
∇× b̂ = B + ρ‖B∇× b̂ .

So, the equation of the parallel velocity is simplified to

v̇‖ = − µ

mB
(
1 + ρ‖K

)

(

B + ρ‖B∇× b̂
)

· ∇B

= − µ

m
(
1 + ρ‖K

)

(

b̂+ ρ‖∇× b̂
)

· ∇B (A.34)

= C‖

(

b̂+ ρ‖∇× b̂
)

· ∇B

with

C‖ = − µ

m
(
1 + ρ‖K

) . (A.35)

The spatial equations of motion are written as

Ẋ = Ub̂+
ǫµ

B∗
‖

b̂×∇B +
ǫU2

B∗
‖

(

∇× b̂−Kb̂
)

v = v‖b̂+
µ

qceB
(
1 + ρ‖K

) b̂×∇B

+
mv2

‖

qceB
(
1 + ρ‖K

)

(

∇× b̂−Kb̂
)

(A.36)

= C1b̂+ C2b̂×∇B + C3

(

∇× b̂−Kb̂
)

with

C1 = v‖ = ρ‖ωc (A.37)

C2 =
µ

qceB
(
1 + ρ‖K

) (A.38)

C3 =
mv2

‖

qceB
(
1 + ρ‖K

) =
v2
‖

ωc
(
1 + ρ‖K

) =
ωcρ

2
‖

(
1 + ρ‖K

) . (A.39)

141



A. Appendix

Substituting all vector expressions, equation (A.36) is expressed by

v = vsesv + vθveθv + vζveζv

= C1

(

bsvesv + bθveθv + bζveζv

)

+
C2

J

[

−bζv
∂B

∂θv
esv + bζv

∂B

∂sv
eθv +

(

bsv
∂B

∂θv
− bθv

∂B

∂sv

)

eζv

]

+
C3

J

[
∂bζv
∂θv

esv −
∂bζv
∂sv

eθv +

(
∂bθv
∂sv

− ∂bsv
∂θv

)

eζv

]

−C3K
(

bsvesv + bθveθv + bζveζv

)

Decomposing the vector equation into the three guiding centre coordinates, it follows

vsv = (C1 − C3K) bsv − C2

J
· bζv

∂B

∂θv
+
C3

J

∂bζv
∂θv

(A.40)

vθv = (C1 − C3K) bθv +
C2

J
· bζv

∂B

∂sv
− C3

J

∂bζv
∂sv

(A.41)

vζv = (C1 − C3K) bζv +
C2

J
·
(

bsv
∂B

∂θv
− bθv

∂B

∂sv

)

+
C3

J

(
∂bθv
∂sv

− ∂bsv
∂θv

)

. (A.42)

The parallel guiding centre velocity is simplified to

v̇‖ = C‖

(

b̂+ ρ‖∇× b̂
)

· ∇B

= C‖

[(

bsv +
ρ‖

J

∂

∂θv
bζv

)
∂B

∂sv
+

(

bθv −
ρ‖

J

∂

∂sv
bζv

)
∂B

∂θv

]

. (A.43)

However, this formula shall be expressed in terms of the parallel gyro radius so that the
final derivative looks like

dρ‖

dt
=

d

dt

(
v‖

ωc

)

=
1

ωc

dv‖

dt
−
v‖

ω2
c

dωc
dt

=
1

ωc

[
dv‖

dt
− ρ‖

qce

m

(
∂B

∂t
+ v · ∇B

)]

=
1

ωc

[

v̇‖ − ρ‖
qce

m

(

vsv
∂B

∂sv
+ vθv

∂B

∂θv

)]

. (A.44)
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B. Nomenclature

β Plasma parameter β = 2µ0p/B
2
0

βf Fast particle beta β = 2µ0pf/B
2
0

δ Perturbation; measure for non-orthogonality in the Boozer coordinate system
ǫ Inverse aspect ratio ǫ = r0/R0; Adiabatic ordering parameter
ǫ0 Dielectric constant
γ Adiabatic index; Growth rate
κ Magnetic curvature
H Hamiltonian
L Lagrangian
µ Magnetic moment
ω Frequency
ω0 Gyro frequency at the magnetic axis
ωA Frequency of the Alfvén continuum
ωb Bounce frequency of trapped particles
ωc Cyclotron or gyro frequency
ωTAE TAE frequency
ωpo Poloidal orbit frequency
ωtp Toroidal precession frequency
φ Cylindrical coordinate
Φe Electric potential
ψ Toroidal flux label ψ = Ψtor/2π; radial coordinate
Ψ∗

pol Adapted poloidal flux
ψi Intersection surface between Boozer and vacuum coordinate system
ψp Poloidal flux label ψp = Ψpol/2π; radial coordinate
ψp(a) Poloidal flux label at the last close flux surface
Ψpol Poloidal flux
Ψtor Toroidal flux
ψv Radial coordinate in the vacuum coordinate system
ρ Mass density of the plasma
ρ⊥ Gyro radius of a charged particles
σk Phase of the amplitude term for the k-th wave
θ Poloidal coordinate
θv Poloidal coordinate in the vacuum coordinate system
α̃ Scaling factor of the perturbed vector potential
Φ̃ Perturbed scalar potential
φ̃km Poloidal Eigenfunction (m) of the scalar potential for a wave k
Ã Perturbed vector potential
A Vector potential
A∗ Modified vector potential
b Magnetic unit vector b =| B/B |
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ξ Eigenfunction; Gyro-phase
ζ Toroidal coordinate
ζv Toroidal coordinate in the vacuum coordinate system
a Index of the last closed flux surface
Ak Amplitude of the k-th wave
B Magnetic field
Bmag Magnetic field at the magnetic axis
Bpol Poloidal magnetic field
Btor Toroidal magnetic field
E Electric field; Energy
e Electron; Electric charge
Ek Wave energy of the k-th wave
J Jacobian of the Boozer coordinate system
j Current density
Jv Jacobian of the vacuum coordinate system
k Wave number
k‖ Parallel wave number
k⊥ Perpendicular wave number
m Poloidal mode number
me Electron mass
mi Ion mass
n Toroidal mode number
n0 Total number of fast particles
ne Electron particle density
ni Ion particle density
P Power transfer P = ∂E/∂t
p Plasma pressure; Proton; Bounce harmonic
q Safety factor
q0 Value of the q-profile at the magnetic axis
qmin Minimal value of an inverted q-profile
R Cylindrical coordinate
r Radial cylindrical coordinate
R0 Major radius
r0 Minor radius
Rmag Magnetic axis
s Normalized radial coordinate s =

√

ψp/ψp(a)
T Plasma temperature
t Zeit
Te Electron temperature
Ti Ion temperature
v Velocity
vA Alfvén velocity
vS Sound velocity
v‖ Parallel particle velocity
v⊥ Perpendicular particle velocity
x Spatial coordinate
z Cylindrical coordinate



C. Acronyms

ASDEX Axialsymmetric Divertor Experiment (Garching, Germany)

BAE Beta-induced Alfvén Eigenmode

ECE Electron Cyclotron Emission

FLR Finite Larmor Radius

HAGIS Hamiltonian Guiding Centre System code

ICRH Ion Cyclotron Resonance Heating

ITER International Thermonuclear Experiment Reactor (Cadarache, France)

JET Joint European Torus (Culham, England)

MHD Magnetohydrodynamic

NBI Neutral Beam Injection

NTM Neoclassical Tearing Mode

TAE Toroidicity-induced Alfvén Eigenmode
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Physics of Plasmas (submitted)

’Evidence of local depletion of the fast ion population by tearing modes in

tokamaks’
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Besonders lieb möchte ich mich bei Anja Bauer bedanken, die die Bürokratie so gut wie
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