
TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULT ÄT FÜR INFORMATIK

Lehrstuhl für Effiziente Algorithmen

Ranking and Ordering Problems of Spanning Trees

Matthias Baumgart

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. E. W. Mayr

2. Univ.-Prof. Dr. F. J. Esparza Estaun

Die Dissertation wurde am 23.04.2009 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 06.11.2009 angenommen.

Document Classification according to ACM CCS (1998)

Categories and subject descriptors:

F.2.2 [Analysis of Algorithms and Problem Complexity]:

⊲ Nonnumerical Algorithms and Problems

⊲ Computations on Discrete Structures

G.2.1 [Discrete Mathematics]:

⊲ Combinatorics

⊲ Combinatorial Algorithms, Counting Problems,

Permutations and Combinations

G.2.2 [Discrete Mathematics]:

⊲ Graph Theory

⊲ Graph Algorithms, Graph Labeling, Trees

Abstract

Each spanning tree T of an undirected graph G = (V, E) is represented by a vertex in

the tree graph of G. Two of these ‘spanning tree’ vertices are connected by an edge if and

only if the corresponding spanning trees are related by an edge swap. This definition can

also be extended to undirected weighted graphs G = (V, E, w) and weighted spanning

trees. A couple of questions have arisen regarding these tree graphs. Some conjectures

regarding different weighted spanning trees were proposed by Kano. Mayr and Plaxton

who proved one of Kano’s conjectures, formulated a unifying conjecture concerning

bispanning graphs. The edge set of these graphs consists of two edge-disjoint spanning

trees which we label with P and Q. More precisely, we consider weighted bispanning

graphs B = (V, P, Q, w) restricted to weight functions w such that w(P) < w(Q) and Q

is the only spanning tree with weight w(Q). Then, it is conjectured that there are |V |−1

spanning trees with pairwise different weights where each of them is smaller than w(Q).

We are able to prove this claim if we restrict ourselves to specially weighted or specially

structured bispanning graphs. We consider weighted bispanning graphs B = (V, P, Q)

such that both spanning trees, P and Q, have unique weights. Furthermore, we analyze

the structure of a bispanning graph using some ideas from matroid theory. Based on

these findings, we formulate a refinement of Mayr and Plaxton’s conjecture. We show

that it might be possible to count only spanning trees which define a new partition of

a bispanning graph.

Strongly related to paths in tree graphs are so-called base orderings, which are

also defined in the context of matroids. It is known that for each bispanning graph

B = (V, P, Q), there exists a cyclic base ordering of P and Q. A cyclic base ordering is

an ordering of P = {p1, . . . , pm} and Q = {q1, . . . , qm} such that any m cyclically con-

secutive edges in the sequence q1 . . . qm p1 . . . pm form a spanning tree. In the context

of spanning trees of a graph, i.e., for graphic matroids, we propose a stronger property

of such orderings which we will call subsequence-interchangeable base orderings. We

claim that each bispanning graph has an ordering that achieves this stronger property.

Although we cannot prove this in general, we present a variety of bispanning graphs

that have such an ordering. In particular, we present an algorithm to construct a sub-

sequence-interchangeable base ordering for each partition of the wheel graph Wn into

two spanning trees. Analogous to the problem of counting weighted spanning trees, we

identify a subclass of bispanning graphs to which the problem can be reduced. Subse-

quently, we describe an approach to using subsequence-interchangeable base orderings

to solve the above counting problem.

iii

Finally, we consider a network sparsification problem called GAST: Compute a

spanning tree of a connected undirected graph G = (V, E) that minimizes the sum

of distance differences of all vertex pairs u, v ∈ V which are connected by an edge

{u, v} ∈ E. We show that the decision variant of this problem is NP-complete with

respect to the Lp norm for arbitrary p ∈ N. For the reduction, we use the NP-complete

problem 2-Hitting Set, which is more commonly known as Vertex Cover. For

the L1 norm, we give a reduction to the Minimum Fundamental Cycle Basis Problem

(Min-FCB). If Min-FCB is approximable within ρ > 1 then GAST with respect

to L1 is approximable within 3ρ. For arbitrary graphs, the approximation ratio is

O(log2 n log log n).

iv

Acknowledgments

First and foremost, I am deeply grateful to my supervisor Ernst W. Mayr for his sup-

port throughout the time of research and writing this thesis. Many thanks go to all

present and former colleagues at the Chair for Efficient Algorithms for providing a very

pleasant working environment. In particular, I thank Stefan Eckhardt for his generous

help on many occasions. Special thanks go to Hanjo Täubig and Michael Schnupp for

numberless discussions about spanning trees and bispanning graphs. Last but not least,

I thank my parents for all their support during the time of writing this thesis.

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Outline . 5

2 Preliminaries 7

2.1 Graphs, Trees, and Tree Graphs . 7

2.2 Bispannable and Bispanning Graphs 11

2.2.1 Construction of Bispanning Graphs 14

2.2.2 Computing a Partition into two Spanning Trees 20

3 Ranking of Weighted Spanning Trees 25

3.1 Kano’s Conjectures . 25

3.2 Assuming Singularity of P . 28

3.3 An Analysis using Matroid Theory . 32

3.3.1 Preliminaries . 32

3.3.2 Transversal and Strongly Base Orderable Matroids 35

4 Partitioning Bispanning Graphs 41

4.1 Introduction . 41

4.2 Strictly 2-Edge-Connected Bispanning Graphs 43

4.3 Decomposition of Bispanning Graphs with Cut Vertices 44

4.4 General Decomposition of Bispanning Graphs 52

4.5 Partitioning the K4 . 54

5 Subsequence-Interchangeable Base Orderings 59

5.1 Introduction . 59

5.2 Cyclic Base Orderings . 60

5.3 Subsequence-Interchangeable Base Orderings 64

5.3.1 Bottom-Up Approach . 68

5.3.2 Top-Down Approach . 79

5.3.3 The Class of Wheel Graphs . 80

5.4 Concluding Remarks . 84

vii

CONTENTS

6 Graph-Approximating Spanning Trees 87

6.1 Introduction . 87

6.2 The 2-Hitting-Set Gadget . 88

6.3 Graph-Approximating Spanning Trees 91

6.4 Approximating GAST with respect to L1 96

7 Conclusion 99

Bibliography 101

Index 111

viii

List of Figures

2.1 Contracting an edge. 8

2.2 A minor of a graph. 8

2.3 Two spanning trees related by an edge swap. 9

2.4 A graph and its tree graph . 10

2.5 A bispannable graph and two different partitions. 11

2.6 Connectivity of bispanning graphs. 12

2.7 Operation double-leaf attachment. 15

2.8 Operation edge-split. 15

2.9 Reversing an edge-split. 17

2.10 Different construction sequences for the same graph. 18

2.11 Using edge-splits to make a composite bispannable graph atomic. . . . 19

2.12 Different graphs for the Shannon switching game. 23

3.1 Constructing new classes of spanning trees (a). 30

3.2 Constructing new classes of spanning trees (b). 31

3.3 Bipartite graph representation of a transversal matroid. 35

3.4 K4 and C2
5 . 38

3.5 The cycle matroid is strongly base orderable but not transversal. 39

4.1 A weighted bispanning graph with 1 = σ(B, Q) < σ(B, P). 41

4.2 Transforming strictly 2-edge-connected bispanning graphs. 43

4.3 Constructing new classes of partition spanning trees (a). 45

4.4 Constructing new classes of partition spanning trees (b). 46

4.5 Two bispanning graphs joined by a cut vertex. 48

4.6 Combinations of partition spanning trees if w(P1) < w(Q1). 50

4.7 Combinations of partition spanning trees if w(P1) > w(Q1). 51

4.8 Constructing a minor isomorphic to K4. 54

(a) There are two chords with a common vertex. 54

(b) No two chords have a common vertex. 54

4.9 A decomposition of K4 into two disjoint spanning trees. 55

4.10 All partition spanning trees of the complete graph K4. 56

5.1 Reversing an edge-split of P . 62

5.2 All paths of the K4’s tree graph corresponding to SIBOs. 66

ix

LIST OF FIGURES

5.3 The K4’s tree graph restricted to partition spanning trees. 67

5.4 Splitting an edge of P . 69

5.5 Splitting an edge of Q. 70

5.6 Splitting a ‘middle’ edge (a). 74

5.7 Splitting a ‘middle’ edge (b). 74

5.8 Splitting a ‘middle’ edge (c). 76

5.9 Splitting a ‘middle’ edge (d). 76

5.10 Restricted edge-split operation. 77

5.11 Using only restricted edge-splits and double-leaf attachments 78

5.12 The wheel Wn. 80

5.13 Processing a partition of the Wheel W7. 82

6.1 Graph representation G(C,S) of a 2HS instance. 89

6.2 Extended graph representation of a 2HS instance. 93

6.3 Extension paths of a clause path edge {u, v}. 94

x

Chapter 1

Introduction

1.1 Motivation

Minimum Spanning Trees

A variety of real-world problems can be modeled as network or graph problems. In this

context, the importance and impact of algorithmic graph theory and discrete math-

ematics can never be overrated. For example, the road network can be mapped to

a directed or undirected graph in a natural way. Another example is the problem of

assigning a number of operators with different technical knowledge to a set of different

machines. This can be modeled as a bipartite graph. Then, the task is to develop

efficient graph algorithms to solve various objectives, e.g., we are looking for efficient

algorithms to compute a shortest path, a maximum flow, or a maximum matching.

One of the fundamental problems lying in the range between graph theory and

computer science is to compute a minimum spanning tree (MST) of an undirected

weighted graph, i.e., an acyclic connected subgraph on all vertices which has minimum

weight. The standard (network design) application for computing a minimum spanning

tree could be as follows: Assume that there are several offices and we want to lease

phone lines to connect them with each other. The phone company charges different

amounts of money to connect different pairs of offices. Now, the task is to find a set

of lines that connects all offices with a minimum total cost. This problem is equivalent

to the computation of a minimum spanning tree in the undirected weighted graph G

which is constructed as follows: The offices are the vertices of G, a line between two

offices corresponds to an edge in G, and the weight function maps each edge to the

amount of money which has to be payed for the corresponding phone line.

The history of minimum spanning tree algorithms dates back to Bor̊uvka [Bor26]

and Jarńık [Jar30]. Today’s most popular textbook algorithms, which are presented

in nearly each course dealing with efficient algorithms or theoretical computer science,

are those by Kruskal [Kru56] and Prim [Pri57]. A survey including minimum spanning

tree algorithms up to 1985 is given by Graham and Hell [GH85]. Although there exists

a minimum spanning tree algorithm by Pettie and Ramachandran [PR02], which is

1

CHAPTER 1. INTRODUCTION

known to have an optimal runtime, the actual function of the running time is still

unknown. Currently, the best known upper bound on the runtime is O(mα(m, n))

(see also [Pet99; Cha00]), where α(m, n) is the inverse of the Ackermann function. A

randomized algorithm computing a minimum spanning tree in linear time O(m) with

high probability was presented by Karger, Klein, and Tarjan [KKT95]. This algorithm

makes use of the discovery that given a spanning tree T , it can be verified in linear

time whether or not T is a minimum spanning tree (see [Kom85; DRT92; Kin97]). In

addition to a variety of sequential algorithms, there also exist several parallel as well as

distributed algorithms [GHS83; JM95; CC96; LPSPP05; Elk06].

Several algorithms perform a greedy strategy. They start with an empty set of edges.

Subsequently, they choose an edge of minimum weight satisfying certain properties.

Two principles to construct a minimum spanning tree were described by Tarjan [Tar83],

which he called the red rule and the blue rule, respectively. The red rule states that

an unique heaviest edge e of a cycle C does not belong to any minimum spanning

tree. Furthermore, if e is a (not necessarily unique) heaviest edge of C, there exists a

minimum spanning tree that does not contain the edge e. The blue rule states that an

unique lightest edge in some cutset belongs to every minimum spanning tree. Whereas

a lightest edge of some cutset must belong to some MST.

The algorithms by Kruskal and Prim make use of the blue rule. Applying these

algorithms, it is possible to obtain different minimum spanning trees (provided that

there is more than one MST). In this case, the computed MST depends on the order

in which the edges are considered. Moreover, if there exist different minimum span-

ning trees then it is possible to transform any of these MSTs T into another MST by

performing exactly one edge swap. In particular, it is possible to transform T into any

other MST T ′ by performing several edge swaps without leaving the class of minimum

spanning trees, i.e., each spanning tree T ′′ that is obtained along this way from T to T ′

has minimum weight. This property was observed by Ford and Fulkerson [FF62]. Fur-

ther developments and generalizations [KKS78; Kan87; MP92] regarding the so-called

tree graph are considered in this thesis.

Weighted Spanning Trees and the Tree Graph

The tree graph of an undirected connected graph G is defined in the context of edge

swaps between spanning trees. The vertex set of G’s tree graph is the set of all spanning

trees in G. Two spanning trees are joined by an edge if and only if they are related by

a single edge swap. There are various questions that arise regarding tree graphs, some

of which were discussed by Kano [Kan87]. He proposed four conjectures concerning

distances (in regard to the number of edge swaps) between spanning trees of different

weights in the tree graph [Kan87]. His work was mainly motivated by a paper by

Kawamoto, Kajitani, and Shinoda [KKS78]. For example, one of his conjectures was

that a kth smallest spanning tree (a so-called k-MST) can be obtained by performing

at most k − 1 edge swaps starting with an arbitrary minimum spanning tree. Note

that the opposite direction is easy, i.e., a minimum spanning tree can be obtained

2

1.1. MOTIVATION

by performing at most k − 1 (weight-reducing) edge swaps starting with an arbitrary

k-MST. Actually, this conjecture of Kano was proven by Mayr and Plaxton [MP92]

resulting in an algorithm with runtime O((mn)k−1) for the (NP-hard) KMST problem,

i.e., the problem of determining whether or not a given graph has k spanning trees with

distinct weights less than or equal to a threshold B. Note that the number of different

weighted spanning trees can be counted by using an extension of the well-known matrix

tree theorem (due to Kirchhoff) [BM97], which consists of evaluating the determinant

of the so-called Laplacian matrix. An application of the KMST problem could be as

follows. In many real-world problems, there exists more than one objective function

when solving a network problem like computing a spanning tree. For example, we can

measure different kinds of costs or benefits. In general, there does not have to be a

spanning tree which is optimal with respect to each of these objective functions, i.e., we

have to find a trade-off between numerous possibilities. Regarding different spanning

trees, the question is how to measure or compare their performance. On the one hand,

it is possible to measure the performance of a spanning tree by the absolute or relative

values of the objective functions. On the other hand, it is also reasonable to ask for the

rank of the spanning tree regarding a certain function. For example, if a spanning tree

is a k-MST for a large value of k then there is a large room of improvement whereas a

second smallest spanning tree can hardly be improved.

In addition to the proof of one of Kano’s conjectures, Mayr and Plaxton formulated a

new conjecture which unifies Kano’s remaining three conjectures. This thesis addresses

this unified conjecture. More precisely, we make some progress in proving the following

claim: Let B = (V, P, Q, w) be a weighted bispanning graph (a graph whose edge set E

consists of two edge-disjoint spanning trees) such that w(P) < w(Q) and Q is the only

spanning tree with weight w(Q) in B. Then, it is conjectured that there are at least

|V |−1 spanning trees in B which have pairwise different weights strictly less than w(Q).

In this thesis, we show that this is true if the spanning tree P is the only spanning tree

with weight w(P). Furthermore, we prove that there are sufficiently many distinct

spanning trees if the given bispanning graph has no minor isomorphic to the complete

graph on four vertices (K4). In this context, we analyze the spanning tree structure

of a graph using some findings from matroid theory. Based on these ideas, we present

a slightly refined conjecture, namely that it might be sufficient to count only so-called

partition spanning trees. We support this theory with several theorems and by the

identification of a subclass of bispanning graphs to which the problem can be reduced.

The graphs of this class have the property of containing a minor isomorphic to the K4.

For the K4 itself, we are able to prove our conjecture through a tedious case analysis.

Base Orderings

Strongly related to the above problem of counting weighted spanning trees are so-called

base orderings, which have their origin in matroid theory. Each path between two

spanning trees, T and T ′, in the tree graph corresponds to a sequence of edge swaps

transforming each of these spanning trees into the other. Assuming that T and T ′ are

3

CHAPTER 1. INTRODUCTION

disjoint, each edge of T is eventually exchanged with an edge of T ′. Hence, we can

order the edges of T and T ′ according to the step in which the edge is exchanged in

the corresponding edge swap sequence. For this reason, we associate with each path

in the tree graph a so-called base ordering. Here, the term ‘base’ has its origin in ma-

troid theory, where bases are the maximum independent subsets of a certain ground

set [Oxl92; Tut71]. Then, the spanning trees of a graph G are the bases of the well-

known cycle matroid of G. Note that properties of the cycle matroid of a graph cannot

easily be extended to general matroids since the cycle matroid of a graph fulfills addi-

tional properties. Thus, we consider ‘spanning tree orderings’. As a result, we present a

new kind of base ordering which is a subset of the known cyclic base orderings [Wie06].

We will call them subsequence-interchangeable base orderings. Regarding two spanning

trees T and T ′ of the tree graph, their meaning is as follows. A subsequence-inter-

changeable base ordering of T and T ′ corresponds to a path (consisting of single edge

swaps) such that each (consecutive) subsequence of edge swaps of this path corresponds

to a path connecting T with another spanning tree T ′′ in the tree graph. We study

these orderings and discuss several approaches to constructing them. Although we can-

not prove their existence for all possible pairs of spanning trees, we have not found a

counterexample, yet. If we succeed in a proof, it might be possible to use them for

proving Mayr and Plaxton’s conjecture: Let B = (V, P, Q, w) be a weighted bispanning

graph such that Q is the only spanning tree with weight w(Q) and let P be a path

between Q and P which corresponds to a subsequence-interchangeable base ordering.

Then, the spanning trees on P have pairwise different weights.

Approximation of Spanning Trees

Furthermore, we consider a problem, which is related to the simplification of graphs

with respect to the number of edges. Problems of this kind can be summarized by

the term network sparsification. The intention is to thin out the graph while retaining

certain network characteristics, e.g., the distances between node pairs or the centrality

measures of the nodes. The aim of this task is to reduce the complexity of a given

graph in order to simplify computations of network problems or to feature a concise

visualization of a complex network with its most important structural properties. For

example, the network can be made more amenable to visual examination.

Carrying this sparsification to an extreme, we would require the resulting graph to

be a spanning tree, since the elements of this graph class have a minimum number of

edges among all connected subgraphs and they offer a variety of beneficial properties

which can be exploited for fast network algorithms even if the considered problems are

(in general) NP-hard.

In this thesis, we analyze the problem of computing a spanning tree of a graph, that

minimizes, in its simplest form, the sum of the distances between all pairs of nodes,

that were connected by an edge in the original graph. Actually, we consider a more

general form, where the sum is computed of pth powers of the respective distances (or

distance differences), i.e., the calculation is made with respect to the Lp-norm.

4

1.2. OUTLINE

The problem is related to a couple of other problems. A simliar problem is com-

puting distance-minimizing or distance-approximating spanning trees (DMST, DAST,

[EKM+08]). In contrast to the setting in this thesis, the DMST and DAST problems

consider the distances of all vertex pairs (instead of only pairs connected by single

edges in the original graph). Both problems, DMST and DAST, were shown to be

NP-complete for all norms Lp, p ∈ N. For both problems a fixed-edges variant was

introduced in [EKM+08], where the input includes a set of fixed edges that have to

appear in any admissible solution. For this fixed-edges version of DAST and arbitrary

Lp-norms, there is no constant-factor approximation unless P = NP. The simplest

case of the DMST problem, i.e., DMST using the L1-norm, is equal to the Simple Net-

work Design Problem introduced in [JLRK78] as well as the problem of computing a

Minimum Average Distance (MAD) Tree [DDGS03]. Moreover, this problem is equiv-

alent to the DAST problem with respect to the L1-norm. In the more general form of

the Network Design Problem, we are given a weighted undirected graph and want to

compute a connected subgraph that respects a certain budget constraint (regarding the

sum of the edge weights) and that minimizes the sum of all shortest path lengths. Of

course, this problem was also shown to be NP-complete [JLRK78].

A similar relationship exists between GAST and the problem of computing a mini-

mum fundamental cycle basis (Min-FCB). Again, we are given a weighted undirected

graph. The aim is to compute a spanning tree (or the respective cycle basis), that

leads to a minimum sum of weights of all fundamental cycles (induced by the edges of

the spanning tree). Deo et al. [DPK82] have shown NP-completeness of this problem.

Galbiati and Amaldi [GA04] proposed an 2O(
√

log n log log n)-approximation algorithm for

arbitrary graphs. Their approach used a related problem introduced by Hu, namely

the Minimum Communication Cost Spanning Tree Problem (MCT) [Hu74], which was

shown to be approximable within the same factor by Peleg and Reshef [PR98]. The

currently best known approximation ratio is due to Elkin, Emek, Spielman, and Teng

who presented an approximation algorithm with ratio O(log2 n log log n).

1.2 Outline

The remaining chapters of this thesis are organized as follows. In Chapter 2, we intro-

duce several definitions of graph theory. In particular, we analyze so-called bispann-

able and bispanning graphs. We also present operations to construct and modify these

graphs. Thereafter, we discuss possibilities to compute two edge-disjoint spanning trees

with an application for the Shannon switching game. In Chapter 3, we present Kano’s

as well as Mayr and Plaxton’s Conjectures concerning distances of spanning trees that

have different weights. Furthermore, we analyze bispanning graphs with special weight

functions and a special structure. Here, we give a brief introduction to matroid the-

ory, which we use for this analysis. Afterward, we propose a slightly refined conjecture

in Chapter 4. This conjecture states that it is sufficient to count only spanning trees

which define a new partition of a bispannable graph. The analysis of bispanning graphs

5

CHAPTER 1. INTRODUCTION

with a special weight function and a special structure as well as the refined conjecture

were presented at the 19th International Workshop on Combinatorial Algorithms 2008

(IWOCA’08) [Bau08]. Subsequence-interchangeable base orderings are introduced in

Chapter 5. In Chapter 6, we consider the problem GAST with respect to the Lp-norm

and we show for p = 1 a reduction to Min-FCB. The proof of NP-completeness was

published as a technical report [BT08].

6

Chapter 2

Preliminaries

2.1 Graphs, Trees, and Tree Graphs

Throughout this thesis, an undirected (multi) graph G = (V, E) is a pair consisting of a

finite set V and a (multi) subset E of all 2-elementary subsets of V . The set V is called

vertex set and E is called edge set of G. Unless stated otherwise, we denote the number

of vertices by n := |V | and the number of edges by m := |E|. A (multi) graph is called

simple if it contains no multiple edges. An undirected weighted graph G = (V, E, w) is

given by an undirected graph G = (V, E) and a weight function w : E → R associating

a weight w(e) with each edge e ∈ E. For any subset E ′ ⊆ E, we define the weight of E ′,

denoted by w(E ′), as the sum of the weights of all edges in E ′, that is,

w(E ′) :=
∑

e∈E′

w(e) .

A graph G′ = (V ′, E ′) is called a subgraph of an undirected graph G = (V, E) if V ′ ⊆ V

and E ′ is a (multi) set with

E ′ ⊆
{
e ∈ E | e = {v, w} with v, w ∈ V ′} . (2.1)

We call G′ an induced subgraph if (2.1) holds with equality. In this case, we say that

G′ is induced by V ′. If |V ′| > 1 and V ′ 6= V holds, we call G′ a non-trivial (induced)

subgraph. Given a graph G = (V, E) and a vertex set V ′ ⊆ V , we denote by G[V ′] the

subgraph of G induced by V ′ and we define by G \V ′ the graph induced by V \V ′. For

any edge e ∈ E, we denote by G \ e the graph G′ = (V, E \ {e}). Analogously, for any

subset E ′ ⊆ E, we define G\E ′ to be the graph G′ = (V, E\E ′). Moreover, we denote by

G/e the graph we obtain by contracting an edge e = {v, w} ∈ E. Contracting e means

that we remove e and identify v and w, i.e., we merge v and w to a new vertex. More

formally, contracting an edge e = {v, w} in G = (V, E) yields the graph G′ = (V ′, E ′)

with vertex set V ′ = (V \ {v, w}) ∪ {ve} where ve is a new vertex. The edge set E ′ is

defined to be the multiset (i.e., the contraction can generate multiple edges) with

E ′ =
{
{x, y} ∈ E | {v, w} ∩ {x, y} = ∅

}

⊎
{
{ve, z} | for each {x, z} ∈ E with x ∈ {v, w} and z ∈ V \ {v, w}

}
.

7

CHAPTER 2. PRELIMINARIES

=⇒

Figure 2.1: Contracting an edge.

For any subset E ′ ⊆ E, we define G/E ′ to be the graph we obtain by contracting

all edges in E ′ (in any order). Analogously, it is also possible to define the contraction

G/V ′ for any vertex set V ′ ⊆ V : we identify all vertices in V ′ by a new vertex v′, remove

all edges joining vertices in V ′, and redefine any edge {v, w} with v ∈ V ′ and w 6∈ V ′ to

{v′, w}. In the context of contracting and deleting edges, a so-called minor of a graph

can be defined. More precisely, a graph H is a minor of a graph G if H can be obtained

from G by a series of deletions and contractions of edges and by deletions of vertices.

In Figure 2.2, we show that the complete graph on four vertices K4 is a minor of the

left graph: we only have to remove the blue edges and the blue vertex, and contract the

red edge. A graph H is a topological minor of a graph G if there exists a subgraph G′

of G which can be obtained from H by several subdivisions of H ’s edges. An edge-

subdivision is an operation which replaces an edge = {v, w} by a sequence of edges

e1, . . . , ek with e1 = {v, v1}, e2 = {v1, v2}, . . . , ek = {vk−1, w} such that v1, . . . , vk−1 are

new vertices. Note that each topological minor of a graph is also a minor whereas a

minor does not need to be a topological minor. The K4 is a topological minor as well

as a minor of the left graph in Figure 2.2. The property of a graph to have a minor

=⇒

Figure 2.2: A minor of a graph.

isomorphic to the K4 plays a central role throughout this thesis (cf. Proposition 4.9).

Two graphs G = (V, E) and H = (W, F) are said to be isomorphic if there exists a

bijection ϕ : V → W such that {v, w} ∈ E holds if and only if {ϕ(v), ϕ(w)} ∈ F for all

v, w ∈ V . Such a map ϕ is called an isomorphism.

Let G = (V, E) be an undirected graph. Two vertices v, w ∈ V are called adjacent

if there exists an edge e ∈ E with e = {v, w}. For an edge e = {v, w} ∈ E, we say e

8

2.1. GRAPHS, TREES, AND TREE GRAPHS

is incident to v and w and vice versa. The number of incident edges of a vertex v

is called the degree of v and is denoted by deg(v). Given two vertices v, w ∈ V , an

undirected path between v and w is a sequence P = (v0, . . . , vk) of distinct vertices

such that v = v0, w = vk, and {vi, vi+1} ∈ E for all i ∈ {0, . . . , k − 1}. The length of

an undirected path P is defined as the number of edges associated with P . A (simple)

cycle is defined like an undirected path with the difference that v equals w (but all other

vertices are distinct) and each edge is used at most once. Hence, the shortest cycle is a

pair of multiple edges. An undirected graph G = (V, E) is said to be connected if there

exists an undirected path between v and w for all v, w ∈ V . An edge e ∈ E is called

bridge if G \ e is not connected. We call a vertex v ∈ V a cut vertex if the removal

of v (and its incident edges) will disconnect the graph. A graph G = (V, E) is called

k-vertex-connected if G\V ′ is connected for any vertex set V ′ ⊆ V of size |V ′| < k. For

the sake of completeness, if G is completely connected (i.e., every two vertices are joined

by an edge), we define G to be (|V | − 1)-connected. The largest integer value k such

that G is k-vertex-connected is called the vertex-connectivity of G which is denoted by

κ(G). The graph G is said to be ℓ-edge-connected if G \ E ′ is connected for any edge

set E ′ ⊆ E of size |E ′| < ℓ. The edge-connectivity λ(G) is the largest integer value ℓ

such that G is ℓ-edge-connected.

Given an undirected connected graph G = (V, E), a spanning tree T of G is any

subset of E for which the graph G′ = (V, T) is connected and does not contain any

cycle. The set of all spanning trees of G is denoted by T (G). For any spanning tree

T ∈ T (G) and an edge f ∈ E \ T , we denote by C(T, f) the unique cycle (the so-called

fundamental cycle) of G defined by f with respect to T . Given a pair of distinct edges

e, f ∈ E such that e ∈ C(T, f), we define the ordered pair (e, f) to be a single edge

swap where the edge e is called leaving edge, and f is called entering edge . Thus, the

set T ′ = (T \ {e}) ∪ {f} is a spanning tree, too. We say that T and T ′ are related by

an edge swap. Clearly, the ordered pair (f, e) := (e, f)−1 is an edge swap of T ′.

b

a

c

b

a

d

(c, d)

(d, c)

Figure 2.3: Two spanning trees related by an edge swap.

The tree graph of an undirected connected graph G = (V, E) is the graph G(G) =

(V, E) with V = T (G) and there exists an edge {T, T ′} ∈ E between two spanning trees

T, T ′ ∈ V if and only if T and T ′ are related by an edge swap. In Figure 2.4, there is

an illustration of an undirected graph and its tree graph.

9

CHAPTER 2. PRELIMINARIES

a

b

c

d

e

(a) An undirected graph with four vertices and five edges.

(c, e
)(e, d)

(b,a
)

(c, a)(a
, d

)

(c, d)

(b,a
)

(b
, a

)

(a
,b

)

(e, a)

(c, e)(e, d
)

(c
, b

)(b, d)

(c, d)

(b, e)(e
, b

)

(c, d)

(b) The tree graph of (a) and its edge swaps.

Figure 2.4: A graph and its tree graph

10

2.2. BISPANNABLE AND BISPANNING GRAPHS

2.2 Bispannable and Bispanning Graphs

The focus of this thesis is directed to the analysis of so-called bispanning graphs, which

are introduced in this section. To this end, we need the following definition. Let

S = {s1, s2 . . . , sk} be a set, then a partition of S is a set of non-empty disjoint subsets

of S such that each element of S is in exactly one of these subsets. We call a partition P
of S non-trivial if P 6= {S} and P 6= {{s1}, {s2} . . . , {sk}} holds.

Definition 2.1. A connected, undirected graph G = (V, E) is called a bispannable

graph if there exists a partition of E into two spanning trees. Given a partition of E

into two spanning trees P and Q, the triple B = (V, P, Q) is said to be a bispanning

graph.

Thus, by Definition 2.1, each bispannable graph is (in general) associated with different

bispanning graphs. Figure 2.5 illustrates a bispannable graph and two different parti-

tions of its edge set into two spanning trees which are emphasized by different colors.

We remark that in each picture of this thesis related to bispanning graphs, the span-

ning tree edges of P are always colored in red whereas the spanning tree Q is always

blue-colored. Although it is possible to switch between P and Q, there are some prop-

erties concerning only one of them. Note that both bispanning graphs in Figure 2.5 are

different (in terms of not being isomorphic) since the right graph consists of a blue and

a red path whereas the other graph consists only of a red path (the blue spanning tree

is not a path).

Figure 2.5: A bispannable graph and two different partitions into bispanning graphs.

In the following, we want to explore some fundamental properties of bispanning

graphs. Let G = (V, E) be an arbitrary bispannable graph on n vertices. First of all,

we note that G contains exactly m = 2n − 2 edges. Thus, the sum of all degrees is

exactly ∑

v∈V

deg(v) = 2m = 4n − 4 . (2.2)

Together with the observation that each vertex v ∈ V has degree deg(v) ≥ 2, we obtain

the following lemma by applying the pigeon-hole principle.

Lemma 2.2. Each bispannable graph G = (V, E) with |V | > 1 contains a vertex v of

degree deg(v) = 2 or degree deg(v) = 3.

11

CHAPTER 2. PRELIMINARIES

Moreover, if a bispannable graph contains no vertex v of degree deg(v) = 2, there

have to be four vertices of degree three. A related property is the vertex- and edge-

connectivity. By Definition 2.1, any bispannable graph G = (V, E) is 1-vertex-connected

and 2-edge-connected since there are at least two edge-disjoint paths between any two

vertices v and w according to any partition of E into two spanning trees. Moreover, a

bispannable graph G does not need to be 2-vertex-connected or 3-edge-connected (see

Figure 2.6) but G can be up to 3-vertex and 3-edge-connected (e.g., the wheels which are

considered in Chapter 5). An edge-connectivity (and vertex-connectivity, respectively)

greater than 3 is impossible since each bispannable graph contains a vertex v of degree

deg(v) ≤ 3. A summary of all possible combinations is presented in Table 2.1 (clearly,

we have κ(G) ≤ λ(G) for each graph G).

(a) A 2-edge-connected bispanning graph. (b) A 1-vertex-connected bispanning graph.

Figure 2.6: Connectivity of bispanning graphs.

vertex-

connectivity κ

≥ 4

3

2

1

+

+

2

+

+

+

3

−
−
−
−
≥ 4

edge-connectivity λ

Table 2.1: Vertex- and edge-connectivity of bispanning graphs.

We have seen that each bispannable graph has to fulfill certain connectivity prop-

erties. These properties are necessary but not sufficient since for example a 2-vertex-

connected and 3-edge-connected graph does not need to contain two edge-disjoint span-

ning trees. A more precise property of an undirected graph G = (V, E) implying the ex-

istence of k edge-disjoint spanning trees was proven by Nash-Williams [NW61; NW64].

The same result was investigated independently by Tutte [Tut61].

12

2.2. BISPANNABLE AND BISPANNING GRAPHS

Proposition 2.3. A graph G = (V, E) has k edge-disjoint spanning trees if and only if

|E(P)| ≥ k · (|P| − 1) (2.3)

for each partition P of V . We denote by E(P) the set of edges in E which join vertices

belonging to different members of P.

Some consequences of this proposition concerning the connectivity of an undirected

graph were discussed by Gusfield [Gus83]. We remark that the original proof by Nash-

Williams is quite intricate. A shorter version using several technical findings of matroid

theory can be found in [Wes00]. Proposition 2.3 implies that a graph G = (V, E) is

bispannable if and only if it contains 2n − 2 edges and (2.3) is fulfilled with k = 2 for

each partition P of V . Unfortunately, Equation (2.3) is not useful for an algorithm to

detect whether a graph contains two edge-disjoint spanning trees or not.

As aforementioned, the main focus of this thesis lies on the analysis of bispanning (or

bispannable) graphs. A question which turns out to be very important while studying

these graphs is whether they are composite or not. The formal definition of this property

is as follows.

Definition 2.4. A bispannable graph G = (V, E) is called atomic if G contains no

non-trivial bispannable subgraph. Otherwise, G is called composite.

This definition can be extended to bispanning graphs. Then, a bispanning graph

B = (V, P, Q) is composite (atomic) if the underlying bispannable graph is composite

(atomic). Both bispannable graphs in Figure 2.6 are composite since each of them

consists of two non-trivial bispanning subgraphs. The latter observation is obvious

once we have detected a cut vertex or a cut containing only two edges. An example of

an atomic bispannable graph is given in Figure 2.5. The following theorem proposes a

characteristic of atomic bispannable graphs by extending Proposition 2.3.

Theorem 2.5. A bispannable graph is atomic if and only if (2.3) with k = 2 is a strict

inequality for each non-trivial partition P of V .

Proof. To establish the ‘only if’ direction, we will prove the contrapositive, i.e., we

assume (2.3) is an equality for some non-trivial partition and show that the given

graph must be composite. To this end, we suppose there exists a non-trivial partition

P = {V1, V2, . . . , Vℓ} of V such that |E(P)| = 2ℓ − 2. Let ℓi := |Vi| for i = 1, . . . , ℓ. We

observe that there are at most 2ℓi − 2 edges joining vertices of component Vi for each

i = 1, . . . , ℓ. Hence, the number of all these edges is at most

ℓ∑

i=1

(2ℓi − 2) = 2n − 2ℓ .

Moreover, there are exactly 2(ℓ − 1) edges which join vertices belonging to different

members of P. Thus, the number of remaining edges is

(2n − 2) − (2ℓ − 2) = 2n − 2ℓ .

13

CHAPTER 2. PRELIMINARIES

Therefore, each component G[Vi] consists of 2ℓi − 2 edges. Since P is a non-trivial

partition of V , there exists an index i′ ∈ {1, . . . , ℓ} such that ℓi′ > 1. Then, G[Vi′] is a

non-trivial bispannable subgraph of G contradicting G to be atomic.

The ‘if’ direction is proven analogously. We assume the given bispannable graph

is composite and show that (2.3) is an equality for some partition. To this end, we

suppose the bispannable graph G = (V, E) is composite and construct a partition of

the vertex set such that (2.3) is an equality. To this end, let V ′ be any subset of V such

that G[V ′] is a non-trivial bispannable subgraph of G. If V ′ contains ℓ := |V ′| vertices

then there are 2ℓ− 2 edges in G joining vertices of V ′. Let V ′′ := V \ V ′ = {v1, . . . , vj}
the set of all vertices which are not contained in V ′. Clearly, it holds j = n − ℓ ≥ 1

since G[V ′] is a non-trivial subgraph. Now, we consider the partition

P =
{
{v1}, . . . , {vj}, V ′} .

Then, the number of edges joining different members of P is exactly

(2n − 2) − (2ℓ − 2) = 2j .

Hence, P is a partition such that |E(P)| = 2 · (|P| − 1) proving the theorem.

2.2.1 Construction of Bispanning Graphs

In the previous section, we have discussed several properties which a graph G = (V, E)

has to meet in order to be an (atomic) bispannable graph. Now, we consider a method

to construct an arbitrary (not necessarily atomic) bispannable graph. To this end,

we define two different operations which are called double-leaf attachment and edge-

split. Both operations can be applied to any bispannable graph G = (V, E) in order

to preserve the resulting graph being bispannable, too. Hence, we can start with any

bispannable graph G = (V, E) which is possibly degenerated to a single vertex. The

operations to modify G are defined as follows.

(i) Double-leaf attachment of vertex u and v

Let u, v ∈ V be two (not necessarily distinct) vertices in G. We introduce a new

vertex w and connect it by two edges, {u, w} and {v, w}, with G.

The resulting graph G′ = (V ′, E ′) with vertex set V ′ = V ∪ {w} and edge set

E ′ = E ∪ {{u, w}, {v, w}} is a bispannable graph since G can be partitioned into

two edge-disjoint spanning trees, P and Q, and the new edges can be regarded as

leaves which are appended to P and Q, respectively. For this reason, the operation

is called ‘double-leaf attachment’.

Note that if u and v are not distinct, i.e., both variables stand for the same vertex,

we introduce a pair of multiple edges. The operation double-leaf attachment is

illustrated in Figure 2.7.

14

2.2. BISPANNABLE AND BISPANNING GRAPHS

G = (V, E)

u

v w

Figure 2.7: Operation double-leaf attachment.

(ii) Edge-split of edge e by vertex v

Let v ∈ V be a vertex and e = {x, y} ∈ E be an edge in G. We split the edge e

into two edges, that is, we introduce a new vertex w and connect it with both

vertices of e followed by the removal of e. Afterwards, the vertices v and w are

joined by an edge.

The resulting graph G′ = (V ′, E ′) with vertex set V ′ = V ∪ {w} and edge set

E ′ = (E \ {e}) ∪ {{x, w}, {w, y}, {v, w}} is again a bispannable graph: Since G

is bispannable, it can be partitioned into two edge-disjoint spanning trees P

and Q. Without loss of generality, we assume e ∈ P . Then, P ′ = (P \ {e}) ∪
{{x, w}, {w, y}} and Q′ = Q ∪ {v, w} is an admissible partition of G′ into two

disjoint spanning trees. In Figure 2.8, the dotted edge e ∈ E is splitted with a

blue edge into two parts.

Remark: According to Figure 2.8, we often say that the edge e is split by the edge

{v, w} (into {x, w} and {y, w}). Then, {v, w} is called the splitting edge.

G = (V, E)

v

x w

y

e

Figure 2.8: Operation edge-split.

15

CHAPTER 2. PRELIMINARIES

As mentioned above, it is possible to extend a bispannable graph using the operations

given above. In the following, we will see that applying these operations to a single

vertex suffices in order to generate each bispannable graph G = (V, E).

Theorem 2.6. Each bispannable graph G = (V, E) can be constructed by a sequence of

‘double-leaf attachment’ and ‘edge-split’ operations starting with a single vertex.

Proof. We prove this theorem by induction over the number n := |V | of vertices of a

given bispannable graph G = (V, E). If G consists of n = 2 vertices then G contains

a pair of multiple edges. This graph can be constructed by applying a double-leaf

attachment operation to a single vertex.

Hence, we suppose that G = (V, E) is a bispannable graph with n > 2 vertices.

By Lemma 2.2, the graph G contains a vertex v of degree deg(v) = 2 or deg(v) = 3.

Furthermore, there exists a partition of E into two spanning trees P and Q.

If G contains a vertex v of degree deg(v) = 2 then v is connected to G by an

edge p = {x, v} ∈ P and an edge q = {y, v} ∈ Q for some (not necessarily distinct)

vertices x, y ∈ V . Then, removing v and the edges p and q yields again a bispannable

graph G′ since cutting off leaves of a tree preserves the property of being a tree. By

induction hypothesis, there exists a sequence of ‘double-leaf attachment’ and ‘edge-split’

operations to construct G′. Now, we extend this sequence by applying a double-leaf

attachment operation of vertex x and y resulting in G.

On the other hand, we suppose that G contains a vertex v adjacent to exactly three

vertices v1, v2, and v3. Then, either v is a leaf of P , or v is a leaf of Q, respectively.

Let {v, v1} be the edge according to this property, and let {v, v2} and {v, v3} be the

remaining two edges. We construct a bispannable graph G′ as follows: Remove v and

its incident edges and introduce a new edge e = {v2, v3} which belongs to the same

tree as the removed edges {v, v2} and {v, v3}. By induction hypothesis, there exists

an appropriate sequence to construct G′. Now, applying an ‘edge-split’ operation of e

by v1 generates the bispannable graph G. Thus, we obtain a sequence of ‘double-leaf

attachment’ and ‘edge-split’ operations to construct G. This proves the theorem.

Since we do not restrict ourselves to a special partition of a bispannable graph, it is also

possible to construct each bispanning graph by a sequence of ‘double-leaf attachment’

and ‘edge-split’ operations starting with a single vertex.

In the following, we discuss some remarks concerning construction sequences of

bispannable/bispanning graphs. Firstly, any construction sequence for a bispannable

graph G = (V, E) on n vertices has length n − 1 since we introduce a new vertex in

each step. In general, there exist many such sequences. This observation is based upon

the fact that there are many possibilities to choose a vertex v of degree deg(v) = 2 or

deg(v) = 3. A vertex v of degree deg(v) = 2 can only be obtained by a double-leaf

attachment since an edge-split introduces a vertex of degree 3 and increases the degree

of another vertex. If there exists no vertex of degree two then (2.2) implies the existence

of at least four vertices of degree 3.

16

2.2. BISPANNABLE AND BISPANNING GRAPHS

On the other hand, given a bispannable graph G = (V, E) and a vertex v of degree

deg(v) = 3, it is not possible to choose an arbitrary edge incident to v in order to

reverse an edge-split. Such a situation is illustrated in Figure 2.9. Here it is impossible

that the red edge was introduced while splitting one of the dashed edges. Otherwise

the blue edge becomes a bridge. In this case, the resulting graph is not bispannable

any more. As a consequence, exactly one of the dashed edges in Figure 2.9 has to be

colored with red.

v

(a) A bispanning graph.

(b) Reversing the edge-split by the vertical dashed edge incident to v.

(c) Reversing the edge-split by the horizontal dashed edge incident to v.

Figure 2.9: Reversing an edge-split.

17

CHAPTER 2. PRELIMINARIES

edge-split

⇐⇒
double-leaf

attachment

⇐⇒

double-leaf

attachment

⇐⇒

double-leaf

attachment

⇐⇒

⇐
⇒ egde-

split

(a) First construction sequence consisting of 2 edge-split and 3 double-leaf attachment operations.

edge-split

⇐⇒
edge-split

⇐⇒

double-leaf

attachment

⇐⇒

double-leaf

attachment

⇐⇒

⇐
⇒ egde-

split

(b) Second construction sequence consisting of 3 edge-split and 2 double-leaf attachment operations.

Figure 2.10: Different construction sequences for the same graph.

18

2.2. BISPANNABLE AND BISPANNING GRAPHS

In addition, it is not even required that the numbers of double-leaf attachment

(edge-split) operations of different construction sequences for the same graph are equal.

Figure 2.10 illustrates an example where a bispannable graph can be constructed by

a sequence consisting of 2 edge-split and 3 double-leaf attachments or a sequence of

3 edge-splits and 2 double-leaf attachments.

Concerning the property of a bispannable graph being atomic or composite, the

operations ‘double-leaf attachment’ and ‘edge-split’ have the following impact. On

the one hand, each ‘double-leaf attachment’ applied to any atomic bispannable graph

converts it into a composite one. On the other hand, it is possible to transform each

composite bispannable graph into a (larger) atomic graph by using several ‘edge-split’

operations. In this case, the maximal number of these operations only depends on the

number of disjoint bispanning components since with each edge-split at most one of

them can be ‘destroyed’. An illustration of this is given in Figure 2.11.

(a) A bispannable graph consisting of two bispannable components.

(b) Reducing the number of bispannable components by an edge-split I.

(c) Reducing the number of bispannable components by an edge-split II.

Figure 2.11: Using edge-splits to make a composite bispannable graph atomic.

19

CHAPTER 2. PRELIMINARIES

2.2.2 Computing a Partition into two Spanning Trees

Any given bispannable graph G = (V, E) can be partitioned into two edge-disjoint

spanning trees P and Q yielding a bispanning graph B = (V, P, Q) by Definition 2.1.

We observe that it is easy to construct a suitable partition using a sequence that consists

of ‘double-leaf attachment’ and ‘edge-split’ operation. Here, we only have to maintain

two disjoint spanning trees according to the proof of Theorem 2.6. Hence, we obtain

the following corollary.

Corollary 2.7. Given a bispannable graph G = (V, E) and a construction sequence con-

sisting of ‘double-leaf attachment’ and ‘edge-split’ operations, it is possible to compute

a partition of E into two spanning trees in time O(n).

If we do not know a construction sequence, we have to compute a partition from

scratch. Two algorithms for finding two edge-disjoint spanning trees in general graphs

were given by Kameda and Toida [KT73]. Their runtime is O(max{n2 log n, mn}) and

O(mn log∗ n), respectively. Here, it holds that log∗ n = min{i | i ∈ N and logi n ≤ 1}.

Some properties which can be used to compute so-called maximally distant trees (two

trees such that the number of common edges is minimal) were considered by Kishi and

Kajitani [KK67; KK68; KK69]. Using an algorithm for computing k edge-disjoint span-

ning trees by Imai [Ima83], it is possible to find a partition of a bispannable graph in time

O(n2 log n). Moreover, there exists an algorithm by Roskind and Tarjan [RT85] using

time O(n2). An improved version of this algorithm was presented by Gabow and Stall-

mann [GS85] as well as Gabow and Westermann [GW92]. These algorithms can com-

pute a partition of a bispannable graph into two spanning trees in time O(n
√

n log n).

We remark that the latter algorithms in [Ima83; RT85; GS85; GW92] are designed to

compute a set of k edge-disjoint spanning trees or forests, respectively. For example,

the algorithm by Roskind and Tarjan [Ros83; RT85] computes k edge-disjoint spanning

trees in time O(k2n2). A complexity survey of algorithms for solving so-called tree

packing and covering problems can be found in [Sch03].

Most algorithms for computing k edge-disjoint spanning trees use so-called augment-

ing swap sequences. These sequences were introduced by Edmonds in the context of

matroids [Edm65a; Edm65b] (see also [Law76]). A variant of them was also used by

Hopcroft and Karp for computing a maximum matching in bipartite graphs [HK73].

Given an arbitrary bispannable graph G = (V, E), the idea is to maintain two edge-

disjoint forests, F0 and F1, in each round of the computation. A round consists of

two steps: First, we try to compute an augmenting swap sequence for an edge e ∈ E.

Subsequently, we perform an augmentation if such a sequence exist. Otherwise, if there

is no such sequence, it is possible to store information about it for later computations

(Roskind and Tarjan introduced the term ‘clump’, which is a set of vertices already con-

nected in each of the forests [RT85]). The correctness of this approach follows because

of the observation that the edges of G form a matroid (cf. Chapter 3) if we define a

subset of edges E ′ ⊆ E to be independent if E ′ can be partitioned into k forests [CH80].

Hence, we can apply the greedy algorithm.

20

2.2. BISPANNABLE AND BISPANNING GRAPHS

More precisely, for the problem of computing a partition of a bispannable graph

into two spanning trees, we initially start with F0 = F1 = ∅. Then, we compute an

augmenting swap sequence for each edge e ∈ E if such a sequence exists. Here, we

remark that there always exists such a sequence if we consider a bispannable graph.

An augmenting swap sequence with respect to an edge e and two forests F0 and F1 is

formally defined to be a sequence of edges e0, e1, . . . , ek such that

(i) e0 = e,

(ii) ei+1 ∈ C(Fi mod 2, ei) for all i = 0, . . . , k − 1, and

(iii) there are no edges ei and ej with j > i + 1 and ej ∈ C(Fi mod 2, ei)

where C(F, e) denotes the cycle defined by e with respect to F (provided that the

vertices of e are in the same tree with respect to F). Condition (iii) requires that the

sequence has to be minimal in terms of having no shortcut.

Hence, if the insertion of e0 into F0 creates a cycle, we transfer an edge e1 of this

cycle to F1. If this operation yields a cycle in F1, we remove an edge e2 of this cycle

and insert this edge into F0. This procedure continues until an edge ek is inserted into

a forest and does not create a cycle. Checking whether an edge generates a cycle or

not can easily be done by using a union-find data structure [Tar75]. Thus, if already

F0 ∪ {e} does not contain any cycle then e itself is an augmenting swap sequence.

There exist two similar strategies to find such an augmenting sequence. On the one

hand, we have the so-called breadth-first scanning. This strategy is accomplished using

a queue Q of labeled edges. The labeling is used to reconstruct the augmenting sequence

after the scanning. First, we label e (with null since this edge is the end/beginning of

the sequence) and insert it into Q. In each step, the algorithm removes the first edge e

from Q and checks whether there exists a forest Fi such that Fi ∪ {e} does not contain

a cycle (if e ∈ Fj then we omit the index j). If there exists an index i such that Fi∪{e}
does not contain a cycle, we have found an augmenting swap sequence and perform

the augmentation. Otherwise, we label the (unlabeled) edges of each cycle defined by e

and insert them into Q. This algorithm terminates if an augmenting sequence is found

or if the queue Q becomes empty. In the latter case, there exists no augmenting swap

sequence with respect to edge e [GW92].

On the other hand, we can apply cyclic scanning. This approach is similar to the

breadth-first scanning. The difference is that if we process a labeled edge e ∈ Fi, we

consider only the next forest Fi+1 (modulo the number of forests). If Fi+1 ∪ {e} does

not contain a cycle, we have found an augmenting swap sequence. Otherwise, we label

the (unlabeled) edges of the cycle C(Fi+1, e) and insert them into the queue Q. Again,

the algorithm terminates if an augmenting sequence is found or if the queue Q becomes

empty.

We remark that the algorithm of Roskind and Tarjan [RT85] uses cyclic scanning. A

variant of this algorithm to partition a bispannable graph is presented in more detail in

Algorithm 1). The improvement of Gabow and Westermann [GW92] primarily consists

21

CHAPTER 2. PRELIMINARIES

of computing a maximal set of shortest augmenting swap sequences in combination

with cyclic scanning. The approach of using a maximal set of augmenting sequences is

similar to Dinitz’ algorithm [Din70; Eve79] for the maximum flow problem.

Algorithm 1: Partitioning(G = (V, E))

Input: a bispannable Graph G = (V, E)

Output: a partition of G into two edge-disjoint spanning trees

begin1

initialize union-find data structures F0, F12

initialize index[e] = −1 for all e ∈ E3

initialize label[e] = null for all e ∈ E4

foreach e = {v, w} ∈ E do5

p0[·], p1[·] := compute trees rooted at v with respect to F0 and F16

initialize queue Q of edges7

Q.enqueue(e)8

while !Q.empty() do9

e′ = {x, y} = Q.dequeue()10

i = (index[e′] + 1) mod 211

if Fi.find(x) 6= Fi.find(y) then12

Fi.union(x, y)13

while e′ 6= e do14

index[e′] = (i + 1) mod k15

e′ = label[e′]16

i = index[e′]17

index[e] = 018

else19

if x == v or label[{x, pi[x]}] 6= null then20

u = y21

else22

u = x23

initialize stack S of edges24

while u 6= v and label[{u, pi[u]}] 6= null do25

S.push({u, pi[u]})26

u := pi[u]27

while !S.empty() do28

e′′ = S.pop()29

label[e′′] = e′30

Q.enqueue(e′′)31

return (F0, F1)32

end33

22

2.2. BISPANNABLE AND BISPANNING GRAPHS

The Shannon Switching Game

The computation of two edge-disjoint spanning trees is strongly related to the so-called

Shannon switching game [Sha55]. This game is sometimes also called Lehman’s switch-

ing game because Lehman was the first one who found a solution [Leh64]. This game

is played on an undirected connected graph in which two vertices are distinguished.

There are two players which we call Connector and Cutter. In the literature, they are

often called the short and cut player, respectively. The Cutter tries to destroy all paths

between both distinguished vertices by removing edges whereas the Connector aims to

establish a path of invulnerable edges between these two vertices. The first player who

reaches his goal will win the game. The game is played alternately. In his turn, the

Cutter chooses an unmarked edge which is removed from the graph. The Connector,

in his turn, can make an unplayed edge invulnerable to deletion by the Cutter. A

‘repairing’ of previously deleted edges is not allowed.

Depending on the player and who plays first, we obtain 3 different types of games.

(i) If the Connector, playing second, can win against all possible strategies of the

Cutter, the game is called short.

(ii) If the Cutter, playing second, can win against all possible strategies of the Con-

nector, the game is called cut.

(iii) If the player who plays first, but not second, can win against all possible strategies

of the other player, the game is called neutral.

Note that if a player has a winning strategy when playing second, the player has

a winning strategy when going first, too. This is clear since it is no handicap to have

an extra move. Depending on which two vertices v and w are distinguished, a graph

can yield a short, a cut, or a neutral game. Graphs for each of the three types are

illustrated in Figure 2.12 where both vertices of the game are colored red.

(a) short (b) cut (c) neutral

Figure 2.12: Different graphs for the Shannon switching game.

As aforementioned, Lehman [Leh64] was the first who found a solution for the

Shannon switching game. He analyzed the game using a matroid-theoretic approach

23

CHAPTER 2. PRELIMINARIES

like Edmonds who further studied it [Edm65a]. As a main result, Lehman showed that

a graph yields a short game if and only if there exists a subgraph consisting of two

edge-disjoint spanning trees such that both distinguished vertices are contained in this

subgraph. Hence, if a graph G = (V, E) contains two edge-disjoint spanning trees then

for any two vertices v, w ∈ V , the corresponding game is a short game.

For the sake of completeness, a game is a cut game if and only if the corresponding

game on the graph G = (V, E ∪ {v, w}) is not a short game. Furthermore, a game is

a neutral game if and only if it is not a short game and the corresponding game on

G = (V, E∪{v, w}) is a short game. For example, the graph in Figure 2.12(c) is neutral

because the first player (Cutter or Connector) has to choose the edge connecting the

black vertices in order to win the game. If we insert an edge joining the red vertices,

there exists a winning strategy for the Connector.

A second approach to analyze the game was followed by Kishi and Kajitani [KK69].

They showed that the edges of a graph G can be decomposed into a partition containing

three blocks which they call the principal partition of G. Bruno and Weinberg gener-

alized the principal partition of a graph and showed that the type of a game can be

determined immediately from this partition [BW70; BW71b]. The Shannon switching

game and the principal partition of a graph were further analyzed in several articles

and books [Bru74; Bru77; Cha72; Man96; Wei97; NG99].

24

Chapter 3

Ranking of Weighted Spanning

Trees

3.1 Kano’s Conjectures

In this chapter, we present several conjectures attributed to Kano [Kan87] as well as

Mayr and Plaxton [MP92] concerning distances between spanning trees of different

weights in the tree graph.

Recall that in the tree graph of a graph G = (V, E), each spanning tree of G is

represented by a vertex and two of these ‘spanning tree’ vertices are connected by

an edge if and only if they are related by an edge swap. Given a weight function

w : E → R, which associates a weight w(e) with each edge e ∈ E, it is possible to get

different spanning tree weights. Thus, we can partition the spanning trees of a graph

into distinct weight classes.

Given a weighted undirected connected graph G = (V, E, w) and its set of all span-

ning trees T (G), we denote by W(G) the set of different weights of spanning trees of G

and by Wi(G) the ith smallest element of W(G). Analogously, we denote by Ti(G) the

set of spanning trees T having w(T) = Wi(G). We define the order ord(G, T) of a span-

ning tree T with respect to G as the number i ∈ N such that T ∈ Ti(G). We denote the

number of spanning trees with weight w(T) by σ(G, T), i.e., σ(G, T) = |Tord(G,T)(G)|.
Furthermore, we denote by Lk(G, T) the set of all those spanning trees T ′ of G such

that T can be transformed into T ′ by at most k edge swaps, i.e., the symmetric difference

T∆T ′ = (T \ T ′) ∪ (T ′ \ T) contains at most 2k edges.

The following four conjectures were proposed by Kano [Kan87] motivated by a paper

by Kawamoto, Kajitani, and Shinoda [KKS78]. Note that several authors (e.g., Kano

in [Kan87]) formulated their results in terms of kth maximal spanning trees which

is completely equivalent. We remark that the first of the following four conjectures

actually is a theorem since Mayr and Plaxton found a proof [MP92].

Conjecture 1. If T is a minimum spanning tree of G then Li−1(G, T) contains an

ith smallest spanning tree for all 1 ≤ i ≤ |W(G)|.

25

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

Conjecture 2. If T is an ith smallest spanning tree in the set Li(G, T) then T is an

ith smallest spanning tree of G.

Conjecture 3. If T is an ith smallest spanning tree of G then T is an ith smallest

spanning tree in the set Li−1(G, T).

Conjecture 4. Let G(i, j) denote the graph with vertex set Ti(G) where an edge exists

between each pair of i-MSTs T and T ′ if T can be transformed into T ′ by at most j

edge swaps in G. Then G(i, i) is connected.

It is well known that Conjectures 2 and 4 hold for i = 1 [Kru56; Pri57; FF62; Deo74].

Clearly, it holds that a spanning tree T is a 1-MST of a graph G if and only if it

is a minimum spanning tree in L1(G, T). Moreover, let T and T ′ be two distinct

minimum spanning trees. We claim that there exists a sequence T = T1, T2, . . . , Tk = T ′

consisting only of 1-MSTs such that Ti and Ti+1 are related by an edge swap for all

i = 1, . . . , k− 1. If k = 2 then we are done. Hence, we suppose that k > 2 and consider

any edge e ∈ T \ T ′. Insertion of e into T ′ generates a cycle C(T ′, e). This cycle may

contain edges in T ∩ T ′ but there is at least one edge f ∈ F with F = C(T ′, e) \ T .

Now, it holds that w(e) ≥ w(f) for all f ∈ F since otherwise T ′ is not a minimum

spanning tree. We claim that at least one of these edges f ∈ F has the same weight

as the edge e. This follows from the observation that at least one edge in F has

to cross the cut formed by e with respect to T . If this edge has a weight strictly

smaller than w(e) then w(T \ {e} ∪ {f}) < w(T) in contradiction to T being a 1-MST.

Hence, there exists an edge f ∈ F with weight w(f) = w(e). Now, the spanning tree

T ′′ = (T ′ ∪ {e}) \ {f} is a minimum spanning tree, too. Moreover, T ′′ has one edge

more in common with T (than T ′). We repeat this procedure and obtain a series of

spanning trees T = T1, T2, . . . , Tk = T ′ where two consecutive trees are related by an

edge swap.

The above statements follow easily by using a special edge swap regarding two

distinct spanning trees. Let G = (V, E) be an undirected graph, T and T ′ be two

distinct spanning trees, and e ∈ T \T ′. Then, there exists an edge f ∈ T ′ \T such that

(T ∪{f})\{e} and (T ′∪{e})\{f} are spanning trees. In this case, the edge swap (e, f)

(and its inverse (f, e)) with respect to T and T ′ is called a symmetric exchange [Bru69].

The existence of such an exchange can be proven as follows. If we choose an arbitrary

edge e ∈ T then T \ {e} (the corresponding subgraph) decomposes into two connected

components C1 and C2. Color the vertices of these two components with different

colors. Note that the two vertices of edge e have different colors. Now we consider the

fundamental cycle C(T ′, e) defined by e with respect to T ′ and choose an edge f ∈ T ′

such that the two vertices of f have different colors. Clearly, such an edge must exist,

and (T ∪{f})\{e} as well as (T ′∪{e})\{f} are spanning trees. Symmetric exchanges

were further studied by Brylawski [Bry73] and White [Whi80]. Note that there exists

a generalized version of symmetric exchanges for whole subset. This version is known

as the symmetric subset exchange axiom and was formulated in matroid theory.

26

3.1. KANO’S CONJECTURES

Lemma 3.1. Let B, B′ be bases of a matroid. If B is partitioned into X and Y , then

there is a partition of B′ into X ′ and Y ′ such that X ∪ Y ′ and Y ∪ X ′ are bases, too.

For a proof of this lemma, we refer the reader to [Sch03]. Several derivations of it

with respect to matroid theory are considered in [Bry73; Gre73; Woo74]. A stronger

exchange property called ‘strongly base orderable’ is studied in Section 3.3.2.

Kawamoto, Kajitani, and Shinoda [KKS78] proved that Conjectures 1 through 4

hold if i = 2. Kano simplified the results for i = 2 and extended them for proving the

case i = 3. He made use from a special property: for each minimum spanning tree T

and an arbitrary spanning tree T ′, there exists a bijection ϕ : T \ T ′ → T ′ \T such that

T ′′ = (T ′ \ ϕ(e)) ∪ {e} is a spanning tree and w(T ′′) ≤ w(T ′) for each edge e ∈ T \ T ′.

As already mentioned above, Conjecture 1 is actually a theorem. A powerful tool

for proving this conjecture are contractions and deletions of edges. Let G = (V, E)

be a graph and e, f ∈ E be two distinct edges. We denote by G[e, f] the graph we

obtain by contracting the edge e and deleting the edge f . According to our notation of

Chapter 2, it holds G[e, f] = (G \ f)/e. Some properties which will be used throughout

this chapter are summarized in the following lemma [MP92].

Lemma 3.2. Let T be a spanning tree of a weighted graph G = (V, E, w), and let e ∈ E.

If e 6∈ T , let G′ = G[∅, e] and T ′ = T . Otherwise, let G′ = G[e, ∅] and T ′ = T [e, ∅]. In

either case, it holds that:

(i) T ′ is a spanning tree of G′.

(ii) ord(G′, T ′) ≤ ord(G, T).

(iii) σ(G′, T ′) ≤ σ(G, T).

Proof. The first condition is obvious: If e belongs to T , the contraction of e preserves

the property of being a spanning tree. Furthermore, removing an edge not contained

in T has no impact, too. For the remaining two cases, we observe that there exists

an injective map from T (G′) to T (G) satisfying a constant shift of the weight classes

depending on w(e). If e 6∈ T then each spanning tree in T (G′) is also a spanning

tree in T (G) (especially, each spanning tree with a weight smaller than w(T)). Hence,

condition (ii) and (iii) follow if e 6∈ T . Now, we suppose that e ∈ T . In this case, each

spanning tree of T (G′) is mapped to a spanning tree in T (G) with a weight increased

by w(e). This proves the lemma.

In their proof of Conjecture 1, Mayr and Plaxton used bispanning graphs. More

precisely, they showed that this conjecture is true if and only if there is no weighted

bispanning graph B = (V, P, Q, w) such that 1 = ord(B, P) < ord(B, Q) < n and

σ(B, Q) = 1. Indeed there is no such bispanning graph.

Theorem 3.3. There exists no weighted bispanning graph B = (V, P, Q, w) such that

1 = ord(B, P) < ord(B, Q) < n and σ(B, Q) = 1.

27

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

Proof. Suppose that there exists such a weighted bispanning graph. Then, consider any

smallest (with respect to |V |) of these graphs B = (V, P, Q, w) with 1 = ord(B, P) <

ord(B, Q) < n and σ(B, Q) = 1. Let p be an edge with maximum weight in P and let

q ∈ Q be an edge such that (p, q) is a symmetric exchange with respect to P and Q. As

mentioned before (and by Lemma 3.1), there always exists such an edge q. Since P is

a minimum spanning tree and Q has unique weight, we have w(p) < w(q). Moreover,

since p has maximum weight in P , the edge q is the unique heaviest in the cycle C(P, q).

Hence, q does not belong to any minimum spanning tree by the red rule [Tar83].

Now, we consider the bispanning graph B′ = (V ′, P ′, Q′, w′) := B[q, p] with P ′ =

P [q, p] and Q′ = Q[q, p]. By Lemma 3.2, we have ord(B′, P ′) = 1 and σ(B′, Q′) = 1,

thus, ord(B′, P ′) < ord(B′, Q′). Since the number of vertices is decreased by one, we

have to show that ord(B′, Q′) < ord(B, Q) (by Lemma 3.2, we only have ’≤’). In this

case, we have a strict inequality because no spanning tree of B′ is mapped into the

minimum spanning tree class T1(B).

Mayr and Plaxton not only proved Conjecture 1 but also formulated a further con-

jecture which unifies Kano’s Conjectures 2 through 4. This new conjecture is as follows.

Conjecture 5. If T is a jth smallest spanning tree of G then Li−1(G, T) contains an

ith smallest spanning tree for all 1 ≤ j < i ≤ |W(G)|.

Analogously to the ideas above, a stronger version of Theorem 3.3 would imply

that Conjecture 5 is a theorem. This stronger version is as follows: there exists no

weighted bispanning graph B = (V, P, Q, w) such that ord(B, P) < ord(B, Q) < n

and σ(B, Q) = 1. Hence, we would be done by proving the following conjecture which

implies Conjectures 2 through 5.

Conjecture 6. Let B = (V, P, Q, w) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Then, it holds that ord(B, Q) ≥ n.

In the subsequent section, we show that this is true if P has unique weight, too,

i.e., we have σ(B, P) = 1. If P ’s weight is not unique, it might be sufficient to count

so-called partition spanning trees corresponding to subsequence-interchangeable base

orderings (cf. Chapters 4 and 5).

3.2 Assuming Singularity of P

In this section, we prove Conjecture 6 under the assumption that the spanning tree P

is unique, i.e., the weight function is also restricted to satisfy σ(B, P) = 1.

Theorem 3.4. Let B = (V, P, Q, w) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q), σ(B, Q) = 1, and σ(B, P) = 1. Then, it holds that

ord(B, Q) ≥ n.

28

3.2. ASSUMING SINGULARITY OF P

Proof. This Theorem is proven by induction over the number of vertices of B. Clearly,

if n = 2 then B consists of two parallel edges with distinct weights, thus ord(B, Q) ≥
n = 2. Hence, we assume n > 2 and consider an arbitrary symmetric exchange (p, q)

with p ∈ P and q ∈ Q, that is, P \ {p} ∪ {q} and Q \ {q} ∪ {p} are spanning trees. By

Lemma 3.1, such a symmetric exchange exists. Since σ(B, Q) = 1 (or σ(B, P) = 1), the

edges p and q must have different weight. Now, we distinguish different cases depending

on whether w(p) < w(q) or w(q) > w(p) holds.

1. If w(q) < w(p) holds then we consider the bispanning graph B′ = B[q, p] which

we obtain by contracting the edge q and removing the edge p in B. The elements

of W(B′) in strictly increasing order are (for the sake of readability, we associate

by a spanning tree T also its weight w(T))

(T ′
1, . . . , T

′
α−1, T

′
α = P ′, T ′

α+1, . . . , B
′
β−1, T

′
β = Q′, T ′

β+1, . . . , T
′
γ)

with weights T ′
α = P ′ = P [q, p] and T ′

β = Q′ = Q[q, p]. By Lemma 3.2, it

holds that σ(B′, Q′) = 1, thus, applying the induction hypothesis, we obtain

ord(B′, Q′) = β ≥ n− 1. We observe that each spanning tree of B′ together with

the edge q forms a spanning tree of B. Thus, there are at least β spanning trees

having the distinct weights

(T1, . . . , Tα−1, Tα, Tα+1, . . . , Tβ)

with weights Ti = T ′
i + w(q), 1 ≤ i ≤ β, such that each of these weights is smaller

than or equal to w(Q). Since σ(B, P) = 1, none of these spanning tree weights

can map into the weight w(P). Hence, we obtain ord(B, Q) ≥ β + 1 ≥ n since

w(P) < w(Q). This situation is illustrated in Figure 3.1 where P ′ is mapped to

the lower spanning tree P since w(q) < w(p).

2. We assume w(p) < w(q) and

(a) w(P)−w(p) < w(Q)−w(q). Analogous to the first case, we consider the bi-

spanning graph B′ = B[q, p] and the elements of W(B′) in strictly increasing

order

(T ′
1, . . . , T

′
α−1, T

′
α = P ′, T ′

α+1, . . . , T
′
β−1, T

′
β = Q′, T ′

β+1, . . . , T
′
γ) .

Once more, we have σ(B′, Q′) = 1 by Lemma 3.2. Applying the induction

hypothesis, we obtain ord(B′, Q′) = β ≥ n − 1. Again, each spanning tree

of B′ can be combined with the contracted edge q obtaining the following

weights

(T1, . . . , Tα−1, Tα, Tα+1, . . . , Tβ)

with Ti = T ′
i + w(q), 1 ≤ i ≤ β, (see Figure 3.1 with the upper spanning

tree P). Each of these distinct weights is smaller than or equal to w(Q)

and none of them can map into the weight w(P). Hence, we also count the

weight of spanning tree P resulting in ord(B, Q) ≥ β + 1 ≥ n.

29

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

β
−

1
≥

n
−

2
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

︷
︸
︸

︷
T ′

1

T ′
α−1

T ′
α = P ′

T ′
α+1

T ′
β−1

T ′
β = Q′

T ′
β+1

T ′
γ

T1

Tα−1

Tα

Tα+1

Tβ−1

Tβ = Q

Tβ+1

Tγ

P

p

P

p

Figure 3.1: Constructing new classes of spanning trees by adding the edge q (solid lines)

to the classes of B[q, p]. Depending on whether w(q) < w(p) or w(p) < w(q) (together

with w(P ′) < w(Q′)) holds we get either the upper or the lower spanning tree P .

30

3.2. ASSUMING SINGULARITY OF P

β
−

1
≥

n
−

2
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

︷
︸
︸

︷
T ′

1

T ′
α−1

T ′
α = Q′

T ′
α+1

T ′
β−1

T ′
β = P ′

T ′
β+1

T ′
γ

T1

Tα−1

Tα

Tα+1

Tβ−1

Tβ = P

Tβ+1

Tγ

Q

q

Figure 3.2: Constructing new classes of spanning trees by adding the edge p (solid lines)

to the classes of B[p, q].

31

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

(b) w(Q)−w(q) < w(P)−w(p). The main difference to the previous two cases is

that we exchange the role of P and Q by contracting p and removing q, that

is, we consider the bispanning graph B′ = B[p, q]. The increasing sequence

of weights of W(B′) is

(T ′
1, . . . , T

′
α−1, T

′
α = Q′, T ′

α+1, . . . , T
′
β−1, T

′
β = P ′, T ′

β+1, . . . , T
′
γ) .

By Lemma 3.2, it holds that σ(B′, P ′) = 1. Thus, we apply the induction

hypothesis and obtain ord(B′, P ′) = β ≥ n − 1. Combining these spanning

trees in B′ with the contracted edge p, we get at least β ≥ n − 1 different

spanning trees with distinct weights

(T1, . . . , Tα−1, Tα, Tα+1, . . . , Tβ, P)

where Ti = T ′
i + w(p), 1 ≤ i ≤ β. This situation is illustrated in Figure 3.2.

Since w(P) < w(Q), we obtain ord(B, Q) ≥ β + 1 ≥ n and the theorem

follows.

3.3 An Analysis using Matroid Theory

In this section, we give a short introduction to matroid theory in order to use it for the

analysis of bispanning graphs. In the first part, we introduce basic concepts and several

different descriptions of matroids. For a deeper view into matroid theory, we refer the

reader to the most common literature about matroids [Tut71; Wel76; Oxl92; Sch03].

After this introduction, we use these concepts to lower bound the number of spanning

trees with distinct weights of a bispanning graph. In this analysis, we restrict our

analysis to bispanning graphs where the set of all acyclic subgraphs is a special (a so-

called strongly base orderable) matroid. Note that Mayr and Plaxton already considered

this graph class (they used the notation of a ‘parallel swap’ [MP92]) but they did not

establish the connection to matroid theory. Furthermore, we show that each bispanning

graph can be analyzed in this way if it contains no minor isomorphic to the K4.

3.3.1 Preliminaries

As we will see, there exist different definitions of a matroid. Whitney, who firstly used

the term ‘matroid’ in his seminal paper on the abstract properties of linear depen-

dence [Whi35], already gave several descriptions. One of the most common definitions

is the following:

Definition 3.5. A pair (E, I) consisting of a finite set E and a non-empty family I
of subsets of E is called a matroid if I satisfies the following three conditions:

(I1) ∅ ∈ I,

(I2) I1 ∈ I and I2 ⊆ I1 imply I2 ∈ I, and

(I3) for all I1, I2 ∈ I with |I1| < |I2|, there exists some e ∈ I2\I1 such that I1∪{e} ∈ I.

32

3.3. AN ANALYSIS USING MATROID THEORY

Let M = (E, I) be a matroid. A subset I of E is called independent if I ∈ I, and

dependent otherwise. An independent subset B of E is called a base if there is no

independent subset B′ of E such that B ⊂ B′. As a consequence of condition (I3), all

bases of a matroid M = (E, I) have same cardinality. We denote the collection of bases

of M by B(M). If the matroid M is clear from the context, we will shortly write B.

Contrary to bases, a dependent set of minimum size is called a cycle. The collection of

cycles of a matroid M is denoted by C(M) or short by C.

Another way to define a matroid M is by its collection of bases B(M).

Proposition 3.6. Let B be a set of subsets of a set E and let I be the set of all subsets

of E that are contained in some B ∈ B. Then B is the collection of bases of a matroid

M = (E, I), if and only if the following conditions are satisfied:

(B1) B 6= ∅ and

(B2) for any two B1, B2 ∈ B and e ∈ B1 \B2, there exists an element f ∈ B2 \B1 such

that (B1 \ {e}) ∪ {f} ∈ B.

Proof. We start by proving the ‘only if’ direction. Because E is a finite set, the set I
is finite and contains at least one element by condition (I1). Now, let B1, B2 ∈ B and

e ∈ B1 \ B2. We consider I1 := B1 \ {e} and I2 := B2. Since all bases have same

cardinality, it holds that |I2| = |I1| + 1, thus, by (I3), there exists f ∈ I2 \ I1 such that

B′ = (B1 \ {e}) ∪ {f} ∈ I implying B′ ∈ B.

To establish the ‘if’ direction, let B be a set of subsets of E satisfying (B1) and

(B2). Let I be the set of subsets of E that are contained in some B ∈ B. We have to

show that M = (E, I) is a matroid. Since B is non-empty, I satisfies (I1). Let I1 ∈ I
implying I1 ⊆ B for some set B ∈ B. Hence, I2 ⊆ I1 implies I2 ⊆ B and so I2 ∈ I. For

proving (I3), we claim that all sets B of B have the same cardinality. To this end, we

suppose there exist sets B1 and B2 with |B1| > |B2| and |B1 \ B2| > 0 (minimal with

respect to the latter property). By (B2), for an element e ∈ B1 \ B2 there exists some

f ∈ B2\B1 such that (B1\{e})∪{f} ∈ B contradicting the minimality of |B2\B1| > 0.

We assume there are two sets I1, I2 ∈ I with |I1| < |I2| such that for all e ∈ I2 \ I1 the

set I1 ∪ {e} does not belong to I. By construction of I, there are sets B1 and B2 of B
such that I1 ⊆ B1 and I2 ⊆ B2. We choose B2 minimizing |B2 \ (I2 ∪ B1)|. Since (I3)

fails for I1 and I2, it holds that

I2 \ B1 = I2 \ I1 . (3.1)

We claim that B2 \ (I2 ∪B1) is empty. Otherwise let e ∈ B2 \ (I2 ∪B1). Then, by (B2),

there exists an element f ∈ B1 \ B2 such that (B2 \ {e}) ∪ {f} ∈ B contradicting the

choice of B2. Therefore, we obtain B2 \ B1 = I2 \ B1 and

B2 \ B1 = I2 \ I1 . (3.2)

Now, we claim that B1 \ (I1 ∪ B2) is empty. Otherwise, for an arbitrary element e in

this set, there exists an element f ∈ B2 \ B1 such that (B1 \ {e}) ∪ {f} ∈ B. Since

33

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

I1 ∪ {f} ⊆ (B1 \ {e})∪ {f}, the set I1 ∪ {f} is independent. Furthermore (3.2) implies

f ∈ I2 \ I1 contradicting our assumption that I1 and I2 is a counterexample for (I3).

Therefore, we obtain B1 \ B2 = I1 \ B2 implying

B1 \ B2 ⊆ I1 \ I2 . (3.3)

Because of the equicardinality of all B ∈ B, (3.2), (3.3), we obtain |I1 \ I2| ≥ |I2 \ I1|
implying |I1| ≥ |I2| which is a contradiction to our assumption. Hence, M = (E, I) is

a matroid.

A matroid M can also be characterized by its collection of cycles (without a proof).

Proposition 3.7. Let C be a set of subsets of a set E and let I be the collection of

subsets of E that contain no set of C. Then C is the collection of cycles of a matroid

M = (E, I) if and only if the following conditions are satisfied:

(C1) ∅ 6∈ C,

(C2) C1, C2 ∈ C and C1 ⊆ C2 imply C1 = C2,

(C3) C1, C2 ∈ C and e ∈ C1 ∩ C2 imply C3 ⊆ (C1 ∪ C2) \ {e} for some C3 ∈ C.

A consequence of this description by the collection of cycles is as follows. For each

independent set I ∈ I of a matroid M = (E, I) and an element e ∈ E such that I ∪{e}
is a dependent set, the set I ∪ {e} contains a unique cycle, which is an element of C.

This cycle is called the fundamental cycle of I with respect to e.

A very famous matroid in graph theory is the so-called cycle matroid of a graph. In

the literature [Tut65], this matroid is also often referred to as the polygon matroid .

Proposition 3.8. Let G = (V, E) be a graph and let I be the family of all subsets of E

such that each I ∈ I is a acyclic subgraph (i.e. a forest). Then M = (E, I) is a matroid

which is called the cycle matroid of G.

Proof. Clearly, conditions (I1) and (I2) hold. Let I1 and I2 be two acyclic subgraphs

of G with |I1| < |I2|. For proving condition (I3), we assume that I1 and I2 are forests

with |I2| = |I1|+1. This is no restriction since it is possible to remove arbitrary elements

from I2 obtaining an acyclic subgraph of G. Consider the induced graphs G1 = (V, I1)

and G2 = (V, I2). The number of connected components in G1 is c1 = |V | − |I1| and

c2 = |V | − |I2| in G2, respectively. Hence, it holds that c1 = c2 + 1. Thus, there are two

vertices lying in different connected components with respect to G1 which are connected

by an edge in G2. Now, choose an arbitrary edge e connecting these two components

yielding the independent set I1 ∪ {e}.

34

3.3. AN ANALYSIS USING MATROID THEORY

3.3.2 Transversal and Strongly Base Orderable Matroids

In this section, we introduce two special matroids. The first one which is called transver-

sal matroid was firstly observed by Edmonds and Fulkerson [EF65]. Furthermore, there

are several articles and books which study transversals (e.g., [BS68; Mir71; BD72]).

Bondy and Welsh formulated an algorithm to test whether or not a given matroid is

transversal [BW71a]. Afterwards, we consider matroids which have the property of

being strongly base orderable.

Let E be a finite set and A = (A1, . . . , Ar) be an arbitrary collection of subsets

of E. A subset E ′ = {e1, . . . , ek} ⊆ E of distinct elements is a partial transversal of A
if there exists a subfamily (Ai1 , . . . , Aik) of distinct sets of A such that ej ∈ Aij for all

1 ≤ j ≤ k. The element ej is said to represent the set Aij in E ′. A partial transversal

of A of size r is called a transversal of A. Now, we are ready to define the class of

transversal matroids.

Proposition 3.9. Let A be a family of finite subsets of a set E and let IA be the

collection of partial transversals of A. Then, M = (E, IA) is a matroid which is called

transversal matroid.

The collection A is said to be a representation of the matroid M = (E, IA). We note

that the representation of a transversal matroid is not necessarily unique.

In a natural way, each representation A of a transversal matroid M = (E, IA) is

related to a bipartite graph representation G(E,A). The vertex set of this bipartite

graph consists of vertices ve for each e ∈ E and vertices vA for each set A ∈ A.

A vertex ve representing the element e ∈ E is connected to a vertex vA if e ∈ A.

For example, let E = {e1, e2, e3, e4, e5} and A = (A1, A2, A3) with A1 = {e1, e2, e3},

A2 = {e2, e3, e5}, and A3 = {e4, e5}, the associated bipartite graph representation is

illustrated in Figure 3.3.

e1

e2

e3

e4

e5

A1

A2

A3

Figure 3.3: Bipartite graph representation of a transversal matroid.

35

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

Proof of Proposition 3.9 . Clearly, IA satisfies (I1) and (I2). Now, let I1 and I2 with

|I1| < |I2| be partial transversals. The bipartite graph representation G(E,A) contains

two matchings M1 and M2 that match I1 and I2, respectively, with A. Consider the

graph induced by the the symmetric difference M1∆M2 = (M1 \M2)∪ (M2 \M1). This

graph consists of cycles and paths where each cycle must have even length. Since the

number of edges in M2 \M1 is greater than the number of edges in M1 \M2, there exists

a path of odd length P = (v1, v2, . . . , v2k) which starts and ends with edges of M2.

Without loss of generality, we assume v1 is a vertex representing an element e ∈ E.

Then, I1 ∪ {v1} can be matched in A. Hence, I satisfies (I3).

Now, we consider another specification of matroids. These matroids have the prop-

erty to be strongly base orderable. Subsequently, we show that Conjecture 6 holds for

bispanning graphs B = (V, P, Q) whose cycle matroid is strongly base orderable.

Definition 3.10. A matroid M = (E, I) is called strongly base orderable if there exists

a bijection ϕ : B → B′ for each two bases B, B′ such that for each subset X of B the

set (B \ X) ∪ ϕ(X) is a base, too.

A very useful property of strongly base orderable matroids is proven in the following

lemma.

Lemma 3.11. Let M = (E, I) be a strongly base orderable matroid. Then for each two

bases B and B′ there exists a bijection ϕ : B → B′ such that for all subsets X of B the

sets (B \ X) ∪ ϕ(X) and (B′ \ ϕ(X)) ∪ X are bases.

Proof. By the definition of strongly base orderable matroids, there exists a bijection

ϕ : B → B′ such that for each X ⊆ B the set (B \ X) ∪ ϕ(X) is a base. Let X be

a subset of B of minimal cardinality such that (B′ \ ϕ(X)) ∪ X is not a base, that

is, (B′ \ ϕ(X)) ∪ X contains exactly one cycle C since otherwise X is not minimal.

Furthermore, because of this minimality we have X ⊂ C. Let X ′ = C \ X and let

X̃ = ϕ−1(X ′) ⊆ B be the elements of B that map to an element of X ′. Clearly, it

holds that X ∩ X̃ = ∅. Furthermore, the set (B \ X̃) ∪ ϕ(X̃) contains the cycle C in

contradiction to the property of M to be strongly base orderable.

Note that the bases B and B′ do not have to be disjoint. In this case, the relation for

all elements in B ∩B′ is the identity. However, in our analysis we only need the special

case of disjoint bases denoted by P and Q.

Theorem 3.12. Let B = (V, P, Q) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Let M = (P ∪ Q, I) be the cycle matroid

of B. If M is strongly base orderable then it holds that ord(B, Q) ≥ n.

Proof. Since M is strongly base orderable, there exists a bijection ϕ : Q → P such that

for each subset Q′ of Q the set (Q\Q′)∪ϕ(Q′) is a spanning tree. Let w : (P ∪Q) → R

be the weight function of B. Clearly, it holds that w(Q′) 6= w(ϕ(Q′)) for each Q′ ⊆ Q

since otherwise we have ord(B, Q) > 1. Let δ(q) = w(ϕ(q)) − w(q) be the difference

36

3.3. AN ANALYSIS USING MATROID THEORY

of the weights of an edge q and its image ϕ(q) with respect to the weight function w.

Thus, the function δ measures the increase of the spanning tree weight after replacing

the edge q by its image ϕ(q). In general, we define for a subset Q′ of Q

δ(Q′) =
∑

q∈Q′

δ(q) =
∑

q∈Q′

(
w(ϕ(q)) − w(q)

)
. (3.4)

If we choose Q′ = Q, equation (3.4) implies

δ(Q) =
∑

q∈Q

δ(q) =
∑

q∈Q

(
w(ϕ(q)) − w(q)

)
= w(P) − w(Q) < 0 ⇐⇒ w(P) < w(Q) .

Now, we arrange the elements of Q in such a way that δ(q1) ≤ . . . ≤ δ(qn−1) holds and

consider the n − 1 different sets Qi = {q1, . . . , qi} for 1 ≤ i ≤ n − 1. Clearly, for each

1 ≤ i ≤ n − 1 the set (Q \ Qi) ∪ ϕ(Qi) is a spanning tree since M is a strongly base

orderable matroid. Furthermore, each set Qi satisfies

δ(Qi) =
∑

q∈Qi

δ(q) < 0

that is, if we remove the edges Qi from Q and add the edges ϕ(Qi), the weight of the

resulting spanning tree is smaller than w(Q). Thus, if we show that these spanning

tree weights are distinct, the claim follows. Let i and j be two indices such that

δ(Qi) = δ(Qj). In this case, it holds that

δ(Q′) =
∑

q∈Q′

δ(q) =
∑

q∈Q′

(
w(ϕ(q)) − w(q)

)

=
∑

q∈Qj

(
w(ϕ(q)) − w(q)

)
−
∑

q∈Qi

(
w(ϕ(q)) − w(q)

)

= δ(Qj) − δ(Qi) = 0

which implies that the weight of the spanning tree (Q \ Q′) ∪ ϕ(Q′) is equal to w(Q)

contradicting σ(B, Q) = 1. Hence, there are at least n− 1 spanning trees with distinct

weight such that each of them is smaller than w(Q) implying ord(B, Q) ≥ n which

proves the theorem.

Observe that because of Lemma 3.11 we only counted spanning trees T of a bispanning

graph B = (V, P, Q) such that the remaining edges (P ∪ Q) \ T also form a spanning

tree. There are strong indications that these spanning trees are sufficient to prove

Conjecture 6. A question which arises now is how to distinguish bispanning graphs

whose cycle matroid is strongly base orderable from bispanning graphs that do not

have this property? The following theorem gives a first answer to this question.

Theorem 3.13. Transversal matroids are strongly base orderable.

This proof is a simplification of the proof given in [Gam99].

37

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

Proof. Given two arbitrary bases X and Y of a transversal matroid M on a ground

set E, we construct a strongly base orderable bijection ϕ : X → Y . Without loss of

generality, we assume X ∩ Y = ∅ since otherwise we set ϕ(x) := x for all x ∈ X ∩ Y to

obtain a strongly base orderable bijection.

The construction of ϕ is starting from the bipartite graph representation G(E,A)

for an arbitrary presentation A of M . Let MX : X → A and MY : Y → A be two

matchings in G(E,A) of cardinality |X| = |Y |. Both matchings must exist since M is

a transversal matroid.

Let x ∈ X be an arbitrary element of X and A ∈ A such that x is matched into A

by MX . We observe that there must be an element y ∈ Y such that y is matched

by MY into A. Otherwise Y ∪ {x} is a transversal in contradiction to Y being a base.

We define ϕ(x) := y. The sets (X\{x})∪{ϕ(x)} and (Y \{ϕ(x)})∪{x} are transversals.

Moreover, exchanging x and ϕ(x) does not have an effect on any other exchanges. Thus,

ϕ is a strongly base orderable bijection.

The converse of Theorem 3.13, i.e., a matroid is transversal if it is strongly base

orderable, is not true. To show a counterexample, we need the following theorem, which

proposes a property a graph has to achieve such that its cycle matroid is transversal.

For a proof, which requires a deeper look into matroid theory, we refer the reader

to [Bon72] and [Wel76].

Theorem 3.14. Let G = (V, E) be a finite graph. Then its cycle matroid M = (E, I)

is transversal if and only if K4 and C2
k for all k > 2 are no topological minors of G.

Figure 3.4: K4 and C2
5 .

Now, we consider the graph given in Figure 3.5. Obviously, this graph can be

obtained by two edge-subdivisions of any pair of multiple edges of the C2
3 . Hence, the

cycle matroid of this graph is not transversal by Theorem 3.14. But there exists, for

each two spanning trees T and T ′ of this graph, a bijection ϕ : T → T ′ such that for

each subset E ⊆ T , the set (T \ E) ∪ ϕ(E) is a spanning tree, too. The bijection ϕ

can be constructed as follows. Without loss of generality, we assume T ∩ T ′ = ∅ since

38

3.3. AN ANALYSIS USING MATROID THEORY

Figure 3.5: The cycle matroid is strongly base orderable but not transversal.

otherwise, we set ϕ(e) = e for all e ∈ T ∩ T ′. Now, we consider the bispanning graph

B = (V, T, T ′). This graph has at least one vertex v of degree deg(v) = 2. Let e ∈ T and

f ∈ T ′ be the corresponding edges incident to v. We set ϕ(e) = f , cut off both leaves

(and the vertex v) and recursively repeat this procedure until the graph is exhausted.

For a deeper view regarding the correctness of this approach, we refer the reader to

Chapters 4 and 5.

In the following, we will show that there exists a better characterization of graphs

whose cycle matroid is strongly base orderable. Actually, we will see that it suffices

to look for a (topological) minor isomorphic to K4. First, we consider the following

definition. A matroid M is called base orderable if for each two bases B and B′ of M ,

there exists a bijection ϕ : B → B′ such that for all x ∈ B, the sets (B \ {x}) ∪ {ϕ(x)}
and (B′\{ϕ(x)}∪{x} are bases of M . Obviously, if M is strongly base orderable then M

is also base orderable. For some time, it was unknown whether there exists a matroid

which is base orderable but not strongly base orderable. Ingleton was the first who

found an example of such a matroid [Ing75]. Bondy gave the following characterization

for a base orderable cycle matroid of a graph.

Theorem 3.15. Let G be a graph. Then, its cycle matroid is base orderable if and only

if G contains no (topological) minor isomorphic to K4.

When speaking about the cycle matroid of a graph, both definitions are equivalent as

we will see in the following. The cycle matroid of a graph is also known to be a binary

matroid. A matroid is a binary matroid if it can be represented over GF (2), the Galois

field of two elements. For a graph G = (V, E), we take the vertex-edge-incidence matrix

and delete an arbitrary row. Then, any set of linear independent columns is defined to

be an independent set. These sets correspond to the forests of G. Keijsper, Pendaving,

and Schrijver proved that for binary matroids, the property of being base orderable is

equivalent to being strongly base orderable [KPS00]. Hence, we obtain the following

corollary.

Corollary 3.16. The cycle matroid of a graph G = (V, E) is strongly base orderable if

and only if G has no (topological) minor isomorphic to K4.

39

CHAPTER 3. RANKING OF WEIGHTED SPANNING TREES

A related exchange property was studied by Gabow [Gab76]. Given a matroid M

and a base B of M , he defined a sequence of ordered pairs of sets Xi, X
′
i, i = 1, . . . , m,

to be a serial B-exchange if B0 = B and Bi = (Bi−1 \ Xi) ∪ X ′
i are bases of M and

Xi ⊂ Bi−1 holds for all i = 1, . . .m. The ordered pair X, X ′ is called a strong serial B-

exchange if there exists a bijection ϕ : X → X ′ such that for any ordering of the elements

in X, the corresponding sequence of pairs is a serial B-exchange, i.e., the exchange of X

can be executed in any order. Gabow proved the following decomposition theorem.

Theorem 3.17. Let X, X ′ be a symmetric exchange with respect to two bases B, B′ of

a matroid. Then, the sets X and X ′ can be partitioned

X =

m⋃

i=1

Yi and X ′ =

m⋃

i=1

Y ′
i

such that

(i) the sequence Yi, Y
′
i , i = 1, . . . , m, is a serial B-exchange,

(ii) the sequence Y ′
i , Yi, i = 1, . . . , m, is a serial B′-exchange, and

(iii) the exchanges made in (i) and (ii), Yi, Y
′
i and Y ′

i , Yi, are strong serial exchanges.

We obtain a special case of the theorem if X = B and X ′ = B′. Here, it is interesting

to ask whether or not it can hold m = 1, which corresponds to a strongly base ordering.

Analogously, to our studies in this chapter, Gabow discovered that this case cannot

always be achieved. Again, the complete graph on four vertices K4 was given as a

counterexample.

40

Chapter 4

Partitioning Bispanning Graphs

4.1 Introduction

In this chapter, we refine Conjecture 6 by merging the different findings which we

discussed in Chapter 3. In Section 3.2, we have seen that this conjecture holds under

the assumption that the weight function is also required to satisfy σ(B, P) = 1. The

weight of spanning tree P is generally not unique even if the number of vertices is small.

Figure 4.1 shows an example of the complete graph on four vertices K4 which is the

v1

v2 v3

v4

4
2

3

3

5

6

Figure 4.1: Example of a weighted bispanning graph B = (V, P, Q, w) such that

σ(B, Q) = 1 and σ(B, P) = 4.

smallest bispanning graph B = (V, P, Q) without multiple edges (aside from the trivial

bispanning graph which is a single vertex). Recall that the edges of Q are blue-colored

and the edges of P are red-colored, respectively. Moreover, we observe that there is

(up to isomorphism) only one partition of the K4 into two distinct spanning trees. The

spanning tree weights in Figure 4.1 are w(P) = 11 and w(Q) = 12, thus, it holds

that ord(B, P) < ord(B, Q). One can easily check by an exhaustive enumeration of all

41

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

spanning trees that σ(B, Q) = 1 and σ(B, P) = 4 hold since

w(P) = 11 = 2 + 4 + 5
︸ ︷︷ ︸

(v1,V \{v1})

= 3 + 3 + 5
︸ ︷︷ ︸

(v2,V \{v2})

= 2 + 3 + 6
︸ ︷︷ ︸

(v3,V \{v3})

where (vi, V \{vi}) denotes the edges joining vi with a vertex in V \{vi}, i ∈ {1, 2, 3}. In

this case, the main observation is that given a spanning tree T 6= P with w(T) = w(P),

the remaining edges E \ T contain a cycle. In Figure 4.1, the remaining edges cannot

form a spanning tree since each spanning tree with weight w(P) contains all edges of

a cut. To avoid the problem of σ(B, P) > 1, we introduce the concept of partitioning

bispanning graphs into spanning trees which was already indicated in Section 3.3. This

approach leads to a somewhat stronger conjecture compared to Conjecture 6.

Definition 4.1. Let B = (V, P, Q) be a bispanning graph. A spanning tree T of B is

called a partition spanning tree if its complement E \ T is a spanning tree, too.

Let B = (V, P, Q) be a bispanning graph. We denote by T ′(B) the set of all partition

spanning trees of B. Given a weight function w : (P ∪Q) → R we denote by W ′(B) the

set of different weights of all partition spanning trees of B and by W ′
i(B) the ith small-

est element of W ′(B). Moreover, T ′
i (B) is the set of partition spanning trees T where

w(T) = W ′
i(B). We define the order ord′(B, T) of a partition spanning tree T with re-

spect to B as the number i ∈ N such that T ∈ T ′
i (B). The number of partition spanning

trees with weight w(T) is denoted by σ′(B, T), that is, σ′(B, T) = |T ′
ord′(B,T)(B)|.

Conjecture 7. Let B = (V, P, Q, w) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Then, it holds that ord′(B, Q) ≥ n.

If Conjecture 7 holds then it immediately implies Conjecture 6 since we have

ord′(B, T) ≤ ord(B, T) (4.1)

for all partition spanning trees T of B. Using the ‘symmetric subset exchange axiom’

(Lemma 3.1) for spanning trees, we can give a lower bound on the number of partition

spanning trees with (not necessarily distinct) weights less than w(Q).

Proposition 4.2. Let B = (V, P, Q, w) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Then there are at least 2n−2 weighted partition

spanning trees T in B such that w(T) < w(Q).

Proof. There are 2n−1 subsets P ′ of P . According to Lemma 3.1, there is a subset Q′

of Q for each P ′ such that (P \ P ′) ∪Q′ as well as (Q \Q′) ∪ P ′ are partition spanning

trees. Clearly, the weight of at least one of both sets is less than w(Q). Because of

symmetry, we have to divide by two and the claim follows.

42

4.2. STRICTLY 2-EDGE-CONNECTED BISPANNING GRAPHS

4.2 Strictly 2-Edge-Connected Bispanning Graphs

In this section, we consider strictly 2-edge-connected bispanning graphs and show that

each of these bispanning graphs can be reduced to some 3-edge-connected bispanning

graph under the assumption that it is only necessary to count partition spanning trees.

Remember that B[q, p] denotes the bispanning graph which is obtained from B by

contracting q and discarding p, i.e., B[q, p] = (B \ p)/q.

Theorem 4.3. Let B = (V, P, Q, w) be a weighted bispanning graph with edge-

connectivity λ(B) = 2, ord(B, P) < ord(B, Q), and σ(B, Q) = 1. Then, there are

two edges p ∈ P and q ∈ Q such that ord′(B[q, p], Q[q, p]) < ord′(B, Q).

Proof. Since λ(B) = 2, there exists a cut (V ′, V \ V ′) in B with exactly two edges

between V ′ and V \ V ′. Clearly, one of these edges belongs to P and the other one

belongs to Q since otherwise either P or Q is not a spanning tree. We denote by p the

edge which belongs to P and by q the edge which belongs to Q, respectively. Now, we

consider the bispanning graph B′ = B[q, p]. In Figure 4.2, there is an illustration of

this transformation where p is removed and the edge q connecting u and v is contracted

to a new vertex uv.

u

v

pq uv=⇒

Figure 4.2: Transforming strictly 2-edge-connected bispanning graphs.

As already seen in Section 3.2 (cf. Lemma 3.2), each spanning tree of B′ = B[q, p]

can be combined with the edge q yielding a spanning tree of B. If we consider a cut

consisting of two edges p and q, we can extend this fact to obtain a stronger proposition.

Now, each partition spanning tree of B′ can be combined either with p or with q yielding

a partition spanning tree of B. Depending on the weights of p and q, the sequence of

different partition spanning tree weights of B′ in increasing order is either

(T ′
1, . . . , T

′
α−1, T

′
α = P ′, T ′

α+1, . . . , T
′
β−1, T

′
β = Q′, T ′

β+1, . . . , T
′
γ) (4.2)

43

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

or

(T ′
1, . . . , T

′
α−1, T

′
α = Q′, T ′

α+1, . . . , T
′
β−1, T

′
β = P ′, T ′

β+1, . . . , T
′
γ) (4.3)

for appropriate values of α and β. For the sake of readability, we associate in (4.2)

and (4.3) with a tree T also its weight w(T). Because of the symmetric properties

of partition spanning trees, the value of γ is clearly defined to be γ = α + β − 1.

Furthermore, for each 1 ≤ i ≤ α + β − 1, we have w(T ′
i) + w(T ′

α+β−i) = w(B′) where

w(B′) is the total sum of weights of edges in B′.

If (4.2) holds, we combine each partition spanning tree of B′ with the edge q resulting

in β ≥ n−1 partition spanning trees with distinct weights where each of them is smaller

than or equal to w(Q). Because P is the only partition spanning tree of weight w(P),

none of these weights can map into w(P). Hence, there are β+1 ≥ n partition spanning

tree in B implying ord′(B′, Q′) < ord′(B, Q).

In the second case, i.e., (4.3) holds, we combine each partition spanning tree with

the edge p. Since w(P ′ ∪ {p}) < w(Q′ ∪ {q}), we arrive at ord′(B′, Q′) < ord′(B, Q)

and the claim follows. Both cases are illustrated in Figure 4.3 and Figure 4.4.

As a consequence of Theorem 4.3, it suffices to consider 3-edge-connected bispanning

graphs to prove Conjecture 7.

4.3 Decomposition of Bispanning Graphs with Cut

Vertices

In the previous section, we have seen that we can turn our attention to 3-edge-connected

bispanning graphs. Now, we want to show that it is also sufficient to consider only 2-

vertex-connected bispanning graphs, i.e., graphs that do not contain any cut vertex.

In the following theorem, we assume that the given bispanning graph B contains at

least one cut vertex. If the number of cut vertices is greater than one, it is possible to

recursively apply this theorem to its 2-connected components.

Theorem 4.4. Let B = (V, P, Q, w) be a weighted bispanning graph with a cut ver-

tex v ∈ V and such that ord(B, P) < ord(B, Q) and σ(B, Q) = 1 holds. Let

B1 = (V1, P1, Q1, w) and B2 = (V2, P2, Q2, w) be the two bispanning subgraphs which

are connected through v. Then B1 and B2 are weighted bispanning graphs such that

Q1 and Q2 have unique weights. Furthermore, if Conjecture 7 holds for both of them,

Conjecture 7 holds for B.

In the proof of Theorem 4.3, we combined partition spanning trees with the cut edges p

and q. Now, we have to combine partition spanning trees of B1 with partition spanning

tree of B2. Since this is slightly more difficult, we take a look at the following two

lemmas because they will simplify the proof of Theorem 4.4.

44

4.3. DECOMPOSITION OF BISPANNING GRAPHS WITH CUT VERTICES

β
−

1
≥

n
−

2
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

︷
︸
︸

︷
T ′

1

T ′
α−1

T ′
α = P ′

T ′
α+1

T ′
β−1

T ′
β = Q′

T ′
β+1

T ′
γ

T1

Tα−1

Tα

Tα+1

Tβ−1

Tβ = Q

Tβ+1

Tγ

P

p

P

p

Figure 4.3: Each partition spanning tree of B′ = B[q, p] can be combined with the

edge q (solid lines). Depending on whether w(q) < w(p) or w(p) < w(q) (together with

w(P ′) < w(Q′)) holds, we get either the upper partition spanning tree P or the lower

one.

45

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

β
−

1
≥

n
−

2
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

︷
︸
︸

︷
T ′

1

T ′
α−1

T ′
α = Q′

T ′
α+1

T ′
β−1

T ′
β = P ′

T ′
β+1

T ′
γ

T1

Tα−1

Tα

Tα+1

Tβ−1

Tβ = P

Tβ+1

Tγ

Q

q

Figure 4.4: Constructing new classes of partition spanning trees by adding the edge p

(solid lines) to the classes of B[q, p].

46

4.3. DECOMPOSITION OF BISPANNING GRAPHS WITH CUT VERTICES

Lemma 4.5. Let X = (x1, x2, . . . , xβ) and Y = (y1, y2, . . . , yν) be sequences of numbers

such that xi < xj for all 1 ≤ i < j ≤ β and yk < yℓ for all 1 ≤ k < ℓ ≤ ν. Let

S = {xi + yk | 1 ≤ i ≤ β and 1 ≤ k ≤ ν} be the set of all possible sums of two elements

x ∈ X and y ∈ Y . Then, there are at least β+ν−2 distinct s ∈ S such that s < xβ +yν.

Proof. Given two strictly increasing sequences of numbers X = (x1, x2, . . . , xβ) and

Y = (y1, y2, . . . , yν), the following chain consists of β + ν − 2 distinct sums which are

strictly smaller than xβ + yν:

(x1 + y1) < (x1 + y2) < . . . < (x1 + yν−1)
︸ ︷︷ ︸

ν−1 pairs

<

< (x1 + yν) < (x2 + yν) < . . . < (xβ−1 + yν)
︸ ︷︷ ︸

β−1 pairs

< (xβ + yν)

This proves the lemma.

The next lemma is an extension of Lemma 4.5 containing further properties.

Lemma 4.6. Let X = (x1, . . . , xα, . . . , xβ) and Y = (y1, . . . , yµ, . . . , yν) be sequences

of numbers such that α < β, µ < ν, xi < xj for all 1 ≤ i < j ≤ β, yk < yℓ for all

1 ≤ k < ℓ ≤ ν, and such that the following restrictions are satisfied:

1. Let EX , EY , FX, and FY defined as

EX = {xβ − xi | 1 ≤ i < β}
EY = {yν − yk | 1 ≤ k < ν}
FX = {xj − xα | α < j < β}
FY = {yℓ − yµ | µ < ℓ < ν} ,

we assume X and Y satisfy FX ⊆ EX, FY ⊆ EY , and FX ∩ FY = ∅.

2. xβ + yµ < xα + yν.

3. xi + yk = xα + yν if and only if i = α and k = ν.

Then S = {xi + yk | 1 ≤ i ≤ β and 1 ≤ k ≤ ν}, which is the set of all possible sums of

two elements x ∈ X and y ∈ Y , consists of at least β + ν − 2 distinct elements s ∈ S

such that s < xα + yν.

Proof. We consider the following chain of pairwise different sums

(x1 + y1) < (x1 + y2) < . . . < (x1 + yµ−1)
︸ ︷︷ ︸

µ−1 pairs

<

< (x1 + yµ) < (x2 + yµ) < . . . < (xα + yµ) < . . . < (xβ + yµ)
︸ ︷︷ ︸

β pairs

.

47

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

Obviously, all of these sums are less than xα+yν , that is, we have already found β+µ−1

distinct sums and we have to show that there are ν − µ − 1 further distinct pairs with

this property. To this end, we consider the sums that are formed by xα and yk for

µ < k < ν. Clearly, these sums are distinct where each of them is greater than xα + yµ

and smaller than xα + yν . By condition (3) in Lemma 4.6, they can only conflict with

some pair xi + yµ, α < i < β, in the chain given above. Suppose there is a collision

with some pair, that is, there exists some α < i < β and µ < k < ν such that xα +yk =

xi + yµ ⇐⇒ yk − yµ = xi − xα. Then, we obtain a contradiction to our assumption

(condition (1) in Lemma 4.6) FX ∩ FY = ∅ since xi − xα ∈ FX and yk − yµ ∈ FY for

these values of i and k. Hence, there are at least β + µ − 1 + ν − µ − 1 = β + ν − 2

distinct elements s ∈ S such that s < xα + yν proving the lemma.

Proof of Theorem 4.4. Given the bispanning graph B = (V, P, Q) and a cut vertex v

in B, the graph decomposes into two bispanning subgraphs, B1 = (V1, P1, Q1) and

B2 = (V2, P2, Q2), which are connected by v (see Figure 4.5 for an illustration). Clearly,

B1 = (V1, P1, Q1) B2 = (V2, P2, Q2)
v

Figure 4.5: Two bispanning graphs joined by a cut vertex.

in both subgraphs, the remaining part of the spanning tree Q has unique weight, i.e., it

holds that σ(B1, Q1) = 1 and σ(B2, Q2) = 1 since otherwise we easily get a contradiction

to σ(B, Q) = 1 by constructing another spanning tree T 6= Q with weight w(T) = w(Q).

Another fact is that each spanning tree of B1 together with each spanning tree of B2

forms a spanning tree of B. Moreover, a pair of partition spanning trees of B1 and B2

forms a partition spanning tree of B.

Since w(P1) + w(P2) < w(Q1) + w(Q2) not both inequations, w(P1) > w(Q1) and

w(P2) > w(Q2), can be true. Hence, without loss of generality, we assume w(P2) <

w(Q2). Depending on whether w(P1) < w(Q1) or w(P1) > w(Q1) holds, we distinguish

between

ord′(B1, P1) < ord′(B1, Q1) and ord′(B2, P2) < ord′(B2, Q2) (4.4)

and

ord′(B1, P1) > ord′(B1, Q1) and ord′(B2, P2) < ord′(B2, Q2) . (4.5)

48

4.3. DECOMPOSITION OF BISPANNING GRAPHS WITH CUT VERTICES

On the one hand, if (4.4) holds, the ordered sequences of all partition spanning tree

weights of B1 and B2 are

(T
(1)
1 , . . . , T

(1)
α−1, T

(1)
α = P1, T

(1)
α+1, . . . , T

(1)
β−1, T

(1)
β = Q1, T

(1)
β+1, . . . , T

(1)
γ) (4.6)

and

(T
(2)
1 , . . . , T

(2)
µ−1, T

(2)
µ = P2, T

(2)
µ+1, . . . , T

(2)
ν−1, T

(2)
ν = Q2, T

(2)
ν+1, . . . , T

(2)
κ) . (4.7)

By assumption, Conjecture 7 holds for both bispanning subgraphs, that is, we have

ord′(B1, Q1) = β ≥ n1 and ord′(B2, Q2) = ν ≥ n2 with n1 := |V1| and n2 := |V2|. The

number of vertices in B is |V | = n = n1 +n2−1. Thus, we have to construct n1 +n2−2

partition spanning trees with distinct weights where each weight is smaller than w(Q).

To this end, we apply Lemma 4.5 with (the sequences of tree weights)

X = (T
(1)
1 , T

(1)
2 , . . . , T

(1)
β = Q1)

and

Y = (T
(2)
1 , T

(2)
2 , . . . , T (2)

ν = Q2)

obtaining β + ν −2 ≥ n1 + n2 −2 partition spanning trees with distinct weights strictly

less than w(Q). All combinations according to Lemma 4.5 are illustrated in Figure 4.6

where it is easy to see that all of them lead to partition spanning trees of different

weights since there are no crossing lines.

On the other hand, we suppose (4.5) holds. Again, we consider the ordered sequences

of all partition spanning tree weights of B1 and B2 which are

(T
(1)
1 , . . . , T

(1)
α−1, T

(1)
α = Q1, T

(1)
α+1, . . . , T

(1)
β−1, T

(1)
β = P1, T

(1)
β+1, . . . , T

(1)
γ) (4.8)

and

(T
(2)
1 , . . . , T

(2)
µ−1, T

(2)
µ = P2, T

(2)
µ+1, . . . , T

(2)
ν−1, T

(2)
ν = Q2, T

(2)
ν+1, . . . , T

(2)
κ) . (4.9)

Accordingly to the previous case, we have σ(B1, Q1) = σ(B2, Q2) = 1. Assuming

Conjecture 7 holds for B1 and B2, we have ord′(B2, Q2) = ν ≥ n2 with n2 := |V2| and

ord′(B1, P1) = β ≥ n1 with n1 := |V1| where the latter lower bound follows because of

the symmetric properties of partition spanning tree weights.

In the previous case, we applied Lemma 4.5 where it was not difficult to construct

β + ν − 2 distinct pairs of partition spanning trees. Because the relation between Q1

and P1 in (4.8) has changed, it is not as easy as in the previous case. However, together

with Lemma 4.6, we are able to prove the same number of partition spanning trees. To

this end, let

X = (T
(1)
1 , . . . , T (1)

α , . . . , T
(1)
β)

and

Y = (T
(2)
1 , . . . , T (2)

µ , . . . , T (2)
ν)

49

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

β
−

1
≥

n
1
−

1
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

of
p

ar
ti

ti
on

sp
an

n
in

g
tr

ee
s

︷
︸
︸

︷

︸
︷
︷

︸

ν
−

1
≥

n
2
−

1
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

of
p

ar
ti

ti
on

sp
an

n
in

g
tr

ee
sT

(1)
1

T
(1)
2

T
(1)
α−1

T
(1)
α = P1

T
(1)
α+1

T
(1)
β−1

T
(1)
β = Q1

T
(1)
β+1

T
(1)
γ

T
(2)
1

T
(2)
2

T
(2)
µ−1

T
(2)
µ = P2

T
(2)
µ+1

T
(2)
ν−1

T
(2)
ν = Q2

T
(2)
ν+1

T
(2)
κ

Figure 4.6: Combinations of partition spanning trees if w(P1) < w(Q1) and w(P2) < w(Q2).

50

4.3. DECOMPOSITION OF BISPANNING GRAPHS WITH CUT VERTICES

β
−

1
≥

n
1
−

1
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

of
p

ar
ti

ti
on

sp
an

n
in

g
tr

ee
s

︷
︸
︸

︷

︸
︷
︷

︸

ν
−

1
≥

n
2
−

1
d

iff
er

en
t

w
ei

gh
t

cl
as

se
s

of
p

ar
ti

ti
on

sp
an

n
in

g
tr

ee
sT

(1)
1

T
(1)
2

T
(1)
α−1

T
(1)
α = Q1

T
(1)
α+1

T
(1)
β−1

T
(1)
β = P1

T
(1)
β+1

T
(1)
γ

T
(2)
1

T
(2)
2

T
(2)
µ−1

T
(2)
µ = P2

T
(2)
µ+1

T
(2)
ν−1

T
(2)
ν = Q2

T
(2)
ν+1

T
(2)
κ

Figure 4.7: Combinations of partition spanning trees if w(P1) > w(Q1) and w(P2) < w(Q2).

51

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

with T
(1)
α = Q1, T

(1)
β = P1, T

(2)
µ = P2, and T

(2)
ν = Q2. Furthermore, let EX , EY , FX ,

and FY be defined as

EX = {T (1)
β − T

(1)
i | 1 ≤ i < β}

EY = {T (2)
ν − T

(2)
k | 1 ≤ k < ν}

FX = {T (1)
j − T (1)

α | α < j < β}
FY = {T (2)

ℓ − T (2)
µ | µ < ℓ < ν} .

Remember that the partition spanning tree weights satisfy a symmetric property which

can be formulated as

Ti − Tα = Tβ − Tα+β−i (4.10)

for all α < i < β with respect to the sequence X and

Tk − Tµ = Tν − Tµ+ν−k (4.11)

for all µ < k < ν with respect to the sequence Y . Thus, X and Y satisfy the three

conditions of Lemma 4.6:

1. Because of (4.10) and (4.11), it holds that FX ⊆ EX and FY ⊆ FY . Moreover, we

have FX ∩ FY = ∅ since otherwise there exist indices α < j < β and µ < ℓ < ν

such that T
(1)
j −T

(1)
α = T

(2)
ℓ −T

(2)
µ = T

(2)
ν −T

(2)
µ+ν−k ⇐⇒ T

(1)
α + T

(2)
ν = Q1 + Q2 =

T
(1)
j + T

(2)
µ+ν−k implying a contradiction to σ(B, Q) = 1.

2. Clearly, we have T
(1)
β + T

(2)
µ = P1 + P2 = P < Q = Q1 + Q2 = T

(1)
α + T

(2)
ν .

3. This condition holds because of σ(B, Q) = 1.

Hence, we arrive at ord′(B, Q) = β + ν − 1 ≥ n1 + n2 − 1 = n proving the theorem.

In Figure 4.7 all considered combinations are illustrated. In this figure, there are

only crossings of dotted and solid lines. Therefore, only these combinations can conflict

with each other. By definition, the combination (Q1, Q2) forms a spanning tree of

unique weight. On the other hand, no combination (T
(1)
j , P2 = T

(2)
µ), α < j < β

can conflict with a combination (Q1 = T
(1)
α , T

(2)
ℓ), µ < ℓ < ν since otherwise we can

construct a partition spanning tree T 6= Q with weight w(Q) contradicting σ(B, Q) = 1.

This proves the theorem.

Hence, it is sufficient to consider only 2-vertex-connected bispanning graphs.

4.4 General Decomposition of Bispanning Graphs

As our study in the previous two sections shows, it is possible to combine partition

spanning trees of bispanning (sub) graphs which are connected by a common cut vertex

or which are connected by two edges. In this section, we want to generalize this study

52

4.4. GENERAL DECOMPOSITION OF BISPANNING GRAPHS

by giving a universal decomposition method for general (weighted) bispanning graphs.

As a first step, given any weighted bispanning graph B = (V, P, Q, w), we observe that

it is possible to omit a pair (q, p) of multiple edges.

Proposition 4.7. Let B = (V, P, Q, w) be a weighted bispanning graph with

ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Let (p, q) be a pair of multiple edges. Then,

it holds that ord′(B[q, p], Q[q, p]) < ord′(B, Q).

Proof. The proof is analogously to the one of Theorem 4.3 depending on whether w(q) <

w(p) or conversely even if the edge connectivity of B is greater than two.

Although Proposition 4.7 can be proven according to Theorem 4.3, there are also

essential similarities to our analysis in Section 4.3. The key observation is that given

a pair (q, p) of multiple edges connecting vertices v and w, the induced graph B[V ′]

on V ′ = {v, w} is a bispanning graph itself. Following this idea, it is possible to prove

Proposition 4.7 also by using the results of the last section.

Theorem 4.8. Let B = (V, P, Q, w) be a weighted bispanning graph such that

ord(B, P) < ord(B, Q), σ(B, Q) = 1. Let B1 be a non-trivial bispanning subgraph

of B. Let B2 be the graph we obtain from B by contracting the subgraph B1 to a single

vertex. Then, Conjecture 7 holds for B if Conjecture 7 holds for B1 and B2.

Proof. Given a weighted bispanning graph B = (V, P, Q, w) with ord(B, P) < ord(B, Q),

σ(B, Q) = 1. Let B1 = (V ′, P1, Q1) be a non-trivial bispanning subgraph of B. Let

B2 = (V ′′, P2, Q2) be the graph which we obtain from B by contracting B1 to a single

vertex, i.e., we have B2 = B/V1. We define two weight functions for B1 and B2 according

to the function w. Hence, if σ(B, Q) = 1 holds then we have σ(B1, Q1) = σ(B2, Q2) = 1.

Furthermore, we observe that B2 indeed is a bispanning graph.

Remember that each partition spanning tree of B1 together with each partition

spanning tree of B2 forms a partition spanning tree of the whole bispanning graph B.

Thus, we are able to apply Lemma 4.5 or Lemma 4.6 depending on the weight difference

between the remaining parts of Q and P with respect to B1 and B2.

If a given bispanning graph is composite then there exists a non-trivial bispanning

subgraph. In this case, we are able to apply Theorem 4.8. Suppose the bispanning

graphs B1 and B2 are composite itself, we can recursively apply this theorem until the

remaining bispanning graphs become atomic. Hence, we have to further analyze only

atomic bispanning graphs in order to get a proof of Conjecture 7. The smallest non-

trivial atomic bispannable graph is the complete graph on four vertices. This graph

has (up to isomorphism) only one partition into two spanning trees which is analyzed

in the following section.

53

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

4.5 Partitioning the K4

In Section 4.2 and Section 4.3 we have seen that it is sufficient to analyse 2-vertex-

connected and 3-edge-connected bispanning graphs. Moreover, by Theorem 4.8, it

is possible to consider only simple graphs, i.e., graphs without multiple edges. The

following proposition is due to Dirac [Dir52].

Proposition 4.9. A 2-connected simple graph in which the degree of every vertex is at

least 3 has a minor isomorphic to the complete graph K4.

Proof. Let G = (V, E) be such a graph. A path P between two non-adjacent vertices v

and w of a cycle C is called a chord if P is having only the vertices v and w in common

with C. We claim that G contains a cycle of length at least 4 and each vertex of C is

connected by a chord to another vertex in C.

Let P = (v1, v2, . . . , vk) be a longest path in G. The vertex v1 is adjacent to three

vertices in P since otherwise there exists a longer path in G. Let vi be the vertex

adjacent to v1 with largest index i. Then, the vertices v1, v2, . . . , vi, v1 form a cycle of

length at least 4. Now, we consider such a cycle C = (v1, v2, . . . , vk, v1) of length k ≥ 4.

Observe that v1 is adjacent to another vertex w distinct to v2 and vk. If w ∈ C then we

are done. Hence, we assume w 6∈ C. Since v1 is not a cut vertex, there exists a path P ′

between w and v2 which does not pass v1. Let vi be the first vertex contained in C and

lying on this path. If i = 2 or i = k, we have found a longer cycle contradicting the

assumption that P is a longest path in G. Hence, the path between v1 and vi via w is

a chord.

Now, we show the existence of a minor isomorphic to K4 in G. To this end, we

consider a cycle C = (v1, v2, . . . , vk, v1) of lenght k ≥ 4 and distinguish two cases:

either there are two chords connecting different pairs of vertices of C such that there

is a common vertex not belonging to C or no two such chords of C have a vertex not

belonging to C in common.

The first case is easy and is illustrated in Figure 4.8(a). For the second case, let vi

(a) There are two chords with a common vertex. (b) No two chords have a common vertex.

Figure 4.8: Constructing a minor isomorphic to K4.

and vj be two vertices connected by a chord such that j − i is minimal. Since vi and vj

are two non-neighbouring vertices, there exists a vertex vℓ with i < ℓ < j. Furthermore,

54

4.5. PARTITIONING THE K4

the vertex vℓ is connected by a chord with a vertex lying on C between vj and vi. Then,

the minor isomorphic to K4 can be constructed according to Figure 4.8(b).

As a consequence, this proposition closes the gap to Section 3.3 because the cycle

matroid of a bispanning graph is strongly base orderable if the graph has no minor

isomorphic to the complete graph K4. Hence, we have to focus on counting partition

spanning trees in graphs which have a minor isomorphic to K4. Moreover, the K4 is the

smallest bispanning graph with the property having no non-trivial subset V ′ ⊂ V such

that the subgraph induced on V ′ is a bispanning graph. Nevertheless, we will prove

that Conjecture 7 holds even if the given weighted bispanning graph B = (V, P, Q, w)

is isomorphic to the complete graph on four vertices with a weight function that is

required to satisfy ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Note that there is up to

isomorphism only one assignment of the edges to two edge-disjoint spanning trees. We

use the decomposition according to Figure 4.9 where the blue edges (a, b, and c) belong

to Q and the red edges (d, e, and f) belong to P .

v4 v3

v1 v2

b

f

e

d

c

a

Figure 4.9: A decomposition of K4 into two disjoint spanning trees.

Theorem 4.10. Let B = (V, P, Q) with Q = {a, b, c} and P = {d, e, f} be a partition

of the K4 into two disjoint spanning trees. Let w : (P ∪ Q) → R be a weight function

such that ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Then, it holds that ord′(B, Q) ≥ 4.

Proof. Let Q = {a, b, c} and P = {d, e, f} according to Figure 4.9. It is easy to

verify that this graph has 12 different partition spanning trees which are illustrated in

Figure 4.10, where each pair of complementary trees is in a box with gray background.

By the pigeon-hole principle, at least one partition spanning tree of each pair must have

a weight smaller than w(Q). We make a case distinction depending on the weights of

the complementary spanning trees {a, c, d} and {b, e, f} in the upper right corner of

Figure 4.10. These partition spanning trees do not have the property to be part of a

path in the tree graph which corresponds to a so-called subsequence-interchangeable

base ordering (cf. Figure 5.2 in Chapter 5). For the sake of readability, we associate

with an edge q also its weight w(q), i.e., a+b+c is an abbreviation of w(a)+w(b)+w(c).

55

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

e f

c

db

a

b
f

d

c

e

a

c

b d

f e

a

e
b d

c

f

a

b

f

e

d

c

a

b

c

a

f

e

d

Figure 4.10: All partition spanning trees of the complete graph K4.

First, we assume that {a, c, d} and {b, e, f} have the same weight which is smaller

than w(Q). Then, at least {a, e, f} and {b, c, d} or {a, c, f} and {b, d, e} must have

different weights since otherwise we have

a + e + f = b + c + d = a + c + f = b + d + e = a + c + d = b + e + f

implying w(c) = w(e). In this case, we obtain a contradiction to σ(B, Q) = 1 since

{a, b, e} will be a spanning tree with weight w(Q) = a+b+c. Hence, the spanning trees

{a, c, d}, {d, e, f}, and at least one spanning tree in {{a, e, f}, {b, c, d}, {a, c, f}, {b, d, e}}
have distinct weights smaller than w(Q) implying ord′(B, Q) ≥ 4.

Now, assume the spanning trees {a, c, d} and {b, e, f} have different weights (where

at least one of these weights is strictly smaller than w(Q)). If one of the remaining

four pairs of partition spanning trees consists of trees with equal weights, we are done.

Hence, we suppose that each pair consists of different weighted spanning trees implying

56

4.5. PARTITIONING THE K4

the following two matrices of inequations:

a + b + d · · · 6= · · · b + d + f
...

. . .
...

...

6= ? 6=
...

...
. . .

...

c + e + f · · · 6= · · · a + c + e

and

b + c + d · · · 6= · · · b + d + e
...

. . .
...

...

6= ? 6=
...

...
. . .

...

a + e + f · · · 6= · · · a + c + f

.

Here, the red inequality signs are forced since otherwise we obtain w(a) = w(f) and

w(c) = w(e) contradicting σ(B, Q) = 1. The property that none of the four remaining

pairs of partition spanning trees consists of trees with equal weights is marked by the

green inequality signs. Furthermore, there are two question marks inside these matrices.

If at least one of them can be replaced by ‘6=’ then we have three partition spanning

trees with distinct weights less than w(Q). Hence, we assume that both question marks

have to be replaced by ‘=’. This means that both matrices contain at least one weight

less than w(Q). If these weights are different, we have ord′(B, Q) ≥ 4. Otherwise, there

are two different cases which have to be distinguished:

1. It holds that

c + e + f = b + d + f = b + c + d = a + c + f

which is equivalent to

a + b + d = a + c + e = a + e + f = b + d + e

since the sum of all edge weights is constant. Both of these equations imply

w(a) = w(e) and w(c) = w(f), thus, the spanning tree {b, e, f} has weight w(Q)

in contradiction to σ(B, Q) = 1.

2. It holds that

a + b + d = a + c + e = b + c + d = a + c + f

which is equivalent to

c + e + f = b + d + f = a + e + f = b + d + e .

If these equations do not conflict with either a + c + d or b + e + f , we are done.

Otherwise, we have to distinguish two further cases:

57

CHAPTER 4. PARTITIONING BISPANNING GRAPHS

(a) We assume that

a + b + d = a + c + e = b + c + d = a + c + f = a + c + d

implying a = b = c and d = e = f . Then, Q must be a maximum spanning

tree and P a minimum spanning tree, respectively. In this case, the partition

spanning trees {a, c, e},{c, e, f}, and {d, e, f} are sufficient to prove the claim.

(b) We assume that

a + b + d = a + c + e = b + c + d = a + c + f = b + e + f

implying a = c, e = f , a + c = b + e, and c + d = e + f . Clearly, we have

a = c 6= e = f since otherwise σ(B, Q) > 1. If a = c < e = f holds then

a + c = b + e and c + d = e + f imply b < a = c and d > e = f resulting in a

contradiction to w(Q) > w(P). Otherwise, we have a = c > e = f together

with a + c = b + e and c + d = e + f implying b > a = c > e = f > d,

that is, Q is a maximum spanning tree and P a minimum spanning tree,

respectively. Again, we obtain ord′(B, Q) ≥ 4 and the claim follows.

Since Conjecture 7 is at least as strong as Conjecture 6 (in fact we only consider a

smaller class of spanning trees), we obtain the following corollary.

Corollary 4.11. Let B = (V, P, Q, w) be a weighted bispanning graph on four vertices

such that ord(B, P) < ord(B, Q) and σ(B, Q) = 1. Then, it holds that ord(B, Q) ≥ 4.

58

Chapter 5

Subsequence-Interchangeable Base

Orderings

5.1 Introduction

Let B = (V, P, Q) be a bispanning graph and let m := |P | = |Q| = n − 1 be the

number of edges of a spanning tree in B, thus, the number of edges in B is 2m. In

general, the spanning trees P and Q are unordered edge sets. If P and Q are fixed then

there are m! ·m! different possibilities to label their edges by p1, . . . , pm and q1, . . . , qm,

respectively. We call a labeling of the edges of both spanning trees a base ordering and

we denote the set of all such orderings by BO. Given any ordering in BO, we usually

write it by concatenating the edges of Q and P

q1 q2 . . . qm p1 p2 . . . pm (5.1)

or using the ordered pairs

(q1, p1), (q2, p2), . . . , (qm, pm) . (5.2)

The latter representation is useful because we can interpret the pairs as edge swaps.

Hence, we call (5.2) the edge swap sequence of the corresponding base ordering whereas

(5.1) is called base ordering notation. Note that a single edge swap of a base ordering

does not have to be an edge swap as defined in Chapter 2 since the sets might not form

spanning trees after exchanging the edges. In the context of matroid theory, a variant

of base orderings has been studied by Kajitani, Ueno, and Miyano [KUM88]. Speaking

in terms of spanning trees in a graph G = (V, E), they proved that the edges in E can

be (not necessarily cyclically) ordered in such a way that any n − 1 consecutive edges

of this ordering form a spanning tree of G.

In the following, we establish a connection between base orderings and tree graphs.

To this end, we remember the definition of the tree graph G(G) = (V, E) of an arbitrary

connected graph G = (V, E): the vertex set V = T (G) consists of all spanning trees

in G and two spanning trees T, T ′ ∈ T (G) are connected by an edge {T, T ′} ∈ E if and

59

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

only if they are related by an edge swap. Given two arbitrary spanning trees T and T ′,

there exists a (not necessarily unique) path P between them (implied by Lemma 3.1).

For the sake of readability, we denote a path (in a tree graph) by the corresponding

sequence of edges (instead of using the vertices). Each of these edges represents some

edge swap s = (e, f). If T and T ′ differ in exactly k edges (i.e., the symmetric difference

T∆T ′ = (T \ T ′) ∪ (T ′ \ T) contains 2k edges), there exists a path P = (s1, . . . , sk) of

length k joining T and T ′ in G(G). We define the operation P(T) = (s1◦. . .◦sk)(T) = T ′

to be the application of P to T . Moreover, we define P−1 = (s−1
1 , . . . , s−1

k) where

s−1 = (f, e) if s = (e, f).

Applying edge swap sequences to spanning trees can be generalized as follows. Let T

be a spanning tree of G and let S = (s1, . . . , sk) be a sequence of edge swaps such that

si = (ei, fi), ei ∈ T , and fi 6∈ T for all 1 ≤ i ≤ k. Then, we denote by

S(T) = (s1 ◦ . . . ◦ sk)(T) = (T \ {e1, . . . , ek}) ∪ {f1, . . . , fk}
the set which is obtained by applying each edge swap to T . Note that the set S(T)

does not have to form a spanning tree. If S(T) yields a spanning tree, we call S an

admissible sequence with respect to T .

Given a bispanning graph B = (V, P, Q), we denote by PQ the set of all paths in

the tree graph G(B) of length m between P and Q. By our above analysis, each path

corresponds to an ordering but an ordering does not necessarily correspond to some

path. Hence, we obtain the relationship

PQ ⊆ BO .

In the following sections of this chapter, we will further classify the set PQ of all paths

between the edge-disjoint spanning trees P and Q. More precisely, we present two

properties which we call cyclic and subsequence-interchangeable (cyclic base orderings

were already studied in [Wie06]). Given the set CBO of all cyclic base orderings of

a bispanning graph B = (V, P, Q) and given the set SIBO of all subsequence-inter-

changeable base orderings of B, we show the following relationship between these sets:

SIBO ⊆ CBO ⊆ PQ ⊆ BO .

At the end of this chapter, we show a connection between subsequence-interchangeable

base orderings and the findings of Chapters 3 and 4.

5.2 Cyclic Base Orderings

Definition 5.1. Let B = (V, P, Q) be a bispanning graph. An ordering of the edges of

P = {p1, . . . , pm} and Q = {q1, . . . , qm} is called a cyclic base ordering (or short CBO)

if any m cyclically consecutive elements in

q1 q2 . . . qm p1 p2 . . . pm (5.3)

form a spanning tree of B.

60

5.2. CYCLIC BASE ORDERINGS

As aforementioned, any base ordering can be represented by a sequence S = (s1, . . . , sm)

of edge swaps with si = (qi, pi) for all i = 1, . . . , m. Using this representation, an edge

swap sequence corresponds to a cyclic base ordering if and only if the sets

TQ = (s1 ◦ . . . ◦ si)(Q) and TP = (s−1
1 ◦ . . . ◦ s−1

i)(P)

are spanning trees of B for all i = 1, . . . , m.

The existence of CBOs for all partitions of a bispannable graph into two spanning

trees was already proven in [Wie06]. Nevertheless, we take a more detailed look at the

proof in order to use several ideas of it when studying subsequence-interchangeable base

orderings in the following section.

Theorem 5.2. There is a cyclic base ordering for each bispanning graph B = (V, P, Q).

Proof. We prove this theorem by induction over the size m of a spanning tree in B. If

m = 1 the bispanning graph B consists of two vertices connected by two parallel edges,

p ∈ P and q ∈ Q. Clearly, each element of the sequence

q p

forms a spanning tree of B, thus, we have found a cyclic base ordering of B. Now,

let m > 1 and B(m) = (V, P (m), Q(m)) be a bispanning graph on m + 1 vertices. By

Lemma 2.2, B(m) contains a vertex v of degree deg(v) = 2 or deg(v) = 3.

First, let v be a vertex incident to exactly two edges qm ∈ Q(m) and pm ∈ P (m). We

observe that these edges are leaves of Q(m) and P (m), respectively. Hence, by cutting

off these two edges and removing the vertex v (we reverse a double-leaf attachment),

the remaining graph is a bispanning graph again. Let B(m−1) be this graph consisting

of the edge-disjoint spanning trees P (m−1) and Q(m−1) with P (m−1) = P (m) \ {pm} and

Q(m−1) = Q(m) \ {qm}.

By induction hypothesis, the bispanning graph B(m−1) has a CBO, say

q1 q2 . . . qm−1 p1 p2 . . . pm−1 .

Now, we put the edge qm at any position into the sequence of Q(m−1) and pm at the

corresponding position of P (m−1). For example, the sequence

q1 q2 . . . qm−1 qm p1 p2 . . . pm−1 pm (5.4)

is a CBO since each cyclically consecutive subsequence of length m of (5.4) contains

either qm or pm but not both of them. Hence, we append only a leaf to all considered

spanning trees of B(m−1) maintaining the property of being a spanning tree.

If B(m) does not contain any vertex of degree two, there exists a vertex v of degree

deg(v) = 3. We distinguish two cases depending on whether v is incident to two edges

of P (m) and one edge of Q(m), or v is incident two edges of Q(m) and one edge of P (m).

For the first case, let v be incident to pm−1, pm, and qm. We construct a new

bispanning graph B(m−1) by reversing the edge-split with respect to qm: we remove

61

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

the vertex v and its adjacent edges and we introduce a new edge p̃ connecting the

vertices of pm−1 and pm opposite to v (see Figure 5.1 for an illustration). Observe that

this operation equals a contraction of either pm−1 or pm and subsequently discarding

the edge qm. Clearly, the remaining edges Q(m−1) = Q(m) \ {qm} form a spanning

v

x y z

pm−1 pm
qm

=⇒

v

x y z

pm−1 pm
qm

p̃

Figure 5.1: Reversing an edge-split of P .

tree since we cut off a leaf of Q(m) by removing qm. Furthermore, the set P (m−1) =

(P (m) \ {pm−1, pm}) ∪ {p̃} is a spanning tree, too. This follows since the contraction

of any tree-edge (an edge belonging to the considered tree) maintains the property of

being a spanning tree.

By induction hypothesis, there exists a cyclic base ordering for B(m−1), say

q1 . . . qi−1 q̃ qi . . . qm−2 p1 . . . pi−1 p̃ pi . . . pm−2 . (5.5)

Let q̃ be the corresponding edge to p̃. Now, we insert qm immediately after q̃ and claim

that replacing p̃ either by pm−1 pm or by pm pm−1 produces a CBO for B(m). The

corresponding sequence is

q1 . . . qi−1 q̃ qm qi . . . qm−2 p1 . . . pi−1

[

pm−1 pm

]

pi . . . pm−2 (5.6)

where the brackets mean that the order of pm−1 and pm is not fixed yet. In the fol-

lowing, we prove that there exists an order of pm−1 and pm such that (5.6) is a CBO

(more precisely, exactly one of the two possibilities yields a CBO). Thus, we have to

consider any m cyclically consecutive elements of (5.6) and verify that they indeed form

a spanning tree.

First, we observe that any m cyclically consecutive elements of (5.6) which do not

include pm−1 and pm (but the edge qm) form a spanning tree because the corresponding

subsequence in (5.5) (without qm) forms a spanning tree and qm only connects the leaf-

vertex v. If the sequence of m cyclically consecutive elements of (5.6) contains both

edges, pm−1 and pm, the corresponding subsequence in (5.5) contains the edge p̃, thus,

we only stretched the edge p̃ obtaining again a spanning tree. It remains to show that

either

{qm, qi, . . . , qm−2, p1, . . . , pm−1} (5.7)

or

{qm, qi, . . . , qm−2, p1, . . . , pm} (5.8)

62

5.2. CYCLIC BASE ORDERINGS

is a spanning tree. We observe that the complementary sets of (5.7) and (5.8) are span-

ning trees since the only difference to the spanning tree {q1, . . . , qi−1, q̃, qm, pi, . . . , pm−2}
is the edge joining the leaf v.

In order to prove that either (5.7) or (5.8) is a spanning tree, we observe that by

assumption, the set

T = {pm−1, pm, pi, . . . , pm−2, q1, . . . , qi−1}

is a spanning tree of B(m−1). Now, we consider the fundamental cycle C(T, qm) of B(m)

defined by qm with respect to T . This cycle must contain the edge qm and therefore

pass the vertex v. Hence, either pm−1 or pm (exactly one) is part of the cycle. Hence,

the leaving edge of the corresponding edge swap is clearly defined. This proves that

either (5.7) or (5.8) forms a spanning tree.

We remark that it is also possible to insert qm immediately before q̃ in (5.5). The

resulting ordering is

q1 . . . qi−1 qm q̃ qi . . . qm−2 p1 . . . pi−1

[

pm−1 pm

]

pi . . . pm−2 .

In this case, the order of pm−1 and pm is determined depending on whether

{pm−1, pi, . . . , pm−2, q1, . . . , qm}

or

{pm, pi, . . . , pm−2, q1, . . . , qm}

is a spanning tree. Again, not both sets can be spanning trees.

To conclude the proof, we assume that v is incident to two edges of Q(m) and one

edge of P (m), say qm−1, qm, and pm. Analogous to the previous case, we construct a

bispanning graph B(m−1) by reversing the edge-split with respect to pm. This situation

can be illustrated analogously to Figure 5.1. By induction hypothesis, there is a cyclic

base ordering for B(m−1), say

q1 . . . qi−1 q̃ qi . . . qm−2 p1 . . . pi−1 p̃ pi . . . pm−2 (5.9)

which can be extended analogously to the previous case to two different CBOs: Insert

the edge pm exactly before or exactly after p̃. Again, the order of qm−1 and qm is clearly

defined and follows from the structure (i.e., the underlying cycles) of the bispanning

graph.

Clearly, each cyclic base ordering of a bispanning graph B = (V, P, Q) corresponds

to some path between P and Q in the tree graph G(B). Hence, we obtain

CBO ⊆ PQ .

63

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

5.3 Subsequence-Interchangeable Base Orderings

As mentioned above, there is a refined variant of cyclic base orderings. This new kind

of base ordering is formally defined as follows.

Definition 5.3. Let B = (V, P, Q) be a bispanning graph. We call a sequence of edge

swaps S = (s1, s2, . . . , sm) transforming Q into P a subsequence-interchangeable base

ordering (or short SIBO) if S ′ = (si, . . . , sj) is an admissible sequence with respect to Q

for all 1 ≤ i ≤ j ≤ m, i.e., applying any S ′ to Q yields a spanning tree.

Hence, an admissible sequence of edge swaps S transforming Q into P is a subsequence-

interchangeable base ordering if each (consecutive) subsequence of S is admissible with

respect to Q, too. Note that these subsequences do not have to be admissible with

respect to P (an example is given on the next page). First, we prove that each SIBO

also is a CBO implying

SIBO ⊆ CBO .

Proposition 5.4. Let B = (V, P, Q) be a bispanning graph and let S be a subsequence-

interchangeable base ordering for B. Then, S is a cyclic base ordering for B.

Proof. Let B = (V, P, Q) be a bispanning graph and let S = (s1, . . . , sm) be a sub-

sequence-interchangeable base ordering of B with sk = (qk, pk) for all 1 ≤ k ≤ m. By

our remark after Definition 5.1, we have to prove that the sets TQ = (s1 ◦ . . . ◦ sk)(Q)

and TP = (s−1
1 ◦ . . . ◦ s−1

k)(P) are spanning trees of B for all 1 ≤ k ≤ m.

The first part follows directly by Definition 5.3 choosing i = 1 and j = k. For the

second part, we choose i = k + 1 and j = m. Then, we obtain

TP = (s−1
1 ◦ . . . ◦ s−1

k)(P)

= (P \ {p1, . . . , pk}) ∪ {q1, . . . , qk}
= (Q \ {qk+1, . . . , qm}) ∪ {pk+1, . . . , pm}
= (sk+1 ◦ . . . ◦ sm)(Q)

which is a spanning tree, too. This proves the claim.

Reversing the sequence of edge swaps of each SIBO preserves the property of being

subsequence-interchangeable. Note that cyclic base orderings have this property, too.

Proposition 5.5. Let B = (V, P, Q) be a bispanning graph. If a sequence of edge swaps

S = (s1, s2, . . . , sm) is a subsequence-interchangeable base ordering then the reverse

sequence Sr = (sm, sm−1, . . . , s2, s1) is a SIBO, too.

Proof. Let S be a subsequence-interchangeable base ordering of B. Then, any subse-

quence of Sr:

sm, . . . , si+1, si, si−1, . . . , sj+1, sj, sj−1, . . . , s1

also appears in S (in reverse direction but the sets are the same):

s1, . . . , sj−1, sj, sj+1, . . . , si−1, si, si+1, . . . , sm .

64

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

Since the complete graph on four vertices K4 plays a central role in the previous

two chapters, we will consider its cyclic base orderings in order to find an ordering

which satisfies the stronger property. According to the partition given in Figure 4.9 on

Page 55, the K4 has the following 8 cyclic base orderings

(a, d), (c, f), (b, e)

(b, e), (c, f), (a, d)

(c, d), (a, e), (b, f)

(b, f), (a, e), (c, d)

(a, d), (c, e), (b, f) (5.10)

(b, f), (c, e), (a, d) (5.11)

(c, d), (a, f), (b, e) (5.12)

(b, e), (a, f), (c, d) . (5.13)

Actually, the latter 4 CBOs (5.10) through (5.13) even have the property of being

subsequence-interchangeable. Hence, the set CBO of all cyclic base orderings of a

bispanning graph is (in general) a proper superset of SIBO. The paths of the K4’s tree

graph corresponding to subsequence-interchangeable base orderings are illustrated in

more detail in Figure 5.2. In Figure 5.3, we can see the tree graph of the K4 restricted

to partition spanning trees (note that this subgraph is always connected [FRS85]). In

this figure, the paths corresponding to SIBOs are colored in red whereas the blue paths

are only cyclic base orderings of the K4 (the red/blue dashed edges belong to red and

blue paths).

In Definition 5.3, we say that each subsequence of a SIBO S applied to Q yields a

spanning tree. We observe that these subsequences do not need to be admissible with

respect to P . For example, take a look at the four SIBOs of the K4: if we apply the

middle edge swaps (c, e) or (a, f) (actually the inverse of them) to P then we do not

obtain a spanning tree.

A question which arises now is whether or not each bispanning graph has a SIBO.

Although we do not know the correct answer to this question, we conjecture that each

bispanning graph has a SIBO since there are strong indications that this is true. In

the remainder of this chapter, we study several possiblities in order to make progress

in finding a proof for the following conjecture.

Conjecture 8. There exists a subsequence-interchangeable base ordering for each bi-

spanning graph B = (V, P, Q).

We pursue two different approaches. On the one hand, we consider the so-called

bottom-up approach. Here, we analyze the two different operations, ‘edge-split’ and

‘double-leaf attachment’ (see Chapter 2), which can be used to create a bispanning

graph as shown in Theorem 2.6. We show that under certain assumptions, it is possible

to construct a subsequence-interchangeable base ordering for a graph which is obtained

by a sequence of these operations starting with a single vertex. On the other hand,

65

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

c

b

a

db

a

b
f

d

e

f

d(c, d) (a, f) (b, e)

c

b

a

c

e

a

e f

c

e

f

d(b, e) (a, f) (c, d)

c

b

a

c

f

a

f e

a

e

f

d(b, f) (c, e) (a, d)

c

b

a

c

b d
e

b d

e

f

d(a, d) (c, e) (b, f)

Figure 5.2: All paths of the K4’s tree graph correspoding to SIBOs.

66

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

P

Q

Figure 5.3: The K4’s tree graph restricted to partition spanning trees. The red paths are

SIBOs whereas the blue paths are only CBOs of the K4 (with respect to the partition

into Q and P).

67

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

we consider a top-down approach: we analyze a given bispanning graph in order to

find a suitable decomposition for constructing a SIBO. The latter approach uses some

ideas of Chapter 4. Subsequently, we prove that each partition of a wheel graph into

two spanning trees has a subsequence-interchangeable base ordering. Moreover, we can

compute such a SIBO in linear time.

5.3.1 Bottom-Up Approach

In Chapter 2 (see Theorem 2.6), we have seen that each bispanning graph can be

constructed using a sequence of ‘double-leaf attachment’ and ‘edge-split’ operations.

Now, we analyze their impact on subsequence-interchangeable base orderings.

Theorem 5.6. Let B = (V, P, Q) be a bispanning graph and S = ((q1, p1), . . . , (qm, pm))

be a subsequence-interchangeable base ordering of B (with respect to Q). Then, there

exists a SIBO for the bispanning graph B′ = (V ′, P ′, Q′) which is obtained by applying

a ‘double-leaf attachment’ to any two vertices u and v in V .

Proof. The ‘double-leaf attachment’ operation introduces a new vertex w and connects

it with two edges to B. We denote these new edges by qm+1 and pm+1 depending on

the spanning tree to which they belong. Then

S ′ = ((q1, p1), . . . , (qm, pm), (qm+1, pm+1))

is a subsequence-interchangeable base ordering for the resulting bispanning graph B′.

This follows easily by the observation that both edges connect the leaf w with respect

to the spanning trees P ′ and Q′. Since these new edges are exchanged by each other,

they do not appear together in any considered edge set. Hence, each subsequence of S ′

is admissible with respect to Q′.

We remark that it is possible to insert the edge swap (qm+1, pm+1) at any position

in the sequence S in order to obtain a new subsequence-interchangeable base ordering

of B′. Hence, the number of SIBOs of B′ is by a factor of m+ 1 larger than the number

of SIBOs of B if a double-leaf attachment operation is applied to any two vertices of B.

The edge-split operation is not as easy as a double-leaf attachment. Here, we restrict

ourselves to splitting only special edges. The reason for this is not obvious and will be

explained in more detail later.

Theorem 5.7. Let B = (V, P, Q) be a bispanning graph and S = ((q1, p1), . . . , (qm, pm))

be a subsequence-interchangeable base ordering of B (with respect to Q). Then, there

exists a SIBO for the bispanning graph B′ = (V ′, P ′, Q′) which is obtained by splitting

one of the edges in {q1, p1, qm, pm} by any vertex in V .

Proof. Because of Proposition 5.5, i.e., the symmetry of SIBOs, it suffices to consider

only the case of splitting q1 and p1. We start the proof by analyzing the latter splitting

operation, that is, the edge p1 is ‘split by an edge q0’ into two edges p1,0 and p1,1 where

68

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

the labeling of the new edges is determined as follows. Exactly one of these new edges

is contained in the fundamental cycle (of B′)

C((Q′ \ {q0, q1}) ∪ {p1,0, p1,1}, q0) .

This edge is labeled by p1,0 and the other part is labeled by p1,1 (see Figure 5.4).

q1

w
q0

p1,0 p1,1

p1

Figure 5.4: Splitting an edge of P . Connected components of B′ with respect to Q′\{q1}.

Now, we claim that

(q1, p1,1), (q0, p1,0), (q2, p2), . . . , (qm, pm) (5.14)

is a subsequence-interchangeable base ordering for the resulting bispanning graph B′.

First, we observe that each subsequence (qi, pi), . . . , (qj, pj) of (5.14) with 2 ≤ i ≤ j ≤ m

is an admissible sequence with respect to Q′. This follows easily by the assumption

that S is a SIBO for B. More precisely, the considered spanning trees differ only in

the edge q0 which connects the leaf w (with respect to Q′). Furthermore, the whole

sequence (5.14) is admissible. It remains to show that each sequence starting with

(q0, p1,0) is admissible. Applying the single edge swap (q0, p1,0) to Q′ clearly yields a

spanning tree. Suppose there exists an index j ∈ {2, . . . , m} such that the subsequence

(q0, p1,0), (q2, p2), . . . , (qj, pj) is not admissible with respect to Q′. By assumption the

same subsequence without the first edge swap (q0, p1,0) is admissible. Let Q′
j be the

corresponding spanning tree, i.e.,

Q′
j = (Q′ \ {q2, . . . , qj}) ∪ {p2, . . . , pj} . (5.15)

We observe that w is a leaf with respect to Q′
j and q0 is the corresponding edge.

Then, exchanging q0 and p1,0 obviously yields a spanning tree in contradiction to the

assumption.

69

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

Now, we consider a split operation of q1 into q1,0 and q1,1 by an edge p0. Let q1,0 be

the edge belonging to the fundamental cycle C(Q′, p0) of B′. Then, we claim that

(q1,0, p0), (q1,1, p1), (q2, p2), . . . , (qm, pm) (5.16)

is a SIBO of B′. As already seen in the previous case, most subsequences of (5.16) are

admissible with respect to Q′ (more precisely, each subsequence starting with an edge

swap (qi, pi), 2 ≤ i ≤ m, and the whole sequence are admissible with respect to Q′).

Again, the crucial point is to show that any subsequence starting with the second edge

swap (q1,1, p1) is admissible with respect to Q′. Analogous to the previous case, we as-

sume that there exists an index j such that the subsequence (q1,1, p1), (q2, p2), . . . , (qj , pj)

is not admissible with respect to Q′. Thus, we assume that

(Q′ \ {q1,1, q2, . . . , qj}) ∪ {p1, p2, . . . , pj} (5.17)

contains a cycle. We observe that without exchanging the edges of the pair (q1,1, p1), the

p1

w
p0 p0

q1,0 q1,1

q1

Figure 5.5: Splitting an edge of Q. The edge p1 crosses the cut formed by q1 with

respect to Q′
j .

resulting set yields a spanning tree. Let Q′
j denote this spanning tree (cf. (5.15)). By

assumption, (q1, p1) is an admissible edge swap with respect to Qj = (Q\{q2, . . . , qj})∪
{p2, . . . , pj} (in the bispanning graph B). Hence, the edge p1 crosses the cut formed

by removing q1 with respect to Qj . Then, both edge swaps (q1,0, p1) and (q1,1, p1) will

be admissible with respect to Q′
j in contradiction to (5.17) containing a cycle. This

situation is illustrated in Figure 5.5 where the splitting edge p0 can either connect w

with the left or the right component.

70

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

Splitting edges in the middle of a SIBO

If we look at the proof of Theorem 5.7, it is not obvious why there exists the restriction

of splitting only a ‘first’ (i.e., q1 or p1) or a ‘last’ (i.e., qm or pm) edge of a given sub-

sequence-interchangeable base ordering. Here, we note that these edges are sometimes

called ‘boundary’ edges. To understand this restriction, we have to take a closer look

at our ideas which are related to the proof of Theorem 5.2. Actually, the original idea

to construct a SIBO was to follow the same lines as constructing a CBO, i.e., using

a proof by induction. Clearly, the induction hypothesis holds also for the stronger

property (i.e., SIBO instead of CBO). Furthermore, if the considered bispanning graph

contains a vertex of degree 2, we can easily extend a given SIBO S (cf. Theorem 5.6).

In particular, it is possible to construct a lot of different SIBOs when applying a double-

leaf attachment since the corresponding edge swap can be integrated at any position

in S. The crucial operation is the edge-split. Here, we only have two different possi-

bilities according to the proof of Theorem 5.2. We can insert the splitting edge either

immediatly after or immediately before an edge q̃ (the corresponding swap edge of the

splitted edge). In both cases, the two parts of the splitted edge can be ordered such

that the resulting sequence yields a CBO. If we assume that the given ordering is even

subsequence-interchangeable then exactly one of these extensions yields a SIBO pro-

vided that we split a special edge. This case was used in Theorem 5.7 were a special

edge is a ‘boundary’ edge of the given SIBO. Splitting a ‘middle’ edge (i.e., an edge qi or

pi with 1 < i < m) of a SIBO does not always yield a SIBO for the resulting bispanning

graph. We further analyze this situation in the following and give some examples of

bispanning graphs such that it is not possible to split a ‘middle’ edge although the

presented graphs have a lot of different SIBOs.

Let B(m) = (V, P, Q) be a bispanning graph on m + 1 vertices. Suppose that

B(m) does not contain a vertex of degree 2. Then, there exists a vertex v of degree

deg(v) = 3 by Lemma 2.2. Without loss of generality, we assume that v is incident to

one edge qm ∈ Q and two edges pm−1, pm ∈ P . Let B(m−1) be the bispanning graph

obtained by reversing the edge-split with respect to qm (cf. Figure 5.1). Suppose that

this graph has a SIBO

(q1, p1), . . . , (qi−1, pi−1), (q̃, p̃), (qi, pi), . . . , (qm−2, pm−2) (5.18)

or using the base ordering notation

q1 . . . qi−1 q̃ qi . . . qm−2 p1 . . . pi−1 p̃ pi . . . pm−2 .

Let p̃ be the edge which has to be split in order to obtain B(m) and let q̃ the correspond-

ing edge of its edge swap. Since each SIBO has to be a CBO, we use the idea mentioned

above and introduce the splitting edge qm exactly before and/or exactly after the edge q̃

in order to obtain a CBO. The order of pm−1 and pm depends on the structure of the

bispanning graph. The proof of Theorem 5.2 contains more details about finding the

right order of these edges. Hence, we suppose that both edges are labeled such that

q1 q2 . . . qi−1 qm q̃ qi . . . qm−2 p1 p2 . . . pi−1 pm−1 pm pi . . . pm−2 . (5.19)

71

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

is a cyclic base ordering. Now, there are two cases. Either

q1 q2 . . . qi−1 q̃ qm qi . . . qm−2 p1 p2 . . . pi−1 pm−1 pm pi . . . pm−2 (5.20)

or

q1 q2 . . . qi−1 q̃ qm qi . . . qm−2 p1 p2 . . . pi−1 pm pm−1 pi . . . pm−2 (5.21)

but not both of them are CBOs (since the order of pm−1 and pm is clearly defined).

Here, the only differences between the sequences are marked with red color.

1. We assume (5.19) and (5.20) are cyclic base orderings which can be written as

edge swap sequences

(q1, p1), . . . , (qi−1, pi−1), (qm, pm−1), (q̃, pm), (qi, pi), . . . , (qm−2, pm−2) (5.22)

and

(q1, p1), . . . , (qi−1, pi−1), (q̃, pm−1), (qm, pm), (qi, pi), . . . , (qm−2, pm−2) . (5.23)

Now, we analyze (5.22) and (5.23) with respect to the stronger property of being

subsequence-interchangeable assuming that (5.18) is a SIBO for B(m−1). To this

end, we consider any (consecutive) subsequence of (5.22) and (5.23) and consider

the application of these edge swap sequences to Q. Most of the resulting sets are

spanning trees by the assumption that (5.18) is a subsequence-interchangeable

base ordering:

(a) Each subsequence of (5.22) and each subsequence of (5.23) which contains

both red-colored edge swaps is admissible with respect to Q.

(b) Each subsequence of (5.22) and each subsequence of (5.23) which contains

no red-colored edge swaps is admissible with respect to Q.

(c) Each subsequence of (5.22) which ends with (qm, pm−1) is admissible with

respect to Q (now, the leaf v is joined by pm−1 instead of qm).

(d) Each subsequence of (5.23) which starts with (qm, pm) is admissible with

respect to Q (now, the leaf v is joined by pm instead of qm).

The only subsequences which might not transform Q into another spanning tree

of B are

(q̃, pm), (qi, pi), . . . , (qi+j−1, pi+j−1) (5.24)

for some 0 ≤ j ≤ m − i − 1 with respect to (5.22) and

(qi−k, pi−k), . . . , (qi−1, pi−1), (q̃, pm−1) (5.25)

for some 0 ≤ k ≤ i−1 according to (5.23). Choosing j = 0 or k = 0, this notation

means that the subsequences consist only of (q̃, pm) or (q̃, pm−1), respectively.

Now, we choose a minimal j and k such that the corresponding subsequences are

not admissible. Then, we distinguish two cases.

72

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

• If j > 0 and k > 0 or j = 0 and k = 0 holds, we obtain a contradiction to

our induction hypothesis since exactly one of the sets which we obtain by

applying the edge swaps (q̃, pm) or (q̃, pm−1) to Q must contain a cycle.

• For both remaining cases, j = 0 and k > 0 as well as j > 0 and k = 0, we

can construct a bispanning graph such that neither (5.22) nor (5.23) are a

SIBO. For j = 0 and k > 0, we consider the bispanning graph in Figure 5.6.

We remove the edge-split according to edge qm (the edges pm−1 and pm

become a new edge p̃) and obtain a bispanning graph B(4) where

(q1, p1), (q2, p2), (q̃, p̃), (q3, p3) (5.26)

is a subsequence-interchangeable base ordering of B(4) but both extensions

(q1, p1), (q2, p2), (qm, pm−1), (q̃, pm), (q3, p3)

and

(q1, p1), (q2, p2), (q̃, pm−1), (qm, pm), (q3, p3)

are only cyclic base orderings of B(4) and not subsequence-interchangeable.

For the case j > 0 and k = 0, an example is illustrated in Figure 5.7. This

example is very similar to the previous one. The sequence

(q1, p1), (q̃, p̃), (q2, p2), (q3, p3)

is a subsequence-interchangeable base ordering for the B(4) obtained by re-

versing the edge-split with respect to qm. Now, the extensions

(q1, p1), (qm, pm−1), (q̃, pm), (q2, p2), (q3, p3)

and

(q1, p1), (q̃, pm−1), (qm, pm), (q2, p2), (q3, p3)

are only cyclic base orderings of B(4) but not subsequence-interchangeable.

Nevertheless, it is easy to verify that both examples have several subsequence-

interchangeable base orderings: Using another permutation of (5.26) yields

a SIBO for the corresponding B(4): if we exchange the edge swap (q̃, p̃) at

the first position, we can apply Theorem 5.7 in order to obtain a SIBO for

the given graph.

2. We assume (5.19) and (5.21) are cyclic base orderings. The edge swap notation

of (5.21) is

(q1, p1), . . . , (qi−1, pi−1), (q̃, pm), (qm, pm−1), (qi, pi), . . . , (qm−2, pm−2) , (5.27)

and, for the sake of completeness, the notation for (5.19) is

(q1, p1), . . . , (qi−1, pi−1), (qm, pm−1), (q̃, pm), (qi, pi), . . . , (qm−2, pm−2) . (5.22)

Again, most (consecutive) subsequences of (5.22) and (5.27) have to be admissible

with respect to Q by (5.18) being a SIBO for B(m−1):

73

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

v

q̃

q1

q2

q3

qm

p3 p1

p2pm−1 pm

Figure 5.6: Splitting a ‘middle’ edge (a): Remove the edge-split according to qm

(pm−1 and pm become a new edge p̃). The sequence (q1, p1), (q2, p2), (q̃, p̃), (q3, p3) is

a SIBO for the resulting graph. Neither (q1, p1), (q2, p2), (qm, pm−1), (q̃, pm), (q3, p3) nor

(q1, p1), (q2, p2), (q̃, pm−1), (qm, pm), (q3, p3) is a SIBO for the given graph. (Applying the red-

colored edge swaps to Q yields a cycle.)

v

q̃

q1

q2

q3

qm

p3 p1

p2pm−1 pm

Figure 5.7: Splitting a ‘middle’ edge (b): Remove the edge-split according to qm

(pm−1 and pm become a new edge p̃). The sequence (q1, p1), (q̃, p̃), (q2, p2), (q3, p3) is

a SIBO for the resulting graph. Neither (q1, p1), (qm, pm−1), (q̃, pm), (q2, p2), (q3, p3) nor

(q1, p1), (q̃, pm−1), (qm, pm), (q2, p2), (q3, p3) is a SIBO for the given graph. (Applying the red-

colored edge swaps to Q yields a cycle.)

74

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

(a) Each subsequence of (5.22) and each subsequence of (5.27) which contains

both red-colored edge swaps is admissible with respect to Q.

(b) Each subsequence of (5.22) and each subsequence of (5.27) which contains

no red-colored edge swaps is admissible with respect to Q.

(c) Each subsequence of (5.22) which ends with (qm, pm−1) is admissible with

respect to Q (now, the leaf v is joined by pm−1 instead of qm).

(d) Each subsequence of (5.27) which starts with (qm, pm) is admissible with

respect to Q (now, the leaf v is joined by pm instead of qm).

But it is possible that a subsequence

(q̃, pm), (qi, pi), . . . , (qi+j−1, pi+j−1) (5.28)

for some 0 ≤ j ≤ m− i−1 is not admissible with respect to Q and a subsequence

(qi−k, pi−k), . . . , (qi−1, pi−1), (q̃, pm) (5.29)

for some 0 ≤ k ≤ i − 1 is not admissible with respect to Q. If there is more

than one possible value for j or k then we choose minimal ones. In this case, we

either have j = 0 and k = 0 or we have j > 0 and k > 0 (since the edge swap

(q̃, pm) appears in both sequences). An example for the first case is illustrated in

Figure 5.8. After reversing the edge-split operation according to qm (the edges

pm−1 and pm become a new edge p̃), the resulting bispanning graph B(3) has the

subsequence-interchangeable base ordering

(q1, p1), (q̃, p̃), (q2, p2)

but the extensions

(q1, p1), (qm, pm−1), (q̃, pm), (q2, p2)

and

(q1, p1), (q̃, pm), (qm, pm−1), (q2, p2)

are only CBOs for the given graph and not subsequence-interchangeable. Anal-

ogously, Figure 5.9 shows the case j > 0 and k > 0. Again, we consider the

bispanning graph which is obtained by reversing the edge-split according to qm

(the edges pm−1 and pm become a new edge p̃). This graph has the SIBO

(q1, p1), (q2, p2), (q̃, p̃), (q3, p3), (q4, p4) .

The extensions

(q1, p1), (q2, p2), (qm, pm), (q̃, pm−1), (q3, p3), (q4, p4)

and

(q1, p1), (q̃, pm−1), (qm, pm), (q2, p2), (q3, p3), (q4, p4)

are only CBOs for the given graph but not subsequence-interchangeable. Never-

theless, there are SIBOs for both graphs in Figures 5.8 and 5.9.

75

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

v

qm

q2

q1

q̃

pm

pm−1

p2

p1

Figure 5.8: Splitting a ‘middle’ edge (c): Remove the edge-split according to qm

(pm−1 and pm become a new edge p̃). The sequence (q1, p1), (q̃, p̃), (q2, p2) is

a SIBO for the resulting graph. Neither (q1, p1), (qm, pm−1), (q̃, pm), (q2, p2) nor

(q1, p1), (q̃, pm), (qm, pm−1), (q2, p2) is a SIBO for the given graph. (Applying the red-colored

edge swaps to Q yields a cycle.)

v

q1 q4

qm

q2

q3

q̃

pm

pm−1

p2

p3p1

p4

Figure 5.9: Splitting a ‘middle’ edge (d): Remove the edge-split according to qm

(pm−1 and pm become a new edge p̃). The sequence (q1, p1), (q2, p2), (q̃, p̃), (q3, p3), (q4, p4) is

a SIBO for the resulting graph. Neither (q1, p1), (q2, p2), (qm, pm), (q̃, pm−1), (q3, p3), (q4, p4)

nor (q1, p1), (q2, p2), (q̃, pm−1), (qm, pm), (q3, p3), (q4, p4) is a SIBO for the given graph.

(Applying the red-colored edge swaps to Q yields a cycle.)

76

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

The above examples have the following properties in common: First, we observe that

the ideas of the proof of Theorem 5.2 (constructing a CBO) cannot easily be used or

extended in order to construct a SIBO. A second property of the given examples is that

we only have to permute the edge swaps of the SIBOs containing the edge swap (q̃, p̃) in

such a way that this swap is exchanged at the first or the last position. Afterwards, we

can apply Theorem 5.7. Hence, there are two promising possibilities to use the bottom-

up approach in order to prove the existence of SIBOs for each bispanning graph.

Splitting edges of boundary edge swaps of a SIBO

The first possibility is that it might be sufficient to apply edge-splits only to boundary

edges (i.e., splitting only a ‘first’ or ‘last’ edge). Figure 5.10 shows a graphical repre-

sentation of the results of Theorem 5.7. Let (q, p) be a boundary edge swap (marked by

bold edges). Figure 5.10(b) shows which edges are contained in a boundary edge swap

after splitting q. In this figure, these edges are the splitting (red-colored) edge and the

edge belonging to the fundamental cycle generated by the splitting edge with respect

to Q. Figure 5.10(c) shows which edges are contained in a boundary edge swap after

splitting p. Here, these edges are q and the part of p which has vertices in different

components of Q\ {q}. Another example is given in Figure 5.11. Starting with a single

vertex, we apply two double-leaf attachments that generate two boundary edge swaps

(cf. Figure 5.11(c)). Afterwards, we only split edges of boundary edge swaps and we

obtain the SIBO (q3, p3), (q2, p2), (q1, p1), (q6, p6), (q5, p5), (q4, p4).

q

p

(a) A pair of ‘boundary’ edges. (b) Splitting q. (c) Splitting p.

Figure 5.10: Restricted edge-split operation. The ‘boundary’ edges are bold.

Transforming a SIBO into another SIBO

The second possibility is to find a relationship between different SIBOs for the same

graph. Here, the question is whether or not it is possible to exchange several edge

swaps (or only some edges belonging to different edge swaps) in order to transform a

SIBO S into another SIBO S ′ such that a special edge is exchanged within the first

(or last) edge swap. In this case, Theorem 5.7 is sufficient. A variant of this is used

for the construction of SIBOs for any partition of the wheel graph. In this case, we

exploit the fact that a pair of multiple edges (q, p) can be integrated at any position in

a given SIBO. We remark that the same property was already used in the analysis of

the ‘double-leaf attachment’ operation.

77

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

q2

q3

q4

q5

q1

q6p3

p4

p2

p6

p1

p5

(a)

(b) (c)

(d) (e)

(f) (g)

Figure 5.11: A bispanning graph and a construction sequence only consisting of re-

stricted edge-splits or double-leaf attachments. Using Figures (b) through (g), we ob-

tain the SIBO (q3, p3), (q2, p2), (q1, p1), (q6, p6), (q5, p5), (q4, p4).

78

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

5.3.2 Top-Down Approach

In this section, we want to break-up a given bispanning graph into smaller components

in order to compute a subsequence-interchangeable base ordering for the whole graph.

We call this procedure the ‘top-down’ approach. Most of our ideas follow the same lines

as described in Chapter 4. In that chapter, we studied (weighted) bispanning graphs B

with edge-connectivity λ(B) = 2 or vertex-connectivity κ(B) = 1. Subsequently, we

presented a generalization. The crucial observation for this generalization is that in both

discussed cases, the considered bispanning graphs are composite, i.e., they contain a

non-trivial bispanning subgraph. This fact can also be applied to subsequence-inter-

changeable base orderings. Here, we can show that if a given bispanning graph B

contains a non-trivial bispanning subgraph B1 then we can decompose B into two

smaller bispanning graphs. We can combine SIBOs for each of these graphs in order to

obtain a SIBO for the original graph.

Theorem 5.8. Let B = (V, P, Q) be a bispanning graph and let B1 be a non-trivial

bispanning subgraph of B. Let B2 be the graph which is obtained from B by contracting

the subgraph B1 to a single vertex. Then, B2 is a bispanning graph. Furthermore, if B1

and B2 have SIBOs S1 and S2, respectively, there is a SIBO for B, too.

Proof. Let B1 = (V1, P1, Q1) be a non-trivial bispanning subgraph of B and let B2

be the graph we obtain from B by contracting B1. We define P2 and Q2 to be the

remaining edges (after the contraction) of P and Q, respectively. Clearly, if P2 (or Q2)

is not a spanning tree of B2 then P (or Q) is not a spanning tree of B, thus, the

resulting graph B2 is indeed bispanning. Furthermore, we observe that each spanning

tree of B1 combined with each spanning tree of B2 yields a spanning tree of B. Hence,

the concatenation of the edge swaps of S1 and S2 forms a SIBO of B.

The essential point in the last proof is that S1 and S2 are independent since the span-

ning trees of B1 and B2 can be independently combined. Hence, it is also possible to

interleave S1 and S2 such that the internal order of the elements with respect to S1

and S2 remains unchanged. The number of different SIBOs is an easy combinatorial

task. More precisely, let m1 and m2 be the length of S1 and S2, respectively. Then, the

number of possible SIBOs for B is larger by a factor of

(
m1 + m2

m1

)

than the number of SIBOs for B1 times the number of SIBOs for B2.

Given an arbitrary bispanning graph, we can recursively apply Theorem 5.8 until

the considered graphs become atomic. Hence, we can formulate the following corollary.

Corollary 5.9. If there exists a subsequence-interchangeable base ordering for each

atomic bispanning graph B = (V, P, Q) then there exists a SIBO for each bispanning

graph.

79

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

5.3.3 The Class of Wheel Graphs

As seen above, we only have to focus on atomic bispanning graphs. It is easy to construct

numerous atomic bispanning graphs only by using the results of Theorems 5.6 and 5.7.

Unfortunately, we do not know whether or not these theorems are sufficient to construct

all bispanning graphs. A whole graph class of atomic bispanning graphs for which we

can construct SIBOs are the wheel graphs.

Definition 5.10. The wheel on n ≥ 4 vertices, denoted by Wn, is a graph consisting

of a cycle of n− 1 vertices where each of these vertices is connected to a special vertex,

the so-called hub. The edges incident to the hub are the spokes of the wheel.

vn

vn−1 v1

v2

v3vn−3

vn−2

Figure 5.12: The wheel Wn.

Theorem 5.11. Let Wn = (V, E) be the wheel on n vertices and let E = P ∪ Q be

an arbitrary partition of its edges into two spanning trees P and Q. Then, there is a

subsequence-interchangeable base ordering for the bispanning graph B = (V, P, Q).

Proof. First, we observe that each of the cycle vertices vi with 1 ≤ i < n is either

incident to two edges of P or incident to two edges of Q. We claim that there exists

at least one index 1 ≤ i < n such that vi’s spoke and one of its incident cycle edges

belong either to P or to Q. Otherwise, we obtain a contradiction to P and Q being

spanning trees. Relabel any vertex having this property (the spoke and one cycle edge

belong to the same tree) with v1. Without loss of generality, we assume v1 is connected

to the hub vn of Wn by an edge belonging to P . Let v2 be the cycle vertex which is

connected to v1 by an edge belonging to P , too. We relabel the remaining vertices with

v3, . . . , vn−1 such that v3 is a neighbor of v2, v4 is a neighbor of v3, and so on.

Let qm = {v1, vn−1}, pm−1 = {v1, v2}, and pm = {v1, vn}. Analogous to the proof

of Theorem 5.2, we remove the vertex v1 and its incident edges and introduce a new

80

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

edge p̃ = {v2, vn}, thus, we reverse the edge-split with respect to qm. Let B(n−1) =

(V \{v1}, P \{pm−1, pm}∪{p̃}, Q\{qm}) with p̃ = {v2, vn} be the remaining bispanning

graph. Let q̃ be the edge connecting v2 with vn in Wn. Obviously, p̃ and q̃ form a pair

of multiple edges. Suppose we are able to construct the following SIBO of B(n−1)

(q1, p1), . . . , (q̃, p̃), . . . , (qm−2, pm−2) . (5.30)

How to construct such a subsequence-interchangeable base ordering is rather simple

and we explain it in detail later. Since q̃ and p̃ are a pair of multiple edges, they have

to be exchanged by each other. Moreover, we observe that the edge swap (q̃, p̃) can

be moved to each position in (5.30) without changing the order of the remaining edge

swaps in order to preserve the property of being a subsequence-interchangeable base

ordering. In particular, the sequences

(q̃, p̃), (q1, p1), . . . , (qm−2, pm−2)

and

(q1, p1), . . . , (qm−2, pm−2), (q̃, p̃)

are SIBOs. Now we are ready to apply Theorem 5.7 in order to obtain a subsequence-

interchangeable base ordering for Wn (or B).

To conclude the proof, we have to show how to construct the SIBO (5.30) for B(n−1).

Note that (q̃, p̃) is a pair of multiple edges in B(n−1). Hence, using the ideas of the

previous section (Theorem 5.8), we can contract them. Again, a new pair of multiple

edges emerges. It is easy to see that this situation will occur each time when contracting

a multiple edge until the graph is exhausted, i.e., it contains only a single vertex.

In Figure 5.13, this situation is illustrated for the wheel W7. We can even stop this

procedure if the graph consists of a pair of multiple edges. Since the exchange of multiple

edges is clearly defined, the following sequence of edge swaps is a SIBO for B(n−1)

(q̃, p̃), ({v2, v3}, {v3, vn}), ({v3, v4}, {v4, vn}), . . . , ({vn−2, vn−1}, {vn−1, vn}) . (5.31)

This proves the theorem.

Note that in (5.31), the order of each edge swap is defined by the partition of B(n−1)

into P and Q. For example, the edge swap ({v2, v3}, {v3, vn}) must be changed into

({v3, vn}, {v2, v3}) if {v3, vn} belongs to Q. Clearly, both edges of any edge swap in (5.31)

do not belong to the same spanning tree since otherwise we get a pair of multiple edges

belonging either to Q or to P .

From the proof of Theorem 5.11, we immediately get Algorithm 2 for computing

a SIBO of any partition of the Wn. This algorithm computes a SIBO in time O(n)

without performing any contractions.

81

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Processing a partition of the wheel W7.

82

5.3. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

Algorithm 2: SIBO(Wn = (V, P, Q))

Input: the wheel Wn and with ‘P ’ or ‘Q’ labeled edges

Output: a SIBO S for Wn with respect to Q

begin1

S = null2

compute the hub vn3

compute v1 ∈ V \ {vn} such that label[{v1, x}] 6= label[{v1, y}] and x, y 6= vn4

if label[{v1, x}] == label[{v1, vn}] then5

label x with v26

else7

label y with v28

label the cycle vertices according to the order of v1 and v2 with v3, . . . , vn−19

for i = 3 to n − 1 do10

if label[{vi, vn}] == Q then11

S = S ◦ ({vi, vn}, {vi, vi−1})12

else13

S = S ◦ ({vi, vi−1}, {vi, vn})14

if label[{v1, v2}] == Q then15

/* Splitting an edge of Q */

if {v1, vn} ∈ C(Q, {v1, vn−1}) then16

S = ({v1, v2}, {v2, vn}) ◦ S17

S = ({v1, vn}, {v1, vn−1}) ◦ S18

else19

S = ({v1, vn}, {v2, vn}) ◦ S20

S = ({v1, v2}, {v1, vn−1}) ◦ S21

else22

/* Splitting an edge of P */

if {v2, vn} ∈ C(Q, {v1, v2}) then23

S = ({v1, vn−1}, {v1, vn}) ◦ S24

S = ({v2, vn}, {v1, v2}) ◦ S25

else26

S = ({v1, vn−1}, {v1, v2}) ◦ S27

S = ({v2, vn}, {v1, vn}) ◦ S28

end29

83

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

5.4 Concluding Remarks

In this chapter, we introduced a new kind of base ordering restricted to spanning

trees of bispanning graphs. The orderings which fulfill the stronger property of being

subsequence-interchangeable are a subclass of the known cyclic base orderings. More

precisely, we have shown the relationship:

SIBO ⊆ CBO ⊆ PQ ⊆ BO

where BO denotes the set of all base orderings and PQ denotes the set of all paths in

the tree graph between the corresponding bases or spanning trees.

We remark that our results can be extended to general graphs (and spanning trees).

If both spanning trees are edge-disjoint and the given graph has further edges then we

consider only the bispanning subgraph consisting of these two spanning trees. Oth-

erwise, i.e., if both spanning trees have common edges, we do not need to change

these edges (or exchange them by themselves). Hence, (cyclic as well as subsequence-

interchangeable) base orderings can be extended to general graphs.

We discussed several approaches in order to find a proof for the existence (and an

algorithm for the construction) of subsequence-interchangeable base orderings for each

partition of a bispannable graph into two spanning trees. From our point of view, the

most promising approach is to further study transformations between different SIBOs

of a bispanning graph. We have already applied such transformations in their simplest

form to wheel graphs: the position of the edge swap (q, p) of a pair of multiple edges

can be arbitrarily exchanged without destroying the property of being subsequence-

interchangeable. Furthermore, it is important to show or to disprove that the restricted

edge-split operation and the double-leaf attachment operation are sufficient to construct

SIBOs.

We have seen that it is sufficient to look for a construction algorithm of SIBOs only

for atomic bispanning graphs, i.e., bispanning graphs that have a minor isomorphic

to K4. In Chapter 4, atomic bispanning graphs are also the crucial point. In fact,

there is a deeper correlation between these problems. In the following, we describe this

stronger connection and point out why it might be important to prove the existence of

subsequence-interchangeable base orderings. To this end, we recall the topic of the last

chapter.

In Chapter 4, we proposed a conjecture regarding weighted bispanning graphs. More

precisely, let B = (V, P, Q) be a weighted bispanning graph such that Q is the only span-

ning tree with weight w(Q) and P has weight strictly smaller than Q. We conjectured

that given such a bispanning graph, there are at least n−1 distinct spanning trees with

pairwise different weights strictly smaller than w(Q). Moreover, we conjectured that it

suffices to count only so-called partition spanning trees. Now, the connection between

SIBOs and the problem of counting spanning trees of distinct weights is summarized in

the following proposition.

84

5.4. CONCLUDING REMARKS

Proposition 5.12. Let B = (V, P, Q, w) be a weighted bispanning graph such that Q

has unique weight regarding all spanning trees of B, i.e., we have σ(B, Q) = 1. Let S

be a SIBO for B (with respect to Q). Then, the spanning trees lying on the path

(corresponding to S) between Q and P have pairwise different weights.

Proof. Let B = (V, P, Q, w) be a weighted bispanning graph and let S = (s1, . . . , sm)

be a SIBO for B. We suppose that there are two spanning trees Ti and Tj with

Ti = (s1 ◦ . . . ◦ si)(Q) and Tj = (s1 ◦ . . . ◦ sj)(Q)

for distinct values of i, j ∈ {1, . . . , m} such that w(Ti) = w(Tj). Without loss of

generality, we assume i < j. Hence, applying the edge swaps si+1 through sj to Ti does

not change the spanning tree weight. Since the subsequence S ′ = (si+1, . . . , sj) is also

admissible with respect to Q, we obtain a spanning tree T ′ = (si+1 ◦ . . . ◦ sj)(Q) that

has weight w(Q) in contradiction to σ(B, Q) = 1.

We observe that each spanning tree of such a path between Q and P consists only

of partition spanning trees. Hence, the complement of each spanning tree is a spanning

tree, too. Then, it easily follows by the pigeon-hole principle that at least n−1 spanning

trees (also counting the complementary spanning trees) of such a path have a weight less

than w(Q). Unfortunately, the spanning tree weights of such a path and the weights of

the complementary spanning trees do not have to be distinct. For example, we consider

the partition of the K4 given in Figure 4.9 on Page 55 and introduce a weight function

w : E → N with

w(a) = 3 w(b) = 8 w(c) = 3 w(d) = 1 w(e) = 6 w(f) = 6 . (5.32)

Now, we consider the first and the third path in Figure 5.2 on Page 66. Because of

symmetry, we can omit the second and the fourth path. The spanning tree weights

according to the first path are

w({a, b, c}) = 14 w({b, c, d}) = 12 w({b, d, e}) = 15 w({d, e, f}) = 13 .

The complementary spanning tree weights of this path are

w({d, e, f}) = 13 w({a, e, f}) = 15 w({a, c, f}) = 12 w({a, b, c}) = 14 .

Hence, this example shows that all spanning trees (including the complementary span-

ning trees) of a path corresponding to a SIBO do not have to be distinct. Unfortunately,

the spanning tree weights of the other path (the third path according to Figure 5.2) are

even worse. Here, the weights are

w({a, b, c}) = 14 w({a, c, e}) = 12 w({c, e, f}) = 15 w({d, e, f}) = 13

and the complementary weights are

w({d, e, f}) = 13 w({b, d, f}) = 15 w({a, b, d}) = 12 w({a, b, c}) = 14 .

85

CHAPTER 5. SUBSEQUENCE-INTERCHANGEABLE BASE ORDERINGS

Hence, given the weight function (5.32), it is not sufficient to count only spanning

trees lying on a path corresponding to a subsequence-interchangeable base ordering.

In general, we only have at least ⌈n/2⌉ distinct weights. But there is a gleam of

hope: We observe that the spanning tree weights (and the edge weights according

to 5.32) are ‘symmetric’ (e.g., we have w(a) = w(c) and w(e) = w(f)) which results in

σ(B, P) = σ(B, Q) = 1, i.e., the spanning tree P also has unique weight. But this case

was already solved in Chapter 3. Hence, if the weight function becomes ‘asymmetric’,

i.e., we have σ(B, P) > 1, it might be impossible that all weights of all SIBOs become

symmetric as in the example above.

Now, look at the weight function of the K4 given in Figure 4.1, which is

w(a) = 4 w(b) = 5 w(c) = 3 w(d) = 6 w(e) = 2 w(f) = 3 . (5.33)

As already mentioned in Chapter 4, this weight function implies σ(B, Q) = 1 and

σ(B, P) = 4. Then, the spanning trees (and their complements) of the first path in

Figure 5.2 are sufficient. More precisely, the spanning tree weights are

w({a, b, c}) = 12 w({b, c, d}) = 14 w({b, d, e}) = 13 w({d, e, f}) = 11

and the complementary weights are

w({d, e, f}) = 11 w({a, e, f}) = 9 w({a, c, f}) = 10 w({a, b, c}) = 12

implying ord(B, Q) ≥ ord′(B, Q) ≥ 4. Unfortunately, it is difficult to find weight func-

tions satisfying σ(B, P) > 1 and σ(B, Q) = 1 for large (atomic) bispanning graphs B.

The above observations show the connection of subsequence-interchangeable base

orderings to the problem of counting (partition) spanning trees with distinct weight in

Chapters 3 and 4. We have seen that the crucial point is to analyze atomic (weighted)

bispanning graphs. This graph class has the property of containing a minor isomorphic

to K4. In Chapter 3, we have seen that the cycle matroid of a graph is strongly base

orderable if the graph does not contain such a minor. For these graphs, the existence

of a subsequence-interchangeable base ordering easily follows by Definition 3.10.

86

Chapter 6

Graph-Approximating Spanning

Trees

6.1 Introduction

In this chapter, we consider a problem, which is related to the simplification of graphs

with respect to the number of edges. Problems of this kind can be summarized by

the term network sparsification. The intention is to thin out the graph while retaining

certain network characteristics, e.g., the distances between node pairs. The aim of this

task is to reduce the complexity of a given graph in order to simplify computations of

network problems or to feature a concise visualization of a complex network with its

most important structural properties. For example, the network can be made more

amenable to visual examination.

Carrying this sparsification to an extreme, the resulting graph is required to be a

spanning tree since the elements of this graph class have a minimum number of edges

among all connected subgraphs. Furthermore, spanning trees offer a variety of useful

properties which can be exploited for fast algorithms even if the considered problems are

(in general) NP-hard. Problems of this kind are also known as tree spanner problems.

In this chapter, we consider the problem of computing a spanning tree of a graph,

that minimizes, in its simplest form, the sum of the distances between all pairs of nodes,

that were connected by an edge in the original graph. Actually, we consider a more

general form, where the sum is computed of pth powers of the respective distances (or

distance differences), i.e., the calculation is made with respect to the Lp-norm. We call

our problem GAST.

The problem is related to a couple of other problems. On the one hand, it is

similar to the problem of computing distance-minimizing or distance-approximating

spanning trees (DMST, DAST, [EKM+08]). In contrast to the setting in this chapter,

the DMST and DAST problems consider the distances of all vertex pairs (instead of

only pairs connected by single edges in the original graph). Both problems, DMST

and DAST, were shown to be NP-complete for all norms Lp, p ∈ N. On the other

hand, GAST is related to the problem of computing a minimum fundamental cycle

87

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

basis (Min-FCB) for a weighted undirected graph. Here, the aim is to compute a cycle

basis (a spanning tree, respectively) that causes a minimum sum of the weights of all

fundamental cycles. This problem is also known to be NP-complete [DPK82]. Galbiati

and Amaldi [GA04] proposed an approximation algorithm achieving an approximation

ratio of 2O(
√

log n log log n). Their approach used a related problem introduced by Hu,

namely the Minimum Communication Cost Spanning Tree Problem [Hu74], which was

shown to be approximable within the same factor by Peleg and Reshef [PR98]. Elkin,

Emek, Spielman, and Teng improved this ratio to O(log2 n log log n) [EEST08]. For

the simplest form of our problem, i.e., GAST with respect to the L1-norm, we give a

reduction to Min-FCB implying the same approximation ratio.

6.2 The 2-Hitting-Set Gadget

For the reduction, which we accomplish in the next section, we need the Vertex

Cover problem. This problem is well known to be NP-complete [GJ79]. To avoid

confusion between ‘vertices’ and ‘edges’ of the instance of Vertex Cover and of the

constructed graph, we use the less common terminology of the equivalent 2-Hitting

Set (2HS) problem, i.e., we use ‘literals’ (vertices) and ‘clauses’ (edges). The problem

is formally defined as follows:

Problem: 2-Hitting Set (2HS).

Input: A triple (C,S, k) consisting of

a family C = {C1, . . . , Cm} of 2-element subsets of

a set S = {s1, . . . , sn} and

a number k ∈ {1, . . . , n}.

Question: Is there a subset S ′ ⊆ S such that |S ′| ≤ k and

the set Cµ ∩ S ′ is not empty for each µ ∈ {1, . . . , m}?

A subset S ′ ⊆ S having the required properties is called an admissible solution to a

2HS instance (C,S, k). For a given 2HS instance, we define the graph G(C,S) (a slight

simplification to [EKM+08]) as follows:

• For each sµ ∈ S, µ ∈ {1, . . . , n}, we define a literal gadget Gµ consisting of

two connection vertices vµ and v′
µ. Both vertices are connected by the so-called

elongation path (vµ, eµ
1 , . . . , e

µ
m+1, v

′
µ) of length m+ 2 and the so-called literal path

(vµ, l
µ
1 , . . . , lµm, v′

µ) of length m + 1.

• For each µ ∈ {1, . . . , n−1}, we connect the literal gadgets Gµ and Gµ+1 by adding

an edge {v′
µ, vµ+1}.

• Additionally, we introduce a vertex v′
0 which is connected to the first literal gadget

G1 by the edge {v′
0, v1}.

88

6.2. THE 2-HITTING-SET GADGET

• For each Cµ = {sν , sκ}, we define a clause path of length 2n(m + 2) that connects

the vertices lνµ and lκµ and a safety path of length 2n(m + 2) that connects the

vertices v′
0 and lνµ whereas we assume without loss of generality that ν < κ.

In Figure 6.1, there is an illustration of a 2HS graph representation G(C,S) where

S = {s1, s2, s3, s4} and C = {{s1, s3}, {s2, s4}, {s1, s4}, {s3, s4}}.

v′
0 v′

4

safety paths clause paths

literal gadget G3

e3
1 e3

2 e3
3 e3

4 e3
5

l31 l32 l33 l34

v3 v′
3

elongation path

literal path

Figure 6.1: Graph representation G(C,S) of a 2HS instance.

The following lemma is a slight modification of a lemma in [EKM+08].

Lemma 6.1. Let (C,S, k) be an instance of 2HS. Then, we have

dG(C,S)(v
′
0, v

′
n) = n(m + 2) .

Moreover, there exists an admissible solution S ′ ⊆ S of size |S ′| ≤ k if and only if there

exists a spanning tree T of G(C,S) containing all edges in the clause paths such that

dT (v′
0, v

′
n) ≤ dG(C,S)(v

′
0, v

′
n) + k .

89

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

Proof. First, we observe that any path from v′
0 to v′

n using a clause or safety path has

length at least 2n(m + 2) whereas the shortest path between v′
0 and v′

n via literal paths

has length n(m + 2). Thus, it holds that dG(C,S)(v
′
0, v

′
n) = n(m + 2). For the second

statement, we consider both directions separately. We start by proving the ‘only if’

direction. To this end, let S ′ be an admissible solution to the 2HS instance (C,S, k).

We construct a spanning tree of the graph representation G(C,S) as follows:

1. For each sµ ∈ S ′, we remove the edge {lµm, v′
µ} which is the last edge on the literal

path of the literal gadget Gµ.

2. For each sµ 6∈ S ′, we remove the edge {vµ, e
µ
1} which is the first edge on the

elongation path of the literal gadget Gµ.

3. For each Cµ = {sν , sκ} ∈ C do the following: if sν ∈ S ′ then remove the edge

{lνµ−1, l
ν
µ}. If sκ ∈ S ′ then remove the edge {lκµ−1, l

κ
µ}. Here, we denoted lν0 = vν

and lκ0 = vκ. If not both sν and sκ are elements of S ′ then remove an arbitrary

edge from the safety path between v′
0 and lνµ.

Note that no edge from a clause path was removed during this construction. Now, we

have to prove that each cycle in G(C,S) is broken when applying the three construction

rules. By the first and second construction rule, at least one edge of each cycle induced

by the literal and elongation paths is removed. The cycles induced by the clause and

safety paths are broken by the first and third construction rule: For each clause Cµ =

{sν , sκ} ∈ C, at least one of the sets {{lνµ−1, l
ν
µ}, {lνm, v′

ν}} and {{lκµ−1, l
κ
µ}, {lκm, v′

κ}} is

removed because S ′ is an admissible solution. Thus, either lνµ or lκµ is not reachable via

the clause path from vν or v′
ν (vκ or v′

κ, respectively). An edge from the safety path

is removed, except if both {{lνµ−1, l
ν
µ}, {lνm, v′

ν}} and {{lκµ−1, l
κ
µ}, {lκm, v′

κ}} are removed

(third construction rule), in which case neither lνµ nor lκµ is reachable via the clause path

from any vertex vν , v
′
ν , vκ, v

′
κ.

A cycle induced by multiple clause paths not going through any connection vertices

cannot occur since the connection is broken at one of the literals in S ′. As a result, the

path between v′
0 and v′

n in T is leading through elongation (sµ ∈ S ′) or literal (sµ 6∈ S ′)

paths only, and does not contain any safety or clause path.

By the construction of the graph representation G(C,S), the distance of vµ and v′
µ

via a literal path is shorter by one compared to the distance via an elongation path.

Thus, it holds that

dT (v′
0, v

′
n) = (n − |S ′|)(m + 2) + |S ′|(m + 3) = n(m + 2) + |S ′|

≤ dG(C,S)(v
′
0, v

′
n) + k .

To establish the ‘if’ direction, let T be a spanning tree of G(C,S) containing all

clause path edges and satisfying dT (v′
0, v

′
n) ≤ dG(C,S)(v

′
0, v

′
n) + k. The path between v′

0

and v′
n in T cannot lead through clause or safety paths since

dG(C,S)(v
′
0, v

′
n) + k ≤ n(m + 3) < 2n(m + 2) .

90

6.3. GRAPH-APPROXIMATING SPANNING TREES

Hence, this path contains only literal and/or elongation paths.

By construction, the length of any (intact) elongation path is m + 2, the length of

any (intact) literal path is m + 1. Therefore, the path from v′
0 to v′

n contains exactly k

elongation paths. Let S ′ be the set of literals sµ for which this path leads from vµ

to v′
µ via an elongation path. Here, the literal path must be broken since otherwise T

is not a spanning tree. Conversely, for every sµ 6∈ S ′, the literal path is not broken,

i.e., (vµ, l
µ
1 , . . . , lµm, v′

µ) is a path in T . Assume, there is a clause Cµ = {sν , sκ} ∈ C
(where ν < κ) such that Cµ ∩ S ′ = ∅. The clause path corresponding to the clause Cµ

connects lνµ with lκµ. Since sν , sκ 6∈ S ′, the vertex lνµ is connected to v′
ν which is connected

to vκ which is connected to lκµ. Hence, we obtain a cycle in contradiction to T being a

spanning tree.

6.3 Graph-Approximating Spanning Trees

In this section, we consider the problem of computing a spanning tree of a graph G

that minimizes the distances of pairs of vertices which are connected by an edge in the

original graph. We study this problem under certain matrix norms. First, we need

further definitions and notations. Let G = (V, E) be an undirected simple graph. The

adjacency matrix of G is a matrix AG ∈ {0, 1}n×n such that AG[i, j] = 1 if and only

if {vi, vj} ∈ E. Otherwise, we have AG[i, j] = 0. Particularly, the diagonal entries are

defined to be AG[i, i] = 0 since we do not allow self-loops.

For two vertices u, v ∈ V , the distance between u and v in G is defined as the length

of a shortest path between u and v in G. This length is denoted by dG(u, v). We define

the distance matrix DG ∈ N
n×n by DG[i, j] = dG(vi, vj). Obviously, DG is a symmetric

matrix with non-negative entries. Furthermore, for any given spanning tree T of G, it

holds DT [i, j] ≥ DG[i, j] for all vi, vj ∈ V .

Let A ∈ N
n×m and B ∈ N

n×m be two n × m-matrices. We denote by C = A ◦ B

the matrix we obtain by performing a multiplication element by element, i.e., we have

C[i, j] = A[i, j] · B[i, j] for all pairs (i, j). This entrywise product of two matrices of

equal dimensions is also known as the Hadamard or Schur product. For evaluating a

matrix A ∈ N
n×n, we use the Lp-norm (1 ≤ p < ∞), which is defined as

‖A‖Lp =

(
n∑

i=1

n∑

j=1

A[i, j]p

)1/p

.

The problem of computing a graph-approximating spanning tree is formally character-

ized as follows.

Problem: GAST (with respect to ‖ · ‖Lp).

Input: A connected graph G and an algebraic number γ.

Question: Is there a spanning tree T of G with ‖(DT − DG) ◦ AG‖Lp ≤ γ?

Now, we show that computing such a tree is hard under the Lp-norm for all p ∈ N.

91

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

Theorem 6.2. GAST with respect to ‖ · ‖Lp is NP-complete for all p ∈ N.

Proof. The containment in NP is obvious. We prove the hardness by reduction from

2HS using the graph representation G(C,S). The idea of the reduction is simple: We

join the end vertices of G(C,S), v′
0 and v′

n, by a connection consisting of a couple of

paths. Moreover, the same technique is used to force the clause path edges of G(C,S)

into any optimal spanning tree. The number of additional paths and their length

depends on the given 2HS instance and is polynomial in the number of literals in S
and clauses in C.

Let (C,S, k) be an instance of 2HS and let N be the number of vertices in its graph

representation G(C,S). We define the graph G = (V, E) such that V consists of the

vertices in the graph G(C,S) and

• NA vertex sets {aµ,1, aµ,2, . . . , aµ,LA
} for each µ ∈ {1, . . . , NA} and

• NB · K vertex sets {bµ
ν,1, b

µ
ν,2, . . . , b

µ
ν,LB

} for each µ ∈ {1, . . . , K} and each ν ∈
{1, . . . , NB}

where K is the number of clause path edges in G(C,S) and NA, NB, LA, LB ∈ N are

four parameters which will be chosen later. The edge set E consists of all edges in

G(C,S) and

• NA paths Aµ = (v′
0, aµ,1, aµ,2, . . . , aµ,LA

, v′
n) for each µ ∈ {1, . . . , NA} and

• NB ·K paths Bµ
ν = (u, bµ

ν,1, b
µ
ν,2, . . . , b

µ
ν,LB

, v) for each µ ∈ {1, . . . , K} and for each

ν ∈ {1, . . . , NB} where {u, v} is a clause path edge.

The gadget is illustrated in Figures 6.2 and 6.3 where the latter figure is a detailed view

onto the extension of a clause path edge which is not displayed in Figure 6.2. Obviously,

the number of vertices and edges in G are polynomial in n and m if NA, NB, LA, and LB

are polynomial in n and m.

Now, we define

γ = Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B

and we claim that G has a spanning tree T such that ‖(DT − DG) ◦ AG‖p
Lp

≤ γ if and

only if (C,S, k) has an admissible 2HS-solution S ′ of size |S ′| ≤ k.

Claim 6.3. Let (C,S, k) be an instance of 2HS. Then, G = (V, E) has a spanning tree

T such that

‖(DT − DG) ◦ AG‖p
Lp

≤ γ

if (C,S, k) has an admissible solution S ′ of size |S ′| ≤ k.

92

6.3. GRAPH-APPROXIMATING SPANNING TREES

a1,LA
aNA,LA

a1,1 aNA,1

v′
0

v′
4

Figure 6.2: Extended graph representation of a 2HS instance.

Proof. Let S ′ be an admissible solution of (C,S, k) such that |S ′| ≤ k. We construct

the spanning tree T of G as follows: For the part of G which corresponds to G(C,S),

we use the spanning tree TG(C,S) according to Lemma 6.1. In that construction, we

remove two edges for each clause in C as well as one edge for each literal in S of the

given 2HS instance (C,S, k). Thus, if N is the number of vertices in G(C,S), it holds

that
∑

{u,v}∈G(C,S)

(dT (u, v) − 1)p ≤ N · Np = Np+1 . (6.1)

Note that {u, v} ∈ G(C,S) denotes all edges in G(C,S) (it does not mean all pairs of

vertices). For the sake of readability, we assume this meaning of the notation unless

stated otherwise.

Additionally, we break the paths Aµ and Bν
κ as follows:

1. For each path Aµ, µ ∈ {1, . . . NA}, we remove the edge {aµ,1, aµ,2}.

2. For each path Bν
κ, ν ∈ {1, . . . , K} and κ ∈ {1, . . . , NB}, we remove the edge

{bν
κ,1, b

ν
κ,2}.

93

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

u v

bµ
1,1

bµ
NB ,1

bµ
1,LB

bµ
NB ,LB

Figure 6.3: Extension paths of a clause path edge {u, v}.

For the first construction rule, the contribution to ‖(DT − DG) ◦ AG‖p
Lp

is bounded by

NA∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≤ NA · (LA + n(m + 2) + k)p (6.2)

and for the second rule, we obtain

K∑

ν=1

NB∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≤ K · NB · Lp
B . (6.3)

Combining (6.1), (6.2), and (6.3), we get the required quality of T

∑

{u,v}∈E

(dT (u, v) − 1)p ≤ Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B = γ .

Claim 6.4. Let (C,S, k) be an instance of 2HS. Then, (C,S, k) has an admissible

solution S ′ of size |S ′| ≤ k if the graph G has a spanning tree T such that

‖(DT − DG) ◦ AG‖p
Lp

≤ γ

with NA > Np+1, NB > NA · (2N2)p, LA = N2 · (n(m + 2) + k), and LB > N2 + 1.

Proof. Let T be a spanning tree of G = (V, E) such that

‖(DT − DG) ◦ AG‖p
Lp

≤ γ = Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B . (6.4)

94

6.3. GRAPH-APPROXIMATING SPANNING TREES

Assume, there is a clause path edge which does not belong to T . We consider the

extension paths of this edge (see Figure 6.3) and distinguish two different cases. Either

there is exactly one path Bν
κ (κ ∈ {1, . . . , NB} and ν depends on the removed clause

path edge), which is intact, or each of these paths is broken. Note that two or more

intact extension paths of the same clause path edge would imply the existence of a

cycle. For the first case, we can lower bound the contribution to ‖(DG − DT) ◦ AG‖p
Lp

for removing an edge from Aµ, µ ∈ {1, . . . , NA}, by

NA∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≥ NA · (LA + n(m + 2))p (6.5)

and for all deleted edges of paths Bν
κ, ν ∈ {1, . . . , K} and κ ∈ {1, . . . , NB}, we obtain

K∑

ν=1

NB∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≥ (K − 1) · NB · Lp
B + (NB − 1) · (2LB)p + Lp

B

= K · NB · Lp
B + (2p − 1) · (NB − 1) · Lp

B . (6.6)

By assumption, we have NA > Np+1, LB > N2 + 1, NB > NA · (2N2)p with p ∈ N.

Thus,

NA · (N2 · (n(m + 2) + k) + n(m + 2))p > Np+1

and

(2p − 1) · (NB − 1) · Lp
B > NA · ((N2 + 1) + (n(m + 2) + k))p

imply the following contradiction to (6.4):

NA · (N2 · (n(m + 2) + k) + n(m + 2))p + (2p − 1) · (NB − 1) · Lp
B

> Np+1 + NA · ((N2 + 1) · (n(m + 2) + k))p

=⇒ NA · (LA + n(m + 2))p + K · NB · Lp
B + (2p − 1) · (NB − 1) · Lp

B

> Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · LB

=⇒ ‖(DT − DG) ◦ AG‖p
Lp

> γ .

For the second case where each path B
{u,v}
κ with κ ∈ {1, . . . , NB} is broken, the lower

bound in (6.5) holds and (6.6) changes to

K∑

ν=1

NB∑

κ=1

∑

{u,v}∈Bν
κ

(dT (u, v) − 1)p ≥ (K − 1) · NB · LB + NB · (LB + 2n(m + 2))p

= K · NB · Lp
B + NB · (2n(m + 2))p .

Analogously to the previous case, we get a contradiction to (6.4). Thus, all K clause

path edges are forced into each optimal spanning tree by the extension paths Bµ
ν ,

µ ∈ {1, . . . , K} and ν ∈ {1, . . . , NB}.

Now, we turn our attention to the paths Aµ, µ ∈ {1, . . . , NA}, and show that all of

these paths must be broken. Afterwards, we prove that the distance between v′
0 and v′

n

95

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

is at most n(m + 2) + k. Since all clause path edges belong to T , we are able to apply

Lemma 6.1 in order to prove the existence of an admissible solution S ′ of size |S ′| ≤ k

for the 2HS instance (C,S, k). To this end, we first assume that there is an intact

path Aµ for some µ ∈ {1, . . . , NA}. The contribution of all broken paths Aµ includes

the length of the intact path:

NA∑

µ=1

∑

{u,v}∈Aµ

(dT (u, v) − 1)p ≥ (NA − 1) · (2LA)p .

Since the direct connection between v′
0 and v′

n (inside the original 2HS gadget) is broken,

there exists some edge {u, v} ∈ G(C,S) such that

(dT (u, v) − 1)p ≥ Lp
A .

This is a contradiction to (6.4) since

‖(DT − DG) ◦ AG‖p
Lp

> γ

⇐= (NA − 1) · (2LA)p + Lp
A + K · NB · Lp

B

> N · Np+1 + NA · (LA + n(m + 2) + k)p + K · NB · Lp
B

⇐= (NA − 1) · (2N2 · (n(m + 2) + k))p + (N2 · (n(m + 2) + k))p

> Np+1 + NA · ((N2 + 1) · (n(m + 2) + k))p

⇐= (NA − 1) · 2p · N2p > NA · (N2 + 1)p

⇐= N2 · 2p · N2p > (N2 + 1)p+1

⇐= N2 · 2
p

p+1 > N2 + 1

which is true if NA > Np+1, LA = N2 · (n(m + 2) + k), N > 1, and p ∈ N.

Closing the proof, we assume that the distance between v′
0 and v′

n is greater than

n(m + 2) + k. Choosing NA > Np+1, we obtain a contradiction to (6.4) since

NA · (LA + n(m + 2) + k + 1)p > Np+1 + NA · (LA + n(m + 2) + k)p

implies ‖(DT − DG) ◦ AG‖p
Lp

> γ.

This proves the theorem.

6.4 Approximating GAST with respect to L1

The problem GAST is related to the problem of computing a so-called fundamental

cycle basis of minimum weight. Let G = (V, E) be an undirected graph and T be

a spanning tree of G. There are m − n + 1 edges e1, . . . , em−n+1 in E which do not

belong to T . When adding the edge ei to T , we obtain a cycle ci = C(T, ei) for all

i = 1, . . . , m − n + 1. The set C = {c1, . . . , cm−n+1} is called a fundamental cycle basis

of G with respect to T . Fundamental cycle bases were studied by Sys lo [Sys79; Sys82].

96

6.4. APPROXIMATING GAST WITH RESPECT TO L1

Given a weighted undirected graph G = (V, E, w), the weight of a fundamental cycle

basis C is defined to be

fundG(C) =
m−n+1∑

i=1

w(ci) (6.7)

where w(ci) denotes the sums of all edge weights in the cycle ci. Since a fundamental

cycle basis can be defined by a spanning tree, we also use the notation fundG(T).

Furthermore, we omit the index ‘G’ of the graph if it is clear from the context. Using

this notation, the minimum fundamental cycle basis problem (Min-FCB) is defined as:

Problem: Min-FCB.

Input: A connected and weighted graph G = (V, E, w).

Output: A fundamental cycle basis C = {c1, . . . , cm−n+1} of minimum weight.

The performance of a polynomial-time approximation algorithm A is measured by

its approximation ratio ρ(n). We say that A approximates some optimization problem

within ρ(n) if for any input of size n, the cost c of the solution computed by A is within

a factor of ρ(n) of the cost c∗ of an optimal solution, i.e., we have

max

(
c

c∗
,
c∗

c

)

≤ ρ(n) .

Now, we show the approximability of GAST by a reduction to Min-FCB.

Theorem 6.5. If Min-FCB is approximable within ρ > 1 then GAST with respect

to ‖ · ‖L1 is approximable within 3ρ.

Proof. Let G = (V, E) be an instance of GAST with respect to L1-norm, that is we

want to compute a spanning tree T of G such that ‖(DT − DG) ◦ AG‖L1 is minimized.

Without loss of generality, we assume G is a simple and 2-edge-connected graph. Oth-

erwise, each bridge e of G is contained in every spanning tree T , thus, we can consider

the graph G/e in which the edge e is contracted. We show that an approximation algo-

rithm for the minimum fundamental cycle basis problem with ratio ρ > 1 can be used

to construct an algorithm for GAST with approximation ratio of at most 3ρ. To this

end, we transform the instance G = (V, E) for GAST into an instance G′ = (V ′, E ′, w)

for Min-FCB. The graph G remains unchanged, thus, we have V ′ = V and E ′ = E.

We introduce a weight function w : E → R
+ with w(e) = 1 for all e ∈ E.

For any spanning tree T of G (or G′, respectively), we denote by fundG′(T) and

gastG(T) the objective function with respect to Min-FCB and GAST, i.e., fundG′(T)

is equivalent to (6.7) and it holds that

gastG(T) = ‖(DT − DG) ◦ AG‖L1 =
∑

{u,v}∈E

(dT (u, v) − 1) .

We observe that each spanning tree T satisfies

fundG′(T) = gastG(T) + 2 · w(E \ T)

97

CHAPTER 6. GRAPH-APPROXIMATING SPANNING TREES

and

w(E \ T) ≤ gastG(T) .

Let T ∗
GAST be a spanning tree in G minimizing the function gastG(T) and let T ∗

Min-FCB be

a spanning tree in G′ minimizing the function fundG′(T), respectively. Suppose Min-

FCB is approximable within ρ > 1, that is, there exists a polynomial-time algorithm

computing a spanning tree T
′

Min-FCB of G′ such that

fundG′(T
′

Min-FCB) ≤ ρ · fundG′(T ∗
Min-FCB) .

Then, it holds that

gastG(T
′

Min-FCB) = fundG′(T
′

Min-FCB) − w(E \ T
′

Min-FCB)

≤ ρ · fundG′(T ∗
Min-FCB) − w(E \ T

′

Min-FCB)

≤ ρ · fundG′(T ∗
GAST) − w(E \ T

′

Min-FCB)

= ρ · (gastG(T ∗
GAST) + 2 · w(E \ T ∗

GAST)) − w(E \ T
′

Min-FCB)

= ρ · gastG(T ∗
GAST) + (2ρ − 1) · w(E \ T ∗

GAST)

≤ 3ρ · gastG(T ∗
GAST) .

This proves the theorem.

Galbiati and Amaldi [GA04] showed that the problem Min-FCB can be approxi-

mated within 2O(
√

log n log log n) for arbitrary weighted graphs. This result was obtained

by a reduction to the problem of computing a minimum communication cost span-

ning tree (MCT) [Res99]. The currently best known approximation algorithm is due

to Elkin, Emek, Spielman, and Teng [EEST08] achieving an approximation ratio of

O(log2 n log log n). Hence, we obtain the following corollary.

Corollary 6.6. GAST with respect to ‖·‖L1 is approximable within O(log2 n log log n).

98

Chapter 7

Conclusion

In this thesis, we analyzed spanning trees of weighted bispanning graphs in order to

make progress in proving a conjecture by Mayr and Plaxton [MP92]. Another formula-

tion of this conjecture states that each weighted bispanning graph B = (V, P, Q) which

satisfies w(P) < w(Q) and Q is the only spanning tree with weight w(Q), has at least

|V | − 1 spanning trees with pairwise different weights. We were able to prove this con-

jecture if the spanning tree P also has unique weight or if the cycle matroid of B is

strongly base orderable. As a consequence, it is now sufficient to analyze bispanning

graphs which contain a minor isomorphic to the complete graph on four vertices K4.

Based on these findings, we refined Mayr and Plaxton’s conjecture, that is, we now

conjecture that it is sufficient to count only spanning trees which define a new partition

of a bispanning graph. Here, we formulated a decomposition theorem and proved that

we only have to analyze so-called atomic bispanning graphs, which are a subset of all

bispanning graphs that have a minor isomorphic to K4 (the smallest non-trivial atomic

bispanning graph). In particular, we showed that any partition of K4 into P and Q,

together with any weight function achieving the above requirements, also satisfies the

slightly stronger conjecture.

Furthermore, we considered base orderings, which are related to paths in the tree

graph. We discovered a new property, which we called subsequence-interchangeable,

in order to further classify so-called cyclic base orderings. Such a subsequence-inter-

changeable base ordering corresponds to a path between two spanning trees T and T ′

in the tree graph which has the property that each connected sub-path (actually its

corresponding edge swaps) defines another path with respect to T . We analyzed the

operations ‘double-leaf attachment’ and ‘edge-split’ in order to show how to construct

these base orderings. Again, we pointed out that it suffices only to consider atomic

bispanning graphs like in the previous problem of counting weighted spanning trees.

Actually, there seems to be a stronger connection between these two problems since all

spanning trees lying on a path which corresponds to a subsequence-interchangeable base

ordering have pairwise different weights. Hence, it might be possible to use these sub-

sequence-interchangeable base orderings in order to find a proof of Mayr and Plaxton’s

conjecture.

99

CHAPTER 7. CONCLUSION

Finally, we considered a network sparsification problem: compute a spanning tree T

of a given undirected graph G = (V, E) minimizing the sum of distances between all

pairs of vertices which are connected by an edge in the original graph. Here, we proved

that this problem is NP-complete with respect to the Lp-norm for all p ∈ N by using

a clever extension of the results in [EKM+08]. For p = 1, we showed a reduction to the

problem of computing a minimum fundamental cycle basis implying an approximation

ratio of O(log2 n log log n).

100

Bibliography

[Bau08] Matthias Baumgart. Partitioning bispanning graphs into spanning trees.

In Proceedings of the 19th International Workshop on Combinatorial Algo-

rithms (IWOCA’08), pages 50–62, 2008.

[BD72] Richard A. Brualdi and George W. Dinolt. Characterization of transversal

matroids and their presentations. Journal of Combinatorial Theory (B),

12:268–286, 1972.

[BM97] Andrei Z. Broder and Ernst W. Mayr. Counting minimum weight spanning

trees. Journal of Algorithms, 24(1):171–176, 1997.

[Bon72] John A. Bondy. Transversal matroids, base-orderable matroids, and graphs.

Quarterly Journal of Mathematics Oxford, 23(1):81–89, 1972.

[Bor26] Otakar Bor̊uvka. O jistém problému minimálńım. Práca Moravské

Př́ırodověcké Společnosti, 3:37–58, 1926. (in Czech).

[Bru69] Richard A. Brualdi. Comments on bases in dependence structures. Bulletin

of the Australian Mathematical Society, 1:161–167, 1969.

[Bru71] Richard A. Brualdi. Induced matroids. Proceedings of the American Math-

ematical Society, 29(2):213–221, 1971.

[Bru74] Richard A. Brualdi. Networks and the Shannon switching game. Delta

(Waukesha), 4:1–23, 1974.

[Bru77] Richard A. Brualdi. Introductory Combinatorics. North-Holland, New

York, NY, 1977.

[Bry73] Thomas H. Brylawski. Some properties of basic families of subsets. Discrete

Mathematics, 6:333–341, 1973.

[BS68] Richard A. Brualdi and Edward B. Scrimger. Exchange systems, matchings,

and transversals. Journal of Combinatorial Theory, 5:244–257, 1968.

[BT08] Matthias Baumgart and Hanjo Täubig. The complexity of computing

graph-approximating spanning trees. Technical Report TUM-I0822, Tech-

nische Universität München, Institut für Informatik, 2008.

101

BIBLIOGRAPHY

[BW70] John Bruno and Louis Weinberg. A constructive graph-theoretic solution of

the Shannon switching game. IEEE Transactions on Circuit and Systems,

17(1):74–81, 1970.

[BW71a] John A. Bondy and Dominic J. A. Welsh. Some results on transversal

matroids and constructions for identically self-dual matroids. Quarterly

Journal of Mathematics Oxford, 22(3):435–451, 1971.

[BW71b] John Bruno and Louis Weinberg. The principal minors of a matroid. Linear

Algebra and its Applications, 4(1):17–54, 1971.

[CC96] Sun Chung and Anne Condon. Parallel implementation of Bor̊uvka’s min-

imum spanning tree algorithm. In Proceedings of the 10th International

Parallel Processing Symposium (IPPS’96), pages 302–308, 1996.

[CGM80] Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. Complexity of

spanning tree problems: Part I. European Journal of Operational Research,

5(5):346–352, 1980.

[CH80] Jens Clausen and Lone A. Hansen. Finding k edge-disjoint spanning trees

of minimum total weight in a network: An application of matroid theory. In

Proceedings of the 2nd British Conference on Combinatorial Optimization

(CO’79), volume 13 of Mathematical Programming Study, pages 88–101,

1980.

[Cha72] Stephen M. Chase. An implemented graph algorithm for winning Shannon

switching games. Communications of the ACM, 15(4):253–256, 1972.

[Cha00] Bernard Chazelle. A minimum spanning tree algorithm with inverse-

Ackermann type complexity. Journal of the ACM, 47(6):1028–1047, 2000.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, second

edition, 2001.

[DDGS03] Elias Dahlhaus, Peter Dankelmann, Wayne Goddard, and Henda C. Swart.

MAD trees and distance-hereditary graphs. Discrete Applied Mathematics,

131(1):151–167, 2003.

[Deo74] Narsingh Deo. Graph Theory with Applications to Engineering and Com-

puter Science. Prentice-Hall, Englewood Cliffs, NJ, 1974.

[Die05] Reinhard Diestel. Graph Theory. Springer, Berlin, Heidelberg, third edi-

tion, 2005.

[Din70] Yefim Dinitz. Algorithm for solution of a problem of maximum flow in a

network with power estimation. Soviet Mathematics Doklady, 11(5):1277–

1280, 1970.

102

BIBLIOGRAPHY

[Dir52] Gabriel A. Dirac. A property of 4-chromatic graphs and some remarks

on critical graphs. Journal of the London Mathematical Society, 27:85–92,

1952.

[DPK82] Narsingh Deo, Gurpur Prabhu, and Mukkai S. Krishnamoorthy. Algo-

rithms for generating fundamental cycles in a graph. ACM Transactions

on Mathematical Software, 8(1):26–42, 1982.

[DRT92] Brandon Dixon, Monika Rauch, and Robert E. Tarjan. Verification and

sensitivity analysis of minimum spanning trees in linear time. SIAM Journal

on Computing, 21(6):1184–1192, 1992.

[Edm65a] Jack Edmonds. Lehman’s switching game and a theorem of Tutte and

Nash-Williams. Journal of Research of the National Bureau of Standards,

69B:73–77, 1965.

[Edm65b] Jack Edmonds. Minimum partition of a matroid into independent subsets.

Journal of Research of the National Bureau of Standards, 69B:67–72, 1965.

[EEST08] Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng.

Lower-stretch spanning trees. SIAM Journal on Computing, 38(2):608–628,

2008.

[EF65] Jack Edmonds and Delbert R. Fulkerson. Transversal and matroid parti-

tion. Journal of Research of the National Bureau of Standards, 69B:147–

153, 1965.

[EKM+08] Stefan Eckhardt, Sven Kosub, Moritz G. Maaß, Hanjo Täubig, and Sebas-

tian Wernicke. Combinatorial network abstraction by trees and distances.

Theoretical Computer Science, 407(1-3):1–20, 2008.

[Elk06] Michael Elkin. A faster distributed protocol for constructing a minimum

spanning tree. Journal of Computer and System Sciences, 72(8):1282–1308,

2006.

[Eve79] Shimon Even. Graph Algorithms. Computer Science Press, Rockville, MD,

1979.

[FF62] Lester R. Ford and Delbert R. Fulkerson. Flows and Networks. Princeton

University Press, Princeton, NJ, 1962.

[FRS85] Martin Farber, Bruce Richter, and Herbert Shank. Edge-disjoint spanning

trees: A connectedness theorem. Journal of Graph Theory, 9(3):319–324,

1985.

103

BIBLIOGRAPHY

[GA04] Giulia Galbiati and Edoardo Amaldi. On the approximability of the min-

imum fundamental cycle basis problem. In Proceedings of the 1st Interna-

tional Workshop on Approximation and Online Algorithms (WAOA’03),

volume 2909 of Lecture Notes in Computer Science, pages 151–164.

Springer, 2004.

[Gab76] Harold N. Gabow. Decomposing symmetric exchanges in matroid bases.

Mathematical Programming, 10:271–276, 1976.

[Gab91] Harold N. Gabow. A matroid approach to finding edge connectivity and

packing arborescences. In Proceedings of the 23rdAnnual ACM Symposium

on Theory of Computing (STOC’91), pages 112–122. ACM, 1991.

[Gam99] Anna Gambin. On approximating the number of bases of exchange pre-

serving matroids. In Proceedings of the 24th International Symposium on

Mathematical Foundations of Computer Science (MFCS’99), volume 1672

of Lecture Notes in Computer Science, pages 332–342. Springer, 1999.

[GH85] Ronald L. Graham and Pavol Hell. On the history of the minimum spanning

tree problem. Annals of the History of Computing, 7(1):43–57, 1985.

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed

algorithm for minimum-weight spanning trees. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 5(1):66–77, 1983.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabilit: A

Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY,

1979.

[Gre73] Curtis Greene. A multiple exchange property for bases. Proceedings of the

American Mathematical Society, 39(1):45–50, 1973.

[GS85] Harold N. Gabow and Matthias Stallmann. Efficient algorithms for graphic

matroid intersection and parity. In Proceedings of the 12th International

Colloquium on Automata Languages and Programming (ICALP’85), vol-

ume 194 of Lecture Notes in Computer Science, pages 210–220. Springer,

1985.

[Gus83] Dan Gusfield. Connectivity and edge-disjoint spanning trees. Information

Processing Letters, 16(2):87–89, 1983.

[GW92] Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games:

Algorithms for matroid sums and applications. Algorithmica, 7(5&6):465–

497, 1992.

[HK73] John Hopcroft and Richard Karp. An n5/2 algorithm for maximum match-

ings in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

104

BIBLIOGRAPHY

[HT95] Refael Hassin and Arie Tamir. On the minimum diameter spanning tree

problem. Information Processing Letters, 53(2):109–111, 1995.

[Hu74] Te C. Hu. Optimum communication spanning trees. SIAM Journal on

Computing, 3(3):188–195, 1974.

[Ima83] Hiroshi Imai. Network-flow algorithms for lower-truncated transversal poly-

matroids. Journal of the Operations Research Society of Japan, 26(3):186–

211, 1983.

[Ing75] Aubrey W. Ingleton. Non-base-orderable matroids. In Proceedings of the

5th British Combinatorial Conference (BCC’75), volume 15 of Congressus

Numerantium, pages 355–359, 1975.

[Jar30] Vojtěch Jarńık. O jistém problému minimálńım. Práca Moravské

Př́ırodověcké Společnosti, 6:57–63, 1930. (in Czech).

[JLRK78] David S. Johnson, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. The

complexity of the network design problem. Networks, 8(4):279–285, 1978.

[JM95] Donald B. Johnson and Panagiotis Metaxas. A parallel algorithm for com-

puting minimum spanning trees. Journal of Algorithms, 19(3):383–401,

1995.

[Kan87] Mikio Kano. Maximum and k-th maximal spanning trees of a weighted

graph. Combinatorica, 7(2):205–214, 1987.

[Kin97] Valerie King. A simpler minimum spanning tree verification algorithm.

Algorithmica, 18(2):263–270, 1997.

[KK67] Genya Kishi and Yoji Kajitani. On maximally distinct trees. In Proceedings

of the 5th Annual Allerton Conference on Circuit and System Theory, pages

635–643, 1967.

[KK68] Genya Kishi and Yoji Kajitani. Maximally distinct trees in a linear

graph. Electronics and Communications in Japan, 51A(5):35–42, 1968.

(in Japanese).

[KK69] Genya Kishi and Yoji Kajitani. Maximally distant trees and principal

partition of a linear graph. IEEE Transactions on Circuit and Systems,

16(3):323–330, 1969.

[KKS78] Tatsuya Kawamoto, Yoji Kajitani, and Shoji Shinoda. On the second maxi-

mal spanning trees of a weighted graph. Transactions of the IECE of Japan,

61-A:988–995, 1978. (in Japanese).

105

BIBLIOGRAPHY

[KKT95] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized

linear-time algorithm to find minimum spanning trees. Journal of the ACM,

42(2):321–328, 1995.

[Kom85] Janos Komlós. Linear verification for spanning trees. Combinatorica,

5(1):57–65, 1985.

[KPS00] Judith Keijsper, Rudi Pendavingh, and Alexander Schrijver. Adjacency, in-

separability, and base orderability in matroids. European Journal of Com-

binatorics, 21(4):487–502, 2000.

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the

traveling salesman problem. Proceedings of the American Mathematical

Society, 7(1):48–50, 1956.

[KT73] Tiko Kameda and Shunichi Toida. Efficient algorithms for determining an

extremal tree of a graph. In Proceedings of the 14th Annual Symposium on

Foundations of Computer Science (FOCS’73), pages 12–15, 1973.

[KUM88] Yoji Kajitani, Shuichi Ueno, and Hiroshi Miyano. Ordering of the elements

of a matroid such that its consecutive w elements are independent. Discrete

Mathematics, 72:187–194, 1988.

[Law76] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.

Holt, Rinehart, and Winston, New York, NY, 1976.

[Leh64] Alfred Lehman. A solution of the Shannon switching game. SIAM Journal

on Applied Mathematics, 12(4):687–725, 1964.

[LM82] Eugene L. Lawler and Charles U. Martel. Flow network formulations of

polymatroid optimization problems. In Bonn Workshop on Combinatorial

Optimization, volume 16 of Annals of Discrete Mathematics, pages 189–200,

1982.

[LPSPP05] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-

weight spanning tree construction in O(log log n) communication rounds.

SIAM Journal on Computing, 35(1):120–131, 2005.

[Man96] Richard Mansfield. Strategies for the Shannon switching game. The Amer-

ican Mathematical Monthly, 103(3):250–252, 1996.

[Min81] Edward Minieka. A polynomial time algorithm for finding the absolute

center of a network. Networks, 11(4):351–355, 1981.

[Mir71] Leon Mirsky. Transversal Theory, volume 75 of Mathematics in Science

and Engineering. Academic Press, New York, NY, 1971.

106

BIBLIOGRAPHY

[MP92] Ernst W. Mayr and C. Gregory Plaxton. On the spanning trees of weighted

graphs. Combinatorica, 12(4):433–447, 1992.

[NG99] Ladislav Novak and Alan Gibbons. Hybrid Graph Theory and Network

Analysis, volume 49 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, Cambridge, UK, 1999.

[NW61] Crispin St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite

graphs. Journal of the London Mathematical Society, 36:445–450, 1961.

[NW64] Crispin St. J. A. Nash-Williams. Decomposition of finite graphs into forests.

Journal of the London Mathematical Society, 39:12, 1964.

[Oxl92] James G. Oxley. Matroid Theory. Oxford University Press, New York, NY,

1992.

[Pet99] Seth Pettie. Finding minimum spanning trees in O(mα(m, n)) time. Tech-

nical Report CS-TR-99-23, University of Texas, Austin, TX, 1999.

[PR98] David Peleg and Eilon Reshef. Deterministic polylog approximation

for minimum communication spanning trees. In Proceedings of the

25th International Colloquium on Automata Languages and Programming

(ICALP’98), volume 1443 of Lecture Notes in Computer Science, pages

670–681. Springer, 1998.

[PR00] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the

time complexity of distributed minimum-weight spanning tree construc-

tion. SIAM Journal on Computing, 30(5):1427–1442, 2000.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree

algorithm. Journal of the ACM, 49(1):16–34, 2002.

[Pri57] Robert C. Prim. Shortest connection networks and some generalizations.

The Bell System Technical Journal, 36:1389–1401, 1957.

[Res99] Eilon Reshef. Approximating minimum communication cost spanning trees

and related problems. Master’s thesis, Weizmann Institue of Science, Re-

hovot, Israel, 1999.

[Ros83] James Roskind. Application of Edge Disjoint Trees to Failure Recovery

in Data Communication Networks. PhD thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, 1983.

[RT85] James Roskind and Robert E. Tarjan. A note on finding minimum-

cost edge-disjoint spanning trees. Mathematics of Operations Research,

10(4):701–708, 1985.

107

BIBLIOGRAPHY

[Sch03] Alexander Schrijver. Combinatorial Optimization - Polyhedra and Effi-

ciency, volume 24 of Algorithms and Combinatorics. Springer, Berlin, Hei-

delberg, 2003.

[Sha55] Claude E. Shannon. Game playing machines. Journal of the Franklin

Institute, 260(6):447–453, 1955.

[Sys79] Maciej M. Sys lo. On cycle bases of a graph. Networks, 9(2):123–132, 1979.

[Sys82] Maciej M. Sys lo. On the fundamental cycle set graph. IEEE Transactions

on Circuit and Systems, 29(3):136–138, 1982.

[Tar72] Robert E. Tarjan. Depth-first search and linear graph algorithms. SIAM

Journal on Computing, 1(2):146–160, 1972.

[Tar75] Robert E. Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215–225, 1975.

[Tar83] Robert E. Tarjan. Data Structures and Network Algorithms, volume 44 of

CBMS-NSF Regional Conference Series in Applied Mathematics. Society

for Industrial and Applied Mathematics, Philadelphia, PA, 1983.

[Tut58] William T. Tutte. A homotopy theorem for matroids I and II. Transactions

of the American Mathematical Society, 88(1):144–174, 1958.

[Tut61] William T. Tutte. On the problem of decomposing a graph into n connected

factors. Journal of the London Mathematical Society, 36:221–230, 1961.

[Tut65] William T. Tutte. Lectures on matroids. Journal of Research of the Na-

tional Bureau of Standards, 69B:1–48, 1965.

[Tut71] William T. Tutte. Introduction to the Theory of Matroids. American Else-

vier, New York, NY, 1971.

[Wei97] Louis Weinberg. An optimal solution of the Shannon switching game played

on a graph. In Proceedings of the 1997 IEEE International Symposium on

Circuits and Systems (ISCAS’97), volume 3, pages 1752–1755, 1997.

[Wel76] Dominic J. A. Welsh. Matroid Theory. Academic Press, London, UK, 1976.

[Wes00] Douglas B. West. Introduction to Graph Theory. Prentice-Hall, Upper

Saddle River, NJ, 2000.

[Whi35] Hassler Whitney. On the abstract properties of linear dependence. Ameri-

can Journal of Mathematics, 57(3):509–533, 1935.

[Whi80] Neil L. White. A unique exchange property for bases. Linear Algebra and

its Applications, 31:81–91, 1980.

108

BIBLIOGRAPHY

[Whi86] Neil L. White. Theory of Matroids, volume 26 of Encyclopedia of Mathe-

matics and its Applications. Cambridge University Press, Cambridge, NY,

1986.

[Wie06] Doug Wiedemann. Cyclic base orders of matroids, 2006. Available at

http://www.plumbyte.com/cyclic base orders 1984.pdf (April, 2009).

[Woo74] Douglas R. Woodall. An exchange theorem for bases of matroids. Journal

of Combinatorial Theory (B), 16:227–228, 1974.

109

http://www.plumbyte.com/cyclic_base_orders_1984.pdf

BIBLIOGRAPHY

110

Index

2-HS problem, 88

adjacent, 8

admissible sequence, 60

admissible solution, 88

approximation ratio, 97

atomic, 13

augmenting swap sequence, 21

base orderable, 39

base ordering, 59

cyclic, 60

subsequence-interchangeable, 64

bispannable graph, 11

atomic, 13

composite, 13

bispanning graph, 11

atomic, 13

composite, 13

bridge, 9

CBO, see cyclic base ordering

chord, 54

clause path, 89

composite, 13

cut vertex, 9

cycle, 9

fundamental, 9, 34

cycle matroid, 34

cyclic base ordering, 60

degree of a vertex, 9

double-leaf attachment, 14

edge

bridge, 9

contraction, 7

entering, 9

incident, 9

leaving, 9

subdivision, 8

edge-connectivity, 9

edge-split, 15

edge swap, 9

admissible sequence, 60

elongation path, 88

entering edge, 9

fundamental cycle, 9, 34

fundamental cycle basis, 96

GAST problem, 91

graph

bispannable, 11

bispanning, 11

connected, 9

edge set, 7

isomorphic, 8

minor, 8

simple, 7

tree, 9

undirected, 7

vertex set, 7

weighted, 7

hub, 80

incident, 9

independent set, 33

induced subgraph, 7

isomorphic, 8

isomorphism, 8

leaving edge, 9

literal gadget, 88

literal path, 88

111

INDEX

matroid, 32

base, 33

cycle, 33, 34

independent set, 33

polygon, 34

strongly base orderable, 36

transversal, 35

Min-FCB problem, 97

minor, 8

topological, 8

partition, 11

partition spanning tree, 42

path

length, 9

undirected, 9

safety path, 89

Shannon switching game, 23–24

SIBO, see subsequence-interchangeable base

ordering

spanning tree

partition, 42

spanning tree, 9

spoke, 80

strongly base orderable, 36

subdivision, 8

subgraph, 7

induced, 7

non-trivial, 7

subsequence-interchangeable base ordering,

64

symmetric exchange, 26

symmetric subset exchange axiom, 26

topological minor, 8

transversal matroid, 35

tree graph, 9

undirected graph, 7

undirected path, 9

vertex

adjacent, 8

cut, 9

degree, 9

vertex-connectivity, 9

weighted graph, 7

weight function, 7

wheel, 80

hub, 80

spoke, 80

112

	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Preliminaries
	2.1 Graphs, Trees, and Tree Graphs
	2.2 Bispannable and Bispanning Graphs
	2.2.1 Construction of Bispanning Graphs
	2.2.2 Computing a Partition into two Spanning Trees

	3 Ranking of Weighted Spanning Trees
	3.1 Kano's Conjectures
	3.2 Assuming Singularity of P
	3.3 An Analysis using Matroid Theory
	3.3.1 Preliminaries
	3.3.2 Transversal and Strongly Base Orderable Matroids

	4 Partitioning Bispanning Graphs
	4.1 Introduction
	4.2 Strictly 2-Edge-Connected Bispanning Graphs
	4.3 Decomposition of Bispanning Graphs with Cut Vertices
	4.4 General Decomposition of Bispanning Graphs
	4.5 Partitioning the K4

	5 Subsequence-Interchangeable Base Orderings
	5.1 Introduction
	5.2 Cyclic Base Orderings
	5.3 Subsequence-Interchangeable Base Orderings
	5.3.1 Bottom-Up Approach
	5.3.2 Top-Down Approach
	5.3.3 The Class of Wheel Graphs

	5.4 Concluding Remarks

	6 Graph-Approximating Spanning Trees
	6.1 Introduction
	6.2 The 2-Hitting-Set Gadget
	6.3 Graph-Approximating Spanning Trees
	6.4 Approximating GAST with respect to L1

	7 Conclusion
	Bibliography
	Index

