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Abstract—We consider wireless mesh networks where informa-
tion is multicasted to multiple terminals in a multi-hop fashion.
Due to their strong interdependence, we seek a joint optimization
of network and physical layer that are coupled by the per link
flow constraint. A common approach is to dualize this constraint
and decompose the dual problem into a layered structure; routing
at the network layer and rate assignment at the physical layer.
For the network layer subproblem, linear network coding is
an optimal routing strategy and the solution can be computed
by solving a linear or convex program. The physical layer
subproblem turns out to be more challenging, due to the nature
of the wireless medium and the resulting diminishing effectof
multiple access interference. Existing approaches try to avoid
interference by full orthogonalization of the channels or building
on the concept of conflict graphs. Contrary to these approaches,
we are taking into account interference management, for example
by exploiting the advanced abilities of multiple antenna systems.
Our approach is the factorization of the achievable edge rate
region into known rate regions of subgraphs, called Elementary
Capacity Graphs (ECGs), which allows for taking into account
the half duplex constraint implicitly. The parametrizatio n of the
achievable rate region of an ECG depends on the transmission
technique used and is in general nonconvex. We demonstrate
how the nonconvexity of the physical layer parametrizationcan
be handled within a primal-dual framework without loss of
optimality. As our solution is optimal for a given factorization
we show by numerically simulations the advances compared to
non-optimal schemes.

I. I NTRODUCTION AND PROBLEM STATEMENT

Communication over a wireless mesh network needs trans-
mission strategies to provide link rates at the physical layer,
and a scheme for routing traffic at the network layer. While
originally being developed for wired networks with fixed link
capacities, network coding, as one possible routing scheme,
has recently attracted a lot of attention for being used in
wireless networks [1], [2]. At the physical layer, we employ
advanced physical layer techniques and utilize the gained
flexibility and increased link capacities. This potential gain can
only be exploited if network and physical layer are optimized
jointly, commonly done via a dual approach, see [1], [3].
Toumpis and Goldsmith [4] give a very general physical layer
characterization by scheduling link configurations with fixed
link capcities called basic rate matrices. A similar concept
is used by Wu et al. [2], who coined the term Elementary
Capacity Graphs (ECGs). We adopt this term for our work
and extend it to ECGs with variable rates, where each ECG
is fully described by its achievable rate region. Having fixed
link rates renders the network optimization problem into a
linear program, while taking into account variable rates ismore

challenging and, to the best of our knowledge, only suboptimal
solutions are available. Xiao et al. [3] assume that the linkrate
is only a function of local resources, which implies that links
have to be orthogonalized. Cruz and Santhanam [5] assume
a linear dependence of the link rate on the SINR which is
only true for small SINR values. Whereas Yuan et al. [1]
use a convex approximation of how the link rate depends on
the SINR. Multiple antenna systems are considered by Liu et
al. [6] who construct the network by MIMO-BC systems from
each node to its neighbors. The BC systems are orthogonalized
by fixed frequency assignment, which is in general suboptimal.
In our work we present a major algorithmic framework without
loss of optimality, for a given factorization.

We consider a mesh network with graphG = (N ,L), where
N is the set of nodes andL, L = |L|, is the set of all wireless
links in the network. A multicast session is described by its
sources ∈ N and the set of terminals{t1, . . . , tK} ⊂ N . The
decision of a routing scheme at the network layer determines
the throughputr ∈ R+, and the actual traffic flows on the
links f ∈ RL

+ that are necessary for obtaining it. Choosing an
operating point of the network layer is to select a valid pairof
session throughput and traffic assignment(r, f) ∈ F , where
all possible routing decisions are characterized by the routing
regionF ⊂ R+ ×RL

+. For network coding the routing region
has a explicit formulation in linear (in)equalities, and therefore
F forms a polyhedron. An extention to multiple multicast
sessions that are coded separately is straightforward, see[1].

At the physical layer link rates are assigned to the links in
the network by resource allocation, where due to interference
and jointly used resources link rates are traded off againsteach
other, described by an achievable edge rate regionR ⊂ RL

+.
Clearly, the traffic rates established by the network layer are
limited to the link ratesc ∈ R that the physical layer provides,
which results in the per link flow constraintf ≤ c.

In this work we are aiming at the maximization of through-
put and the optimization problem can be formulated as

max
r,f,c

r (1)

subject to (r, f ) ∈ F

f ≤ c

c ∈ R.

A. The Network Layer Characterization

This section is concerned about the constraint(r, f ) ∈ F
of the problem statement (1). A fundamental result of network
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information theory is that information flows from one source
to different terminals do not compete for link capacities, and
the maximal throughput is given by the max-flow min-cut
theorem and can be achieved by network coding [7]. In other
words, a throughputr is achievable if it is achievable for each
of the terminals individually. Li et al. [8] prove that optimal
throughput can be achieved by linear codes, subsequently Ho
et al. [9] show that random linear codes are sufficient. This
allows us to exclude code construction in this work, and the
optimal routing can be found by a flow allocation problem.
For modelling we use additional variables per terminal and
link et1 , . . . , etK ∈ RL

+, the so called conceptional flows. The
actual traffic flow caused on a linkℓ ∈ L is the maximum of
conceptional flows on the link:

ei ≤ f , ∀i ∈ {t1, . . . , tK}. (2)

A node cannot send more information than it received. Conse-
quently, the ”Kirchhoff law” for each node, whereI(n) is the
set of incoming links of noden andO(n) the set of outgoing
links, reads
∑

ℓ∈O(n)

ei
ℓ =

∑

ℓ′∈I(n)

ei
ℓ′ , ∀n ∈ N \ {s, i}, i ∈ {t1, . . . , tK}.

The throughput for a sink is obviously determined by the sum
of incoming information flows. By introducing rate incidences
ai i = t1, . . . , tK that represent links from the terminals to
the sink, we can conveniently express the flow constraints via
the incidence matrixA of the network:
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= 0. (3)

As it is fully characterized by the linear (in)equalities (2) and
(3), F forms a polyhedron.

B. Factorization of the Rate Region into ECGs

As there exists a huge manifold of transmission techniques
with complex parametrization, we factorize the achievable
edge rate region into known rate regions of subgraphs, called
Elementary Capacity Graphs (ECGs). As we will see later this
factorization allows to reduce the algorithmic complexityand
when established via timesharing, we can take into account the
half duplex constraint, which prohibits that a node receives
and transmits simultaneously. Formally, an ECG is denoted
as Bi ⊆ L, and the set of ECGs we decide for is given
by B = {B1, . . . ,BB}. A transmission schedule alternates
between ECGs by assigning the fraction of timeti, which
the ECGBi is active. The vectort = (t1, . . . , tB)⊤ ∈ T ,
where T = {t ≥ 0 : ‖t‖1 = 1}, formally describes the
transmission schedule. The individual rate regions of the ECGs
are given byR1, . . . ,RB and a parameter setxi ∈ Xi

determines a rate pointRi(xi) from a rate regionRi, i.e.
Ri = {Ri(xi) : xi ∈ Xi}. Thus the factorized overall edge

rate regionR is obviously defined by the convex hull of all
involved rate regions,

R = {(R1, . . . , RB) t : R1 ∈ R1, . . . , RB ∈ RB, t ∈ T }

= co (R1, . . . ,RB) . (4)

An operating point of the physical layerc is determined by
the scheduling vectort and the parameter vector
x = (x⊤

1 , . . . , x⊤
n )⊤ ∈ X = X1 × · · · × XB, i. e.

c = (R1(x1), . . . , RB(xB)) t.

Dealing with Interference:Physical layer configurations are
constructed by timesharing between ECGs that may contain
multiple links, which are exposed to destructive interference.
Interference is treated as additional noise and no attempt to
decode it is made. We consider three basic ways of dealing
with interference, which describe a strategy on how the
parametersx = (x⊤

1 , . . . , x⊤
n )⊤ ∈ X = X1 × · · · × XB are

selected.
a) Avoid Interference:The only way to definitely avoid

interference within one ECG is to have only a single active
link, which is operated at its best transmit strategy.

b) Selfish Transmission:Interference causes a decrease
of rate at the nonintended receivers. This strategy simply
operates each link assuming there are no other links and takes
the decrease in rates into account.

For interference avoidance and selfish transmission we
end up with ECGs that correspond to exactly one achiev-
able rate pointRi, that might not be optimal. Considering
only ECGs that are fixed to a single rate point leads to
an physical layer configuration where the edge rate region
R = {(R1, . . . , RB) t : t ∈ T } forms a polytope, and the
optimization problem (1) is a linear program. Note that for the
special case of one antenna systems wherex are the transmit
power levels, these rate points correspond to the basic rate
matrices in [4].

c) Interference Management:By adjusting the parameter
vector x we can trade off the link capacities against each
other, which requires cooperation of the transmitters. By
opting for interference management we have to include the
parameter vectorx into the joint optimization of physical and
network layer, so this approach demands for major algorithmic
solutions.

II. A LGORITHMIC SOLUTIONS

Opting for the simple schemes avoid interference and selfish
transmission results in an edge rate region given by a polytope
where the extreme points are given by the fixed rate vectors
of the ECGs, which renders the optimization problem into a
linear program. Operating each ECG in an interference man-
agement mode requires to handle complex parametrizations
that are in general nonlinear and nonconvex. However, the
resulting individual rate regions of ECGs can always be made
convex by timesharing. Having a convex edge rate regionR
and the polyhedral routing regionF the problem (1) is a
convex problem and the solution may be found via a dual
problem, as for this kind of convex optimization problem the
duality gap is zero. A common approach is to dualize the
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constraintf ≤ c and solve the dual problem by a primal-
dual algorithm. The algorithm iteratively evaluates the dual
function which is a function of the Lagrangian multipliersλ.
For the i-th iteration and the correspondingλ(i) we have to
solve

max
r,f ,c

r − λ(i),⊤(f − c) (5)

subject to (r, f ) ∈ F

c ∈ R.

Decomposed into two subproblems, for routing at the network
layer we obtain

max
r,f

r − λ(i),⊤f (6)

subject to (r, f) ∈ F ,

which is a linear program. Rate assignment at the physical
layer is

max
c

λ(i),⊤c (7)

subject to c ∈ R.

We present a Theorem that allows an elegant reformulation of
the physical layer subproblem.

Theorem 1:The optimum solution of thei-th physical layer
subproblem (7) is always met by exclusively activating a single
ECG.

Proof: Plugging (4) into the physical layer subproblem (7)
leads to

max
c

λ(i),⊤c subject toc ∈ co (R1, . . . ,RB) .

It is well known that optimizing a linear function over the
convex hull of a set can as well be solved over the set itself.
Therefore, we can write

max
c

λ(i),⊤c

subject to c ∈
⋃

i=1,...,B

Ri.

We now can search for the optimal weighted sum rate point
in each of the rate regionsR1, . . . ,RB and select the best
point (or one of the best points) as solution to the physical
layer subproblem, which corresponds to exclusively activating
a single ECG.
With this Theorem we can reformulate the physical layer
subproblem as

max
n=1,...,B

max
c∈Rn

λ(i)⊤c. (8)

The new physical layer subproblem has some profound ad-
vantages:

• The factorization into smaller problems constituted by
ECGs, of which tractable parametrizations and algorithms
are available.

• The reformulation provides a clear interface for any type
of ECG that has a parametrization of its rate region which
allows for the optimization of the weighted sum rate
cost function. Weighted sum rate maximization is a well-
researched problem and efficient solutions exist for a wide
range of physical layer setups.

• The optimum schedulingt∗ is found by primal recovery,
which avoids an explicit parametrization of the convex
hull of the edge rate region of the overall network. The
time sharing within the individual ECGs is found via
primal recovery as well.

A. Primal-Dual Algorithms and Primal Recovery

A primal-dual algorithm iteratively evaluates the dual func-
tion which means to solve an optimization in the primal
variables. These optimal primal values are used to update the
dual variables, for example by making an adequate step into
the direction of a subgradient. For our problem (1) and the
chosen dual function (5) the subgradient update rule is given
by

λ(i) =
[

λ(i) + v(i)
(

f∗(i) − c∗(i)
)]+

,

where[•]+ denotesmax(0, •), v(i) is determined by a stepsize
rule and f∗(i) and c∗(i) are the solutions to (6) and (7).
However, subgradient methods tend to be slow in practice and
other update rules for the dual variables should be considered.
For our numerical simulations we used a variant of the well
known cutting-plane algorithm [10].

Primal-dual algorithms guarantee to find the optimal dual
variablesλ, but the primal variables found by evaluating the
dual function are in general not feasible to the primal problem.
To be explicit, the activation of a single ECG is in general
not a feasible physical layer configuration. Feasible primal
solutions can be constructed by a convex combination of the
solutions found in each iteration. For details on recovering the
primal solution of convex optimization problems we refer to
[11]. The optimal timesharing of physical layer configurations
then equals the convex combining parameters, which are
conveniently calculated as a byproduct by the cutting-plane
algorithm.

III. A N ECG WITH TWO INTERFERINGL INKS

Having the algorithmic framework at hand, this Section
gives an example for advanced physical layer techniques,
featuring multiple antenna systems. We consider two types of
ECGs, the single link or peer-to-peer connection and the two-
user Interference Channel(IFC). Using ECGs with a single
link effectively represents interference avoidance, whereas in
the case of two links we can employ selfish transmission and
interference management which requires cooperation of the
senders. Figure 1 shows some exemplary ECGs. Other config-
urations are considered in [12], where ECGs are constitutedby
Multicast Channels, Broadcast Channels, andMultiple Access
Channels.

In this work, without loss of our general conclusion we
limit our investigation to multiple-input single-output (MISO)
transmission instead of utilizing the enhanced capabilities of
the full multiple-input multiple-output (MIMO) channel prop-
erties. The MISO two-user interference channel is described
by the four channel vectorshij i, j = 1, 2. The transmit
symbolsxi ∈ CN for the sendersi = 1, 2 are constructed
by the scalar data symbolsi ∈ C and the beamforming
vector ui ∈ CN such thatxi = uisi. The data symbols
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Fig. 1. Exemplary ECGs with the Two User Interference Channel

si are circularly symmetric Gaussian with unit variance. The
transmitted symbols interfere additively and noiseni is added
at the receiver. The received symbols are

y1 = h⊤
11x1 + h⊤

12x2 + n1

y2 = h⊤
22x2 + h⊤

21x1 + n2.

Assuming that the receivers treat all interference as additional
noise, the achievable rates are given by

R1 = log

(

1 +
|h⊤

11u1|
2

σ2 + |h⊤
12u2|

2

)

(9)

R2 = log

(

1 +
|h⊤

22u2|
2

σ2 + |h⊤
21u1|

2

)

. (10)

The power of the noiseσ2 = E[|n1|2] = E[|n2|2] is assumed
to be the same at both receivers. The achievable rate region
is the union of all beamforming vectors that fulfill a power
constraint||u1||

2
2, ||u2||

2
2 ≤ Pmax and can be written as

R =
⋃

u1, u2

||u1||
2
2 ≤ Pmax

||u2||
2
2 ≤ Pmax

(R1(u1, u2), R2(u1, u2)).

For useri, usinguMRT
i = h∗

ii is maximum ratio transmission
(MRT) beamforming. Altruistic or zero-forcing (ZF) beam-

forming,uZF
i = h∗

ii−
h⊤

jih
∗

ii

||h∗

ji
||2

2

h∗
ji, causes no interference to the

second userj while the own gain is reduced. Shi et al. [13]
and Jorswieck et al. [14] show that the optimal beamforming

vector can be written as a combination ofuMRT
i anduZF

i :

u1(γ1) = P max ·
γ1u

MRT
1 + (1 − γ1)u

ZF
1

‖γ1u
MRT
1 + (1 − γ1)uZF

1 ‖2
(11)

u2(γ2) = P max ·
γ2u

MRT
2 + (1 − γ2)u

ZF
2

||γ2u
MRT
2 + (1 − γ2)uZF

2 ||2
, (12)

with γ1, γ2 ∈ [0, 1]. By plugging (11)–(12) into (9)–(10) the
weighted sum rate problem for the weightsλ1, λ2 can be
formulated as

max
γ1,γ2

λ1 · log
(

σ2 + |h⊤
12u2(γ2)|

2 + |h⊤
11u1(γ1)|

2
)

+

λ2 · log
(

σ2 + |h⊤
21u1(γ1)|

2 + |h⊤
22u2(γ2)|

2
)

−

λ1 · log
(

σ2 + |h⊤
12u2(γ2)|2

)

−

λ2 · log
(

σ2 + |h⊤
21u1(γ1)|2

)

subject to γ1, γ2 ∈ [0, 1].

The objective can be split into two functions monotonic in
γ1, γ2 and the problem fits into the framework of optimiz-
ing the difference of increasing functions. Having a similar
structure, we adopted the approach suggested by Jorswieck
and Larsson [15] based on thePolyblock Algorithm, which is
a global optimization method proposed by Tuy [16]. Selfish
transmission coresponds to chooseγ1 = γ2 = 1 and for
interference avoidance by single links the MRT beamformer
is chosen.

IV. RESULTS

By numerical simulations we compare the three strategies
described in Section I-B: avoid interference, selfish trans-
mission, and interference management. The simulations were
made for a fully connected network of seven nodes, which
exhibits 42 links. From those we can construct420 ECGs
with two interfering links each as described in Section III,
an exemplary selection of these is illustrated in Figure 1. In
general the number of ECGs of this type in a network with
N nodes is given by:

#ECGs= 12 ·

(

N

4

)

. (13)

Each node is equipped with two antennas, and the channel
coefficients are complex Gaussian distributed with unit vari-
ance. The results are averaged over 500 channel realizations
per SNR value. We include simulation results for 4 and 6
terminals, see Figure 2 and Figure 3 respectively. Additionally
the solutions of the network optimization problem for one
channel realization at 10 dB is given, once for six terminals
(flooding), Figure 4, and once for two terminals, Figure 5. For
this example the established link capacities are equal to the
traffic assigned to it, which is not necessarily always the case.
The thickness of the arrows is proportional to the assigned
rate.

Interference management by advanced physical layer tech-
niques increases system complexity, so it is a fair question
to ask if it is actually worth all the effort. The simulation
results give a clear answer by showing a significant increase
of the multicast throughput when utilizing the interference
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management capabilities in each ECG. For low SNR, selfish
transmission is a good strategy, as noise dominates and the
impact of interference is almost irrelevant. Obviously, for
higher SNR the selfish transmission strategy suffers from being
interference limited.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we investigated the potential benefit of
advanced physical layer techniques to multicast throughput
enhancement in wireless mesh networks. To this end, in a first

step we introduced a factorization of the edge capacity region
into multiple elementary capacity graphs, each operating in
an interference management mode. The proposed optimization
approach allows to exploit the dual decomposition framework,
although the individual rate regions of the introduced ECGsdo
not fulfill the required convexity properties. For the physical
layer, we used the two user interference channel to illustrate
the enhancement of throughput by exploiting the advanced
interference management abilities of multiple antenna systems.
Although finding the optimal configuration of the two user
interference channels requires to run the polyblock algorithm,
a global optimization method, a solution to the network
optimization problem is found in polynomial time. The ability
to decompose the physical layer subproblem into a problem
per ECGs keeps the number of variables of the polyblock
algorithm constant, while the number of ECGs grows poly-
nomial with the number of nodes, cf. (13). In contrast the
naive approach to solve the physical layer subproblem jointly
for all ECGs by the polyblock algorithm would result in non-
polynomial complexity. By numerical simulations we show a
significant gain in throughput compared to systems that do not
manage interference. The framework presented in this work
is very general with respect to the transmission techniques
chosen for the ECGs, as long as the ECG has a parametrization
of the rate region and an algorithm to solve the weighted
sum rate problem. In ongoing work we will consider the
a factorization of the edge rate region in ECGs of various
other types. A further direction of future research is on the
Wireless Multicast Advantage(WMA), which describes the
fact that other nodes then the intended receiver might be
able to decode the transmitted message, allowing nodes to
simultaneously transmit identical data to many receivers.The
benefits of considering the WMA haven been shown in [12],
where each node has one antenna and ECGs are constructed
by BC systems. Motivated by the degradedness of the SISO-
BC channel and the superposition coding used, an adequate
model for the WMA is derived. However, the WMA is difficult
to model in general, and especially for MIMO systems where
channels are in general not degraded.
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