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Abstract—The problem of determining an optimal pa-
rameter setup at the physical layer in multi-user, multi-
antenna downlink is considered. An aggregate utility,
which is assumed to depend on the users’ rates, is used
as performance metric. It is not assumed that the utility
function is concave, allowing for more realistic utility
models of applications with limited scalability. Due to
the structure of the underlying capacity region, a two
step approach is necessary: First, an optimal rate vector
is determined. Second, the optimal parameter setup is
derived from the optimal rate vector. Two methods for
computing an optimal rate vector are proposed: First,
based on the differential manifold structure offered by the
boundary of the MIMO BC capacity region, a gradient
projection method on the boundary is developed. Being
a local algorithm, the method converges to a rate vector
which is not guaranteed to be a globally optimal solution.
Second, the monotonic structure of the rate space problem
is exploited to compute a globally optimal rate vector
with an outer approximation algorithm. While the second
method yields the global optimum, the first method is
shown to provide an attractive trade-off between utility
performance and computational complexity.

I. INTRODUCTION

The majority of current wireless communication sys-
tems is based on the principle oforthogonal multiple
access. Simply speaking, multiple users compete for
a set of shared channels, and access to the channels
is coordinated such that each channel is used by a
single user only. The decision which user accesses which
channel is made at themedium access(MAC) layer,
with the result that at thephysical (PHY) layer, trans-
mission is over single-user channels. Based on recent
advances in physical layer techniques such as MIMO
signal processing and multi-user coding, it has been
shown that significant performance gains can be achieved
by allowing one channel to be used by multiple users at
once [1], [2], [3], [4], [5]. In other words, the physical
layer paradigm is shifting from single-user channels

to multi-user channels. This change also dissolves the
strict distinction between MAC and PHY layers, as the
question which users access which channels can only be
answered in a joint treatment of both layers.

In this work, a multi-user, multi-antenna downlink
in a single-cell wireless system is considered, which,
from the viewpoint of information theory, corresponds
to a MIMO broadcast channel(MIMO BC) [3], [6].
While the aforementioned shift to multi-user channels is
motivated by the potential gains in system performance,
an evident drawback of this shift is the increased de-
sign complexity. In other words, multi-antenna, multi-
user channels significantly increase the set of design
parameters and degrees of freedom at the PHY layer.
Clearly, strategies for tuning these parameters in an
optimal manner are of great interest.

The desire for maximum system performance leads
immediately to the question of optimality criteria. While
voice and best effort data applications have been predom-
inant, future wireless systems are expected to provide a
multitude of heterogeneous applications, ranging from
best effort data to low-delay gaming applications, from
low-rate messaging to high-rate video. The heterogeneity
of these applications requires application-aware optimal-
ity criteria, i.e., it is no longer sufficient to optimize PHY
and MAC layer with respect to criteria such as average
throughput or proportional rate fairness.

Utility functions have been widely used as a model for
the properties of upper layers. In this work, the focus is
on the optimization of the PHY layer parameters, and
a generic utility model in terms of a function that is
monotone in the user’s rates is employed. For a wide
range of applications, utility models can be found in the
literature. In [7], applications are classified based on their
elasticity with respect to the allocated rate. Best effort
applications can be modeled with a concave utility [7].
On the other hand, less elastic applications result in a
nonconcave utility model [7], [8]. While most works on



utility maximization in wireless systems assume concave
utilities, the nonconcave setup has received relatively
little attention [8], [9], [10]. Based on the premise that
some relevant application classes can be more precisely
modeled by nonconcave utilities, this work proposes a
solution strategy that provides at least locally optimal
performance in the nonconcave case.

There exists a significant amount of literature on utility
maximization for wireless networks, see, e.g., [11], [12],
[13], [10] and references therein. The network-oriented
works usually consider a large number of nodes with a
simple physical layer setup, and focus on computation-
ally efficient and distributed resource allocation strate-
gies for large networks. In contrast, this work focuses on
the optimization of a limited-size infrastructure network
with a complex multi-antenna, multi-user PHY/MAC
layer configuration. Utility maximization in the MIMO
BC is also investigated in [14]. The authors solve the
utility maximization problem based on Lagrange duality,
under the assumption of concave utility functions.Dual
methodsare frequently used in network utility maxi-
mization [10], but rely on the assumption of problem
convexity. This work makes the following contributions:
First, a primal gradient-based method for addressing
the utility maximization problem in the MIMO BC is
developed. The proposed method does not rely on a
convexity assumption and can provide convergence to
local optima in the nonconvex case. The quality of such
local solutions depends on the specific problem instance
and can only be evaluated if the global optimum is
known. The second contribution of this work is the
application of methods from the field of deterministic
global optimization to the nonconcave utility maximiza-
tion problem. It is shown that the utility maximization
problem in the MIMO BC can be cast as a monotonic
optimization problem [15]. The monotonicity structure
can be exploited to efficiently find the global optimum
by an outer approximation algorithm.

Notation: Vectors and vector-valued functions are de-
noted by bold lowercase letters, matrices by bold upper-
case letters. The transpose and the Hermitian transpose
of Q are denoted byQT and QH, respectively. The
identity matrix is denoted by1. Concerning boldface,
an exception is made for gradients: The gradient of a
functionu evaluated atx is a vector∇u(x), the gradient
of a functionf evaluated atx is a matrix∇f(x) whose
i-th column is the gradient atx of the i-th component
function of f [16]. The following definitions of order
relations between vectorsx,y ∈ RK , with K > 1, are

used:

x ≥ y ⇔ ∀k : xk ≥ yk,

x > y ⇔ x ≥ y,∃k : xk > yk,

x ≫ y ⇔ ∀k : xk > yk.

Order relations≤, <,≪ are defined in the same manner.

II. PROBLEM SETUP

At the physical layer, a MIMO broadcast channel
with K receivers is considered. The transmitter hasN
transmit antennas, while receiverk is equipped with
Mk receive antennas. The transmitter sends independent
information to each of the receivers.

The received signal at receiverk is given by

yk = Hk

K∑

i=1

xi + ηk,

where Hk ∈ CMk×N is the channel to receiverk
and xk ∈ CN is the signal transmitted to receiverk.
Furthermore,ηk is the circularly symmetric complex
Gaussian noise at receiverk, with ηk ∼ CN (0,1Mk

).
Let Qk denote the transmit covariance matrix of user

k. The total transmit power has to satisfy the power
constrainttr

(
∑K

k=1 Qk

)

≤ Ptr. Accordingly, withQ =

(Q1, . . . ,QK) the set of feasible transmit covariance
matrices is given by

Q =

{

Q : Qk ∈ HN
+ , tr

(
K∑

k=1

Qk

)

≤ Ptr

}

.

whereHN
+ denotes the set of positive semidefinite Her-

mitian N × N matrices.
As proved in [6], capacity is achieved bydirty paper

coding(DPC). Letπ denote the encoding order, i.e.,π :
{1, . . . ,K} → {1, . . . ,K} is a permutation andπ(i)
is the index of the user which is encoded at thei-th
position. Moreover, letΠ denote the set of all possible
permutations on{1, . . . ,K}.

For fixedQ andπ, an achievable rate vector is given
by r(Q, π) = (r1(Q, π), . . . , rK(Q, π)), with

rπ(i) = log
det
(
1 + Hπ(i)(

∑

j≥i Qπ(j))H
H
π(i)

)

det
(
1 + Hπ(i)(

∑

j>i Qπ(j))H
H
π(i)

) .

Let R denote the set of rate vectors achievable by
feasibleQ andπ:

R = {r(Q, π) : Q ∈ Q, π ∈ Π} .



The capacity region of the MIMO BC is defined as the
convex hull ofR [3]:

C = co(R).

Accordingly, each element ofC can be written as a
convex combination of elements ofR, i.e., for each
r ∈ C, there exists a set of coefficients{αw}, a set
of transmit covariance matrices{Q(w)}, and a set of
encoding orders{π(w)} such that

r =

W∑

w=1

αwr(Q(w), π(w)), (1)

with αw ≥ 0,
∑W

w=1 αw = 1,Q(w) ∈ Q, andπ(w) ∈ Π.
In other words,r is achieved by time-sharing between
rate vectorsr(Q(w), π(w)) ∈ R.

Eachr ∈ C can be achieved by time-sharing between
at mostK rate vectorsr(Q(w), π(w)) ∈ R, thusW ≤ K.
Accordingly, the physical layer parameter vector can be
defined as follows:

xP = (αw,Q(w), π(w))Kw=1.

Moreover, the set of feasible PHY parameter setups is
given by

XP =

{

xP : αw ≥ 0,

W∑

w=1

αw = 1,Q(w) ∈ Q, π(w) ∈ Π

}

.

Given the setXP, an obvious problem is finding a
parameter setupx∗

P that is, in a desired sense, optimal.
In this work, it is assumed that the properties of the

upper layers are summarized in a system utility function
u : RK

+ → R, whose value depends only on the rate
vector provided by the physical layer. The parameter
optimization problem is then given by

max
xP

u(r(xP)) s.t. xP ∈ XP, (2)

where r(xP) follows from Eq. (1). Concerning the
functionu, it is assumed that larger rates result in higher
utility, i.e., it is assumed thatu is strictly monotonically
increasing.1 Moreover, it is assumed thatu is continu-
ous, and differentiable onRK

++. The functionu is not
assumed to be concave.

1Strict monotonicity implies that

r > r
′

⇒ u(r) > u(r′). (3)

III. N ONCONCAVE UTILITIES

One of the premises of this work is that noncon-
cave utilities are of high practical relevance in future
communication systems. Consider the caseK = 1. A
strictly monotone functionu : r 7→ u(r) is concave if
the gain in utility obtained from increasingr decreases
with increasingr, for all r ∈ R+. A common example
for such a behaviour are best effort data applications,
where any increase in rate is good, but a saturation
effect leads to a decreasing gain for largerr [7]. Such
elastic applications are perfectly scalable. On the other
extreme, applications that have fixed rate requirements
(such as traditional voice service) are not scalable at
all (inelastic), and are more precisely modeled by a
nonconcave utility: Below a certain rate threshold, utility
is zero, above the threshold utility takes on its maximum
value (step function) [7].

Based on recent advances in multimedia coding, future
multimedia applications can be expected to lie between
these two extremes: They are scalable to some extent,
but do not provide the perfect scalability of best effort
services. As an example, the scalable video coding ex-
tension of the H.264/AVC standard [17] provides support
of scalability based on a layered video codec. Due to the
finite number of layers, the decoded video’s quality only
increases at those rates where an additional layer can
be transmitted. Moreover, if the gain between layers is
not incremental (such as experienced when switching be-
tween low and high spatial resolution), such a behaviour
can be more precisely modeled by a nonconcave utility,
which, in contrast to a concave utility, does not require
a steady decrease of the gain over the whole range of
feasible rates. To summarize, the flexibility offered by
nonconcave utilities allows for more precise models of
multimedia applications, which only have a finite number
of operation modes and show a non-monotone behaviour
of the gains experienced by an increase in rate.

IV. D IRECT APPROACH

Based on (2), a first approach may be to directly
optimize the composite functionu ◦ r with respect
to the PHY parametersxP. In general, however, this
approach will fail, due to the discrete nature ofΠ and the
nonconvexity of problem (2), even for a concave utility
function u.

In contrast, the capacity region is convex by definition,
thus the problem

max
r

u(r) s.t. r ∈ C (4)



is convex for concaveu. This motivates solution ap-
proaches that operate in the rate space and not in the
physical layer parameter space.

A special case for which the direct approach succeeds
is given by the utilityu(r) = λTr, i.e., weighted sum
rate maximization(WsrMax). In this case, time sharing is
not required, i.e.,α∗

w = 0, w > 1. Moreover, the gradient
∇u is independent ofr, and an optimal encoding order
π∗ can be directly inferred fromλ [18], [3], [4]. As
a result, the problem is reduced to finding the optimal
transmit covariance matrices, which can be solved as
a convex problem in the dual MAC [4]. Denote by
rwsr(λ, π∗) the rate vector that maximizes weighted sum
rate for a given weightλ and a corresponding optimal
encoding orderπ∗, i.e.,

λTrwsr(λ, π∗) = max
Q∈Q

λTr(Q, π∗). (5)

For general utility functions, the optimal solution may
require time-sharing. In particular, if no further assump-
tions concerning the properties ofu are made, the loss
incurred by approximating a time-sharing solution by a
rate vectorr ∈ R may be significant. Moreover, even if
the optimal solution does not require time-sharing, it is
not clear how to find the optimal encoding order.

An optimization algorithm operating in the rate space
of course still requires a means to compute points from
C. WsrMax overC can be cast as a convex problem.
Moreover, efficient algorithms for solving the WsrMax
problem in the MIMO BC have been proposed recently
[19], [20]. Based on this observation, the proposed algo-
rithm is formulated such that iterates onC are obtained
as solutions of WsrMax problems.

V. ITERATIVE EFFICIENT SET APPROXIMATION

To solve problem (2), a two-step procedure is fol-
lowed: First, determine a (possibly locally) optimal so-
lution r∗ of problem (4) by operating in the rate space.
Second, givenr∗, determine a parameter setupx∗

P such
that

r(x∗
P) = r∗.

Due to the assumed strict monotonicity of the function
u, all candidate solutions to problem (2) lie on the Pareto
efficient boundary ofC. The Pareto efficient set is defined
as

E =
{
r ∈ C : ∄r′ ∈ C : r′ > r

}
. (6)

Knowing thatr∗ ∈ E , a gradient projection method is
proposed that generates iterates onE . Note that there

exist different flavors of gradient projection methods: A
gradient projection on arbitrary convex sets [16], requir-
ing a Euclidean projection, and a gradient projection on
sets equipped with a differential manifold structure [21],
[22], [23]. In this work, the second approach is followed.

In the classical gradient projection method of Rosen
[24], it is assumed that the feasible set is described by
a set of constraint functionsh,m such that the set of
feasibler is given byh(r) ≤ 0,m(r) = 0, with h,m
differentiable. For the capacity region of the MIMO BC,
such a description in terms of constraint functions inr is
not available (basically, all that is available is a method
to compute points on its efficient boundary, by means of
WsrMax). The key for a gradient-based optimization in
the rate space is to recognize the differentiable manifold
structure offered by the efficient boundary of the capacity
region. By exploiting this structure, a gradient ascent
on E that does not rely on a description in terms of
constraint functions is possible.

A. Gradient Ascent onE

The following problem is considered:

max
r∈E

u(r). (7)

The efficient setE is aK−1 dimensional manifold with
boundary [25], where the boundary ofE corresponds to
rate vectorsr ∈ E with at least one user having zero
rate. Furthermore, it is assumed that for the MIMO BC,
the interior of the efficient set, defined by

Ẽ = {r ∈ E : r ≫ 0} ,

is smooth up to first order, i.e.,̃E is a C1 differentiable
[25], K − 1 dimensional manifold. Based on this as-
sumption, there exists a set{φr}r∈Ẽ of differentiable
local parameterizationsφr : Ur ⊂ RK−1 → Ẽ , with Ur

open andφr(0) = r [25].
For simplicity, it is first assumed thatr∗ ∈ Ẽ . Based

on this assumption, starting atr(0), a sequence of iterates
r(n) ∈ Ẽ is generated. At eachr(n), a parameterization
φr(n) is available. Composing parameterization and util-
ity function results in a functionfr = u◦φr, which maps
an open subset ofRK−1 into R. The composite function
fr is amenable to standard methods for unconstrained
optimization. Based on this observation, a gradient as-
cent is carried out on the set of functionsfr = u◦φr. Let
r(n) denote then-th iterate, andµ(n) its coordinates in
the parameterizationφr(n), i.e.,µ(n) = φ−1

r(n)(r
(n)) = 0.

By definition of fr, u(r) = fr(0). The composite



function fr is differentiable at0, with gradient∇fr at
0 given by

∇fr(0) = ∇φr(0)∇u(r), (8)

where∇φT
r is the Jacobian ofφr. If ∇fr(0) 6= 0, then

∇fr(0) is an ascent direction offr at0, i.e., there exists
a β > 0 such that for allt, 0 < t ≤ β

t∇fr(0) ∈ Ur, (9)

fr(t∇fr(0)) > fr(0), (10)

where (9) follows from the fact thatUr is open and (10)
from the differentiability offr, see, e.g., Theorem2.1
in [26]. This gives rise to the following iteration:

µ(n) = φ−1
r(n)(r

(n)) = 0, (11)

µ(n+1) = t∇fr(n)(0), (12)

r(n+1) = φr(n)(µ(n+1)), (13)

with t > 0 chosen such that properties (9) and (10)
are fulfilled. The algorithm defined in Eqs. (11)-(13)
is a so-calledvarying parameterization approachto
optimization on manifolds [23], [27].

According to Eq. (10), the iteratesr(n) generate an
increasing sequenceu(r(n)). The iteration stops if

∇fr(0) = 0. (14)

In this work, pointsr ∈ E for which (14) holds are
denoted asstationary points. The tangent space of̃E at
r is defined as

Tr = span
(
∇φr(0)T

)
.

Thus, geometrically, stationary points correspond to
points on the efficient boundary where the gradient of
the utility function is orthogonal to the tangent space,
cf. Eq. (8). In the context of minimizing a differentiable
function over a differentiable manifold, Eq. (14) repre-
sents a necessary first-order optimality condition [22].

The step sizet is determined with an inexact line
search. As evaluations offr are usually computationally
expensive, the step sizet is chosen such that an increase
in the utility value results, while keeping the number of
evaluations offr as small as possible. Define

θ(t) = fr(t∇fr(0)) = u(φr(n)(t∇fr(n)(0))).

Starting with an initial step sizet = t0 that satisfies
Eq. (9), the step sizet is halved until

θ(t) ≥ θ(0) + α∇θ(0)t, (15)

for fixed α, 0 < α < 1. Note that (15) corresponds to
Armijo’s rule [28] for accepting a step size as not too

r(n)

r(n+1)
r̃

n

δn

r1

r 2

tBBT∇u(r(n))

C

E

Figure 1. One iteration of the IEA method.

large. In contrast to Armijo’s rule, however, there is no
test whether the step size is too small, i.e.,t0 is always
considered large enough.

There exists a choice for the parameterizationsφr for
which ∇φr(0), and thus∇fr(0), is particularly simple
to compute. LetB ∈ RK×K−1 denote an orthonormal
basis of the tangent spaceTr. Choosen such that the
columns of

[
B n

]
constitute an orthonormal basis of

RK . Choose the parameterizationφr as follows:

φr(µ) = r + Bµ + nδ(µ), (16)

whereδ(µ) is chosen such thatφr(µ) ∈ Ẽ (correction
step). Then

∇φr(0) = BT. (17)

As shown in Subsection V-B, it is straightforward to find
a basisB. Combining Eqs. (12),(13),(8),(16) and (17)
yields

r(n+1) = r(n) + tBBT∇u(r(n)) + nδ(t), (18)

with δ(t) = δ(tBT∇u(r(n)). Accordingly, the update in
rate space is given by

r(n+1) − r(n) = tBBT∇u(r(n)) + nδ(t). (19)

The first summand in (19) is the orthogonal projec-
tion of ∇u(r(n)) on the tangent space. Based on this
observation, the proposed method can be interpreted
as follows: First, approximate the efficient set by its
tangent space atr(n). Next, compute a gradient step,



using this approximation. Finally, make a correction step
from the approximation back to the efficient set, yielding
r(n+1). Based on the observation that at each iteration,
an approximation of the efficient set is computed, the
proposed method is denoted asiterative efficient set
approximation(IEA). For the case ofK = 2 users, one
iteration of the IEA method is illustrated in Figure 1.

Eq. (9) defines an upper bound on the step sizet,
which ensuresµ(n+1) stays within the domain of the pa-
rameterizationφr(n) . The domain of the parameterization
defined in (16) is defined implicitly by the requirement
that all entries of the resulting rate vector have to be
positive, i.e.,

Ur = {µ : φr(µ) ≫ 0} . (20)

In fact, the image and domain of the parameterization
defined in (16) can be extended to also include rate
vectors with zero entries. From Eqs. (20) and (18), an
upper bound on the step sizet can then be derived by
interpretingr(n+1) as a function oft. An upper bound
on t is given by the value oft where the smallest entry
in r(n+1)(t) is exactly zero:

t̄ : min
k

r
(n+1)
k (t̄) = 0.

Note that by Eq. (18), the upper bound̄t depends on
r(n) – thus the validity range0 < t < t̄ changes over̃E ,
and it may get small close to the boundary ofE .

B. Correction Step

The most involved step is the computation of
δ(µ(n+1)). Write r(n+1) as

r(n+1) = r̃ + δn, (21)

with r̃ = r(n) +Bµ(n+1). Based on (21), the correction
step can be interpreted as the projection ofr̃ on E
by computing the intersection betweenE and the line
{r = r̃ + xn, x ∈ R}, cf. Fig. 1. Assume thatn ≥ 0

(the validity of this assumption is verified at the end of
this subsection). Thenδ can be found by solving the
following optimization problem:

δ = max
x,r

x s.t. r̃ + xn ≤ r, r ∈ C. (22)

Note that (22) is a convex problem. In particular, it
is independent of the utility functionu, i.e., it is con-
vex regardless whetheru is concave or not. Moreover,
Slater’s condition is satisfied, i.e., strong duality holds.
Accordingly, (22) can be solved via Lagrange duality.

The Lagrangian of problem (22) is given by

L(x, r,λ) = x + λT (r − r̃ − xn).

The dual function follows as

g(λ) = sup
x∈R

r∈C

(
x(1 − λTn) + λT(r − r̃)

)

=

{

+∞, λTn 6= 1,

maxr∈C λT(r − r̃), λTn = 1.
(23)

Note that for λTn = 1, again a weighted sum-rate
maximization problem is to be solved. Recall from
Section IV that WsrMax can be efficiently solved as a
convex problem in the dual MAC.

Let r∗(λ) denote a maximizer of the weighted sum-
rate maximization in (23) for a givenλ ∈ RK

+ . The
optimal dual variableλ is found by solving

min
λ≥0

λT(r∗(λ) − r̃) s.t. λTn = 1. (24)

According to Danskin’s Theorem [16], a subgradient
(at λ) of the cost function of problem (24) is given
by (r∗(λ) − r̃). If λ has equal entries,r∗(λ) is not
unique [4]. Thus, the subgradient is not unique and
the cost function is nondifferentiable. Accordingly, the
minimization in (24) has to be carried out using any of
the methods for nondifferentiable convex optimization,
such as subgradient methods, cutting plane methods, or
the ellipsoid method [29]. All these methods have in
common that they generate iteratesλ(i) (which converge
to the optimal dual variableλ∗), and at each iterationi,
they require the computation of a subgradient atλ(i) –
which basically corresponds to solving a WsrMax prob-
lem with weightλ(i). In this work, an outer-linearization
cutting plane method [16] is used to solve problem (24).

As strong duality holds,δ = g(λ∗), and

r(n+1) = r̃ + g(λ∗)n.

From the optimal dual variableλ∗ also follows the
tangent space atr(n+1). Due to strong duality,r(n+1)

maximizesL(x∗, r,λ∗) overC [16]. Accordingly,r(n+1)

is a maximizer of a WsrMax problem with weightλ∗.
Recall that for WsrMax,u(r) = λTr, with ∇u(r) = λ.
The corresponding composite functionfr is given by
fr(µ) = λTφr(µ). As r(n+1) is a maximizer of the
WsrMax problem, it has to be a stationary point (for
this particular composite function, withλ = λ∗). From
Eq. (14) follows:

∇
(
(λ∗)Tφr(n+1)

)
(0) = ∇φr(n+1)(0)λ∗ = 0,

thus

Tr(n+1) = null
(
(λ∗)T

)
. (25)



In other words, the basisB needed in thenext iteration
can be obtained by computing an orthonormal basis of
the null space of(λ∗)T, whereλ∗ is the optimal dual
variable of the current iteration. In addition, in the next
iteration a unit vectorn ≥ 0 orthogonal toB is needed.
From Eq. (25) it follows thatn (in the next iteration) is
simply

n =
λ∗

‖λ∗‖2
.

C. Time-Sharing Solutions

The algorithm described in Subsections V-A and V-B
yields a stationary pointr∗ of problem (4). The final
step is the recovery of an optimal parameter setupx∗

P
from r∗. The complexity of the recovery step depends
on the location ofr∗: If r∗ /∈ R , thenr∗ lies in a time-
sharing region. Throughout this work, the termtime-
sharing regiondenotes a subset ofE whose elements are
only achievable by time-sharing. In case of time-sharing
optimality, the optimal parameter setup has to be found
by identifying a set of points inE ∩ R whose convex
combination yieldsr∗.

The recovery is based on the optimal dual variable of
the last correction step: If at least two entries inλ∗ are
equal, time-sharing may be required. In the case of equal
entries inλ∗, there exist multiple rate vectorsr ∈ R that
are maximizers of a WsrMax problem with weightλ∗

[4], and r∗ is a convex combination of these points. In
the case that all entries inλ∗ are equal, all permutations
π are optimal, resulting inK! points rwsr(λ

∗, π). As
a consequence, enumerating allK! points first and then
selecting the (at most)K points that are actually required
to implementr∗ is only feasible for smallK. For larger
K, an efficient method for identifying a set of relevant
points is provided in [30].

If no two entries inλ∗ are equal, the optimum encod-
ing orderπ∗ is uniquely defined,r∗ = rwsr(λ

∗, π∗), and
Q∗ maximizes(λ∗)Tr(Q, π∗), cf. Eq. (5).

From an implementation viewpoint, entries inλ∗ will
usually not be exactly equal, even if the theoretical
solution lies in a time-sharing region. As a result, time-
sharing between users is declared if the difference be-
tween weights is below a certain threshold.

D. Coarse Projection

The proposed algorithm consists of two nested loops:
a gradient-based outer loop and an inner loop for the
correction step at each outer iteration. A significant
reduction in computational complexity can be achieved if
the required precision of the inner loop is adapted to the

outer loop. In fact, the convergence of the outer loop is
ensured by an increase in the cost function at each step,
based on condition (10). The inner iteration generates
rate vectorsr(λ(i)) during convergence toλ∗. If r(λ(i))
fulfills condition (10) andr(λ(i)) ∈ Ẽ , the projection of
r̃ on C is sufficiently good to yield an ascent step onẼ .
In this case, the projection is aborted and the outer loop
continues with

r(n+1) = r(λ(i)).

The resulting reduction in the number of inner iterations
comes at the price of an evaluation of the functionu at
each inner iteration. As a result, the overall gain in terms
of complexity clearly depends on the cost associated with
evaluatingu.

E. Boundary Points

So far, it has been assumed that at the optimal solution
r∗, all users have non-zero rate (i.e.,r∗ ∈ Ẽ). If this as-
sumption does not hold, the sequence

{
r(n)

}
converges

to a point on the boundary ofE , cf. Section V-F. Define

I(r) = {k : rk = 0} . (26)

The boundary ofE is given by

∂E = E \ Ẽ = {r ∈ E : I(r) 6= ∅} .

Observe that the boundary can be written as the union
of K sets∂E{k}, with

∂E{k} = {r ∈ E : {k} ⊂ I(r)} .

Finally, define a setE{k} by removing thek-th entry
(which is zero) from all elements in∂E{k}:

E{k} =
{
x ∈ RK−1 : xℓ = rℓ, ℓ /∈ {k}, r ∈ ∂E{k}

}
.

Note that the resulting setE{k} is the efficient boundary
of a capacity region of aK − 1 user MIMO BC, with
userk removed. It follows immediately that the interior
E{k} is again a differentiable manifold, now of dimension
K − 1. The boundary ofE{k} can be decomposed in the
same manner, resulting in a set ofK − 2 dimensional
manifolds, and so on. Accordingly, the setED, with D ⊆
{1, . . . ,K} corresponds to the efficient boundary of a
capacity region of aK−|D| user MIMO BC, with users
in D removed.

Accordingly, the general case is incorporated as fol-
lows: Denote byA = {1, . . . ,K} \ D the set of
active users. Only active users are considered in the
optimization, i.e., replaceK by |A| and letk be the index
of thek-th active user in all steps of the algorithm. If the
sequence

{
r(n)

}
converges to a point on the boundary



of ED, the users with zero entries in the rate vector
are removed fromA and assigned toD. Initialize with
A = {1, . . . ,K}, D = ∅ andr(0) ∈ Ẽ . With these modi-
fications, the algorithm always operates on differentiable
manifoldsẼD ⊂ R|A|, with r ≫ 0,∀r ∈ ẼD.

In practice, convergence to the boundary is detected
as follows: If the rater(n)

k of an active user falls below
a threshold, and the projected utility gradient results in
r
(n+1)
k < r

(n)
k , the user is deactivated. The decision to

deactivate a user is based on the iterates and not on
the limit point, thus the modified algorithm may lead to
suboptimal results if a user is deactivated that actually
has non-zero rate in the limit.

F. Convergence of the IEA Method

Concerning the convergence of the IEA method, two
cases can be distinguished: In the first case, the sequence
{
r(n)

}
converges to a point iñE . In the second case, the

sequence
{
r(n)

}
converges to a point on the boundary

of E . According to Section V-E, after removing the users
with zero rate, the boundary itself is aK−1 dimensional
manifold with boundary, and the algorithm converges in
the interior or on the boundary of this manifold. The
argument continues until the dimension of the manifold
under consideration is0. Thus, it suffices to consider
the convergence behaviour in the interior ofED, which,
from the perspective of the algorithm is equivalent toẼ
– an open set equipped with a differentiable manifold
structure.

Accordingly, the IEA method is globally convergent
if convergence to a pointr∗ ∈ Ẽ implies thatr∗ ∈ Ẽ
is a stationary point. Convergence can be proved using
Zangwill’s Global Convergence Theorem [26]. Not all
parameterizations, however, yield a convergent method.
For the parameterization defined in Eq. (16), global
convergence (in the sense of the Global Convergence
Theorem) is proved in [31].

A more intuitive (and less rigorous) discussion of
the convergence behaviour follows from considering the
updatesµ(n+1). Convergence to a pointr∗ implies

µ(n+1) = t(n)∇fr(n)(0) → 0. (27)

Now assume thatr∗ is not a stationary point. This
implies ∇fr(n)(0) 6= 0,∀n, which, by Eq. (27) implies
t(n) → 0. For the parameterization defined in Eq. (16),
such a sequence of step sizes results if the sequence of
upper bounds̄t(r(n)) converges to zero. This behaviour,
however, only occurs if the sequence

{
r(n)

}
converges

to a point on the boundary ofE , which contradicts the
assumption thatr∗ ∈ Ẽ .

The theoretical convergence results based on Zang-
will’s Global Convergence Theorem assume infinite pre-
cision. Theoretically, if∇fr(n)(0) 6= 0, it is always
possible to find a step sizet > 0 such that (10) holds.
In a practical implementation of the IEA method, the
parameterization is evaluated numerically, in particu-
lar the correction step is a numerical solution of a
convex optimization problem. Due to the convexity of
the correction problem, a high numerical precision can
be achieved. Still, the inherent finite precision of the
correction step sets a limit to the precision of the overall
algorithm. This property underlines the importance of
the coarse projection described in V-D: The inner loop
needs a tight convergence criterion in order to yield
a high precision in cases where it is difficult to find
an ascent step. In cases where an ascent step is easily
found, however, it is not necessary to solve the problem
to high precision. The latter case is detected by the
coarse projection. Also note that the coarse projection
does not impact the convergence behaviour in a negative
way: The global convergence ensures that (theoretically)
the algorithm does not get stuck at a non-stationary
point. The coarse projection only comes into play if it
is possible to move away from the current point.

It is clearly not guaranteed that a stationary point
r∗ maximizes utility. Due to the fact that the proposed
algorithm is an ascent method, however,r∗ is a good
solution in the sense that given an initial valuer(0),
utility is either improved, or the algorithm converges at
the first iteration and stays atr(0), in this case requiring
no extra computations. That is, any investment in terms
of computational effort is rewarded with a gain in utility.

VI. M ONOTONIC OPTIMIZATION

The gradient-based approach presented in Section V
converges to a stationary point of the optimization
problem, and cannot guarantee convergence to global
optimality, as it relies on local information only.

The rate-space formulation (4) of the utility maxi-
mization problem corresponds to the maximization of
a monotonic function (the utility functionu) over a
compact set inRK

+ (the capacity regionC), and hence
is a monotonic optimization problem [15], which can be
solved to global optimality.

A basic problem of monotonic optimization is the
maximization of a monotonic function over a compact
normal set [15]. A subsetS of RK

+ is said to benormalin
RK

+ (or briefly, normal), ifx ∈ S,0 ≤ y ≤ x ⇒ y ∈ S.
The capacity regionC is normal: any rate vectorr′

that is smaller than an achievable rate vectorr is also



achievable. Thus,C is a compact normal set and the
rate-space problem (4) is a basic problem of monotonic
optimization.

A. Polyblock Algorithm

The basic algorithm for solving monotonic optimiza-
tion problems is the so-calledpolyblock algorithm. A
polyblock is simply the union of a finite number of
hyper-rectangles inRK

+ : Given a discrete setV ⊂ RK
+ , a

polyblockP(V) is defined as

P(V) =
⋃

v∈V

{r ∈ RK
+ , r ≤ v}.

The setV contains the vertices of the polyblockP(V).
Due to the fact thatC is a compact normal subset

of RK
+ , there exists a setV(0) such thatC ⊆ P(V(0)).

Moreover, starting withn = 0, either C = P(V(n)) or
there exists a discrete setV(n+1) ⊂ RK

+ such that

C ⊆ P(V(n+1)) ⊂ P(V(n)). (28)

In other words, the polyblocksP(V(n)) represent an
iteratively refined outer approximation of the capacity
region.

Consider the problem of maximizing utility over the
polyblockP(V(n)):

max
r∈P(V(n))

u(r). (29)

Let ř(n) denote a maximizer of problem (29). Due to the
monotonicity ofu, ř(n) ∈ V(n), i.e., the maximum of a
monotonic function over a polyblock is attained on one
of the vertices [15]. Due to the fact that the vertex set
of a polyblock is discrete, problem (29) can be solved
to global optimality by searching over allv ∈ V(n).

If ř(n) ∈ E , the globally optimal rate vector is found.
In general, however,̌r(n) will lie outside the capacity
region, due to the fact that the polyblock represents an
outer approximation. Denote byy(n) ∈ E the intersection
betweenE and the line segment connecting the origin
with ř(n). Let r̂(n) denote the best intersection point
computed so far, i.e.,

r̂(n) = y(ℓ∗), ℓ∗ = argmax
ℓ∈{1,...,n}

u(y(ℓ)).

Moreover, letu∗ denote the global maximum of (4). It
follows that

u(r̂(n)) ≤ u∗ ≤ u(ř(n)). (30)

Intuitively, as the outer approximation ofC by a poly-
block is refined at each step,u(ř(n)) eventually con-
verges tou∗. Due to the continuity ofu, this con-
vergence also holds for̂r(n), i.e., r̂(n) converges to a

global maximizer ofu. See [15] for a rigorous proof.
According to Eq. (30), anǫ-optimal solution is found if
u(r̂(n)) ≥ u(ř(n)) − ǫ.

One possible method to construct a sequence of poly-
blocks P(V(n)) that satisfies (28) is as follows [15]:
Define

K(r) =
{
x ∈ RK

+ : xk > rk, k /∈ I(r)
}

,

with I(r) as defined in (26). Clearly,̂r(n) ∈ E implies
K(r̂(n)) ∩ C = ∅. Thus,K(r̂(n)) can be removed from
P(V(n)) without removing any achievable rate vector.
Moreover, if ř(n) /∈ E ,

K(r̂(n)) ∩ P(V(n)) ⊃
{

ř(n)
}

⊃ ∅,

thus by removingK(r̂(n)), a tighter approximation re-
sults. Finally,P(V(n)) \ K(r̂(n)) is again a polyblock
[15]. To summarize, the desired rule for constructing a
sequence of polyblocks that satisfies (28) is

P(V(n+1)) = P(V(n)) \ K(r̂(n)).

The rules for computing the corresponding vertex set
V(n+1) are provided in [15].

B. Intersection withE

If the polyblock algorithm is applied to the rate-space
problem (4), the only step in the algorithm in which the
intricate properties of the capacity regionC come into
play is the computation of the intersection betweenE and
the line connecting the origin witȟr(n). Comparing the
correction step of the IEA algorithm from Section V-B
with the computation of the intersection point, it turns
out that both operations are almost identical, only the line
whose intersection withE is computed is different. As a
result, the Lagrangian-based algorithm from Section V-B
can also be used to compute the intersection point, by
setting

r̃ = ř(n),n = ř(n).

In Section V, it was stated that the most complex step
in each iteration of the IEA method is the correction
step. Similar results hold for the polyblock algorithm:
At each iteration, the main complexity lies in the com-
putation of the intersection point. Due to the similarity
between IEA’s correction step and the computation of
the intersection point in the polyblock algorithm, the
complexity of both approaches can be compared by
comparing the number of gradient iterations with the
number of polyblocks generated until a sufficiently tight
outer approximation is found. The convergence proper-
ties of the polyblock algorithm are only asymptotic [15]



– thus, a relatively high complexity of the polyblock
algorithm can be expected. This expectation is confirmed
by simulation results, see Section VIII.

C. Implementation Issues

The presentation of the polyblock algorithm in Sec-
tion VI-A closely follows [15]. In this basic version,
simulations showed very slow convergence of the al-
gorithm, due to the fact that close to regions on the
boundary where at least on rate gets close to zero, a
large number of iterations are needed until a significant
refinement results. A similar behaviour is reported in
[32]. Following [32], the convergence speed of the
algorithm can be significantly improved by modifying
the direction of the line whose intersection withE defines
the next iteratey(n). Computationally, this is achieved
by settingn = ř(n) + a, a ∈ RK

+ in the algorithm from
Section V-B.

An initial vertex setV(0) can be determined as follows:
Define a rate vectorv ∈ RK

+ whose k-th entry vk

corresponds to the maximum rate achievable for user
k. ThenV(0) = {ωv} with ω ≥ 1 defines a polyblock
that contains the capacity region.

VII. D UAL DECOMPOSITION

For concave utilities, a dual approach to solve the util-
ity maximization problem in the MIMO BC was recently
proposed in [14]. The algorithm in [14] represents an
application of the dual decomposition [10]. Similar to
the gradient-based method developed in Section V, the
solution is found in two steps: First, an optimal rate
vectorr∗ is found by operating in the rate space, second,
the optimal parameters are derived fromr∗.

In the first step, problem (4) is modified by introducing
additional variables:

max
r,s

u(s) s.t. 0 ≤ s ≤ r, r ∈ C. (31)

The dual function is chosen as

g(λ) = max
s≥0

u(s) − λTs

︸ ︷︷ ︸

gA(λ)

+ max
r∈C

λTr

︸ ︷︷ ︸

gP(λ)

.

Evaluating the dual function atλ results in two decou-
pled subproblems: ComputinggA(λ) andgP(λ) by max-
imizing over the primal variabless andr, respectively.
ComputinggP(λ) is again a WsrMax problem.

The optimal dual variable is found by minimizing the
dual function with respect toλ. The dual function is
always convex, regardless of the properties of the utility
function u [16].

If the utility function u is concave, strong duality
holds, and the optimal primal solutionr∗ can be recov-
ered from the dual solution by employing standard meth-
ods for primal recovery, as in [14]. Also, for concaveu,
efficient methods exist to find a set of corner points that
implementr∗ in the case of time-sharing optimality [30].

Being entirely based on Lagrange duality, a non-
concave utility poses significant problems to the dual
decomposition. Most importantly, recovering anoptimal
primal solution (r∗, s∗) from the dual solution is, in
general, no longer possible. Moreover, the schemes for
recovering all parametersxP of a time-sharing solution
rely on strong duality to hold. [30]. For nonconcaveu,
however, strong duality cannot be assumed to hold. In
fact, simulation results in Section VIII show a significant
duality gap in the scenario under consideration.

As a result, for nonconcaveu, the followingheuristic
is used to obtain a primal feasible solution(r̂, ŝ): Given
the optimal dual variableλ∗, chooser̂ = rwsr(λ

∗, π∗),
whereπ∗ is any optimal encoding order. Moreover, let
ŝ = r̂. An upper bound on the loss incurred by this
approximation follows immediately from weak duality:
Let u∗ denote the (unknown) maximum utility value. By
weak duality,g(λ∗) ≥ u∗, thus u∗ − u(r̂) ≤ g(λ∗) −
u(r̂). The tightness of this bound clearly depends on the
duality gap, which is not known.

VIII. S IMULATION RESULTS

Utility maximization in aK = 3 user Gaussian MIMO
Broadcast channel withN = 6 transmit antennas and
Mk = 2 receive antennas per user is simulated. The
channelsHk are i.i.d. unit-variance complex Gaussian.
Furthermore, the maximum transmit power isPtr = 10.
To obtain rates in kbps, rates are multiplied by a band-
width factorW = 60kHz.

In the simulations, the utilityu is given by a weighted
sum of the users’ utilitiesuk:

u(r) =

K∑

k=1

wkuk(rk).

The IEA method always uses a sum-rate maximizing
rate vector as initial pointr(0). The results are averaged
over 1000 channel realizations.

Two different models for the users’ utilitiesuk are
considered: A concave logarithmic utility and a noncon-
cave sigmoidal utility.

A. Concave Utility

The logarithmic utility function is defined as

uk(rk) = b ln(1 + c−1rk),
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Figure 2. Average utility (concave utilities)

with constantsb, c. In the simulations,c = 40kbps andb
is chosen such thatuk(1000kbps) = 1. The weightswk

are chosen according to the following scheme:

ω =
(
1 γ γ2

)
,

w =
ω

‖ω‖1
.

with γ ∈ {1, . . . , 5}. Figure 2 shows the average utility
for the case of logarithmic utility functions. Shown is the
average utility for the gradient-based approach (IEA),
for the dual decomposition (DD), and, as a reference,
the average utility obtained by using for transmission
the sum-rate maximizing rate vector that corresponds to
encoding orderπ =

[
1 2 3

]
(SR). Due to the fact

that the utility maximization problem is convex, both
IEA and DD achieve identical performance. Moreover,
for identical weightswk, cross-layer optimization does
not provide a significant gain compared to the sum-rate
maximizing strategy. The larger the difference between
the users’ weights, the larger the gain achieved by cross-
layer optimization. This result is not surprising, as for
asymmetric setups, it is more important to adapt the
physical layer to the characteristics of the upper layers.
Moreover, the decay of the logarithmic utility function is
rather moderate around the optimal rate vector, therefore
a maximizer of the weighted sum-rate is almost optimal
for equal weights.

B. Nonconcave Utility

The nonconcave utility model is adopted from [8]. For
each userk, the following sigmoidal utility function is
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Figure 3. Sigmoid utility function,b = 400kbps

used:

uk(rk) = ck

(
1

1 + exp(−ak(rk − bk))
+ dk

)

,

where ck and dk are used to normalizeuk such that
uk(0) = 0 and uk(∞) = 1. The steepness of the
transition between the minimum and the maximum value
is controlled by the parameterak, whereasbk determines
the inflection point of the utility curve (cf. Figure 3).
In the simulations,ak = a kbps−1, and a is varied
in a range between0.01 and 0.05, modelling different
degrees of elasticity of the applications. For each chan-
nel realization, the constantbk of each user is chosen
randomly in the interval[300kbps, 500kbps] according
to a uniform distribution. Choosing thebk randomly can
be understood as a model for fluctuations in the data rate
requirements of the users over time, e.g., transmission of
a video source with varying scene activity. All users have
equal weightwk = 1/K.

Figure 4 shows the average utility for the case of
sigmoidal utility functions. Shown is the average utility
for the gradient-based approach (IEA), the polyblock
algorithm (PB), the dual decomposition (DD), and the
sum-rate maximizing rate vector (SR). In addition, the
average minimum value of the dual function in the
dual decomposition approach is shown (DUB). The PB
algorithm finds the global maximum for each realiza-
tion. As a result, the PB curve gives the maximum
achievable average utility. In terms of average utility,
the performance of the IEA method is close to optimal.
It can be concluded that for the system setup under
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consideration, the IEA method succeeds in finding a
stationary point which is identical or close to the global
maximum for most realizations. In contrast, the dual
decomposition-based method does not find a good rate
vector in most cases. The poor performance of the com-
putationally simple SR strategy emphasizes the need for
cross-layer optimization. In particular, the performance
gain achieved by both PB and IEA increases witha. This
behaviour can be explained as follows: With increasing
a, the interval in which the utility function makes a
transition from small to large values becomes smaller.
Therefore, it becomes more and more important to adapt
the physical layer parameters to the utility characteristics.

The results in Figure 4 also show that the dual upper
bound (DUB) obtained from the dual decomposition
is rather loose. This implies that there is a significant
duality gap in most cases.

C. Complexity Analysis

If average utility is the only figure of merit, the
polyblock algorithm is obviously superior to all other
approaches. From a practical viewpoint, a second metric
of interest is the computational complexity of the differ-
ent approaches. In the following, the utility-complexity
trade-offs provided by the different approaches are inves-
tigated. All results are for the case of sigmoidal utility
functions.

In Figure 5, average utility is plotted versus the
number of iteration for the IEA method. The plot shows
three graphs, corresponding to three different values of
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Figure 5. Average utility vs. number of iterations, IEA method

the steepness parametera: a ∈ {0.01, 0.03, 0.05}. Note
that the rightmost points of each graph corresponds to
the average utility value in Figure 4. Only the gradient
based outer iterations defined in Eqs. (11) - (13) are
counted, the inner iterations in the correction step are
neglected. Figure 5 shows that the IEA method needs
on average between five and10 iterations to get close to
the maximum achieved utility value.

In Figure 6, average utility is plotted versus the
number of iteration for the polyblock algorithm. The
plot shows three pairs of graphs, with each pair corre-
sponding to a different value of the steepness parameter
a: a ∈ {0.01, 0.03, 0.05}. Each pair consists of two
graph, one showing the average of the current best
utility value u(r̂(n)) (CBV, dash-dotted line), the other
showing the average of the upper boundu(ř(n)) (UB,
solid line). Depending on the parametera, between50
to 75 iterations are needed until the current best value is
close to the global maximum. Recall from Section VI-A
that the convergence criterion for the PB algorithm is
based on the difference betweenu(r̂(n)) and u(ř(n)).
Figure 6 shows that a large number of iterations may
be required until convergence is declared, due to the
relatively slow convergence of the upper bound.

In both Figure 5 and Figure 6, the number of inner
iterations required in the correction step and the com-
putation of the intersection point, respectively, are not
counted. In each inner iteration, a WsrMax problem is
solved. Moreover, a WsrMax problem is also solved at
each iteration of the dual decomposition. Accordingly, all
three approaches can be compared based on the number
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Figure 6. Average utility vs. number of iterations, PB algorithm

of calls to the WsrMax subroutine. Figure 7 shows the
average utility that is achieved if the maximum number
of calls to WsrMax is limited to a value maxCall, with
maxCall increased in steps of10 calls. Again, three
groups of graphs are shown, each group corresponding
to a value ofa, with a ∈ {0.01, 0.03, 0.05}. As an
example, the results show that the dual decomposition
needs between10 and 20 iterations until convergence
(to a clearly suboptimal solution). Of particular interest
are the cross-over points between IEA method and PB
algorithm. For a = 0.05, the cross-over point is at
maxCall = 300, i.e., only if more than a maximum of
300 calls to WsrMax are feasible does the PB algorithm
outperform the IEA method. Moreover, for small values
of maxCall, the IEA method provides significantly larger
average utility.

IX. CONCLUSIONS

Two methods for solving the nonconcave utility max-
imization problem in the MIMO broadcast channel are
proposed: a gradient-based method that converges to
a locally optimal solution, and an approach based on
monotonic optimization that yields the global optimum.
Due to the structure of the MIMO BC capacity region,
a direct optimization in terms of the physical layer
parameters transmit covariance matrices and encoding
order is not feasible. Thus, as an intermediate step,
both methods first determine an optimal rate vector.
The optimal physical layer parameter setup, which may
include a time-sharing solution, is then obtained from
this rate vector. For both methods, the formulation of the
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Figure 7. Average utility vs. maximum number of WsrMax calls

utility maximization problem in the rate space represents
a key step: The IEA method exploits the differentiable
manifold structure of the efficient boundary of the capac-
ity region, while the polyblock algorithm relies on the
fact that maximizing utility over the set of achievable rate
vectors represents a monotonic optimization problem.

The polyblock algorithm provides globally optimal
performance, at the price of a relatively high com-
putational complexity. From a practical viewpoint, the
proposed IEA method provides an attractive trade-off
between utility performance and computational com-
plexity: In the simulation setup used in this work, the
average utility achieved by the IEA method is close
to optimal, at significantly lower complexity than the
polyblock algorithm.

Throughout this work, it is assumed that users’ rates
are the only relevant performance metrics of the physical
layer, implying that rate cannot be traded for delay and
reliability. In a more general setup, more than one per-
formance metric per user may be required to characterize
the physical layer, corresponding to a utility function that
is a function of all these metrics [7]. Concerning the
results presented in this work, this would clearly impact
the mapping from physical layer parameters to set of
achievable performance vectors. The methods proposed
in this work, however, would still be applicable, provided
the structural assumptions of each method are still met
(i.e., the utility function is monotone in all physical
layer metrics, the set of achievable performance vectors
is compact and, in case of the IEA method, can be



equipped with a differentiable manifold structure). While
the capacity region is convex, it is not clear whether a
generalized achievable region can still be assumed to be
convex. This observation represents a further motivation
for an optimization framework that does not rely on the
assumption of convexity.
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