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Abstract—It is common in information theoretic channel mod-
els to rely on the average squared Euclidean norm of the channel
input as being proportional to transmit power. Likewise, it is com-
mon to assume noise that is additive, Gaussian, and white. It is
a legitimate question to ask, whether such a modeling approach
has enough degrees of freedom to capture the physical constraints
that are imposed on implementations of a communication system.
In this paper, we show that in many, though not all, situations it
is indeed possible to obtain a complete physical model, while nev-
ertheless sticking with average squared Euclidean norm as power,
and white Gaussian noise. Our systematic approach works in two
steps. First, all channel inputs and outputs are replaced by ports,
which are de�ned by two conjugated variables (like voltage and
current). By this multi-port modeling approach, we can obtain
a complete physical model. Secondly, we introduce linear trans-
formations between the inputs and outputs of the information
theoretic channel model on the one hand, and the physical inputs
and physical outputs of the communication system, on the other.
This approach gives us enough degrees of freedom to obtain a
complete information theoretic model, which correctly re�ects the
physical constraints that are imposed upon the communication
system by its environment. We apply the proposed approach to a
multi-antenna communication system, and show that it is indeed
possible that the channel capacity of multi-antenna systems can
grow super-linearly with the number of antennas for large signal
to noise ratios.

I. Introduction

Information theoretic channel models comprise three parts: a
transfer model, a noise model, and a power (or energy) model.
The most prominent one is the transfer model, which relates
the channel input with the noiseless channel output. Most of
the channel modeling literature is concerned with this input-
output relationship [1]. In the most widely used noise model,
the noise is additive, Gaussian, and white. Finally, power (or
energy) is usually used to describe the costs for the exchange
of information, such that information theoretic measures, like
channel capacity or cut-o� rate are computed with a power
constraint. It is all common to model power as the average
squared Euclidean norm of the channel input [2].
Because such information theoretic channel models should

be applicable for a variety of physical implementations, there
is the legitimate question on how the constraints that are im-
posed by the particular physical environment are represented
in the model. Clearly, it should make a di�erence whether the
communication is based on a multi-antenna wireless system, a
number of microphones and loudspeakers, or takes place over
a bunch of wires in a cable or a multi-conductor bus on a
chip. Is, for instance, the transmit power correctly captured by
the information theoretic model for all the di�erent physical
environments? To see the problem more clearly, consider that,
from a physics point of view, power can only by calculated
from the (inner) product of two conjugated variables, like volt-
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Figure 1: Bijective mappings (via V , and W) of the physical inputs
and physical outputs, to the inputs and outputs of the information
theoretic channel.

age and current1 [3]. In general, power cannot be calculated
by taking the squared magnitude of just one of the conjugated
variables. Hence, the average squared Euclidean norm of the
channel input is not at all guaranteed to have any relationship
with physical power.

One way to handle this problem, is to replace the average
squared Euclidean norm of the channel input, with a more
elaborate power model that better re�ects the physics [4]–[6].
However, this approach has the disadvantage that established
and well-known results from information theory and signal
processing cannot be directly applied anymore. For instance,
the Water�lling algorithm [7], has to be replaced by a »modi-
�ed Water�lling« algorithm, as in [4], which re�ects the mod-
i�ed power model in use.
In this paper, we present a di�erent approach. Our goal is to

stick with the average squared Euclidean norm of the channel
input as the transmit power, and also stick with the model
of additive and white Gaussian noise. Because both the noise
model and the power model are the same for di�erent phys-
ical scenarios, the particular physical constraints have to be
captured solely by the transfer model. At this point we en-
counter a problem that seems to be deep. In order to see why,
let us consider a linear channel with N inputs, and M out-
puts. The noiseless input-output relationship is speci�ed by
the M × N channel matrix, with M ⋅ N components. On the
other hand, in a physical modeling approach, each input and
output is replaced by a port, which is de�ned by two conju-
gated variables (say voltage and current). Therefore, the lin-
ear channel requires for its complete (physical) description, a
much larger (M + N) × (M + N) matrix, that relates one half
of the port variables (for example, the voltages) with the other
half of the port variables (for instance, the currents). Since

1Other examples of conjugated variables are: force and velocity (or torque
and angular velocity) in mechanics, pressure and volume-�ow in acoustics,
temperature and entropy-�ow in thermodynamics.
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M ⋅ N < (M + N)2, it is clear that the channel matrix simply
does not have enough degrees of freedom to capture the com-
plete physical model. In a unilateral channel, i.e., in a chan-
nel where the receiver does not in�uence the transmitter, we
see in Section II-D, that the number of degrees of freedom
for a complete physical description reduces to M2 + N 2 +MN,
which is still too large to be captured by the channel matrix.
Therefore, the question is legitimate, whether it is possible to
achieve our goal to obtain a complete model by proper de�-
nition of the transfer model alone. Fortunately, the answer is
a conditional »yes«. In many, and practically relevant cases,
though not in all cases, we can achieve our goal.
The key idea is to recognize that the M ⋅ N degrees of free-

dom o�ered by the channel matrix are not the only degrees
of freedom that we have inside the transfer model. The rea-
son is that we can have some mapping between the input and
the output of the information theoretic channel on the one
hand, and the physical input and the physical output variables,
on the other. The only restriction to this mapping is, that it
has to be bijective such that it preserves information. Hence,
there is an M ×M matrix, and an N × N matrix at our dis-
posal, which de�ne the mapping between the physical and the
information theoretic channel inputs and outputs. Therefore,
the true number of degrees of freedom that we can make use
of in the transfer model equals M2 + N 2 +MN, which is the
same as the number of degrees of freedom of the complete
physical description of the unilateral linear channel. In case of
the bilateral channel, we also have enough degrees of freedom,
if we supply a second channel matrix, which is to be used for
the reverse direction of information �ow.
Figure 1 illustrates this mapping process, where the N × N

matrix V de�nes the mapping from the physical inputs to the
inputs of the information theoretic channel, while the M ×M
matrix W de�nes the mapping from the outputs of the infor-
mation theoretic channel to the physical outputs. Finally, the
channel matrix H ∈ CC

M×N, de�nes the noiseless input-output
relationship of the information theoretic channel.
In this paper, we present a systematic way to determine the

three matrices V, W, and H, such that both the input-output
relationship, and the receiver noise of the physical communi-
cation system are captured by the information theoretic chan-
nel model, and that the physical transmit power is equal to
the average squared Euclidean norm of the channel input x.
If obtaining the channel capacity is all we are looking for, it
is already su�cient to know the channel matrix H. However,
when we compute signal processing solutions (e.g., beamform-
ing vectors) within the information theoretic channel model,
we need the matrix V−1, in order to obtain the physical chan-
nel input (for Tx-processing), and the matrix W−1, in order
to obtain the channel output y, of the information theoretic
model from the physical channel output (Rx-processing).
We illustrate the proposed approach by showing an appli-

cation to a multi-antenna communication system, where the
physical antenna coupling of closely spaced antennas is taken
care of by our modeling approach. We will see that bringing
the physical constraints into information theory, can lead to
new insights. Especially, it turns out that it is indeed possible
for a multi-antenna system, to achieve a channel capacity that
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Figure 2: Circuit theoretic multi-port model of a linear multi-input
multi-output communication system, with signal voltage generators,
load terminations, and noise voltage sources.

can grow super-linearly with the number of antennas, for large
signal to noise ratio.

II. Multi-PortModel

Let us now develop a physical model of a communication sys-
tem with N inputs, and M outputs. Every input and output is
replaced by a port, which is de�ned by two conjugated vari-
ables: voltage envelopes, and current envelopes. The resulting(M + N)-port is shown in Figure 2. The input signals are sup-
plied by N voltage generators, which are modeled as ideal volt-
age sources with a series resistance R. The voltage envelopes
uG,n , with n ∈ {1, 2, . . . ,N}, contain the information that has
to be transfered over the channel. In practice, we can view the
voltage generators as a model for the high-power ampli�ers lo-
cated at the transmitting end of the channel. The voltage gen-
erators are connected to the �rst N ports of the multi-port. To
the remaining M ports, we connect termination resistances R,
that are put in series with M ideal voltage sources, which de-
liver the voltage envelopes uN,m , with m ∈ {1, 2, . . . ,M}. These
voltage envelopes model the thermal noise that is generated in-
side the termination resistances. This combination of a noise-
less resistance, and a series noise voltage source, is used here
to model the input of the receive ampli�er. The voltage en-
velopes uL,m , with m ∈ {1, 2, . . . ,M}, which appear at the M
ports at the receiving end of the channel, are used as the physi-
cal outputs, while the N generator voltage envelopes uG,n , with
n ∈ {1, 2, . . . ,N}, are used as the physical inputs of the com-
munication system.
Let us proceed by collecting all the voltage envelopes uT,n ,

at the ports belonging to the transmitting end of the channel,

into the vector uT = [ uT,1 ⋯ uT,N ]T ∈ CC
N×1 ⋅V, and similarly

let uL = [ uL,1 ⋯ uL,M ]T ∈ CC
M×1 ⋅V, be de�ned as the vector

of the voltage envelopes of the ports at the receiving end of the
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channel. We use the super-script T, to denote the transpose of
a matrix or vector, while the symbol V, represents the physical
unit »Volt«. Similarly, the corresponding conjugated variables,
that is, the current envelopes iT,n , and iL,m , are conveniently

collected into the vectors iT = [ iT,1 ⋯ iT,N ]T ∈ CC
N×1 ⋅A, and

iL = [ iL,1 ⋯ iL,M ]T ∈ CC
M×1 ⋅A, respectively, where we use the

symbol A, to denote the physical unit »Ampere«.

A. Noisy Input-Output Relationship

A complete description of the multi-port is obtained, when
one half of the port variables are related with the other half. In
this paper, we describe the multi-port by expressing the port
voltage envelopes as a function of the port current envelopes:

[ uT

uL
] = Z [ iT

iL
] , (1)

where Z ∈ CC
(M+N )×(M+N ) ⋅Ω, denotes the impedance matrix

of the multi-port [8], and the symbol Ω, denotes the physical
unit »Ohm«, respectively. Kirchho� ’s voltage law [8], yields

uL = uN − RiL, with uN = [ uN,1 ⋯ uN,M ]T ∈ CC
M×1 ⋅V, as the

vector of the noise voltage envelopes. Similarly: uT = uG − RiT,
where uG = [ uG,1 ⋯ uG,N ]T ∈ CC

N×1 ⋅V, is the vector of the
generators’ voltage envelopes. When we substitute these two
expression for uL, and uT, into (1), and solve for uL , we obtain
the following noisy input-output relationship:

uL = EuG + FuN±√
R ⋅ η

, (2)

which expresses the physical channel output uL ∈ CC
M×1 ⋅V, as

a function of the physical channel input uG ∈ CC
N×1 ⋅V, and

the physical noise η ∈ CC
M×1 ⋅ √W, where the symbol W, de-

notes the physical unit »Watt«. Herein,

E = −Γ̃ (IM+N + R−1Z)−1ΓT ∈ CC
M×N , (3)

F = IM − Γ̃ (IM+N + R−1Z)−1 Γ̃ T ∈ CC
M×M , (4)

and
Γ = [ IN ON×M ] ∈ {0, 1}N×(M+N), (5)

Γ̃ = [OM×N IM ] ∈ {0, 1}M×(M+N), (6)

where Ik , denotes the k × k identity matrix, and Op×q denotes
the p × q zero matrix. Note that (3), and (4) can be written

in many di�erent ways, e.g., F = Γ̃ (IM+N + RZ−1)−1 Γ̃ T, is an-
other way to express F, provided that Z−1 exists.

B. Transmit Power

It makes sense to de�ne as the »transmit power«, the noiseless
physical power that �ows through the N ports of the trans-
mitting end of the channel into the multi-port:

PTx = E [Re{uH
T iT} ∣ uN = 0M] (7)

= 1

4R
E [uH

GBuG] , (7a)

where

B = 2 (IN + C)−H (C + CH) (IN + C)−1 ∈ CC
N×N , (8)

with the auxiliary matrix:

C = (Γ (IM+N + R−1Z)−1ΓT)−1− IN ∈ CC
N×N . (9)

Herein, the superscript H, denotes complex conjugate trans-
pose. Note from (7a) that, in general, the transmit power is
not proportional to the average squared Euclidean norm of
the generator voltage vector. There are only two special cases
where the proportionality holds. The �rst case is when the
components of uG are uncorrelated:

∃α ∶ E [uGu
H
G] = αIN Ô⇒ PTx = trB

4R ⋅ N ⋅ E [∣∣uG∣∣22] .
(10)

This case usually occurs when the transmitter has no channel
knowledge, and therefore treats all channel inputs the same.
The second case is obvious:

∃α′ ∶ B = α′IN Ô⇒ PTx = trB

4R ⋅ N ⋅ E [∣∣uG∣∣22] . (11)

This can only happen in certain channels, which multi-port
representation leads to uncoupled ports. We will elaborate on
this later. In general however, there is a non-isotropic behav-
ior of uG with respect to transmit power. A consequence is,
for instance, that di�erent vectors uG, which have the same
Euclidean norm, in general, produce di�erent transmit power.

C. Receiver Noise Correlation

From (2), we see that the receiver noise voltage envelopes are,
in general, linear superpositions of the voltage envelopes of all
physical noise sources uN,m , with m ∈ {1, 2, . . . ,M}. This leads
to the e�ect that the receiver noise is usually correlated even
though all physical noise sources are uncorrelated, or even in-
dependent. In our case, the noise originates from thermal ag-
itation of electrons inside the termination resistances at the
receiver. Hence, the components of uN are uncorrelated, and
we have [9]:

E [uNu
H
N] = 4 kBTW´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

σ 2

R ⋅ IM , (12)

where kB is the Boltzmann constant, T is the absolute noise
temperature, and W is the noise bandwidth. From (2) and (12),
the correlation matrix of the receiver noise η is given by:

Rη = E [ηηH] ∈ CC
M×M ⋅W (13)

= 4σ 2FFH. (13a)

Consequently, only in case that F is a scaled unitary matrix,
the receiver noise is uncorrelated. Again this only happens for
special channels, which multi-port representation leads to un-
coupled ports. We will elaborate on this later.

D. The Unilateral Channel

When energy and information can �ow only in one direction,
namely from the transmitting to the receiving end of the link,
we have a unilateral channel. A radio communication channel
operated in one direction is a very good approximation of a
unilateral channel. The reason lies in the extremely large at-
tenuation that the signals undergo on their way between the
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transmitter and the receiver. Therefore, the transmitter essen-
tially does not realize what is going on at the receiver, for
instance, which impedance it is terminated with, or if the re-
ceiver exists at all. The unilateral channel is therefore a rea-
sonable model for unidirectional radio communications. The
impedance matrix of a unilateral channel has the form:

Z = [ Z1,1 ON×M

Z2,1 Z2,2

] , (14)

where Z1,1 ∈ CC
N×N ⋅Ω, and Z2,2 ∈ CC

M×M ⋅Ω, are the so-called
transmit and receive impedance matrices, respectively, while
Z2,1 ∈ CC

M×N ⋅Ω, is called the trans-impedance matrix. Note
that the complete description of the unilateral channel there-
fore requires M2 + N 2 +MN degrees of freedom. In the uni-
lateral channel, (3), (8), and (13a) simplify to:

E = 1

R
(IM + R−1Z2,2)−1 Z2,1 (IN + R−1Z1,1)−1, (15)

B = 2

R
(IN + R−1Z1,1)−H (Z1,1 + ZH

1,1) (IN + R−1Z1,1)−1,
(15a)

Rη = 4σ 2

R2
(IM + R−1Z2,2)−1 Z2,2Z

H
2,2 (IM + R−1Z2,2)−H.

(15b)

The simpli�cations are not just of mathematical, but also of
conceptual nature. As can be seen from (15a), the B-matrix
is only a function of transmit side properties of the channel
(its transmit impedance matrix). Similarly, we see from (15b),
that the noise correlation matrix is only a function of receiver
side properties of the channel (most importantly, its receive
impedance matrix). On the other hand, in the bilateral case
(see (8), and (13a)), both the B-matrix and the noise correla-
tion matrix depend on the whole Z-matrix, hence, on prop-
erties of both the transmitting and the receiving end of the
channel. Take note from (15b), that in the case of Z2,2 being
a scaled identity matrix, the receiver noise η is indeed uncor-
related. Also note that a Z2,2 , which is a scaled identity, cor-
responds to a multi-port which receiver side ports are uncou-
pled. In many cases in practice, however, Z2,2 is not a scaled
identity, like in multi-antenna radio communication systems,
where the antennas are closely spaced.

III. Complete Information Theoretic ChannelModel

Now that we have established a physical channel model, com-
posed of the transfer model (2), the transmit power model
(7a), and the noise model (13a), we return to our original prob-
lem of how to bring in the physical constraints into the stan-
dard information theoretic channel model:

y = Hx + ν. (16)

Herein, the N-dimensional vector x, is channel input, the M-
dimensional vector y, is channel output, while ν denotes the
M-dimensional channel noise vector, and H ∈ CC

M×N , is the
channel matrix. As visualized in Figure 1, we de�ne the fol-
lowing two bijective transformations:

x = VuG , (17)

y = W−1uL , (17a)

between the physical input/output variables (uG , uL), and the
information theoretic input and output variables (x , y). Our
goal is to determine the tuple

(V ,W ,H ) ,
such that the following three conditions are met:

1) The input-output relationship in (16) is equivalent to the
input-output relationship in (2).

2) The physical transmit power (7a) can be written as:

PTx = E [∣∣x∣∣22] . (18)

3) The channel noise is Gaussian and white:

E [ννH] = σ 2 ⋅ IM . (19)

When we substitute (17) and (17a) into (16), we obtain

uL = WHVuG +Wν. (20)

Comparing (20) with (2) shows that

H = W−1EV−1 . (21)

Since furthermore Wν = √Rη, must hold, it follows that

W =
√
R√
σ 2

R
1/2
η ∈ CC

M×M ⋅√Ω, (22)

yields the desired correlation matrix (19). In order that (17a)
is bijective, we must require that Rη is regular. When we solve
(17) for uG, substitute into (7a), and compare with (18), we see
that the condition

VB−1VH = 1

4R
IN , (23)

must hold. Note that as long as B is positive de�nite, its square
root is Hermitian. Hence,

BH = B > 0 Ô⇒ V = 1

2
√
R
B1/2 ∈ CC

N×N ⋅√Ω−1 , (24)

yields V = VH, and ful�lls (23). Note that H ∈ CC
M×N , is di-

mensionless. With (24), (22), and (21) the problem is solved,
provided that the following three conditions are met:

1) B is positive de�nite,
2) Rη is regular,
3) uN contains Gaussian noise.

The third condition is necessary, because only Gaussian dis-
tributed random variables remain Gaussian distributed under
arbitrary linear transformations. Under these conditions, the
standard information theoretic channel model is in complete
accordance with the physics governing the communication.

IV. Application: Multi-Antenna Communication

When antennas are arranged into antenna arrays, the anten-
nas experience mutual near-�eld coupling because of spatial
proximity [10]. These coupling e�ects are usually ignored in
information theory [2]. On the other hand, by using the for-
malism presented in this paper, we can ensure that all relevant
physical constraints, like, for instance, those arising from mu-
tual antenna coupling, are taken care of inside the standard
information theoretic vector channel model. Consequently, all
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information and signal theoretic results, like channel capacity
or optimum beamforming, instantly become applicable to, and
may take advantage of the physical constraints of the commu-
nication system. All we need is provide a multi-port descrip-
tion of the communication channel.
Let us brie�y look at an illustrative example. As we have

discussed in Section II-D, the unidirectional radio communi-
cation channel can be considered as unilateral. In [6], and [11],
it is shown that for uniform linear arrays of isotropic radi-
ators, which are equipped with an impedance matching net-
work that compensates the imaginary part of the array’s input
impedance, the transmit impedance matrix can be written as:

(Z1,1)m ,n = Rr ⋅ sinc(2π∆
λ
(m − n)) , (25)

where sinc(x) is the sin(x)/x function, λ is the wavelength,
∆ is the spacing between adjacent antennas, and Rr is the ra-
diation resistance [10], of the individual antennas. In [12], it
is shown that a similar relationship as (25) also holds true for
uniform linear arrays of Hertzian dipoles.
Notice from (25), that only for an antenna spacing of half

of the wavelength, or integer multiples thereof, the transmit
impedance matrix is a scaled identity. Hence, only for these
special antenna spacings, the antennas are uncoupled, which
clearly shows in B = IN , and Rη = σ 2 IM , as can be seen from
(15a), and (15b), for R = Rr. For all other antenna separation,
there is more or less strong mutual coupling, especially when
antenna spacing is reduced below half the wavelength. As we
will see in the following, mutual antenna coupling strongly
in�uences both the transmit power (via B), and the receiver
noise covariance Rη, and hence, strongly impacts the channel
capacity. The, perhaps, surprising result is, that the channel ca-
pacity can be substantially increased by the physical coupling
e�ects! In order to demonstrate this e�ect, let us assume that
the receiver is equipped with an identical antenna array, such
that Z2,2 = Z1,1 , and that there is a correlated Rayleigh propa-
gation channel [5], [6], [11]:

Z2,1 = 1√
trRTx

R
1/2
RxGR

1/2
Tx , (26)

where the matrices RRx = E [Z2,1Z
H
2,1], and RTx = E [ZH

2,1Z2,1],
denote the receive and the transmit fading correlation matrix,
respectively, while G ∈ CC

M×N, contains i.i.d, zero-mean, unity-
variance, complex, Gaussian entries. When we substitute (25)
and (26), using Z2,2 = Z1,1 , into (15), (15a) and (15b), and the
latter into (22), and (24), we obtain with (21) the channel ma-
trix H ∈ CC

M×N, which captures all the governing physics. Be-
cause of (18), and (19), computing channel capacity is »busi-
ness as usual« [13]. The fading correlation matrices are set up
to re�ect an angle spread of 120○, centered around the array
axis (so-called »end-�re« direction) for both the transmitter
and the receiver. For a constant ratio PTx/σ 2, which is large
enough that the receiver operates in the high signal to noise
ratio regime, Figure 3 shows the ergodic channel capacity as
a function of the number of antennas for two di�erent an-
tenna separations. For ∆ = λ/2, the antennas are uncoupled,
and we observe the well-known linear growth of channel ca-
pacity with the antenna number. However, when we reduce
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Figure 3: Ergodic channel capacity at high signal to noise ratio.

the antenna spacing to a quarter wavelength, we observe a
super-linear growth. A signal processing explanation of this
interesting e�ect can be found in [11]. From this brie�y pre-
sented example we can learn that considering the governing
physics in information theory is important and may even lead
to better performance than expected otherwise.

V. Conclusion

This paper makes the following contribution: a simple system-
atic approach is presented, which brings the physics that gov-
erns communications into information theory. Our approach
is based on the proper de�nition of bijective transformations
between the physical variables and the inputs and outputs of
the information theoretic channel model.
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