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Abstract—Resource allocation (RA) is a crucial task in the
operation of wireless communication systems, which in many
cases aims at meeting the users’quality of service (QoS) require-
ments with the minimum amount of resources. In this work, we
consider the QoS-provisioning RA problem at the downlink of a
multicarrier system, where the total transmit power consumption
is to be minimized. Two RA schemes, one employing Lagrange
dual methods and a greedy primal recovery scheme, and the other
heuristic with a three-step approach, are proposed under the
same cross-layer framework, where power allocation, adaptive
modulation and coding as well as retransmission protocols are
jointly modeled. Though both suboptimal, the two schemes are
advantageous for their low complexity and small amount of
online computations required. Their performances are illustrated
and compared based on simulation results. The work also
provides a quantitative comparison on the two commonly used
retransmission protocols, namelyautomatic repeat request (ARQ)
and hybrid automatic repeat request (HARQ).

I. I NTRODUCTION

As one of the key approaches to meet the increasing
demand for better QoS in current and future wireless networks,
cross-layer optimizationhas drawn much research attention
from various aspects of communications. One of its main
applications is to assist the radio resource allocations byjointly
adapting variables from physical and link layers to optimize
certain performance metrics,e.g., the sum throughput or the
sum transmit power. We term this kind of applications as
cross-layer assisted resource allocation(CLARA). On the
other hand, RA problems in multicarrier systems have long
been studied,e.g., [1][2]. With a more sophisticated cross-
layer framework and target QoS parameters having a higher-
level presentation, the relation and coupling between the opti-
mization variables become more complicated. The mappings
from resources to QoS parameters often lack differentiabil-
ity, continuity, and even convexity, making the optimizations
considerably challenging. The two algorithms presented in
this work use look-up tables and stepwise variable fixing
respectively to overcome these difficulties.

Unlike many other cross-layer models, retransmission proto-
cols are included in our framework. Firstly, the time it takes for
retransmissions is part of the latency a packet experiencesuntil
received correctly. Secondly, different ways of retransmitting
a packet have an influence on the efficiency of radio resource
utilization. Our simulation results prove the necessity tostudy
various retransmission schemes and to set up appropriate
models to evaluate their performances.

II. SYSTEM MODEL

We consider the downlink scenario of an isolated single-
cell multicarrier system withK users, each having one data
stream to be served. The RA is done on a perslot basis, where
a slot is a short time period of lengthT during which the
wireless channel is assumed to stay constant. As information
bits loaded onto consecutive slots are independently modulated
and coded, a slot is formally referred to as aTransmission
Time Interval(TTI), and the bit-loading procedure inherently
includespacketizationof the information bits. For every TTI,
each data stream has a number of information bits to be
transmitted, depending on itsthroughput requirement. The
other relevant QoS parameter characterizing the data streams,
the latency, is defined as:
Definition: The latencyτk of a packet from userk is the
delay it experiences until received correctly with an outage
probability of no more than the predefined valueπ(out). Let
fk[m] be the probability that it takes exactlym TTI’s to
transmit a packet error-free, thenτk = (Mk−1)(RTD+T )+T
where RTD representsround trip delay, and

Mk = min
M

M s.t.
M
∑

m=1

fk[m] ≥ 1 − π(out).

We derive in the following the mathematical descriptions of
the regarded system components stemmed from [3], which lay
the basis for cross-layer optimization.

A. Channel Model

The downlink broadcast channel is modeled as frequency-
selective fading over the total system bandwidth and
frequency-flat fading over eachsubchannel, which is consist
of Nc adjacent subcarriers. FDMA is employed meaning the
assignment of every subchannel is exclusive to one user,
and intercarrier interference(ICI) is not taken into account.
Moreover, we restrict ourselves here to the single-antennacase
both at the base station (BS) and at the mobile stations (MS).

Let Hk,n andσ2
k,n be the channel coefficient and Gaussian

noise variance of userk on thenth subchannel, andpn be the
amount of power allocated on subchanneln. When assigned
to userk, the signal-to-noise-ratio(SNR) on subchanneln is
computed asγk,n =

|Hk,n|2

σ2
k,n

pn. For the remaining part of this

section we drop the subscriptsk andn for simplicity.



We choose the TTI to be of lengthT = 2 ms and assume
that one TTI containsNs = 16 symbols for data transmission.
The minimum allocation unit(MAU) is an allocation region
of one subchannel in the frequency dimension by one TTI in
the time dimension, which containsNc × Ns symbols.

B. FEC coding and modulation

We assume that modulation and coding across the subchan-
nels are done independently, and with reference to the WiMAX
standard8 modulation and coding schemes (MCS) are chosen
to form the candidate setM, which are listed in Table I.

Table I
MODULATION AND CODING SCHEMES (MCS)

Index Modulation Type Alphabet SizeA Code RateR R log2 A

1 BPSK 2 1/2 0.5
2 QPSK 4 1/2 1

3 QPSK 4 3/4 1.5
4 16-QAM 16 1/2 2

5 16-QAM 16 3/4 3

6 64-QAM 64 2/3 4

7 64-QAM 64 3/4 4.5
8 64-QAM 64 5/6 5

With the absence of intersymbol interference in the system,
each subchannel can be modeled as adiscrete memoryless
channel(DMC) over which thenoisy channel coding theorem
[6] can be applied. Let the modulation alphabet and coding rate
on the subchannel under consideration beA = {a1, . . . , aA}
and R respectively. Thecutoff rate of the subchannel with
SNR γ can be expressed as

R0(γ,A) = log2 A− log2

[

1 +
2

A

A−1
∑

m=1

A
∑

l=m+1

e−
1
4 |al−am|2γ

]

.

The noisy channel coding theorem states that there always
exists a block code with block lengthl and binary code rate
R log2 A ≤ R0(γ,A) in bits per subchannel use, such that
with maximum likelihood decoding the error probabilitỹπ of
a code word satisfies̃π ≤ 2−l(R0(γ,A)−R log2 A).

In order to apply this upper bound to the extensively used
turbo decoded convolutional code, quantitative investigations
have been done in [3] and an expression for theequivalent
block length is derived based on link level simulations as
neq = β lnL, where parameterβ is used to adapt this model
to the specifics of the employed turbo code, andL is the
coded packet length. Consequently, the transmission ofL bits
is equivalent to the sequential transmission ofL/neq blocks
of lengthneq and has an error probability of

π = 1− (1− π̃)
L

neq ≤ 1−
(

1 − 2−neq(R0(γ,A)−R log2 A)
)

L
neq

.

C. Protocol

At the link layer retransmission protocols are studied. The
data sequence transmitted in one MAU,i.e., a packet, is used
as the retransmission unit.

ARQ: The corrupted packets at the receiver are discarded,
hence we assume that thepacket error probability(PEP) of

a retransmitted packet is the same as that of its original
transmission,i.e., f [m] = πm−1(1 − π),m ∈ Z

+. Therefore
the maximum allowable PEP isπ =

M
√

π(out) when the
number of transmissions isM .

HARQ: The corrupted packets at the receiver are com-
bined and jointly decoded using rate-compatible punctured
convolutional codes. For the particularincremental redundancy
(IR) scheme we employ where the retransmissions contain
pure parity bits of the same length as the first transmission,
the code rate for themth transmission can be expressed as
R[m] = B

m·L = 1
m

R. Let m̃ denote the maximum number of
transmissions determined by the mother code. The equivalent
block lengthneq is then given byneq = β ln(m̃L). The PEP
expression for themth transmission follows as

π[m] = 1 −
(

1 − 2−β ln(m̃L)(R0(γ)− 1
m

R log2 A)
)

mL
β ln(m̃L)

,

and is approximated by

π[M ] = π(out), π[m] = 1,m = 1, . . . ,M − 1,

whenR0(γ) satisfies 1
M

R log2 A < R0(γ) ≤ 1
M−1R log2 A.

The system parameters are summarized in Table II.

Table II
SYSTEM PARAMETERS

Total bandwidth 10 MHz
Center frequency fc 2.5 GHz

FFT size 1024
Number of data subcarriers 720

Number of subchannels N 30
Number of subcarriers per subchannel Nc 720/30 = 24

Transmission Time Interval (TTI) T 2 ms
Number of data symbols per TTI Ns 16

Round Trip Delay (RTD) RTD 10 ms
Maximum number of transmissions allowed m̃ 5

Turbo code dependent parameter β 32
Outage probability π(out)

0.01

III. PROBLEM FORMULATION

Let the number of information bits intended for userk in
the current TTI bebk, and the maximum latency time for
the transmission beτ (rq)

k . We formulate the transmit power
minimization problem as

min
B,A,R,M

N
∑

n=1

pn

s.t. B ∈ B,
(An, Rn) ∈ M, n = 1, . . . , N,

∑N
n=1 Bk,n ≥ bk, k = 1, . . . ,K,

τk ≤ τ
(rq)
k , k = 1, . . . ,K,

(1)

whereB ∈ Z
K×N
+,0 represents the bit-loading matrix with its

entry Bk,n as the number of information bits for thekth user
loaded onto thenth subchannel, andpn, An, Rn,Mn are the
transmit power, MCS and number of transmissions taken on
the nth subchannel, respectively. The first constraint in (1)
comes from FDMA in whichB ⊂ Z

K×N
+,0 represents the set

of matrices that have only one nonzero entry in each of their



columns, and the third and fourth constraints are the fulfillment
of the QoS requirements of each user.

Dropping the subchannel indices, we lets =
⌈

B
R log2 A

⌉

be
the number of symbols occupied in one MAU. Transmit power
p dependent on(B,A,R,M) can be written as

p =

⌈

s

Ns

⌉

· γ(B,A,R,M) · σ2

|H|2 , (2)

where |H|2 is the instantaneous channel gain andσ2 is the
noise power on one subcarrier.γ(B,A,R,M) is the SNR
required to conveyB bits within M transmissions when MCS
(A,R) is employed, which can be obtained from a binary
search on the cutoff rate curve. For both ARQ and HARQ
protocols,γ(B,A,R,M∗) < γ(B,A,R,M) if M∗ > M ,
which means the more transmissions, the less transmit power
required. Therefore, to solve (1) the maximum number of
transmissionsM is fixed in the first place to

⌊

τ(rq)−T
RTD+T

+ 1
⌋

.

IV. T WO RESOURCEALLOCATION SCHEMES

It is obvious that problem (1) is nonconvex and combi-
natorial with integer-valued variables. As a result, thereare
in general no standard optimization algorithms that can be
directly applied to it. We propose two different ways to solve
(1), both suboptimal but with tractable complexities.

A. Employing Lagrange Dual Methods

The employments of Lagrange dual decomposition and
Lagrange dual methods to solving RA problems in multicarrier
systems were studied,e.g., in [4][5]. The key element in
applying those methods to (1) within our cross-layer model
is to establish a mapping from the optimization variables to
the optimization objective which makes the evaluation of the
dual function possible and fast.

1) Theϕ function: We defineϕ(B, τ (rq)) as the minimum
power needed for the successful transmission ofB bits within
latency timeτ (rq), i.e.,

ϕ(B, τ (rq)) = min
(A,R)∈M

⌈

s

Ns

⌉

· γ(B,A,R,M) · σ2

|H|2
!
=

σ2

|H|2 min
(A,R)∈M

φ(B,A,R,M),

where the functionφ is independent of channel realizations.
Limited by the highest MCS, the number of information bits

that can be loaded in one MAU is upper bounded byB(u) =
5NsNc. That means, for eachB ∈ [1, B(u)] andM ∈ [1, m̃],
min(A,R)∈M φ(B,A,R,M) can be computed by enumerating
all the 8 MCS which at last results in a look-up table with
B(u)×m̃ entries. This table is established offline and stored. At
run time, multiplications by the noise-to-channel-gains-ratio to
the retrieved table entries are sufficient to obtainϕ(B, τ (rq)).
Consequently, problem (1) can be equivalently written in a
simpler form as

min
B∈B

K
∑

k=1

N
∑

n=1

ϕk,n(Bk,n, τ
(rq)
k )

s.t.
∑N

n=1 Bk,n ≥ bk, k = 1, . . . ,K.

(3)
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Figure 1. An exemplaryϕ function for ARQ and HARQ protocols

An exemplary ϕ function with varying B is shown in
Fig. 1, whereτ (rq) is fixed to 20 ms. The visualization shows
the monotonicity of required transmit power as a function
of B, and asB increases, the power increments for the
same increment inB become larger. Both properties are in
accordance with basic knowledge from information theory.
However, theϕ function is not convex due to its discrete inputs
and the changes of the optimum MCS at some values ofB.
As a result, optimization (3) is not convex in both objective
and constraints and has a nonzero duality gap when dual
methods are applied. Also note that the power consumption
in the HARQ case is much less than that of the ARQ case.

2) Dual Methods:We follow a similar procedure as pro-
posed in [4] to find the dual optimum solution of (3). Intro-
ducing Lagrange multipliersλ ∈ R

K×1 to theK bit-loading
constraints gives the Lagrangian

L(B,λ) =

K
∑

k=1

N
∑

n=1

ϕk,n(Bk,n, τ
(rq)
k )+

K
∑

k=1

λk(

N
∑

n=1

Bk,n − bk),

and the dual functiong(λ) = infB∈B L(B,λ) can be decom-
posed intoN independent optimization problems

gn(λ) = inf
B∈B

K
∑

k=1

(

ϕk,n(Bk,n, τ
(rq)
k ) + λkBk,n

)

plus aB-independent term. The dual problem to (3) reads

max g(λ) s.t. λ � 0. (4)

The ellipsoid method is employed to efficiently update the
dual variableλ. Denote the optimal value and solution to (4)
asd∗ andλ

∗ respectively, and the bit-loading matrix obtained
with λ

∗ as B̃. By weak duality,d∗ gives a lower bound on
the primal optimal value. Yet̃B is not optimum and often
primal-infeasible which makes primal recovery necessary.

3) Primal Recovery Scheme:Although the bit-loading ma-
trix B̃ mostly fail to meet all the bit-loading constraints, the
subchannel assignment(SA) it implies (B̃k,n > 0 indicates
that subchanneln is assigned to userk) still suggests an
efficient way of allocating the whole set of subchannels.



However, asBk,n is limited by B(u) from above, the dual
optimum SA can be infeasible, especially when the total
number of information bits to be loaded is large. Therefore,in
order to perform primal recovery based on the dual optimum
SA, we have to assure its feasibility first.

The minimum number of subchannels needed by userk can
be computed asN (l)

k =
⌈

bk

B(u)

⌉

. Due to FDMA, the condition
∑K

k=1 N
(l)
k ≤ N should be examined before we start solving

(1)1. Let the set of subchannels assigned to userk by the dual
optimum SA beSk, i.e., Sk = {n : B̃k,n > 0}. If ∃k with
|Sk| < N

(l)
k , then the dual optimum SA is infeasible.

Denote the set of users with|Sk| < N
(l)
k and|Sk| > N

(l)
k as

Ku andKo, respectively, and the set of assignable subchannels
asNa = {n : n ∈ Sk, k ∈ Ko} ∪ {n : n /∈ Sk,∀k}, i.e., the
union of unoccupied subchannels and those currently occupied
by users from setKo. Intuitively, we solve

(k∗, n∗) = argmin
k∈Ku,n∈Na

ϕk,n(B(u), τ
(rq)
k ),

assign subchanneln∗ to user k∗, update{Sk} and check
whether the new subchannel assignment is feasible or not.
The procedure terminates whenKu becomes empty.

Fixing the obtained feasible SA, we haveK decoupled
minimization problems, one for each user, as

min
{Bk,n:n∈Sk}

∑

n∈Sk

ϕk,n(Bk,n, τ
(rq)
k ) s.t.

∑

n∈Sk

Bk,n ≥ bk,

which can again be solved in the dual domain. Let the dual
optimal bit-loading be{B∗

k,n : n ∈ Sk}. If
∑

n∈Sk
B∗

k,n 6=
bk, we can load or unload the extra bits one by one on the
subchannel that leads to the minimum power increment or
the maximum power decrement, until

∑

n∈Sk
B∗

k,n = bk is
satisfied. Such a recovery scheme is simple, but greedy and
performance-degrading.

B. A Heuristic Method

In [7] we proposed a heuristic three-step approach to
solve the transmit power minimization problem in multicarrier
systems, where each user requires a minimum data throughput
and a maximum latency time. The scenario is different from
what we consider here in that the number of information bits
intended for each user was assumed to be infinity. Therefore
bit-loading is simply determined by SA and the choices of
MCS as each of theNsNc symbols in one MAU are taken.
To accommodate the finite number of information bitsb, the
branch and bound(BAB) method is applied to find the exact
number of symbols occupied in one MAU.

1) Subchannel Assignment (SA):In this step we assume
the same MCS is used on every subchannel. A power matrix
P ∈ R

K×N
+ can be computed, with its entrypk,n being the

minimum power needed to achieve the required PEP of user
k on subchanneln. Let N

(u)
k =

⌈

bk

0.5NsNc

⌉

be the maximum
number of subchannels userk could possibly use. The SA

1In order to provide the resource allocation entity with appropriate traffic
loads, a scheduling component on its top is necessary.

problem is formulated as picking from each column ofP one
entry such that thekth row has betweenN (l)

k andN
(u)
k picked

entries, and the sum of all picked entries is minimized.
2) Bit and Power Allocation (BPA):With the SA result as

input, bit and power allocation is no longer coupled among
the users and boils down for each user to

min
s,R,A

∑

n∈Sk

pn s.t.
∑

n∈Sk

snRn log2 An ≥ bk, (5)

wheresn ∈ [0, NsNc] is the number of symbols occupied on
subchanneln, and the dependence ofpn on sn is indicated by
(2). Firstly we look for all feasible and efficient MCS com-
binations onn ∈ Sk fixing sn to NsNc. Then for each MCS
combination,sn are the only optimization variables in (5).
Relaxing integer valuedsn to real numbers, the problem can
be solved using standard linear programming techniques. Yet
directly rounding the solution does not give us the optimum
solution to the original problem in general.

When the solution we get from linear programming is
fractional, the BAB method is applied which branches on a
fractional value and generates two subproblems. For example,
s1 = 8.5 adds constraints1 ≥ 9 or s1 ≤ 8 to the original
problem. As soon as an integer valued solution is obtained
in branching and solving the subproblems, the corresponding
objective value is used as the bound to cut off inactive
subproblem branches,e.g., those that are worse than the
current best solution. The procedure terminates when there
are no more active subproblems.

3) Adjustments:The outcome of PA might indicate zero
MCS on some subchannels, which means these subchannels
are released from occupation and can be assigned to other
users. As higher MCS are much more power consuming than
lower MCS, we find the subchannels using the relatively
highest MCS as well as their possessors, and compare each
alternative of assigning the empty subchannels to these users.

V. SIMULATION RESULTS

For simulations,K = 10 users uniformly located in a
cell of radius 2 km are assumed. The wireless channel is
modeled as a frequency-selective fading channel consisting
of six independent Rayleigh multipaths with an exponentially
decaying power profile. The delay spreads are uniformly
distributed within 1µs, resulting in a rms delay spread of
about 0.3µs which is consistent with the assumed channel
coherence bandwidth. The path loss in dB is computed as
PL(d) = 140.6 + 35.0 log10 d following the COST-Hata
model, whered is the distance between MS and BS in km,
and the receiver noise level is assumed to be−174 dBm/Hz.

Each user’s QoS requirements are listed in Table III, where
the unit forbk is bit and the unit forτk is ms, andα is a scalar
that takes values from{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Besides
the algorithms discussed previously, a static RA scheme is
simulated for comparison purpose. The static scheme first
assigns each user with a fixed set of adjacent subchannels
and then performs the greedy bit-loading, in the same way as



Table III
QOS REQUIREMENTS OF10 USERS FOR SIMULATION

User bk τk User bk τk User bk τk

1-4 512·α 20 5-7 800·α 40 8-10 1600·α 80
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Figure 2. Dual optimum and primal recovered average power at each α

used for primal recovery. Each test scenario has been simulated
under 1000 independent channel realizations.

Fig. 2 shows the difference between the dual optimum and
the primal recovered average power consumption over 1000
simulations for the first RA scheme, which is satisfactorily
small. For ARQ protocol, the overall difference is0.6 dBm
whereas for HARQ the value is slightly less than0.2 dBm.
Note that the actual optimal transmit power curves lie between
the dual optimum and the primal recovery curves. The next
two figures illustrate the statistics of power consumptionsfor
the three RA schemes and the two retransmission protocols,
where Fig. 3 shows the cumulative distributions of the transmit
power with α = 2, and Fig. 4 presents the average power
consumption for differentα values.

It is clear from the figures that the algorithm employing
Lagrange dual methods outperforms the heuristic method. The
exact average difference is1.4 dBm for ARQ and0.9 dBm for
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Figure 3. CDF of transmit power for 3 RA schemes atα = 2
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Figure 4. Average transmit power for 3 RA schemes at differentα’s

HARQ. The static RA scheme is still much worse, spending
6.4 dBm and5.7 dBm more power for the two protocols than
the heuristic method. Yet the biggest performance gap comes
from the ARQ and HARQ protocols, being8, 8.5 and9.2 dBm
for the three RA schemes, which is in accordance with the
situation present in Fig. 1.

VI. CONCLUSIONS

In this work we have presented two CLARA algorithms
to solve the transmit power minimization problem under QoS
constraints in multicarrier systems. Both algorithms provide
suboptimal solutions but are highlighted for their low com-
plexity. On the other hand, the fairly big advantage of using
retransmission protocol HARQ over ARQ has been demon-
strated. Although from another perspective of the resource
minimization problem,i.e., minimizing energy consumption
[8], the advantage of HARQ is not as significant as here where
we allow for the maximum number of retransmissions, it is still
worthwhile to consider employing HARQ for more efficient
resource usage at the expense of a higher coding complexity.
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