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Institute for Circuit Theory and Signal Processing,
Technische Universität München, Munich, Germany

bai.qing@nws.ei.tum.de,
Home page: http://www.nws.ei.tum.de/

Summary. In this paper the QoS-constrained resource allocation prob-
lem in multicarrier systems is considered. Within the established cross-
layer framework, parameters for subchannel assignment, adaptive mod-
ulation and coding, and ARQ/HARQ protocols are jointly optimized.
Instead of the conventional transmit power minimization, the total en-
ergy consumption for the successful transmissions of all information bits
is set as the optimization goal. The nonconvex primal problem is solved
by using Lagrange dual decomposition and the ellipsoid method. Numer-
ical results indicate that the recovered primal solution is well acceptable
in performance, and efficient in terms of computational effort.
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1 Introduction

Resource allocation in wireless communication networks is both important and
challenging not only because of the scarcity of radio resources and time-variant
channel conditions, but also due to the increasing demand to support hetero-
geneous quality of service (QoS) requirements of various applications. From a
mathematical point of view, one specific resource allocation corresponds to a
mapping from the available radio resources to a set of QoS values. When param-
eters from different protocol layers are jointly taken into account in the mapping,
the optimizations we do, either optimizing QoS with limited resources or mini-
mizing the amount of resources required to achieve certain QoS, are referred to as
cross-layer optimizations, and the resource allocation itself is termed as cross-

layer assisted resource allocation. In this paper, a QoS provisioning resource
minimization problem at the downlink of a multicarrier system is investigated,
where the cross-layer framework adopted integrates PHY and MAC layer func-
tionalities such as subchannel assignment, adaptive modulation and coding, and
retransmission protocols.

In most studies on resource allocation for wireless communication systems,
the objective for the QoS-constrained resource minimization is to minimize the
sum transmit power, e.g., [1][2]. Since retransmission protocols are taken into
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account in this work, it is of interest and necessity to consider the transmit power
spent over time, i.e., energy, instead of to merely consider the power consumption
for the first transmission, because on the long run, what is consumed at the
transmitter is energy. Based on this analysis, we formulate the minimization
goal as the sum energy consumption required to transmit a certain number of
information bits within respective latency times for a group of end users.

Though having different physical interpretations, structurally similar opti-
mizations can be found in the literature such as in [3], [4] and [1]. However,
due to the discontinuity and nonconvexity of our objective, the methods therein
to solve the optimizations and the optimality conditions derived can not be di-
rectly applied. Exploiting the discontinuity, we set up a look-up table to lessen
the computational burden for the dual methods employed, and a primal recov-
ery scheme is developed to give primarily feasible resource allocations from the
obtained dual optimal solutions.

2 System Model

We consider the downlink scenario of an isolated single-cell multicarrier system
with K users, each having one data stream to be served. The resource alloca-
tion is done on a per slot basis, where a slot is a short time period of length T
during which the wireless channel is assumed to stay constant. As information
bits loaded onto consecutive slots are independently modulated and coded, a
slot can formally be referred to as a Transmission Time Interval (TTI), and
the bit-loading procedure inherently includes packetization of the information
bits. For every TTI, each data stream has a number of information bits to be
transmitted, depending on its throughput requirement. The other relevant QoS
parameter characterizing the data streams, the latency, is defined as:
Definition: The latency τk of a packet from user k is the delay it experiences
until received correctly with an outage probability of no more than the prede-
fined value π(out). Let fk[m] be the probability that it takes exactly m TTI’s
to transmit a packet error-free, then τk = (Mk − 1)(RTD + T ) + T where RTD
represents round trip delay, and

Mk = min
M

M s.t.

M
∑

m=1

fk[m] ≥ 1 − π(out).

In the following subsections, the mathematical descriptions of the regarded
system components are derived which lay the basis for cross-layer optimization.

2.1 Channel Model

The downlink broadcast channel is modeled as frequency-selective fading over the
total system bandwidth and frequency-flat fading over each subchannel, which is
consist of Nc adjacent subcarriers. FDMA is employed meaning the assignment
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of every subchannel is exclusive to one user, and intercarrier interference (ICI) is
not taken into account. Moreover, we restrict ourselves here to the single-antenna
case both at the base station (BS) and at the mobile stations (MS).

Let Hk,n and σ2
k,n be the channel coefficient and Gaussian noise variance

of user k on the nth subchannel, and pn be the amount of power allocated
on subchannel n. When assigned to user k, the signal-to-noise-ratio (SNR) on
subchannel n can be computed as

γk,n =
|Hk,n|

2

σ2
k,n

· pn. (1)

Note that throughout this work the index k refers to users and index n refers to
subchannels. And as in the remaining part of this chapter, the focus is on any
one of the subchannels which is assigned to one user, we drop the subscripts k
and n for simplicity.

We choose the TTI to be of length T = 2 ms. The WiMAX standard suggests
a symbol duration of 102.9 µs in a system with 10 MHz bandwidth and an FFT
size of 1024. Based on this number we assume that one TTI contains Ns = 16
symbols for data transmission.

2.2 FEC coding and modulation

We assume that modulation and coding across the subchannels are done inde-
pendently, and with reference to the WiMAX standard 8 modulation and coding
schemes (MCS) are chosen as candidates, which are listed in Table 1.

Table 1. Modulation and Coding Schemes (MCS)

Index Modulation Type Alphabet Size A Code Rate R R log2 A

1 BPSK 2 1/2 0.5

2 QPSK 4 1/2 1

3 QPSK 4 3/4 1.5

4 16-QAM 16 1/2 2

5 16-QAM 16 3/4 3

6 64-QAM 64 2/3 4

7 64-QAM 64 3/4 4.5

8 64-QAM 64 5/6 5

Since with the help of cyclic prefix or an equalizer, intersymbol interference
is not present in the system, each subchannel can be modeled as a discrete

memoryless channel (DMC) over which the noisy channel coding theorem [5] can
be applied. Let the modulation alphabet and the coding rate on the subchannel
under consideration be A = {a1, . . . , aA} and R respectively. The cutoff rate of
the subchannel with SNR γ can be expressed as
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R0(γ,A) = log2 A − log2

[

1 +
2

A

A−1
∑

m=1

A
∑

l=m+1

e−
1
4 |al−am|2γ

]

. (2)

The noisy channel coding theorem states that there always exists a block code
with block length l and binary code rate R log2 A ≤ R0(γ,A) in bits per sub-
channel use, such that with maximum likelihood decoding the error probability
π̃ of a code word satisfies

π̃ ≤ 2−l(R0(γ,A)−R log2 A). (3)

In order to apply this upper bound on code word error probability to the
extensively used turbo decoded convolutional code, quantitative investigations
have been done in [2] and an expression for the equivalent block length is derived
based on link level simulations. The result from [2] shows that the performance
of a turbo decoded convolutional code applied to a coded packet of length L in
a very good approximation equals the performance of a block code with block
length

neq = β lnL, (4)

where parameter β is used to adapt this model to the specifics of the employed
turbo code, and L = NcNs log2 A. Consequently, the transmission of L bits is
equivalent to the sequential transmission of L/neq blocks of length neq and has
an error probability of

π = 1 − (1 − π̃)
L

neq ≤ 1 −
(

1 − 2−neq(R0(γ,A)−R log2 A)
)

L
neq

. (5)

2.3 Protocol

At the MAC layer both automatic repeat request (ARQ) and incremental re-

dundancy hybrid ARQ (IR HARQ) protocols are studied. The data sequence
transmitted in one TTI on one subchannel, i.e., a packet, is used as the retrans-
mission unit.

ARQ: The corrupted packets at the receiver are discarded. Hence we assume
that the packet error probability (PEP) of a retransmitted packet is the same as
that of its original transmission, i.e.,

f [m] = πm−1(1 − π), m ∈ Z+.

When the number of transmissions M is given, the maximum allowable PEP
can be obtained as

M
∑

m=1

f [m] = 1 − πM ≥ 1 − π(out) ⇒ π ≤
M
√

π(out).

HARQ: The corrupted packets at the receiver are combined and jointly
decoded using rate-compatible punctured convolutional codes. For the particular
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IR scheme where the retransmissions contain pure parity bits of the same length
as the first transmission, the code rate for the mth transmission can be expressed
as

R[m] =
B

m · L
=

1

m
R[1] =

1

m
R. (6)

Let m̃ denote the maximum number of transmissions determined by the mother
code. The equivalent block length neq is then given by

neq = β ln(m̃L). (7)

Plugging (6)(7) into (5) gives the PEP expression for the mth transmission as

π[m] = 1 −
(

1 − 2−β ln(m̃L)(R0(γ)− 1
m

R log2 A)
)

mL
β ln(m̃L)

. (8)

When R0(γ) ≤ 1
m

R log2 A, (8) suggests that π[m] = 1. And when R0(γ)
increases from 1

m
R log2 A, π[m] approaches 0 very fast. As a result, given the

number of transmissions M , f [m] can be approximated by

f [M ] = 1 − π(out), f [m] = 0,m = 1, . . . ,M − 1, (9)

where R0(γ) satisfies 1
M

R log2 A < R0(γ) ≤ 1
M−1R log2 A.

The quantities mentioned in this section, their notations, as well as their
simulation values are summarized in Table 2.

Table 2. System Parameters

Total bandwidth 10 MHz
Center frequency fc 2.5 GHz

FFT size 1024
Number of data subcarriers 720

Number of subchannels N 30
Number of subcarriers per subchannel Nc 720/30 = 24

Transmission Time Interval (TTI) T 2 ms
Number of data symbols per TTI Ns 16

Round Trip Delay (RTD) RTD 10 ms
Maximum number of transmissions allowed m̃ 5

Turbo code dependent parameter β 32

Outage probability π(out) 0.01

3 Problem Formulation

Suppose for the current TTI, the number of information bits intended for user

k is bk, and the maximum latency time for the transmission is τ
(rq)
k . The energy

minimization problem can be formulated as
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min
B

K
∑

k=1

N
∑

n=1

ηk,n(Bk,n, τ
(rq)
k )

s.t.

N
∑

n=1

Bk,n = bk, k = 1, . . . ,K,

B ∈ B,

(10)

where B ∈ ZK×N
+,0 represents the bit-loading matrix with its entry Bk,n as the

number of information bits for the kth user loaded onto the nth subchannel, and

ηk,n(Bk,n, τ
(rq)
k ) is the minimum energy consumption needed for the successful

transmission of Bk,n bits within the latency time τ
(rq)
k . The first constraint in

(10) is the completeness of bit-loading for the K users, and the second constraint
comes from FDMA in which B ⊂ ZK×N

+,0 represents the set of matrices that have
only one nonzero entry in each of their columns.

3.1 The η function

We define a tuple (A,R,M) which is a modulation type, FEC code rate, and
number of transmissions combination as one mode of operation. With 5 as the
maximum number of transmissions for each packet and 8 available MCS, we have
in all 40 different modes of operation, denoted by set M. For a fixed B, each
mode of operation (A,R,M) leads to a (latency, expected energy consumption)
pair (τ, E) with

τ = (M − 1)(RTD + T ) + T,

E =

⌈

B

R log2 A

⌉

· Ts · γ(A,R,M) ·

M
∑

m=1

f [m]

(

σ2

|H|2
+

(m − 1)σ2

|H(avg)|2

)

!
= φ ·

M
∑

m=1

f [m]

(

σ2

|H|2
+

(m − 1)σ2

|H(avg)|2

)

,

where |H|2 and |H(avg)|2 are the instantaneous and average channel gains, and
σ2 is the noise power on one subcarrier. γ(A,R,M) is the SNR required to
convey the packet within M transmissions when MCS (A,R) is employed, which
can be obtained from a binary search on the cutoff rate curve. Note that φ as
defined is independent of the channel realizations. η(B, τ (rq)) is then given by

η(B, τ (rq)) = min
(A,R,M)∈M

E(A,R,M) s.t. τ(A,R,M) ≤ τ (rq). (11)

Limited by the highest MCS, the number of information bits that can be
loaded onto one subchannel in one TTI is upper bounded by B(u) = 5 · NsNc.
Let (τ1, E1) and (τ2, E2) be two (latency, energy) pairs. Analytical derivations
show that if τ1 < τ2 and φ1 < φ2, then E1 < E2. That means, only those
modes of operation that are Pareto efficient in (τ, φ)1 can lead to the solution

1 A mode of operation (Ã, R̃, M̃) is called Pareto efficient in (τ, φ) if the pair (τ̃ , φ̃) it
leads to is Pareto efficient, i.e., there ∄(τ, φ) resulting from other modes of operations
in M such that τ ≤ τ̃ and φ ≤ φ̃.
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of (11). Therefore, for each B ∈ [1, B(u)], finding and storing the (τ, φ) Pareto
efficient points via an enumeration of all modes of operation are sufficient to
solve (11) given the instantaneous channel realizations, which is to say, an offline
computable look-up table can be established beforehand. At run time, only some
simple calculations are needed to compute η(B, τ (rq)). An exemplary η function
is shown in Fig. 1, where τ (rq) is set to infinity.
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Fig. 1. An exemplary η function for ARQ and HARQ protocols

From the visualization some of the expectations of the η function are veri-
fied: it is monotonically increasing with the number of information bits B, the
energy increments for the same increment in B become larger with increasing
B, and HARQ consumes less energy than ARQ for fairly large B. However, the
η function is not convex due to the discrete inputs and changes of the optimum
mode of operation at some B. As a result, the optimization (10) is not convex in
both objective and constraints. Therefore when dual methods are applied, the
solution is bound to suffer from the duality gap.

4 The Resource Allocation Algorithm

4.1 Dual Methods

The Lagrange dual decomposition method and the ellipsoid method are em-
ployed to solve the optimization problem (10), following a similar procedure as
proposed in [4]. Introducing Lagrange multipliers λ ∈ RK×1 to the K bit-loading
constraints in (10) gives the Lagrangian
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L(B,λ) =

K
∑

k=1

N
∑

n=1

ηk,n(Bk,n, τ
(rq)
k ) +

K
∑

k=1

λk(

N
∑

n=1

Bk,n − bk), (12)

and the dual function g(λ) follows as

g(λ) = inf
B∈B

L(B,λ)

= inf
B∈B

N
∑

n=1

(

K
∑

k=1

ηk,n(Bk,n, τ
(rq)
k ) +

K
∑

k=1

λkBk,n

)

−

K
∑

k=1

λkbk

=

N
∑

n=1

inf
B∈B

K
∑

k=1

(

ηk,n(Bk,n, τ
(rq)
k ) + λkBk,n

)

−

K
∑

k=1

λkbk

!
=

N
∑

n=1

gn(λ) −

K
∑

k=1

λkbk,

where gn(λ), n = 1, . . . , N are N independent optimization problems resulting
from the decomposition of minimizing L(B,λ). In solving the dual problem, i.e.,
max g(λ), the update of the dual variable λ is done efficiently using the ellipsoid
method. We denote the optimal value and solution to the dual problem as d∗

and λ∗ respectively, and the bit-loading matrix obtained with λ∗ as B̃. By weak
duality, d∗ gives a lower bound on the primal optimal value. However, B̃ is not
necessarily primal-feasible, which makes primal recovery necessary.

4.2 Primal Recovery Scheme

Due to the nonconvexity of the objective function of (10), the conclusion drawn
in [3] that the duality gap vanishes when the number of subchannels approaches
infinity is not valid anymore. Consequently, the subchannel assignment (SA)
implicitly given by B̃ (B̃k,n > 0 indicates that the nth subchannel is assigned to
the kth user) can not be assumed optimum. In fact, as Bk,n is limited by B(u)

from above, the dual optimum SA can be infeasible, especially when the total
number of information bits to be loaded is large. Therefore, in order to perform
primal recovery based on the dual optimum SA, we have to assure its feasibility
first.

The minimum number of subchannels needed by user k can be computed

as N
(l)
k =

⌈

bk

B(u)

⌉

. Let the set of subchannels assigned to user k by the dual

optimum SA be Sk, i.e., Sk = {n : B̃k,n > 0}. If ∃k with |Sk| < N
(l)
k , then the

dual optimum SA is infeasible. Denote the set of users with |Sk| > N
(l)
k as Ko

2.
One adjustment scheme can be to solve

2 An empty set Ko indicates the infeasibility of (10), the case of which should be
tested and excluded at the beginning of the whole program. In order to provide the
resource allocation entity with appropriate traffic loads, a scheduling component on
its top is necessary.
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(k∗, n∗) = argmin
k′∈Ko,n∈Sk′

(

ηk,n(B(u), τ
(rq)
k ) − ηk′,n(B(u), τ

(rq)
k′ )

)

,

and reassign subchannel n∗ to user k instead of its former possessor k∗ by up-
dating Sk and Sk∗ accordingly.

Fixing the feasible SA, we have K decoupled minimization problems, one for
each user, as

min
{Bk,n:n∈Sk}

∑

n∈Sk

ηk,n(Bk,n, τ
(rq)
k )

s.t.
∑

n∈Sk

Bk,n = bk,
(13)

which can again be solved in the dual domain. Let the dual optimal bit-loading
be {B∗

k,n : n ∈ Sk}. If
∑

n∈Sk
B∗

k,n 6= bk, we can load or unload the extra bits
one by one on the subchannel that leads to the minimum energy increment or
the maximum energy decrement. Mathematically, we iteratively find

n∗ =















argmin
n∈Sk

(

ηk,n(B∗
k,n + 1, τ

(rq)
k ) − ηk,n(B∗

k,n, τ
(rq)
k )

)

,
∑

n∈Sk

B∗
k,n < bk,

argmax
n∈Sk

(

ηk,n(B∗
k,n, τ

(rq)
k ) − ηk,n(B∗

k,n − 1, τ
(rq)
k )

)

,
∑

n∈Sk

B∗
k,n > bk,

(14)
and update B∗

k,n∗ , until
∑

n∈Sk
B∗

k,n = bk is satisfied. Such a recovery scheme is
simple, but greedy and performance-degrading.

5 Simulation Results

For simulations, K = 10 users uniformly located in a cell of radius 2 km are
assumed. The wireless channel is modeled as a frequency-selective fading chan-
nel consisting of six independent Rayleigh multipaths with an exponentially
decaying power profile. The delay spreads are uniformly distributed within 1
µs, resulting in a rms delay spread of about 0.3 µs which is consistent with
the assumed channel coherence bandwidth. The path loss in dB is computed as
PL(d) = 140.6 + 35.0 log10 d following the COST-Hata model, where d is the
distance between MS and BS in km, and the receiver noise level is assumed to
be −174 dBm/Hz.

Each user’s information bits to be served and latency requirements are listed
in Table 3, where the unit for bk is bit and the unit for τk is ms, and α is a scalar
that takes values from {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Besides the test results of the
algorithm discussed in the previous sections, a static resource allocation scheme
is simulated for comparison purpose. The static scheme first assigns each user
with a fixed set of subchannels and then performs the greedy bit-loading, in the
same way as used for primal recovery. Each test scenario has been simulated
under 1000 independent channel realizations.

In Fig. 2 the statistics of energy consumptions are shown, where Fig. 2(a)
shows the cumulative distributions of the energy spent under different retrans-
mission protocols and resource allocation schemes, and Fig. 2(b) illustrates the
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Table 3. QoS requirements of 10 users for simulation

User bk τk User bk τk User bk τk

1-4 512·α 20 5-7 800·α 40 8-10 1600·α 80

average energy consumption over 1000 simulations at each α value. Note that
the actual optimal energy curves lie between the dual optimum and the primal
recovery curves. The corresponding statistics for the transmit power spent for
the first transmission are drawn in Fig. 3.
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It is clear from the figures that the algorithm developed in this paper greatly
outperforms the static resource allocation scheme, and HARQ protocol outper-
forms ARQ, in reducing energy consumption as well as transmit power con-
sumption. The higher density the traffic has, the more obvious the advantages.
However, with increasing traffic density, the deviation from the primal recovered
objective to the dual optimum also gets larger, e.g., the ratio of the deviation to
the dual optimum increases from 8% at α = 0.5 to 50% at α = 4 on average for
the HARQ case. On the one hand, this could be caused by possibly larger opti-
mal duality gaps at higher traffic densities, while on the other hand, the more
frequent situation at higher traffic densities that infeasible SA is obtained from
solving the dual problem, which has to be heuristically adjusted, may deteriorate
the performance of primal recovery and in turn, deteriorate the performance of
the whole algorithm.

6 Conclusions

A novel energy minimization problem for QoS provisions in multicarrier systems
has been formulated and solved, within a cross-layer framework that involves
adaptive modulation and coding and retransmission protocols. By using the
cutoff rate theorem, the channel and user independent parameters are connected
to the time-varying resource allocation parameters with the SNR, which provides
the means to reducing computations by setting up offline-computable look-up
tables. Though the algorithm has been proved efficient at low to medium traffic
densities, there are more issues to be studied: first, the optimal duality gap of the
optimization should be estimated; second, more delicate primal recovery schemes
are necessary to further improve system performance; last but not the least, the
transmit power constraint at the BS should be integrated into the optimization.
The three-fold work will be left to our future research.
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