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Addressing uncertainty is a key requirement to follow the principle of precaution in sustainable ecosystem
management. The maximization of worst-case outcomes according to the “maximin” decision rule, based on
the two parameters mean and variance of a financial indicator, is a prominent approach to integrate
uncertainty in decision-making. In forestry, the problem of selecting the optimum tree species combination
for a forest plantation investment can be seen as a problem of optimal portfolio selection, to be solved
according to the “maximin” decision rule. Yet, it is well known that portfolios computed from expected
means and variances are highly sensitive to changes in the estimated parameters. The financial results may
be poor if we rely too much on the historical data. This paper tests an extended worst-case model that
considers a lower bound for the expected mean net present value (NPV) of a tree species portfolio and an
upper bound for its variance. Biased expected mean NPVs, variances and correlations for the tree species
Picea abies [L.] Karst. (Spruce) and Fagus sylvatica L. (Beech) were used to test the variability of the resulting
tree species portfolios (27 scenarios). A comprehensive simulated data set, which was adopted from an
existing study and defined as the independent reference, served to evaluate the financial performance of the
tree species portfolios obtained from optimization with the biased data. Compared with the results of
classical worst-case optimization instances, it was feasible to reduce the variability of tree species shares
effectively when the optimization was carried out with the extended worst-case approach. Furthermore, the
financial performance of this approach was better when tested with the independent data. The worst-case
forest NPVs achieved with the extended approach were on average 10% (statistical confidence 0.95) or 147%
(statistical confidence 0.99) greater in comparison to the results of the classical approach. The influence of
the uncertainty parameter selection was tested and the results were discussed against the controversial
viewpoints on the usefulness of the “information-gap decision theory”. Finally, the significance of our results
for sustainable ecosystem management is pointed out.
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1. Introduction ecological benefits of these forest types, such as soil improvement,

provisioning of ecosystem services, higher biodiversity and greater
resilience, rather than by financial reasons (Knoke et al., 2008).
The shift towards a more natural forest composition is not

Forestry approaches and management practices which may be
identified as “close-to-nature”, “nature-based”, “near-natural” or

“ecosystem management” have obtained increasing intellectual interest
(Gamborg and Larsen, 2003; Bristow et al., 2006). Working with native
tree species and mixed species approaches belong to this overall shift to
ecologically oriented forest management. In Germany, the concerns on
forest decline in the 1980s and the enormous damage caused by storms
and insects to pure coniferous species forests (almost Spruce, which is
not native to many sites where it is grown) have led to the
abandonment of pure conifer forests in most official management
rules (e.g., Baumgarten and von Teuffel, 2005; Fritz, 2006). Here, the
trend towards broadleaves and native tree species is justified by the
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necessarily supported by classical forest economic analysis, since the
broadleaved species, native to most sites in Germany, are often the
worse economic performers (Mohring, 2004; Knoke et al., 2005). Yet,
native tree species are usually better adapted to site conditions and
thus often suffer lower risks (von Liipke and Spellmann, 1999). If they
cover some parts of forest plantations, their greater resistance against
biotic and abiotic hazards can also stabilize financial returns in the
long run (Knoke et al., 2005). This fact would lead to sustainability not
only from an ecological but also from an economical point of view.
Various studies in forest economics have already focused on the
composition of tree species on a given forest land (e.g. Thomson, 1991;
Deegen et al., 1997; Weber, 2002; Knoke et al., 2005, Knoke and Wurm,
2006; Knoke and Hahn, 2007; Knoke et al., 2008; Beinhofer, in press;
Hildebrandt et al., in press). Other examples of financial optimization of
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species shares exist in the fields of fishery (Edwards et al., 2004) and
grassland management (Koellner and Schmitz, 2006). The mentioned
studies build on the fact that mixed ecosystems show effects of risk
compensation similar to diversified portfolios of stocks (Knoke, 2008).
However, as long-life forests differ from stock portfolios, their
composition cannot be directly adjusted to current market develop-
ments, since a change of tree species composition is a long-term
operation. Robust optimization methods, that secure acceptable
financial results even under pessimistic assumptions, are thus needed.

Optimization of tree species composition poses a challenge:
Different to other assets, we have neither stock market data for the
single forest stands, nor time series for timber prices or biophysical risks
like storms, insect attacks or snow breakage, that comprise several
rotations. We thus have to simulate the required financial data over long
time periods that we need to address in forestry. The resulting estimates
on financial parameters are highly uncertain on the one hand. On the
other hand, the optimal tree species composition is extremely sensitive
to these parameter estimates. Based on various scenarios on plantation
management, different biophysical risks and risk attitudes of decision-
makers, the derived optimal shares of the broadleaved tree species
Fagus sylvatica L. (European Beech), which is native to most sites in
Germany, may range between almost zero and more than 60% (Knoke
et al., 2005; Knoke and Wurm, 2006). This considerable range should
warn us not to rely too much on one simulated scenario. Moreover,
highly variable results are not convincing for forest practitioners and
thus, for the case of Germany, forest practitioners often base their tree
species choice primarily on intuitive considerations.

In order to optimize the composition of tree species, scientific
studies often apply optimization methods which are based on the
mean net present value (NPV) and its variance. From studies of other
fields than forestry it is well known that, despite the theoretical
success of the mean-variance models (Bai et al., 1997), the practical
relevance of the resulting portfolios is generally not very significant
(Goldfarb and lyengar, 2003). Solutions of mean-variance optimiza-
tion are generally extremely sensitive to changes in the financial input
parameters, with the latter usually being simulated exclusively on a
historical data basis. However, it is not possible to reflect future
changes from historical data and thus alternatives for a “robust”
optimization have been proposed. The so called “information-gap
decision theory” (IGT), promoted by Ben-Haim (2006), has recently
gained considerable popularity especially in ecological studies. These
studies optimize, for example, habitats or reserves under severe
uncertainty (e.g. Regan et al., 2005; Halpern et al., 2006; Moilanen
et al., 2006). But also regarding financial optimization IGT has been
considered as a possible solution for decision making under severe
uncertainty (e.g. Ben-Haim, 2005; McCarthy and Lindenmayer, 2007;
Knoke, 2008). Nevertheless, both the originality and usefulness of IGT
have already been sharply questioned. Sniedovich (2007) has shown
that IGT is only a simple variant of the classical “maximin” decision-
rule. He has stated that IGT carries out only a very local consideration
of uncertainty. Although Knoke (2008) has pointed out the analytical
appeal of IGT, he has also demonstrated that the results from this
optimization model do not differ from those obtained with classical
optimization methods, as for example the minimization of the
probability of failure.

Forest ecosystem management needs to address future uncertainty
more comprehensively than it has done up to now. When optimizing
tree species shares it is very likely that the operation can be carried out
only with biased input parameters, since we have to anticipate states
that lie very far in future. We should thus not have too much
confidence in our modeled financial input parameters. We rather have
to address the severe uncertainty inherent in the estimated financial
data. According to the principle of precaution we are to consider that
our estimates for the expected mean and its variance may be too
optimistic. Hence, we want to test whether tree species portfolios
obtained from optimization with biased financial parameters can

nevertheless provide comparatively high financial outcomes, even in
the case when extremely wrong parameter estimates are used as an
input. We therefore find it necessary to look for rather stable solutions
under variable input parameters that deliver acceptable financial
results (i.e. positive and relatively high NPV) even under pessimistic
scenarios. Our objective is thus to test the stability of simple tree
species portfolios and their financial performance for various biased
estimates on means and variances of the tree species' NPVs. This is
done under a classical and an extended modeling approach, which
considers information-gaps. We thus do not change the considered
decision rule in principle, but we a priori take into account that the
simulated data may be biased.

2. Methods

Establishing young forest stands usually means providing products
and services for future generations and thus decision-making has to
consider sustainability requirements. When seeking sustainable
ecosystem management, scientists often recommend a perspective
of precaution (Figge and Hahn, 2004; Wunder, 2000; Knoke and
Moog, 2005; Weber-Blaschke et al., 2005; Krysiak, 2006). The point of
view of precaution holds not only for ecological but also for financial
aspects. Sustainable management should secure future management
options and stabilization of long-term financial returns. To carefully
address the uncertainty situation under which we have to decide on
tree species, we may analyze the financial consequences of various
tree species portfolios under pessimistic assumptions in order to make
sure that even then acceptable results are secured.

Dealing with uncertainty can principally be seen as a two-player
game, as it has been explained in detail by, for example, Sniedovich
(2007). Dependent on the attitude of the decision-maker (first
player), whether pessimistic or optimistic, it is assumed that nature
(second player) plays against or with him. So called “maximin” rules
are the classical, but still popular decision-rules. “Maximin” decision-
making reflects risk-aversion and is principally able to support
sustainable management. It tells us that we should rank alternatives
by their worst possible outcomes; the alternative whose worst
outcome is superior to the worst outcome of others has to be selected:

g iy @9

This means, that the decision maker would first select a decision
deD from the decision space available to him to maximize the outcome
f (d,s). Nature would then, given d, select a state {S(d):d<D} to
minimize the outcome f (d,s), an assumption that reflects the risk-
avoiding attitude of the decision-maker. The decision-maker has then
to find the decision which performs best under this pessimistic
assumption.

The application of “maximin” rule requires estimating possible
worst-case outcomes (the minimized outcomes provided by nature to
the pessimistic decision-maker) of the various possible choices. This
would also enable optimizing decisions on portfolio selection, seen as
a “maximin” game. Consider a forest plantation as a portfolio of
various independent tree species and assume that the value of this
portfolio, V, given by the sum of all discounted future net revenues
(i.e. the net present value, NPV), should be maximized according to
the “maximin” rule. Let the distribution function of possible portfolio
NPVs, V,, be known and normal: V,~N(E(V,),VAR(V,)). Given an
accepted statistical confidence level, 1 — ¢, the expected worst-case
result, V,, ., can then be predicted and maximized by means of
selecting the optimum shares of the tree species in the forest portfolio,
f*, as the vector of tree species shares that maximizes the worst-case
forest NPV, V,, _ .

(f: le:I,VmaXVeV,a>O) VW_C - (1)71 (a’E<Vp>’ v VAR(VP)) (1)

w—cVp
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with V as the set of possible forest portfolio NPVs and ¢~ ! as the
inverse of the normal distribution function.

However, as reported above it is well known that the optimum
portfolio composition, f*, is generally highly sensitive to the estimated
portfolio parameters, mean and variance (E(Vp),VAR(Vp)) (e.g.,
Goldfarb and Iyengar, 2003). A biased estimation of future timber
prices, their volatility, logging costs, timber growth, tree species
survival probabilities or other important factors can lead to a very
poor approximation of the true future values. We should therefore
define uncertainty sets that possibly include the true values for our
parameters (E(V,),VAR(V,)) to consider the severe uncertainty
involved with their estimation.

For the expected NPV of the forest portfolio, V), we can formulate
the following uncertainty set:

UE(V,):h) = {E(V,) : [E(v,) —E(V,)| < h}.h=0

with

17f =
h=o

—_

<

Here V is a vector of estimated NPVs of the considered single tree
species and f is a vector of the possible shares of the tree species. The
uncertainty level, h, has to be selected by the decision-maker. It
describes the information-gap that results from the difference
between what we know and what is needed to draw a correct
decision. We propose to estimate this uncertainty level proportional
to a naive approximation of the forest NPV, which does not consider
the shares of the tree species. The approximation is formed by the
arithmetic mean of the single per unit NPVs of the considered tree
species. The number ® is a decimal number that controls the level of
uncertainty, h. Note that the uncertainty set described with Eq. (2) is a
simple information-gap model (Ben-Haim, 2006). It comprises all
possible true mean forest portfolio NPVs (E(V,)), whose deviation
from the estimated mean NPV (E (Vp)), quantified by the absolute
value of the difference between the estimated NPV and a member of
U, is not greater than h. The uncertainty set in Eq. (2) thus contains
all possible true but unknown mean NPVs consistent with the
estimated mean NPV.

We may now use Eq. (1) to estimate a possible worst-case forest
NPV with the following pessimistic lower bound of the true but
unknown expected forest NPV:

E(vp) =¥f— o 3)

Not only the true mean NPV, but also its variance can only be
approximated with a given, probably great, uncertainty. The varia-
bility derived from historical data may not be representative for future
variability. The variance of the forest portfolio is subject to the
uncertainty reflected in the estimated covariance matrix, 3. The true
covariance matrix can be seen as a member of the following
uncertainty set:

U(f},a) = {E : HE—S}HF < a},a >0
with
VAR(V,) = £'5 f @

|2

a= /3 |AVARV))

d=c¢ VARV

Here, S is the true covariance matrix, VAR(V;) is the arithmetic
mean of the estimated variances of the NPVs of single tree species and
|||l is the Frobenius norm of the matrix which contains the
differences between 3, and f, AVAR(V;). For the sake of simplicity we
assume the covariances to be exactly known in 3, so that there are no
differences between 3 and 3 in this regard (we later test whether this
simplification can be justified). We can thus see a as the norm
obtained from the unknown differences between the estimated and
the true variances of the individual tree species’ NPVs. We propose to
estimate the upper bound of this norm, @ proportional to the
arithmetic mean of the NPV variances for the single tree species. The
number ¢ is again a decimal that defines the level of uncertainty in the
variance estimation, which has to be decided on by the decision-
maker.

We may now write for the true but unknown forest portfolio
variance as a pessimistic upper bound to be used in Eq. (1):

VAR(Vp) =f (i +ad 1) f (5)

The assumption will be discussed later that all the unknown
variance components to be considered for every tree species are the
same, independent from the specific variance estimated for a single
tree species. For a robust optimization it is important that the
unknown variance components are really independent from the
biased parameters of the single variances of the tree species' NPVs. If
we would estimate them proportionally to the biased estimates of the
variances of tree species’ NPVs, we would only increase the bias and
the composition of the portfolios would even become more
unbalanced and variable. The shares of tree species whose estimated
NPV variances are great would be further reduced and the shares of
those whose NPV variances are small would further increase. We
inevitably considered the unknown part of variance as a black box,
as de facto no information is available about additional systematic
and unsystematic risks that the future may bring. To assure inde-
pendence from the estimated values the upper bounds of the
unknown variance components were thus computed naively propor-
tional to the arithmetic mean of the variances of the single tree species
(see Eq. (4)).

We assume that the naive estimation of the uncertainty levels,
which is independent from the biased estimates, will stabilize the
results of the optimal tree species shares, even if we vary the biased
estimates for means and variances in Eq. (1). Below we compare the
optimal portfolio composition for a two-species forest plantation,
derived by using the biased estimates for means and variances to
maximize Eq. (1) (classical worst-case modeling), with an optimiza-
tion based on means and variances and adjusted to uncertainty
according to Eq. (3) and (5) (extended worst-case modeling).
Simulated data sets, published by Knoke and Wurm (2006), were
defined as reference data and utilized to evaluate the financial
performance of the optimizations carried out with biased parameters.

2.1. Reference data sets

To evaluate the possible impact of integrating severe uncertainty
into the optimization process, we used reference data sets from an
existing study. Knoke and Wurm (2006) simulated long-term forest
management data for the European tree species Picea abies [L.] Karst.
(called Spruce from here onwards) and Fagus sylvatica L. (called Beech
from here onwards) by means of the Monte-Carlo simulation
technique. The plantation area of Spruce was extended far beyond
its natural limits (Spiecker, 2003) in Germany, while Beech would
dominate the natural vegetation cover in Central Europe. To assure
comparability of the simulated NPVs with those derived in other
forest science studies Knoke and Wurm (2006) selected an extremely
long time horizon of 500 years. Therefore, the results are comparable
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Table 1
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Simulated financial data on NPV distributions (reference data sets) for various tree species shares (fraction of Spruce = 1-fraction of Beech), adopted from Knoke and Wurm (2006),

with alterations.

Moments of the reference data distributions of NPVs (Euro ha)

Fraction of Beech Mean SD Quantiles
0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.01

0 5028 2599 8827 8259 7928 7317 5447 2958 1545 444 —1,083
0.05 4971 2468 8592 7994 7717 7157 5424 3029 1649 628 —788
0.1 4914 2340 8355 7762 7535 6998 5321 3093 1768 817 —540
0.15 4858 2214 8125 7617 7363 6823 5204 3139 1852 900 —338
0.2 4801 2092 7881 7442 7188 6652 5122 3172 1903 1070 —144
0.25 4744 1973 7697 7225 7008 6495 5038 3219 2028 1241 54
0.3 4688 1859 7497 7089 6832 6351 4938 3268 2158 1401 236
0.35 4631 1750 7295 6917 6672 6189 4771 3350 2137 1512 415
0.4 4574 1648 7087 6742 6506 6046 4671 3374 2245 1693 610
0.45 4518 1554 6892 6595 6347 5894 4588 3457 2344 1830 546
0.5 4461 1468 6731 6420 6184 5744 4512 3467 2460 1926 574
0.55 4404 1394 6592 6265 6037 5595 4499 3499 2563 1942 585
0.6 4348 1332 6448 6125 5887 5440 4478 3507 2637 1934 513
0.65 4291 1286 6336 5983 5727 5296 4440 3540 2638 1858 414
0.7 4234 1255 6242 5825 5607 5198 4407 3582 2630 1689 276
0.75 4178 1242 6160 5701 5467 5066 4360 3645 2503 1567 118
0.8 4121 1247 6078 5573 5352 4938 4329 3703 2495 1424 —282
0.85 4064 1269 6001 5481 5269 4886 4308 3751 2357 1323 —534
0.9 4008 1309 5934 5473 5210 4809 4286 3722 2300 1061 —724
0.95 3951 1364 5858 5458 5159 4762 4276 3662 2055 858 —1,072
1 3894 1433 5879 5427 5199 4735 4237 3595 1850 576 —1,425

to those obtained under deterministic optimization for an unlimited
time horizon, which forest economics studies often assume when
applying the so called “Faustmann” approach (e.g., Chang, 1998). The
rotation for both tree species was 100 to 110 years, depending on the
stochastically simulated timber price, and they integrated natural
hazard risks as well as timber price volatility. Distributions of NPVs
(sums of discounted net revenue flows) were generated by means of
1000 repetitions for various portfolios of both tree species (Table 1).

The net revenue flows were discounted with an interest rate of
0.02. This interest rate is very low for a private investor. It was seen as
the risk-free internal rate of return for an extremely long-term
investment. Heal et al. (1996) pointed out, that individuals use
interest rates in the order of 2% if the time horizon extends to one
hundred years. The rotation periods in Germany (100 to 110 years in
our study) are actually often extremely long (Moog and Borchert,
2001) and cannot be explained with high interest rates. The simulated
NPV data, however, do not consider the uncertainty of tree plantation
investments by means of a risk-adjusted interest rate (e.g., Krusch-
witz, 2005). Knoke and Wurm (2006) used a 2% risk-free interest to
compute NPVs, which are positive if the tree plantation investments’
internal rates of return are greater than 2%. Instead of increasing the
interest rate, the uncertainty was addressed explicitly by analyzing the
range of NPVs under uncertainty and by maximizing their worst-
cases.

Knoke and Wurm (2006) carried out their investigation consider-
ing the average growth conditions in Southern Germany. Based on
reservation prices they applied flexible harvest policies, where the
timing of timber harvests depended on the simulated timber price.
The biophysical data resulted from projections of pure stands by
means of growth models. Thereby the data excluded effects accruing
by interactions of tree species in mixed forests stands, which consist of
groups of different tree species or single tree mixtures (see Knoke and
Seifert, 2008 for a first approach to consider this aspect).

A greater biophysical yield, as compared to Beech, resulted for the
conifer Spruce. Given the absence of damages (meaning that the
biophysical risks such as wind damage, snow breakage or insect attacks
are ignored) an average volume increment of 10.30 m> ha™ ' yr~! was
simulated for Spruce, while Beech showed only 692 m> ha~! yr~ . The
integration of biophysical (wind damage, snow breakage, insect attacks)
and timber market risks led to an extreme dispersion of the simulated

NPVs (Table 1). A forest comprising 100% Beech showed a NPV of 3,894
Euro ha~! and a standard deviation of 41,433 Euro ha™ . Pure Spruce
was more profitable (NPV of 5,028 Euro ha—!), but also more risky
(standard deviation of 2,599 Euro ha~ ). While a species composition of
75 % Beech and 25% Spruce had a NPV proportional to the shares of both
species, its standard deviation was only 1,242 Euro ha™ !, which was
even smaller than that of the pure Beech forest. Obviously the tree
species mixture resulted in risk compensation, due to slightly correlated

Table 2
Combinations of biased data on means and standard deviations as well as correlations
generated to lie around the parameters of the reference data sets.

Scenario Spruce NPV (Euro ha)  Beech NPV (Euro ha)  Coefficient of
no. variant Mean Standard variant Mean  Standard correlation
deviation deviation

1 Optimistic 6536 4150 Optimistic 5062 2634 —-03
2 6536 4150 5062 2634 0.0
3 6536 4150 5062 2634 0.3
4 Optimistic 6536 4150 Realistic 3894 1433 —0.3
5 6536 4150 3894 1433 0.0
6 6536 4150 3894 1433 0.3
7 Optimistic 6536 4150 Pessimistic 2726 1000 — 03
8 6536 4150 2726 1000 0.0
9 6536 4150 2726 1000 0.3
10 Realistic 5028 2599 Optimistic 5062 2634 —-03
1 5028 2599 5062 2634 0.0
12 5028 2599 5062 2634 0.3
13 Realistic 5028 2599 Realistic 3894 1433 —03
14 5028 2599 3894 1433 0.0
15 5028 2599 3894 1433 0.3
16 Realsistic 5028 2599 Pessimistic 2726 1000 —-03
17 5028 2599 2726 1000 0.0
18 5028 2599 2726 1000 0.3
19 Pessimistic 3520 1500 Optimistic 5062 2634 —03
20 3520 1500 5062 2634 0.0
21 3520 1500 5062 2634 0.3
22 Pessimistic 3520 1500 Realistic 3894 1433 —03
23 3520 1500 3894 1433 0.0
24 3520 1500 3894 1433 0.3
25 Pessimsitic 3520 1500 Pessimistic 2726 1000 —03
26 3520 1500 2726 1000 0.0
27 3520 1500 2726 1000 0.3

Financial parameters of the reference data sets are given in bold and italics.
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biophysical risks and weak, negatively correlated timber prices. The
coefficient of correlation between the NPV of Spruce and Beech was
almost zero.

2.2. Scenarios with biased means and variances of NPV

The above described, simulated data sets were used as a reference
to evaluate the performance of the classical and the extended
optimization approach. To test the sensitivity of the shares of tree
species to changes in the input parameter estimates we used 27
combinations of biased mean NPVs, standard deviations and correla-
tions (Table 2).

To generate this data we assumed a bias of + 30% for the expected
mean NPVs and estimated the appropriate standard deviations in
relation to the expected mean NPVs. For this purpose the difference of
the reference data standard deviations of NPVs of both tree species
was divided by the difference of the average NPVs of both species. The
resulting standard deviation per unit of difference in NPV was then
used to derive an adequate standard deviation depending on the
chosen biased NPV (see Table 2). With minimum standard deviations
of 1500 (Spruce) and + 1000 (Beech) we defined the lowest limits
for both tree species, since the estimation of the standard deviations
proportionally to the differences in NPVs resulted in excessively small
coefficients of variation (lower than 10%) for small NPVs.

2.3. Variability of tree species shares and financial performance of
portfolios

First we compared the sensitivity of the tree species shares to
changes in the input parameters. Based on the biased data, tree
species shares were computed for every scenario (see Table 2) and
separately for both maximization models by maximizing worst-case
NPVs with the classical approach and with the one extended by
information-gaps, as the extended worst-case approach. We required
a 0.95 level of statistical confidence (1 — «, with «=0.05) and set the
relative level of uncertainty, o, for the mean NPV to 0.3 (to be used
according to Eq. (2)) and the relative level of uncertainty, ¢, for the
variance was defined 0.6 (to be used according to Eq. (4)). The
sensitivity of the optimization to changes in these uncertainty
parameters will be tested later.

As expected from the results of other studies, the resulting share of
Beech varied greatly among the 27 scenarios under classical worst-
case maximization, which was based on biased NPV means and
variances. Shares between 0.35 and 0.85 were computed when based
on the (biased) data for the 27 scenarios (Fig. 1).

The average share of Beech was 0.62 with 40.13 as the standard
deviation. With the extended worst-case optimization the variability
of the forest portfolios could significantly be reduced. The minimum
share of Beech was 0.45 and the maximum 0.60. The average share of

16 - Frequency O Classical worst-case

14 1 ) M Extended worst-case
12

10 1

8 -

6

4

S |
0 [ 1 T T T T T 1

26-35 36-45 46-55 56-65 66-75 76-85

Proportion of European beech (%)

Fig. 1. Frequency of estimated optimum shares of Beech for 27 scenarios.

Table 3
Optimum shares of Beech and various forest NPVs obtained from optimization with
biased data for a level of statistical confidence of 1 —a=0.95.

Scenario  Classical worst-case Extended worst-case
po: Proportion Worst-case Mean Proportion Worst-case Mean
Beech read from read from Beech read from read from
reference  reference reference  reference
data data data data
1 0.60 1934 4348 0.55 1942 4404
2 0.65 1858 4291 0.55 1942 4404
3 0.65 1858 4291 0.55 1942 4404
4 0.75 1567 4178 0.60 1934 4348
5 0.75 1567 4178 0.60 1934 4348
6 0.80 1424 4121 0.60 1934 4348
7 0.80 1424 4121 0.60 1934 4348
8 0.80 1424 4121 0.60 1934 4348
9 0.85 1323 4064 0.60 1934 4348
10 0.50 1926 4461 0.50 1926 4461
11 0.50 1926 4461 0.50 1926 4461
12 0.50 1926 4461 0.50 1926 4461
13 0.65 1858 4291 0.55 1942 4404
14 0.65 1858 4291 0.60 1934 4348
15 0.70 1689 4234 0.60 1934 4348
16 0.65 1858 4291 0.55 1942 4404
17 0.70 1689 4234 0.55 1942 4404
18 0.70 1689 4234 0.55 1942 4404
19 0.40 1693 4574 0.45 1830 4518
20 0.40 1693 4574 0.45 1830 4518
21 0.35 1512 4631 0.45 1830 4518
22 0.55 1942 4404 0.55 1942 4404
23 0.60 1934 4348 0.55 1942 4404
24 0.60 1934 4348 0.60 1934 4348
25 0.55 1942 4404 0.50 1926 4461
26 0.55 1942 4404 0.50 1926 4461
27 0.55 1942 4404 0.50 1926 4461
Mean 0.62 1753 4325 0.54 1923 4411
Standard- 013 200 148 0.05 34 57
deviation

Beech resulted in 0.54 with a standard deviation of only 4-0.05. Even
under optimistic (Spruce) versus pessimistic (Beech) combinations
(scenarios 7-9) and under pessimistic (Spruce) versus optimistic
(Beech) combinations (scenarios 19-21) the share of Beech did not
fluctuate greatly when optimized according to the extended worst-
case method: the minimum value was 0.45, the maximum 0.60. For
the case of classical worst-case optimization this was different. Here
the share of Beech ranged between 0.35 and 0.85 for scenarios 7-9
and 19-21.

We can now use worst-case forest NPVs (for «=0.05) from the
reference data set (Table 1) for the regarding shares, which have
resulted from optimizing with the biased data. Our simulation
assumes that these values would have been the real outcome of a
decision on species choice according to the biased data. A share of
Beech of 0.35 would, for example, result in a worst-case NPV of 1512
Euro ha™ !, a Beech share of 0.85 gives 1323 Euro ha~! (see Table 1). If
we allocate reference data outcomes to all 27 choices of tree species
guided by the biased data, the average worst-case forest value is 1753
(+£200) Euro ha~!, when classical worst-case maximization was
applied, whereas the extended worst-case method achieves 1923
(+34) Euro ha™! (Table 3).

Thus the average worst-case result increased by 10 % when the
extended worst-case method was applied. The average forest NPV
differed also in favor of the extended worst-case method and the standard
deviation of the worst-case results was reduced by the factor of 6 when
compared with that obtained from the classical worst-case method.

In contrast to the parameters mean and variance of the tree
species’ NPVs, the estimate for the correlation of NPVs seems to be
rather less important, at least if we consider a range between —0.3
and + 0.3. Avariation within these limits led to a change in the species
shares of maximally 10 percent points (for 1—a=0.99, see next
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Table 4
Optimum shares of Beech and various forest NPVs obtained from optimization with
biased data for a level of statistical confidence of 1 —a=0.99.

Scenario Classical worst-case Extended worst-case
no: Proportion Worst-case Mean Proportion Worst-case Mean
Beech read from read from Beech read from read from
reference  reference reference  reference
data data data data
1 0.65 414 4291 0.60 513 4348
2 0.65 414 4291 0.60 513 4348
3 0.70 276 4234 0.60 513 4348
4 0.75 118 4178 0.65 414 4291
5 0.80 —282 4121 0.65 414 4291
6 0.85 —534 4064 0.65 414 4291
7 0.80 —282 4121 0.65 414 4291
8 0.85 —534 4064 0.65 414 4291
9 0.90 —724 4008 0.65 414 4291
10 0.50 574 4461 0.50 574 4461
11 0.50 574 4461 0.50 574 4461
12 0.50 574 4461 0.50 574 4461
13 0.65 414 4291 0.60 513 4348
14 0.70 276 4234 0.60 513 4348
15 0.75 118 4178 0.60 513 4348
16 0.70 276 4234 0.60 513 4348
17 0.75 118 4178 0.60 513 4348
18 0.80 —282 4121 0.60 513 4348
19 0.35 415 4631 0.45 546 4518
20 0.35 415 4631 0.40 610 4574
21 0.30 236 4688 0.40 610 4574
22 0.55 585 4404 0.55 585 4404
23 0.55 585 4404 0.55 585 4404
24 0.60 513 4348 0.55 585 4404
25 0.60 513 4348 0.55 585 4404
26 0.60 513 4348 0.55 585 4404
27 0.65 414 4291 0.55 585 4404
Mean 0.64 211 4299 0.57 522 4383
Standard- 0.16 390 178 0.07 68 82
deviation

section and Table 4). For the case of the extended worst-case method
the maximum change was only 5% points.

24. Demanding an increased statistical confidence for worst-case
simulations

Here we modify the level of statistical confidence, which was
originally set to 1 —a=0.95. We can increase the cautiousness of the
assumptions for the optimization when demanding a statistical
confidence of 1 —a=0.99, for which we carried out the following
consideration. Under this assumption, the variability of optimum
Beech shares slightly increased for the extended worst-case method.
The optimum shares of Beech now ranged between 0.40 and 0.65
(Table 4), while previously they were 0.45 to 0.60 for 1 —a=0.95.

However, the variation of optimum shares of Beech also increased
for the case of classical worst-case modeling, where we obtained Beech
shares ranging between 0.30 and 0.90 (0.35 to 0.85 for 1 —a=0.95).
Moreover, compared with the classical worst-case method, the worst-
case NPV achieved under the extended method was at least as great or
greater for every scenario (Table 4). On average the worst-case NPV
from extended worst-case modeling was even 147% greater than that
provided by classical worst-case modeling, while the achieved average
NPV did not differ very much between both optimization methods.

2.5. The choice of the uncertainty parameters

The greater the selected uncertainty parameters @ and & become,
the more inclusive the uncertainty sets considered with Eq. (2) and
(4) will be. To test the influence of the selected uncertainty horizon on
the tree species composition, we selected the scenarios no. 9 and no.
21. Scenario no. 9 produced the greatest difference between the
classical and the extended optimization. In terms of the estimated

mean NPV it is optimistic for Spruce and pessimistic for Beech, while
the standard deviation of Spruce is very high compared with that of
Beech. The very small standard deviation of the Beech-NPVs caused a
substantial proportion of this species (0.90 for «=0.01) when the
classical worst-case model was applied. In contrast, the share of Beech
(0.65 for «=0.01) remained comparatively stable under the extended
worst-case model. Scenario no. 21 presented the opposite combina-
tion, which means that it was pessimistic for Spruce and optimistic for
Beech in terms of the estimated mean NPV.

Variations of the uncertainty parameter o, the classical robustness
parameter maximized by means of the info-gap models proposed by
Ben-Haim (2006), had no influence at all on the results of the
optimization. If we only consider the possible uncertainty for the
estimated mean NPV via an upper uncertainty boundary, we would
thus obtain the same results as under the classical worst-case
optimization. However, the variation of the uncertainty parameter &,
the parameter that accounted for a possible bias in the estimation of
the variance of the NPVs, led to a considerable change of the optimum
share of Beech (Fig. 2).

The nature of worst-case modeling implies that the tree species with
the smallest standard deviation always covers greater shares in the
resulting portfolio, given a specific NPV. Setting the uncertainty
parameter € equal to zero means that the classical-worst case results
are obtained, which reflect the effect of the level of the tree species’
standard deviations very strongly. For the case of scenario no. 9 Beech has
by far the lowest standard deviation (41000 Euro ha~') and obtains
shares between 0.85 (1 —a=0.95) and 0.90 (1 —a=0.99). Analyzing
scenario no. 21 gives the opposite tendency; here Spruce shows the
lower standard deviation of both species (41500 Euro ha~!) and
achieves shares between 0.65 (1—a=0.95) and 0.70 (1 —«a=0.99).

Fig. 2 tells us that the optimum share of Beech tends towards 0.50
with growing uncertainty in terms of & Extended worst case
optimization basically tends to equal weighted compositions for an
increasing uncertainty horizon. That is intuitively clear: if the
uncertainty set for the estimated variances is very inclusive and
there is almost no information available, we have no good reasons to
prefer one tree species. However, with an uncertainty value of €= 0.6
we still get optimal shares for Beech somewhat different to 50%.

Nevertheless, we intend to make clear that great robustness is not
necessarily realized through models that prefer more conservative
solutions (in terms of equal proportions) for increasing uncertainty.
Deciding on tree species will always be a subjective decision. Our
modeling allows for considering differences in the degree of
confidence to the estimated financial data. If we place trust in the
estimated data for one tree species but not for the other, we can model
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Fig. 2. Optimum shares of Beech for various levels of the uncertainty parameter &
derived from scenario no. 9 (mean NPV Spruce 6536 Euro ha™ !+ 4150; mean NPV
Beech 2726 Euro ha~'+1000; correlation coefficient +0.3, @=0.01) and from
scenario no. 21 (mean NPV Spruce 3520 Euro ha™ ! + 1500; mean NPV Beech 5062 Euro
ha—! +2634; correlation coefficient +0.3, «=0.01).
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Fig. 3. Optimum shares of Beech for various levels of the uncertainty parameter &, when
the parameter ¢ is set to zero either for Spruce or for Beech (we applied data from
scenario no. 14 mean NPV Spruce 5028 Euro ha~ ' +2599; mean NPV Beech 3894 Euro
ha~ !4 1433; correlation coefficient 0, o= 0.05).

the resulting info-gaps individually (Fig. 3). When accepting the
variance of Spruce as it stands (¢=0) but simultaneously being
skeptical about the variance of Beech, we can increase the uncertainty
parameter, & only for Beech. For this case, the share of Beech
decreases from 0.65 (¢=0 for Beech) to 0.20 (¢=3.6 for Beech,
scenario no. 14 was used for this example). If we do the same for
Spruce, while setting € equal to zero for Beech, the share of Beech
increases from 0.65 (¢ =10 for Spruce) to 0.90 (¢ = 3.6 for Spruce). It is
thus clear that using info-gaps does not necessarily tend towards
equal proportions.

3. Discussion

Our paper shows the possibility of stabilizing the results from
optimizing tree species portfolios by means of integrating an upper
bound for the variance estimation, which can be seen as the upper
bound of an uncertainty set that possibly contains the true but unknown
value of the portfolio variance. Depending on the level of the required
statistical confidence (we tested for 1 —a=0.95 and 1 —a=0.99), an
extended worst-case model achieved a 10 % or even a 147 % better worst-
case performance. The average performance portfolios optimized with
the extended model did not suffer when compared to the results of the
classical worst-case model.

Considering an uncertainty set for the NPV variances is not
common in financial modeling, but it helps to reduce the negative
consequences of optimization which may result from possibly biased
financial input data. From the field of statistics we know that we may
be severely wrong when fitting regression curves too detailed to
statistical observations. The random noise inherent in statistical data,
which has no explanatory meaning, may then be generalized and we
will be disappointed when applying the obtained regression curves to
independent data. In financial modeling this is similar: we don’t know
whether we extrapolate relevant or irrelevant information from our
simulated data into the future and we should thus consider that our
data quality is probably very poor. To be on the safe side: it is rather
likely that our data sets will not cover the possible future range of
outcomes. If we are conscious of that fact, we can try to improve the
data quality and our insight into their transferability. Nevertheless,
there are limits of e.g. financial burden connected with data
acquisition or accuracy of measurements and even in the case of
perfect statistical efforts it remains a description of the past. Future
changes remain undetected by this means and complications can arise
in particular for long term optimization problems. According to the
principle of precaution we can assume negative developments and use

a robustness criterion as a quality parameter, which evaluates the
resilience of possible solutions. The required uncertainty set, which
can be interpreted as an information gap or a dilution of data, can be
estimated by different ways.

Our study was partly inspired by the paper of Goldfarb and Iyengar
(2003). In contrast to our approach, these authors based their
consideration on a factor model for asset returns. With parameters
assumed to be estimated by classical linear regression from historical
market data, the factorial model predicts the deviation of asset returns
from a vector of mean returns. The predicted deviation depends on the
covariance matrix of the factor returns and the factor loading matrix.
In addition to the mentioned components, Goldfarb and Iyengar
(2003) included a residual error vector and defined uncertainty sets
for the mean return vector, the factor loading matrix, the covariance
matrix of factor returns and the residual error vector. A factorial model
of the capital market as used in the Goldfarb and Iyengar (2003) paper
finds — at least in part — its theoretical background in the “Capital
Asset Pricing Model”, CAPM (see Sharpe, 1964). The factorial approach
was developed by Ross (1976). To derive the parameters for every
factor of the factorial model the definition of a market portfolio is
required, which should represent all possible risky investments. This
seems impossible for a very long investment period, as it would be
required for forest plantation investments. This market factorial
model approach thus can hardly be used to evaluate forest plantation
investments. We therefore decided to use a simpler model, which
considered only the mean forest plantation NPVs derived from the
vector of expected NPVs for the considered tree species and its
covariance matrix. These were then corrected by means of additional
variance components to consider a possible upper bound of the
unknown true variance. We can compare our additional variance
components with the residual error vector in the factorial model of
Goldfarb and lyengar (2003), which the authors did not estimate from
their data. Analogous to the study of the mentioned authors we
estimated the additional variance components by means of a diagonal
matrix. However, the elements of our diagonal matrix were all the
same, represented by a Frobenius norm, while Goldfarb and Iyengar
(2003) estimated them proportionally to the covariance matrix of
their linear factorial model. Tests of our model, with the additional
variance components also being estimated proportionally to the
expected covariance matrix of NPVs, have led however to rather poor
results in our case: the variability of the tree species shares rather
increased, when compared among the various tested scenarios, and
the worst-case performance decreased. For a robust estimation of
optimal tree species portfolios it thus appears essential to estimate
additional variance components independent from the expected,
likely biased NPV-variances of the tree species. If we use information
from the expected values, we will indeed not make the optimization
more stable, rather we would magnify the sensitivity of the
optimization to changes in parameter estimates.

Our paper can also make a contribution to the controversial
discussion on the value and usefulness of info-gap modeling (see e.g.
Sniedovich, 2007). It became evident that considering a classical info-
gap model, formulated to integrate a lower bound for the mean NPV
did not change the results, when compared to the classical worst-case
optimization. Rather the possible uncertainty in the variance estima-
tion appears to be crucial. We thus conclude that considering info-
gaps on variance estimation could certainly improve robust decision-
making under severe uncertainty.

Robust optimization was already investigated by other authors
(e.g., Bai et al.,, 1997; Ben-Tal and Nemirovski, 1998; Goldfarb and
Iyengar, 2003; Sniedovich, 2007). These studies were based mainly on
theoretical considerations (Ben-Tal and Nemirovski, 1998) or on
theoretical considerations combined with artificial data (Goldfarb and
Iyengar, 2003). However, in the case of ecosystem management, we
hardly found any corresponding studies. In the field of forest science
Knoke (2008) tested the IGT to increase the robustness of a tree
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species portfolio against adverse uncertainty. The tested approach was
adopted from Ben-Haim (2005). In contrast to our present paper, a
value-at-risk concept was used which aimed at maximizing the
tolerance of an estimated failure probability to errors in the data set.
Knoke (2008), who did not address the problem of errors in variance
estimation, confirmed that the IGT approach achieved the same
results as a minimization of the failure probability via a lower partial
moment approach (LPMy, see e.g. Lee and Rao, 1988).

Our paper offers a test of robust worst-case optimization and
performance evaluation by means of simulated data. The simulated
reference data set considered historical survival probabilities, timber
price fluctuations and the resulting correlations of NPVs for the
investigated tree species. This is a differentiation from the study of
Goldfarb and Iyengar (2003), who, as already mentioned, tested their
optimization algorithms by means of a completely artificial data set. A
test with independent reference data sets and biased data sets was not
carried out by Goldfarb and Iyengar (2003). For the field of ecosystem
management our approach seems thus quite new.

It is clear that the disciplines of forest science and ecological
ecosystem management in general, are just at the beginning of robust
optimization under severe future uncertainty. However, if we rely on
the classical IGT approach and ignore information gaps for the
variances, we should be aware that we will probably not obtain new
results from this type of optimization. In principle, the similarity
between the results from IGT and those from classical optimization
approaches was also already mentioned by Halpern et al. (2006).

We limited our investigation to a situation of mixing pure stands of
two tree species and thus excluded the consequences of interactions
between tree species. Future studies must combine bioeconomic
modeling of more intimately mixed forest stands that contain
interacting tree species with robust optimization techniques, to obtain
recommendations for ecosystem management. First results show that
stands of Spruce and Beech greatly benefit from more resistant
Spruces, when the tree species are mixed in small groups at the stand
level (Knoke and Seifert, 2008). Despite adverse effects from a
reduced timber quality, the financial parameters NPV and standard
deviation greatly benefit from gains in resistance of the conifer Spruce.
This type of mixture even allows for comparatively great shares of
Spruce without inflating risks too much.

The process of global warming will further intensify the problems
in long-term ecosystem management planning. From this perspective
the extended worst-case optimization seems promising. Ecosystem
managers traditionally have to fulfill the claim for a careful manage-
ment (precautionary approach) in order to secure sustainability, a
concept as old as about 300 years in forestry (see von Carlowitz, 1713
and later Hartig, 1800 for a scientific consideration). As far as the
financial core of sustainability is concerned, we may well address this
sustainability concept by uncertainty adjusted, robust worst-case
optimization.
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