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ABSTRACT

The problem of maximizing a utility function over the set of

achievable rate vectors in a MIMO broadcast channel is con-

sidered. If the optimum rate vector lies in a time-sharing

region, it is necessary to identify a set of corner points of

the time-sharing region such that the optimum rate vector is

a convex combination of these corner points. In a K user

MIMO BC, the maximum number of corner points isK!, thus

enumerating all corner points is only feasible for smallK . In

this work, an efficient algorithm for identifying a subset of

relevant corner points is proposed. Simulation results show

that in a scenario where the time-sharing region hasK! corner

points, out of whichK are required to construct the optimum

rate, the proposed algorithm on average computes less than

K + 1 corner points until convergence.

1. INTRODUCTION

The Gaussian MIMO broadcast channel (MIMO BC) [1] has

received wide attention in recent years. Based on the funda-

mental duality results [2], several works have considered the

optimization of the MIMO BC parameters transmit covari-

ance matrices and encoding order under performance criteria

such as sum rate [2] and weighted sum rate [3], and highly ef-

ficient algorithms have been proposed for both problems [4].

Recently, the problem of determining the optimum rate vector

with respect to a generic utility model of the upper layers was

considered in [5] and [6].

The capacity region of the MIMO BC contains rate vec-

tors that are only achievable by time sharing. In the case of

(weighted) sum rate maximization, it is always possible to

find a maximizing rate vector that does not require time shar-

ing. In contrast, for a more general performance metric, the

optimum solution may be located within a time sharing re-

gion, thus time sharing is required to construct the optimum

rate vector. A time sharing solution is always a convex combi-

nation of some corner points of the time sharing region. If the

set of corner points is known, it is straightforward to find the

optimum solution, as discussed in [6]. For a K user MIMO

BC, however, the number of corner points of the time sharing

region where all K users time share is K!, i.e., the number

of corner points grows rapidly with the number of users, and

a solution that relies on an enumeration of all corner points

becomes quickly infeasible.

For capacity regions that correspond to a polytope, an effi-

cient algorithm for finding the desired subset of corner points

was proposed in [7]. The capacity region of the MIMO BC is

not a polytope. Still, the algorithm from [7] can be extended

to the MIMO BC case. This extension is the subject of this

work.

The results presented in this work are applicable to all

problems where optimum solutions may lie in a time sharing

region, such as problems with minimum rate constraints [8]

and projections onto the boundary of the capacity region [6].

2. PROBLEM SETUP

A K user MIMO BC with sum power constraint is consid-

ered. Let R denote the set of rate vectors achievable by fea-

sible choices of transmit covariance matrices and encoding

order. The capacity region C is given by the convex hull ofR
[2]. Some r ∈ C are only achievable by time-sharing, i.e., by

a convex combination ofW > 1 points r(w) ∈ R such that

r =
W
∑

w=1

αwr
(w), αw ≥ 0,

W
∑

w=1

αw = 1.

Given a system utility function u : R
K
+ → R, which is

assumed to be concave and strictly monotonically increasing,

the problem of determining the rate vector r∗ ∈ C that maxi-

mizes system utility is considered.

For optimum transmission, it is required to set the param-

eters of the physical layer such that r∗ is achieved. There

clearly exist functionsu such that r∗ lies inside a time-sharing

region. As a consequence, a complete solution of the utility

maximization problem not only includes r∗, but, in case of

time-sharing optimality, also the points r(w) and time sharing

coefficients needed to construct r∗. Also note that without

any further assumptions on the utility function u, the perfor-

mance loss that results from approximating r∗ by a point in

R may be arbitrarily large.



3. TIME-SHARING REGIONS

Under the assumption of a monotone utility function, it is suf-

ficient to consider rate vectors that lie on the Pareto efficient

boundary E of the capacity region [6]. Due to the convexity

of the capacity region, each point on the boundary E can be

obtained as a maximizer of a weighted sum rate optimization

over C:

E =
⋃

λ>0

E(λ),

with

E(λ) = argmax
r∈C

λTr.

In general, there exist λ > 0 where E(λ) is not a singleton

set. This case is of particular interest in this work. Define the

set of corner points of E(λ) as follows:

Rcp(λ) = E(λ) ∩R.

All points in Rcp(λ) can be achieved by a particular setup

of transmit covariance matrices and encoding order (as they

are elements of R), while all other points in E(λ) are only

achievable by time-sharing between points in Rcp(λ). Based

on this observation, a set E(λ) that is not a singleton set is

denoted as a time-sharing region, and the corresponding set

Rcp(λ) is said to contain the corner points of this region.

Each point in Rcp(λ) corresponds to a choice of trans-

mit covariance matrices and encoding order that maximizes a

weighted sum rate for weight λ. The problem of determining

optimum covariance matrices and encoding order for a given

weightλ is considered in, e.g., [3]. Letπ ∈ {1, . . . ,K}K de-

note an encoding order, such that πj corresponds to the user

that is encoded at j-th position. An optimum encoding order

fulfills [3]

λπ1
≥ . . . ≥ λπK .

If any two entries of λ have the same value, the optimum

order is not unique. Accordingly, define the set of optimum

orders for a given λ as

Π(λ) = {π ∈ {1, . . . ,K}K : λπ1
≥ . . . ≥ λπK}.

If all entries of λ have the same value, all possible orders are

optimum, thus |Π(λ)| ≤ K!, where |A| denotes the cardinal-

ity of A.

For each π ∈ Π(λ), there exists a unique rate vector

rcp(π) that maximizes λTr [3]. As a result,

Rcp(λ) = {rcp(π) : π ∈ Π(λ)}

and |Rcp(λ)| ≤ K!.

4. OPTIMUM RATE

As shown in [5, 6], the optimum rate vector can be found by

solving the dual problem of the modified problem

max
r,s
u(s) s.t. 0 ≤ s ≤ r, r ∈ C. (1)

Given a set A ⊆ C, define a function gA as follows:

gA(λ) = sup
s≥0

u(s)− λTs+ sup
r∈A

λTr. (2)

Then gC is the dual function of problem (1) resulting from

the dualization of the constraint s ≤ r. Let λ∗ denote the

optimum dual variable, i.e.,

λ∗ ∈ argmin
λ≥0

gC(λ).

Strong duality holds1, thus the primal solution (r∗, s∗) can

be recovered from the dual solution, following the procedures

discussed in [6]. In case of time-sharing, the optimum rate

vector r∗ lies in the time-sharing region E(λ∗). Accordingly,

the solution procedure has two steps: First, compute λ∗. Sec-

ond, if λ∗ indicates that some users time-share, identify a set

of corner points and the corresponding time-sharing coeffi-

cients that implement r∗. If no time-sharing occurs, E(λ∗) is

a singleton set and r∗ its only element, i.e., r∗ can be directly

determined by solving a weighted sum rate maximization.

5. COLUMN GENERATION

Now assume that at least two entries in λ∗ are equal, i.e.,

the optimum solution requires time-sharing. If the set of cor-

ner points Rcp(λ∗) is known, it is straightforward to deter-

mine the corner points that implement r∗ [6]. As discussed in

Section 3, Rcp(λ∗) can be obtained by computing rcp(π) for

each optimum order π ∈ Π(λ∗). In the worst case, however,

for K users, there are K! corner points. As a result, enu-

merating all corner points is only feasible for smallK . In this

section, an efficient algorithm for identifying the relevant cor-

ner points is provided, which avoids computing the complete

setRcp(λ∗).

For the case of the capacity region being a polytope, an ef-

ficient algorithm for identifying relevant corner points is pro-

posed in [7]. The algorithm from [7] can be adapted to the

MIMO BC case, as shown in the following.

Assume that the capacity region is a polytope. Let P de-

note the set of extremal points of this polytope. The algorithm

presented in [7] proceeds as follows: Given a set K ⊆ P , the

problem

max
s,α
u(s) s.t. 0 ≤ s ≤ RKα,α ≥ 0, ‖α‖1 = 1

1Assuming that C is nontrivial, i.e., C ⊃ {0}, there exist strictly feasible

(r, s) such that Slater’s condition is satisfied.



is solved, where the columns of RK are the elements of K.

This yields a solution (s̃, α̃), with s̃ = RKα̃. Clearly, u(s̃)
is a lower bound on the maximum utility value obtained by

maximizing over P . Let λ̃ denote the optimum Lagrange

multiplier for the constraint s ≤ RKα. By weak duality,

an upper bound on the maximum utility is given by gP(λ̃). If

u(s̃) < gP(λ̃), the point from P that solves

max
r
λ̃Tr s.t. r ∈ P (3)

is added to K. The whole procedure is repeated until

u(s̃) = gP(λ̃). (4)

In [7], it is shown that the algorithm converges. Moreover, if

(4) holds,K contains the relevant corner points, as in this case

s̃ = RKα̃ maximizes utility over P .

To extend the algorithm to the MIMO BC case, the ca-

pacity region C is approximated by a polytope Co ({0} ∪ P),

where Co (A) is the convex hull ofA. Let S denote the set of

single-user points of C. Then P is chosen as

P = S ∪ Rcp(λ∗).

Applying the algorithm from [7] to the MIMO BC consists of

two main steps. First, it is shown that u(s̃) = gP(λ̃) implies

u(s̃) = gC(λ
∗). Second, it is shown how to efficiently find

the point in P that solves (3).

We have maxr∈P λ
∗Tr = maxr∈C λ

∗Tr, thus

gP(λ∗) = gC(λ
∗). (5)

Moreover, due to the fact that the approximation is exact on

the time-sharing region, both problems yield the same max-

imum utility. As a result, λ∗ ∈ argminλ≥0
gP(λ). This

implies

gP(λ∗) ≤ gP(λ̃). (6)

Thus,

u(s̃) ≤ gC(λ
∗) = gP(λ∗) ≤ gP(λ̃).

As a result, if (4) holds, u(s̃) = gC(λ
∗) andK contains the set

of relevant time-sharing points. Accordingly, the algorithm

proceeds as in the case where C is a polytope: Starting with

K = S, the point from P that solves (3) is added to K until

(4) holds.

The second step is to efficiently identify the point from

P that solves (3) without having to compute all points in

Rcp(λ∗) beforehand.

The rate vector that maximizes (3) is always an element

ofRcp(λ∗), therefore it suffices to consider how to select the

correct point from Rcp(λ∗), given λ̃. Each point in Rcp(λ∗)
corresponds to an encoding order π ∈ Π(λ∗). Thus, the

problem is solved by determining the encoding order π̃ such

that

π̃ = argmax
π∈Π(λ∗)

λ̃Trcp(π).

6. OPTIMUM ENCODING ORDER

To determine the optimum encoding order π̃, theK users are

first partitioned into disjoint subsets Iℓ ⊆ {1, . . . ,K} accord-

ing to their weights λ∗k , such that all users in a subset Iℓ have

equal weight µℓ:

k ∈ Iℓ ⇔ λ
∗
k = µℓ.

Moreover, the sets Iℓ are chosen such that µℓ > µℓ+1. Let L

denote the number of sets Iℓ resulting from this partitioning.

As an example, L = 1 if all users have equal weights, and

L = K if all users have unique weights.

As π̃ ∈ Π(λ∗), in the optimum encoding order the users

are encoded in descending order of their weights λ∗k, i.e., the

users with the largest weights are encoded first. Accordingly,

the users in Iℓ are encoded before the users in Iℓ+1. However,

the users in Iℓ all have equal weight µℓ. Thus, the encoding

order of users in Iℓ is not determined by λ∗. This degree of

freedom is used to maximize λ̃Tr.

Let πℓ denote the encoding order among users in Iℓ, i.e.,

among all users in Iℓ, user πℓ1 is encoded first, and user πℓM is

encoded last, whereM = |Iℓ|. The main result is as follows:

The optimum encoding order π is given by

π̃ =
(

π1, . . . ,πL
)

,

where each πℓ satisfies

λ̃πℓ
1

≥ . . . ≥ λ̃πℓ
M

. (7)

The proof proceeds in two steps: First, it is shown that given

an encoding order πℓ for group Iℓ, swapping the positions of

two consecutive users does not change the rate of any other

user. Based on this result, the optimum encoding order is

found by swapping positions in all πℓ until λ̃Tr is maxi-

mized. It then remains to show that the optimum order within

a group corresponds to an descending order of the correspond-

ing entries in λ̃, which is the second step.

In the dual MAC, the rate of user k is given by

rk = log det(1 +B−1
k H

H
k QkHk),

whereHH
k andQk denote the uplink channel and covariance

matrix of user k, respectively, andBk represents the interfer-

ence experienced by user k in the MAC (see [2] for definitions

and details). Assuming that k ∈ Iℓ,Bk can be written as2

Bk = 1 +

l−1
∑

m=1

∑

j∈Im

HH
j QjHj +

∑

j∈Sk

HH
j QjHj,

where Sk ⊂ Iℓ contains the indices of the users in Iℓ that are

encoded before user k. Clearly, Sk depends on πℓ.

2Note that in [2], Bk is defined using the MAC encoding order, while in

this work, the term encoding order always corresponds to the BC encoding

order. The BC order is given by the reversed MAC order [2].



Pluggingλ∗k = µℓ, ∀k ∈ Iℓ into [3], Eq. (8) shows that the

optimum uplink covariance matrices Q∗k for a given λ∗ are

independent of the encoding orders πℓ within the groups Iℓ.
As a result, the rate rk of a user k ∈ Iℓ depends only on πℓ,

but not on πm,m 6= ℓ. Moreover, consider two users i, j ∈
Iℓ \ {k} such that i is encoded directly after j. Swapping the

positions of i, j in the encoding order also does not change

rk, as Sk remains unchanged.

Based on this result, consider users k, j ∈ Iℓ and an en-

coding order πℓ,1 such that user j is encoded directly after

user k. A second encoding order πℓ,2 results from swapping

the positions of k and j. Switching from πℓ,1 to πℓ,2 results

in a change in the rates of k and j by ∆rk and ∆rj , respec-

tively, while the rates of all other users remain unchanged.

User j is added to Sk, thus the interference experienced by

user k in the MAC is increased, resulting in∆rk ≤ 0.

Moreover, as both encoding orders correspond to corner

points that maximize λ∗Tr (and thus yield the same value

λ∗Tr),

λ∗k∆rk + λ∗j∆rj = 0.

But λ∗k = λ∗j = µℓ, thus ∆rk = −∆rj . Accordingly, the

change in the merit function λ̃Tr amounts to

λ̃k∆rk + λ̃j∆rj = (λ̃k − λ̃j)∆rk.

Thus, if λ̃k > λ̃j , it is better to encode k first, otherwise

encode j first. Accordingly, the optimum encoding order is

found by swapping users’ positions until (7) holds.

7. SIMULATION RESULTS

To numerically investigate the efficiency of the proposed al-

gorithm, the utility function was chosen such that the opti-

mum solution lies within the region where all users time-

share. The number of corner points generated by the col-

umn generation algorithm was averaged over 500 channel re-

alizations, and the number of users K varied from three to

ten. Figure 1 shows the average number of corner points that

were generated until (4) held, using the column generation

approach, for different numbers of users. Interestingly, the

simulation results show that the number of generated points

is, on average, approximately K – i.e., almost all generated

points are needed for constructing the time-sharing solution.

Moreover, the observed linear growth in K is significantly

smaller than the worst case complexityK!.
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