Technische Universität München Lehrstuhl für Tierzucht

Genomic characterization and polymorphism analysis of genes involved in lipid- and energy metabolism in swine

Li Lin

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Univ.-Prof. Dr. Dr. h. c. J. Bauer

Prüfer der Dissertation:

Vorsitzender:

- 1. Univ.-Prof. Dr. H.-R. Fries
- 2. apl. Prof. Dr. J. Adamski
- Univ.-Prof. Dr. M. Klingenspor (Schriftliche Beurteilung)

Die Dissertation wurde am 08.01.2009 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 03.04.2009 angenommen.

Table of Contents

Chapter		Page
1	General introduction	1
2	Characterization of the porcine AMPK alpha 2 catalytic	
	subunit gene (<i>PRKAA2</i>): genomic structure,	
	polymorphism detection and association study	23
3	Genomic characterization and polymorphism analysis	
	of genes relevant to lipid metabolism in pigs	36
4	General discussion	78
	Summary	92
	Acknowledgements	94
	Bibliography	95
	Abbreviations	108
	List of tables and figures	111
	Appendices	113
	Curriculum vitae	126

Chapter 1

General introduction

Introduction

Domesticated pigs are raised as a food animal and pork is one of the most widely eaten meats in the world today (Jiang & Rothschild 2007). Most consumers desire both leanness and palatability in pork. Intramuscular fat content (IMF) is a major determinant of meat palatability. Pork provides not only an excellent source of high quality of protein, but also a major source of dietary fatty acids including saturated, mono-unsaturated and poly-unsaturated fatty acids (SFA, MUFA and PUFA respectively). Fatty acid composition of pork is of great interest because of its implications for human health. Excessive intake of SFA, particularly myristic acids and palmitic acids, is often associated with a high risk of cardiovascular diseases (Williams 2000); while increased intake of MUFA and PUFA is favorable due to their cholesterol decreasing effect (Stewart *et al.* 2001; Lichtenstein 2006). Hence, the lipid-related traits namely fatness, IMF and fatty acid composition are very important pork quality traits. These traits exhibit medium to high heritabilities (Sellier 1998), which justify the investigation of their genetic basis.

In pigs, conventional selection methods based on phenotypes have been successful in reducing backfat thickness due to the ease of obtaining phenotypes on live animals and its relative high heritability. Nevertheless, it is necessary to decipher the molecular architecture of fatness traits in pigs because the use of marker-assisted selection is expected to yield genetic gain over traditional phenotypic selection and the study might help understand the genetic basis of human obesity and other related health problems. Genetic improvement of meat quality traits such as IMF and fatty acid composition is difficult to achieve through traditional selection methods due to the need for extensive and expensive measurements of such traits on slaughtered relatives. However, it is expected that knowledge of the underlying genes for these traits will greatly contribute to the efficiency of selection.

There are two generally accepted approaches: the genome-wide scan approach and the candidate gene approach to locate genes affecting quantitative traits, e.g. the lipid-related quality traits in pigs (Rothschild 2003). The genome-wide scan approach uses segregation analysis either within commercial populations or in crossbreed populations to map quantitative trait loci (QTL) with effect on the trait of interest. Further molecular dissection of QTL is required to identify gene(s) and mutation(s) underlying the QTL. The candidate

gene approach starts with the choice of suitable candidate genes that may plausibly play a relevant role in the development of a given trait. Thus, the selection of candidate genes mainly relies on prior knowledge about the function of potentially contributing genes and (or) knowledge of the physiological basis of the trait under investigation. Moreover, the selection process could be facilitated if some of the potentially important genes are located in QTL regions obtained in the genome-wide scan. Following the identification of polymorphisms, an association study is conducted to estimate effect of polymorphisms in the candidate genes on the trait under investigation.

The development of traits such as fatness, IMF and fatty acid composition is closely related to lipid- and energy metabolism. Genome scans have identified a large number of QTL affecting these traits in pigs. Accordingly, genes, which encode key enzymes or key regulators in lipid- and energy metabolism and (or) are located within relevant QTL regions, are logical choices in the candidate gene analysis for these traits.

Pathways of lipid metabolism

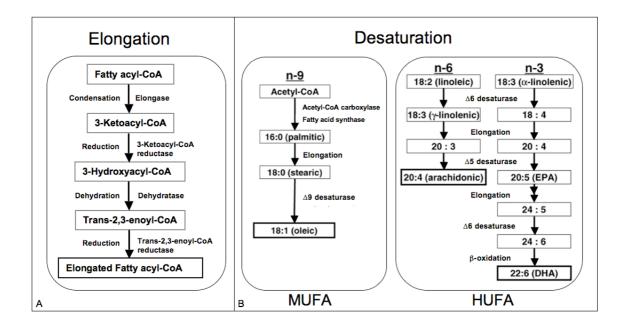
Fatty acid de novo biosynthesis

A fatty acid contains a long hydrocarbon chain and a terminal carboxylate group. In humans, fatty acids are predominantly formed in the liver, adipose tissue, and mammary glands during lactation. The basic unit for building fatty acids is acetyl-CoA, which is generated in mitochondria primarily from two sourealize

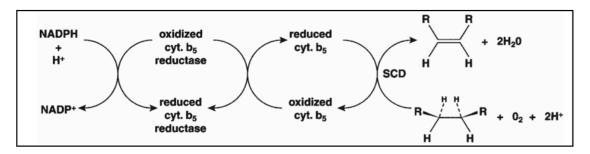
rces: the pyruvate dehydrogenase reaction and fatty acid oxidation. Because fatty acids are synthesized in the cytoplasm, acetyl-CoA needs to be transferred from mitochondria to the cytoplasm. The transfer of acetyl-CoA to the cytoplasm is realized by its transport form, citrate. In mitochondria, citrate is formed from acetyl-CoA and oxaloacetate by citrate synthase. When present at high levels, citrate is transported to the cytoplasm where it is converted back to acetyl-CoA by ATP-citrate lyase (Tong 2005).

The synthesis of fatty acids starts with the carboxylation of acetyl-CoA to malonyl-CoA catalyzed by acetyl-CoA carboxylase (ACC), a biotin-dependent enzyme. This reaction is the first and committed step in fatty acid synthesis. ACC plays a key role in fatty acid biosynthesis and therefore, is highly regulated to control fatty acid metabolism (Berg *et al.* 2007). It can be switched off by phosphorylation of AMP-activated protein kinase (AMPK)

or activated by dephosphorylation of protein phosphatase 2A. Furthermore, it can be allosterically activated by citrate and inhibited by palmitoyl-CoA, and controlled by a variety of hormones (e.g. insulin, glucagon and epinephrine).


The following reaction involves the stepwise elongation of acetyl-CoA with two carbons each time (Berg *et al.* 2007). Malonyl-CoA is the source of the two carbons. Each elongation consists of four sequential steps: condensation, reduction, dehydration and reduction, all of which are catalyzed by one multifunctional enzyme complex - fatty acid synthase (FAS). In animals, fatty acid synthase is encoded by one gene (*FASN*), but comprises seven catalytic sites (Smith 1994). The active enzyme system contains two identical FAS monomers. The primary product of FAS is palmitate.

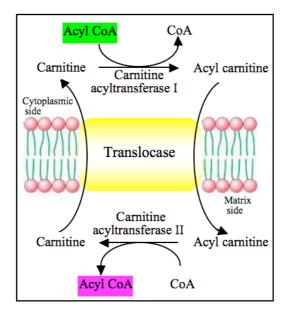
Fatty acid elongation and desaturation


Additional fatty acid elongation and desaturation systems exist in mammals for generating longer saturated or unsaturated fatty acids. The elongation system is localized to the endoplasmic reticulum membrane. Unlike FAS for elongation, the system consists of several enzymes encoded by separate genes. It uses saturated and unsaturated fatty acyl-CoA as the substrates. However, the elongation reaction is similar to that catalyzed by FAS. It also uses malonyl-CoA as a donor to add two-carbon unit to the carboxyl ends of the substrates through four sequential steps (Fig. 1.1A).

The desaturation process that introduces double bonds in the long chain acyl-CoAs, also takes places in the endoplasmic reticulum. In mammals, $\Delta 5$, $\Delta 6$ and $\Delta 9$ desaturases are responsible for the synthesis of most of unsaturated fatty acids. All the three desaturases are membrane-bound and iron-containing proteins. $\Delta 9$ desaturase (also called stearoyl-CoA desaturase, SCD) catalyzes the last step of biosynthesis of monounsaturated fatty acids (MUFAs) from acetyl-CoA (Fig. 1.1B). This step introduces the first *cis*-double bond at the 9,10 position from the carboxyl end of saturated fatty acid substrates through oxidative reaction. Although the oxidation of the fatty acyl-CoAs also involves another two electron-transport proteins: NADH-cytochrome b5 reductase and cytochrome b5 (Fig. 1.2), SCD is the rate-limiting component in the reaction (Enoch *et al.* 1976; Nakamura & Nara 2004). The preferred substrates of SCD are palmitoyl-CoA (C18:1 cis- Δ 9) respectively. These

two fatty acids (C16:1 and C18:1) are the major MUFAs of triglycerides, membrane phospholipids and cholesterol esters (Ntambi 1999; Nakamura & Nara 2004). Furthermore, various unsaturated fatty acids can be derived from palmitoleate and oleate. For example, oleate can either be elongated to a C20:1 cis- Δ 11 fatty acid or be oxidized again to produce C18:2 cis- Δ 6, Δ 9 with double bonds. Likewise, palmitoleate can be enlongated to cisvaccenate (C18:1 cis- Δ 11).

Figure 1.1 Elongation and desturation of fatty acids in mammals. Figure 1.1A shows the enzymes involved in two-carbon elongation of fatty acyl-CoA (Moon & Horton 2003). Figure 1.1B shows the synthesis of unsaturated fatty acids (Nakamura & Nara 2004). EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, MUFA-monounsaturated fatty acid, HUFA-highly unsaturated fatty acid.


Figure 1.2 The pathway of electron transfer in the desaturation of fatty acids by stearoyl-CoA desaturase (Ntambi 1999).

Unlike insects and plants, mammals lack $\Delta 12$ and $\Delta 15$ desaturases, which can introduce double bonds at carbon atoms beyond C-9 in the fatty acid chain (Nakamura & Nara 2004). As a consequence, mammals cannot synthesize two essential fatty acids: linoleic acid (C18:2 cis- $\Delta 9$, $\Delta 12$) and alpha-linolenic acid (C18:3 cis- $\Delta 9$, $\Delta 12$, $\Delta 15$). Both must be provided in the diet of mammals. They are the starting points for the synthesis of highly unsaturated fatty acids (HUFAs), which involves a combination of elongation and desaturation reactions (Fig. 1.1B). The $\Delta 5$ and $\Delta 6$ desaturases, which introduce unsaturation at C-5 and C-6 respectively, are known to be the key enzymes in the desaturation reactions. In contrast to MUFAs and precursor PUFAs (linoleic acid and alpha-linolenic acid) that are readily incorporated into triacylglycerols, HUFAs are mainly stored in phospholipids, contributing to maintenance of biological membrane fluidity. Moreover, HUFAs play roles in the synthesis of eicosanoid hormones and the regulation of gene expression (Clarke 2000; Nakamura & Nara 2004).

Fatty acid degradation

Fatty acids are stored in the form of triacylglycerols primarily within adipocytes of adipose tissue. In response to the energy demand, fatty acids of the triacylglycerols can be mobilized for use by peripheral tissues. The utilization of fatty acids as fuel requires three stages of processing (Berg *et al.* 2007). In the first processing of lipolysis, triacylglycerols in adipose tissue are hydrolyzed by hormone-stimulated lipases to produce free fatty acids and glycerol. The released glycerol is absorbed in the liver where it either enters into the glycolytic or gluconeogenic pathway depending on the liver metabolic circumstances. The released fatty acids have very low solubility in blood plasma and are transported to energy-requiring tissues through their binding to serum albumin in the blood.

Second, the fatty acids must be activated in the cytoplasm at the energy-requiring tissues and transported into mitochondria for degradation. The activation of the fatty acids involves acyl-CoA synthetase, which catalyzes the formation of fatty acyl-CoA. The oxidation of fatty acids occurs in mitochondria. The transport of activated long-chain fatty acids into mitochondria is accomplished by a special system, which requires three proteins: carnitine acytransferase I (CPT1) and II (CPT2), and a translocase (Fig. 1.3); whereas activated medium-chain fatty acids can freely enter into mitochondria. The carnitine acytransferase I, which catalyzes the first step in the transport of long-chain fatty acids, is tightly regulated by its physiological inhibitor malonyl-CoA. When fuel molecules are abundant, malonyl-CoA produced by acetyl-CoA carboxylase is present at a high level. It can inhibit CPT1 to prevent the entry of long-chain fatty acid into mitochondria for oxidation.

Figure 1.3 Transport of long chain fatty acyl-CoA across the mitochondrial membrane (Berg *et al.* 2007). Carnitine acyltransferase I located in the outer mitochondrial membrane converts the activated long-chain fatty acid (acyl CoA) into acyl carnitine in the presence of carnitine. The acyl carnitine is then shuttled across the inner mitochondrial membrane by a translocase. On the matrix side of the membrane, carnitine acyltransferase II converts acyl carnitine back to acyl CoA and carnitine. Finally the translocase returns carnitine to the cytoplasmic side in exchange for an incoming acyl carnitine.

Third, oxidation of the fatty acids occurs in mitochondria. The saturated fatty acids containing an even number of carbon atoms are oxidized through the β -oxidation pathway for the complete degradation. In the β -oxidation, 2-carbon unit is sequentially removed from the fatty acyl-CoA molecule. Finally, fatty acids are broken down into acetyl-CoA, which is then entered and processed in the citric acid cycle. However, additional isomerase and reductase are required for the degradation of unsaturated fatty acids. Fatty acids with an odd number of carbon atoms consist of a small portion of natural lipids. The final products from their oxidation contain not only acetyl-CoA but also propionyl-CoA. In this case, the

propionyl-CoA is converted into succinyl-CoA, which can then enter the citric acid cycle for further oxidation.

Fatty acid metabolism and energy balance

The hypothalamus and brainstem in the brain regulates energy balance in high animals through expression of orexigenic and anorexigenic neuropeptides that respond to hormonal signals (e.g. leptin and insulin) from peripheral tissues. The regulation network in the hypothalamus and brainstem is very complex and remains unclear so far. Recently, a growing body of evidence showed intermediates, particularly malonyl-CoA, of fatty acid metabolism in the hypothalamus participate in regulating energy homeostasis in the network (Dowell et al. 2005; Wolfgang & Lane 2006). Malonyl-CoA can be generated from different acetyl-CoA carboxylase isoforms (alpha and beta). Therefore, it serves different functions. Acetyl-CoA carboxylase alpha (ACACA) is expressed primarily in lipogenic tissues, e.g. the liver and adipose. In these tissues, malonyl-CoA is the substrate of fatty acid synthase (FAS) in de novo synthesis of long fatty acids. Acetyl-CoA carboxylase beta (ACACB) is highly expressed in skeletal and heart muscle. In these tissues, malonyl CoA acts as a regulator by regulating the entry of fatty acids into mitochondria. These tissues do not carry out fatty acid synthesis due to the lack of FAS enzyme. However, another enzyme - malonyl-CoA decarboxylase (MCD), which functions to move malonyl-CoA, is also highly expressed in these tissues.

In peripheral tissues, the cellular energy sensor - AMP-activated protein kinase (AMPK) - can regulate enzymes (ACC and MCD) involved in the formation and turnover of malonyl-CoA. Consequently, it leads to fluctuation of malonyl-CoA and directs the cell for fatty acid synthesis or oxidation (Xue & Kahn 2006). For example, when muscle stays in a low energy status, AMPK is activated due to an increase of 5' AMP relative to ATP. Following this, acetyl-CoA carboxylase beta (ACACB) is inactivated and MCD is activated through phosphorylation by AMPK. Both reactions result in a decrease in the concentration of malonyl-CoA. When malonyl-CoA is low, CPT1 is free from inhibition of malonyl-CoA and is activated to facilitate fatty acid transport into mitochondria for energy production. Therefore, malonyl-CoA as an intermediate of fatty acid synthesis plays an important role in the regulation of energy production through AMPK-malonyl-CoA-CPT1 pathway.

In the hypothalamus, malonyl-CoA serves as a modulator of food intake and energy expenditure (Wolfgang & Lane 2006). The evidence has come from several aspects. First, it has been found that the enzymes (AMPK, ACC, MCD and FAS) involved in the formation and turnover of malonyl-CoA are present in the hypothalamus. Second, inhibition of FAS by C75 in central nervous system, resulting in an increase of hypothalamic malonyl-CoA, led to the suppression of food intake. Moreover, concomitant with the increase of malonyl-CoA, expression of hypothalamic orexigenic neuropeptides was down-regulated and expression of anorexigenic neuropeptides was up-regulated (Loftus et al. 2000). Third, lowering malonyl-CoA by overexpression of MCD in the hypothalamus increased food intake and reversed the suppression of food intake by FAS inhibitor (Hu et al. 2005a; He et al. 2006). AMPK is the cellular energy gauge in the hypothalamus and can modulate the feeding behavior. The hypothalamic malonyl-CoA concentration appeared to be regulated by AMPK-ACC pathway (Dowell et al. 2005). A recent study about brain-specific carnitine palmitoyltransferase-1C (CPT1C) suggested that CPT1C could bind malonyl-CoA and that the disruption of CPT1C in mice resulted in decreased food intake and body weight (Wolfgang et al. 2006). It was speculated that CPT1C could be a downstream target of malonyl-CoA to convey 'malonyl-CoA signal' in hypothalamus (Wolfgang et al. 2006; Dai et al. 2007). All these studies support that the fluctuation of the hypothalamic malonyl-CoA leads to the regulation of energy metabolism.

Molecular genetics of the lipid-related quality traits in swine

Traits such as fatness, IMF and fatty acid composition are quantitative and their phenotypic values show continuous characteristics. Both genetic and environmental factors underlie these quantitative traits. Analysis of genetic architecture of these traits is carried out through the genome scan approach and the candidate gene approach, both of which aim at locating genes that affect the traits of interest.

Using molecular markers, mostly microsatellites, the genome-wide approach identified hundreds of quantitative trait loci (QTL) on porcine chromosomes during the last decade. The QTL for traits of interest can be acquired from Pig QTL database (PigQTLDB), which was established to integrate available pig QTL from public source (Hu *et al.* 2005b). To date, about 450 QTL for fatness traits measured at different locations have been reported

using different experimental and commercial populations (http://www.animalgenome.org/cgi-bin/QTLdb/SS/summary). These QTL are mainly located on SSC1, 2, 4, 5, 6, 7, 13 and X. Among them, SSC1, 7 and X are especially of most importance for fatness traits. Furthermore, it is found that the consistent QTL for fatness appear between 50 cM - 90 cM on SSC7 from independent observations (Meidtner 2007).

To date, a total of 23 QTL have been recorded for intramuscular fat content (IMF, Table 1.1). These QTL are located on nine porcine chromosomes including SSC1, 2, 4, 6, 7, 9, 13, 15 and X. SSC6 that harbors about half of the detected QTL for IMF, appears to be the important chromosome for this trait. Notably, within an interval of 24 cM from SW1355 to SW917 on SSC6, QTL for IMF have been observed five times.

	QTL span in cM (QTL	Upper -lower significant		
SSC	center in cM)	marker (Peak)	Animals	Publications
1	16		Duroc × Large White	(Sanchez et al. 2007)
2	99		Large White × Meishan	(Qu et al. 2002)
4	56	AFABPMS	Large White × Dutch Landrace	(Gerbens et al. 2001)
4	4.1 - 69.6 (65)		Meishan \times Dutch pigs	(de Koning et al. 1999)
4	62.3 - 72 (69.6)	S0217	Meishan \times Dutch pigs	(Rattink et al. 2000)
4	105.8 - 121 (112)	SW445 - S0161	Large White × Meishan	(Su et al. 2004)
6	9.5 - 41.5 (29.2)	SW2535 - SW1841 (SW1353)	Meishan × Dutch pigs	(de Koning et al. 2000)
6	0 - 153 (65)		Large White \times Dutch Landrace	(Gerbens et al. 2001)
6	83.3 - 90.7 (88.7)	SW1355 - SW1823	Duroc × Norwegian Landrace	(Szyda et al. 2003)
6	83.3 - 105.2 (97)	SW1355 - S0228 (SW2173)	Commercial line cross	(Grindflek et al. 2001)
6	90.7 - 105.2 (98.7)	Sw1823 - S0228	Duroc × Norwegian Landrace	(Szyda et al. 2002)
6	89.3 - 107 (102)	SW316 - SW917 (S0003)	Meishan × Dutch pigs	(de Koning et al. 2000)
6	97 - 106.1 (102)	SW2173 - SW2098 (S0003)	Iberian × Landrace	(Ovilo et al. 2002a)
6	65 - 155.2 (107)	SWR1130 - SW1069 (SW917)	Iberian × Landrace	(Ovilo et al. 2002b)
6	121.1 - 149.8 (138)	SW1881 - SW322	Commercial line cross	(Mohrmann et al. 2006)
6	102 - 161.4 (143)		Meishan × Dutch pigs	(de Koning et al. 1999)
7	109.5 - 117.3 (113.4)	SW1083 - SWR773	Meishan × Duroc	(et al. 2006)
7	117.3	SWR773	Meishan × Duroc	(Sato et al. 2003)
9	4	SW983	Meishan × Duroc	(Sato et al. 2003)
13	52		Duroc × Large White	(Sanchez et al. 2007)
13	117.5	SW769	Meishan × Duroc	(Sato et al. 2003)
15	50		Duroc × Large White	(Sanchez et al. 2007)
Х	55.4 - 87.4 (71.7)	SW2456 - SW1943 (SW1426)	Meishan × White line	(Harlizius et al. 2000)

Table 1.1 QTL for intramuscular fat content reported in different pig populations.

Traits ¹	SSC	QTL Span (QTL center in cM)	Upper - lower significant marker	Animals	Publications
Backfat					
	1	3 -16.3 (14.7)	SW1824 - SWR485	Japanese wild boar \times Large White	(Nii et al. 2006)
MP	2	53.5 - 59.5 (54)	FSHB - SW942	Japanese wild boar × Large White	(Nii et al. 2006)
	15	76 - 81.1 (77.7)	SW1945 - SW2083	Japanese wild boar × Large White	(Nii et al. 2006)
SFA	9	61.5 - 83.3 (78.6)	SW940 - SW944	Japanese wild boar × Large White	(Nii et al. 2006)
5171	15	28.9 - 50.7 (45.3)	CHRI-4 - SW964	Japanese wild boar × Large White	(Nii et al. 2006)
MUFA	Х	73	ACSL4 - SW1943	Iberian × Landrace	(Mercade et al. 2006)
PI	4	75		Iberian × Landrace	(Clop et al. 2003)
UI	5	34		Iberian × Landrace	(Clop et al. 2003)
DBI	4	73		Iberian × Landrace	(Clop et al. 2003)
	6	105		Iberian × Landrace	(Clop et al. 2003)
ACL	8	60.4 - 112.3 (82.8)	S0225	Iberian × Landrace	(Clop et al. 2003)
	12	8 - 27 (18)		Iberian × Landrace	(Munoz et al. 2007)
C14:0	4	75		Iberian × Landrace	(Clop et al. 2003)
	10	82		Iberian × Landrace	(Clop et al. 2003)
	18	43.8 - 45.2 (43.8)		Landrace × Yorkshire	(Lee et al. 2003)
	12	3 - 9 (11)		Iberian × Landrace	(Munoz et al. 2007)
C16:0	8	60.4 - 112.3 (82.8)	S0225	Iberian × Landrace	(Clop et al. 2003)
	15	28.9 - 50.7 (35.9)	CHRI-4 - SW964	Japanese wild boar × Large White	(Nii et al. 2006)
	12	9 - 32 (20)		Iberian × Landrace	(Munoz et al. 2007)
C16:1 n-9	1	3 - 16.3 (14.1)	SW1824 - SWR485	Japanese wild boar × Large White	(Nii et al. 2006)
	8	60.4 - 112.3 (82.8)	S0225	Iberian × Landrace	(Clop et al. 2003)
	9	61.5 - 83.3 (64.6)	SW940 - SW944	Japanese wild boar × Large White	(Nii <i>et al.</i> 2006)
	12	63 - 77 (68)		Iberian × Landrace	(Munoz et al. 2007)
C18:0	1	3 - 16.4 (11.3)	SW1824 - SWR485	Japanese wild boar × Large White	(Nii <i>et al.</i> 2006)
	4	0		Iberian × Landrace	(Perez-Enciso et al. 2000
	9	61.5 - 83.3 (67.6)	SW940 - SW944	Japanese wild boar × Large White	(Nii et al. 2006)
	12	68 - 84 (75)		Iberian × Landrace	(Munoz <i>et al.</i> 2007)
C18:1 n-7	12	69 - 83 (76)		Iberian × Landrace	(Munoz <i>et al.</i> 2007)
C18:1 n-9	4	81		Iberian × Landrace	(Perez-Enciso <i>et al.</i> 2000)
0101117	15	76 - 81.1 (77)	SW1945 - SW2083	Japanese wild boar × Large White	(Nii <i>et al.</i> 2006)
	X	73	ACSL4 - SW1943	Iberian × Landrace	(Mercade <i>et al.</i> 2006)
C18:3	12	6.6 - 62.8 (45.2)	GHMSPI	Iberian × Landrace	(Clop <i>et al.</i> 2003)
C18:2	4	75	GIIMBIT	Iberian × Landrace	(Clop <i>et al.</i> 2003)
010.2	4	71 - 86 (79)		Iberian × Landrace	(Perez-Enciso <i>et al.</i> 2000)
	4	62.3 - 69.6 (63.5)	SW839 - SW1089	Japanese wild boar × Large White	(Nii <i>et al.</i> 2006)
		· · · · · ·	5 10 05 - 5 10 100	Iberian × Landrace	· · · · · · · · · · · · · · · · · · ·
C20:1 n-9	12 X	22 - 40 (34) 52		Iberian × Landrace	(Munoz <i>et al.</i> 2007) (Mercade <i>et al.</i> 2006)
C20:1 n-9 C20:2 n-6	12	1 - 21 (1)		Iberian × Landrace	(Munoz <i>et al.</i> 2007)
Muscle	12	1 - 21 (1)		Iberiaii ^ Landrace	(Mulloz et al. 2007)
CLC	14	65		Duroc × Large White	(Sanchez et al. 2007)
MUFA	14	41		Duroc × Large White	(Sanchez <i>et al.</i> 2007) (Sanchez <i>et al.</i> 2007)
SFA	10	41		Duroc × Large White	(Sanchez <i>et al.</i> 2007) (Sanchez <i>et al.</i> 2007)
SFA C14:0	14 15			•	(Sanchez <i>et al.</i> 2007) (Sanchez <i>et al.</i> 2007)
		44		Duroc × Large White	· · · · · · · · · · · · · · · · · · ·
C16:1 n-9	14	67		Duroc × Large White	(Sanchez <i>et al.</i> 2007)
C18:0	14	67		Duroc × Large White	(Sanchez <i>et al.</i> 2007)
C20:3	9	88		Duroc × Large White	(Sanchez <i>et al.</i> 2007)
C20:5	10	27		Duroc \times Large White	(Sanchez et al. 2007)
C22:5	7	48		Duroc × Large White	(Sanchez et al. 2007)

Table 1.2 Reported QTL affecting fatty acid composition in backfat and muscle.

¹MP, melting point; SFA, saturated fatty acids [%]; MUFA, monounsaturated fatty acids [%]; CLC, chain length coefficient; PI, Peroxidability index; UI, unsaturated index; DBI, double bond index; ACL, average chain length; C14:0, Myristic acid [%]; C16:0, Palmitic acid [%]; C16:1 n-9, Palmitoleic acid [%]; C18:0, Stearic acid [%]; C18:1 n-7 Cis-vaccenic acid [%]; C18:1 n-9, Oleic acid [%]; C18:3, Linolenic acid [%];

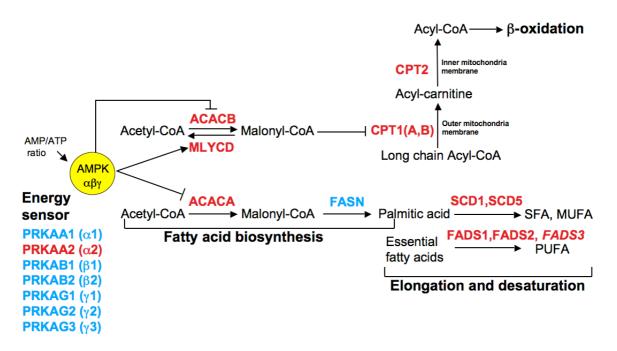
C18:2, Linoleic acid [%]; C20:1, Gadoleic acid [%]; C20:2, Eicosadienoic acid; C20:3 [%], Di-homo γ linolenic acid [%]; C20:5, Eicosapentaenoic acid (EPA) [%]; C22:5, Docosapentaenoic acid [%].

Compared to backfat and intramuscular fat content, there are more technical difficulties in measuring fatty acid composition. So far, only seven studies have reported QTL mapping results (Table 1.2). Six of them recorded QTL for fatty acid composition measured in backfat. QTL were found on SSC1, 2, 4, 5, 6, 8, 10, 12, 15, 18 and X. Comparison of the results for fatty acid composition in backfat revealed that the same study detected several QTL for one fatty acid parameter (e.g. melting point) and that different studies reported different QTL for the same measurement (e.g. C16:0). However, several QTL located from 62 cM - 86 cM on SSC4 for C18:2 from different studies showed consistency between independent observations.

The single investigation of QTL for fatty acid composition measured in muscle has appeared very recently using a Duroc × Large White cross (Table 1.2). The findings in muscle are quite different from those in fat. For example, QTL detected for C16:1, C18:0 and SFA in muscle are all located on SSC14 whereas QTL for them in fat are located on SSC1, 4, 8, 9 and 15. It was suggested that considering the low genetic correlations between muscle and backfat characteristics, this discrepancy was expected (Sanchez *et al.* 2007).

As can be seen from above, numerous QTL have been identified for these important traits. The QTL are often mapped to chromosomal regions that are over 20 centiMorgan long (20 megabase pairs) and that could possibly harbor several hundred genes (Andersson & Georges 2004). Therefore, the subsequent identification of gene(s) and mutation(s) that underlie QTL (positional cloning) remains a great challenge. Thus far, there are only a few success stories in domesticated animals. The one in pigs is the identification of the regulatory mutation *IGF2* intron 3-G3072A for QTL for lipid deposition and muscle growth on SSC2p in crosses between Large White and Wild Boar or Piétrain (Jeon *et al.* 1999; Nezer *et al.* 1999; Van Laere *et al.* 2003).

It is possible to identify functional candidate genes that are located in the QTL regions based on the comparative mapping approach. In this case, these identified genes are called positional and functional candidates. Using the candidate gene approach, several genes have been investigated for lipid deposition and profile in pigs. Porcine heart fatty acid binding protein gene (*H-FABP*) serves as a positional and functional candidate gene for the consistent QTL on SSC6 with effect on intramuscular fat content. Several studies showed polymorphisms in this gene are associated with intramuscular fat content (Gerbens *et al.* 1999; Nechtelberger *et al.* 2001; Arnyasi *et al.* 2006). Polymorphisms found in porcine gastric inhibitory polypeptide gene (*GIP*), acetyl-CoA carboxylase alpha gene (*ACACA*) (Munoz *et al.* 2007) and acyl-CoA synthetase long-chain 4 gene (*ACSL4*) (Mercade *et al.* 2006) were found to show association with the concentration of different fatty acids measured in backfat. These associated polymorphisms are very unlikely to be causative because they seem to have no functional significance.


In conclusion, application of molecular methods has resulted in the identification of numerous chromosomal regions with QTL and several candidate genes associated with lipid deposition and profile. However, these identified regions with QTL always span tens of map units, or hundreds of genes. In order to make use of these QTL in the breeding program, the identification of important polymorphisms, which are responsible for the observed effect, is needed by using candidate gene approach. Nonetheless, lipid deposition and fatty acid composition in pigs are very complex traits that are likely to be controlled by many genes. For these reasons, it is necessary to evaluate new candidate genes for these traits.

Candidate genes

Overview of selected candidate genes

Backfat and intramuscular fat are the consequences of lipid deposition in adipose tissue and muscle respectively, indicating that lipid metabolism plays an important role in their development. Different lipid metabolic pathways, therefore, are also involved in the determination of fatty acid composition in backfat and intramuscular fat. Thus, it is logical to analyze candidate genes involved in lipid metabolism for backfat thickness, IMF and fatty acid composition in pigs.

As fatty acids are the building blocks from which lipids are made, fatty acid metabolism is the central part of lipid metabolism. Therefore, genes encoding key enzymes or key regulators in three main pathways of fatty acid metabolism namely fatty acid *de novo* biosynthesis (*ACACA*), fatty acid desaturation (*FADS1*, *FADS2*, *FADS3*, *SCD1* and *SCD5*) and fatty acid oxidation (*ACACB*, *MLYCD*, *CPT1A*, *CPT1B* and *CPT2*) are the promising candidates for fatness, IMF and fatty acid composition (Fig. 1.4). AMPK plays a critical role in the regulation of energy balance. For this reason, *PRKAA2* encoding AMPK alpha 2 catalytic subunit is considered another interesting candidate for fatness and IMF traits in this study. Furthermore, most of the selected candidate genes are located in QTL regions reported for the backfat thickness, IMF or fatty acid composition.

Figure 1.4 Genes encoding key enzymes or key regulators in lipid- and energy metabolism. Twelve genes highlighted in red were analyzed in this study.

Candidate gene involved in energy metabolism - AMPK alpha 2 catalytic subunit gene (*PRKAA2*)

The AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is evolutionarily conserved from yeast to mammals and functions as a sensor of cellular energy status (Xue & Kahn 2006). AMPK is activated by a large variety of physiological and pathological stresses that deplete cellular ATP and increase AMP levels, including glucose deprivation, hypoxia, ischemia, oxidative stress, exercise and muscle contract. Its activation is mediated through allosteric activation due to AMP binding and/or AMPfacilitated phosphorylation. AMPK activation leads to phosphorylation of multiple downstream targets switching off anabolic pathways (e.g. fatty acid and sterol synthesis) that consume ATP and switching on catabolic pathways (e.g. fatty acid oxidation) that generate ATP. The downstream targets include various key enzymes, such as acetyl-CoA carboxylase (ACC) (Fig. 1.4) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), which are known to play critical roles in *de novo* biosynthesis of fatty acids and cholesterol respectively. Recent findings suggested AMPK in the hypothalamus mediates the effect of leptin on food intake and body weight (Minokoshi *et al.* 2004). Therefore, AMPK also plays an important role in regulating energy balance of the whole body.

AMPK is a heterotrimer comprising an α catalytic subunit and two regulatory subunits, β and γ . In mammals, each subunit has different isoforms that are encoded by separate genes (Fig. 1.4). There are two isoforms of the α subunit: α 1 and α 2 (Stapleton *et al.* 1996), three of the γ subunit: γ 1, γ 2 and γ 3 (Cheung *et al.* 2000) and two of the β subunit: β 1 and β 2 (Thornton *et al.* 1998). Therefore, there are 12 theoretically possible AMPK ($\alpha\beta\gamma$) complexes. The study about isoform compositions of AMPK complex indicated that three complexes (α 2 β 2 γ 1>> α 2 β 2 γ 3 \geq α 1 β 2 γ 1) were detected in human *vastus lateralis* muscle (Wojtaszewski *et al.* 2005; Jorgensen *et al.* 2006).

In pigs, several of seven distinct genes encoding AMPK isoform $\alpha 1$, $\alpha 2$, $\beta 1$, $\beta 2$, $\gamma 1$, $\gamma 2$ and $\gamma 3$ have been investigated. A mutation (known as *RN*) identified in porcine *PRKAG3* encoding $\gamma 3$ subunit on porcine chromosome 15 (SSC15, Milan *et al.* 2000) was found to have detrimental effects on the technological yield of cured cooked ham, but positive effects on lean meat content (Le Roy *et al.* 2000). Subsequently, porcine *PRKAG1* (SSC5) and *PRKAG2* (SSC18) encoding $\gamma 1$ and $\gamma 2$ respectively were investigated to determine their effects on body composition (Demeure *et al.* 2004; Haberkern *et al.* 2004). The preliminary results failed to draw the final conclusion for the effect of the porcine *PRKAG1* on backfat thickness. This is because no polymorphism was detected in the analyzed pigs. The porcine *PRKAG2* was excluded as a candidate gene for body composition because it maps to a region on SSC18 where no QTL for such traits were reported (Demeure *et al.* 2004). The investigation of porcine *PRKAB1* (SSC14) and *PRKAB2* (SSC4) encoding $\beta 1$ and $\beta 2$ as candidate genes for meat quality traits was also initiated with their chromosome assignments (Fontanesi *et al.* 2003). The preliminary analysis of the SNP detected in one fragment of the porcine *PRKAB1* revealed no significant association. Although porcine

PRKAA2 has been proposed as a functional candidate gene for meat quality traits, neither mapping result nor polymorphisms were obtained (Fontanesi *et al.* 2003). Consequently, porcine *PRKAA1* and *PRKAA2* encoding α 1 and α 2 subunits need to be characterized in pigs. The porcine *PRKAA2* gene was analyzed in this study for the following reasons.

In contrast to the $\alpha 1$ isoform showing a wide expression pattern, the $\alpha 2$ subunit is highly expressed in the skeletal muscle, heart and liver (Stapleton *et al.* 1996). In addition, distinct physiological roles of the $\alpha 1$ and $\alpha 2$ catalytic subunits were revealed using knockout mouse models. AMPK α 1-/- mice had no apparent metabolic defect, whereas AMPK α 2-/mice showed insulin resistance and reduced muscle glycogen synthesis (Viollet et al. 2003). Furthermore, another knockout experiment showed that the presence of AMPK $\alpha 2$ not $\alpha 1$ was required for muscle glucose uptake stimulated by adenosine analogue 5aminoimidazole-4-carboxamide-1-\beta-4-ribofuranoside (AICAR) (Jorgensen et al. 2004). The short-term overexpression of a constitutively active form of AMPK $\alpha 2$ (AMPK-CA) in the liver led to a significant decrease in blood glucose level, which subsequently resulted in an increase in hepatic lipid utilization and a decrease in white adipose mass (Foretz et al. 2005). The subcutaneous injection of AICAR significantly elevated α 2 AMPK activity and the increased activity of $\alpha 2$ AMPK led to an acute reduction of protein synthesis in resting rat muscle through the mTOR signaling pathway (Bolster et al. 2002). The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. The activation of $\alpha 2$ AMPK by leptin stimulated fatty acid oxidation in muscle (Minokoshi et al. 2002). The bidirectional changes in hypothalamic α 2 AMPK were sufficient to regulate food intake and body weight (Minokoshi *et al.* 2004). In conclusion, α 2 AMPK regulates glucose and fatty acid metabolism, and protein synthesis in peripheral tissues as well as energy intake and body weight.

Human *PRKAA2* was reported to be located at the type 2 diabetes locus on HSA1 (1p36-32) in a Japanese population (Horikoshi *et al.* 2006). Several association studies in different human populations were performed to examine the influence of *PRKAA2* on insulin resistance and susceptibility to type 2 diabetes (Horikoshi *et al.* 2006; Sun *et al.* 2006; Keshavarz *et al.* 2008). However, inconsistency was observed among their association results about the effect of *PRKAA2* on insulin resistance and susceptibility to type 2 diabetes. Additionally, one association study showed that several variants and a haplotype in the human *PRKAA2* have an effect on serum LDL-cholesterol and total cholesterol levels (Spencer-Jones *et al.* 2006).

Based on the critical roles of AMPK containing $\alpha 2$ ($\alpha 2$ AMPK) in peripheral tissues and the hypothalamus, *PRKAA2* was considered a functional candidate for meat quality and body composition traits in pigs. Moreover, the human and pig comparative map (Goureau *et al.* 1996) allowed the prediction that porcine *PRKAA2* is located on SSC6. Its location on SSC6 also made it a promising positional candidate for the reported QTL for intramuscular fat content, backfat thickness or loin muscle area (Ovilo *et al.* 2002b; Mohrmann *et al.* 2006; Edwards *et al.* 2008).

Candidate genes involved in fatty acid metabolism

Acetyl-CoA carboxylase genes (ACACA and ACACB)

There are alpha and beta acetyl CoA carboxylase isoforms in mammals, which are encoded by separate genes *ACACA* and *ACACB* respectively (Barber *et al.* 2005; Tong 2005). *ACACA* is highly expressed in lipogenic tissues (adipose and liver) and is involved in *de novo* fatty acid biosynthesis, while *ACACB* is predominantly expressed in skeletal muscle and heart and regulates fatty acid oxidation in mitochondria via its product, malony-CoA.

Mutant mice lacking *ACACA* are embryonically lethal, indicating that the *de novo* synthesis is very critical for development (Abu-Elheiga *et al.* 2005). Moreover, mice with live-specific deletion of *ACACA* are viable, but have 40-70 % less triglyceride accumulation in livers compared to the wide type mice, indicating that *ACACA* is also involved in energy metabolism (Mao *et al.* 2006). The recent work of Munoz *et al.* (2007) identified a QTL on SSC12 affecting the percentages of palmitoleic (C16:1 n-7), stearic (C18:0) and vaccenic (C18:1 n-7) acids in backfat and tested *ACACA* as a possible positional candidate gene for the QTL in an Iberian × Landrace cross. Two synonymous SNPs in *ACACA* were found to be associated with the percentages of these three fatty acids.

In contrast to ACACA, acetyl CoA carboxylase beta (ACACB) isoform has distinct roles in fatty acid metabolism. Findings in several knockout experiments in mice have consistently demonstrated that ACACB is a key regulator of mitochondrial fat oxidation (Abu-Elheiga

et al. 2001; Oh *et al.* 2005b; Choi *et al.* 2007). Mice lacking *ACACB* were characterized by no health problems, continuous fatty acid oxidation and reduced fat storage, and were also protected against diet-induced obesity and diabetes. Interestingly, a QTL with effect on the SFA content in meat in a Duroc × Large White cross was found on SSC14 (45 cM) in the proximity of porcine *ACACB* (Sanchez *et al.* 2007).

Malonyl-CoA decarboxylase gene (MLYCD)

Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malony-CoA to acetyl-CoA. The enzyme affects lipid partitioning because malony-CoA is the immediate precursor for *de novo* synthesis of fatty acids as well as a potent inhibitor of the CPT1 enzymes regulating fatty acid oxidation. The encoding gene (*MLYCD*) is highly expressed in the skeletal muscle, heart, kidney and pancreas, to a less extent in brain. Overexpression of *MLYCD* in the livers of rats ameliorates whole-animal and muscle insulin resistance induced by high-fat feeding (An *et al.* 2004). Thus, like *ACACB*, *MLYCD* could be another attractive antidiabetic drug target. MCD deficiency in humans is an autosomal recessive disorder characterized by malonic aciduria, developmental delay, seizure disorder, hypoglycemia, and cardiomyopathy. Based on the human and pig comparative map (Goureau *et al.* 1996), porcine *MLYCD* was predicted to lie on SSC6p where an imprinted QTL for IMF was identified in an experimental population of Chinese Meishan × Dutch pig lines (de Koning *et al.* 2000). The functional and positional arguments do not preclude *MLYCD* from being the candidate gene for this QTL. However, imprinting has not been reported for this gene in humans or other species.

Carnitine palmitoyltransferase genes (CPT1A, CPT1B and CPT2)

The β-oxidation of long-chain fatty acids in mitochondria is a major source of energy, and the carnitine palmitoyltransferase (CPT) enzyme system facilitates the transport of such fatty acids into the mitochondria, which includes CPT1 and CPT2. There are three different CPT1 isozymes: CPT1A (liver-type), CPT1B (muscle-type) and CPT1C (brain-type), encoded by separate genes *CPT1A*, *CPT1B* and *CPT1C* respectively. *CPT1A* is mainly expressed in liver, and also in other tissues such as pancreas, kidney, brain and lung; *CPT1B* in brown adipose tissue, muscle and heart; and *CPT1C* only in the brain. Only one ubiquitous CPT II encoded by *CPT2* has been identified in mammals. The recent work by Sierra *et al.* (2008) revealed that in contrast to CPT1A and CPT1B, which are localized on the outer mitochondria membrane, CPT1C is localized in the endoplasmic reticulum of

neurons. Based on the subcellular localization, CPT1C was suggested to be involved in a biosynthetic pathway rather than a catabolic pathway (e.g. fatty acid oxidation in which CPT1A and CPT1B are implicated).

Consistent with their roles, deficiency of CPT (CPT1A, CPT1B and CPT2) results in mitochondrial fatty acid oxidation disorders in humans (Bonnefont et al. 1999; Yamazaki et al. 2008). Both CPT1A and CPT1B are located within genomic regions linked with obesity (Robitaille et al. 2007). Furthermore, sequence variants identified within CPT1A and CPT1B were found to show moderate associations with some obesity phenotypes. Human CPT1A is present at 68.36 Mb on human chromosome 11 (HSA11), approximately 7 Mb downstream of human FADS gene cluster on HSA11. In pigs, both are expected to be located on SSC2p downstream of *IGF2* where an imprinted QTL for fat deposition, muscle growth and heart size has been detected (Jeon et al. 1999; Nezer et al. 1999). Another distinct imprinted QTL only for backfat thickness was found approximately 57 cM from the IGF2 region and no possible positional candidate genes was revealed (de Koning et al. 2000; Rattink et al. 2000). One QTL affecting both lean and, to a lesser extent, fat tissue weights, which did not exhibit any significant imprinting effect, was found near the IGF2 region in the INRA Meishan \times Large White F₂ population (Milan *et al.* 2002). Apart from these QTL, several QTL affecting backfat thickness near the IGF locus on SSC2p were obtained using the Mendelian model by different studies (Knott et al. 1998; de Koning et al. 1999; Bidanel et al. 2001; Kim et al. 2005). The location of porcine CPT1A does not exclude it as a positional candidate for these Mendelian QTL. The comparative mapping places porcine CPT1B on SSC5. However, sequence comparison of porcine mRNA sequence (NM 001007191) against the preliminary sequences for SSC5 (http://pre.ensembl.org/Sus_scrofa/index.html) revealed no hit of this gene on the chromosome. Porcine CPT2 is located in an interval (SW322-SW2053) of QTL for average backfat thickness on SSC6 (Mohrmann et al. 2006). Although porcine CPT1C was not included for analysis in this study, its role in energy homeostasis and its location on SSC6 makes it a promising functional and positional candidate gene for QTL (S0087- SW1129) affecting backfat thickness at 13 weeks and 17 weeks of age (Bidanel et al. 2001).

Fatty acid desaturase genes (FADS1, FADS2 and FADS3)

Fatty acid $\Delta 5$ (FADS1) and $\Delta 6$ (FADS2) desaturases are the rate-limiting enzymes in mammalian synthesis of long-chain polyunsaturated fatty acids. On human chromosome 11q12-q13.1, *FADS1* and *FADS2* are clustered with *FADS3* encoding fatty acid desaturase 3, whose function remains unknown (Marquardt *et al.* 2000). The *FADS* gene cluster is thought to have arisen evolutionarily from gene duplication based on their similar exon/intron organization. Three *FADS* genes in humans are highly expressed in the liver, heart and brain. Several studies in humans revealed that polymorphisms and haplotypes in the *FADS1-FADS2* gene cluster or the *FADS1-FADS2-FADS3* gene cluster show associations with levels of PUFA in serum phospholipids and in erythrocyte membranes (Schaeffer *et al.* 2006; Koletzko *et al.* 2008; Malerba *et al.* 2008; Rzehak *et al.* 2008). It has also been demonstrated that *FADS2* polymorphisms are associated with fatty acid profiles in the Japanese quail egg yolk, especially the n-6 and n-3 PUFAs (Khang *et al.* 2007). The above-mentioned studies strongly suggest that the *FADS3* gene cluster is a promising candidate for fatty acid composition in pigs. However, no QTL affecting fatty acid composition have been identified in the proximity of the *FADS3* gene cluster on SSC2.

Stearoyl-CoA desaturase genes (SCD1 and SCD5)

Stearoyl-CoA desaturase (SCD) is a crucial lipogenic enzyme necessary for the *de novo* biosynthesis of monounsaturated fatty acids in mammals. In humans (Wang *et al.* 2005) and cattle (Lengi & Corl 2007), two SCDs isoforms (SCD1 and SCD5) have been identified, whereas in mice four SCD isoforms, Scd1 through Scd4 exist (Tabor *et al.* 1998; Zheng *et al.* 2001; Miyazaki *et al.* 2003). Porcine *SCD1* has just been isolated recently (Ren *et al.* 2004b). Evidence for the existence of porcine orthologue of human and bovine *SCD5* was provided in this thesis.

Porcine SCD1 maps to SSC14q27 (Ren et al. 2003). It lies downstream of the porcine ACACB on SSC14 based on the preliminary porcine genome sequence (http://pre.ensembl.org/Sus scrofa/). Similar to mice lacking ACACB, mice deficient in Scd1 display reduced body adiposity and increased insulin sensitivity, and are resistant to diet-induced weight gain (Ntambi et al. 2002). The consequence of Scd1 deficiency is an activation of lipid oxidation in addition to reduced triglyceride synthesis and storage. In addition, a deficiency of Scd1 ameliorates the obesity of ob/ob mice (mice lacking leptin because of a mutation in the ob gene) and completely corrects the hypometabolic phenotypes of leptin deficiency (Cohen *et al.* 2002), indicating that down-regulation of *SCD1* is an important component of leptin's metabolic actions. Leptin is a 16-kD protein hormone derived from adipose tissue that plays a critical role in the regulation of body weight by inhibiting food intake and stimulating energy expenditure.

Based on its critical role in energy metabolism, *SCD1* has been investigated for fatness traits in pigs (Ren *et al.* 2004a). The analysis of a promoter SNP (AY487830: g.2228T>C) showed the lack of its association with backfat thickness in a pure Duroc population of 70 animals. The author suggested further association study using appropriate populations because only a small number of animals were used and it was insufficient to evaluate the effect of *SCD1* on fatness. In order to investigate the genetic factors that affect fatty acid composition of beef and milk, bovine *SCD1* has been chosen as one of the primer candidate genes in several studies. Results revealed that polymorphisms in *SCD1* explain some of the observed variation of fatty acid composition in beef (Taniguchi *et al.* 2004) and milk (Kgwatalala *et al.* 2007; Mele *et al.* 2007; Moioli *et al.* 2007; Milanesi *et al.* 2008; Schennink *et al.* 2008). In pigs, a suggestive QTL for the MUFA content in muscle in a Duroc × Large White cross was identified in a region where porcine *SCD1* was mapped (Sanchez *et al.* 2007). To date, no study has been performed to analyze *SCD1* for fatty acid composition in pigs.

SCD1 has been extensively studied since it was cloned for the first time in 1986 (Thiede *et al.* 1986), whereas *SCD5* has only been described recently. Both *SCD1* and *SCD5* are expressed in a variety of tissues. *SCD1* is highly expressed in lipogenic tissues such as adipose and liver, while *SCD5* in brain and pancreas (Wang *et al.* 2005; Lengi & Corl 2007, 2008). The human-pig comparative map allowed the assignment of porcine *SCD5* to the distal end of SSC8q. However, sequence comparison of the known porcine *SCD5* mRNA sequence (NM_001114278) against the preliminary sequence of SSC8 (http://pre.ensembl.org/Sus_scrofa/index.html) did not reveal its hit on the chromosome. It indicated that the preliminary sequence of SSC8 has yet to be completed. No QTL for the lipid-related traits have been reported at the position of *SCD5* so far.

Aims and outline of the thesis

Genes encoding key enzymes or key regulators in lipid- and energy metabolism may possibly affect the lipid-related traits in pigs. Hence, twelve such candidate genes have been selected and investigated in this thesis. Most of these genes have not been previously characterized. The aims of this thesis were:

- 1. Identification of porcine BACs containing candidate genes for the lipid-related traits using *in silico* BAC library screening approach
- 2. Genomic characterization of candidate genes for the lipid-related traits by BAC sequencing and semi-automatic annotation
- 3. Systematic screening for sequence variants
- 4. Direct evaluation of relationship between sequence variants in candidate genes and the lipid-related traits by association studies in different populations of pigs.

The twelve candidate genes have been selected primarily through literature review. *PRKAA2* encodes the alpha 2 catalytic subunit of the AMP-activated protein kinase (AMPK) that plays a very important role in the regulation of energy balance. This gene is considered a functional and positional candidate for the lipid-related traits. Chapter 2 describes the characterization of porcine *PRKAA2*: genomic structure, physical mapping, polymorphism detection and association study. The remaining eleven genes are those encoding key enzymes or key regulators in different pathways of lipid metabolism including fatty acid biosynthesis (*ACACA*), oxidation (*ACACB*, *CPT1A*, *CPT1B*, *CPT2* and *MLYCD*) and desaturation (*FADS1*, *FADS2*, *FADS3*, *SCD1* and *SCD5*). Most of them are localized to the regions harboring the relevant QTL reported. Genomic characterization and polymorphism analysis of these genes will be described in Chapter 3. The results presented in this study are discussed in Chapter 4 (General discussion). This chapter includes the discussion about selection of candidate genes, genomic characterization, sequence variants, association results and the candidate gene approach used in the study.

Chapter 2

Characterization of the porcine AMPK alpha 2

catalytic subunit gene (*PRKAA2*): genomic

structure, polymorphism detection and

association study

Abstract

AMP-activated protein kinase (AMPK), known as a key regulator of cellular energy homeostasis, plays an important role in regulation of glucose and lipid metabolism, and protein synthesis in mammals. The characterization of porcine *PRKAA2* encoding the alpha 2 catalytic subunit of AMPK is reported in this study. PRKAA2 was assigned to porcine chromosome 6q by analysis of radiation hybrids (IMpRH panel), and its genomic structure was determined by BAC sequencing. PRKAA2 spans more than 62 kb and consists of nine exons and eight introns. A total of 25 polymorphisms were identified by re-sequencing approximately 7 kb including all the exons, exon-intron boundaries, and 5' and 3' gene flanking regions using twelve founder animals of a Mangalitsa × Piétrain intercross. Neither of two single nucleotide polymorphisms (SNPs) found in the coding region causes an amino acid substitution. Two SNPs (NM 214266.1: c.236+142A>G and NM 214266.1: c.630C>T) in *PRKAA2* were genotyped in the Mangalitsa \times Piétrain F₂ cross (n = 589) and two commercial populations: Piétrain (n = 1173) and German Landrace (n = 536), and evaluated for association with traits of interest (muscle development and fat deposition). Single SNP and haplotype analyses revealed weak associations between the *PRKAA2* genotypes and loin muscle area in the investigated populations.

Keywords association study, genomic characterization, pigs, PRKAA2

The AMP-activated protein kinase (AMPK) is a heterotrimeric protein comprising a catalytic subunit (α) and two regulatory subunits (β and γ), which plays an important role in the regulation of cellular energy balance as well as the whole body energy metabolism (reviewed by Xue & Kahn 2006). A mutation (known as RN) identified in porcine PRKAG3 encoding AMPK subunit isoform y3 (Milan et al. 2000) was found to have a detrimental effect on the technological yield of cured-cooked ham, but a positive effect on lean meat content (Le Roy *et al.* 2000). There are two distinct genes encoding AMPK α isoforms: $\alpha 1$ (*PRKAA1*) and $\alpha 2$ (*PRKAA2*) (Hardie *et al.* 2003). Neither of them has been previously characterized in pigs. PRKAA2 is of special interest due to the following evidence: (1) in contrast to the α 1 isoform showing a wide expression pattern, α 2 is highly expressed in the skeletal muscle, heart and liver (Stapleton *et al.* 1996); (2) AMPK $\alpha 1^{-1}$ mice have no apparent metabolic defect, whereas AMPK $\alpha 2^{-/-}$ mice show insulin resistance and reduced muscle glycogen synthesis (Viollet *et al.* 2003); (3) activation of α 2 AMPK by 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) suppresses protein synthesis in rat skeletal muscle (Bolster *et al.* 2002); (4) activation of α 2 AMPK by leptin stimulates fatty acid oxidation in the muscle (Minokoshi et al. 2002); (5) the bidirectional changes in hypothalamic $\alpha 2$ AMPK are sufficient to regulate food intake and body weight (Minokoshi et al. 2004); (6) the short-term overexpression of a constitutively active form of AMPK $\alpha 2$ (AMPK-CA) in the liver causes a significant decrease in blood glucose level, which leads to an increase in hepatic lipid utilization, resulting in a decrease in white adipose mass (Foretz et al. 2005).

Taken together, these observations suggest the involvement of AMPK containing $\alpha 2$ in the regulation of glucose and lipid metabolism, and protein synthesis in peripheral tissues as well as in the regulation of energy intake and body weight, hence making *PRKAA2* encoding $\alpha 2$ subunit a candidate for muscle development and lipid deposition in pigs. The objectives of the present study were to determine genomic structure and chromosomal location of porcine *PRKAA2*, to identify polymorphisms and to investigate their possible associations with traits related to muscle development and fat deposition in different pig populations.

To determine the gene structure, the clone (189G19) from porcine CHORI-242 BAC library (http://bacpac.chori.org/porcine242.htm) was identified for *PRKAA2* based on

BLAST results of porcine BAC end sequences against human reference sequence available online at http://www.sanger.ac.uk/Projects/S_scrofa/BES.shtml. The presence of *PRKAA2* within this clone was further confirmed by colony PCR (Table 2.1). A shotgun approach (Retter *et al.* 2007) was performed to sequence the clone. Comparison of the known porcine mRNA sequence (NM_214266.1) with the sequence data assembled using the GAP4 program (Staden 1996) identified four genomic contigs containing *PRKAA2*, which have been deposited in GenBank under accession number EU853704. The comparison also revealed that *PRKAA2* contains nine exons and eight introns and covers at least 62 kb of genomic DNA (Fig. 2.1). All exon-intron junctions follow the GT-AG rule. The genomic structure is similar to that of human *PRKAA2* (Horikoshi *et al.* 2006).

The deduced protein sequence comprising 552 residues shares 98% identity with human AMPK $\alpha 2$ catalytic subunit sequence (NP 006243). The comparison of AMPK $\alpha 2$ subunit sequences from different species facilitated the identification of conserved domains in porcine AMPK α 2 subunit. Likewise, porcine AMPK α 2 contains an N-terminal catalytic domain, a middle auto-inhibitory domain and a C-terminal β/γ binding domain (Fig. 2.2). These domains are the structure feature of α catalytic subunit of AMPK (Hardie *et al.* 2003; Wong and Lodish 2006). Recently, Pang et al. (2007) narrowed the previously reported auto-inhibitory domain (α 1: residues 313-392) to 23 amino acids (Fig. 2.2). The threonine residue at position 172 (Thr-172), which is phosphorylated for AMPK activation by a family of upstream kinases including LKB1, was also identified in the catalytic domain of porcine AMPK $\alpha 2$ subunit (Fig. 2.2). AMPK exists as a heterotrimer consisting of a catalytic α -subunit and two regulatory β - and γ - subunits. In the heterotrimer kinase complex structure, the C-terminus of β -subunit interacts with the C-terminal β/γ binding domain in α -subunit; whereas the direct binding of γ -subunit to α subunit involves not only the interaction site in β/γ binding domain of the α -subunit, but also the site in the catalytic domain (Wong and Lodish, 2006). There is no direct interaction between β - and γ - subunit. AMPK is activated by high intracellular AMP/ATP ratios. Its activation is initiated by the binding of two molecules of AMP to γ-subunit in the AMPK complex, and is followed by the phosphorylation of α subunit at Thr-172 site by the upstream kinases due to the binding of AMP to AMPK.

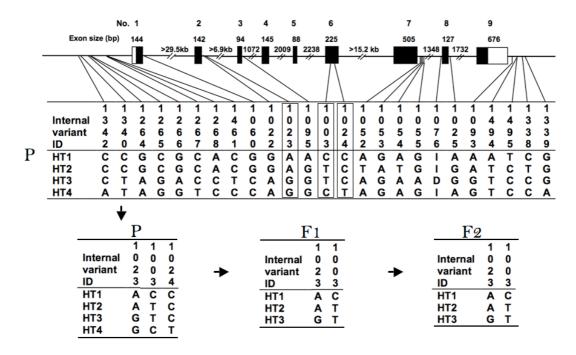
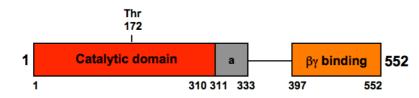

Gene/Primer number ^a	Primer sequences (5'-3')	Product size (bp)	Primer binding region	Annealing temperature (Additives)
PRKAA2_4717up	GGCAATAGAAGGCTGAGTGC		5' flanking	
PRKAA2_4718dn	CCTAGCACCTGTAAACAACCTG	489	5' flanking	60°C (DMSO)
PRKAA2_4715up	CACCCACTTGTTTGGCATAA		5' flanking	
PRKAA2_4716dn	AATGGCGAGCATACATCCAT	513	5' flanking	60°C (DMSO)
PRKAA2_4654up	GGCTATTTTCTCCAAATCGTCAG		5' flanking	
PRKAA2_4655dn	CGAACAATCAGACCCAAGAGTTA	729	5' flanking	60°C
PRKAA2_4652up	TTGCCCTAGCTCACCGTAGT		5' flanking	
PRKAA2_4653dn	GAGAACCCGAAGGAGTGGAA	558	Promoter	60°C (DMSO)
PRKAA2_4272up	GCTGAGAAGCAGAAGCACGAC		Exon 1	
PRKAA2_4273dn	CACCTTGCCCAACAGTCCAGT	440	Intron 1	60°C (Q-solution)
PRKAA2_4101up	TTGGGGTTACAGTGGAAGGA		Intron 1	
PRKAA2_4102dn	GTATGACAAAGAAGAGGCAACG	441	Intron 2	57°C
PRKAA2_4439up	AGCAAGAATGGATATACTAGGTTGA		Intron 2	
PRKAA2_4440dn	TGTTTCAGGGAATCAGCAAGT	497	Intron 3	60°C
PRKAA2_4274up	CCCCAAATCTTCTTAATGCTGT		Intron 3	
PRKAA2_4275dn	GCTAGTATCCTTCTAAACCACCTTC	221	Intron 4	60°C
PRKAA2_4276up	TGAGGCTTTACAGACTTCAGGTT		Intron 4	
PRKAA2_4277dn	CCCGAATGAACAAAACATTACAA	244	Intron 5	60°C
PRKAA2_4103up	GAAGTCCTTGAAAGGCAATGTA		Intron 5	
PRKAA2_4104dn	GATCAGGCAATCAGTTAGTGGTA	424	Intron 6	57°C
PRKAA2_4267up	TATTTGGGACTTGCCAGAGC		Intron 6	
PRKAA2_4268dn	AAAGAACCAGTTGGGGGGACT	321	Exon 7	58°C
PRKAA2_4269up	CCCCTCCTATGATGCTAACG		Exon 7	
PRKAA2_4270dn	TGATGCATGCTGAAACAGGT	781	Intron 7	58°C
PRKAA2_4107up	CTTTAGAGTAGAGGCACATCTGGA		Intron 7	
PRKAA2_4108dn	GATCCTATTCGCTTCACTTACACT	551	Intron 8	57°C
PRKAA2_4109up	TGCTTGTTAGGTTGTCCTTGCT		Intorn 8	
PRKAA2_4110dn	GAGTGTCCTCTGGAGATAGTTACG	486	3' UTR	60°C
PRKAA2_3827up	GTTGGATTCTGTCACTGCGGA		Exon 9	
PRKAA2_3828dn	CAAGCGACTCTTCGTTGATGGT	497	Exon 9	60°C
PRKAA2_4278up	TGTTGTTCATCTAAAACCGTGG		Exon 9	
PRKAA2_4279dn	CTCTTTACAGGGACTACCGACAT	607	Exon 9	60°C
PRKAA2_4719up	TCACCAAGCATGATTTGACAG		3' UTR	
PRKAA2_4720dn	GGATGGCTAGCAACCAAGAT	277	3' flanking	60°C
PRKAA2_4721up	TGGCCGACTGACTTAGCTTT		3' flanking	
PRKAA2_4722dn	CCAAACTGGCAAACAAGGAT	752	3' flanking	60°C

Table 2.1 Primers and PCR conditions used for colony PCR, physical mapping and resequencing.


^aPrimers (4109up/4110dn) were used for genotyping the INRA-Minnesota porcine radiation hybrid panel and primers (3827up/3828dn) for colony PCR.

The PCR analysis (Table 2.1) of the INRA-Minnesota porcine radiation hybrid panel (IMpRH panel, Yerle *et al.* 1998) demonstrated that *PRKAA2* is closely linked to marker SW322 on SSC6q31-q35 with LOD score threshold of 11.41. This assignment agrees well with that expected by comparative mapping with the human *PRKAA2* gene on HSA1p31

(Beri *et al.* 1994), and also with that indicated by the location of the BAC CH242-189G19 containing *PRKAA2* on the Porcine Genome Physical BAC map (http://www.sanger.ac.uk/Projects/S_scrofa/mapping.shtml).

Figure 2.1 Genomic structure of the porcine *PRKAA2* gene, 25 identified polymorphisms (Table 2.2) and haplotype distribution in the parental (P), F_1 and F_2 generations of the M × P intercross. Three tag SNPs (1023, 1003 and 1024) highlighted with black boxes correspond to c.236+142A>G, c.630C>T and c.699T>C, respectively. Symbols 'D' and 'I' are designated as deletion and insertion of two nucleotides (CT), respectively.

Figure 2.2 Functional regions of porcine AMPK $\alpha 2$ subunit. The auto-inhibitory domain is indicated with symbol 'a'.

Animals from three different populations were used in this study. The first was a threegeneration pedigree: a Mangalitsa × Piétrain intercross (M × P). The parental generation included two Mangalitsa boars, and 13 Piétrain sows that were all homozygous for the unfavorable allele T at the *RYR1* c.1843C>T polymorphism (Fujii *et al.* 1991). Five F₁ males and 18 F₁ females were used to produce 613 F₂ animals. Animals were fed *ad* *libitum*. F₂ males were castrated. All F₂ pigs were slaughtered at body weight of 90-100 kg. A total of 42 phenotypes measuring meat quality and body composition were collected on the F₂ animals including fatty acid composition, intramuscular fat content (IMF), loin muscle area (LMA) and backfat thickness measurements (BFT). The other two were commercial populations: German Landrace (n = 536) slaughtered at 107.2 \pm 2.7 kg within 2002-2005 and Piétrain (n = 1173) at 103.6 \pm 2.1 kg within 2003-2006. The phenotypes recorded in both populations mainly included body composition traits. In addition, IMF was phenotyped in the Piétrain animals.

Screening for polymorphisms in PRKAA2 was performed by PCR amplification and sequencing of the twelve parental animals of the M × P intercross (two Mangalitsas and ten Piétrains). Eighteen primer pairs (Table 2.1) were used covering all nine exons, exon-intron boundaries, and about 2 kb 5' and 1kb 3' gene flanking regions. In total, 25 polymorphisms were identified comprising 24 SNPs and one insertion/deletion polymorphism (Fig. 2.1 and Table 2.2). Four haplotypes (Fig. 2.1) were derived from the 25 polymorphisms in the parental generation of the M × P family using PHASE version 2.1 (Stephens et al. 2001; Stephens & Donnelly 2003). Fixed alleles in the two Mangalitsa founder boars were observed at all the 25 polymorphisms. Therefore, both of them were homozygous for haplotype 1 (HT1, Fig. 2.1). All the 25 polymorphisms were segregating within the ten Piétrain sows, and four haplotypes (HT1, HT2, HT3 and HT4) were present with a frequency of 0.38, 0.16, 0.42 and 0.04 respectively in this small sample. Three tag SNPs: NM 214266.1: c.236+142A>G, NM 214266.1: c.630C>T and NM 214266.1: c.699T>C were sufficient to distinguish between the four haplotypes (Fig. 2.1). The following analysis using these three SNPs revealed that HT4 was absent in the F₁ animals (Fig. 2.1). Therefore, only two SNPs (c.236+142A>G and c.630C>T) were genotyped in the F_2 population using PCR-RFLP (Table 2.3). Both SNPs were also investigated in the commercial Piétrain and German Landrace populations. However, Taqman SNP genotyping assays (Table 2.3) were used instead to increase the genotyping efficiency. Genotypes of the RYR1 mutation (Fujii et al. 1991) in both the M \times P F₂ cross and the Piétrain population were determined using TaqMan genotyping assay (Table 2.3). This mutation was not segregating in the German Landrace population based on a pilot experiment of about 200 animals for allele frequency estimation.

		Genomic reference sequence	Coding DNA reference		
No.	Lab_id	(EU853704) ^a	sequence (NM_214266.1) ^a	Region	
1	1342	g.14519C>A	c1864C>A	5' end	
2	1340	g.14760C>T	c1623C>T	5' end	
3	1264	g.15293G>A	c1090G>A	5' end	
4	1265	g.15337C>G	c1046C>G	5' end	
5	1266	g.15476G>A	c907G>A	5' end	
6	1267	g.15730C>T	c653C>T	5' end	
7	1268	g.15886A>C	c497A>C	5' end	
8	1461	g.15958C>T	c425C>T	5' end	
9	1060	g.16543G>C	c.94+67G>C	Intron 1	
10	1022	g.45837G>A	c.236+112G>A	Intron 2	
11	1023	g.45867A>G	c.236+142A>G	Intron 2	
12	1095	g.52668A>G	c.330+262A>G	Intron 3	
13	1003	g.58022C>T	c.630C>T	Exon 6 ^b	
14	1024	g.58091C>T	c.699T>C	Exon 6 ^b	
15	1052	g.73495A>T	c.1293+30A>T	Intron 7	
16	1053	g.73509G>A	c.1293+44G>A	Intron 7	
17	1054	g.73510A>T	c.1293+45A>T	Intron 7	
18	1055	g.73539G>A	c.1293+74G>A	Intron 7	
19	1076	g.74712_74713del	c.1294-101_1294-100delCT	Intron 7	
20	1025	g.74963A>G	c.1420+24A>G	Intron 8	
21	1093	g.77454A>G	c.*545A>G	3' end	
22	1494	g.77688A>T	c.*779A>T	3' end	
23	1495	g.77689T>C	c.*780T>C	3' end	
24	1338	g.77927C>T	c.*1018C>T	3' end	
25	1339	g.78496G>A	c.*1587G>A	3' end	

Table 2.2 Twenty-five polymorphisms found in the *PRKAA2* gene.

^aPolymorphisms were described using standard nomenclature (den Dunnen & Antonarakis 2000).

^bTwo synonymous SNPs were found in exon 6.

	Genoty	ping methods
	PCR-RFLP	
SNPs	(primers-	Taqman assay primers and MGB probes ^b
	enzyme) ^a	
		PRKAA2-1023F:
	4101up/4102dn	TGTAAGTATTTTTGCATTTGATAATATAAAAGATGAAGTGT
c.236+142A>G	CvikI-1	PRKAA2-1023R: GGCAACGTAAATTACATTTTTAGCTCTGA
		PRKAA2-1023A: CATTAATTCATTTAACCTCC (VIC labeled)
		PRKAA2-1023G: CATTAATTCATTTA <u>G</u> CCTCC (FAM labeled)
	4103up/4104dn RsaI	PRKAA2-1003F: CTGCGGTGTTATTTTGTATGCTCTT
c.630C>T		PRKAA2-1003R: CCCCTCGGATCTTCTTAAACAATGT
		PRKAA2-1003C: ATGGGAGTGT <u>G</u> CCACAA (VIC labeled)
		PRKAA2-1003T: AATGGGAGTGTACCACAA (FAM labeled)
		RYR1-F: CCCTGTGTGTGTGCAATGG
c 1843C>T		RYR1-R: GTTTGTCTGCAGCAGAAGCT
0.10430>1		RYR1-1120C: CCGTG <u>C</u> GCTCCAA (VIC labeled)
		RYR1-1120T: CCGTG <u>T</u> GCTCCAA (FAM-labeled)

Table 2.3 Genotyping methods used for the c.236+142A>G and c.630C>T SNPs in the *PRKAA2* gene and the C1843T polymorphism in the *RYR1* gene.

^aThe primer sequences are shown in Table 2.1.

^bGenotyping was carried out in ABI 7500 Fast Real-time PCR System (Applied Biosystems, Foster City, CA).

The statistical analysis involved R language and environment (http://www.r-project.org/). A linear model was used to assess the effect of *PRKAA2* genotypes on the traits of interest, namely IMF, BFT and LMA. For the M × P F₂ population, the model included the fixed effects: father, mother, sex and genotype. For haplotype analysis, the genotype was represented as the copy number of the haplotype in question and was treated as a factor. Live weight at slaughtering was used as a covariate for BFT and LMA, and BFT for IMF. For each commercial population, in addition to the covariates described above, the model used contained fixed effects: performance testing station and genotype, and a random sire effect (due to more sires used in the commercial populations). The effect of sex was not included in the model because animals in each commercial population were of the same gender. A major effect of the *RYR1* c.1843C>T mutation on muscle mass and lipid deposition has been reported (Fujii *et al.* 1991). Therefore, the effect of the *RYR1* genotypes was also taken into account when analyzing the F₂ and Piétrain populations

where there was a high incidence of the *RYR1* mutation (0.51 and 0.43 respectively). Least squares means (\pm SE) for the individual SNPs and constructed haplotypes were determined based on their respective linear models.

The allele frequencies of the c.236+142A>G and c.630C>T SNPs, and the derived haplotype distribution are listed in Table 2.4. The c.630C>T SNP was not segregating in the German Landrace population. Therefore, no haplotype was constructed in this population. Both the c.236+142A>G and c.630C>T SNPs were segregating in the Piétrain population. For the reasons of technical difficulties with the c.236+142A>G SNP genotyping assay and large variation in the concentration of DNA samples placed in the plates, only 865 Piétrain animals that were successfully genotyped were used for haplotype construction. No deviation of the genotype distribution from Hardy-Weinberg equilibrium was observed at the segregating SNPs in the commercial populations.

Results from the association studies are presented in Table 2.4. There was no significant association detected between the *PRKAA2* SNPs or haplotypes and IMF or BFT in all the three populations under investigation. Therefore, Table 2.4 only shows the association results for LMA. Single SNP analysis revealed that both the c.236+142A>G and c.630C>T SNPs were significantly associated with LMA in the M × P F₂ population (P < 0.05). It was expected that HT1 and HT3 would show association with LMA in the M × P F₂ population because HT1 and HT3 were equivalent to the c.630C>T and c.236+142A>G SNPs respectively in this population (Fig. 2.1). The G allele at the c.236+142A>G SNP, the T at the c.630C>T SNP and their combination HT3 (G-T), which seemed to increase LMA (Table 2.4), were all derived from the Piétrain breed that is well known for exceptional muscularity.

SNP analysis						
Population	Total No. animals	SNP (Allele frequency)	LS	M ± SE (Genotypes, No. anima	ls)	P-value
$M \times P(F_2)$	589	c.236+142A>G (A, 0.70)	40.28 ± 0.32 (AA, 275)	41.56 ± 0.31 (AG, 269)	41.64 ± 0.77 (GG, 45)	0.014
$\mathbf{M} \times \mathbf{I} (\mathbf{I}_2)$	589	c.630C>T (C, 0.56)	$40.05 \pm 0.40 (CC, 177)$	41.38 ± 0.29 (CT, 300)	41.32 ± 0.48 (TT, 112)	0.018
Piétrain	865	c.236+142A>G (A, 0.46)	64.80 ± 0.40 (AA, 190)	65.54 ± 0.27 (AG, 419)	64.96 ± 0.34 (GG, 256)	0.21
rieuaili	1173	c.630C>T (C, 0.38)	65.01 ± 0.41 (CC, 185)	65.52 ± 0.24 (CT, 532)	64.78 ± 0.25 (TT, 456)	0.10
German Landrace	536	c.236+142A>G (A, 0.92)	44.92 ± 0.24 (AA, 456)	45.89 ± 0.58 (AG, 79)	42.35 ± 5.08 (GG, 1)	0.26
Haplotype analysi	8					
Dopulation	Total No.	c.236+142A>G - c.630C>T	$LSM \pm SE$ (Haplotype copy number, No. animals)			<i>P</i> -value
Population	animals	(Haplotype frequency)	(0)	(I)	(II)	_ P-value
	589	HT1_A-C (0.56)	41.32 ± 0.48 (112)	41.38 ± 0.29 (300)	40.05 ± 0.40 (177)	0.018
$M \times P(F_2)$	589	HT2_A-T (0.14)	41.04 ± 0.26 (429)	40.98 ± 0.44 (155)	40.28 ± 2.62 (5)	0.97
	589	HT3_G-T (0.30)	40.28 ± 0.32 (275)	41.56 ± 0.31 (269)	41.64 ± 0.77 (45)	0.014
Piétrain	849	HT1_A-C (0.35)	65.01 ± 0.28 (378)	65.68 ± 0.29 (356)	64.40 ± 0.51 (115)	0.054
	849	HT2_A-T (0.12)	65.21 ± 0.21 (664)	65.17 ± 0.41 (173)	65.62 ± 1.56 (12)	0.96
	849	HT3_G-T (0.50)	64.86 ± 0.38 (209)	65.64 ± 0.26 (429)	64.67 ± 0.37 (211)	0.059
	849	HT4_G-C (0.04)	65.14 ± 0.19 (787)	66.13 ± 0.71 (60)	65.57 ± 5.39 (2)	0.41

Table 2.4 Association results between the SNPs or haplotypes in *PRKAA2* and loin muscle area in the $M \times P F_2$ and two commercial pig populations.

In an attempt to extend the result obtained in the F_2 population, association between *PRKAA2* genotypes and traits of interest was studied in two commercial pig populations. No significant association with LMA was found for the two analyzed SNPs in the Piétrain population and for the segregating c.236+142A>G SNP in the German Landrace population (Table 2.4). Nevertheless, it should be noted that there could be limited power for the association study in the German Landrace population due to the low frequencey of the c.236+142A>G SNP. The haplotype analysis revealed that both HT1 (A-C) and HT3 (G-T) showed a tendency towards association with LMA in the Piétrain population. Animals carrying two copies of HT1 (A-C) seemed to have less LMA compared to the other two types of animals in both the M × P F₂ and Piétrain populations (Table 2.4). HT3 (G-T) in the M × P F₂ population tended to increase LMA, whereas animals with two copies of HT3 (G-T) showed the smallest LMA among the three different types of animals in the Piétrain population.

Considering the versatile biological functions of $\alpha 2$ AMPK, *PRKAA2* was investigated as a functional candidate gene for muscle growth and fat deposition in pigs. Interestingly, our mapping analysis assigned *PRKAA2* to a region on SSC6 where QTL for loin muscle area, fatness and IMF were reported (Ovilo et al. 2002b; Mohrmann et al. 2006; Edwards et al. 2008). We detected significant associations of the PRKAA2 genotypes with LMA in the M \times P F₂ population. However, a classical QTL segregation analysis based on six microsatellite markers on SSC6 and the *PRKAA2* polymorphism in 167 M × P F_2 animals (i.e. assuming fixation of alternative QTL alleles in M and P) (Haley et al. 1994) did not detect a QTL on SSC6 affecting LMA after excluding the interference of the RYR1 mutation (data not shown). The inability to detect the reported QTL in the PRKAA2 region in our pig population might be due to the small number of animals used in the analysis and the assumption of alternatively fixed alleles, which does not apply to the PRKAA2 polymorphisms. Nevertheless, given a large number of the animals (n = 1173) used and high polymorphism level of the two associated SNPs and haplotypes HT1 (A-C) and HT3 (G-T) in the Piétrain population (Table 2.4), we would have a high probability of detecting the same associations in this population too. However, we only observed suggestive associations in the Piétrain pigs.

Not much work has been carried out to analyze the candidate genes situated in the region on SSC6 where the QTL affecting LMA was reported (Ovilo *et al.* 2002; Mohrmann *et al.* 2006; Edwards *et al.* 2008). The leptin receptor gene (*LEPR*) has been analyzed as a very interesting candidate gene for this reported QTL. However, no significant associations were found between sequence variants in porcine *LEPR* and LMA (Ovilo *et al.* 2005). In the present study, only weak associations between the *PRKAA2* genotypes and LMA were found.

In summary, we presented the genomic characterization of the porcine *PRKAA2* gene and provided an initial evaluation of association between this gene with lean- and fat deposition in a large sample of pigs. Weak associations were found between the *PRKAA2* genotypes and muscle development in the investigated populations.

Chapter 3

Genomic characterization and polymorphism

analysis of genes relevant to lipid metabolism

in pigs

Abstract

Fatness, intramuscular fat content (IMF) and fatty acid composition are important pork quality traits. We hypothesized that genes encoding key enzymes or key regulators in lipid metabolism might affect these lipid-related traits. Hence, eleven such genes (ACACA, ACACB, CPT1A, CPT1B, CPT2, MLYCD, FADS1, FADS2, FADS3, SCD1 and SCD5) were analyzed here. Ten of these genes have not been previously characterized in pigs. Their genomic structures were elucidated by shotgun sequencing of porcine BACs and semiautomatic annotation. A total of 367 sequence variants were identified in the eleven genes by re-sequencing approximately 85.5-kb in twelve parental animals of a Mangalitsa × Piétrain cross. Nine variants found in six genes (ACACA, ACACB, CPT2, MLYCD, FADS2 and SCD1) were further investigated in 580 pigs of the Mangalitsa \times Piétrain F₂ population. Four of them showed associations with the lipid-related traits at a nominal $P \leq 0.05$. An association of n-3 polyunsaturated fatty acid (n-3 PUFA) content in longissimus dorsi muscle was found for an intronic variant of 280-bp insertion/deletion in ACACA. A promoter SNP and a non-synonymous SNP in ACACB were associated with the n-3 PUFA content. The non-synonymous variant in ACACB also showed an association with backfat thickness at mid-back. An intronic SNP in FADS2 showed an association with IMF and several backfat thickness measurements. Finally, allelic frequencies of the nine variants were determined in 176 pigs belonging to the Piétrian, German Large White, German Landrace and Duroc populations.

Keywords association, gene structure, lipid metabolism, polymorphism, pork quality

Introduction

Fatness and intramuscular fat content (IMF) are important pork quality traits because consumers desire both leanness and palatability in pork. Moreover, pork fatty acid composition is considered another crucial aspect of quality due to its relevance to human health. For example, excessive intake of saturated fatty acids (SFA), particularly myristic acids and palmitic acids, is often associated with a high risk of cardiovascular diseases (Williams 2000), while increased intake of monounsaturated and polyunsaturated fatty acids (MUFA and PUFA, respectively) is favorable due to their cholesterol decreasing effect (Stewart *et al.* 2001; Lichtenstein 2006).

Backfat and intramuscular fat are the consequences of lipid deposition in adipose tissue and muscle respectively, indicating that lipid metabolism plays an important role in their development. Different lipid metabolic pathways, therefore, are also involved in the determination of fatty acid composition in backfat and intramuscular fat. Thus, it is logical to analyze candidate genes relevant to lipid metabolism for these lipid-related traits in pigs. Obviously, genes encoding key enzymes or key regulators in different pathways of lipid metabolism are the prime choices.

In this study, eleven candidate genes relevant to fatty acid biosynthesis (*ACACA*), oxidation (*ACACB*, *CPT1A*, *CPT1B*, *CPT2* and *MLYCD*) and desaturation (*FADS1*, *FADS2*, *FADS3*, *SCD1* and *SCD5*) were investigated. There are alpha and beta acetyl-CoA carboxylase isoforms (ACACA and ACACB, respectively) in mammals (Barber *et al.* 2005). ACACA catalyzes the first and committed step in *de novo* fatty acid biosynthesis, whereas ACACB regulates fatty acid oxidation in mitochondria via its product, malonyl-CoA. Malonyl-CoA decarboxylase (MLYCD) that catalyzes the breakdown of malonyl-CoA is also thought to be a key regulator of fatty acid oxidation (Sacksteder *et al.* 1999; Lee *et al.* 2004). The transport of long-chain fatty acids into mitochondria for oxidation requires at least two key enzymes: carnitine palmitoyltransferase I and II (van der Leij *et al.* 2000). At least two CPT I isoforms (live type, CPT1A and muscle type, CPT1B) and one ubiquitous CPT II (CPT2) have been identified in mammals. CPT I is tightly regulated by its physiological inhibitor malonyl-CoA. Hence, it explains that ACACB and MLYCD, responsible for the formation and turnover of cellular malonyl-CoA respectively, are involved in the regulation of fatty acid oxidation. In mammals, $\Delta 5$, $\Delta 6$ and $\Delta 9$ desaturases are responsible for

synthesis of most of the unsaturated fatty acids. The $\Delta 9$ desaturase, also called stearoyl-CoA desaturase (SCD), is the key enzyme in the biosynthesis of MUFAs such as palmitoleic acids and oleic acids (Enoch *et al.* 1976). Two SCD isoforms (SCD1 and SCD5) were found in humans (Wang *et al.* 2005) and cattle (Lengi & Corl, 2007), and four (Scd1 through Scd4) in mice (Miyazaki *et al.* 2003). The porcine SCD1 gene (*SCD1*) has been previously characterized (Ren *et al.* 2004b). Our work provides evidence for the existence of porcine *SCD5*. Due to the absence of Δ 12 and Δ 15 desaturases in mammals, linoleic acids (n-6) and alpha-linolenic acids (n-3) must be provided in the diet. However, using the two essential fatty acids as starting points, longer and more complex n-3 and n-6 PUFA can be formed through a combination of elongation and desaturation reactions in mammals (Nakamura & Nara 2004). The Δ 5 and Δ 6 desaturases, encoded by *FADS1* and *FADS2* respectively, are the key enzymes in the desaturation reactions. In humans, *FADS3* encoding fatty acid desaturase 3 is clustered with *FADS1* and *FADS2*, and also shows significant homology with them (Marquardt *et al.* 2000).

The objectives of this study were to elucidate genomic structures of candidate genes, to detect sequence variants and to evaluate association between the identified variants and the lipid-related traits in 580 pigs of a Mangalitsa \times Piétrain F₂ population.

Materials and methods

Animals and phenotypes

A three-generation resource family of a cross between the Mangalitsa and Piétrain pig breeds (M × P) was used in the study. Two Mangalitsa boars, homozygous for the *RYR1* normal c.1843C allele, were mated to 13 Piétrain sows homozygous for the mutation (c.1843T, Fujii *et al.* 1991). Five males and 18 females of their offspring were used to produce 613 F₂ animals. Animals were fed *ad libitum*. F₂ males were castrated. All the F₂ pigs were slaughtered at body weight of 90-100 kg. The lipid-related traits were recorded including IMF, fatty acid composition and fatness (Table 3.1). IMF in a sample of the *longissimus dorsi* muscle at rib 12th-13th was measured using the lipid extraction method suggested by Bligh & Dyer (1959) and modified by Hallermayer (1976). Fatty acid composition of intramuscular fat was determined by gas chromatography and expressed in % total fatty acids. Backfat thickness measurements (BFT) were obtained according to the German performance test directives (ZDS 2004). A panel of unrelated animals of four breeds was used for allele frequency estimation, comprising: Piétrian (PI, n = 45), Duroc (DU, n = 39), German Large White (DE, n = 49) and German Landrace (DL, n = 43).

Table 3.1 Means and standard deviations (SD) of twelve phenotypes measuring fat deposition and muscle fatty acid profile in the F_2 population (n = 613).

Description	Trait	Mean	SD
Fat deposition			
Backfat thickness at shoulder [mm]	BFTW	45.35	6.19
Backfat thickness at mid-back [mm]	BFTM	29.35	5.48
Backfat thickness at loin [mm]	BFTL	26.59	6.2
Side fat thickness [mm]	BFTS	42.96	8.78
Average backfat thickness [mm]	$ABFT^1$	33.76	5.08
Intramuscular fat content [%]	IMF	2.06	0.63
Fatty acid content in IMF			
Saturated fatty acids [%]	SFA^2	36.66	2.02
Monounsaturated fatty acids [%]	MUFA ³	47.34	3.46
Polyunsaturated fatty acids [%]	$PUFA^4$	14.88	4.03
n-3 polyunsaturated fatty acids [%]	n-3PUFA ⁵	1.27	0.43
n-6 polyunsaturated fatty acids [%]	n-6PUFA ⁶	13.61	3.84
Polyunsaturated to saturated ratio	P/S^7	0.41	0.12

¹Calcalated as the average of three measurements (BFTW, BFTM and BFTL)

 2 SFA = C14:0 (Myristic acid) + C16:0 (Palmitic acid) + C18 :0 (Stearic acid)

 3 MUFA = C16:1 (Palmitoleic acid) + C18:1 (Oleic acid)

 4 PUFA = n-3PUFA + n-6PUFA

 5 n-3PUFA = C18:3 (Linolenic acid) + C20:3 (Eicosatrienoic acid) + C20:5 (Eicosapentaenoic acid) + C22:6 (Docosahexaenoic acid)

⁶n-6PUFA = C18:2 (Linoleic acid) + γ _C18:3 (Gamma-linolenic acid) + C20:4

(Arachidonic acid) + C22:4 (Docosatetraenoic acid)

 $^{7}P/S = PUFA/SFA$

In silico porcine BAC library screening and BAC sequencing

Over 600,000 BAC end sequences (BES) have been generated from four porcine BAC libraries: CHORI-242 (http://bacpac.chori.org/porcine242.htm), RPCI-44 (Fahrenkrug *et al.* 2001), PigE (Anderson *et al.* 2000) and INRA-PigI (Rogel-Gaillard *et al.* 1999). BLAST results of non-repetitive BES against the human reference sequence were available to search by human location through the website (http://www.sanger.ac.uk/cgi-bin/Projects/S_scrofa/BESsearch.cgi).

It was assumed that if BES hits of some clone were anchored to the human location containing a gene of interest, this clone probably contained the porcine corresponding gene. Therefore, it was possible to identify porcine BACs for the selected genes based on the available BES information. Subsequent colony PCRs using porcine specific primers (Table 3.2) were performed for further confirmation. Positive BACs were sequenced using a shotgun approach described in Retter *et al.* (2007). Data were assembled and edited using the GAP4 program (Staden 1996).

Semi-automatic gene annotation

Contigs containing genes of interest were identified by comparing human mRNA sequences of the genes with all contigs derived from BAC sequencing using BLAST analysis with an E-value threshold of 1e-10 through a local server. The *GenomeThreader* software (Gremme *et al.* 2005) was used to predict the genomic structures of the genes based on the identified contigs and the Dana-Farber Cancer Institute (DFCI) gene indices (Quackenbush *et al.* 2001). The *GenomeThreader* output was viewed and edited using the Apollo sequence annotation editor (Lewis *et al.* 2002).

ACACA_4483upCCGTGCAGTTGCTGACTTGExon 53ACACA_4484dnAGCTCGGGGTTGGCATTGTExon 54832 58° CACACA_4484dnGGCTTGTGAAACCAAGTGAGGExon 13ACACA_4487upACAACTAGTGAAAATCCAGATGACAIntron 13447 58° CACACA_4488dnGCTGTGGAACGGTGGAATGExon 31 502 60° CACACB_4489upCTGGAGGACCAGGTGAATGExon 55ACACB_4491upTCATGCCTCTCGGTGTGTGExon 56316 60° CACACB_4491upTCATGCCTCTCTGTGTTTGCIntron 7ACACB_4492upTGAACATGGCTGGTAATCExon 16 362 58° CCPT1A_4471upCAATGTGCTTTCTGGTCAGGIntron 15CPT1A_4472dnCGCCCGCTATCTGGAATAACExon 16 362 58° CCPT1A_4472dnCGCCCGCTATCTGCAATGAExon 14195 60° CCPT1A_4474dnCCTCGGGTCTCACCTTGTAAIntron 14195 60° CCPT1B_4474dnCCACGGAAGCAGCTTCACCTCACTExon 16332 60° CCPT1B_4474dnCCACGTAAAGGCAGAAGAGGExon 16332 60° CCPT1B_4479upTGCACGACACTGTTTCAGGTGExon 44313 60° CCPT2_4480unTGCAGCCAACTGTTCACCAGTGTGTGExon 5215 60° CCPT1B_4478dnCCACGGAAGGGGAATGAAExon 5215 60° CCPT2_4480unTGCAACCCGATGTCACCAGTGTCExon 16332 60° CCPT2_4480unTGCAACCCGATGGTGAGAGAGAGExon 5215 60° CCPT2_4480unGGCAGTCGAGTGAGGAAATGAAExon 1237 58° CMLYCD_4500dnCCACAGGGTGAGGGGAAGTGGCA	Gene / primer number	Primer sequence (5'-3')	Primer binding region	Product size [bp]	Annealing temperature
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ACACA_4483up	CCGTGCAGTTTGCTGACTTG	Exon 53		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ACACA_4484dn	AGCTCGGGGTTGGCATTGT	Exon 54	832	58°C
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ACACA_4485up	CTCTAGTGAAAATCCAGATGAGG	Exon 13		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACACA_4486dn	GGCTTGTGAACCAATGTCCA	Intron 13	447	58°C
$\begin{array}{c} ACACB_4489up & CTGGAGGACCAGGTTAAGCA & Exon 55 \\ ACACB_4499up & TGATGTTCTCTCGGATGGTG & Exon 56 & 316 & 60^{\circ}\text{C} \\ ACACB_4491up & TCATGCCTCTCTGTGTTTGC & Intron 7 \\ ACACB_4492up & TGAACATGGCTGGTATCTCG & Intron 8 & 376 & 60^{\circ}\text{C} \\ \hline CPT1A_4471up & CAATGTGCTTTCTGGTCAGG & Intron 15 \\ CPT1A_4472dn & CGCCGCGTATCTTGAATAAC & Exon 16 & 362 & 58^{\circ}\text{C} \\ CPT1B_4475up & ACCGGGGTTCCACCTTGTAA & Intron 14 & 195 & 60^{\circ}\text{C} \\ \hline CPT1B_4475up & ACAGCGGGTTCCACCTTGTAA & Intron 14 & 195 & 60^{\circ}\text{C} \\ \hline CPT1B_4475up & ACAGCGGGTTCCACCTTGTAA & Intron 14 & 195 & 60^{\circ}\text{C} \\ \hline CPT1B_4476dn & GGAAAGCAGCAGTTCAAGG & Exon 4 & 485 & 60^{\circ}\text{C} \\ \hline CPT1B_4477up & AGCCTCGATGACTGAATGT & Exon 15 \\ \hline CPT1B_4478dn & CCACGTAAAAGGCAGAAGAGG & Exon 16 & 332 & 60^{\circ}\text{C} \\ \hline CPT2_4479up & TGACCGACACTTGTTGCTC & Exon 5 \\ \hline CPT2_4480dn & TGCAGCCAACTTGTTGTG & Exon 5 & 215 & 60^{\circ}\text{C} \\ \hline CPT2_4481up & CTCGAAACCCCATTGTTGT & Exon 4 & \\ \hline CPT2_4481up & CTCGAAACCCCATTGTTGACAA & Exon 4 & 313 & 60^{\circ}\text{C} \\ \hline MLYCD_4509dn & CCACGGGATGAGCGAATAG & Exon 5 & 206 & 58^{\circ}\text{C} \\ MLYCD_4509dn & CCACAGGGTTGAGCGAGTAG & Exon 5 & 206 & 58^{\circ}\text{C} \\ \hline MLYCD_4513up & CGCGGACTTTATGAGCTTCT & Exon 1 & \\ \hline MLYCD_4513up & CGCGGACTTTATGAGCGTCTT & Exon 1 & \\ \hline FADS1_3813up & TTGCGACACCTGTCGGTCTTG & Exon 5 & 255 & 60^{\circ}\text{C} \\ \hline FADS1_3815up & TGGACACCCTGTCGGCTCTT & Exon 1 & \\ \hline FADS1_3814dn & ATGTTGATGCTGCGAGCCTAC & Exon 9 \\ \hline FADS1_3815up & TGGATGACGGAGCCTAC & Exon 9 \\ \hline FADS1_3815up & TGCTGCGTGGTCTTGT & Exon 10 & 409 & 57^{\circ}\text{C} \\ \hline FADS3_4452up & GTGAACGCTGTCGTCTT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCCCCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & TGCTGCGCTGTTATCATC & Exon 3 & \\ \hline FADS3_4452up & GTGGAGCCCTCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCCTCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCCTCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCCTCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCTCCCTTCTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCTCCCTTCTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCTCCCTCTTCAT & Exon 10 & \\ \hline FADS3_4452up & GTGGAGCCTCCCTC$	ACACA_4487up	ACAACTCAGCTTGGCTTGCT	Intron 30		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ACACA_4488dn	CTGACACGGTGGAGTGAATG	Exon 31	502	60°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACACB_4489up	CTGGAGGACCAGGTTAAGCA	Exon 55		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ACACB_4490dn	TGATGTTCTCTCGGATGGTG	Exon 56	316	60°C
$\begin{array}{c} \mbox{CPT1A}_4471up & \mbox{CAATGTGCTTTCTGGTCAGG} & \mbox{Intron 15} \\ \mbox{CPT1A}_4472dn & \mbox{CGCCCGCTATCTTGAATAAC} & \mbox{Exon 16} & \mbox{362} & \mbox{58}\end{tabular} \\ \mbox{CPT1A}_4473up & \mbox{TCTCTCCTTTTCGCCAGTGT} & \mbox{Exon 14} & \mbox{Intron 14} & \mbox{195} & \mbox{60}\end{tabular} \\ \mbox{CPT1B}_4473up & \mbox{ACAGCGGGTTCCACCTTGTAA} & \mbox{Intron 14} & \mbox{195} & \mbox{60}\end{tabular} \\ \mbox{CPT1B}_44747up & \mbox{ACAGCGGGTTCCACCTCACT} & \mbox{Exon 3} & \mbox{CPT1B}_4478dn & \mbox{CCACGTAAAGCAGCAGTTTCAAGG} & \mbox{Exon 16} & \mbox{332} & \mbox{60}\end{cecccc} \\ \mbox{CPT1B}_4478dn & \mbox{CCACGTAAAGGCAGAAGAGG} & \mbox{Exon 16} & \mbox{332} & \mbox{60}\end{cecccc} \\ \mbox{CPT2}_4480dn & \mbox{TGCAGCGACACTTGTTGCTC} & \mbox{Exon 5} & \mbox{215} & \mbox{60}cecccccccccccccccccccccccccccccccccc$	ACACB_4491up	TCATGCCTCTCTGTGTTTGC	Intron 7		
$\begin{array}{c} {\rm CPT1A}_4472 {\rm dn} & {\rm CGCCGGCTATCTTGAATAAC} & {\rm Exon 16} & {\rm 362} & {\rm 58^{\circ}C} \\ {\rm CPT1A}_4473 {\rm up} & {\rm TCTCTCCTTTTCGCCAGTGT} & {\rm Exon 14} & {\rm 195} & {\rm 60^{\circ}C} \\ \\ {\rm CPT1B}_4475 {\rm up} & {\rm AACAGCGGGTTCCTCCTACT} & {\rm Exon 3} & {\rm CPT1B}_4476 {\rm dn} & {\rm GGAAAGCAGCAGTTCAAGG} & {\rm Exon 4} & {\rm 485} & {\rm 60^{\circ}C} \\ \\ {\rm CPT1B}_4476 {\rm dn} & {\rm GGAAAGCAGCAGTTCAACG} & {\rm Exon 4} & {\rm 485} & {\rm 60^{\circ}C} \\ \\ {\rm CPT1B}_4478 {\rm dn} & {\rm CCACGTAAAGGCAGAAGAG} & {\rm Exon 15} & {\rm 332} & {\rm 60^{\circ}C} \\ \\ {\rm CPT2}_4479 {\rm up} & {\rm TGACCGACACTTGTTGCTC} & {\rm Exon 5} & {\rm 215} & {\rm 60^{\circ}C} \\ \\ {\rm CPT2}_4480 {\rm dn} & {\rm TGCAGCCAATGCAGTTGTTG} & {\rm Exon 5} & {\rm 215} & {\rm 60^{\circ}C} \\ \\ {\rm CPT2}_4481 {\rm up} & {\rm CTCGAAACCCCATTGTTTG} & {\rm Exon 4} & {\rm 313} & {\rm 60^{\circ}C} \\ \\ \\ {\rm CPT2}_4482 {\rm dn} & {\rm GGAGTCGAGTGGAATGAA} & {\rm Exon 4} & {\rm 313} & {\rm 60^{\circ}C} \\ \\ \\ {\rm MLYCD}_449 {\rm pup} & {\rm GAGCGAACTGTTCACCGATG} & {\rm Exon 5} & {\rm 206} & {\rm 58^{\circ}C} \\ \\ {\rm MLYCD}_451 {\rm 3up} & {\rm CGCGGACTTTATGAGCGTATG} & {\rm Exon 1} & {\rm 312} & {\rm 60^{\circ}C} \\ \\ \\ {\rm FADS1}_381 {\rm 4dn} & {\rm AGCTTGCTGATGTGAGGGAAT} & {\rm Exon 1} & {\rm 237} & {\rm 58^{\circ}C} \\ \\ {\rm FADS1}_381 {\rm 3up} & {\rm TTGCGACACCTGTCCGTCTT} & {\rm Exon 8} \\ \\ {\rm FADS1}_381 {\rm 4dn} & {\rm ATGTTGATGCGAGACTGTTCACCGATG} & {\rm Exon 9} \\ \\ {\rm FADS1}_381 {\rm 4dn} & {\rm ATGTTGATGCGAGCCTACC} & {\rm Exon 9} \\ \\ {\rm FADS1}_381 {\rm 4dn} & {\rm ATGTTGAAAAACGACTACTCCACG} & {\rm Exon 11} & {\rm 894} & {\rm 60^{\circ}C} \\ \\ \\ {\rm FADS2}_381 {\rm 5up} & {\rm TGCTGGCAGCCTACC} & {\rm Exon 3} \\ \\ {\rm FADS3}_445 {\rm 2up} & {\rm GTGAAGACCTCTGTGCTTTATCACCAG} & {\rm Exon 10} & {\rm 409} & {\rm 57^{\circ}C} \\ \\ \\ {\rm FADS3}_445 {\rm 2up} & {\rm GTGGAGCCCTCCCTTTATCATC} & {\rm Exon 5} \\ \\ {\rm FADS3}_445 {\rm 2up} & {\rm GTGGAGCCCTCCCTCTTATACCAGC} & {\rm Exon 10} & {\rm 409} \\ \\ {\rm FADS3}_445 {\rm 2up} & {\rm GTGGAGCCCTCCCTCTTATCATC} & {\rm Exon 10} \\ \\ {\rm FADS3}_445 {\rm 2up} & {\rm GTGGAGCCTCCCCTCTTCTCATA} & {\rm Exon 10} & {\rm 60^{\circ}C} \\ \\ \\ {\rm FADS3}_445 {\rm 4up} & {\rm CCCTGCGGTAGTTGTGCCTT} & {\rm Exon 10} \\ \end{array} \right \right $	ACACB_4492up	TGAACATGGCTGGTATCTCG	Intron 8	376	60°C
$\begin{array}{c} {\rm CPT1A}_4473 {\rm up} & {\rm TCTCTCCTTTTCGCCAGTGT} & {\rm Exon 14} \\ {\rm CPT1A}_4474 {\rm dn} & {\rm CCTCGGGTCTCACCTTGTAA} & {\rm Intron 14} & {\rm 195} & {\rm 60^\circ C} \\ {\rm CPT1B}_4475 {\rm up} & {\rm AACAGCGGGTTCCTCCTACT} & {\rm Exon 3} \\ {\rm CPT1B}_4476 {\rm dn} & {\rm GGAAAGCAGCAGTTCAAGG} & {\rm Exon 4} & {\rm 485} & {\rm 60^\circ C} \\ {\rm CPT1B}_4477 {\rm up} & {\rm AGCCTCGATGACTCGAATGT} & {\rm Exon 15} & \\ {\rm CPT1B}_4478 {\rm dn} & {\rm CCACGTAAAGGCAGAAGAGG} & {\rm Exon 16} & {\rm 332} & {\rm 60^\circ C} \\ \\ {\rm CPT2}_4479 {\rm up} & {\rm TGACCGACACTTGTTGCTC} & {\rm Exon 5} & \\ {\rm CPT2}_4480 {\rm dn} & {\rm TGCAGCCTATCCAGTTGTTG} & {\rm Exon 5} & 215 & {\rm 60^\circ C} \\ \\ {\rm CPT2}_4481 {\rm up} & {\rm CTCGAAACCCCATTGTTGC} & {\rm Exon 4} & \\ {\rm CPT2}_4482 {\rm dn} & {\rm GGAGCGAACTGTTCACCGATG} & {\rm Exon 4} & \\ \\ {\rm CPT2}_4482 {\rm dn} & {\rm GGAGCGAACTGTTCACCGATG} & {\rm Exon 5} & 206 & 58^\circ {\rm C} \\ \\ {\rm MLYCD}_4499 {\rm up} & {\rm GAGCGAACTGTTCACCGATG} & {\rm Exon 5} & 206 & 58^\circ {\rm C} \\ \\ {\rm MLYCD}_451 {\rm dup} & {\rm CGCGGACTTTATGAGCTTCT} & {\rm Exon 1} & 237 & 58^\circ {\rm C} \\ \\ {\rm FADS1}_381 {\rm up} & {\rm TTGCGACACCTGTCGCGTCTT} & {\rm Exon 4} & \\ \\ {\rm FADS1}_381 {\rm dup} & {\rm TGCGACACCTGTCGCGTCTT} & {\rm Exon 5} & 255 & 60^\circ {\rm C} \\ \\ \\ {\rm FADS1}_385 {\rm lup} & {\rm GGCTCACTCTATGCGAGCGCCTAC} & {\rm Exon 9} & \\ \\ \\ {\rm FADS1}_385 {\rm lup} & {\rm GGACTCGTACTCTATACCATGC} & {\rm Exon 9} & \\ \\ \\ {\rm FADS1}_385 {\rm lup} & {\rm TGCTGACGTGCTGCGTCTT} & {\rm Exon 11} & 894 & 60^\circ {\rm C} \\ \\ \\ \\ {\rm FADS2}_381 {\rm fup} & {\rm TCCTCGCCTGGCTTATCACCA} & {\rm Exon 9} & \\ \\ \\ {\rm FADS2}_381 {\rm fup} & {\rm TCTCGCCTGGCTTATCACC} & {\rm Exon 3} & \\ \\ {\rm FADS3}_445 {\rm fup} & {\rm TCCTCGCCTGGCTTATCATC} & {\rm Exon 3} & \\ \\ {\rm FADS3}_445 {\rm lup} & {\rm TCCTCGCCTGGCTTT} & {\rm Exon 10} & 409 & 57^\circ {\rm C} \\ \\ \\ \\ {\rm FADS3}_445 {\rm dup} & {\rm CCTGGCGTGGTTATCATC} & {\rm Exon 3} & \\ \\ {\rm FADS3}_445 {\rm lup} & {\rm TCCTCGCCTGGCTTATCATC} & {\rm Exon 10} & \\ \\ \\ {\rm FADS3}_445 {\rm dup} & {\rm CCTGGGGTAGTTGTGCCTT} & {\rm Exon 10} & \\ \\ \\ {\rm FADS3}_445 {\rm dup} & {\rm CCTGGCGGTAGTTGTGCCTT} & {\rm Exon 10} & \\ \\ \\ {\rm FADS3}_445 {\rm dup} & {\rm CCTGGGGTAGTTGTGCCTT} & {\rm Exon 10} & \\ \\ \end{array} \right$	CPT1A_4471up	CAATGTGCTTTCTGGTCAGG	Intron 15		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CPT1A_4472dn	CGCCCGCTATCTTGAATAAC	Exon 16	362	58°C
$\begin{array}{c} \mbox{CPT1B}_{4475up} & \mbox{AACAGCGGGTTCCTCCTACT} & \mbox{Exon 3} \\ \mbox{CPT1B}_{4476dn} & \mbox{GGAAAGCAGCAGTTCAAGG} & \mbox{Exon 4} & \mbox{485} & \mbox{60°C} \\ \mbox{CPT1B}_{4477up} & \mbox{AGCCTCGATGACTCGAATGT} & \mbox{Exon 15} & \mbox{CPT2}_{4479up} & \mbox{TGACCGACACTTGTTTGCTC} & \mbox{Exon 5} & \mbox{CPT2}_{4480dn} & \mbox{TGCAGCCTATCCAGTTGTTG} & \mbox{Exon 4} & \mbox{CPT2}_{4480dn} & \mbox{TGCAGACCTTGTTGCTC} & \mbox{Exon 4} & \mbox{CPT2}_{4480dn} & \mbox{TGCAGACCCATTGTTG} & \mbox{Exon 4} & \mbox{CPT2}_{4481up} & \mbox{CTCGAAACCCCATTGTCTG} & \mbox{Exon 4} & \mbox{313} & \mbox{60°C} \\ \mbox{CPT2}_{4482dn} & \mbox{GGGAGTCGAGTGGAATTGAA} & \mbox{Exon 4} & \mbox{313} & \mbox{60°C} \\ \mbox{MLYCD}_{4489up} & \mbox{GAGCGAACTGTTCACCGATG} & \mbox{Exon 5} & \mbox{206} & \mbox{58°C} \\ \mbox{MLYCD}_{4500dn} & \mbox{CCACAGGGTTGAGCGAGTAG} & \mbox{Exon 5} & \mbox{206} & \mbox{58°C} \\ \mbox{MLYCD}_{4513up} & \mbox{GCGGGACTTTATGAGCGTCT} & \mbox{Exon 1} & \mbox{237} & \mbox{58°C} \\ \mbox{FADS1}_{3813up} & \mbox{TTGCGACACCTGTCGGTCTT} & \mbox{Exon 4} & \mbox{FADS1}_{3851dn} & \mbox{GACTCGTACTCTATACCATGCTTG} & \mbox{Exon 9} \\ \mbox{FADS1}_{3851dn} & \mbox{GACTCGTACTGCGGAGCCTAC} & \mbox{Exon 9} & \mbox{FADS2}_{3816dn} & \mbox{CATTGAAAAACGACTACTCCACG} & \mbox{Exon 1} & \mbox{409} & \mbox{57°C} \\ \mbox{FADS3}_{4452dn} & \mbox{GGTCACGTCGGGTCTTGT} & \mbox{Exon 3} & \mbox{FADS3}_{4452dn} & \mbox{GGTCACGTCGGGTCTTGT} & \mbox{Exon 3} & \mbox{FADS3}_{4452dn} & \mbox{GGTCACGTCGGGTATTCCTCTCTAAACCGCT} & \mbox{Exon 1} & \mbox{234} & \mbox{60°C} \\ \mbox{FADS3}_{4452dn} & \mbox{GTGGAGCCTCCCTCTTCTAT} & \mbox{Exon 1} & \mbox{234} & \mbox{60°C} \\ \end{FADS3}_{4454dn} & \mbox{CCTGCGGGTAGTTGTGCCTT} & \mbox{Exon 1} & \\mbox{234} & \mbox{60°C} \\ \end{FADS3}_{4454dn} & \mbox{CCTGCGGGTAGTTGTGCCTT} & \mbox{Exon 1} & \\mbox{234} & \mbox{60°C} \\ \end{FADS3}_{4454dn} & \mbox{CCTGCGGGTAGTGTGTCCTCTCTAAACCGCT} & \mbox{Exon 2} \\ \end{FADS3}_{4454dn} & \mbox{CCTGCGGGTAGTTGTGCCTT} & \mbox{Exon 1} & \\mbox{234} & \mbox{60°C} \\ \end{FADS3}_{4454dn} & \$	CPT1A_4473up	TCTCTCCTTTTCGCCAGTGT	Exon 14		
$\begin{array}{c} {\rm CPT1B_4476dn} & {\rm GGAAAGCAGCAGTTTCAAGG} & {\rm Exon}\ 4 & 485 & 60^\circ{\rm C} \\ {\rm CPT1B_4477up} & {\rm AGCCTCGATGACTCGAATGT} & {\rm Exon}\ 15 & \\ {\rm CPT1B_4478dn} & {\rm CCACGTAAAGGCAGAAGAGG} & {\rm Exon}\ 16 & 332 & 60^\circ{\rm C} \\ {\rm CPT2_4479up} & {\rm TGACCGACACTTGTTTGCTC} & {\rm Exon}\ 5 & \\ {\rm CPT2_4480dn} & {\rm TGCAGCCTATCCAGTTGTTG} & {\rm Exon}\ 5 & \\ {\rm CPT2_4481up} & {\rm CTCGAAAACCCCATTGTCTG} & {\rm Exon}\ 4 & \\ {\rm CPT2_4482dn} & {\rm GGGAGTCGAGTGGAATTGAA} & {\rm Exon}\ 4 & \\ {\rm CPT2_4482dn} & {\rm GGGAGTCGAGTGGAATTGAA} & {\rm Exon}\ 4 & \\ {\rm CPT2_4482dn} & {\rm GGGAGTCGAGTGGAATTGAA} & {\rm Exon}\ 4 & \\ {\rm CPT2_4482dn} & {\rm GGGAGTCGAGTGGAATTGAA} & {\rm Exon}\ 5 & \\ {\rm MLYCD_4500dn} & {\rm CCACAGGGTTGAGCGAGTAG} & {\rm Exon}\ 5 & \\ {\rm MLYCD_4513up} & {\rm CGCGGACTTTATGAGCTTCT} & {\rm Exon}\ 1 & \\ {\rm MLYCD_4514dn} & {\rm AGCTTGCTGATGTGATGGAA} & {\rm Exon}\ 1 & \\ {\rm 237} & {\rm 58^\circ{\rm C}} & \\ {\rm FADS1_3813up} & {\rm TTGCGACACCTGTCCGTCTT} & {\rm Exon}\ 4 & \\ {\rm FADS1_3814dn} & {\rm ATGTTGATGTCTGCGGTCTTGC} & {\rm Exon}\ 5 & \\ {\rm FADS1_3851dn} & {\rm GGACTCGTACTCTATACCATGCTG} & {\rm Exon}\ 9 & \\ {\rm FADS1_3851dn} & {\rm GGACTCGTACTGCGGAGCCTAC} & {\rm Exon}\ 9 & \\ {\rm FADS2_3816dn} & {\rm CATTGAAAAACGACTACTCCACG} & {\rm Exon}\ 1 & \\ {\rm 894} & {\rm 60^\circ{\rm C}} & \\ {\rm FADS3_4451up} & {\rm TCCTCGCCTGGCTTT} & {\rm Exon}\ 3 & \\ {\rm FADS3_4452dn} & {\rm GGTCACGTCTGGCCTTGT} & {\rm Exon}\ 5 & \\ {\rm 844} & {\rm 60^\circ{\rm C}} & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTATTGCCCTT} & {\rm Exon}\ 1 & \\ {\rm 234} & {\rm 60^\circ{\rm C}} & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCT} & {\rm Exon}\ 1 & \\ {\rm 234} & {\rm 60^\circ{\rm C}} & \\ {\rm FADS3_4454dn} & {\rm CCTGCGCTGGGTATGTGCCT} & {\rm Exon}\ 1 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCT} & {\rm Exon}\ 1 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCTT} & {\rm Exon}\ 1 & \\ {\rm AGCTCGCCTGCCTCCTCTTCAT} & {\rm Exon}\ 1 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCTT} & {\rm Exon}\ 2 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCTT} & {\rm Exon}\ 2 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGTAGTTGTGCCTT} & {\rm Exon}\ 2 & \\ {\rm FADS3_4454dn} & {\rm CCCTGCGGGTAGTTGTGCCTT} & {\rm Exon}\ 2 & \\ {\rm FADS3_4454dn} & {\rm CCCTGC$	CPT1A_4474dn	CCTCGGGTCTCACCTTGTAA	Intron 14	195	60°C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CPT1B_4475up	AACAGCGGGTTCCTCCTACT	Exon 3		
CPT1B_4478dnCCACGTAAAGGCAGAAGAGGExon 1633260°CCPT2_4479upTGACCGACACTTGTTGCTCExon 5CPT2_4480dnTGCAGCCTATCCAGTTGTTGExon 521560°CCPT2_4481upCTCGAAACCCCATTGTCTGExon 4CPT2_4482dnGGGAGTCGAGTGGAATTGAAExon 431360°CMLYCD_4499upGAGCGAACTGTTCACCGATGExon 5MLYCD_4500dnCCACAGGGTTGAGCGAGTAGExon 520658°CMLYCD_4513upCGCGGACTTTATGAGCTTCTExon 123758°CFADS1_3813upTTGCGACACCTGTCGCGTCTTExon 4FADS1_3814dnATGTTGATGTGTGCGCACTGTCExon 525560°CFADS1_3850upGGCTCACTTATGGCGCACTGTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4454dnCCCTGCGGTGGCTTATCATCExon 1040957°CFADS3_4454dnGGTGAGCCCTCCCTCTTCATExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	CPT1B_4476dn	GGAAAGCAGCAGTTTCAAGG	Exon 4	485	60°C
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CPT1B_4477up	AGCCTCGATGACTCGAATGT	Exon 15		
CPT2_4480dnTGCAGCCTATCCAGTTGTTGExon 521560°CCPT2_4481upCTCGAAACCCCATTGTCTTGExon 431360°CMLYCD_4499upGAGCGAACTGTTCACCGATGExon 5MLYCD_4499upGAGCGAACTGTTCACCGATGExon 5MLYCD_4500dnCCACAGGGTTGAGCGAGTAGExon 5206MLYCD_4513upCGCGGACTTTATGAGCTTCTExon 1237MLYCD_4514dnAGCTTGCTGATGTGATGGAAExon 1237MLYCD_4514dnAGCTTGCTGCGTCTTExon 4FADS1_3813upTTGCGACACCTGTCGGTCTTTExon 4FADS1_3814dnATGTTGATGTCGCGTCTTGCExon 5255FADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°C60°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 3FADS3_4451upTCCTCGCCTGGGTTATCATCExon 3FADS3_4452dnGGTCACGTCGGGTCCTTGTExon 10440957°CFADS3_4453upGTGGAGCCCTCCCTCTTCATFADS3_4451upCCCTGCGGTAGTTGTGCCTTFADS3_4451upGTGGAGCCCTCCCTCTTCATFADS3_4452dnGGTCACGTCTGGGTCCTTGTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dnCCCTGCGGTAGTTGTGCCTTFADS3_4454dn	CPT1B_4478dn	CCACGTAAAGGCAGAAGAGG	Exon 16	332	60°C
CPT2_4481upCTCGAAACCCCATTGTCTTGExon 4CPT2_4482dnGGGAGTCGAGTGGAATTGAAExon 431360°CMLYCD_4499upGAGCGAACTGTTCACCGATGExon 5	CPT2_4479up	TGACCGACACTTGTTTGCTC	Exon 5		
CPT2_4482dnGGGAGTCGAGTGGAATTGAAExon 431360°CMLYCD_4499upGAGCGAACTGTTCACCGATGExon 5MLYCD_4500dnCCACAGGGTTGAGCGAGTAGExon 520658°CMLYCD_4513upCGCGGACTTTATGAGCTTCTExon 123758°CFADS1_3813upTTGCGACACCTGTCGGTCTTExon 4FADS1_3814dnATGTTGATGTCGGGTCTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 9FADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	CPT2_4480dn	TGCAGCCTATCCAGTTGTTG	Exon 5	215	60°C
MLYCD_4499upGAGCGAACTGTTCACCGATGExon 5MLYCD_4500dnCCACAGGGTTGAGCGAGTAGExon 520658°CMLYCD_4513upCGCGGACTTTATGAGCTTCTExon 123758°CMLYCD_4514dnAGCTTGCTGATGTGATGGAAExon 123758°CFADS1_3813upTTGCGACACCTGTCCGTCTTExon 4FADS1_3814dnATGTTGATGTCTGCGTCTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	CPT2_4481up	CTCGAAACCCCATTGTCTTG	Exon 4		
MLYCD_4500dnCCACAGGGTTGAGCGAGTAGExon 520658°CMLYCD_4513upCGCGGACTTTATGAGCTTCTExon 123758°CMLYCD_4514dnAGCTTGCTGATGTGATGGAAExon 123758°CFADS1_3813upTTGCGACACCTGTCCGTCTTExon 4FADS1_3814dnATGTTGATGTCTGCGTCTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGGTCCTTGTExon 584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 22460°C	CPT2_4482dn	GGGAGTCGAGTGGAATTGAA	Exon 4	313	60°C
MLYCD_4513upCGCGGACTTTATGAGCTTCTExon 1MLYCD_4514dnAGCTTGCTGATGTGATGGAAExon 123758°CFADS1_3813upTTGCGACACCTGTCCGTCTTExon 4FADS1_3814dnATGTTGATGTCTGCGTCTTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGGTCCTTGTExon 584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	MLYCD_4499up	GAGCGAACTGTTCACCGATG	Exon 5		
MLYCD_4514dnAGCTTGCTGATGTGATGGAAExon 123758°CFADS1_3813upTTGCGACACCTGTCCGTCTTExon 4FADS1_3814dnATGTTGATGTCTGCGTCTTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGGTCCTTGTExon 584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	MLYCD_4500dn	CCACAGGGTTGAGCGAGTAG	Exon 5	206	58°C
FADS1_3813upTTGCGACACCTGTCCGTCTTExon 4FADS1_3814dnATGTTGATGTCTGCGTCTTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTTExon 855FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 957°CFADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3584460°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 1040957°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 255	MLYCD_4513up	CGCGGACTTTATGAGCTTCT	Exon 1		
FADS1_3814dnATGTTGATGTCTGCGTCTTTGCExon 525560°CFADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 2	MLYCD_4514dn	AGCTTGCTGATGTGATGGAA	Exon 1	237	58°C
FADS1_3850upGGCTCACTTATGTGCCACTGTTExon 8FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1023460°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 255	FADS1_3813up	TTGCGACACCTGTCCGTCTT	Exon 4		
FADS1_3851dnGGACTCGTACTCTATACCATGCTTGExon 1189460°CFADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 101010°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 210°C	FADS1_3814dn	ATGTTGATGTCTGCGTCTTTGC	Exon 5	255	60°C
FADS2_3815upTGATTGACTGCGAGCCCTACExon 9FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 357°CFADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1040957°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1057°C50°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 250°C50°C	FADS1_3850up	GGCTCACTTATGTGCCACTGTT	Exon 8		
FADS2_3816dnCATTGAAAAACGACTACTCCACGExon 1040957°CFADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 10FADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	FADS1_3851dn	GGACTCGTACTCTATACCATGCTTG	Exon 11	894	60°C
FADS3_4451upTCCTCGCCTGGCTTATCATCExon 3FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1060°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 260°C	FADS2_3815up	TGATTGACTGCGAGCCCTAC	Exon 9		
FADS3_4452dnGGTCACGTCTGGGTCCTTGTExon 584460°CFADS3_4453upGTGGAGCCCTCCCTCTTCATExon 1060°CFADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	FADS2_3816dn	CATTGAAAAACGACTACTCCACG	Exon 10	409	57°C
FADS3_4453upGTGGAGCCCTCCCTCTTCATExon 10FADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 11234SCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	FADS3_4451up	TCCTCGCCTGGCTTATCATC	Exon 3		
FADS3_4454dnCCCTGCGGTAGTTGTGCCTTExon 1123460°CSCD5_3817upATGCTTCCTCCTAAACCGCTExon 2	FADS3_4452dn	GGTCACGTCTGGGTCCTTGT	Exon 5	844	60°C
SCD5_3817up ATGCTTCCTCCTAAACCGCT Exon 2	FADS3_4453up	GTGGAGCCCTCCTCTTCAT	Exon 10		
	FADS3_4454dn	CCCTGCGGTAGTTGTGCCTT	Exon 11	234	60°C
SCD5_3818dn GCGACTGCAAGAAATATCCTCA Exon 2 106 56°C	SCD5_3817up	ATGCTTCCTCCTAAACCGCT	Exon 2		
	SCD5_3818dn	GCGACTGCAAGAAATATCCTCA	Exon 2	106	56°C

Table 3.2 Primers used for colony PCRs.

Sequence variant identification

Screening for sequence variants was performed by re-sequencing twelve parental animals of the $M \times P$ family containing two Mangalitsa and ten Piétrain pigs. Primers for both PCR amplification and sequencing (Table 3.3) were selected from the annotated BAC sequences. Sequencing reactions were carried out with the BigDye Terminator v1.1 Cycle Sequencing Kit and were resolved using ABI 377 DNA sequencer (Applied Biosystems). Base calling, detection conducted sequence assembly and variant were using the Phred/Phrap/Polyphred/Consed software (Nickerson et al. 1997; Ewing & Green 1998; Ewing et al. 1998; Gordon et al. 1998).

Gene/Primer number	Primer sequences (5'-3')	Primer binding region	Product size (bp)	Annealing temperature
ACACA		-	· • /	
ACACA_5303up	GAGCAGTTAGCCAGACTTTTGA	Exon 1		
ACACA_5304dn	ATTTCGACGTTCCAGAAGCA	Exon 1	345	60°C
ACACA_5912up	TCTTGCAGTGCTACTCATGGAT	Exon 1		
ACACA_5913dn	TGGGACATACCTAGCCCTCA	Intron 1	211	59°C
ACACA_5305up	TTTTGAGTGTGTAATGCTTTTGG	Intron 3		
ACACA_5306dn	GCCTATATTCTTCTGTGCAAGGT	Intron 4	378	60°C
ACACA_5189up	TGCCATTGGAAGTGCTGTTA	Intron 5		
ACACA_5190dn	TGCTAAGGAGGCAGAAAGGA	Intron 6	390	60°C
ACACA_4876up	TTGAAACACTGGCTTGTCAGA	Intron 6		
ACACA_4877dn	ATGGCATTCTCAAACTGATGTT	Intron 7	698	57°C
ACACA_5200up	ATCCCATGAATGCAGTTTGT	Intron 7		
ACACA_5201dn	GGCTACGCCCTTGTGTGTAA	Intron 8	296	57°C
ACACA_4880up	TTGGAGTAGGGCAGGTCTTG	Intron 8		
ACACA_4881dn	GGGAGTAAGGACCAAAATGACA	Intron 9	521	57°C
ACACA_5898up	TGACAGAAAGGAGGCTAAAATG	Intron 9		
ACACA_5899dn	ACCCAAGCCATAATCCCAAA	Intron 10	231	60°C
ACACA_5202up	GCAGAAAATTGACGAGAACTGA	Intron 10		
ACACA_5203dn	TCCAGGTGAGCCTATTGCTT	Intron 11	384	57°C
ACACA_5900up	TGCCAGTCTTCTCCTTCACTAC	Intron 11		
ACACA_5901dn	AGACATCCAAATGATAGCACGA	Intron 12	240	60°C
ACACA_5204up	TTGGCTGTTTGGAACTGATG	Intron 12		
ACACA_5205dn	AAGTGTCTGCTGGCAACTGTA	Intron 13	720	60°C
ACACA_5206up	CAGTGTTCACCCAGCTTTGA	Intron 13		
ACACA_5207dn	CCAGTTTTACAGGCACCTCTG	Intron 14	456	60°C
ACACA_5902up	CTGAGAAAAACGAGTGATGTGTG	Intron 14		
ACACA_5903dn	GAGAGGGGGGTGGGATGTAA	Intron 15	241	60°C
ACACA_4485up	CTCTAGTGAAAATCCAGATGAGG	Exon 15		
ACACA_4486dn	GGCTTGTGAACCAATGTCCA	Intron 15	447	58°C
ACACA_5208up	ATAGGCTTCATCAGGGCAGA	Intron 15		

 Table 3.3 Primers used in PCR- re-sequencing for sequence variant detection.

ACACA_5209dn	TGGATCAGAGCAGCAAACAG	Intron 16	617	60°C
ACACA_5210up	CTCCCTCCTAAGATGCCAAA	Intron 16		
ACACA_5211dn	TGCCTCCCTTCAAATAGACC	Intron 17	472	60°C
ACACA_5212up	TTGAGCAACAGGATGGAGAG	Intron 17		
ACACA_5213dn	ACCTAGAGCCCCCAAATCAG	Intron 18	422	60°C
ACACA_5214up	CCAGGAAATGCTGTTACCAA	Intron 18		
ACACA_5215dn	GAGGCGAGAAGCGAGAAGTA	Intron 19	227	60°C
ACACA_5216up	GACTTCATCTGGGAGGGACA	Intron 19		
ACACA_5217dn	TTGACTGATGGGAGGAAAGG	Intron 20	264	60°C
ACACA_5218up	AACGTACATACTCCCACTTATTTCC	Intron 20		
ACACA_5219dn	TGTCCCTGTCAACCCTTTTC	Intron 21	243	60°C
ACACA_5220up	TGAACATGAGACACGGGAGA	Intron 21		
ACACA_5221dn	ATTCCTCGTGCAAAATCAGG	Intron 22	492	60°C
ACACA_5222up	TTGGCATCACGGAACTAGAG	Intron 22		
ACACA_5223dn	CAGTGACACAGATAAGAAGCAAGG	Intron 23	533	60°C
ACACA_5375up	TAAATCTGGGCTCTGGGTGT	Intron 25		
ACACA_5376dn	GACTGGGGAAAGGAGGAAAG	Intron 26	305	58°C
ACACA_5377up	GCGAGCACCAGTTCTTCTTG	Intron 26		
ACACA_5378dn	CCAAACCCCACTCATCTCAC	Intron 27	279	58°C
ACACA_4487up	ACAACTCAGCTTGGCTTGCT	Intron 32		
ACACA_4488dn	CTGACACGGTGGAGTGAATG	Exon 33	502	60°C
ACACA_5161up	GCATCAAATGGTCCCTGACT	Intron 40		
ACACA_5162dn	CAGCCCCTCTAGGTCAAATG	Intron 41	518	60°C
ACACA_4962up	TGTCTCTGACATGGGCTCAC	Intron 44		
ACACA_4963dn	CTTCATCCTCCACATGCTCA	Exon 45	1258	60.6°C
ACACA_5904up	ATGTTCTCGTTTCCCACAGA	Intron 43		
ACACA_5905dn	AAATCTCTACCTCTCTCCCACCT	Intron 44	504	60°C
ACACA_4923up	TTGGAACAAGCTGCATTACG	Intron 44		
ACACA_4924dn	TCTCTTGGTAGGACTGTAGCTGA	Intron 45	466	60°C
ACACA_5307up	CCTCCTGGTAATTGCTGCTC	Intron 45		
ACACA_5308dn	GCCACACAGTCAGCTCTTCA	Intron 46	249	60°C
ACACA_5906up	TCTGTGCCTTAGTTCTTATACCTTG	Intron 46		
ACACA_5907dn	TCACATACTTTCTCCCAAATGCT	Intron 47	216	60°C
ACACA_5309up	AGCTCTGTGTCAGGGAGGAA	Intron 47		
ACACA_5310dn	GTCCTATGGGCTCTGTCGTG	Intron 48	288	60°C
ACACA_5311up	TAACGATTGATGCTGGGTTG	Intron 48		
ACACA_5312dn	GAAAGGAAGAATGAAAGCTGGA	Intron 49	248	60°C
ACACA_5908up	GAAATAGGAGATGAGGTCTGAAGG	Intron 49		
ACACA_5909dn	GGGTAGAGAGGGTGACTGGTG	Intron 50	640	60°C
ACACA_5313up	CGTGTCTTGATGTGGGATTG	Intron 50		
ACACA_5314dn	CTCTAAGGCTGGTGGTCTGC	Intron 51	283	60°C
ACACA_5315up	TGGAATCAAGACAAGGAGTGA	Intron 51		
ACACA_5316dn	CAGAAAAGCGGACCAGAGAC	Intron 52	665	60°C
ACACA 5317up	TGCTCCCTGGTTTCTGATGT	Intron 52		
ACACA_5318dn	TCCAGCATGATTCCCTTCTC	Intron 53	395	60°C
ACACA_5910up	CTCGTTCCGTTGTCTCCTTC	Intron 53		
ACACA_5911dn	CGGGTGACTTCTGCTTTCTT	Intron 54	400	60°C
ACACA_5319up	TGGATGTGGGAAAAGAGGAG	Intron 54		
ACACA_5320dn	CATGCAAGAGGCAGACACAG	Intron 55	631	60°C
_				

ACACA_5163up	CTGAACTGGGGGCAACTAAGC	Intron 55		
ACACA 5164dn	GTGTTACTGTCGGGGAGGAA	Intron 56	363	60°C
ACACA 5321up	AGCATTTCCCTCTCAACCAG	Intron 56		
ACACA_5322dn	GCCTCACCCTTTGTTCCTAA	Intron 57	565	60°C
ACACA_5323up	CATGACCCAGCACATCTCAC	Exon 58		
ACACA 5324dn	CTTGCAGATTTCACGTTCCA	3' end	665	60°C
ACACB				
ACACB 5167up	GTGGCTCTCCCAGAAAACAA	5' flanking		
ACACB 5168dn	AGCTTGTAGGGCAAAGGTCA	5' flanking	525	60°C
ACACB_5088up	ATTCAGGCATGGACTTGGAC	5' flanking		
ACACB_5034dn	GATGAACTGACCCCTGCTGT	Exon 1a	832	60°C
ACACB_5035up	TCCAGGAGAGCCAAAATGAC	5' flanking		
ACACB 5036dn	CATTCTGTTTGGAGCCCTTC	Intron 1a	501	60°C
ACACB_5037up	AACTGTGAATTGGGGGGAGTG	5' flanking		
ACACB 5038dn	AGCCAGAGGCTGGTATGATG	Exon 1b	511	60°C
ACACB_5039up	CTTTTGCAGAGGGCTACAGG	5' flanking		
ACACB_5040dn	GGTCATAACGAAGGCAGGAA	Intron 1b	537	60°C
ACACB_5041up	GGCTCTCACATCAGCTCCTT	Intron 1		
ACACB 5042dn	TTTCACCTGGCTACCCTCAC	Intron 2	849	60°C
ACACB_5043up	TTCGGCTTCTCTGTCCATGT	Intron 2		
ACACB_5044dn	GGTCACACACATGTTGCTTCA	Intron 3	344	60°C
ACACB_5072up	CAGCCTTCAGCACAGGTAGG	Intron 3		
ACACB 5073dn	AGGGTAGAGGAGATGAGAGTAGG	Intron 4	250	60°C
ACACB 5074up	CCCTCAACTTCTGACCCTCA	Intron 4		
ACACB 5075dn	TCAAGCTGGTCCCTCCATAC	Intron 6	794	60°C
ACACB_5076up	AGCTGGGACCTGGGTACTTT	Intron 6		
ACACB_5077dn	CTCGGGTCACTCCTCACTTC	Intron 7	284	60°C
ACACB_5078up	TTGTGTCTGGGCTGTTCTTG	Intron 7		
ACACB_5079dn	AATGCCCTCTTGATGGTGAC	Intron 9	492	60°C
ACACB 5080up	CGTGCCTGCTTTGGATAACT	Intron 9		
ACACB 5081dn	GGGCAGGGAAGTCAGATTAG	Intron 11	799	60°C
ACACB_5082up	GCACAGGATGTTGTTTTGTGA	Intron 11		
ACACB 5083dn	CTCGTCCAGGTTAAGGTTCG	Intron 12	492	60°C
ACACB 5084up	ACACCTGCACCCCTAGTGAG	Intron 12		
ACACB_5085dn	CCTCCCTTCATCTCAAGTGC	Intron 13	414	60°C
ACACB_5086up	TGGGAAAACAACCTGTGTCC	Intron 13		
ACACB_5087dn	CCTGCTTCTGCCTTAACTGC	Intron 15	442	60°C
ACACB_5111up	AGCAAGAGCGGATGTCCTTA	Intron 15		
ACACB_5112dn	AGCATGAGAAAACCCACCAC	Intron 16	404	60°C
ACACB_5113up	CGAGGGCTAGGACTCAACAG	Intron 16		
ACACB_5114dn	CTTGCTCTGATGGGTGTGAA	Intron 17	598	60°C
ACACB_5115up	AAGGCTGTCAGTGGGTCAGT	Intron 17		
ACACB_5116dn	GTGCAGCAGCATTGTCAGAT	Intron 18	531	60°C
ACACB_5117up	CAAACCCTCTGCTGGAACTC	Intron 18		
ACACB_5118dn	TGGGAGCCTCAAGTCTGAAC	Intron 19	340	60°C
ACACB_5169up	CAGGAAGTGGAGCTGGTCAT	Intron 22		
ACACB_5170dn	GCTCTGGGTACAGGGGATCT	Intron 24	384	60°C
ACACB_5129up	GGGCTTGTGTATCAGGCTGT	Intron 24		
ACACB_5130dn	GAGGAAGCAGTTCTGGGATG	Intron 26	841	60°C
_				

	ACACB_5171up	AGAGCGAACACTGCAAGGTG	Exon 25		
	ACACB 5172dn	GTGGGAGGCGATCAGGAC	Exon 26	196	60°C
	ACACB 5131up	TTGGGAAGGCTCTAATGTGG	Intron 28		
	ACACB_5132dn	GCTCAGGGTGTTCTGGAGAG	Intron 29	289	60°C
	ACACB 5173up	GCACCCACAGGAACTTTGAT	Intron 29/Ex	on 30	
	ACACB_5174dn	CACATGGACACCTCACCAAG	Intron 31	371	60°C
	ACACB_5133up	ACTCCCCATGTGTCCGTATG	Intron 33		
	ACACB_5134dn	CTAAACCCTGAGTGGCAGGA	Intron 34	533	60°C
	ACACB 5135up	CTGAAATTGAATCGCTGTGG	Intron 35		
	ACACB 5136dn	GGGAATGGAGAACTGGGATT	Intron 36	404	60°C
	ACACB_5175up	CTGAGACTTGCCTCCCTCAC	Intron 36		
	ACACB_5176dn	GCATTCAAAGGACCAGAAGG	Intron 37	529	60°C
	ACACB_5121up	CAACAACAGAAGCGAGGTGA	Intron 38		
	ACACB 5122dn	TACAGCAGGAGCTCAGTGGA	Intron 39	439	60°C
	ACACB_5123up	CCCTGCCCACAAAGTAGTGT	Intron 39		
	ACACB_5124dn	ATGAACCACCAGCAAAAAGG	Intron 40	259	60°C
	ACACB_5125up	GGCTGCTTTATCTGCTTTGG	Intron 40		
	ACACB 5126dn	GGAGCCAGGGATGGTACATA	Intron 41	359	60°C
	ACACB_5127up	CTCCCTGGATTACGACGAGA	Exon 41		
	ACACB 5128dn	CTACAGGTCCACTCCCCAGA	Intron 42	631	60°C
	ACACB_5137up	CAGGACCTTGCTAACCATGC	Intron 42	0.51	00 0
	ACACB_5138dn	TAAACCCCAGCCACATTTTC	Intron 43	290	60°C
	ACACB_5139up	TGAAGTGTCAGACCCAGTGC	Intron 43	_> 0	
	ACACB_5140dn	CACGCTCCTTTATCCCAGAG	Intron 44	387	60°C
	ACACB_5177up	TGGCAACCACAAGTCTGTTC	Intron 44	201	
	ACACB 5178dn	CTAAGGCCACAAGCAAATCC	Intron 45	373	60°C
	ACACB_5179up	CCCGACTGAAAACGGTACAC	Intron 45	515	00 0
	ACACB_5180dn	AGAACCCACGAAAACAGCAG	Intron 46	294	60°C
	ACACB_5181up	TATTGATGCCAATGCAGAGC	Intron 46	_/ .	
	ACACB 5182dn	TGATGATGGGACCATTCAGA	Intron 47	326	60°C
	ACACB 5183up	CTCCCACCTGACCACACTCT	Intron 47	520	00 0
	ACACB_5184dn	CCCTTTGGAAGCTCAGAACA	Intron 48	416	60°C
	ACACB 5119up	ACTGCATGAGCGACTTGATG	Intron 49	110	00 0
	ACACB 5120dn	TGTGTGTGTTGACTGCAGGA	Intron 50	289	60°C
	ACACB_5187up	ACCCTGCCCTATTGCTCTGT	Intron 50	207	00 0
	ACACB_5188dn	CACCGTCTGGTTGTTGTCC	Exon 52	650	60°C
	ACACB_5143up	CTTGCGGTTGTTCTCATTCC	Intron 52	050	00 C
	ACACB 5144dn	CGCTTAAGTCAAGAGCTGGTC	3' flanking	706	60°C
•	CPT1A		5 Hunking	/00	00 C
	CPT1A 5846up	CGTGTCTGTCGGTAGAATGG	Intron 2		
	CPT1A_5840up CPT1A_5847dn	GGAATGCAGAACAGCAACAG	Intron 3	256	60°C
	CPT1A_5244up	GGGTCGTCCTGTGTCTCATC	Intron 3	230	
	CPT1A_5244up CPT1A_5245dn	CAGGTGTGTGTGTCTGCAAAGG	Intron 4	444	60°C
	—		Intron 4 Intron 4	444	00 C
	CPT1A_5848up	TCTCACCTTTTTGCGTGTTG	Intron 4 Intron 5	245	60°C
	CPT1A_5849dn	TGCCAGTAAATGAATGTCTGCT	Exon 6	245	00 C
	CPT1A_5246up	GTACCTGGAATCCGTGAAGC	Exon 6 Intron 6	201	60°C
	CPT1A_5247dn		Intron 6 Intron 6	291	60°C
	CPT1A_5248up CPT1A_5249dn	TGTAACTCAGCACGAAGTGAAAA GGAAAATAGAGGAGGAGAAGGTG	Intron 6 Intron 7	434	57°C
	CETTA_3249011	UUAAAATAUAUUAUUAUAUAAUUIU	muon /	434	57 C

CPT1A_5850up	AACCAGTCTCTTTCCCAGCA	Intron 7		
CPT1A_5851dn	AAAAAGCAGTTTGTTTGCTTACC	Intron 8	257	60°C
CPT1A_5852up	GGGCTCCTTAAATTCGTGTG	Intron 8		
CPT1A_5853dn	ATCGGCGTGGTCTCCTCT	Intron 9	474	60°C
CPT1A_5250up	GGCTGCTGTATCGACTCCTC	Intron 9		
CPT1A_5251dn	AAGCCTGCCTCCTTCCTCT	Intron 10	574	60°C
	CACTGCGGAGAAAATCACAA	Intron 10		
CPT1A_5253dn	AAGCCAGAGCTGACATCCAC	Intron 11	797	60°C
CPT1A_5254up	TGTCAGGAACAGGGGAGATG	Intron 11		
CPT1A_5255dn	CCGTAGGAAACAAAGGCAGA	Intron 12	442	57°C
CPT1A_5256up	CTTTGGGAGGTCAGGTGTG	Intron 12		
CPT1A_5257dn	ACGCTTTCAATGGGAGAAGA	Intron 13	414	57°C
CPT1A_5854up	GAGGAGGCGTCTGTGCTT	Intron 13		
CPT1A_5855dn	GGCTTCTGCTGGACACACAT	Intron 14	334	60°C
CPT1A_5856up	AGCTAATGCCGTTTCCACCT	Intron 14		
CPT1A_5857dn	CCTTCTCATGCTTTCTGTCC	Intron 15	466	60°C
	TCCTTTGCTTCTTAGGTGGA	Intron 15		
CPT1A_5859dn	TAGCCCGTGATTATTTTCGT	Intron 16	362	60°C
CPT1A_5258up	CTTCTCGGGGGACGGAACA	Intron 16		
CPT1A_5259dn	GCATGAATAACCAGCAGGAG	Intron 17	303	60°C
	TGAATGTGCTTTTCCGTAGGT	Intron 17		
CPT1A_5861dn	GTCTCCCATCAAATCAAAGAGA	Intron 18	203	60°C
CPT1A_5260up	GTGACAAGGCTGGAAAGGTG	Intron 18		
CPT1A_5261dn	GTCATTCACTCCACGGCAAG	Intron 19	481	60°C
CPT1B				
CHKB_4815up	AGCCGAGTGTTCTCACCAGT	Intron 10		
CHKB_4815up CHKB_4816dn	AGCCGAGTGTTCTCACCAGT CACTTTCAAGCCCAGATCGT	Intron 10 Exon 11-3' UTR	454	60°C
		Exon 11-3'	454	60°C
CHKB_4816dn	CACTTTCAAGCCCAGATCGT	Exon 11-3' UTR	454 500	60°C 60°C
CHKB_4816dn CPT1B_5886up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC	Exon 11-3' UTR Promoter		
CHKB_4816dn CPT1B_5886up CPT1B_5887dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT	Exon 11-3' UTR Promoter Promoter		
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG	Exon 11-3' UTR Promoter Promoter Promoter	500	60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAGG	Exon 11-3' UTR Promoter Promoter Promoter Intron 1	500	60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAGG GAGCAAAGCCCTTCTGTGAG	Exon 11-3' UTR Promoter Promoter Promoter Intron 1 Exon 1	500 529	60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2	500 529	60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2	500 529 572	60°C 60°C 56°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 4	500 529 572	60°C 60°C 56°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5995dn CPT1B_5227dn CPT1B_5890up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 4 Intron 4	500 529 572 945	60°C 60°C 56°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5890up CPT1B_5891dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5	500 529 572 945	60°C 60°C 56°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5227dn CPT1B_5891dn CPT1B_5228up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGCTTGTC	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5	500 529 572 945 250	60°C 60°C 56°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5295dn CPT1B_5227dn CPT1B_5890up CPT1B_5891dn CPT1B_5228up CPT1B_5229dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGCTTGTC TGTCAGCTATGGGGTCTCCT	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 7	500 529 572 945 250	60°C 60°C 56°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5227dn CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5229dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGCTTGTC TGTCAGCTATGGGGGTCTCCT CGCATTTCATCTCTGGCTCT	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 7 Intron 7	500 529 572 945 250 672	60°C 60°C 56°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5890up CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5230up CPT1B_5231dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGCTTGTC TGTCAGCTATGGGGTCTCCT CGCATTTCATCTCTGGCTCT	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 9	500 529 572 945 250 672	60°C 60°C 56°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5295dn CPT1B_5227dn CPT1B_5227dn CPT1B_5890up CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5231dn CPT1B_5231dn CPT1B_5892up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAACAGGAG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGGCTTGTC TGTCAGCTATGGGGTCTCCT CGCATTTCATCTCTGGCTCT CCTGACCCTCTTTCAACGTC GTCCACCTAGCCACCCAGA	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 9 Intron 9	 500 529 572 945 250 672 495 	60°C 60°C 56°C 60°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5227dn CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5230up CPT1B_5231dn CPT1B_5892up CPT1B_5893dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAAAAGG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGGTCTCCT CGCATTTCATCTCTGGCTCT CCTGACCCTCTTTCAACGTC GTCCACCTAGCCACCCAGA CTGCTGCCGTTAGTTCCA	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 9 Intron 9 Intron 10	 500 529 572 945 250 672 495 	60°C 60°C 56°C 60°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5227dn CPT1B_5890up CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5231dn CPT1B_5231dn CPT1B_5893dn CPT1B_5893dn CPT1B_5234up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAACAGGAG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGCTTGTC TGTCAGCTATGGGGTCTCCT CGCATTTCATCTCTGGCTCT CCTGACCCTCTTTCAACGTC GTCCACCTAGCCACCAGA CTGCTGCCGTTAGTTCCA	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 7 Intron 9 Intron 9 Intron 10 Exon 10	 500 529 572 945 250 672 495 474 	60°C 60°C 56°C 60°C 60°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5295dn CPT1B_5226up CPT1B_5227dn CPT1B_5891dn CPT1B_528up CPT1B_5228up CPT1B_5229dn CPT1B_5231dn CPT1B_5231dn CPT1B_5892up CPT1B_5234up CPT1B_5235dn	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAACAGGAG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGGCTTGTC TGTCAGCTATGGGGTCTCCT CGCATTTCATCTCTGGCTCT CCTGACCCTCTTTCAACGTC GTCCACCTAGCCACCCAGA CTGCTGCCGTTAGTTCCA	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 9 Intron 9 Intron 10 Exon 10 Intron 11	 500 529 572 945 250 672 495 474 	60°C 60°C 56°C 60°C 60°C 60°C 60°C
CHKB_4816dn CPT1B_5886up CPT1B_5887dn CPT1B_5224up CPT1B_5225dn CPT1B_5994up CPT1B_5995dn CPT1B_5226up CPT1B_5227dn CPT1B_5227dn CPT1B_5891dn CPT1B_5228up CPT1B_5229dn CPT1B_5231dn CPT1B_5231dn CPT1B_5231dn CPT1B_5893dn CPT1B_5235dn CPT1B_5235dn CPT1B_5236up	CACTTTCAAGCCCAGATCGT TCTTCCTTCACACCCTGTCC GAATCTACCCGCCTCTCTGT TGGAGATCAGGGAACAGGAG CTCCAACCACAGGGAACAGGAG GAGCAAAGCCCTTCTGTGAG GGCTCTATTCTGCACCTGCT TTGTCAAGGTCCTCCACTCC CTCCAGCTCAGAACCCAAAG CCTCCTTTGCTAGTTTCCATTC GCCCACTCTTTCCTTATGTTC CTGGACTCAGAGGGGTCTCCT CGCATTTCATCTCTGGCTCT CGCACTCATGCGGGTCTCCT CGCACCTCATAGCCACCAGA CTGCTGCCGTTAGTTCCA CAGCACCTCACAGACAGCA TTAGTTCCAGCACCCTCAC	Exon 11-3' UTR Promoter Promoter Intron 1 Exon 1 Intron 2 Intron 2 Intron 2 Intron 4 Intron 4 Intron 5 Intron 5 Intron 5 Intron 7 Intron 7 Intron 7 Intron 9 Intron 9 Intron 10 Exon 10 Intron 11 Intron 10	 500 529 572 945 250 672 495 474 367 	60°C 60°C 56°C 60°C 60°C 60°C 60°C 60°C

CPT1B_5239dn	GGCAGAAATGGAGCAGTGAA	Intron 15	716	60°C
CPT1B_5240up	GCTGCTCTTCACTGCTCCA	Intron 15		
CPT1B_5241dn	GCCCATCGACACTGACCT	Intron 16	201	60°C
CPT1B_5894up	TTGAGGAACAGCAGGAAGG	Intron 16		
CPT1B_5895dn	ACAAACCAGCCCACTTGAGA	Intron 17	583	60°C
CPT1B_5896up	GCAAGGGCTGGTTTACCTCT	Intron 17		
CPT1B_5897dn	AAGGGCATCTGGTGTTTCTC	Exon 19	362	60°C
CPT1B_4813up	CCACGTCTCCAGCAAGTTCT	Exon 18		
CPT1B_4814dn	CAGAAGCCTCCGCAAATAGT	Exon 19-3' UTR	600	55°C
CPT2				
CPT2_5345up	AGTCTCACATGGTCCCCTGA	Promoter		
CPT2_5346dn	TCTGCAACCTACACCACAGC	Promoter	502	60
CPT2_5343up	TGCTCAGTGGGTTAACAATCC	Promoter		
CPT2_5344dn	GAACCGCTTCGAGTCCTTC	Promoter	703	60
CPT2_4987up	GAGAAGGCCAAGGAAGGACT	Promoter		
CPT2_4988dn	CCCTTCTCCTCTTCCGAAAC	Promoter	587	60
	CCCAAGGACAGAGTCTGGAA	5' UTR		
CPT2 4984dn	GTACTGACCCCGCTGGAAG	Exon 1	550	60
	CTGCACACCAAAAACCACAC	Exon 1		
CPT2 4986dn	GGGTTCAGCAGAACAGTCGT	Intron 1	289	60
 CPT2_4989up	TGGGCAGCCACTTAACTTCT	Intron 1		
CPT2 4990dn	CCTGGTAACCCAATCGAATC	Intron 2	259	60
CPT2 4991up	TGGAGACCCAGAGTTCCTTG	Intron 2		
CPT2 4992dn	CATTATGGAGGGCTCTGGAA	Intron 3	255	60
CPT2 4884up	CCCTGGTTTGACATGTACCT	Exon 4		
CPT2 4885dn	GCCTGGCTGCTGTCTTTAAA	Exon 4	839	60
CPT2 5001up	GCCGTGCTCAGGTTCTTAAA	Exon 4		
CPT2_5002dn	TATAGACAGGCTCCCCATGC	Intron 4	539	60
CPT2 4993up	TTCTGACTCCGGTTTTCCAC	Intron 4		
CPT2 4994dn	CACCTGAGGCATATGGAGGT	3' end	741	60
FADS1		5 end	, 11	
FADS1_4558up	GAAGCGGGAGTTCATCAGGT	5' flanking		
FADS1_4561dn	CGCTCACCGTAGCATCCTG	Exon 1/ Intron 1	897	64°C (HotStart Taq + 5% DMSO)
FADS1_4852up	TTCTTCACCTGGGAGGAGGT	Exon 1		- / / /
FADS1 4853dn	GCTCAGCCCTTTGTTTGGTA	Intron 1	428	60°C
FADS1 4562up	TGCCTCACTGTTCTGCCTTCT	Intron 1		
FADS1_4563dn	GGAGATGCTGTGGGGATCAAGT	Intron 2	564	60°C
FADS1 4564up	ACTCGGTGCCAAGCGTGATA	Intron 2	-	
FADS1_4565dn	ACCAAAGCTCCTGTGTTGTCCT	Intron 3	672	60°C
FADS1 4723up	TGCCTGTGTTCAGTGAGAGG	Intron 3	.	
FADS1_4723dp	CTGCATCCAAGCTCAGACAG	Intron 5	596	60°C
FADS1_4724un FADS1_4566up	CTGGCTCACTCTCCTCTGCT	Intron 5	570	
FADS1_4500up FADS1_4567dn	CCCATTCACACCCTTCTGTT	Intron 5	569	60°C (1x Q solution)
FADS1_4568up	TGGAGAAGAGCCAGGGTCAC	Intron 5	509	
FADS1_4568up FADS1_4569dn	GTTCCAGACGCAGCCTTAGC	Intron 5 Intron 6	256	60°C
—			230	00 C
FADS1_4854up	TTCCAGTGGTCTGAGGTGTG	Intron 6	200	60°C
FADS1_4855dn	TCCCGTTCATCTTCTCCATC	Intron 7	399	60°C

FADS1_4570up	ACTGGAGGCAGAGAGACCTG	Intron 7		
FADS1_4571dn	CTCCCCCATCAGATCCTACC	Exon	280	60°C
	GGGTCCTAAATCTTGCCTCGT	8/Intron 8 Intron 9		
FADS1_1572dp	TGAGAAAGAACCTGGGCTGTG	Intron 11	638	60°C
FADS1 3850up	GGCTCACTTATGTGCCACTGTT	Exon 8	050	00 0
FADS1 3851dn	GGACTCGTACTCTATACCATGCTTG	Exon 11	878	60°C
FADS1_4725up	TCCAGATTGAGCACCAGTGA	Exon 10/Intr		
FADS1_4726dn	TCCAAGGCTCTTCTTCCAGA	Exon 12	670	57°C (1x Q solution)
FADS1_4727up	GTTTTGAGGCTCCACTCTGC	Intron 11		
FADS1_4728dn	TGCTCACAGACCAGACCATC	3' UTR	388	60°C
FADS1_4729up	AGAGGGAGTCAGGAGGGTGT	3' flanking		
FADS1_4730dn	AGGACTCTGCTGGCTGTTGT	3' flanking	569	65°C (5% DMSO)
FADS2				
FADS2_4801up	GCACATCAGAGGTTCTGCAA	5' flanking		
FADS2_4802dn	GCAGGTTACGTGTCCGAACT	5' flanking	468	60°C
FADS2_5487up	CTGGAGGAAAGGCAAGGATA	Promoter		
FADS2_5488dn	GGGAAGAGCACAGGAGACAC	Intron 1	499	60°C
FADS2_4574up	TGGTGGAGACTGGCGGAGTT	Intron 1		
FADS2_4575dn	GTGGTCAGGGAGATGAGAGCA	Intron 2	519	60°C
FADS2_4803up	CTGAACTGGCTGTGGACAAA	Intron 2		
FADS2_4804dn	GTGCCCCACTGCTAACTGAT	Intron 4	643	60°C (1x Q solution)
FADS2_4805up	CAAGCTCAGGCATTCAGTCA	Intron 4		
FADS2_4806dn	GGAGGCTGCTAACACGCTAA	Intron 5	480	60°C
FADS2_4576up	TGACTCTGCTTTCTTGCTGTCC	Intron 6		
FADS2_4577dn	GATCTTGAGGGTTGGGTGCTA	Intron 7	273	60°C
FADS2_4807up	ACCTGCCTTACAACCACCAG	Exon 6		
FADS2_4808dn	CTGGACTCACCACCCAGTCT	Exon 7	491	60°C
FADS2_4860up	CTAGGGTTTCTTGGCGGAAG	Intron 7		
FADS2_4861dn	AGGAACCTGGAAGGGAGTGT	Intron 8/ Exon 9	426	55°C
FADS2_4578up	AAGGTTCAGGGCTCTCTTGC	Intron 8		
FADS2_4579dn	ACTGGTCCCTCCAAAAGGTC	Intron 9	440	60°C
FADS2_4580up	ACCCAAGGTCCATGTCTTCA	Intron 9		
FADS2_4581dn	TTGGTTAGTGCCCATCTTCC	Intron 10	458	60°C
FADS2_4582up	TCCCTTTATTGCCAGCGAAC	Intron 10		
FADS2_4583dn	GTCTCCTTTCAGCTCTCAACCAG	Intron 11	468	60°C
FADS2_4862up	CCTGGTTGAGAGCTGAAAGG	Intron 11		
FADS2_4863dn	GACCTCAAGAGAGGGTGGTG	3' UTR	510	63°C
FADS3				
FADS3_5327up	CTGTCAGCGCGGTTATAAGG	5' flanking		
FADS3_5328dn	AGGTCAAAGGTCAGCGAGAG	Intron 1	534	60°C
FADS3_5838up	GCAGCAGAAATTGACACAACA	Intron 1		
FADS3_5839dn	CAGGAAGAGACCGCAAACC	Intron 2	493	60°C
FADS3_5331up	TTGCTTCTGGGGATAACTGG	Intron 2		
FADS3_5332dn	TTAGGTGGCTGCAAGAAGTG	Intron 3	293	60°C
FADS3_5333up	GCCAAGCTGCATAAAAGAGG	Intron 3		
FADS3_5334dn	GAGGTGCTGGTGGTTGTAGG	Exon 6	770	60°C
FADS3_5840up	ATCTTCCACAAGGACCCAGA	Exon 5		

FADS3_5841dn	CCAGGAGAACAAGCAGACAC	Intron 6	406	60°C
FADS3_5335up	CTGTTCCTGAGCCCCTTCAC	Intron 6		
FADS3_5336dn	CTGCTACTCTCCCCTGCAAC	Intron 7	282	60°C
FADS3_5842up	AACCCAAGCCCAGAAGAGAC	Intron 7		
FADS3_5843dn	CCCATTCTACCGATGAGGAC	Intron 8	291	60°C
FADS3_5339up	CCCATCATACAGACGAGGAAG	Intron 8		
FADS3_5340dn	GGAAAGGCTGCTGAGAAAGG	Intron 11	764	60°C
FADS3_5341up	GAGAGAGCTGGGTGAAGGAG	Intron 11		
FADS3_5342dn	GGCTGGTTTAGCACAGGAAG	3' flanking	725	60°C
MLYCD				
MLYCD_4914up	TTAGATGGCGGGACAAAGAG	5' flanking		
MLYCD_4915dn	GGGGAGAAGCTGTCCTATCC	5' flanking	288	60°C
MLYCD_4960up	CGCTCATCATGAACTTGGAA	5' flanking		
MLYCD_4961dn	CTTGGCCATAGGAAGTCACC	5' flanking	666	60°C
MLYCD_5232up	TTCATTAGGCAGGGGTCAAG	Promoter		
MLYCD_5233dn	GCGACAGCTGCTAGGGATAC	Promoter	459	60°C
MLYCD_4916up	GCCCTAGAGGAGAGGGAATG	5' flanking		
MLYCD_4917dn	TGCTGATGTGATGGAAGAGG	Exon 1	732	60°C (1x Q solution)
MLYCD_4513up	CGCGGACTTTATGAGCTTCT	Exon 1		
MLYCD 4918dn	GCATGGGAAGATGGAGTGTT	Intron 1	448	60°C
MLYCD_4809up	AGCAAGTTCGTTGGTCAGGT	Intron 1		
MLYCD 4810dn	CAGAAAAGGGACACGTCACA	Intron 2	396	60°C
MLYCD_4967up	GCTCTTTGCAGACGCTCTCT	Intron 1		
MLYCD 4968dn	AGGGCTGGTTTTCATCTGTG	Intron 2	661	57°C
MLYCD 4811up	GCACGGTTTTGTAACTCAGGA	Intron 2		
MLYCD_4812dn	GTCGTGCAGGTTTGGAGACT	Intron 3	376	60°C
MLYCD_4919up	GTGTGGCATCACCAGGACA	Intron 3		
MLYCD_4920dn	GGCGACTAGGCTGGAAGTC	Intron 4	664	60°C (1x Q solution)
MLYCD_4969up	GAGGGTGAAGGAGCACAGAG	Intron 3		
MLYCD 4970dn	ACTGGACAGTGGGAGCAAAG	Intron 4	654	62°C
MLYCD 4872up	GCTGAGGGAGGAGGAGTTTC	Intron 4		
MLYCD_4873dn	GGCGTGTTCTCCAGGAAGTA	Exon 5	526	57°C
MLYCD_4874up	GATCAACTGGATGGGTGACG	Exon 5		
MLYCD_4875dn	CTAAGCCAGGCAGGAAGATG	3' UTR	590	60°C
MLYCD 4958up	ATCCACGCACTGTCTCAGG	3' UTR		
MLYCD_4959dn	GCCTTCACCTCTGTCTCAGG	3' UTR	469	60°C
SCD1				
SCD1_3952up	AACTTCCCTAGTGCCCATCCT	5' flanking		
SCD1_3953dn	GGCTCAACTCTCTTCTACACCGA	Intron 1	877	60°C
	TGCGAGTGTTTTACCCCTCTAT	Intron 1		
SCD1_3986dn	GCGTTTCTACTCTGTGTAAGTTGC	Intron 2	623	60°C
SCD1 3954up	CCTGAAGGACACCTAGACGCT	Intron 2		
SCD1 3955dn	ATGGACCCAAGGACTGAACC	Intron 3	355	60°C
SCD1 3956up	AGTCCTGAGATTTGAAGGTGCT	Intron 3		
	TGTCAGTTTCCCTGCTTATGTG	Intron 4	521	57°C
SCD1 3957dn				
SCD1_3957dn SCD1_3988up		Intron 4		
	TGTTGGGGATGGGAGCACTA	Intron 4 Intron 4	613	60°C
—		Intron 4 Intron 4 Intron 4	613	60°C

SCD1_3960up	CCCTAACACAGGCTCACTCATA	Intron 5		
SCD1_3961dn	CGAAAGAATACTGTACTGGAACG	Exon 6	670	57°C
SCD1_3846up	AGCGTACTACCCTGACTATGGAT	3' UTR		
SCD1_3987dn	GGAATGCTGGTTAGTTTGCTG	3' UTR	699	60°C
SCD1_3990up	AGTGCTCACATTTGACGGAAG	3' UTR		
SCD1_3991dn	GCCTCAGAGAGAACCATAAAGATT	3' UTR	522	60°C
SCD5				
SCD5_4552up	TTCAGCCCTGGCAGTGGAAT	5' flanking		
SCD5_4553dn	CACCCAAGCCGATTGTGAAG	Intron 1	710	61°C (HotStart Taq + 1x Q solution)
SCD5_4554up	ACTGGCATCTGCTGACCTTC	Intron 1		
SCD5_4555dn	CACTCCCGAACATTTCACAG	Intron 2	347	60°C
SCD5_4556up	CCTGGATCGCTCTATTCCTCAG	Intron 2		
SCD5_4557up	ACAAGAAGACCCGACCGTCA	Intron 3	631	60°C
SCD5_5828up	ACACGACAGGGCACAAGAA	Intron 3		
SCD5_5829dn	CGAGCAGCCAAGAAGATGTG	Intron 4	380	60°C
SCD5_5830up	TCACACCTTTCCCTTCGACT	Exon 5		
SCD5_5831dn	TCTACCCTGCCTCTCTGCTC	Exon 5	558	60°C
SCD5_5832up	GATAGCCCGTTCCCTTTTTC	Exon 5		
SCD5_5833dn	TTTGATGTCTGGCACCTCTG	Exon 5	415	60°C
SCD5_5834up	CAGAGGTGCCAGACATCAAA	Exon 5		
SCD5_5835dn	GGCGTCATCTCGTTCTCAA	Exon 5	465	60°C

Genotyping

Genotypes of nine sequence variants (Table 3.9) in the M \times P family and the breed panel were determined by PCR, PCR-RFLP and TaqMan genotyping assays (Table 3.4). Furthermore, the known C1843T mutation in porcine *RYR1* (Fujii *et al.* 1991) was genotyped in the M \times P family using PCR-RFLP (Table 3.4). The haplotypes were determined using PHASE version 2.1 (Stephens *et al.* 2001; Stephens & Donnelly 2003).

Genotyping method	Gene symbol	Primer pairs ¹	Polymorphisms	Location	Restriction enzyme	Unit per reaction	Reaction temperature
PCR	ACACA ²	4962 4963	g.227756_ 227757ins280	Intron 44			
	ACACB	5041 5042	g.25835A>G (p. Ser86Gly)	Exon 2	Cfr10I	0.5	37°C
	ACACB	5041 5042	g.25926G>A (p. Ser116Asn)	Exon 2	Tail	0.5	65°C
	ACACB	5041 5042	g.26053G>A	Exon 2	PvuII	0.5	37°C
PCR-RFLP	FADS2	4805 4806	g.28505G>A	Intron 5	Hhal	0.5	37°C
	MLYCD 4872 4873	g.15996G>A (p. Gly388Asp)	Eoxn 5	AasI	0.5	37°C	
	SCD1	3846 3987	g.16663T>C	3' UTR	MspI	0.5	37°C
	RYR1	104 105	c.1843C>T (p.Arg615Cys)		HhaI	2.0	37°C
	Ger	notyping i	n ABI 7500 Fast Re	eal-time PCR S	System (Applied Biosys	tems)	
	Gene symbo	ol SNP	s	Location	TaqMan assay primer	s and MGB probe sets	5
					ACACB-1570F: GCT	GGTCCAGGCTCCT	СC
	ACACB	g.20124A>G		Promoter II	ACACB-1570R: CACAGGGTGACTAAGGGAAGTG		
TaqMan	лелев	g.20	124720	i iomotei ii	ACACB-1570A: ATGGTGCATCATACCAG (VIC-labelled)		
assay					ACACB-1570G: TGC	GTGCATC <u>G</u> TACCA	G (FAM-labelled)
genotyping					CPT2-1549F: CGTG	CTCAGGTTCTTAA	ATGAAGTG
	CPT2	g.41	033G>A (p.	Exon 4	CPT2-1579R: CGCG	GGACGAGTCAGT	
	01 12	Val3	97Ile)		CPT2-1549A: CCCT	GCC <u>A</u> TCACTC (VIC	-labelled)
					CPT2-1549G: CCTG	CC <u>G</u> TCACTC (FAM	-labelled)

Table 3.4 PCR, PCR-RFLP and TaqMan assays used to genotype the pig populations.

¹Primer sequences are shown in Table 3.3.

Primer_104 forward: 5'-GTTCCCTGTGTGTGTGTGTGTGTGCAAT-3'

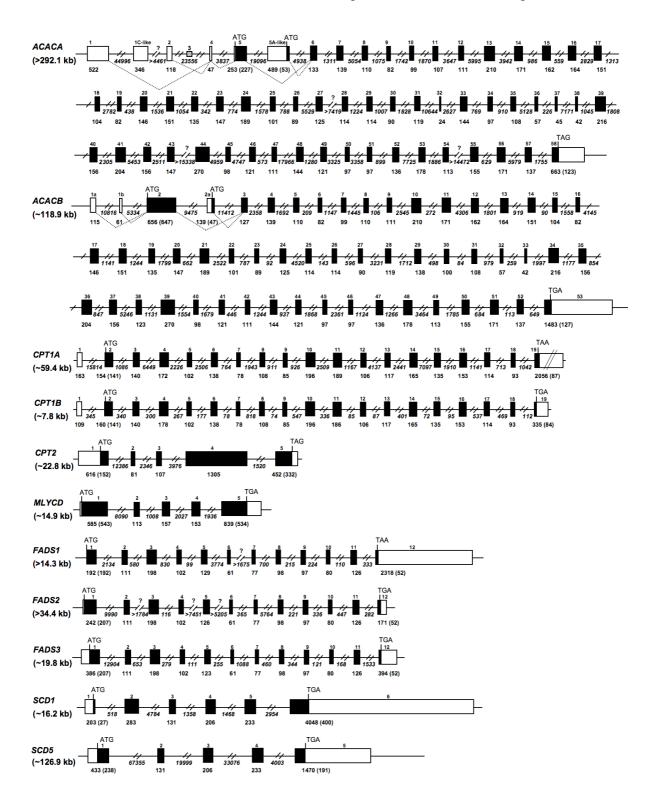
Primer_105 reverse: 5'-CTGGTGACATAGTTGATGAGGTTTG-3'.

²Genotypes can be distinguished using PCR analysis due to the fragment difference resulting from the deletion and insertion of 280 bp.

Statistical analysis

Statistical analysis was performed using R language and environment extended by R packages (http://www.r-project.org/). Distribution of the lipid-related phenotypes in the M \times P F₂ population (Table 3.1) was examined and an outlier test was performed using Grubbs test in the package 'outliers' (version 0.13, Komsta 2006). BFT at mid-back (BFTM) and IMF were Box-Cox and natural logarithm transformed, and n-3PUFA and n-6PUFA square root transformed because of their skewed distribution. Outliers were removed (P < 0.01) if still detected after the data transformation.

A linear model was used to estimate the relationship between candidate gene genotype and the lipid-related traits. The model accounted for the fixed effects: genotype, gender, father and mother. Live weight at slaughtering was used as a covariate for BFT traits, BFTM for IMF and IMF for fatty acid composition. Additionally, the effect of the *RYR1* C1843T genotypes was taken into account when significant. The nominal *P*-values for candidate gene genotypes were obtained by ANOVA analysis in the package 'car' (version 1.1-1, Fox 2006). Least squares means (\pm SE) for candidate gene genotypes were estimated with the untransformed data based on the respective model using the package 'effects' (version 1.0-8, Fox 2005).


Results

Genomic structure

Genomic structures for the candidate genes except for *SCD1* have not been previously described in pigs. Therefore, twelve BACs were identified for ten uncharacterized genes using the *in silico* screening approach combined with colony PCR tests (Table 3.5). The BACs were not completely sequenced, but to an extent that assembled contigs containing the target genes could be identified based on BLAST analysis using human mRNA sequences (Table 3.5). The average coverage of consensus sequences obtained from each BAC ranged from 3.99 to 14.87-fold. The identified genomic contigs have been deposited in GenBank (Table 3.5). They were subject to cDNA/EST-based gene prediction using the *GenomeThreader* software. Genomic structures were elucidated based on the predictions and manual editing using the Apollo tool (Fig. 3.1). The ten genes considerably differ not only in genomic size ranging from ~7.8 kb (*CPT1B*) to > 292 kb (*ACACA*), but also in the number of exons from five (*MLYCD*) to more than 50 (*ACACA*). Most predicted

intron/exon boundaries follow the GT-AG rule. Putative non-canonical splice sites GC-AG were found in intron 43 of *ACACA* and intron 11, 12, 23 and 37 of *ACACB*, and GG-AG in intron 38 of *ACACB*. Each protein sequence derived from porcine gene annotation was compared with its counterpart in humans, cattle and rodents respectively. There was a high degree of sequence identity (81.2 % - 98.9 %) between pigs and other mammals (Table 3.5).

Figure 3.1 Genomic structures of eleven porcine genes involved in lipid metabolism (see next page). Coding and untranslated regions are represented by \blacksquare and \square respectively. Sizes for exons and introns (in bp) are shown. The numbers in parentheses on the left side are the predicted gene sizes, and the numbers under the gene structures are the sizes of coding regions in exons. The question marks indicate unknown gaps between the contigs. The alternative splicing of human *ACACA* (only three main splicing patterns listed here, for all see Mao *et al.* 2003) and *ACACB* (Barber *et al.* 2005; Oh *et al.* 2005a) in 5' end using different promoters is indicated with dotted lines. The presence of porcine-specific exon 3 (\boxtimes) is unknown in *ACACA*.

	Gene symbol	Porcine gene information				Human	Protein sequence identity (%) ^d			
Function category		BACs	SSC	Genomic sequence acc. no.	Protein (resid- ues) ^c	mRNA acc. no.	Pig-Human %, acc. no.	Pig-Cattle ^e %, acc. no.	Pig-Rat %, acc. no.	Pig-Mouse %, acc. no.
Fatty acid synthesis	ACACA	CH242-27L18 RP44-262I23 PigE-185P4	12 ^a	FJ263680	2346	NM_198839	97.9% NP_942136	98.9% NP_776649	98.1% NP_071529	98.5% NP_579938
Fatty acid oxidation	ACACB	RP44-265J11	14 ^b	EU853705	2454	NM_001093	88.7% NP 001084	90.1% XP_873014	82.4% NP 446374	85.7% NP 598665
	CPTIA	PigE-148I15	2 ^b	FJ263681	772	NM_001876	89.4% NP 001867		86.0% NP 113747	85.9% NP 038523
	CPT1B	CH242-132N13	?	FJ263682	772	NM_004377	⁸ 9.4% NP_004368	91.3% NP_001029521	85.7% NP_037332	86.9% NP_034078
	CPT2	CH242-219C5	6 ^b	FJ263683	658	NM_000098	84.0% NP_000089	84.5% NP_001039354	80.4% NP_037062	82.5% NP_034079
	MLYCD	CH242-437N5	6 ^b	FJ263687	499	NM_012213	84.0% NP_036345		81.2% NP_445929	82.2% NP_064350
Fatty acid desaturation	FADS1	CH242-222K18	2 ^b	FJ263684	440	NM_013402	88.4% NP 037534	89.0%	87.9% NP 445897	87.1% NP 666206
	FADS2	CH242-222K18	2 ^b	FJ263685	444	NM_004265	86.9% NP 004256	90.8% NP 001076913	87.4% NP 112634	86.7% NP 062673
	FADS3	PigE-219E3	2 ^b	FJ263686	443	NM_021727	90.3%, 445 NP 068373	93.7%, 443 NP 001077160	90.0%, 449 NP 775160	90.6%, 449 NP 068690
	SCD1 ^f	-	14 ^a	AY487830	359	NM_005063	86.9%, 359 NP 005054	88.3%, 359 NP 776384	85.8%, 358 NP_631931	84.4%, 355 NP_033153
	SCD5	PigI-285B6 CH242-305N1	8 ^b	FJ263688	332	NM_001037 582	89.5 %, 330 NP 001032671	91.6 %, 335 NP 001070413	_	-

Table 3.5 Porcine and human gene information, and protein sequence identity between pigs and other mammals.

^bThe location identified specific of BACs Porcine Physical BAC for genes the Genome on map (http://www.sanger.ac.uk/Projects/S scrofa/mapping.shtml).

^cProteins for *ACACA* and *ACACB* were predicted using the start codon in exon 5 and exon 2, respectively and for *MLYCD*, using the first in-frame start codon.

56

^dPercent identities were calculated by the ExPASy SIM Alignment Tool for protein sequences using the BLOSUM62 comparison matrix with a Gap Open penalty of 12 and a Gap Extension penalty of 4.

^eBovine FADS2 protein sequence was obtained based on the annotation of bovine *FADS2* using the sequence from Btau_4.0, but bovine CPT1A protein sequence could not be predicted due to incomplete genomic sequence.

^fPorcine *SCD1* genomic sequence (AY487830) is publicly available. No BAC was identified for the gene.

?: The localization of CPT1B could not be predicted due to the absence of CH242-132N13 on the Porcine Genome Physical BAC map.

ACACA - Porcine *ACACA* comprises 54 coding exons (exon 5 - 58, Fig. 3.1) as in human *ACACA* (Mao *et al.* 2003). The predicted organization of the coding exons was further validated by the recently released porcine mRNA sequence (NM_001114269). Because few 5' porcine ESTs were available and no analysis of 5' end has been performed so far, putative extents of exons in 5' end of porcine *ACACA* were mainly defined by homology with exons in human *ACACA*, in which the organization of 5' region has been extensively investigated (Mao *et al.* 2003). There are three leader exons (exon 1, exon 2 and exon 5A) used by promoter PI, PII and PIII, respectively and seven additional exons (exon 1A, 1B, 1C, 3, 4, 5A' and 5B) used for alternative splicing in the 5' end of human *ACACA*. In contrast to PI and PII transcripts with the start codon in exon 5, PIII transcripts contain the start codon in exon 5A, generating an isoform, in which a N-terminus of 75 amino acids encoded by exon 5 is replaced by 17 residues encoded by exon 5A (Barber *et al.* 2005).

Among ten exons found in 5' end of human ACACA, exon 1, 1C, 2, 4 and 5A showed homology with the porcine ACACA genomic sequence (FJ263680). The presence of porcine exon 1 was also supported by 5' RACE (data not shown), exon 2 by an EST (AJ684616) and exon 4 by the mRNA sequence (NM_001114269). Although hits of human exon 1C and 5A on the porcine sequence (designated as exon 1C-like and 5A-like in Fig. 3.1) were found, no porcine ESTs containing them have been identified to date. Further analysis is required to address whether pigs express transcripts containing exon 1C-like or 5A-like. No homology between human exon 3 and the porcine sequence seems expected because there is no homology among human, rat (Luo et al. 1989) and bovine (Mao et al. 2001) exon 3, indicating that it might be unique to each species. Thus, it remains to be elucidated whether a pig-specific exon 3 exists. No porcine genomic region showed homology with human exon 1A, 1B, 5A' or 5B. Exon 1A and 1B lie between exon 1 and 1C in human ACACA, and exon 5A' and 5B between exon 5 and 6. Transcripts containing 1A, 1B, 5A' or 5B were not identified in cattle and rats (Mao et al. 2003). In conclusion, porcine ACACA contains at least 57 exons (exon 1, 2, 4 and 5-58), and has a genomic size (at least 292.1 kb) comparable to human ACACA (~330 kb), which has 64 exons.

ACACB - The genomic structure of porcine ACACB is similar to that of human ACACB (Barber *et al.* 2005). Both ACACB comprise 52 coding exons (exon 2 - 53, Fig. 3.1). Human ACACB contains at least two promoters (PI and PII), generating transcripts distinct in 5' UTRs (designated as exon 1a and 1b, respectively) but sharing the remaining exons after splicing (Oh *et al.* 2005a). The two transcript variants encode the same protein because both use the same start codon in exon 2 for translation initiation. Although the computer-based prediction captured neither exon 1a nor 1b in the porcine genomic sequence (EU853705), their presence was validated by RT-PCR (data not shown). The existence of a third ACACB promoter was proposed on the basis of a cDNA sequence (CA392208) in humans (Barber *et al.* 2005). PIII was suggested to initiate a transcript variant containing a unique exon, therefore generating a 15 amino acid variant N-terminus. A homologous region to this exon was found in the porcine sequence (annotated as exon 2a in Fig. 3.1). In conclusion, porcine ACACB consists of 55 putative exons and spans approximately 118.9 kb.

CPT1A - Porcine CPT1A spans ~59.4 kb and a 2319-bp putative coding region comprises 18 exons (exon 2 - 19, Fig. 3.1). Sizes of coding region in these exons are highly conserved between humans and pigs except for exon 9, which has a size of 85 bp in porcine CPT1A, but 88 bp in human CPT1A (Gobin et al. 2002). Manual annotation of 5' end in porcine CPT1A revealed potential alternative splicing. Two distinct groups of porcine ESTs that indicated two possibilities of alternative splicing have been identified so far. The first group (BW983716 and BW973449) supports the existence of a non-coding exon (exon 1) followed by exon 2 containing the start codon (shown in Fig. 3.1). The second group (DY410467 and DY411500) supports the existence of exon 2 with a larger size because DY410467 with longer 5' end contains a 47-bp untranslated sequence that is different from exon 1 but has perfect match with the 47-bp genomic sequence directly upstream of exon 2. In human CPT1A, two non-coding exons (exon 1a and 1b) were found, which could be alternatively spliced to exon 2 using two different promoters (Gobin et al. 2002). Comparison analysis demonstrated that porcine exon 1 shows homology to human exon 1b. Likewise, possible alternative splicing was found in 3' end of porcine CPT1A. Porcine ESTs (DB790591 and DB782191) and a cDNA sequence (AF288789) provide evidence for the existence of an additional non-coding exon downstream of porcine exon 19 containing the stop codon. However, it was impossible to define the exact border of intron between them because no consensus splice sites could be identified in the predicted intron-exon

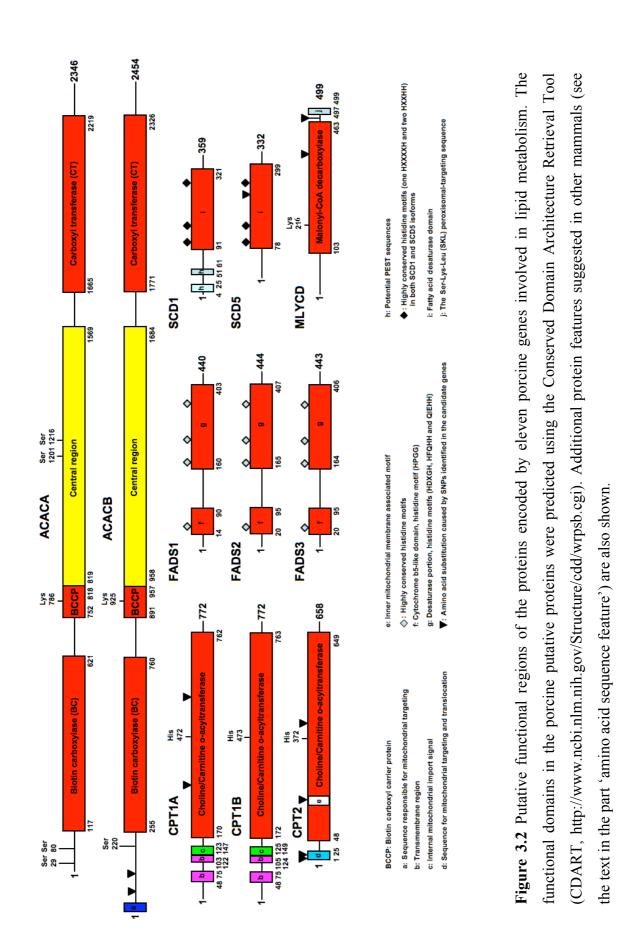
boundaries. The other EST group (DY408766, CO994928 and BF708902) supports the presence of a long and uninterrupted untranslated region after the stop codon (Fig. 3.1). In human *CPT1A*, no evidence was obtained for the presence of non-coding exon in the 3' end (Gobin *et al.* 2002).

CPT1B - Porcine *CPT1B* is composed of 19 exons distributed over an approximately 7.8kb genomic region (Fig. 3.1). Similar to human *CPT1B* (Yamazaki *et al.* 1997), porcine *CPT1B* contains 18 coding exons (exon 2 - 19). The derived coding region shows 99% sequence identity with that in the porcine *CPT1B* mRNA sequence (NM_001007191). Human *CPT1B* contains two alternatively transcribed first non-coding exons (exon 1A/U and exon 1B/M) resulting from the use of two promoters (van der Leij *et al.* 2002). Sequence comparison revealed that porcine exon 1, whose existence is evidenced by the EST (AW430779), contains the equivalent of human exon 1B (M) and part of the genomic sequence separating exon 1A and exon 1B. An additional non-coding exon 20 after exon 19 was reported in human *CPT1B* (van der Leij *et al.* 2002). However, ten currently available porcine 3' ESTs do not support the existence of such a non-coding exon in pigs.

CPT2 – Similar to human *CPT2* (Verderio *et al.* 1995), porcine *CPT2* contains five exons, which greatly vary in size ranging from 81 bp (exon 2) to 1305 bp (exon 4). The gene spans approximately 22.8 kb (Fig. 3.1).

MLYCD - Porcine *MLYCD* consists of five exons and four introns, and spans approximately 15 kb (Fig. 3.1). The exon/intron organization of porcine *MLYCD* resembles that of human *MLYCD* (Wightman *et al.* 2003). Two functional in-frame ATG sequences suggested in human exon 1 are conserved in porcine exon 1. The first ATG in porcine *MLYCD* (Fig. 3.1) is located 129 bp upstream of the second one (not shown). Therefore, the resultant protein sequence (499 residues) using the first ATG is 43 amino acids longer than that using the downstream ATG.

FADS1, *FADS2* and *FADS3* – Three porcine *FADS* genes share similar gene structure, which all contain 12 exons and 11 introns (Fig. 3.1). The coding region of each gene comprises all 12 exons. Furthermore, they have an identical length in exon 2 - 4, exon 6 - 11 and the coding region of the last exon. There is a minor difference in size of exon 5 and the coding part of first exon among them. However, they greatly differ in intron size, reflecting differences in genomic size: *FADS1* (>14.3 kb), *FADS2* (>34.4 kb) and *FADS3* (~19.8 kb). The remarkable similarity of the exon/intron organization among the three *FADS* genes in pigs is consistent with the findings in humans (Marquardt *et al.* 2000).


SCD1 and *SCD5* - Like human and bovine *SCD5* (Wang *et al.* 2005; Lengi & Corl, 2007), porcine *SCD5* consists of five exons and four introns (Fig. 3.1). Porcine *SCD5* spans about 126.9 kb. The putative coding sequence of porcine *SCD5* (999 bp) shows 100% identity with that derived from the porcine mRNA sequence (NM_001114278). In contrast to porcine *SCD5*, porcine *SCD1*, whose genomic structure was described by Ren *et al.* (2004b), is composed of six exons and five introns and has a much smaller gene size of approximately 16.2 kb (Fig. 3.1).

Amino acid sequence features

ACC proteins - The putative protein encoded by porcine *ACACA* with ATG in exon 5, which is composed of 2346 residues, exhibits a high degree of sequence identity (97.9% - 98.9%) to that of cattle, human, rat and mouse (Table 3.5). The high conservation of ACACA proteins in mammals underscores the importance of ACACA biological functions. The deduced ACACB protein of 2454 residue shows 82% - 90% sequence identity with human, mouse, rat and bovine counterparts (Table 3.5). The conserved domain prediction showed that porcine ACACA and ACACB belong to complex multifunctional enzyme systems and that both comprise three functional domains (Fig. 3.2). Two functional domains: biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP), reside in the N-terminal of one-third of the proteins. The third domain: carboxyltransferase (CT) domain is located in the C-terminal of one-third of the protein (Fig. 3.2). The highly conserved ACC central region, whose function is still unknown, separates BC-BCCP domains and CT domain. Both ACCs are biotin-containing proteins and the site of biotin attachment (Lys786 in porcine ACACA and Lys925 in porcine ACACB, Fig. 3.2) is absolutely conserved in mammals (Barber *et al.* 2005).

Porcine ACACA and ACACB proteins resemble each other closely in the structure organization, but they greatly differ in the N-terminal region. The N-terminus of porcine ACACB protein is 108 amino acids (aa) longer than that of porcine ACACA (Fig. 3.2). Similar to human ACACB protein, the first N-terminal 20 aa of porcine ACACB are characteristic of high hydrophobicity based on the hydrophobicity analysis at website: http://www.vivo.colostate.edu/molkit/hydropathy/. The first N-terminal 20 aa in humans was suggested to target the ACACB protein to mitochondria where regulation of fatty acid oxidation takes place through the inhibition of carnitine palmitoyltransferase 1 by ACACB's product: malonyl-CoA (Abu-Elheiga *et al.* 2000). The lack of such hydrophobic segment in ACACA agrees with the fact that ACACA is a cytosolic protein. Four conserved phosphorylation sites (corresponding to rat Ser29, Ser79, Ser1200 and Ser1215, Barber *et al.* 2005) in porcine ACACB are shown in Fig. 3.2.

CPT proteins - The putative porcine CPT1A and CPT1B proteins show 85.9% - 91.3 % sequence identity with their respective counterparts in humans, rats, mice and cattle (Table 3.5). In addition, porcine CPT1A protein is 62.3% homologous to porcine CPT1B. Both CPT1 isoforms are integral proteins of the outer mitochondrial membrane (OMM). The first 150 N-terminal residues of the rat liver CPT1A were found to specify both mitochondrial targeting and anchorage at the OMM (Cohen *et al.*1998; Cohen *et al.* 2001). They contain two transmembrane (TM1 and TM2) segments corresponding to rat CPT1A residues 48-75 and residues 103-122 respectively and an internal mitochondrial import signal (residues 123-147) located immediately downstream of TM2 (Fig. 3.2). The mitochondrial import signal specifies mitochondrial targeting, whereas the hydrophobic TM segment(s) acts as a stop-transfer sequence that stops and anchors the translocating CPT1 into the OMM (Cohen *et al.*1998; Cohen *et al.* 2001). The catalytic His473 residue in the C-terminal domain is absolutely conserved in CPT1s in the mammals (Fig. 3.2).

63

Unlike CPT1 proteins, CPT2 is loosely associated with the surface of the inner mitochondrial membrane (IMM). Consistent with the subcellular localization, rat CPT2 contains a 25-residue region in the N-terminus (residues 1-25), which is crucial for its mitochondrial targeting and translocation across both mitochondrial membranes (Brown *et al.* 1991), and an IMM associated motif (residues 179-208, Hsiao *et al.* 2006). Upon mitochondrial import, rat precursor targeting peptide of 658 residues is cleaved between leucine 25 and serine 26, and therefore is changed into a mature protein of 633 residues without the 25-residue N-terminal mitochondrial targeting signal (Brown *et al.* 1991). The catalytic residue His372 suggested in Hsiao *et al.* (2006) is highly conserved in all CPT2 members (Fig. 3.2).

FADS proteins - The fatty acid desaturase genes (*FADS*1-3) are thought to have arisen evolutionarily from gene duplication based on their similar exon/intron organization. Therefore, it is anticipated that high homology exists between porcine FADS1 protein and FADS2 (63.6%), FADS1 and FADS3 (54.9%), and FADS2 and FADS3 (61.5%). In addition, there is a high degree of sequence identity between porcine FADS proteins (FADS1-3) and their respective orthologs in other mammals (Table 3.5). FADS family members are considered fusion products composed of an N-terminal cytochrome b5-like domain and a C-terminal multiple membrane-spanning desaturase portion, both of which are characterized by conserved histidine motifs (Fig.3.2).

Three highly conserved histidine-rich motifs (HDXGH, HFQHH and QIEHH) exist in the desaturase domain, which were found to be essential to the catalytic center of desaturases (Nakamura & Nara, 2004). The highly conserved histidine rich motif (HPGG), characteristic of the cytochrome b5-like domain, was found to be required for rat FADS2 enzyme activity (Guillou *et al.* 2004). In addition, rat FADS2 was shown to localize in the endoplasmic reticulum. Analysis of transmembrane topology of porcine FADSs (http://www.vivo.colostate.edu/molkit/hydropathy/) identified four putative transmembrane domains in each FADS member, which indicated that they are potential membrane-associated proteins.

MLYCD protein - The MLYCD proteins in mammals are highly conserved (Table 3.5). The lysine residue at position 210 (K210) in rat MLYCD was shown to be essential for its catalysis (Nam *et al.* 2006). This highly conserved lysine residue is located in the decarboxylation domain in porcine (residue 216, Fig. 3.2), human (residue 210) and mouse (residue 210) MLYCD. However, a chemically similar arginine residue (R216) appears in the corresponding site in bovine MLYCD. Subcellular localization analysis revealed MLYCD resides in cytoplasm and peroxisomes (Sacksteder *et al.* 1999). In agreement with the subcellular distribution in peroxisomes, a highly conserved peroxisome targeting motif (Ser-Lys-Leu_{COOH}) in the very C-terminal part was found in porcine MLYCD (Fig. 3.2).

SCD proteins - The predicted amino acid sequence for porcine SCD5 contains 332 residues. Four SCD isoforms (SCD1, 2, 3 and 4) have been identified in mice, but two in rats (SCD1 and SCD2), and two in humans and cattle (SCD1 and SCD5). Porcine SCD5 shows 91.6 % and 89.5 % sequence identity with bovine and human SCD5 respectively, whereas it demonstrates about 60.9-65.1% with SCD1, SCD2, SCD3 and SCD4 in different mammals. So far, only one SCD gene (SCD1) in pigs has been characterized. Porcine SCD1 shares only 65.9% sequence identity with porcine SCD5. Taken together, these comparisons indicate that we have characterized the porcine ortholog of human and bovine SCD5. Hydrophobicity of SCD5 analysis porcine (http://www.vivo.colostate.edu/molkit/hydropathy/) revealed four putative transmembrane domains. The characteristic resembles that of other SCD isoforms (Man et al. 2006) as well as the FADS members (see above). In addition, three histidine motifs (one HXXXXH and two HXXHH), which are catalytically essential to acyl-CoA desaturases (Shanklin et al. 1994), are conserved in porcine SCD5 (Fig. 3.2). Compared to porcine SCD1, no Nterminal PEST sequences were found in porcine SCD5 (Fig. 3.2). PEST sequences are characterized by having high local concentrations of amino acids proline (P), glutamic acid (E), serine (S), threonine (T) and to a lesser extent aspartic acid (D). The PEST sequences were found to be responsible for rapid degradation of SCD1 (Mziaut et al. 2000).

Identification of sequence variants

All putative exons, small introns, intron-exon boundaries in *CPT1A*, *CPT1B*, *CPT2*, *MLYCD*, *FADS1*, *FADS2*, *FADS3*, *SCD1* and *SCD5* were screened with some exceptions: an attempt to re-sequence exon 1 and 2 in *CPT1A* failed due to the high GC content, and 3 ' UTR in *FADS1*, *SCD1* and *CPT1A* were only partly investigated. Furthermore, 2 kb upstream of the start codon in *MLYCD* and *CPT2* were analyzed. Both *ACACA* and *ACACB* contain more than 50 exons. Thus, priority of screening was given to exons encoding three functional domains: biotin carboxylase, biotin carboxyl carrier protein and carboxyltransferase (Barber *et al.* 2005). A total of 38 exons in *ACACA* and 48 exons in *ACACB* were selected for polymorphism detection (Table 3.6).

Structure	Gene symbol								
unit ¹	AC	ACA	ACACB						
	Exons encoding the structure unit	Exons resequenced	Exons encoding the structure unit	Exons resequenced					
BC	Exon 6 - 17	Exon 6 - 17	Exon 3 - 14	Exon 3 - 14					
BCCP	Exon 21 - 22	Exon 21 - 22	Exon 18 - 19	Exon 18 - 19					
Central region	Exon 22 - 42	Exon 23, 26, 27, 41	Exon 19 - 37	Exon 23, 24, 25, 26, 29, 30, 31, 34, 36, 37					
CT	Exon 44 - 56	Exon 44 - 56	Exon 39 - 51	Exon 39 - 51					
Others		Exon 1, 4, 18, 19, 20, 57, 58		Exon 1a, 1b, 2, 15,16,17, 52, 53					

Table 3.6 Exons selected for sequence variant detection in porcine ACACA and ACACB.

¹BC: Biotin carboxylase, BCCP: Biotin carboxyl carrier protein, CT: Carboxyltransferase, the central region separates BC-BCCP and CT domains.

In total, 85.5 kb in the eleven genes were re-sequenced using twelve parental animals of the $M \times P$ cross and 367 sequence variants were identified including 359 SNPs, six insertiondeletion polymorphisms and two microsatellites (Table 3.7). The overall distribution of the sequence variants was one every 233 bp. Porcine *ACACA* was recently screened by cDNA re-sequencing (Munoz *et al.* 2007) and porcine *SCD1* by genomic re-sequencing (Ren *et al.* 2004b). Comparison of our data with the reported variants in *ACACA* (EF618729) and *SCD1* (AY487830) demonstrated that eight variants in *ACACA* and three in *SCD1* have been previously described. Therefore, our study reveals 356 novel sequence variants. The sub-regional distributions of all sequence variants are as follows: 37 in 5' end, 219 in introns, 83 in the coding elements and 28 in 3' end (Table 3.7). Of the 83 SNPs in the coding regions, eleven cause amino acid exchanges including two in *ACACB* (not located in the aforementioned conserved domains), two in *CPT1A*, four in *CPT2*, two in *MLYCD* and one in *SCD5* (Table 3.8). Among them, three neutral to acidic (negatively charged) residue substitutions and one neutral to basic (positively) were found. Three of the eleven substitutions occurred at residues that are invariant across different species. However, prediction using the online tool PolyPhen (Ramensky *et al.* 2002) revealed that effects of all the eleven non-synonymous SNPs on protein structure and function are benign.

Gene pair symbol screened (kb)		Total number	Num	lumber of variants by type		Number of variants in non-coding regions			Number of SNPs in coding regions		Frequency
	screened (kb)	of variants	SNP	INS/DEL	MS^1	5' end^2	Intron	$3' \text{ end}^2$	Synonymous	Non-synonymous	(bp/variant)
ACACA	17.6	62	60	1	1	0	38	8	16	0	284
ACACB	18.9	104	104	0	0	7	69	3	23	2	182
CPTIA	6.8	38	37	1	0	0	32	0	4	2	179
CPT1B	7.3	4	4	0	0	1	2	0	1	0	1825
CPT2	4.8	25	25	0	0	10	5	0	6	4	192
MLYCD	5.1	68	65	2	1	13	33	7	13	2	75
FADS1	6.4	17	17	0	0	1	13	1	2	0	376
FADS2	5.7	21	21	0	0	4	16	0	1	0	271
FADS3	4.2	10	10	0	0	0	7	0	3	0	420
SCD1	5.3	4	4	0	0	0	2	2	0	0	1325
SCD5	3.4	14	12	2	0	1	2	7	3	1	243
Total	85.5	367	359	6	2	37	219	28	72	11	233

Table 3.7 Summary of sequence variants found in eleven genes involved in lipid metabolism.

¹Microsatellites.

²The 5' end includes 5' UTR and its upstream region, and the 3' end contains 3' UTR and its downstream sequence.

Gene symbol	Non-synonymous SNPs	Location	Codon change	Protein residue	Amino acid property change	Residue conservation across 5 species ¹
ACACB	EU853705: g.25835A>G	Exon 2	AGC/GGC	Ser86Gly	Polar, uncharged / nonpolar, uncharged	Variable
	EU853705: g.25926G>A	Exon 2	AGC/AAC	Ser116Asn	No change	Invariant
CPTIA	FJ263681: g.95956A>G	Exon 10	CAG/CGG	Gln328Arg	Polar, uncharged / positively charged	Variable
	FJ263681: g.106837A>G	Exon 14	AAC/AGC	Asn537Ser	No change	Variable
CPT2	FJ263683: g.21149A>G	Exon 1	ATG/GTG	Met2Val	No change	Variable
	FJ263683: g.21183A>G	Exon 1	GAC/GGC	Asp13Gly	Negatively charged / nonpolar, uncharged	Variable
	FJ263683: g.40451G>A	Exon 4	GGC/AGC	Gly203Ser	Nonpolar, uncharged / polar, uncharged	Invariant
	FJ263683: g.41033G>A	Exon 4	GTC/ATC	Val397Ile	No change	Variable
MLYCD	FJ263687: g.15996G>A	Exon 5	GGC/GAC	Gly388Asp	Nonpolar, uncharged / negatively charged	Variable
	FJ263687: g.16238G>A	Exon 5	GCC/ACC	Ala469Thr	Nonpolar, uncharged / polar uncharged	Variable
SCD5	FJ263688: g.148175G>A	Exon 4	GAC/AAC	Asp253Asn	Negatively charged / polar, uncharged	Invariant

Table 3.8 Amino acid substitutions caused by eleven non-synonymous SNPs found in five genes.

¹Proteins from five species, namely pigs, humans, rats, mice and cattle were compared to examine the conservation of the residues where substitutions occurred. The protein sequences used were listed in Table 3.5. Because no SCD5 existed in rodents, only proteins from pigs, humans and cattle were aligned.

Association study

An association study was conducted between nine variants in six candidate genes (Table 3.9) and the lipid-related traits (fatness, IMF and fatty acid composition) in approximately 580 pigs of the $M \times P F_2$ population (Table 3.1). Allele frequencies observed in the F_2 population and in the four pig breeds are shown in Table 3.9. The results indicate that most of the studied variants were segregating in the four commercial breeds (Table 3.9). In addition, five haplotypes were constructed from four genotyped SNPs in *ACACB* (Table 3.9). Four of them were observed in the F_2 population, namely [A; A; A; A], [A; A; G; G], [A; G; A; G] and [G; A; G; G] with a frequency of 40%, 5%, 11% and 44% respectively. At least three of the five haplotypes were present in each commercial breed. Moreover, the haplotype distribution and frequency greatly differed between these breeds (Table 3.9).

Five variants in *ACACA*, *ACACB*, *FADS2* and *SCD1* showed associations with several lipid-related traits at P < 0.1 in the F₂ population (Table 3.10). However, none of these associations remained significant after Bonferroni correction for 108 (12 traits × 9 variants, Table 3.1 and Table 3.9) tests at a threshold of 4.6×10^{-4} (0.05/108). The tested variants in *CPT2* and in *MLYCD* showed no association reaching the P < 0.1 threshold (data not shown). In this study, no association analysis was performed for five remaining genes (*CPT1A*, *CPT1B*, *FADS1*, *FADS3* and *SCD5*) for the following reasons. No obviously functional variants could be identified in *FADS1* and *FADS3*. Although some interesting variants (e.g. promoter SNPs or non-synonymous SNPs) were found in *CPT1A*, *CPT1B* and *SCD5*, they were not highly informative in the M × P family. Therefore, further investigation of these five genes in other populations is needed to clarify their effects on the lipid-related traits.

Gene (allele) ¹	Sequence variants/Haplotypes	Location	DE	DL	DU	PI	$M \times P$ F ₂ cross
ACACA (del)	FJ263680: g.227756_227757ins280	Intron 44	0.17	0.31	0.00	0.39	0.30
ACACB (A)	EU853705: g.20124A>G	Promoter II	1.00	0.98	1.00	0.91	0.55
ACACB (A)	EU853705: g.25835A>G (p. Ser86Gly)	Exon 2	0.47	0.58	0.30	0.62	0.89
ACACB (A)	EU853705: g.25926G>A (p. Ser116Asn)	Exon 2	0.70	0.91	0.93	0.90	0.51
ACACB (A)	EU853705: g.26053G>A	Exon 2	0.08	0.07	0.23	0.48	0.40
CPT2 (A)	FJ263683: g.41033G>A (p. Val397Ile)	Exon 4	0.71	0.66	0.51	0.61	0.60
MLYCD (A)	FJ263687: g.15996G>A (p. Gly388Asp)	Exon 5	0.09	0.71	0.00	0.08	0.53
FADS2 (A)	FJ263685: g.28505G>A	Intron 5	0.09	0.06	0.00	0.11	0.37
SCD1 (C)	AY487830: g.16663T>C	3' UTR	0.80	0.26	0.90	0.59	0.71
ACACB ²	HT1: A-A-A-A	-	0.08	0.07	0.23	0.48	0.40
	HT2: A-A-A-G	-	0.09	0.42	0.00	0.04	0.00
	HT3: A-A-G-G	-	0.30	0.07	0.07	0.00	0.05
	HT4: A-G-A-G	-	0.53	0.42	0.70	0.38	0.11
	HT5: G-A-G-G	-	0.00	0.02	0.00	0.10	0.44

Table 3.9 Allele frequencies of nine variants in ACACA, ACACB, CPT2, MLYCD, FADS2 and SCD1, and ACACB haplotype distribution.

¹Alleles in the parentheses correspond to alleles annotated as '1' in Table 3.10 and frequencies of these alleles are present here.

²Haplotypes were derived using four SNPs in *ACACB* with an order (g.20124A>G-g.25835A>G-g.25926G>A-g.26053 G>A).

Gene	Sequence variants	Traits	Genoty	$D = 1 + e^2$		
			11	12	22	- <i>P</i> -value ²
ACACA	FJ263680: g.227756_227757ins280	n-3PUFA [%]	1.12 ± 0.06 (48)	1.28 ± 0.02 (258)	1.29 ± 0.02 (280)	0.04
ACACB	EU853705: g.20124A>G	n-3PUFA [%]	1.25 ± 0.03 (179)	1.32 ± 0.02 (274)	1.22 ± 0.04 (120)	0.02
	EU853705: g.25926G>A (p. Ser116Asn)	BTFM [mm]	29.43 ± 0.45 (148)	28.91 ± 0.31 (296)	30.26 ± 0.48 (140)	0.05
FADS2	EU853705: g.25926G>A (p. Ser116Asn)	SFA [%]	37.15 ± 0.12 (147)	36.86 ± 0.09 (292)	36.95 ± 0.12 (139)	0.07
	EU853705: g.25926G>A (p. Ser116Asn)	n-3PUFA [%]	1.25 ± 0.03 (148)	1.31 ± 0.02 (295)	1.24 ± 0.03 (140)	0.05
	FJ263685: g.28505G>A	IMF [%]	2.02 ± 0.08 (67)	2.01 ± 0.03 (279)	2.18 ± 0.04 (212)	0.02
	FJ263685: g.28505G>A	BTFW [mm]	45.17 ± 0.76 (67)	46.03 ± 0.33 (277)	44.33 ± 0.41 (210)	0.006
	FJ263685: g.28505G>A	BTFL [mm]	27.50 ± 0.78 (67)	26.88 ± 0.34 (279)	25.84 ± 0.41 (212)	0.09
	FJ263685: g.28505G>A BTFS [mm]		43.69 ± 1.06 (67)	43.66 ± 0.46 (279)	41.41 ± 0.56 (212)	0.009
	FJ263685: g.28505G>A	ABFT [mm]	33.73 ± 0.65 (67)	34.27 ± 0.28 (279)	33.22 ± 0.34 (212)	0.06
SCD1	AY487830: g.16663T>C	MUFA [%]	48.06 ± 0.12 (264)	48.38 ± 0.11 (322)	48.37 ± 0.57 (11)	0.09

Table 3.10 Results of association study between candidate genes and the lipid-related traits
--

¹Alleles designated as '1' are presented in Table 3.9.

²Only results are shown with nominal *P*-values of < 0.1.

ACACA plays a critical role in the synthesis of fatty acids because its product (malonyl-CoA) is the two-carbon donor in the synthesis of saturated fatty acids catalyzed by fatty acid synthase and also in the chain elongation of saturated and unsaturated fatty acids to very long-chain fatty acids by different elongases (Leonard *et al.* 2004). Recently, *ACACA* has been tested as a positional and functional candidate for a QTL for fatty acid composition on SSC12 and shown to affect palmitoleic (C16:1 n-7), stearic (C18:0) and vaccenic (C18:1 n-7) fatty-acid concentrations in backfat (Munoz *et al.* 2007). Two synonymous SNPs analyzed by Munoz *et al.* (2007) were not identified in our study. However, we found an association of an insertion/deletion polymorphism (g.227756_227757ins280) involving a short interspersed nuclear element (SINE) in intron 44 of *ACACA* with the total n-3 PUFA in the intramuscular fat (Table 3.10). Hasler & Strub (2006) suggested potential involvement of SINE in gene regulation. Thus, it will be interesting to investigate whether the observed association results from altered gene expression.

Findings in several knockout experiments in mice have consistently demonstrated that ACACB is a key regulator of mitochondrial fat oxidation (Abu-Elheiga et al. 2001; Oh et al. 2005b; Choi et al. 2007). Mice lacking ACACB were characterized by continuous fatty acid oxidation and reduced fat storage, and also protected against diet-induced obesity and diabetes. Thus, ACACB represents an excellent candidate gene for lipid-related traits in pigs. We observed a suggestive association between the g.25926G>A(p. Ser116Asn) SNP and BFT at mid-back (Table 3.10). In addition, there was a tendency of this SNP to be associated with the SFA content in muscle (Table 3.10). Interestingly, a QTL with an effect on the SFA content in muscle (Sanchez et al. 2007) was found in the proximity of porcine ACACB, which was predicted to lie on SSC14 (Table 3.5). An association of SNPs: g.20124A>G and g.25926G>A (p. Ser116Asn) in ACACB with the total n-3 PUFA was found (Table 3.10). The Ser116Asn substitution has a benign effect on the protein structure and function (see above). Sequence comparison demonstrated that the g.20124A>G SNP is present in a region corresponding to a sterol regulatory element-binding protein binding element (SRE) in human ACACB promoter II (Oh et al. 2003), but this SRE is not conserved in the porcine putative promoter II (data not shown). Furthermore, a separate prediction revealed no additional regulatory site in the region containing the g.20124A>G SNP. Thus, it is unlikely that the g.20124A>G SNP alters ACACB expression. The associations observed in ACACB might be due to the linkage disequilibrium with the causal

mutations.

The β -oxidation of long-chain fatty acids in mitochondria is a major source of energy, and the carnitine palmitoyltransferase II (CPT2) is involved in the transport of such fatty acids into the mitochondria. Consistent with its role, deficiency of CPT2 results in mitochondrial fatty acid oxidation disorders in humans (Bonnefont *et al.* 1999). Porcine *CPT2* was predicted to be located within a region on SSC6 (Table 3.5) where a QTL for average backfat thickness was found (Mohrmann *et al.* 2006). No association ($P \le 0.05$) was detected between the g.41033G>A(p. Val397Ile) SNP in *CPT2* and the investigated lipidrelated traits.

Malonyl Coenzyme carboxylase (MLYCD) catalyzes the degradation of malony-CoA to acetyl-CoA. The enzyme affects lipid partitioning because malony-CoA is the immediate precursor for *de novo* synthesis of fatty acids as well as a potent inhibitor of the CPT1 enzymes, thus a regulator of fatty acid oxidation. Patients deficient in MLYCD show a number of phenotypes reminiscent of mitochondrial fatty acid oxidation disorders (Wightman *et al.* 2003). Based on the location prediction (Table 3.5), *MLYCD* falls into a maternally expressed QTL interval for IMF on SSC6p (de Koning *et al.* 2000). The functional and positional evidences appear not to preclude *MLYCD* from being the candidate gene for this QTL. However, in humans or other species, imprinting has not been reported for this gene. No association ($P \le 0.05$) between the g.15996G>A(p. Gly388Asp) SNP in *MLYCD* and IMF was found in the M × P family.

The Δ 5 and Δ 6 desaturases (FADS1 and FADS2, respectively) are the rate-limiting enzymes in mammalian synthesis of long-chain polyunsaturated fatty acids. Several studies in humans revealed that polymorphisms and haplotypes in the *FADS1-FADS2* or *FADS1-FADS2-FADS3* gene cluster show associations with levels of PUFA in serum phospholipids and in erythrocyte membranes (Schaeffer *et al.* 2006; Koletzko *et al.* 2008; Malerba *et al.* 2008; Rzehak *et al.* 2008). It has also been demonstrated that *FADS2* polymorphisms are associated with fatty acid profiles in the Japanese quail egg yolk, especially the n-6 and n-3 PUFAs (Khang *et al.* 2007). These findings strongly suggested that the *FADS* gene cluster is a promising candidate for the fatty acid composition in pigs. However, we found no association between the g.28505G>A SNP in *FADS2* and fatty acid composition. This initial analysis only used an intronic SNP, which was unlikely to be functional, and therefore, was not enough to draw a final conclusion that the *FADS* genes should be dismissed as candidate genes for fatty acid composition in pigs. Interestingly, we observed an association of the g.28505G>A SNP with IMF and several backfat thickness measurements (Table 3.10). The involvement of *FADS2* in lipid metabolism seems to provide a plausible explanation for the associations. However, porcine *FADS2* was predicted to lie on SSC2p (Table 3.5), possibly 25 cM from the QTL for muscle growth and lipid deposition represented by the *IGF2* intron3-g.3072G>A causal mutation (Van Laere *et al.* 2003), and furthermore to be located in the intervals of two QTLs for fatness traits distinct from the former QTL (de Koning *et al.* 2000; Milan *et al.* 2002). Therefore, it cannot be excluded that the observed associations with fatness are due to linkage disequilibrium with the *IGF2* intron3-g.3072G>A mutation, or some unidentified causal ones, or both if the mentioned QTLs are segregating in our population. No QTL affecting IMF has been reported in the proximity of *FADS2* so far.

Stearoyl-CoA desaturase (SCD) is a crucial lipogenic enzyme necessary for the *de novo* biosynthesis of monounsaturated fatty acids in mammals. Mice deficient in SCD1 display reduced body adiposity and increased insulin sensitivity, and are resistant to diet-induced weight gain (Ntambi et al. 2002), indicating its critical role in energy homeostasis. For this reason, Ren et al. (2004a) has tested it as a candidate for backfat traits in pigs. However, the analysis of a promoter SNP, not found in our population, showed the lack of its association with backfat thickness in a pure Duroc population. No association was found between the segregating g.16663T>C SNP with backfat thickness traits in our population, either. In order to investigate the genetic factors that affect fatty acid composition of beef and milk, bovine SCD1 has been chosen as a promising candidate gene in several studies. Results revealed that polymorphisms in SCD1 explain some of the observed variation of fatty acid composition in beef (Taniguchi et al. 2004) and milk (Kgwatalala et al. 2007; Mele et al. 2007; Milanesi et al. 2008; Schennink et al. 2008). The g.16663T>C SNP in porcine SCD1 showed a tendency to be associated with the MUFA content in muscle (Table 3.10). In agreement with this finding, a suggestive QTL for the MUFA content in muscle (Sanchez et al. 2007) was identified in a region on SSC14 where porcine SCD1 mapped (Ren et al. 2003). The g.16663T>C SNP is located in 3' UTR, but no regulatory elements were found to contain the SNP (Ren et al. 2004b).

Discussion

In this study, a candidate gene approach was used to investigate the genetic basis of the lipid-related pork quality traits in pigs. Eleven candidate genes playing critical roles in lipid metabolism were selected because of strong a priori evidence for their involvement in the development of the traits of interest. Furthermore, most of these genes are located in relevant QTL regions obtained in the genome-wide scans through comparative mapping, making them potential positional candidates. However, at the beginning of this work, the absence of complete genomic sequences for most of the candidate genes rendered it impossible to test our candidate gene hypothesis. Thus, it was necessary to determine the genomic structure of these genes first. We took full advantage of the BAC end sequence information available at that time, and were able to quickly and efficiently identify specific BACs containing ten previously undescribed candidate genes. Although there are rough assignments for ACACA, ACACB, CPT1A and CPT2 in the unfinished porcine genome sequence (http://pre.ensembl.org/Sus scrofa/index.html) at present, our study generates genomic sequences of high quality for three FADS genes, CPT1B, MLYCD and SCD5, which are not available from the currently released porcine genome sequence. Furthermore, our study is the first to annotate these ten genes in pigs. We systematically re-sequenced the putative functional elements (promoter, 5' UTR, coding regions, intron-exon boundaries and 3' UTR). Finally, we presented a catalogue of sequence variants in these candidate genes. The variants identified in our study offer good chance to understand how these candidate genes affect the lipid-related traits in pigs.

It is not practical to genotype all the identified variants in each gene for association study due to the high cost involved. Therefore, the sequence variants need to be prioritized according to their functional significance. As presented in Table 3.7, the majority of the variants are located in the non-coding regions. Although they theoretically might lie in unknown regulatory elements, it is often difficult to assess their function on the basis of nucleotide sequence only (Tabor *et al.* 2002). It also holds true for synonymous SNPs, which are found to modulate the protein expression by altering the mRNA secondary structure (Nackley *et al.* 2006). Thus, our study attempted to give high priority to the nonsynonymous SNPs due to their potential effects on protein function and structure. However, in some cases where no non-synonymous SNPs were identified (Table 3.7), variants in putative promoter, 3' UTR or introns were analyzed. Determining the linkage disequilibrium between the variants in the candidate genes, not covered in our study, can also optimize the selection of variants for genotyping (Tabor *et al.* 2002).

In our preliminary association study, nine sequence variants in six candidate genes were analyzed using the $M \times P F_2$ animals. We showed nominal evidence of association with the lipid-related traits for the variants found in ACACA, ACACB and FADS2 (P < 0.05, Table 3.10). Of them, the intronic SNP in *FADS2* shows the strongest association (P = 0.006). However, none of these associations were significant after the Bonferroni correction of P = 4.6×10^{-4} . The Bonferroni correction protects against false positive finding. This adjustment is highly conservative because it does not take into account correlation between traits and sequence variants. Thus, this increases the occurrence of the type II errors (false negatives). Even without performing the multiple testing correction, the observed associations should still be interpreted with caution. Because of considerable linkage disequilibrium (LD) existing in the F_2 population, it is often impossible to determine whether the observed effects are due to the candidate genes or their respective linked genes. To draw clear conclusions, our plan is to follow-up the significant or suggestive findings in the study (using an anti-conservative P value threshold of 0.1) in different pig populations to determine if these findings can be confirmed in them. The segregation of the variants nominally significant or suggestive for association with the lipid-related traits in the F₂ population has been studied in several pig breeds (Table 3.9). More extensive association studies are presently underway. Nonetheless, to obtain a thorough evaluation of the candidate genes listed in this study, much work remains to be done, e.g. investigating more variants and performing extensive haplotype analysis in different independent populations. If specific alleles or haplotypes in these candidate genes showing effects on the lipidrelated traits in pigs could be identified and verified, it would contribute to the use of marker-assisted selection in breeding programmes.

Chapter 4

General discussion

General approach

A candidate gene approach was used in this study in order to identify the genes responsible for the economically important pork quality traits, especially the lipid-related traits (fatness, intramuscular fat content and fatty acid composition). First, a hypothesis was generated that the genes involved in lipid- and energy metabolism might affect the lipid-related pork quality traits. In the following step, selected candidate genes were characterized and screened for sequence variants. Finally, variants were investigated in different populations of pigs for association studies. The data presented in this study revealed some evidence for association between the candidate gene polymorphisms and the lipid-related traits that were investigated.

Selection of candidate genes

The choice of suitable candidate genes that may plausibly play a relevant role in the development process of a given trait is the first critical step in the candidate gene approach. The selection process can be considered an 'educated guess' about the genetic basis of the trait of interest (Kwon & Goate 2000). There are up to 30,000 protein-coding genes in the human genome. To limit the number of the genes for selection, several criteria have been used in many association studies (reviewed by Hattersley & McCarthy 2005). They include (1): the biology of a trait of interest; (2) knowledge from the animal models: the identification of genes influencing related traits in animal models offers candidate for testing in the target species; (3) prior association data; (4) positional information: genomewide scans for linkage or association could indicate regions with a high probability of containing a causative gene; (5) functional candidates indicated by gene expression studies.

Each method mentioned above is not effective when used in isolation. For example, linkage analysis identifies a chromosomal region corresponding to a quantitative trait locus, which can be used for seeking candidate genes. However, it happens quite often that ten to hundreds of genes are harbored in the targeted chromosome region. Knowledge from the animal models provides clear functional links between gene dysfunction and whole body phenotype. However, the phenotypic similar trait of different species could have a quite different genetic architecture (Zhu & Zhao 2007). The available expression data are invaluable for identifying candidates for traits of specific interest. Nevertheless, there are often too many differentially expressed genes identified in the expression analysis. Further

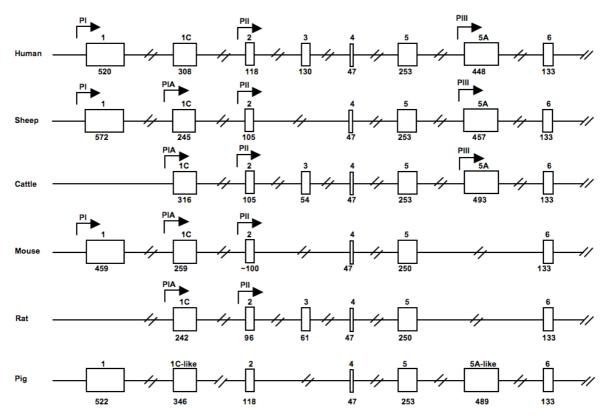
validation of each gene for selection would be expensive and arduous. Random selection of a single gene or several genes would lead to a low probability of capturing the most relevant candidate genes. Therefore, a combination of at least two methods mentioned above is expected to be more effective in mining candidate genes.

The combination of QTL analysis and knowledge from the knockout mice has successfully identified diacylglycerol O-acyltransferase gene (DGAT1) for milk fat content in cattle (Grisart et al. 2002; Winter et al. 2002). The Lys232Ala substitution detected in bovine DGAT1 was found to have a major effect on this trait. In this study, the selection of candidate genes was attempted based on a combined strategy. From a purely biological perspective, genes involved in lipid- and energy metabolism are strong candidates for the lipid-related traits (fatness, intramuscular fat content and fatty acid composition). Prior knowledge about the function of potentially contributing genes from other species (e.g. humans, mice, rats or cattle) was obtained through literature review. The potentially important genes were analyzed in relation to the QTL regions for the target traits identified in various genome-wide scans through comparative mapping using the Pig QTL database available at the website: http://www.animalgenome.org/QTLdb/pig.html. Based on the above information, twelve candidate genes encoding key enzymes or key regulators in lipid- and energy metabolism, therefore having potential contribution to the development of the lipid-related traits, were selected (Table 4.1). All but CPT1B and SCD5 are located in the relevant QTL. The porcine clone map and comparative mapping allowed the assignment of SCD5, encoding the second SCD isoform in pigs, to a region on SSC8, where no QTL affecting lipid deposition and fatty acid composition have been reported so far. However, it should be noted that a very limited number of experiments have reported the identification of QTL affecting fatty acid composition in pigs. The chromosomal localization of porcine CPT1B could not be reliably predicted. The ongoing porcine genome sequencing project will provide an answer to this. Nevertheless, both genes are functional candidates.

Function category	Gene symbol	Protein name	Knockout animals (-/-) / <i>Mutations in humans</i>	QTL identified in pigQTL database ^a	Association found in different species ^b	
Fatty acid biosynthesis	ACACA	Acetyl-CoA carboxlase alpha	Early embryonic lethal (Abu-Elheiga <i>et al.</i> 2005)	C16:1 n-7, C18:0 and C18:1 n-7 in backfat	C16:1 n-7, C18:0 and C18:1 n-7 in backfat (in pigs)	
	ACACB	Acetyl-CoA carboxlase beta	Lean with increased food intake (Abu-Elheiga <i>et al.</i> 2001)	SFA content in muscle		
Fatty acid oxidation (Regulators)	CPTIA	Carnitine palmitoyltransferase 1A (liver)	Embryonic lethal (Nyman <i>et al.</i> 2005)	Backfat thickness	Some obesity phenotypes (in humans)	
	CPT1B	Carnitine palmitoyltransferase 1B (muscle)	Embryonic lethal (Ji <i>et al.</i> 2008)		Some obesity phenotypes (in humans)	
	CPT2	Carnitine palmitoyltransferase II	Fatty acid oxidation disorder (Bonnefont et al. 1999)	Backfat thickness	, ,	
	MLYCD	Malonyl-CoA decarboxylase	Fatty acid oxidation disorder (Wightman et al. 2003)	IMF		
Fatty acid desaturation	FADS1	$\Delta 5$ desaturase		Backfat thickness	Levels of PUFA (polymorphisms	
	FADS2	$\Delta 6$ desaturase	Abolishing PUFA synthesis (Stoffel <i>et al.</i> 2008)	Backfat thickness	and haplotypes in human <i>FADS</i> gene cluster and polymorphisms	
	FADS3	Fatty acid desaturase 3	×	Backfat thickness	in Japanese quail FADS2)	
	SCD1	Stearoyl-CoA desaturase 1 ($\Delta 9$)	Lean with increased food intake (Ntambi <i>et al.</i> 2002)	MUFA content in muscle	Fatty acid composition in milk and beef (in cattle)	
	SCD5	Stearoyl-CoA desaturase 5 ($\Delta 9$)				
Energy sensor	PRKAA2	5'-AMP-activated protein kinase, catalytic alpha-2 subunit	Insulin resistance (Jorgensen <i>et al.</i> 2004)	Loin muscle area, IMF and backfat thickness	Insulin resistance and type 2 diabetes (in humans)	

 Table 4.1 Twelve selected candidate genes in this thesis.

^ahttp://www.animalgenome.org/QTLdb/pig.html.


^bACACA (Munoz et al. 2007), CPT1A and CPT1B (Robitaille et al. 2007), FADS (Schaeffer et al. 2006; Khang et al. 2007; Koletzko et al. 2008; Malerba et al. 2008; Rzehak et al. 2008), PRKAA2 (Horikoshi et al. 2006).

Genomic characterization

Genomic characterization of genes is a critical step toward their functional analysis. When this work started in June 2005, an extensive screening for porcine sequences was made for the selected candidate genes. Human mRNA reference sequence of each candidate gene was used as a query sequence to 'BLAST' separately against five databases in GenBank: Nucleotide Collection (nr/nt); Non-human, Non-mouse ESTs (est-others); Genomic survey sequences (gss); High throughout genomic sequences (HTGS) and Reference mRNA sequences (refseq rna). Although the porcine genome sequencing project has been launched, BLAST results obtained at that time showed a collection of porcine ESTs and genomic survey sequences for most of the selected candidate genes. The identified genomic survey sequences were small and separate fragments (<1 kb) and did not cover the entire gene. Hence, in order to get genomic sequences for the selected candidate genes for further analysis, it was necessary to perform gene cloning. Fortunately, a large number of BAC end sequences (BES) from different porcine BAC libraries were released from the Porcine Genome Physical Mapping Project at that time, which allowed us to develop in silico BAC library screening approach. Thus, it was possible to pick potential positive BACs through analysis of the available data on the internet. Using the approach, it was successful to identify BACs for the genes analyzed in the study. Compared to the traditional hybridization-based screening approach, which was generally time-consuming and labourintensive, the approach used was a quick and efficient method, greatly facilitating the isolation of target genes. Each consensus base in the genomic contigs derived from BAC shotgun sequencing had approximately 4-15 reading characters, which indicated high quality of the sequences. Based on these derived sequences, genomic structures of the candidate genes were determined by similarity-based gene prediction and subsequent manual curation.

One contribution of manual annotation to genome analysis is the careful annotation of alternative variants (Ashurst & Collins 2003). Analyzing a large number of available EST/cDNA sequences for porcine *CPT1A* unveiled possible alternative splicing events in both 5' and 3' end of this gene. For porcine genes (*CPT1B*, *FADS1*, *FADS2*, *FADS3*, *MLYCD*, *PRKAA2* and *SCD5*), there was no possible alternative splicing observed in the 5' and 3' end based on their respective 5' and 3' EST/cDNA sequences available so far. For porcine *ACACA* and *ACACB* genes, it was a challenge to annotate the 5' and 3' end given

the facts that very few or no ESTs were available for *ACACA* and *ACACB* respectively and that very complicated organization in 5' end has been reported for both genes in humans. However, it has been generally observed in this study that gene structures are conserved between pigs and humans, and there is no reason to think that conservation is not maintained between spliced variants. Therefore, the putative extents of exons in the 5' end and 3' end of porcine *ACACA* and *ACACB* were primarily defined by homology with the corresponding exons in human *ACACA* and *ACACB*.

Figure 4.1 The organization of 5' region of *ACACA* in mammals. The promoter numbering is based on suggestions made by Travers *et al.* (2005) and Barber *et al.* (2005). Genomic organization of human promoters and exons was indicated by Mao *et al.* (2003). Only the common exons are displayed here. In sheep, PIA and PII, and the exons downstream of them are organized in a structure suggested by Travers & Barber (2001). The distribution of bovine promoters and exons was shown in Mao *et al.* (2001) and Mao & Seyfert (2002). The organization of 5' region of rat *ACACA* was determined by Luo *et al* (1989). The mouse *ACACA* structure in the 5' region was suggested by Travers *et al.* (2003). In pigs, exon 1C-like and exon 5A-like were defined by the homology with the corresponding exons in humans.

However, such annotation based on the human information does not necessarily apply to porcine genes. This can be observed from the analysis of the organization of 5' region of ACACA in several investigated mammalian species, namely rats, mice, humans, cattle and sheep (Fig. 4.1). The presence of four promoters (PI, PIA, PII and PIII) has been described in the mammalian ACACA (reviewed by Barber et al. 2005). These promoters seem to have a species-specific expression pattern (Fig. 4.1). In contrast to humans and ruminants, rodents express no transcripts containing exon 5A as the leader exon although regions homologous to human exon 5A exist in the rodent ACACA genes. Hence, there is no corresponding functional PIII in the rodents. The PIA (previously annotated as PI) in the rodents (Luo et al. 1989) and ruminants (Mao et al. 2001; Travers et al. 2001) initiates the transcription starting at exon 1C (previously designated as exon 1). However, although human exon 1C exists and its upstream sequence shows homology with the PIA in the rodents and ruminants, no transcript containing exon 1C as a leader exon was detected, indicating that the region upstream of exon 1C may not function as a promoter in humans (Mao et al. 2003). Therefore, experimental work is required to confirm or refine the predictions for the porcine ACACA and ACACB. For the porcine ACACA, existence of exon 1 has been validated by 5' RACE analysis. In the case of the porcine ACACB, RT-PCR was only performed in the study to confirm the existence of exon 1a and exon 1b (two alternatively spliced non-coding exons, Fig. 3.1) in the 5' end. Further analysis is needed to validate the existence of exon 2a.

It is worth mentioning that the alternative splicing event may also be detected in the middle of a gene. For example, alternative splicing of exon 32 (Fig. 3.1, 24 bp) of *ACACA* has been consistently reported in humans, rats and sheep (reviewed by Barber *et al.* 2005). The presence/absence of exon 32 in transcripts results in inclusion/exclusion of an 8-aa stretch in proteins. Because rat Ser1200 residue (Ser1201 in porcine ACACA, Fig. 3.2) resides in the 8-aa region, the alternative splicing of exon 32 finally influences the phosphorylation of Ser1200, which involves the regulation of the ACACA enzyme. Recently, Gallardo *et al.* (2008) also described the similar alternative splicing event in the porcine *ACACA*. However, the annotation based on the available porcine EST/cDNA sequences failed to detect this alternative splicing, indicating that EST/cDNA coverage is probably a major influencing factor to whether alternative splicing is detected during the manual annotation (Ashurst & Collins 2003; Pan *et al.* 2008).

The manual annotation can also help predict promoters and polyA sites if full-length cDNA sequences are available. This was not possible in our case since few 5' and 3' EST/cDNA sequences could be used in the annotation for most of the candidate genes. On the other hand, most of the 5' EST/cDNA sequences submitted to the nucleotide database are often incomplete. Thus, in this study the 5' end of the genes analyzed was determined by the EST/cDNA sequence with the longest 5' UTR if there were 5' EST/cDNA sequences available. If not available, the putative extent of the 5' end was defined based on homology with human genes. The same rule was used in determining the 3' end of the porcine genes.

Sequence variants

One goal of this study was to identify sequence variants in candidate genes. The putative functional elements (5' end, coding regions, intron-exon boundaries and 3' end) were targeted for re-sequencing. In total, 92.5 kb in twelve selected genes were re-sequenced and 392 sequence variants were identified including 383 SNPs, seven insertion-deletion polymorphisms and two microsatellites.

SNPs, the most prevalent sequence variations, are consequences of either transition or transversion events. In the present work, transitions A/G and C/T are over-represented with 38.9% and 38.3% of the total 383 SNPs, respectively, whereas four transversion classes (A/C, A/T, C/G and G/T) together account for 22.7%. Thus, transitions occurred 3.4 times more frequently than transversions. The transition over transversion ratio falls within a range of 1.7 to 4 observed in the SNP studies in mammals and birds (Vignal *et al.* 2002). The transition bias is probably partly related to 5-methylcytosine deamination reactions that are known to occur frequently, particularly at CpG dinucleotides (Holliday & Grigg, 1993).

With these available sequence variants, the question arises: Which sequence variants are more important and should be further investigated? Tabor *et al.* (2002) suggested that information about the location of the sequence variants in a gene could be used to prioritize polymorphisms. Noticeably, the sequence variants that are located in the coding regions and have effects on protein function and structure should be given the highest priority for genotyping in association studies. In this study, eleven SNPs, which cause amino acid exchanges, were identified. Some of them are located in the important functional or structural domains. For example, the Met2Val and Asp13Gly substitutions in CPT2

occurred in the porcine N-terminal region homologous to rat and human CPT2 mitochondrial targeting sequences (Fig 3.2). The Gly203Ser substitution was found in a putative inner mitochondrial associated motif and residue Gly203 was completely conserved in several mammals (Fig 3.2, Table 3.8). Two substitutions (Gln328Arg and Asn537Ser) in porcine CPT1A, one (Asp253Asn) in SCD5 and one (Gly388Asp) in MLYCD occurred in the regions related to their respective protein function (Fig 3.2). Nevertheless, none of these substitutions appear to have damaging or deleterious effect on protein function or structure based on the prediction using the online tool PolyPhen (Ramensky *et al.* 2002). Two amino acid exchanges in porcine ACACB lie between the very N-terminal hydrophobic region and the BC domain (Fig. 3.2). As predicted by the PolyPhen, it is most unlikely that they could have impact on the function and structure of the protein. This could indicate that non-synonymous sequence variants identified in this study are not of great interest for association studies.

The second class of sequence variants that gains increasing attention is the regulatory variant group. These variants could include any variant that affects regulation of gene expression without changing an amino acid of the protein (Crawford *et al.* 2005). It is generally assumed that changes in the promoter could affect transcription factor binding or changes in the UTR sequence could affect mRNA stability or translation. Hence, variants that are identified in promoters or untranslated regions (UTR) of the gene are likely candidates for variants that could affect gene expression (Crawford *et al.* 2005). A total of 45 sequence variants were found in 5' end in this study, and 33 in 3' end. The 5' end sequences in *ACACA* and *CPT1A* were not screened for sequence variants in this thesis, which would be worth investigating in the future. Although it is generally difficult to predict the effect of a variant in 5' or 3' end on gene expression on the basis of the DNA sequence only, Tabor *et al.* (2002) suggested that if a sequences, it is likely that this variant will have functional significance. Therefore, such a sequence variant should be given a high priority for further investigation.

In the present study, 74 SNPs in coding regions without changing amino acid residues and 229 polymorphisms in introns were identified. Although such sequence variants may possibly have functional significance, predicting their effect is a demanding task. Nevertheless, it was suggested that synonymous variants should be given higher priority for

genotyping than the variants lying deep within introns since synonymous SNPs have potential effect on mRNA stability (Capon *et al.* 2004; Tabor *et al.* 2002).

Association results

Association of the *PRKAA2* sequence variants with lean- and fat deposition PRKAA2 was chosen as a functional candidate for lean- and fat deposition because of the critical role of AMPK in the regulation of energy homeostasis. No prior association analysis in the porcine *PRKAA2* gene was available. The candidate gene analysis presented in this study revealed association of the porcine *PRKAA2* genotypes with loin muscle area in F_2 population of the M × P family. In an attempt to extend the result obtained in the F_2 population, the association between the PRKAA2 genotypes and traits of interest was studied in two commercial pig populations. However, the observed association in the F₂ population was not confirmed in the commercial pigs. The inconsistent effects observed across the analyzed populations indicate that the investigated sequence variants are unlikely to be causal, but in linkage disequilibrium with the putative causal mutation. The inconsistency also indicates that different linkage disequilibrium might exist among these pig populations. This is likely since the nature and extent of linkage disequilibrium differ from population to population. For example, F_2 populations that involve crosses are expected to have extensive and long-range linkage disequilibrium while purebreds are expected to have the least. Because the association observed in the F₂ population was detected after adjustment of the RYR1 mutation on SSC6q11-q12 (https://wwwlgc.toulouse.inra.fr/pig/cyto/gene/chromo/SSCG6.htm), this seemed to suggest that in addition to the RYR1 locus there could be the different locus (loci) on SSC6 affecting muscle growth in pigs. In agreement with this, QTL affecting loin muscle area were reported to be close to marker SW322 on SSC6q31-q35 (Ovilo et al. 2002b; Edwards et al. 2008). This marker is closely linked to the porcine *PRKAA2* gene based on the RH mapping result.

It is very interesting to note that leptin receptor gene (*LEPR*) is functionally and positionally related to *PRKAA2*. AMPK functions as an important downstream mediator of the effects of leptin on energy balance (Minokoshi *et al.* 2002; Minokoshi *et al.* 2004). In humans, both *PRKAA2* and *LEPR* are located on chromosome 1p31, with a distance of 8.5 Mb between them. In pigs, both genes map to SSC6q (*PRKAA2*: 6q31-q35 in this study,

LEPR: 6q33-q35 in Ernst *et al.* 1997) although the exact distance between them cannot be determined yet due to the incomplete sequence on SSC6. Based on the functional and positional evidence, both genes can be considered promising candidates for the abovementioned QTL for loin muscle area. A candidate gene analysis in pigs indicated that haplotypes of porcine *LEPR* are responsible for some of QTL effects for backfat thickness measurements on SSC6 (Ovilo *et al.* 2005). Association of variants in porcine *LEPR* with loin muscle area was not observed. In the present work, association of the *PRKAA2* variants was found with loin muscle area, but no association was found with fatness traits. On the other hand, this study could not detect a genetic variant in *PRKAA2* that is likely to cause the observed association (all 25 polymorphisms identified are most likely non-functional mutations). Nevertheless, it appears to confirm the reported QTL for loin muscle area on SSC6q. Therefore, evaluation of more candidate genes in the QTL region will help identify the causative mutation for loin muscle area on SSC6q.

Association of sequence variants in genes relevant to lipid metabolism with lipid deposition and fatty acid composition

The critical roles of eleven genes (ACACA, ACACB, CPT1A, CPT1B, CPT2, FADS1, FADS2, FADS3, MLYCD, SCD1 and SCD5) encoding key enzymes or key regulators in lipid metabolism encouraged us to investigate them as promising candidates for the lipidrelated traits in pigs. In a preliminary association study, only nine sequence variants in six genes (ACACA, ACACB, CPT2, FADS2, MLYCD and SCD1) were selected for analysis in the F_2 population of the M × P family on the basis of their potential functional significance or variant allele frequency. Five of these variants (ACACA-FJ263680: g.227756 227757ins280), ACACB-EU853705: g.20124A>G and EU853705: g.25926G>A (p. Ser116Asn), FADS2-FJ263685: g.28505G>A and SCD1-AY487830: g.16663T>C) were found to be associated with the lipid-related traits (lipid deposition or fatty acid composition in muscle). Not much work has been carried out in pigs to investigate the genetic basis of fatty acid composition in muscle. Sanchez et al. (2007) presented the first QTL analysis of fatty acid composition measured in pig meat. No other QTL studies or candidate gene analyses are available to date. This study reports association of variants in ACACA (FJ263680: g.227756 227757ins280), ACACB (EU853705: g.20124A>G and EU853705: g.25926G>A (p. Ser116Asn)) and SCD1 (AY487830: g.16663T>C) with percentages of different fatty acids (e.g. n-3 PUFA, SFA or MUFA) in the intramuscular

fat. All the associated variants seem to have no functional significance and the associations are likely due to the linkage disequilibrium with the causal mutations. Nevertheless, this study hopes to facilitate further studies and contribute to further understanding of the genetic background of fatty acid composition in muscle. The intronic SNP in *FADS2* (FJ263685: g.28505G>A) was found to be associated with several backfat thickness measurements. Porcine *FADS2* was predicted to lie on SSC2p where a large number of QTL affecting fatness traits have been reported (see PigQTL database). The role of *FADS2* in lipid metabolism does not exclude this gene from being a candidate gene for backfat thickness. Hence, it is worth investigating this gene further in order to clarify its effect. The *CPT1A* gene, which is also located on SSC2p, has not been investigated in the preliminary association study. This gene can also be considered as another promising candidate for the backfat thickness QTL on SSC2p on the basis of its critical role in regulation of fatty acid oxidation.

The preliminary association analysis was performed with one or few sequence variants in each of the six genes (*ACACA*, *ACACB*, *CPT2*, *FADS2*, *MLYCD* and *SCD1*) using an F₂ population where considerable linkage disequilibrium was expected. Although sequence variants have been identified in the remaining five genes (*CPT1A*, *CPT1B*, *FADS1*, *FADS3* and *SCD5*), an association study has not been performed in them. For these reasons, a final conclusion could not be drawn about the effect of the eleven selected candidate genes. Further evaluation of these candidate genes is currently underway.

Appraisal of the candidate gene approach

In pigs, two approaches have been used for genetic dissection of complex quantitative traits: genome-wide linkage mapping and candidate gene approach. Linkage mapping relies on the anonymous markers evenly spaced throughout the genome, and prior knowledge of the physiology or biology underlying a given trait is not needed. A drawback of this approach is its high cost connected with the maintenance of experimental populations and genotyping a large number of markers. Although numerous QTL affecting complex quantitative traits have been detected using this approach, there are still great challenges in unraveling the genes that underlie them due to the imprecise chromosomal locations of QTL and the inability to distinguish the mutations underlying QTL with mild phenotypic effect (most QTL identified belong to this type) from neutral polymorphisms (Andersson &

Georges 2004). Therefore, as an alternative to the genome-wide linkage mapping approach, the candidate gene approach has also been widely used to identify the genetic basis for complex quantitative traits. A quick search through PubMed should be enough to convince anyone of this fact.

The candidate gene approach focuses on genes that are selected because of a priori hypothesis about their relevant role in the development process of a given trait. This method takes advantage of the biological understanding of genes and proteins that are likely to be involved in the trait of interest. Moreover, the candidate gene approach has broad applicability. Theoretically, any population, in which phenotyping can be done and genetic variations exist, can be used in an association study of candidate genes, e.g. purebreds, selection lines, commercial lines or F2 populations. Lastly, the candidate gene approach is relatively economical and easy to use by smaller research labs or individuals interested in specific gene identification. Nevertheless, candidate gene studies have been criticized for non-replication and lack of thoroughness (reviewed by Tabor et al. 2002). The lack of reproducibility seen with candidate-gene studies can be partly attributed to variations in study designs such as different study populations used and different definition of the phenotypes. Another possible explanation for non-replication across candidate-gene studies relates to the selection of polymorphisms that are not likely to be causal. The PRKAA2 candidate gene analysis presented in this study gives an example of nonreplication. Because it was not possible to identify a potential functional mutation in PRKAA2, sequence variants were genotyped in order to capture association based on linkage disequilibrium with the causal mutation. Given the possibility of different linkage disequilibrium existing in different investigated populations, detecting the inconsistency is anticipated. However, the non-replication should not discourage anyone who wants to use this approach. In contrast, it signifies that both the study design and the interpretation of results have to be done with caution (Tabor et al. 2002; Hattersley & McCarthy 2005).

A 'good' association means the identification of a gene with a relevant role in the development of a given trait as well as the identification of functional sequence variants in this gene involved in regulating gene expression or changing gene product function. Thus, the successful prediction of functional candidate genes and functional sequence variants in them are crucial to the 'good' application of the candidate gene approach. However, it has been argued that current knowledge might be insufficient to make such prediction. For this

reason, candidate gene approach could have limited ability to include all possible causative genes and sequence variants. Fortunately, with the near-complete genome sequence and the effort in developing high-throughput SNP genotyping assays, the extension of the candidate gene approach to the whole genome-wide association approach, which does not need a prior hypothesis, is expected in pigs. Such an extension will help provide a comprehensive understanding of the genetic basis of many complex traits in pigs. The breakthrough in sequencing technology e.g. next-generation sequencing technologies currently available from 454 Life Sciences, Illumina and Applied Biosystems (Mardis 2008), enables the rapid and affordable whole genome sequencing. The more comprehensive approach toward understanding the complex traits in pigs in the future will be the complete genome sequencing approach (Hirschhorn & Daly 2005; Sellner *et al.* 2007).

Summary

Summary

Fatness and intramuscular fat content are the economically important quality traits because consumers desire both leanness and palatability in pork. Fatty acid composition has become another important quality trait in the pork industry due to its influence on human health. As quantitative traits, fatness, intramuscular fat content and fatty acid composition are all determined by both genetic and environmental factors. The aim of this study was to investigate the genetic basis of these lipid-related traits using the candidate gene approach. Twelve genes encoding key enzymes or key regulators involved in lipid- and energy metabolism, which therefore have potential contribution to the development of these lipid-related traits, were selected for analysis.

The twelve candidates include *PRKAA2* involved in regulation of energy balance and eleven genes involved in different lipid metabolic pathways: fatty acid *de novo* biosynthesis (*ACACA*), fatty acid degradation (*ACACB, CPT1A, CPT1B, CPT2* and *MLYCD*) and fatty acid desaturation (*FADS1, FADS2, FADS3, SCD1* and *SCD5*). Genomic organization has not been previously described for eleven of these genes in pigs. An *in silico* BAC library screening approach based on publicly available porcine BAC end sequences and human genome information was used to identify 13 BACs for the eleven undescribed genes. Gene structures were elucidated with BAC shotgun sequencing and semi-automatic annotation. Putative functional elements (5' end, coding regions, intron-exon boundaries and 3' end) were targeted for re-sequencing. In total, 92.5 kb in the twelve selected genes were re-sequenced and 392 sequence variants were identified including 383 SNPs, seven insertion-deletion polymorphisms and two microsatellites. Eleven of these SNPs caused amino acid substitutions.

Re-sequencing revealed 25 polymorphisms in *PRKAA2*. None of them caused amino acid exchanges. Haplotype construction based on the 25 sequence variants revealed four haplotypes in the parental generation of a Mangalitsa × Piétrain intercross. Two tag SNPs that could distinguish between three frequent haplotypes, were chosen for genotyping and were tested for association with traits of interest (muscle development and fat deposition) in the Mangalitsa × Piétrain F_2 cross (n = 589). Single SNP and haplotype analyses only revealed significant associations between the *PRKAA2* genotypes and loin muscle area. To overcome limitations due to linkage disequilibrium within the F_2 population, association analyses using the two SNPs were extended to two commercial pig populations: Piétrain (n = 1173) and German Landrace (n = 536). However, the findings observed in the F_2 population could not be confirmed in these commercial populations. Thus, the two analyzed SNPs were unlikely causal and the observed associations could be due to linkage disequilibrium (LD) with the causal mutation. *PRKAA2* was physically mapped to porcine chromosome 6q31-35 using a radiation hybrid cell panel. Interestingly, a QTL affecting loin muscle area was found in the region where *PRKAA2* maps in some studies. However, this study could not detect a genetic variant in *PRKAA2* that was likely to cause the observed associations.

Re-sequencing also revealed sequence variants in all the eleven genes relevant to lipid metabolism. Nine sequence variants in six genes (ACACA, ACACB, CPT2, MLYCD, *FADS2* and *SCD1*) were genotyped in 580 pigs of the Mangalitsa \times Piétrain F₂ population and association analyses with fatness, intramuscular fat content and fatty acid composition were performed. Four of these variants showed significant associations with the lipidrelated traits. An intronic 280bp-SINE insertion/deletion polymorphism in ACACA was found to be associated with n-3 polyunsaturated fatty acid content (n-3 PUFA) in the longissimus dorsi muscle. An association with n-3 PUFA was also found for a promoter SNP and a non-synonymous SNP in ACACB. Furthermore, an association between the nonsynonymous variant in ACACB and backfat thickness at mid-back was detected. An intronic SNP in FADS2 showed an association with IMF and several backfat thickness measurements. Although several sequence variants were found to be associated with the lipid-related traits, conclusions could not be drawn that these variants are responsible for the observed effects. Significant results might also arise from the LD with the causal mutations, especially in the F₂ population where considerable LD exists. In this study, only preliminary association analyses between several of the selected candidate genes and the lipid-related traits were performed. The systematically identified variants in the eleven candidates genes present a good opportunity to understand how these genes affect the lipidrelated traits in pigs. Therefore, further research (e.g. extensive association analyses of sequence variants in each candidate gene in different independent populations) remains to be done. Such further analyses will help provide a thorough evaluation of these candidate genes, hence contributing to a better understanding of the genetic background of the lipidrelated traits.

Acknowledgements

Acknowledgements

First of all, I would like to thank my supervisor Prof. Dr. Ruedi Fries for giving me the opportunity to work in his group and for his encouragement and support during this work.

I thank the Bundesministerium für Bildung und Forschung (BMBF) for supporting this project financially. I appreciate the additional financial support from industrial partners: Bavarian Milk Producers (ZVMB), BASF and Development Association for Biotechnology Research (FBF).

I warmly thank Dr. Helmut Blöcker, Maren Scharfe and Simone Severitt (HZI, Braunschweig) for their help with BAC sequencing. I also acknowledge Dr. Hermann Schwarzenbacher and Dr. Mahdi Osman for their helpful discussions and support in statistics. I express my thanks to Dr. Kristof Flisikowski for his assistance in the lab. I want to extend my thanks to Bettina Hayn and Rudi Antes for their help with sequencing and genotyping. I thank Theresia Böhm for DNA isolation and Hermine Kienberger for analysis of meat samples.

I would like to thank the Landesanstalt für Landwirtschaft (LfL, Grub) and SUISAG for providing the DNA and tissue samples, respectively. I also acknowledge Dr. Martin Yerle (INRA, France) for supplying the IMpRH panel.

I am especially grateful to Karina who showed extraordinary degree of patience to help me in times of need all these years. Many thanks to Anna for her friendship. Thanks also to Kati, Daniela, Franz, David and Michal for their friendly help. I warmly thank Birgit Hoffman for her help in administrative matters and many other things. Special thanks to my Chinese friends in Freising who helped me solve the problems in my daily life and shared my happiness as well as my sadness.

Last but not least, I thank my husband, my parents and my sister for their continuous encouragement, patience and support.

Li Lin Freising, January 2009

Bibliography

- Abu-Elheiga L., Brinkley W.R., Zhong L., Chirala S.S., Woldegiorgis G. & Wakil S.J. (2000) The subcellular localization of acetyl-CoA carboxylase 2. *Proc Natl Acad Sci U S A*, 97, 1444-9.
- Abu-Elheiga L., Matzuk M.M., Abo-Hashema K.A. & Wakil S.J. (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. *Science*, **291**, 2613-6.
- Abu-Elheiga L., Matzuk M.M., Kordari P., Oh W., Shaikenov T., Gu Z. & Wakil S.J. (2005) Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. *Proc Natl Acad Sci U S A*, **102**, 12011-6.
- An J., Muoio D.M., Shiota M., Fujimoto Y., Cline G.W., Shulman G.I., Koves T.R., Stevens R., Millington D. & Newgard C.B. (2004) Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance. *Nat Med*, 10, 268-74.
- Anderson S.I., Lopez-Corrales N.L., Gorick B. & Archibald A.L. (2000) A large-fragment porcine genomic library resource in a BAC vector. *Mamm Genome*, **11**, 811-4.
- Andersson L. & Georges M. (2004) Domestic-animal genomics: deciphering the genetics of complex traits. *Nat Rev Genet*, **5**, 202-12.
- Arnyasi M., Grindflek E., Javor A. & Lien S. (2006) Investigation of two candidate genes for meat quality traits in a quantitative trait locus region on SSC6: the porcine short heterodimer partner and heart fatty acid binding protein genes. *J Anim Breed Genet*, 123, 198-203.
- Ashurst J.L. & Collins J.E. (2003) Gene annotation: prediction and testing. *Annu Rev Genomics Hum Genet*, **4**, 69-88.
- Barber M.C., Price N.T. & Travers M.T. (2005) Structure and regulation of acetyl-CoA carboxylase genes of metazoa. *Biochim Biophys Acta*, **1733**, 1-28.
- Berg J.M., Tymoczko J.L. & Stryer L. (2007) Biochemistry (sixth edition) fatty acid metabolism, p617-646, W.H. Freeman and Company, New York.
- Beri R.K., Marley A.E., See C.G., Sopwith W.F., Aguan K., Carling D., Scott J. & Carey F. (1994) Molecular cloning, expression and chromosomal localisation of human AMP-activated protein kinase. *FEBS Lett*, **356**, 117-21.
- Bidanel J.P., Milan D., Iannuccelli N., Amigues Y., Boscher M.Y., Bourgeois F., Caritez J.C., Gruand J., Le Roy P., Lagant H., Quintanilla R., Renard C., Gellin J., Ollivier L. & Chevalet C. (2001) Detection of quantitative trait loci for growth and fatness in pigs. *Genet Sel Evol*, 33, 289-309.
- Bligh E.G. & Dyer W.J. (1959) A rapid method of total lipid extraction and purification. *Can J Biochem Physiol*, **37**, 911-7.
- Bolster D.R., Crozier S.J., Kimball S.R. & Jefferson L.S. (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. *J Biol Chem*, **277**, 23977-80.
- Bonnefont J.P., Demaugre F., Prip-Buus C., Saudubray J.M., Brivet M., Abadi N. & Thuillier L. (1999) Carnitine palmitoyltransferase deficiencies. *Mol Genet Metab*, 68, 424-40.
- Brown N.F., Esser V., Gonzalez A.D., Evans C.T., Slaughter C.A., Foster D.W. & McGarry J.D. (1991) Mitochondrial import and processing of rat liver carnitine palmitoyltransferase II defines the amino terminus of the mature protein. Possibility of differential modification of the rat and human isoforms. *J Biol Chem*, 266, 15446-9.
- Calvo J.H., Lopez-Corrales N.L., Anderson S.I., Skinner T.M., Marcos S., Osta R.,

Archibald A.L. & Zaragoza P. (2000) Assignment of acetyl-coenzyme A carboxylase alpha (ACACA) to pig chromosome 12 (12p13-->p12) by fluorescence in situ hybridization and confirmation by genetic mapping. *Cytogenet Cell Genet*, **90**, 238-9.

- Capon F., Allen M.H., Ameen M., Burden A.D., Tillman D., Barker J.N. & Trembath R.C. (2004) A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. *Hum Mol Genet*, **13**, 2361-8.
- Cheung P.C., Salt I.P., Davies S.P., Hardie D.G. & Carling D. (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. *Biochem J*, **346 Pt 3**, 659-69.
- Choi C.S., Savage D.B., Abu-Elheiga L., Liu Z.X., Kim S., Kulkarni A., Distefano A., Hwang Y.J., Reznick R.M., Codella R., Zhang D., Cline G.W., Wakil S.J. & Shulman G.I. (2007) Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. *Proc Natl Acad Sci U S A*, **104**, 16480-5.
- Clarke S.D. (2000) Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. *Br J Nutr*, **83 Suppl** 1, S59-66.
- Clop A., Ovilo C., Perez-Enciso M., Cercos A., Tomas A., Fernandez A., Coll A., Folch J.M., Barragan C., Diaz I., Oliver M.A., Varona L., Silio L., Sanchez A. & Noguera J.L. (2003) Detection of QTL affecting fatty acid composition in the pig. *Mamm Genome*, 14, 650-6.
- Cohen I., Guillerault F., Girard J. & Prip-Buus C. (2001) The N-terminal domain of rat liver carnitine palmitoyltransferase 1 contains an internal mitochondrial import signal and residues essential for folding of its C-terminal catalytic domain. J Biol Chem, 276, 5403-11.
- Cohen I., Kohl C., McGarry J.D., Girard J. & Prip-Buus C. (1998) The N-terminal domain of rat liver carnitine palmitoyltransferase 1 mediates import into the outer mitochondrial membrane and is essential for activity and malonyl-CoA sensitivity. *J Biol Chem*, **273**, 29896-904.
- Cohen P., Miyazaki M., Socci N.D., Hagge-Greenberg A., Liedtke W., Soukas A.A., Sharma R., Hudgins L.C., Ntambi J.M. & Friedman J.M. (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. *Science*, **297**, 240-3.
- Crawford D.C., Akey D.T. & Nickerson D.A. (2005) The patterns of natural variation in human genes. *Annu Rev Genomics Hum Genet*, **6**, 287-312.
- Dai Y., Wolfgang M.J., Cha S.H. & Lane M.D. (2007) Localization and effect of ectopic expression of CPT1c in CNS feeding centers. *Biochem Biophys Res Commun*, **359**, 469-74.
- de Koning D.J., Janss L.L., Rattink A.P., van Oers P.A., de Vries B.J., Groenen M.A., van der Poel J.J., de Groot P.N., Brascamp E.W. & van Arendonk J.A. (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). *Genetics*, **152**, 1679-90.
- de Koning D.J., Rattink A.P., Harlizius B., van Arendonk J.A., Brascamp E.W. & Groenen M.A. (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. *Proc Natl Acad Sci U S A*, 97, 7947-50.
- Demeure O., Liaubet L., Riquet J. & Milan D. (2004) Determination of PRKAG1 coding sequence and mapping of PRKAG1 and PRKAG2 relatively to porcine back fat thickness QTL. *Anim Genet*, **35**, 123-5.
- den Dunnen J.T. & Antonarakis S.E. (2000) Mutation nomenclature extensions and

suggestions to describe complex mutations: a discussion. Hum Mutat, 15, 7-12.

- Dowell P., Hu Z. & Lane M.D. (2005) Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. *Annu Rev Biochem*, **74**, 515-34.
- Edwards D.B., Ernst C.W., Tempelman R.J., Rosa G.J., Raney N.E., Hoge M.D. & Bates R.O. (2008) Quantitative trait loci mapping in an F2 Duroc x Pietrain resource population: I. Growth traits. *J Anim Sci*, **86**, 241-53.
- Enoch H.G., Catala A. & Strittmatter P. (1976) Mechanism of rat liver microsomal stearyl-CoA desaturase. Studies of the substrate specificity, enzyme-substrate interactions, and the function of lipid. *J Biol Chem*, **251**, 5095-103.
- Ernst C.W., Kapke P.A., Yerle M. & Rothschild M.F. (1997) The leptin receptor gene (LEPR) maps to porcine chromosome 6. *Mamm Genome*, **8**, 226.
- Ewing B. & Green P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. *Genome Res*, **8**, 186-94.
- Ewing B., Hillier L., Wendl M.C. & Green P. (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. *Genome Res*, **8**, 175-85.
- Fahrenkrug S.C., Rohrer G.A., Freking B.A., Smith T.P., Osoegawa K., Shu C.L., Catanese J.J. & de Jong P.J. (2001) A porcine BAC library with tenfold genome coverage: a resource for physical and genetic map integration. *Mamm Genome*, **12**, 472-4.
- Fontanesi L., Davoli R., Nanni Costa L., Scotti E. & Russo V. (2003) Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs. *Cytogenet Genome Res*, **102**, 145-51.
- Foretz M., Ancellin N., Andreelli F., Saintillan Y., Grondin P., Kahn A., Thorens B., Vaulont S. & Viollet B. (2005) Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. *Diabetes*, 54, 1331-9.
- Fox J. (2005) Effects: Effect Displays for Linear and Generalized Linear Models, R package version 1.0-8, http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/.
- Fox J. (2006) Car: Companion to Applied Regression, R package version 1.1-1, http://www.r-project.org, http://socserv.socsci.mcmaster.ca/jfox/.
- Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V.K., Weiler J.E., O'Brien P.J. & MacLennan D.H. (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. *Science*, 253, 448-51.
- Gallardo D., Canovas E., Lopez-Bejar M., Ramirez O., Pena R., Quintanilla R. & Amills M. (2008) Alternative splicing at exon 28 of the acetyl-coenzyme A carboxylase alpha gene in adult pigs and embryos. *Anim Genet*, **39**, 205-6.
- Gerbens F., van Erp A.J., Harders F.L., Verburg F.J., Meuwissen T.H., Veerkamp J.H. & te Pas M.F. (1999) Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. *J Anim Sci*, **77**, 846-52.
- Gerbens F., Verburg F.J., Van Moerkerk H.T., Engel B., Buist W., Veerkamp J.H. & te Pas M.F. (2001) Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. *J Anim Sci*, **79**, 347-54.
- Gobin S., Bonnefont J.P., Prip-Buus C., Mugnier C., Ferrec M., Demaugre F., Saudubray J.M., Rostane H., Djouadi F., Wilcox W., Cederbaum S., Haas R., Nyhan W.L., Green A., Gray G., Girard J. & Thuillier L. (2002) Organization of the human liver carnitine palmitoyltransferase 1 gene (CPT1A) and identification of novel mutations in hypoketotic hypoglycaemia. *Hum Genet*, **111**, 179-89.
- Gordon D., Abajian C. & Green P. (1998) Consed: a graphical tool for sequence finishing. *Genome Res*, **8**, 195-202.
- Goureau A., Yerle M., Schmitz A., Riquet J., Milan D., Pinton P., Frelat G. & Gellin J.

(1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. *Genomics*, **36**, 252-62.

- Gremme G., Brendel V., Sparks M.E. & Kurtz S. (2005) Engineering a software tool for gene structure prediction in higher organisms. *Information and Software Technology*, 47, 965-978.
- Grindflek E., Szyda J., Liu Z. & Lien S. (2001) Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. *Mamm Genome*, **12**, 299-304.
- Grisart B., Coppieters W., Farnir F., Karim L., Ford C., Berzi P., Cambisano N., Mni M., Reid S., Simon P., Spelman R., Georges M. & Snell R. (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. *Genome Res*, 12, 222-31.
- Guillou H., D'Andrea S., Rioux V., Jan S. & Legrand P. (2004) The surprising diversity of Delta6-desaturase substrates. *Biochem Soc Trans*, **32**, 86-7.
- Haberkern G., Regenhard P., Ottzen-Schirakow G., Kalm E. & Looft C. (2004) Assignment of two isoforms of the AMP-activated protein kinase gamma subunits, PRKAG1 and PRKAG2 to porcine chromosomes 5 and 18, respectively by radiation hybrid panel mapping. *Cytogenet Genome Res*, **106**, 142.
- Hallermayer R. (1976) Deutsche Lebensmittelrundschau. In, pp. 356-9.
- Haley C.S., Knott S.A. & Elsen J.M. (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. *Genetics* **136**, 1195-207.
- Hardie D.G., Scott J.W., Pan D.A. & Hudson E.R. (2003) Management of cellular energy by the AMP-activated protein kinase system. *FEBS Lett*, **546**, 113-20.
- Harlizius B., Rattink A.P., de Koning D.J., Faivre M., Joosten R.G., van Arendonk J.A. & Groenen M.A. (2000) The X chromosome harbors quantitative trait loci for backfat thickness and intramuscular fat content in pigs. *Mamm Genome*, **11**, 800-2.
- Hasler J. & Strub K. (2006) Alu elements as regulators of gene expression. *Nucleic Acids Res*, **34**, 5491-7.
- Hattersley A.T. & McCarthy M.I. (2005) What makes a good genetic association study? *Lancet*, **366**, 1315-23.
- He W., Lam T.K., Obici S. & Rossetti L. (2006) Molecular disruption of hypothalamic nutrient sensing induces obesity. *Nat Neurosci*, **9**, 227-33.
- Hirschhorn J.N. & Daly M.J. (2005) Genome-wide association studies for common diseases and complex traits. *Nat Rev Genet*, **6**, 95-108.
- Holliday R. & Grigg G.W. (1993) DNA methylation and mutation. Mutat Res, 285, 61-7.
- Horikoshi M., Hara K., Ohashi J., Miyake K., Tokunaga K., Ito C., Kasuga M., Nagai R. & Kadowaki T. (2006) A polymorphism in the AMPKalpha2 subunit gene is associated with insulin resistance and type 2 diabetes in the Japanese population. *Diabetes*, 55, 919-23.
- Hsiao Y.S., Jogl G., Esser V. & Tong L. (2006) Crystal structure of rat carnitine palmitoyltransferase II (CPT-II). *Biochem Biophys Res Commun*, **346**, 974-80.
- Hu Z., Dai Y., Prentki M., Chohnan S. & Lane M.D. (2005a) A role for hypothalamic malonyl-CoA in the control of food intake. *J Biol Chem*, **280**, 39681-3.
- Hu Z.L., Dracheva S., Jang W., Maglott D., Bastiaansen J., Rothschild M.F. & Reecy J.M. (2005b) A QTL resource and comparison tool for pigs: PigQTLDB. *Mamm Genome*, 16, 792-800.
- Jansen R.C. & Nap J.P. (2001) Genetical genomics: the added value from segregation. *Trends Genet*, **17**, 388-91.
- Jeon J.T., Carlborg O., Tornsten A., Giuffra E., Amarger V., Chardon P., Andersson-Eklund L., Andersson K., Hansson I., Lundstrom K. & Andersson L. (1999) A

paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. *Nat Genet*, **21**, 157-8.

- Ji S., You Y., Kerner J., Hoppel C.L., Schoeb T.R., Chick W.S., Hamm D.A., Sharer J.D.
 & Wood P.A. (2008) Homozygous carnitine palmitoyltransferase 1b (muscle isoform) deficiency is lethal in the mouse. *Mol Genet Metab*, 93, 314-22.
- Jiang Z. & Rothschild M.F. (2007) Swine genome science comes of age. Int J Biol Sci, 3, 129-31.
- Jorgensen S.B., Richter E.A. & Wojtaszewski J.F. (2006) Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise. *J Physiol*, **574**, 17-31.
- Jorgensen S.B., Viollet B., Andreelli F., Frosig C., Birk J.B., Schjerling P., Vaulont S., Richter E.A. & Wojtaszewski J.F. (2004) Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle. J Biol Chem, 279, 1070-9.
- Kadarmideen H.N. & Janss L.L. (2007) Population and systems genetics analyses of cortisol in pigs divergently selected for stress. *Physiol Genomics*, **29**, 57-65.
- Keshavarz P., Inoue H., Nakamura N., Yoshikawa T., Tanahashi T. & Itakura M. (2008) Single nucleotide polymorphisms in genes encoding LKB1 (STK11), TORC2 (CRTC2) and AMPK alpha2-subunit (PRKAA2) and risk of type 2 diabetes. *Mol Genet Metab*, **93**, 200-9.
- Kgwatalala P.M., Ibeagha-Awemu E.M., Hayes J.F. & Zhao X. (2007) Single nucleotide polymorphisms in the open reading frame of the stearoyl-CoA desaturase gene and resulting genetic variants in Canadian Holstein and Jersey cows. *DNA Seq*, **18**, 357-62.
- Khang N.T., Jennen D.G., Tholen E., Tesfaye D., Mennicken L., Hoelker M., Schellander K., Ponsuksili S., Murani E. & Wimmers K. (2007) Association of the FADS2 gene with omega-6 and omega-3 PUFA Concentration in the egg yolk of Japanese quail. *Anim Biotechnol*, 18, 189-201.
- Kim J.J., Zhao H., Thomsen H., Rothschild M.F. & Dekkers J.C. (2005) Combined linecross and half-sib QTL analysis of crosses between outbred lines. *Genet Res*, 85, 235-48.
- Knott S.A., Marklund L., Haley C.S., Andersson K., Davies W., Ellegren H., Fredholm M., Hansson I., Hoyheim B., Lundstrom K., Moller M. & Andersson L. (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. *Genetics*, 149, 1069-80.
- Koletzko B., Demmelmair H., Schaeffer L., Illig T. & Heinrich J. (2008) Genetically determined variation in polyunsaturated Fatty Acid metabolism may result in different dietary requirements. *Nestle Nutr Workshop Ser Pediatr Program*, 62, 35-49.
- Komsta L. (2006) outliers: Tests for outliers, R package version 0.13, http://www.r-project.org, http://www.komsta.net/.
- Kwon J.M. & Goate A.M. (2000) The candidate gene approach. *Alcohol Res Health*, **24**, 164-8
- Le Roy P., Elsen J.M., Caritez J.C., Talmant A., Juin H., Sellier P. & Monin G. (2000) Comparison between the three porcine RN genotypes for growth, carcass composition and meat quality traits. *Genet Sel Evol*, **32**, 165-86.
- Lee G.Y., Kim N.H., Zhao Z.S., Cha B.S. & Kim Y.S. (2004) Peroxisomal-proliferatoractivated receptor alpha activates transcription of the rat hepatic malonyl-CoA decarboxylase gene: a key regulation of malonyl-CoA level. *Biochem J*, **378**, 983-90.

- Lengi A.J. & Corl B.A. (2007) Identification and characterization of a novel bovine stearoyl-CoA desaturase isoform with homology to human SCD5. *Lipids*, **42**, 499-508.
- Leonard A.E., Pereira S.L., Sprecher H. & Huang Y.S. (2004) Elongation of long-chain fatty acids. *Prog Lipid Res*, **43**, 36-54.
- Lewis S.E., Searle S.M., Harris N., Gibson M., Lyer V., Richter J., Wiel C., Bayraktaroglir L., Birney E., Crosby M.A., Kaminker J.S., Matthews B.B., Prochnik S.E., Smithy C.D., Tupy J.L., Rubin G.M., Misra S., Mungall C.J. & Clamp M.E. (2002) Apollo: a sequence annotation editor. *Genome Biol*, **3**, RESEARCH0082.
- Lichtenstein A.H. (2006) Thematic review series: patient-oriented research. Dietary fat, carbohydrate, and protein: effects on plasma lipoprotein patterns. *J Lipid Res*, **47**, 1661-7.
- Loftus T.M., Jaworsky D.E., Frehywot G.L., Townsend C.A., Ronnett G.V., Lane M.D. & Kuhajda F.P. (2000) Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. *Science*, **288**, 2379-81.
- Luo X.C., Park K., Lopez-Casillas F. & Kim K.H. (1989) Structural features of the acetyl-CoA carboxylase gene: mechanisms for the generation of mRNAs with 5' end heterogeneity. *Proc Natl Acad Sci U S A*, 86, 4042-6.
- Malerba G., Schaeffer L., Xumerle L., Klopp N., Trabetti E., Biscuola M., Cavallari U., Galavotti R., Martinelli N., Guarini P., Girelli D., Olivieri O., Corrocher R., Heinrich J., Pignatti P.F. & Illig T. (2008) SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. *Lipids*, 43, 289-99.
- Man W.C., Miyazaki M., Chu K. & Ntambi J.M. (2006) Membrane topology of mouse stearoyl-CoA desaturase 1. *J Biol Chem*, **281**, 1251-60.
- Mao J., Chirala S.S. & Wakil S.J. (2003) Human acetyl-CoA carboxylase 1 gene: presence of three promoters and heterogeneity at the 5'-untranslated mRNA region. *Proc Natl Acad Sci US A*, **100**, 7515-20.
- Mao J., DeMayo F.J., Li H., Abu-Elheiga L., Gu Z., Shaikenov T.E., Kordari P., Chirala S.S., Heird W.C. & Wakil S.J. (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. *Proc Natl Acad Sci U S A*, 103, 8552-7.
- Mao J., Marcos S., Davis S.K., Burzlaff J. & Seyfert H.M. (2001) Genomic distribution of three promoters of the bovine gene encoding acetyl-CoA carboxylase alpha and evidence that the nutritionally regulated promoter I contains a repressive element different from that in rat. *Biochem J*, 358, 127-35.
- Mao J. & Seyfert H.M. (2002) Promoter II of the bovine acetyl-coenzyme A carboxylasealpha-encoding gene is widely expressed and strongly active in different cells. *Biochim Biophys Acta*, **1576**, 324-9.
- Mardis E.R. (2008) Next-generation DNA sequencing methods. *Annu Rev Genomics Hum Genet*, **9**, 387-402.
- Marquardt A., Stohr H., White K. & Weber B.H. (2000) cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. *Genomics*, **66**, 175-83.
- Meidtner K. (2007) Analysis of lipid metabolism-related candidate genes in swine. Doctoral dissertation, Freising Technische Universitaet Muenchen.
- Mele M., Conte G., Castiglioni B., Chessa S., Macciotta N.P., Serra A., Buccioni A., Pagnacco G. & Secchiari P. (2007) Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins. *J Dairy Sci*, 90, 4458-65.

- Mercade A., Estelle J., Perez-Enciso M., Varona L., Silio L., Noguera J.L., Sanchez A. & Folch J.M. (2006) Characterization of the porcine acyl-CoA synthetase long-chain 4 gene and its association with growth and meat quality traits. *Anim Genet*, **37**, 219-24.
- Milan D., Bidanel J.P., Iannuccelli N., Riquet J., Amigues Y., Gruand J., Le Roy P., Renard C. & Chevalet C. (2002) Detection of quantitative trait loci for carcass composition traits in pigs. *Genet Sel Evol*, 34, 705-28.
- Milan D., Jeon J.T., Looft C., Amarger V., Robic A., Thelander M., Rogel-Gaillard C., Paul S., Iannuccelli N., Rask L., Ronne H., Lundstrom K., Reinsch N., Gellin J., Kalm E., Roy P.L., Chardon P. & Andersson L. (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. *Science*, 288, 1248-51.
- Milanesi E., Nicoloso L. & Crepaldi P. (2008) Stearoyl CoA desaturase (SCD) gene polymorphisms in Italian cattle breeds. *J Anim Breed Genet*, **125**, 63-7.
- Minokoshi Y., Alquier T., Furukawa N., Kim Y.B., Lee A., Xue B., Mu J., Foufelle F., Ferre P., Birnbaum M.J., Stuck B.J. & Kahn B.B. (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. *Nature*, **428**, 569-74.
- Minokoshi Y., Kim Y.B., Peroni O.D., Fryer L.G., Muller C., Carling D. & Kahn B.B. (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. *Nature*, **415**, 339-43.
- Miyazaki M., Jacobson M.J., Man W.C., Cohen P., Asilmaz E., Friedman J.M. & Ntambi J.M. (2003) Identification and characterization of murine SCD4, a novel heartspecific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J Biol Chem, 278, 33904-11.
- Mohrmann M., Roehe R., Knap P.W., Looft H., Plastow G.S. & Kalm E. (2006) Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa. *Anim Genet*, 37, 435-43.
- Moioli B., Contarini G., Avalli A., Catillo G., Orru L., De Matteis G., Masoero G. & Napolitano F. (2007) Short communication: Effect of stearoyl-coenzyme A desaturase polymorphism on fatty acid composition of milk. *J Dairy Sci*, **90**, 3553-8.
- Moon Y.A. & Horton J.D. (2003) Identification of two mammalian reductases involved in the two-carbon fatty acyl elongation cascade. *J Biol Chem*, **278**, 7335-43.
- Munoz G., Alves E., Fernandez A., Ovilo C., Barragan C., Estelle J., Quintanilla R., Folch J.M., Silio L., Rodriguez M.C. & Fernandez A.I. (2007) QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. *Anim Genet*, **38**, 639-46.
- Mziaut H., Korza G. & Ozols J. (2000) The N terminus of microsomal delta 9 stearoyl-CoA desaturase contains the sequence determinant for its rapid degradation. *Proc Natl Acad Sci US A*, **97**, 8883-8.
- Nackley A.G., Shabalina S.A., Tchivileva I.E., Satterfield K., Korchynskyi O., Makarov S.S., Maixner W. & Diatchenko L. (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. *Science*, **314**, 1930-3.
- Nakamura M.T. & Nara T.Y. (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. *Annu Rev Nutr*, **24**, 345-76.
- Nam H.W., Lee G.Y. & Kim Y.S. (2006) Mass spectrometric identification of K210

essential for rat malonyl-CoA decarboxylase catalysis. J Proteome Res, 5, 1398-406.

- Nechtelberger D., Pires V., Soolknet J., Stur, Brem G., Mueller M. & Mueller S. (2001) Intramuscular fat content and genetic variants at fatty acid-binding protein loci in Austrian pigs. *J Anim Sci*, **79**, 2798-804.
- Nezer C., Moreau L., Brouwers B., Coppieters W., Detilleux J., Hanset R., Karim L., Kvasz A., Leroy P. & Georges M. (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. *Nat Genet*, 21, 155-6.
- Nickerson D.A., Tobe V.O. & Taylor S.L. (1997) PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. *Nucleic Acids Res*, **25**, 2745-51.
- Nii M., Hayashi T., Tani F., Niki A., Mori N., Fujishima-Kanaya N., Komatsu M., Aikawa K., Awata T. & Mikawa S. (2006) Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar x Large White intercross. *Anim Genet*, 37, 342-7.
- Ntambi J.M. (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. *J Lipid Res*, **40**, 1549-58.
- Ntambi J.M., Miyazaki M., Stoehr J.P., Lan H., Kendziorski C.M., Yandell B.S., Song Y., Cohen P., Friedman J.M. & Attie A.D. (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. *Proc Natl Acad Sci U S A*, **99**, 11482-6.
- Nyman L.R., Cox K.B., Hoppel C.L., Kerner J., Barnoski B.L., Hamm D.A., Tian L., Schoeb T.R. & Wood P.A. (2005) Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse. *Mol Genet Metab*, **86**, 179-87.
- Oh S.Y., Lee M.Y., Kim J.M., Yoon S., Shin S., Park Y.N., Ahn Y.H. & Kim K.S. (2005a) Alternative usages of multiple promoters of the acetyl-CoA carboxylase beta gene are related to differential transcriptional regulation in human and rodent tissues. J Biol Chem, 280, 5909-16.
- Oh S.Y., Park S.K., Kim J.W., Ahn Y.H., Park S.W. & Kim K.S. (2003) Acetyl-CoA carboxylase beta gene is regulated by sterol regulatory element-binding protein-1 in liver. *J Biol Chem*, **278**, 28410-7.
- Oh W., Abu-Elheiga L., Kordari P., Gu Z., Shaikenov T., Chirala S.S. & Wakil S.J. (2005b) Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. *Proc Natl Acad Sci U S A*, **102**, 1384-9.
- Ovilo C., Clop A., Noguera J.L., Oliver M.A., Barragan C., Rodriguez C., Silio L., Toro M.A., Coll A., Folch J.M., Sanchez A., Babot D., Varona L. & Perez-Enciso M. (2002a) Quantitative trait locus mapping for meat quality traits in an Iberian x Landrace F2 pig population. *J Anim Sci*, 80, 2801-8.
- Ovilo C., Fernandez A., Noguera J.L., Barragan C., Leton R., Rodriguez C., Mercade A., Alves E., Folch J.M., Varona L. & Toro M. (2005) Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. *Genet Res*, 85, 57-67.
- Ovilo C., Oliver A., Noguera J.L., Clop A., Barragan C., Varona L., Rodriguez C., Toro M., Sanchez A., Perez-Enciso M. & Silio L. (2002b) Test for positional candidate genes for body composition on pig chromosome 6. *Genet Sel Evol*, 34, 465-79.
- Pan Q., Shai O., Lee L.J., Frey B.J. & Blencowe B.J. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. *Nat Genet*, 40, 1413-5.
- Pang T., Xiong B., Li J.Y., Qiu B.Y., Jin G.Z., Shen J.K. & Li J. (2007) Conserved alphahelix acts as autoinhibitory sequence in AMP-activated protein kinase alpha subunits. *J Biol Chem*, 282, 495-506.

- Perez-Enciso M., Clop A., Noguera J.L., Ovilo C., Coll A., Folch J.M., Babot D., Estany J., Oliver M.A., Diaz I. & Sanchez A. (2000) A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from an Iberian by Landrace intercross. *J Anim Sci*, 78, 2525-31.
- Ponsuksili S., Jonas E., Murani E., Phatsara C., Srikanchai T., Walz C., Schwerin M., Schellander K. & Wimmers K. (2008) Trait correlated expression combined with expression QTL analysis reveals biological pathways and candidate genes affecting water holding capacity of muscle. *BMC Genomics*, 9, 367.
- Qu Y.C., Deng C.Y., Xiong Y.Z., Zheng R., Yu L., Su Y.H. & Liu G.L. (2002) [The construction of the genetic map and QTL locating analysis on chromosome 2 in swine]. *Yi Chuan Xue Bao*, **29**, 972-6.
- Quackenbush J., Cho J., Lee D., Liang F., Holt I., Karamycheva S., Parvizi B., Pertea G., Sultana R. & White J. (2001) The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species. *Nucleic Acids Res*, **29**, 159-64.
- Ramensky V., Bork P. & Sunyaev S. (2002) Human non-synonymous SNPs: server and survey. *Nucleic Acids Res*, **30**, 3894-900.
- Rattink A.P., De Koning D.J., Faivre M., Harlizius B., van Arendonk J.A. & Groenen M.A. (2000) Fine mapping and imprinting analysis for fatness trait QTLs in pigs. *Mamm Genome*, **11**, 656-61.
- Ren J., Knorr C., Guo Y.M., Ding N.S., Ai H.S., Brenig B. & Huang L.S. (2004a) Characterization of five single nucleotide polymorphisms in the porcine stearoyl-CoA desaturase (SCD) gene. *Anim Genet*, **35**, 255-7.
- Ren J., Knorr C., Habermann F., Fries R., Huang L.S. & Brenig B. (2003) Assignment of the porcine stearoyl-CoA desaturase (SCD) gene to SSC14q27 by fluorescence in situ hybridization and by hybrid panel mapping. *Anim Genet*, 34, 471-3.
- Ren J., Knorr C., Huang L. & Brenig B. (2004b) Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene. *Gene*, **340**, 19-30.
- Retter I., Chevillard C., Scharfe M., Conrad A., Hafner M., Im T.H., Ludewig M., Nordsiek G., Severitt S., Thies S., Mauhar A., Blocker H., Muller W. & Riblet R. (2007) Sequence and characterization of the Ig heavy chain constant and partial variable region of the mouse strain 129S1. *J Immunol*, **179**, 2419-27.
- Robitaille J., Houde A., Lemieux S., Perusse L., Gaudet D. & Vohl M.C. (2007) Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians. J Mol Med, 85, 129-37.
- Rogel-Gaillard C., Bourgeaux N., Billault A., Vaiman M. & Chardon P. (1999) Construction of a swine BAC library: application to the characterization and mapping of porcine type C endoviral elements. *Cytogenet Cell Genet*, **85**, 205-11.
- Rothschild M.F. (2003) From a sow's ear to a silk purse: real progress in porcine genomics. *Cytogenet Genome Res*, **102**, 95-9.
- Rzehak P., Heinrich J., Klopp N., Schaeffer L., Hoff S., Wolfram G., Illig T. & Linseisen J. (2008) Evidence for an association between genetic variants of the fatty acid desaturase 1 fatty acid desaturase 2 (FADS1 FADS2) gene cluster and the fatty acid composition of erythrocyte membranes. *Br J Nutr*, 1-7.
- Sacksteder K.A., Morrell J.C., Wanders R.J., Matalon R. & Gould S.J. (1999) MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA decarboxylase and is mutated in malonyl-CoA decarboxylase deficiency. *J Biol Chem*, **274**, 24461-8.
- Sanchez M.P., Iannuccelli N., Basso B., Bidanel J.P., Billon Y., Gandemer G., Gilbert H., Larzul C., Legault C., Riquet J., Milan D. & Le Roy P. (2007) Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x

Large White cross. BMC Genet, 8, 55.

- Sato S., Hasebe H., Sato S., Asahi Y., Hayashi T., Kobayashi E. & Sugimoto Y. (2006) High-resolution physical mapping and construction of a porcine contig spanning the intramuscular fat content QTL. *Anim Genet*, 37, 113-20.
- Sato S., Oyamada Y., Atsuji K., Nade T., Sato S., Kobayashi E., Mitsuhashi T., Nirasawa K., Komatsuda A., Saito Y., Terai S., Hayashi T. & Sugimoto Y. (2003) Quantitative trait loci analysis for growth and carcass traits in a Meishan x Duroc F2 resource population. *J Anim Sci*, **81**, 2938-49.
- Schaeffer L., Gohlke H., Muller M., Heid I.M., Palmer L.J., Kompauer I., Demmelmair H., Illig T., Koletzko B. & Heinrich J. (2006) Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. *Hum Mol Genet*, **15**, 1745-56.
- Schennink A., Heck J.M., Bovenhuis H., Visker M.H., van Valenberg H.J. & van Arendonk J.A. (2008) Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-CoA desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1). J Dairy Sci, 91, 2135-43.
- Sellier A. (1998) Genetics of meat and carcass traits. In: The genetics of the pig (ed. by M. F. Rothschild & A. Ruvinsky), pp. 463-510. CABI, Wallingford, UK, 463-510.
- Sellner E.M., Kim J.W., McClure M.C., Taylor K.H., Schnabel R.D. & Taylor J.F. (2007) Board-invited review: Applications of genomic information in livestock. J Anim Sci, 85, 3148-58.
- Shanklin J., Whittle E. & Fox B.G. (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. *Biochemistry*, **33**, 12787-94.
- Sierra A.Y., Gratacos E., Carrasco P., Clotet J., Urena J., Serra D., Asins G., Hegardt F.G. & Casals N. (2008) CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity. *J Biol Chem*, 283, 6878-85.
- Smith S. (1994) The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. *Faseb J*, **8**, 1248-59.
- Spencer-Jones N.J., Ge D., Snieder H., Perks U., Swaminathan R., Spector T.D., Carter N.D. & O'Dell S.D. (2006) AMP-kinase alpha2 subunit gene PRKAA2 variants are associated with total cholesterol, low-density lipoprotein-cholesterol and highdensity lipoprotein-cholesterol in normal women. J Med Genet, 43, 936-42.
- Staden R. (1996) The Staden sequence analysis package. Mol Biotechnol, 5, 233-41.
- Stapleton D., Mitchelhill K.I., Gao G., Widmer J., Michell B.J., Teh T., House C.M., Fernandez C.S., Cox T., Witters L.A. & Kemp B.E. (1996) Mammalian AMPactivated protein kinase subfamily. *J Biol Chem*, 271, 611-4.
- Stephens M. & Donnelly P. (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. *Am J Hum Genet*, **73**, 1162-9.
- Stephens M., Smith N.J. & Donnelly P. (2001) A new statistical method for haplotype reconstruction from population data. *Am J Hum Genet*, **68**, 978-89.
- Stewart J.W., Kaplan M.L. & Beitz D.C. (2001) Pork with a high content of polyunsaturated fatty acids lowers LDL cholesterol in women. Am J Clin Nutr, 74, 179-87.
- Stoffel W., Holz B., Jenke B., Binczek E., Gunter R.H., Kiss C., Karakesisoglou I., Thevis M., Weber A.A., Arnhold S. & Addicks K. (2008) Delta6-Desaturase (FADS2) deficiency unveils the role of omega3- and omega6-polyunsaturated fatty acids. *Embo J*, 17, 2281-92.
- Su Y.H., Xiong Y.Z., Jiang S.W., Q. Z., Lei M.G., Zheng R. & Deng C.Y. (2004) Mapping

quantitative trait loci for meat quality traits in a Large White x Meishan cross. *Acta Genetica Sinica*, **31**, 132-136.

- Sun M.W., Lee J.Y., de Bakker P.I., Burtt N.P., Almgren P., Rastam L., Tuomi T., Gaudet D., Daly M.J., Hirschhorn J.N., Altshuler D., Groop L. & Florez J.C. (2006) Haplotype structures and large-scale association testing of the 5' AMP-activated protein kinase genes PRKAA2, PRKAB1, and PRKAB2 [corrected] with type 2 diabetes. *Diabetes*, 55, 849-55.
- Szyda J., Grindflek E., Liu Z. & Lien S. (2003) Multivariate mixed inheritance models for QTL detection on porcine chromosome 6. *Genet Res*, **81**, 65-73.
- Szyda J., Liu Z., Grindflek E. & Lien S. (2002) Application of a mixed inheritance model to the detection of quantitative trait loci in swine. *J Appl Genet*, **43**, 69-83.
- Tabor D.E., Xia Y.R., Mehrabian M., Edwards P.A. & Lusis A.J. (1998) A cluster of stearoyl CoA desaturase genes, Scd1 and Scd2, on mouse chromosome 19. *Mamm Genome*, 9, 341-2.
- Tabor H.K., Risch N.J. & Myers R.M. (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. *Nat Rev Genet*, **3**, 391-7.
- Taniguchi M., Utsugi T., Oyama K., Mannen H., Kobayashi M., Tanabe Y., Ogino A. & Tsuji S. (2004) Genotype of stearoyl-coA desaturase is associated with fatty acid composition in Japanese Black cattle. *Mamm Genome*, 15, 142-8.
- Thornton C., Snowden M.A. & Carling D. (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. *J Biol Chem*, **273**, 12443-50.
- Tong L. (2005) Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. *Cell Mol Life Sci*, **62**, 1784-803.
- Travers M.T. & Barber M.C. (2001) Acetyl-CoA carboxylase-{alpha}: Gene structurefunction relationships. J. Anim Sci., 79, E136-E143.
- Travers M.T., Cambot M., Kennedy H.T., Lenoir G.M., Barber M.C. & Joulin V. (2005) Asymmetric expression of transcripts derived from the shared promoter between the divergently oriented ACACA and TADA2L genes. *Genomics*, 85, 71-84.
- Travers M.T., Vallance A.J., Clegg R.A., Thomson R., Price N.T. & Barber M.C. (2003) Characterisation of an N-terminal variant of acetyl-CoA carboxylase-alpha: expression in human tissues and evolutionary aspects. *Biochim Biophys Acta*, **1634**, 97-106.
- Travers M.T., Vallance A.J., Gourlay H.T., Gill C.A., Klein I., Bottema C.B. & Barber M.C. (2001) Promoter I of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. *Biochem J*, 359, 273-84.
- van der Leij F.R., Cox K.B., Jackson V.N., Huijkman N.C., Bartelds B., Kuipers J.R., Dijkhuizen T., Terpstra P., Wood P.A., Zammit V.A. & Price N.T. (2002) Structural and functional genomics of the CPT1B gene for muscle-type carnitine palmitoyltransferase I in mammals. *J Biol Chem*, 277, 26994-7005.
- van der Leij F.R., Huijkman N.C., Boomsma C., Kuipers J.R. & Bartelds B. (2000) Genomics of the human carnitine acyltransferase genes. *Mol Genet Metab*, **71**, 139-53.
- Van Laere A.S., Nguyen M., Braunschweig M., Nezer C., Collette C., Moreau L., Archibald A.L., Haley C.S., Buys N., Tally M., Andersson G., Georges M. & Andersson L. (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. *Nature*, 425, 832-6.
- Verderio E., Cavadini P., Montermini L., Wang H., Lamantea E., Finocchiaro G., DiDonato

S., Gellera C. & Taroni F. (1995) Carnitine palmitoyltransferase II deficiency: structure of the gene and characterization of two novel disease-causing mutations. *Hum Mol Genet*, **4**, 19-29.

- Vignal A., Milan D., SanCristobal M. & Eggen A. (2002) A review on SNP and other types of molecular markers and their use in animal genetics. *Genet Sel Evol*, **34**, 275-305.
- Viollet B., Andreelli F., Jorgensen S.B., Perrin C., Flamez D., Mu J., Wojtaszewski J.F., Schuit F.C., Birnbaum M., Richter E., Burcelin R. & Vaulont S. (2003) Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. *Biochem Soc Trans*, **31**, 216-9.
- Voilley N., Roduit R., Vicaretti R., Bonny C., Waeber G., Dyck J.R., Lopaschuk G.D. & Prentki M. (1999) Cloning and expression of rat pancreatic beta-cell malonyl-CoA decarboxylase. *Biochem J*, 340 (Pt 1), 213-7.
- Wang J., Yu L., Schmidt R.E., Su C., Huang X., Gould K. & Cao G. (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. *Biochem Biophys Res Commun*, 332, 735-42.
- Wightman P.J., Santer R., Ribes A., Dougherty F., McGill N., Thorburn D.R. & FitzPatrick D.R. (2003) MLYCD mutation analysis: evidence for protein mistargeting as a cause of MLYCD deficiency. *Hum Mutat*, 22, 288-300.
- Williams C.M. (2000) Dietary fatty acids and human health. Animal Research, 49, 165-80.
- Winter A., Kramer W., Werner F.A., Kollers S., Kata S., Durstewitz G., Buitkamp J., Womack J.E., Thaller G. & Fries R. (2002) Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. *Proc Natl Acad Sci US A*, **99**, 9300-5.
- Wojtaszewski J.F., Birk J.B., Frosig C., Holten M., Pilegaard H. & Dela F. (2005) 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. *J Physiol*, **564**, 563-73.
- Wolfgang M.J., Kurama T., Dai Y., Suwa A., Asaumi M., Matsumoto S., Cha S.H., Shimokawa T. & Lane M.D. (2006) The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. *Proc Natl Acad Sci U S A*, 103, 7282-7.
- Wolfgang M.J. & Lane M.D. (2006) The role of hypothalamic malonyl-CoA in energy homeostasis. *J Biol Chem*, **281**, 37265-9.
- Wong K.A. & Lodish H.F. (2006) A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. *J Biol Chem*, **281**, 36434-42.
- Xue B. & Kahn B.B. (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. *J Physiol*, **574**, 73-83.
- Yamazaki N., Matsuo T., Kurata M., Suzuki M., Fujiwaki T., Yamaguchi S., Terada H. & Shinohara Y. (2008) Substitutions of three amino acids in human heart/muscle type carnitine palmitoyltransferase I caused by single nucleotide polymorphisms. *Biochem Genet*, 46, 54-63.
- Yamazaki N., Yamanaka Y., Hashimoto Y., Shinohara Y., Shima A. & Terada H. (1997) Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. *FEBS Lett*, **409**, 401-6.
- Yerle M., Pinton P., Robic A., Alfonso A., Palvadeau Y., Delcros C., Hawken R., Alexander L., Beattie C., Schook L., Milan D. & Gellin J. (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs.

Cytogenet Cell Genet, 82, 182-8.

- Yu G.S., Lu Y.C. & Gulick T. (1998) Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. *J Biol Chem*, **273**, 32901-9.
- ZDS (2004) Richtlinie fuer die Stationspruefung auf Mastleistung, Schlachtkoerperwert und Fleischbeschaffenheit beim Schwein. Zen-tralverband der Deutschen Schweineproduktion e.V., Bonn.
- Zheng Y., Prouty S.M., Harmon A., Sundberg J.P., Stenn K.S. & Parimoo S. (2001) Scd3-a novel gene of the stearoyl-CoA desaturase family with restricted expression in skin. *Genomics*, **71**, 182-91.
- Zhu M. & Zhao S. (2007) Candidate gene identification approach: progress and challenges. *Int J Biol Sci*, **3**, 420-7.

Abbreviations

Α	adenine
ABI	Applied Biosystems
ACACA	acetyl-Coenzyme A carboxylase alpha gene
ACACB	acetyl-Coenzyme A carboxylase beta gene
AMPK	AMP-activated protein kinase
BAC	bacterial artificial chromosome
BES	BAC end sequences
BFT	backfat thickness
BLAST	basic local alignment search tool
bp	base pair
С	cytosine
cDNA	complementary deoxyribonucleic acid
cM	centi Morgan
CPTIA	carnitine palmitoyltransferase 1A (liver) gene
CPT1B	carnitine palmitoyltransferase 1B (muscle) gene
CPT1C	carnitine palmitoyltransferase 1C gene
CPT2	carnitine palmitoyltransferase II gene
DE	German Large White
DFCI	Dana-Farber Cancer Institute
DL	German Landrace
DNA	deoxyribonucleic acid
DU	Duroc
EST	expressed sequence tag
FADS1	delta-5 desaturase gene
FADS2	delta-6 desaturase gene
FADS3	fatty acid desaturase 3 gene
FASN	fatty acid synthase gene
G	guanine
HSA	human chromosome
HT	haplotype
HUFA	highly-unsaturated fatty acid
IMF	intramuscular fat content

indel	Insertion Deletion polymorphism
kb	kilo base pairs
LD	Linkage Disequilibrium
LMA	loin muscle area
$M \times P$	a Mangalitsa × Piétrain intercross
Mb	Mega base pairs
MGB	minor groove binder
MLYCD	malonyl-Coenzyme A decarboxylase gene
mRNA	messenger ribonucleic acid
MUFA	monounsaturated fatty acid
Ν	A, C, G, T, U
n-3 PUFA	Omega-3 polyunsaturated fatty acid
n-6 PUFA	Omega-6 polyunsaturated fatty acid
NCBI	National Center for Biotechnology Information
PCR	polymerase chain reaction
PI	Piétrain
PRKAAI	AMP-activated protein kinase alpha 1 catalytic subunit gene
PRKAA2	AMP-activated protein kinase alpha 2 catalytic subunit gene
PRKAB1	AMP-activated protein kinase beta 1 non-catalytic subunit gene
PRKAB2	AMP-activated protein kinase beta 2 non-catalytic subunit gene
PRKAG1	AMP-activated protein kinase gamma 1 non-catalytic subunit gene
PRKAG2	AMP-activated protein kinase gamma 2 non-catalytic subunit gene
PRKAG3	AMP-activated protein kinase gamma 3 non-catalytic subunit gene
PUFA	polyunsaturated fatty acid
QTL	quantitative trait locus / loci
RACE	Rapid Amplification of cDNA ends
RFLP	restriction fragment length polymorphism
RH	radiation hybrid
RNA	ribonucleic acid
RT-PCR	reverse transcription PCR
RYR1	ryanodine receptor 1 (skeletal) gene, calcium release channel gene
SCD1	stearoyl-Coenzyme A desaturase 1
SCD5	stearoyl-Coenzyme A desaturase 5

Abbreviations

SFA	saturated fatty acid
SINE	short interspersed nuclear element
SNP	single nucleotide polymorphism
SSC	porcine chromosome
Т	thymine
UTR	untranslated region
ZDS	Zen-tralverband der Deutschen Schweineproduktion e.V

List of tables and figures

Tables		Page
Table 1.1	QTL for intramuscular fat content reported in different pig populations.	10
Table 1.2	Reported QTL affecting fatty acid composition in backfat and muscle.	11
Table 2.1	Primers and PCR conditions used for colony PCR, physical mapping and	
Table 2.1	re-sequencing.	27
Table 2.2	Twenty-five polymorphisms found in the PRKAA2 gene.	30
Table 2.2	Genotyping methods used for the c.236+142A>G and c.630C>T SNPs in	
Table 2.3	the <i>PRKAA2</i> gene and the C1843T mutation in the <i>RYR1</i> gene.	31
Table 2.4	Association results between the SNPs or haplotypes in the PRKAA2 gene	
Table 2.4	and loin muscle area in the $M \times P$ F ₂ and two commercial pig populations.	33
Table 2.1	Means and standard deviations (SD) of twelve phenotypes measuring fat	
Table 3.1	deposition and muscle fatty acid profile in the F_2 population (n = 613).	40
Table 3.2	Primers used for colony PCRs.	42
Table 3.3	Primers used in PCR - re-sequencing for sequence variant detection.	43
Table 3.4	PCR, PCR-RFLP and TaqMan assays used to genotype the pig	
1 aute 5.4	populations.	52
Table 3.5	Porcine and human gene information, and protein sequence identity	
1 able 5.5	between pigs and other mammals.	56
Table 3.6	Exons selected for sequence variant detection in porcine ACACA and	
1 able 5.0	ACACB.	66
Table 3.7	Summary of sequence variants found in eleven genes involved in lipid	
1 abic 5.7	metabolism.	68
Table 3.8	Amino acid substitutions caused by eleven non-synonymous SNPs found	
1 doie 5.6	in five genes.	69
Table 3.9	Allele frequencies of nine variants in ACACA, ACACB, CPT2, MLYCD,	
1000 5.7	FADS2 and SCD1, and ACACB haplotype distribution.	71
Table 3.10	Results of association study between candidate genes and the lipid-related	
1 4010 9.10	traits.	72
Table 4.1	Twelve selected candidate genes in this thesis.	81

Figures		Page
Figure 1.1	Elongation and desturation of fatty acids in mammals.	5
Ei	The pathway of electron transfer in the desaturation of fatty acids by	
Figure 1.2	stearoyl-CoA desaturase.	5
Eigura 1.2	Transport of long chain fatty acyl-CoA across the mitochondrial	
Figure 1.3	membrane.	7
Eigura 1 4	Genes encoding key enzymes or key regulators in lipid- and energy	
Figure 1.4	metabolism.	14
Eigung 2.1	Genomic structure, polymorphisms and haplotype distribution of porcine	
Figure 2.1	PRKAA2.	28
Figure 2.2	Functional regions of porcine AMPK alpha 2 subunit.	28
Г: 2 1	Genomic structures of eleven porcine genes involved in lipid	
Figure 3.1	metabolism.	54
Eigura 2 2	Putative functional regions of the proteins encoded by eleven porcine	
Figure 3.2	genes involved in lipid metabolism.	63
Figure 4.1	The organization of 5' region of ACACA in mammals.	83

Appendices

Exon	Size (bp)	Acc. No. FJ263680	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	522	2865-3386		GGCTAG gt atgt	1	44996
1C-like	346	48383-48728		TCTCAG gt acag	1C-like	>4461
2	118	53290-53407		CTTGAG gt gagg	2	23556
3	?	?		?		
4	47	76964-77010	cttt ag TTCTTT	TAAGAG gt cagt	4	3837
5	253	80848-81100 ^a	ccat ag CTCTGA	CATGAG gt aagt	5	19096
5A-like	489	100197-100685		TCAAAG gt aagt	5A-like	4938
6	133	105624-105756	ttgt ag GTCCAG	GAGAAG gt aagt	6	1311
7	139	107068-107206	tccc ag GTTCTC	ACGCTG gt gagt	7	5054
8	110	112259-112368	tttc ag AATACA	GTGCAA gt aaga	8	1075
9	82	113444-113525	ttgt ag GCAGTA	TCATGG gt aaga	9	1742
10	99	115268-115366	tttt ag GTCCTC	GCAGTG gt aaga	10	1870
11	107	117237-117343	ttgc ag GTCTTC	CTGAAG gt aggt	11	3647
12	111	121012-121122	ttga ag GCAGCA	AGACAG gt agag	12	5995
13	210	127115-127324	atat ag GTTCAA	GAACAG gt acat	13	3942
14	171	131267-131437	tttg ag TGTGCG	CTCCAG gt atgt	14	986
15	162	132424-132585	tttc ag ATTGCC	GATGAG gt aacc	15	559
16	164	133145-133308	caac ag GGTTTC	AATTTC gt gagt	16	2829
17	151	136138-136288	tccc ag AAACAT	GTACAG gt gtgt	17	1313
18	104	137602-137705	tttc ag GCAGAG	GGAGAG gt aggc	18	2782
19	82	140488-140569	tttc ag GGGTCA	CTGAAG gt atgc	19	438
20	146	141008-141153	ctac ag GTGACT	GGATAG gt gagt	20	1536
21	151	142688-142838	tcct ag ATATCG	ATCGAG gt cagg	21	1054
22	135	143893-144027	ttat ag GTGATG	CAGCAG gt gagg	22	342
23	147	144370-144516	tgac ag GCTGAG	AGTAGG gt atga	23	774
24	189	145291-145479	cctc ag GTAAAA	CAGCAG gt attt	24	1578
25	101	147058-147158	cttt ag ATTGCC	GCAGAG gt agtt	25	788
26	89	147947-148035	gccc ag GTACCG	AGAACG gt aagc	26	5529
27	125	153563-153687	ttgc ag GTCACT	CTTATC gt gagt	27	>7419
28	114	161207-161320	actt ag GATCAG	CGCCAG gt gagg	28	1224
29	114	162545-162658	ctct ag GTTCTT	CTGCAG gt acac	29	1007
30	90	163666-163755	ttcc ag AAACTC	CTGGAG gt aggc	30	1828
31	119	165584-165702	aacc ag GTGTAT	AAACAG gt gagt	31	10644
32	24	176342-176365	ttac ag AGGGAA	AAACAG gt accg	32	2627
33	144	178992-179135	attt ag AATGTC	TGTCAG gt gagg	33	769
34	97	179905-180001	tttc ag GATCTT	GACAAG gt atag	34	910
35	108	180912-181019	ttac ag GTCCCC	CAAAAT gt aagt	35	5128
36	57	186148-186204	ttgc ag AAAGCT	CAAAAG gt attg	36	226
37	45	186431-186475	tgaa ag GATTTC	TTTCAT gt aagt	37	7171
38	42	193643-193684	acgc ag AGAGAA	GATAAG gt aaqq	38	1045
39	216	194730-194945	gttc ag TTTGAG	ACCAAG gt gggt	39	1808
40	156	196754-196909	gtgt ag GAAGCC	TCAAAG gt acat	40	2305
40	204	199215-199418	tqtc ag ATTGAG	GCACAG gt acag	40	5453
41	156	204897-205052	ctgc ag ATCATG	CGGCAG gt aaag	42	2511
42	130	204897-203032	cttt ag TCCCTG	AATGAG gc aagt	43	>15338
43	270	223145-223414	ttgc ag ATTGGC	TACAAG gt acag	43	4959
44	270 98	228374-228471	tcac ag GGATAC	ATCCAG gt aggt	45	4939 4747
43 46	121	233219-233339	cact ag GTACAA	AGCCTG gt aaat	43 46	573
			=	=		
47 48	111	233913-234023	ttta ag GTTACC ctcc ag GTTCTC	AACAAA gt aagt CCCAAG gt gagc	47	17966
48	144	251990-252133	-	• • •	48	1280
49 50	121	253414-253534	tttt ag AGCGTA	ACCCAA gt atgt	49 50	3325
50	97 97	256860-256956	ccgt ag CCCAGA	AGCTAG gt aagt	50	3358
51	97 126	260315-260411	tatc ag GCTAGG	GCCAAG gt aggt	51	899
52	136	261311-261446	caat ag ATAATC	TGAAAG gt gatt	52	7725
53	178	269172-269349	ccct ag ATATGT	GAGCAG gt agca	53	1886
54	113	271236-271348	attc ag GGGATC	GATTGG gt atgt	54	>14472
55	155	285921-286075	atgc ag GCACCC	ATTAAC gt aagt	55	629
56	171	286704-286874	tgta ag GACATC	GTGAAG gt agga	56	5979
57	137	292854-292990	ttgc ag GCCTAC	CCGCAG gt gaga	57	1755
58	663	294746-295408 ^b	cctc ag CTTGGT			

Table 1 Exon/intron organization of the porcine ACACA gene.

^aStart codon: 80874-80876, ^bstop codon: 294867-294869.

Exon	Size (bp)	Acc. No. EU853705	3' splice acceptor	5' splice donor	Intron	Size (bp)
la	115	9246-9360		GGCCAG gt aagt	1a	10816
b	61	20175-20236		GTGACC gt aagt	1b	5334
2	656	25571-26226ª	ttac ag ATTTTC	GATAAG gt aaca	2	9475
2a	139	35702-35840		AGTAAA gt aagt	2a	11412
3	127	47253-47379	tggc ag GCCCAG	GAGAAG gt acag	3	2358
4	139	49738-49876	gtcc ag GTGCTC	ATGCAG gt actt	4	1692
5	110	51569-51678	ttcc ag AGTATA	GTGCAG gt aagt	5	209
6	82	51888-51969	ttgc ag GCAGTG	TCTTAG gt agag	6	1147
7	99	53117-53215	ctcc ag GTCCTC	GAAGTG gt aaga	7	1445
8	110	54661-54770	cccc ag GTCTGA	TTGGAG gt aaac	8	106
9	111	54877-54987	ccac ag GCAGCA	AGACAG gt gagc	9	2545
10	210	57535-57744	cccc ag GTGCAG	GAGCAG gt gggt	10	272
11	171	58017-58187	ctgc ag TGTGCT	CTACAG gc aagg	11	4306
12	162	62494-62655	tttc ag ATCGCC	GATGAG gc aagtt	12	1801
12	162	64457-64620	ctcc ag GGGTTT	TATTTC gt cagt	12	919
14	151	65540-65690	ctca aq GAACAT	GTGCAG gt gggg	13	90
			tcct ag GCCGAG	GGAAAG gt gggg		
15 16	104 82	65781-65884	tgtt ag GGGCCA	CTTAAG gt aagg	15	1558
16 17		67443-67524			16	4145
17	146	71670-71815	ccac ag GTGGCC	CAACAG gt gtgt	17	1141
18	151	72957-73107	ctcc ag TTACCG	ATAGAG gt aggc	18	1244
19	135	74352-74486	aaac ag GTGATG	CACCCA gt atgt	19	1799
20	147	76286-76432	tgtc ag GCTGAG	ATGAAG gt gggt	20	662
21	189	77095-77283	ctgc ag CTGAAG	CAGCAG gt atgt	21	2522
22	101	79806-79906	atcc ag ATAGCC	CCAAAA gt gagt	22	787
23	89	80694-80782	cccc ag ATACCG	AACAAG gc aaga	23	92
24	125	80875-80999	ttcc ag CCCATT	TTGATC gt aagc	24	4520
25	114	85520-85633	ccaa ag GATGAG	AGGCAG gt aggg	25	143
26	114	85777-85890	ctgc ag GTCCTG	CTCAAG gt gagg	26	596
27	90	86487-86576	ctgt ag AAACTA	TTGGAG gt aagt	27	3231
28	119	89808-89926	catt ag GTTTAC	AAACCG gt acag	28	1712
29	138	91639-91776	ctgc ag GATGGC	CATCAG gt accc	29	498
30	100	92275-92374	ccac ag GAACTT	AGCAAG gt gagt	30	84
31	108	92459-92566	tccc ag AGCCTC	TCCAAG gt acgg	31	979
32	57	93546-93602	atgc ag AAAAAC	CAAGAG gt cagt	32	259
33	42	93862-93903	ttgc ag AAAGAA	GACAAG gt atgg	33	1997
34	216	95901-96116	ccgc ag TTTGCA	ACCAAG gt agga	34	1177
35	156	97294-97449	tggc ag GAGGCC	ACCAAG gt atcc	35	854
36	204	98304-98507	acac ag ATCGAG	GGAAAC gt aagg	36	834 847
30 37	204 156	99355-99510	gtcc ag ATCATG	AGGCAG gc aagt	30	5246
38	123	104757-104879	ctgt ag GCTCTT	AGGCAG <u>gc</u> aagt AACGAG gg aaga	37	5246 1131
	270	106011-106280	ctcc ag GTGGGC	TACGAG gg aaga TACAAG gt acgt	38 39	
39 40			-			1554
40	98 121	107835-107932	tttt ag GGATTT	ATCCAG gt aaat	40	1679
41	121	109612-109732	gtga ag GTACAT	AGCCTG gt gagt	41	446
42	111	110179-110289	ccac ag GTGACC	AACAAG gt gacc	42	1244
43	144	111534-111677	aagc ag GTCCTG	CCAAAG gt gctg	43	937
44	121	112615-112735	ttcc ag GACAAT	ACCCAA gt aagt	44	1868
45	97	114604-114700	acac ag CTCTAA	AGCCAG gt aacc	45	2361
46	97	117062-117158	ttgc ag GCTAGG	GCCAAG gt tagg	46	1124
47	136	118283-118418	ttcc ag ATAATC	TGAAAG gt aagc	47	1266
48	178	119685-119862	tttc ag ACATGT	GAGCAG gt gggt	48	3464
49	113	123327-123439	tttc ag GGCAAG	AGCTAG gt gagt	49	1785
50	155	125225-125379	cctc ag GATCGT	ATCTGT gt aaga	50	684
51	171	126064-126234	ctgc ag GATATC	GTCAAG gt gggc	51	113
52	137	126348-126484	cccc ag GCCTAC	CCGAGG gt gagt	52	649
53	1483	127134-128616 ^b	ctgc ag CCTGGT			

Table 2 Exon/intron	organization	of the p	orcine ACACB	gene.
	-	-		-

^aStart codon: 25580-25582, ^bstop codon: 127258-127260.

Exon	Size (bp)	Acc. No. FJ263681	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	163	62175-62337		GACTCG gt aggg	1	15814
2	154	78152-78305 ^a	ctcc ag GCTACT	TTCAAG gt gagg	2	1086
3	140	79392-79531	cggt ag AATGG	CGCCAC gt aagg	3	6449
4	172	85981-86152	cggc ag CGGCTA	TGGATG gt gagg	4	2226
5	102	88379-88480	taac ag ATGATG	AGCAGG gt aggt	5	2506
6	138	90987-91124	tccc ag TACCTG	AATTAC gt gagt	6	764
7	78	91889-91966	tgac ag GTGAGC	GCCATG gt gagt	7	1943
8	108	93910-94017	tgtc ag GATCTG	AAACCG gt aagc	8	911
9	85	94929-95013	ttgc ag ATTCTC	AAACAG gt gcgc	9	926
10	196	95938-96133	ccac ag ACACCA	GGACAG gt aggc	10	2509
11	189	98643-98831	ctgc ag GGTGCC	TGACAG gt atca	11	1167
12	106	99999-100104	ccgt ag GTGGTT	TGGGAG gt gagt	12	4137
13	117	104242-104358	tgac ag TATGTC	GAGGAG gt aggt	13	2441
14	165	106800-106964	cgcc ag TGTCAG	TACAAG gt gaga	14	7097
15	135	114062-114196	cccc ag GACATG	CAGCCG gt acgt	15	1910
16	153	116107-116259	tctt ag GTGGAA	AAGGAG gt gtgt	16	1141
17	114	117401-117514	taat ag GTCCTG	GGACCG gt aagt	17	713
18	93	118228-118320	ccgt ag GTTGCT	GAGACG gt acgt	18	1042
19	2056	119363-121418 ^b	tgaa ag GATTCT			

Table 3 Exon/intron organization of the porcine CPT1A gene.

^aStart codon: 78165-78167, ^bstop codon: 119447-119449.

Table 4 Exon/intron organization of the porcine CPT2 gene.

Exon	Size (bp)	Acc. No. FJ263683	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	616	20682-21297ª		GCCCAG gt gagc	1	12386
2	81	33684-33764	tccc ag GCTGCC	GTTCAG gt aaat	2	2346
3	107	36111-36217	tttc ag GAAAAC	TTTCAG gt gggt	3	3967
4	1305	40185-41489	tttt ag GCCCCT	CCATGG gt aagc	4	1520
5	452	43010-43461 ^b	tgac ag GCCAGG			

^aStart codon: 21146-21148, ^bstop codon: 43339-43341.

Table 5 Exon/intron	organization	of the porcine M	ILYCD gene.

Exon	Size (bp)	Acc. No. FJ263687	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	585	1731-2315 ^a		GTCCGG gt aagg	1	8090
2	113	10406-10518	ttgc ag GAAATG	TAGCAA gt aagt	2	1008
3	157	11527-11683	cgtc ag GTCTGA	ATCCAG gt acct	3	2027
4	153	13711-13863	ttcc ag ACGATC	CTGCAG gt gggt	4	1936
5	839	15800-16638 ^b	cagc ag AAGGAG			

^aStart codon: 1773-1775, ^bstop codon: 16331-16333.

CHKB						
Exon	Size (bp)	Acc. No. FJ263682	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	536	8246-8781ª		CGTGAG gt agga	1	215
2	109	8997-9105	ctgc ag CGGAGG	CTGCAG gt gagg	2	278
3	114	9384-9497	tttc ag GGCGTG	ATCCCA gt atga	3	180
4	134	9678-9811	gtgc ag AGCCGG	GGAGCG gt gagt	4	267
5	96	10079-10174	cttt ag GTATTT	CCTCAG gt gagg	5	181
6	59	10356-10414	ctcc ag GAAGTT	AGGAAG gt agga	6	87
7	82	10502-10583	ctcc ag GGAACA	CTACAG gt gagg	7	108
8	109	10692-10800	cccc ag GGGCTT	CAGCAG gt atgt	8	142
9	104	10943-11046	tttc ag CTCCAT	TAATCG gt gagg	9	243
10	82	11290-11371	cctc ag GTACGC	TACTTG gt aagt	10	135
11	278	11507-11784 ^b	tcct ag GAGTAT			
CPT1B						
Exon	Size (bp)	Acc. No. FJ263682	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	109	12314-12422		CCTTCT gt gagt	1	345
2	160	12768-12927°	tccc ag GTGCTG	ATCAAG gt gggt	2	340
3	140	13268-13407	ccac ag AATGGC	TGAGAG gt aaaa	3	300
4	178	13708-13885	tgac ag ATATGG	TGGGCT gt gagc	4	267
5	102	14153-14254	cccc ag ATCTGT	CATCGG gt gagg	5	177
6	138	14432-14569	ggat ag TACCTA	AACTAT gt gagt	6	78
7	78	14648-14725	ccgc ag GTGAGT	GTCATG gt aaga	7	818
8	108	15544-15651	tggc ag GACCTG	AAGCCT gt gagt	8	74
9	85	15726-15810	tccc ag GTGATG	ACACAG gt actg	9	547
10	196	16358-16553	tccc ag ACACAC	GGGAAG gt agtg	10	336
11	186	16890-17075	cccc ag AGTGGA	CAACAG gt accc	11	85
12	106	17161-17266	ctgc ag GTGGTT	TGGGAG gt aaga	12	87
13	117	17354-17470	ccgc ag TTCGTC	GAGCAG gt gtgt	13	401
14	165	17872-18036	cggc ag TGCCAG	TTCCGG gt agga	14	72
15	135	18109-18243	cccc ag GACAGG	CGCGTG gt gagc	15	95
16	153	18339-18491	cccc ag AAAGCA	GCTGAG gt cagt	16	537
17	114	19029-19142	ttgc ag GTGCTC	GGCCCT gt aagt	17	469
18	93	19612-19704	cccc ag GTGGCC	GAGACG gt gagt	18	112
19	335	19817-20151 ^d	gcgc ag AACGCC			

^a*CHKB* - choline kinase beta enzyme gene, start codon: 8558-8560, ^bstop codon: 11579-11581, ^cstart codon: 12787-12789, ^dstop codon: 19898-19900.

Table 7 Exon/intron organization of the porcine FADS1 gene.

Exon	Size (bp)	Acc. No. FJ263684	3'splice acceptor	5' splice donor	Intron	Size (bp)
1	192	7018-7209 ^a		GCTACG gt gagc	1	2134
2	111	9344-9454	ttgc ag GATCCC	AAGAAT gt gagt	2	580
3	198	10035-10232	ctac ag AAAGAG	GTTCAG gt gaga	3	830
4	102	11063-11164	gccc ag GCCCAG	CTGAAG gt cagt	4	99
5	129	11264-11392	ctgt ag GGGCCC	GTGGAG gt gagc	5	3774
6	61	15167-15227	tcac ag CTTGGG	TCTTGA gt gagt	6	>1675
7	77	17003-17079	cccc ag TTGGGC	TGGGTG gt aagt	7	700
8	98	17780-17877	ccgc ag GACTTG	GGTCAG gt agga	8	215
9	97	18093-18189	cacc ag GTTCCT	ATGCAG gt gagg	9	224
10	80	18414-18493	ctcc ag GTCCGG	GCACCA gt gagt	10	110
11	126	18604-18729	ctgc ag TCTTTT	TGTCCA gt gagt	11	333
12	2318	19063-21380 ^b	ccac ag CTCACT			

^aStart codon: 7018-7020, 5'UTR could not be determined, ^bstop codon: 19112-19114.

Exon	Size (bp)	Acc. No. FJ263685	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	242	8139-8380 ^a		GCTACG gt aagg	1	9990
2	111	18371-18481	cccc ag GATGCC	AAGAAC gt gagt	2	>1784
3	198	20366-20563	caac ag TCTGAG	TCTCAG gt gagg	3	116
4	102	20680-20781	cccc ag GCCCAG	TTAAAG gt aaat	4	>7451
5	126	28333-28458	ccac ag GGTGCC	GTTGAG gt agga	5	>5205
6	61	33764-33824	tctc ag TACGGC	TCCTGA gt gagt	6	365
7	77	34190-34266	ctgc ag TTGGGC	TGGGTG gt gagt	7	5764
8	98	40031-40128	ccgc ag GACTTG	TATCAG gt gcct	8	221
9	97	40350-40446	ttcc ag GTTCCT	ACCCAG gt gagg	9	336
10	80	40783-40862	cgac ag CTGGCA	GCACCA gt gagt	10	447
11	126	41310-41435	ccct ag CCTCTT	CATCGG gt aagg	11	282
12	171	41718-41888 ^b	tccc ag GTCCCT			

Table 8 Exon/intron organization of the porcine FADS2 gene.

^aStart codon: 8174-8176, ^bstop codon: 41767-41769.

Table 9 Exon/intron organization of the porcine FADS3 gene.

Exon	Size (bp)	Acc. No. FJ263686	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	386	2765-3150ª		GCCACG gt aagg	1	12904
2	111	16055-16165	cttc ag GATGCC	CAGAAT gt gagc	2	653
3	198	16819-17016	tgcc ag GCCCAG	TCCCAG gt gacc	3	279
4	102	17296-17397	cccc ag GCCCAG	CTGAAA gt gagg	4	111
5	123	17509-17631	ctgc ag GGTTTC	ATCGAG gt gcat	5	255
6	61	17887-17947	ccac ag TACGGC	TCCTGA gt gagt	6	1088
7	77	19036-19112	ttgc ag TCGGCC	TGGACG gt gagt	7	460
8	98	19573-19670	ctgc ag GACCTG	TGTCAG gt atgg	8	344
9	97	20015-20111	tccc ag GGTCCT	TCCCAG gt gggc	9	121
10	80	20233-20312	tggc ag TTGGCA	GCACCA gt gagc	10	168
11	126	20481-20606	tccc ag CCTCTT	CATTAG gt aagc	11	1533
12	394	22140-22533 ^b	accc ag GTCCCT			

^aStart codon: 2944-2946, ^bstop codon: 22189-22191.

Table 10 Exon/intron organization of the porcine SCD5 gene.

Exon	Size (bp)	Acc. No. FJ263688	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	433	26794-27226 ^a		TCTGGG gt aagt	1	67355
2	131	94582-94712	ttgc ag CCTACT	TTCCAG gt gggg	2	19999
3	206	114712-114917	ctgc ag AACGAC	GAGAAA gt aagt	3	33076
4	233	147994-148226	ttcc ag GTACTA	CCATCG gt gagt	4	4003
5	1470	152230-153699 ^b	ttcc ag GTGAAGG			

^aStart codon: 26989-26991, ^bstop codon: 152418-152420.

Table 11 Exon/intron organization of the porcine PRKAA2 gene.	he porcine <i>PRKAA2</i> gene.
---	--------------------------------

Exon	Size (bp)	Acc. No. EU853704	3' splice acceptor	5' splice donor	Intron	Size (bp)
1	144	16333-16476 ^a		TGAAGA gt tgag	1	>29508
2	142	45584-45725	ctct ag TTGGAG	CAAACT gt aagt	2	>6988
3	94	52313-52406	aaaa ag ATACCA	GGACGG gt gagt	3	1072
4	145	53478-53622	tgat ag GTTGAA	ATTTTG gt atgt	4	2009
5	88	55631-55718	tttc ag GATTAT	AGGCAG gt aaaa	5	2238
6	225	57956-58180	ctct ag ATTGTA	CATAAG gt gaat	6	>15181
7	505	72961-73465	tcct ag AGAGCA	TGGAAG gt agga	7	1348
8	127	74813-74939	tttt ag GTAGTG	TTGATG gt aagg	8	1732
9	676	76671-77346 ^b	tttc ag ATGAGG			

^aStart codon: 16383-16385, ^bstop codon: 76907-76909.

Gene symbol	No.	Variant location	SNP_id	Region	Allele 1	e 2	Effect
ACACA	AA1	76934-59		Intron 3	(CT) _n	(CT) _m	
FJ263680)	AA1 AA2	127389	1751	Intron 13	C C	G	
1 3203080)	AA2 AA3	131112	1748	Intron 13	C	T	
	AA3 AA4	131112	1748	Exon 14	c	G	Synonymous (Leu
	AA4 AA5	131454	1749		c	G	Synonymous (Leu
	AA5 AA6		1730	Intron 14	c	T	
		132693		Intron 15			
	AA7	132737	1450	Intron 15	A	G	
	AA8	132976	1728	Intron 15	A	G	
	AA9	132995	1729	Intron 15	С	Т	
	AA10	133025	1730	Intron 15	G	Т	~ ~ ~ ~
	AA11	133219	1731	Exon 16	С	Т	Synonymous (Ser)
	AA12	133397	1732	Intron 16	Α	С	
	AA13	137631	1733	Exon 18	С	G	Synonymous (Val)
	AA14	137842	1734	Intron 18	С	Т	
	AA15	142703	1736	Exon 21	С	Т	Synonymous (Ile)
	AA16	142802	1737	Exon 21	G	Т	Synonymous (Gly)
	AA17	144069	1738	Intron 22	А	Т	
	AA18	144171	1739	Intron 22	С	Т	
	AA19	144260	1740	Intron 22	А	G	
	AA20	144361	1741	Intron 22	G	Т	
	AA21	144579	1742	Intron 23	А	G	
	AA22	144664	1743	Intron 23	А	G	
	AA23	153738	1856	Intron 27	А	С	
	AA24	153742	1857	Intron 27	С	Т	
	AA25	178720	1451	Intron 32	А	G	
	AA26	199072	1679	Intron 40	С	Т	
	AA27	223060	2242	Intron 42	С	Т	
	AA28	223372	2243	Exon 42	C	Т	Synonymous (His)
	AA29	227756 7ins	1524	Intron 44	Ins (280bp)	Del	Synonymous (mis)
	AA30	228313	1462	Intron 44	C	Т	
	AA31	228477	1463	Intron 45	C	T	
	AA32	228587	1464	Intron 45	A	G	
	AA33	228613	1465	Intron 45	C	G	
	AA34	251928	1804	Intron 47	A	G	
	AA34 AA35	251928	1805	Exon 48	C	G	Synonymous (Gly)
	AA35 AA36	252028	1805		c	T	Synonymous (Leu
	AA30 AA37	252028	1800	Exon 48 Exon 49	A	G	Synonymous (Pro)
						G	• • • • •
	AA38	256873	2229	Exon 50	A		Synonymous (Gln)
	AA39	256939	2230	Exon 50	A	G	Synonymous (Val)
	AA40	260345	1808	Exon 51	С	Т	Synonymous (Ala)
	AA41	261352	1809	Exon 52	A	G	Synonymous (Ala)
	AA42	261638	1810	Intron 52	C	Т	
	AA43	261650	1811	Intron 52	С	G	0 (0.5
	AA44	269233	1812	Exon 53	A	G	Synonymous (Ser)
	AA45	269392	1813	Intron 53	С	Т	
	AA46	269460	1815	Intron 53	G	Т	
	AA47	269464	1816	Intron 53	Α	G	
	AA48	269478	1817	Intron 53	А	G	
	AA49	269483	1818	Intron 53	С	Т	
	AA50	271263	2293	Exon 54	С	Т	Synonymous (Thr)
	AA51	271338	2244	Exon 54	С	Т	Synonymous (Ala)
	AA52	285656	1821	Intron 54	А	G	
	AA53	292670	1819	Intron 56	G	Т	
	AA54	292770	1820	Intron 56	С	Т	
	AA55	294888	1830	3' UTR	А	G	
	AA56	294917	1831	3' UTR	A	G	
	AA57	294928	1832	3' UTR	C	T	
	AA58	294968	1833	3' UTR	Ā	Т	
	AA59	295053	1834	3' UTR	C	T	
	AA60	295086	1835	3' UTR	C	T	
	AA61	295127	1836	3' UTR	c	T	
		295210	1837	2 0 110	c	G	

Table 12 Sequence variants identified in the porcine ACACA gene.

Gene	No.	Variant	SNP_id	Region		llele	Effect
symbol		location			1	2 T	
ACACB	AB1	8142	1700	5' end	А		
EU853705)	AB2	8224	1701	5' end	A	G	
	AB3	8343	1702	5' end	A	G	
	AB4	8345	1703	5' end	С	Т	
	AB5	9007	1584	5' end	Α	G	
	AB6	9144	1567	Exon 1a	С	Т	
	AB7	9396	1568	Intron 1a	С	Т	
	AB8	9432	1569	Intron 1a	Α	С	
	AB9	20124	1570	Promoter II	Α	G	
	AB10	20248	1571	Intron 1b	С	Т	
	AB11	20321	1572	Intron 1b	G	Т	
	AB12	20326	1573	Intron 1b	Т	С	
	AB13	20353	1574	Intron 1b	А	Т	
	AB14	20362	1575	Intron 1b	А	G	
	AB15	25835	1576	Exon 2	А	G	Ser86Gly
	AB16	25926	1577	Exon 2	А	G	Ser116Asn
	AB17	25963	1578	Exon 2	А	С	Synonymous (Ala
	AB18	26000	1579	Exon 2	А	С	Synonymous (Arg
	AB19	26032	1580	Exon 2	A	Ğ	Synonymous (Lys
	AB20	26052	1581	Exon 2	A	G	Synonymous (Glr
	AB21	47415	1582	Intron 3	C	T	Synonymous (On
	AB22	47461	1583	Intron 3	c	T	
	AB22 AB23	51391	1628	Intron 4	C	T	
	AB23 AB24	51432	1629	Intron 4	C	T	
					C		
	AB25	51448	1630	Intron 4		Т	
	AB26	51484	1631	Intron 4	C	Т	
	AB27	51718	1632	Intron 5	C	Т	
	AB28	51859	1633	Intron 5	С	Т	
	AB29	51927	1634	Intron 6	A	G	
	AB30	51937	1635	Intron 6	С	G	
	AB31	53074	1613	Intron 6	Α	С	
	AB32	53095	1614	Intron 6	G	Т	
	AB33	54830	1627	Intron 8	Α	G	
	AB34	57633	1636	Exon 10	С	Т	Synonymous (Asp
	AB35	57672	1637	Exon 10	А	G	Synonymous (Arg
	AB36	57754	1638	Intron 10	Α	G	
	AB37	57773	1639	Intron 10	А	G	
	AB38	57812	1640	Intron 10	С	Т	
	AB39	57956	1641	Intron 10	С	Т	
	AB40	57959	1642	Intron 10	А	С	
	AB41	57965	1643	Intron 10	С	Т	
	AB42	58073	1644	Exon 11	C	Т	Synonymous (Tyr
	AB43	62398	1615	Intron 11	C	T	(1)1
	AB44	62428	1616	Intron 11	c	Т	
	AB45	62429	1617	Intron 11	A	G	
	AB46	62440	1618	Intron 11	C	Т	
	AB40 AB47	64370	1619	Intron 12	C	T	
	AB47 AB48	64374	1620	Intron 12	A	G	
	AB48 AB49	64408	1620	Intron 12	A A	G	
	AB50	64409	1622	Intron 12	C	G	Crimonrov (1 1
	AB51	65678	1623	Exon 14	C	Т	Synonymous (Ala
	AB52	65717	1624	Intron 14	A	G	
	AB53	65747	1625	Intron 14	С	Т	
	AB54	65786	1626	Exon 15	А	G	Synonymous (Glu
	AB55	67382	1711	Intron 15	С	Т	
	AB56	67440	1712	Intron 15	С	Т	
	AB57	67500	1713	Exon 16	С	Т	Synonymous (Tyr
	AB58	71636	1659	Intron 16	А	G	
	AB59	71660	1660	Intron 16	Α	G	
	AB60	71825	1661	Intron 17	G	Т	

Table 13 Sequence variants identified in the porcine ACACB gene.

No.	Variant	SNP id	Region			Effect
		_	-			
						Synonymous (Thr)
			Intron 19			
			Exon 23			Synonymous (Ser)
AB68	80712		Exon 23			Synonymous (Arg
AB69	80921	1706	Exon 24			Synonymous (Pro
AB70	80999	1707	Exon 24	С	Т	Synonymous (Ile)
AB71	85646	1708	Intron 25	А	G	
AB72	85732	1709	Intron 25		Т	
AB73	85748	1710	Intron 25	С	Т	
AB74	91580	1684	Intron 28	А	G	
AB75	91605	1685	Intron 28	G	Т	
AB76	95964	1689	Exon 34	А	С	Synonymous (Arg
AB77	96126	1690	Intron 34	С	Т	
AB78	96160	1691	Intron 34		Т	
AB79	96189	1692	Intron 34		Т	
		1693	Intron 34			
AB81	99674		Intron 37			
AB82	99798	1715	Intron 38		G	
						Synonymous (Ile)
						Synonymous (Ile)
						······································
						Synonymous (Tyr
						Synonymous (Ile)
						Synonymous (Asp
						Synonymous (Ala
						Synonymous (Ala
						Synonymous (Thr
						Synonymous (111
AB103 AB104	127330	1682 1683	3' UTR 3' UTR		I T	
	AB70 AB71 AB72 AB73 AB74 AB75 AB76 AB77 AB78 AB79 AB80 AB81 AB82 AB80 AB81 AB82 AB83 AB84 AB85 AB86 AB87 AB88 AB89 AB90 AB91 AB92 AB93 AB94 AB95 AB96 AB97 AB98 AB99 AB90 AB910 AB910 AB101 AB102 AB103	No. location AB61 71829 AB62 71948 AB63 73056 AB64 73158 AB65 74151 AB66 74158 AB67 80703 AB68 80712 AB69 80921 AB70 80999 AB71 85646 AB72 85732 AB73 85748 AB74 91580 AB75 91605 AB76 95964 AB79 96189 AB80 96224 AB81 99674 AB82 99798 AB83 106106 AB84 106214 AB85 107808 AB86 109757 AB87 109765 AB88 112446 AB89 114727 AB90 117026 AB91 118453 AB92 119633 AB93 11969	No. location SNP_id AB61 71829 1662 AB62 71948 1663 AB63 73056 1664 AB64 73158 1665 AB65 74151 1666 AB66 74158 1667 AB67 80703 1704 AB68 80712 1705 AB69 80921 1706 AB70 80999 1707 AB71 85646 1708 AB72 85732 1709 AB73 85748 1710 AB74 91580 1684 AB75 91605 1685 AB76 95964 1689 AB77 96126 1690 AB78 96160 1691 AB79 96189 1692 AB80 96224 1693 AB81 99674 1714 AB82 107808 1674 AB84 106214	No. Iocation SNP_id Region AB61 71829 1662 Intron 17 AB62 71948 1663 Intron 17 AB63 73056 1664 Exon 18 AB64 73158 1665 Intron 18 AB65 74151 1666 Intron 19 AB66 74158 1667 Intron 19 AB66 74158 1667 Intron 19 AB67 80703 1704 Exon 23 AB68 80712 1705 Exon 24 AB70 80999 1707 Exon 24 AB71 85646 1708 Intron 25 AB72 85732 1709 Intron 28 AB75 91605 1685 Intron 28 AB76 95964 1689 Exon 34 AB78 96160 1691 Intron 34 AB81 99674 1714 Intron 37 AB82 99798 1715 Intron 38 <t< td=""><td>No. location SNP_id Region 1 AB61 71829 1662 Intron 17 G AB62 71948 1663 Intron 17 G AB63 73056 1664 Exon 18 A AB64 73158 1665 Intron 19 A AB65 74151 1666 Intron 19 A AB66 74158 1667 Intron 19 A AB67 80703 1704 Exon 23 C AB68 80712 1705 Exon 23 C AB70 80999 1707 Exon 24 A AB71 85646 1708 Intron 25 C AB73 85748 1710 Intron 28 A AB75 91605 1685 Intron 34 C AB76 95964 1689 Exon 34 A AB79 96189 1692 Intron 34 C AB80 96224 1693</td></t<> <td>No. location SNP_id Region 1 2 AB61 71829 1662 Intron 17 G T AB62 71948 1663 Intron 17 G T AB63 73056 1664 Exon 18 A G AB64 73158 1665 Intron 19 A G AB65 74151 1666 Intron 19 A G AB66 74158 1667 Intron 19 A G AB67 80703 1704 Exon 23 C T AB68 80712 1705 Exon 24 A G AB70 80999 1707 Exon 24 C T AB73 85748 1710 Intron 25 C T AB73 95180 1684 Intron 28 G G AB74 91580 1684 Intron 34 C T AB76 95964 1689</td>	No. location SNP_id Region 1 AB61 71829 1662 Intron 17 G AB62 71948 1663 Intron 17 G AB63 73056 1664 Exon 18 A AB64 73158 1665 Intron 19 A AB65 74151 1666 Intron 19 A AB66 74158 1667 Intron 19 A AB67 80703 1704 Exon 23 C AB68 80712 1705 Exon 23 C AB70 80999 1707 Exon 24 A AB71 85646 1708 Intron 25 C AB73 85748 1710 Intron 28 A AB75 91605 1685 Intron 34 C AB76 95964 1689 Exon 34 A AB79 96189 1692 Intron 34 C AB80 96224 1693	No. location SNP_id Region 1 2 AB61 71829 1662 Intron 17 G T AB62 71948 1663 Intron 17 G T AB63 73056 1664 Exon 18 A G AB64 73158 1665 Intron 19 A G AB65 74151 1666 Intron 19 A G AB66 74158 1667 Intron 19 A G AB67 80703 1704 Exon 23 C T AB68 80712 1705 Exon 24 A G AB70 80999 1707 Exon 24 C T AB73 85748 1710 Intron 25 C T AB73 95180 1684 Intron 28 G G AB74 91580 1684 Intron 34 C T AB76 95964 1689

Table 13 Sequence variants identified in the porcine *ACACB* gene (continued).

Gene symbol	No.	Variant location	SNP_id	Region	Alle 1	ele 2	Effect
CPT1A	CA1	86183	1757	Intron 4	C	G	
(FJ263681)	CA2	86220	1758	Intron 4	Ċ	Т	
()	CA3	88471	2256	Exon 5	Ă	G	Synonymous (Thr)
	CA4	88502	2182	Intron 5	C	T	~
	CA5	91257-8		Intron 6	Ins (G)	Del	
	CA6	91774	1764	Intron 6	Ċ	G	
	CA7	91815	1765	Intron 6	А	G	
	CA8	91842	1766	Intron 6	С	Т	
	CA9	92016	1767	Intron 7	А	G	
	CA10	92036	1768	Intron 7	С	G	
	CA11	93841	2257	Intron 7	С	G	
	CA12	93988	2258	Exon 8	А	С	Synonymous (Arg
	CA13	95093	2259	Intron 9	А	С	
	CA14	95095	2260	Intron 9	А	G	
	CA15	95132	2261	Intron 9	С	Т	
	CA16	95139	2262	Intron 9	С	Т	
	CA17	95197	2263	Intron 9	С	Т	
	CA18	95248	2264	Intron 9	А	С	
	CA19	95264	2265	Intron 9	А	G	
	CA20	95278	2266	Intron 9	С	Т	
	CA21	95279	2267	Intron 9	G	Т	
	CA22	95315	2268	Intron 9	С	Т	
	CA23	95847	1752	Intron 9	А	G	
	CA24	95869	1753	Intron 9	А	G	
	CA25	95956	1754	Exon 10	А	G	Gln328Arg
	CA26	95960	1755	Exon 10	С	Т	Synonymous (Asp
	CA27	96150	1756	Intron 10	С	Т	
	CA28	100026	1759	Exon 12	С	Т	Synonymous (Ile)
	CA29	100215	1760	Intron 12	С	Т	••••
	CA30	104374	1761	Intron 13	С	Т	
	CA31	104403	1762	Intron 13	С	Т	
	CA32	104406	1763	Intron 13	С	Т	
	CA33	106837	2172	Exon 14	А	G	Asn537Ser
	CA34	106970	2173	Intron 14	А	Т	
	CA35	106982	2174	Intron 14	С	Т	
	CA36	107010	2175	Intron 14	А	С	
	CA37	107042	2176	Intron 14	С	Т	
	CA38	117386	1747	Intron 16	G	Т	
CPT1B	CB1	12242	2240	5' end	А	С	
(FJ263682)	CB2	12527	2241	Intron 1	А	G	
	CB3	19124	2238	Exon 17	С	Т	Synonymous (Ala)
	CB4	19188	2239	Inton 17	А	Т	

Table 14 Sequence variants identified in the porcine CPT1 genes.

Gene	No.	Variant location	SNP_id	Region	All	ele	Effect
symbol					1	2	
CPT2	CC1	19257	1871	5' end	А	G	
(FJ263683)	CC2	19285	1872	5' end	С	Т	
	CC3	19296	1873	5' end	С	Т	
	CC4	19324	1874	5' end	G	Т	
	CC5	19381	1875	5' end	С	G	
	CC6	19791	1849	5' end	А	G	
	CC7	19939	1850	5' end	С	G	
	CC8	20495	1539	5' end	А	Т	
	CC9	20876	1547	Exon 1	С	G	
	CC10	20941	1548	Exon 1	А	G	
	CC11	21149	1543	Exon 1	А	G	Met2Val
	CC12	21183	1544	Exon 1	А	G	Asp13Gly
	CC13	21328	1545	Intron 1	А	G	
	CC14	33711	1540	Exon 2	С	Т	Synonymous (Thr)
	CC15	33784	1541	Intron 2	С	G	••••
	CC16	33818	1542	Intron 2	С	Т	
	CC17	36038	1537	Intron 2	А	G	
	CC18	36077	1538	Intron 2	А	G	
	CC19	40451	1452	Exon 4	А	G	Gly203Ser
	CC20	40642	1453	Exon 4	С	Т	Synonymous (Thr)
	CC21	40942	1454	Exon 4	А	G	Synonymous (Thr)
	CC22	41033	1549	Exon 4	А	G	Ile397Val
	CC23	41107	1550	Exon 4	С	Т	Synonymous (Asp)
	CC24	41431	1551	Exon 4	А	G	Synonymous (Arg)
	CC25	43050	1546	Exon 5	А	G	Synonymous (Leu)

Table 15 Sequence variants identified in the porcine CPT2 gene.

				-	-		
Gene symbol	No.	Variant location	SNP_id	Region	Alle 1	le 2	Effect
MLYCD	MD1	837-864		5' end	$(CA)_n(CA)$	CG) _m	
(FJ263687)	MD2	1278	1510	5' end	А	С	
	MD3	1298		5' end	Ins (A)	Del	
	MD4	1349	1511	5' end	Α	G	
	MD5	1366	1512	5' end	С	G	
	MD6	1378	1513	5' end	С	Т	
	MD7	1431	1514	5' end	А	G	
	MD8	1436	1515	5' end	С	Т	
	MD9	1456	1516	5' end	А	G	
	MD10	1496	1851	5' end	G	Т	
	MD11	1598	1466	5' end	C	Т	
	MD12	1619	1467	5' end	A	G	
	MD12	1638	1468	5' end	A	č	
	MD14	10179	1415	Intron 1	C	T	
	MD14 MD15	10237	1416	Intron 1	A	T	
	MD15 MD16	10237	1417	Intron 1	A	G	
	MD10 MD17	10314	1417	Intron 1	C	T	
	MD17 MD18	10313	1418	Exon 2	C	G	Symony mana (Clar)
							Synonymous (Gly)
	MD19	10492	1420	Exon 2	A	G	Synonymous (Pro)
	MD20	10513	1421	Exon 2	C	Т	Synonymous (Ile)
	MD21	10529	1585	Intron 2	С	Т	
	MD22	10536	1586	Intron 2	A	С	
	MD23	10562	1587	Intron 2	С	Т	
	MD24	10563	1588	Intron 2	A	G	
	MD25	10606	1589	Intron 2	G	Т	
	MD26	10625	1590	Intron 2	А	G	
	MD27	10747	1591	Intron 2	С	Т	
	MD28	10759	1592	Intron 2	А	G	
	MD29	10792	1593	Intron 2	Α	С	
	MD30	10799	1594	Intron 2	А	G	
	MD31	10813	1595	Intron 2	А	G	
	MD32	10825	1596	Intron 2	А	G	
	MD33	10866	1597	Intron 2	С	Т	
	MD34	10888	1598	Intron 2	А	G	
	MD35	13601	1469	Intron 3	А	G	
	MD36	13633	1470	Intron 3	С	G	
	MD37	13652	1471	Intron 3	A	G	
	MD38	13713	1472	Exon 4	A	G	Synonymous (Thr)
	MD39	13737	1473	Exon 4	A	Ğ	Synonymous (Pro)
	MD40	13770	1599	Exon 4	A	Ğ	Synonymous (Thr)
	MD41	13875	1474	Intron 4	A	G	~,,,,,,,,
	MD41 MD42	13897	1475	Intron 4	C	G	
	MD42 MD43	13900	1476	Intron 4	A	G	
	MD43 MD44	13937	1601	Intron 4	A	G	
	MD44 MD45	13957	1477	Intron 4	A	C	
	MD43 MD46	13939		Intron 4	C A	G	
			1600				
	MD47	13994	1478	Intron 4	A	G	
	MD48	13998	1479	Intron 4	A	G	
	MD49	14033	1480	Intron 4	A	G	
	MD50	14041	1481	Intron 4	A	G	
	MD51	15746	1482	Intron 4	Α	G	

Table 16 Sequence variants identified in the porcine *MLYCD* gene.

Gene	No.	Variant	SNP id	Region	Alle	le	Effect
symbol	INO.	location	SINF_IU	Region	1	2	Effect
MLYCD	MD52	15785	1483	Intron 4	А	G	
(FJ263687)	MD53	15808	1484	Exon 5	С	Т	Synonymous (Phe)
	MD54	15925	1367	Exon 5	С	Т	Synonymous (Ala)
	MD55	15996	1368	Exon 5	А	G	Asp388Gly
	MD56	16093	1485	Exon 5	С	Т	Synonymous (Tyr)
	MD57	16162	1486	Exon 5	С	Т	Synonymous (Gly)
	MD58	16216	1487	Exon 5	А	С	Synonymous (Arg)
	MD59	16238	1488	Exon 5	А	G	Ala469Thr
	MD60	16264	1489	Exon 5	С	G	Synonymous (Ser)
	MD61	16282	1490	Exon 5	А	С	Synonymous (Ser)
	MD62	16357	1491	3' UTR	А	G	
	MD63	16367_8ins	1	3' UTR	Ins (C)	Del	
	MD64	16372	1492	3' UTR	С	Т	
	MD65	16707	1517	3' UTR	С	Т	
	MD66	16769	1518	3' UTR	А	G	
	MD67	16786	1519	3' UTR	А	G	
	MD68	16789	1520	3' UTR	G	Т	

Table 16 Sequence v	variants identified in	the porcine MLYCD	gene (continued).

	1			1			
Gene symbol	No.	Variant location	SNP_id	Region	Allel 1	le 2	Effect
FADS1	FS1	6702	1371	5' end	А	G	
(FJ263684)	FS2	9533	1141	Intron 2	С	Т	
()	FS3	9670	1142	Intron 2	Ă	G	
	FS4	10262	1143	Intron 3	A	Ğ	
	FS5	11224	1235	Intron 4	A	G	
	FS6	11261	1236	Intron 4	C	T	
	FS7	11305	1230	Exon 5	C	T	Synonymous (His)
	FS8	15121	1237	Intron 5	A	G	Synonymous (mis
					C	T	
	FS9	17945	1034	Intron 8			
	FS10	17958	1035	Intron 8	A	G	
	FS11	18008	1036	Intron 8	A	G	
	FS12	18030	1037	Intron 8	C	G	
	FS13	18045	1038	Intron 8	С	Т	
	FS14	18285	1041	Intron 9	Α	G	
	FS15	18727	1335	Exon 11	С	G	Synonymous (Val)
	FS16	18903	1336	Intron 11	А	G	
	FS17	19338	1337	3' UTR	А	G	
FADS2	FS18	7369	1404	5' end	А	G	
(FJ263685)	FS19	7376	1405	5' end	А	G	
	FS20	7468	1406	5' end	A	Ğ	
	FS21	7498	1407	5' end	C	Ť	
	FS22	28505	1408	Intron 5	Ă	G	
	FS23	33876	1409	Intron 6	C	T	
	FS24	33924	1410	Intron 6	C	T	
	FS24 FS25				C	T	
		33958	1411	Intron 6		C	
	FS26	34075	1412	Intron 6	A		
	FS27	34076	1413	Intron 6	A	G	
	FS28	34149	1414	Intron 6	С	Т	
	FS29	39965	1439	Intron 7	С	G	
	FS30	40048	1440	Exon 8	С	Т	Synonymous (Phe
	FS31	40155	1441	Intron 8	С	Т	
	FS32	40181	1442	Intron 8	А	G	
	FS33	40232	1443	Intron 8	С	Т	
	FS34	40235	1444	Intron 8	А	С	
	FS35	40240	1445	Intron 8	С	Т	
	FS36	40271	1446	Intron 8	А	G	
	FS37	40279	1447	Intron 8	С	Т	
	FS38	40281	1448	Intron 8	Ċ	G	
FADS3	FS39	15879	2253	Intron 1	C	T	
(FJ263686)	FS40	15980	2253	Intron 1	c	T	
(19209080)					A	G	
	FS41	16043	2255	Intron 1			C(V-1)
	FS42	16830	1828	Exon 3	С	Т	Synonymous (Val
	FS43	16884	1829	Exon 3	С	Т	Synonymous (Ala
	FS44	17228	1839	Intron 3	G	Т	~ ~ ~
	FS45	17379	1840	Exon 4	С	Т	Synonymous (Phe
	FS46	17463	1841	Intron 4	А	G	
	FS47	17469	1842	Intron 4	С	Т	
	FS48	19386	1838	Intron 7	С	Т	
SCD1	FS49	2894	1029	Intron 1	А	G	
(AY487830)	FS50	14416	1016	Intron 5	А	G	
````	FS51	16663	1028	3' UTR	С	Т	
	FS52	17800	1030	3' UTR	C	Т	
SCD5	FS53	26896	1123	5' UTR	A	G	
(FJ263688)	FS54	27147	1123	Exon 1	A	G	Synonymous (Phe
(1 3203000)	FS55	27166		Exon 1	C	Т	Synonymous (Leu
	FS55 FS56	147980	1125 2178	Intron 3		G	Synonymous (Leu
					A		Supervision (T1.)
	FS57	148099	2179	Exon 4	С	Т	Synonymous (Ile)
	FS58	148175	2180	Exon 4	A	G	Asn253Asp
	FS59	148243	2181	Intron 4	A	C	
	FS60	152501	2249	3' UTR	А	G	
	FS61	152626	2250	3' UTR	G	Т	
	FS62	152657_9del		3' UTR	Ins(ACG)	Del	
	FS63	152708_9ins		3' UTR	Ins(TG)	Del	
		152917	2177	3' UTR	Ċ	Т	
	FS64	152917					
	FS64 FS65	153384	2251	3' UTR	č	Т	

Table 17 Sequence variants identified in the porcine desaturase genes.

## **Curriculum vitae**

### **Personal information**

Name:	Li Lin
Nationality:	P. R. China
Date of birth:	25 July 1979
Place of birth:	Hubei, P. R. China
Marital status:	Married



### Education and study

09/1985 - 07/1991	Primary school (Gong'an, Hubei, P. R. China)
09/1991 - 07/1994	Middle school (Gong'an, Hubei, P. R. China)
09/1994 - 07/1997	High school (Jingzhou, Hubei, P. R. China)

### Post graduate education

09/1997 - 07/2001	BSc in Animal Husbandry
	College of Animal Science and Technology
	Huazhong Agricultural University, Wuhan, P. R. China
02/2001 - 08/2001	Research assistant
	The National Animal Husbandry and Veterinary Service Center,
	Beijing, P. R. China
09/2001 - 07/2004	MSc in Animal Genetics
	College of Animal Science and Technology
	Huazhong Agricultural University, Wuhan, P. R. China
	Thesis title: Isolation, radiation hybrid mapping of five porcine
	genes and their association with economic traits
12/2004 - 09/2008	PhD study in Animal Genetics
	Lehrstuhl für Tierzucht
	Technische Universität München, Germany
	Thesis title: Genomic characterization and polymorphism analysis
	of genes involved in lipid- and energy metabolism in swine

*Curriculum vitae* 

#### **Publications**

- L. Lin, K. Flisikowski, H. Schwarzenbacher, M. Scharfe, S. Severitt, H. Blöcker, and R. Fries, Genomic characterization and polymorphism analysis of genes involved in lipid metabolism. (*Manuscript in preparation*)
- L. Lin, K. Flisikowski, H. Schwarzenbacher, M. Scharfe, S. Severitt, H. Blöcker, and R. Fries, Characterization of the porcine AMPK alpha2 catalytic subunit gene (PRKAA2): genomic structure, polymorphism analysis and association study. (*Animal Genetics, accepted*)
- I. Szczerbal, L. Lin, M. Stachowiak, A. Chmurzynska, M. Mackowski, A. Winter, K. Flisikowski, R. Fries, and M. Switonski, Cytogenetic mapping of DGAT1, PPARA, ADIPOR1 and CREB genes in the pig. J Appl Genet 48 (2007) 73-6.
- L. Lin, K. Li, M. Yu, B. Fan, M. Yerle, and B. Liu, Isolation, polymorphism studies and radiation hybrid mapping of the porcine homologue of human membrane-associated protein (CT120) gene. Anim Genet 36 (2005) 73-4.
- L. Lin, B. Liu, M. Yu, M. Yerle, B. Fan, J. Yang, and K. Li, Radiation hybrid mapping of the pig ALDOA, ALDOB and ALDOC genes to SSC3, SSC1 and SSC12. Anim Genet 35 (2004) 66-7.
- L. Lin, Z.G. Wang, B. Liu, Y.J. Li, X.L. Zhao, W. Xiao, S.L. Yang, B. Fan, and K. Li, Analysis of genetic structure of six Chinese indigenous pig breeds using five serum protein (enzyme) loci. Journal of Huazhong Agriculture University 20 (2001) 511-515. (In Chinese)

#### **Posters and Abstracts**

- L. Lin, M. Scharfe, S. Severitt, H. Blöcker, K. Flisikowski, H. Schwarzenbacher, and R. Fries, BAC sequencing and analysis of candidate genes involved in lipid metabolism in swine. FUGATO statusseminar. May 2008. Potsdam, Germany.
- L. Lin, H. Blöcker, K.U. Götz, H. Luther, H.W. Mewes, and R. Fries, QuaLIPID a FUGATO project aiming at the comprehensive analysis of genes involved in lipid metabolism in cattle and swine. 30th International Conference on Animal Genetics (ISAG) Porto Seguro. August 2006, Brazil.
- L. Lin, K. Meidtner, and R. Fries, Internet-based in silico porcine BAC library screening. Proceedings der Vortragstagung "Aus der Arbeit der Forschungsstätten für

Tierproduktion" der Deutschen Gesellschaft für Züchtungskunde e.V. und der Gesellschaft für Tierzuchtwissenschaft. September 2005. Berlin, Germany.