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Abstract—We present asymptotic results for the weighted
sum rate maximization in a MIMO multiple access channel
with individual power constraints when the noise power at the
receiver becomes small and linear filtering is applied at the
transceivers. The key parameter that determines the optimum
signaling strategy is the number of antennas at the base station.
If there are more antennas than the user terminals have in sum,
the asymptotically optimum transmit covariance matrices are
scaled identities, whereas scaled rank-deficient projectors have
to be chosen when the base station does not have enough degrees
of freedom. We derive the optimum transmit covariance matrices
for both antenna configurations and shed some light on the
impact of the solutions on the underlying rate region structure.
In addition, the impact of the optimum transmission strategy on
the convex hull of the underlying rate region is demonstrated.

I. INTRODUCTION

Weighted sum rate maximization is a technique to optimize
the throughput of a system taking the priorities of the users
into account for the allocation of the resources. Thereby,
different criteria like importance of the subscribers, buffer
queue states, or fairness can be incorporated into the total
throughput optimization. If nonlinear successive interference
cancellation is applied at the receiver in the multiple ac-
cess channel with individual power constraints, a strategy
to achieve the sum capacity can be found in [1], whereas
an arbitrarily weighted sum rate is maximized in [2]. The
optimum signaling in case of a simpler receiver type that
only applies linear filtering is unknown so far due to the
inherent nonconcavity of the weighted sum rate utility with
linear filtering. Nonetheless, linear receivers are of interest
since latency is not an issue contrary to successive interference
cancelation, where all streams first need to be decoded before
their impact on the received signal can be subtracted. Several
heuristic or only locally optimum approaches are available for
the MIMO broadcast channel which differ from the considered
setup due to the sum power constraint instead of the individual
ones. An efficient implementation of an algorithm that is
targeted at maximizing the weighted sum rate in a successive
fashion with individual power constraints in the MAC is given
in our companion paper [3]. Despite the nonconvexity of the
optimization problem, we will present theoretical results on the
asymptotic behavior and the asymptotically optimum transmit
strategy in this contribution for the case when the noise
power goes down to zero. Such an asymptotic analysis for the
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broadcast channel counterpart with a sum power constraint has
been covered in [4], [5] and was later extended in [6], [7].
Notation: Matrices and vectors are upper and lower case

bold, respectively. SM denotes the set of M × M positive
semidefinite matrices and IM is the M ×M identity matrix.
The operators ‖ · ‖F,

⎪⎪⎪⎪·⎪⎪⎪⎪, (·)∗, and (·)H stand for Frobenius
norm, determinant, conjugate, and Hermitian transposition,
respectively.

II. SYSTEM MODEL

We focus on the uplink of a K user MIMO multiple access
channel, where the Bk dimensional symbol vector sk ∈ CBk

of user k is mapped to its Mk antennas by the matrix
Tk ∈ CMk×Bk . We assume mutually independent symbol
vectors having an identity covariance matrix and the individual
power constraint for the k-th user reads as ‖Tk‖

2
F ≤ Pk,

k ∈ {1, . . . , K}. The precoded symbol vector Tksk propagates
over the frequency flat channel Hk ∈ CN×Mk to the N -
antenna base station, where zero mean additive Gaussian noise
η ∈ CN with covariance matrix Cη = σ2C ′

η is added.
Here, the trace of C ′

η is normalized to tr(C ′
η) = N and

the scalar noise variance factor σ2 will go down to zero for
our asymptotic analysis. We will make use of the following
definition:

Definition II.1. Two functions f and g are said to be strongly
asymptotically equivalent, if

lim
σ2→0

[
f(σ2)− g(σ2)

]
= 0,

and we shall use the notation f ∼= g.

III. ASYMPTOTIC WEIGHTED SUM RATE MAXIMIZATION

In [8], it is stated that in the high power regime of a
MIMO broadcast channel with linear filtering, as many data
streams have to be multiplexed as degrees of freedom are
available in order not to sacrifice the multiplexing gain. The
same reasoning can be adopted to the MIMO multiple access
channel such that for any positive weight vector w > 0, there
is a threshold on the noise variance below which as many
data streams as degrees of freedom are available in the system
have to be multiplexed for maximizing the weighted sum rate∑K

k=1 wkRk. In other words, M :=
∑K

k=1 Mk streams have
to be active in the asymptotic limit if N ≥M , whereas only N
streams may be activated when N < M . In the following, we
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differentiate these two antenna configurations. For both cases,
the rate of user k under linear filtering can be expressed as

Rk = log2

⎪⎪⎪⎪⎪⎪IMk
+ HH

k

(
Cη+

∑
� �=k

H�Q�H
H
�

)−1

HkQk

⎪⎪⎪⎪⎪⎪, (1)

where Qk = TkT H
k ∈ SMk

denotes the transmit covariance
matrix of user k. Applying the matrix inversion lemma two
times, above rate expression can be reformulated to

Rk = − log2

⎪⎪⎪⎪⎪⎪ET
k

(
IB +

1

σ2
T HHHC ′−1

η HT
)−1

Ek

⎪⎪⎪⎪⎪⎪, (2)

with the composite channel and precoder matrices

H = [H1, . . . ,HK ] ∈ C
N×M ,

T = blockdiag{Tk}
K
k=1 ∈ C

M×B ,

where B :=
∑K

k=1 Bk denotes the total number of active
streams and Ek the k-th block unit matrix defined via

ET
k = [0, . . . ,0, IBk

,0, . . . ,0] ∈ {0, 1}Bk×B

which extracts the kth main diagonal block of a matrix when
left hand side multiplied by ET

k and right hand side multiplied
by Ek.

A. Enough Degrees of Freedom at the Base Station

If the base station is equipped with enough antennas, all
M streams can be activated when the noise variance is low
by letting every user transmit as many data streams as he has
antennas, i.e., Bk = Mk ∀k and B = M . In combination
with a noise-variance independent power allocation for the K
users, the multiplexing gain of every user corresponds to his
number of antennas, which is a prerequisite for maximizing
any weighted sum rate with positive weights if N ≥ M . For
any N×M channel realization H with rank(H) = M , there
is a threshold for the noise variance below which the optimum
transmission strategy is to have M streams active. Letting
the noise variance σ2 go down to zero, the eigenvalues of
1

σ2 T HHHC ′−1
η HT in (2) become much larger than one and

we may neglect the identity matrix inside the inverse. Thus,
we end up with the strong asymptotic equivalence

Rk
∼= log2

⎪⎪⎪⎪⎪⎪
Qk

σ2

⎪⎪⎪⎪⎪⎪− log2

⎪⎪⎪⎪ET
k

(
HHC ′−1

η H
)−1

Ek

⎪⎪⎪⎪, (3)

which, without loss of optimality, is maximized by the choice

Qk =
Pk

Mk

IMk
, (4)

so every user has to consume his complete power budget. In
the low noise regime, the data rate Rk of user k only depends
on his own transmit covariance matrix Qk, and not on other
covariance matrices, see (3). The resulting asymptotic rate
reads as

Rk
∼= Mk log2

Pk

σ2Mk

− log2

⎪⎪⎪⎪ET
k

(
HHC ′−1

η H
)−1

Ek

⎪⎪⎪⎪, (5)

and interestingly, this rate is asymptotically optimum for any
choice of the weight vector w > 0 of the weighted sum

rate maximization! This clearly differs from the asymptotic
behavior of the broadcast channel with a sum power con-
straint [6], [7]. There, both the transmit covariance matrices
and the obtained rate tuples do depend on the weight vector.
The geometric interpretation of the underlying rate region is
that there has to be a sharp edge of a hyper-cuboid at that
position, and any supporting hyperplane defined by the weight
vector w > 0 touches the rate region at that single point in
the asymptotic low noise limit, see the first three figures in
Section IV.

B. Too Few Degrees of Freedom at the Base Station

This type of antenna configuration has so far never been
investigated in any asymptotic analysis, even in the broadcast
channel. If at most N streams are active in a system with
M > N rendering zero forcing possible, the B × B matrix
T HHHC ′−1

η HT has rank B and is thus invertible. As a
consequence, the rate Rk of user k is strongly asymptotically
equivalent to

Rk
∼= −Bk log2 σ2−log2

⎪⎪⎪⎪⎪⎪ET
k

(
T HHHC ′−1

η HT
)−1

Ek

⎪⎪⎪⎪⎪⎪, (6)

and thus, every of his Bk streams asymptotically contributes
to the weighted sum rate via −wk log2 σ2 plus some constant
that does not depend on σ2. Therefore, streams have to be
allocated to the users with the largest weights to maximize
the weighted sum rate when the noise variance σ2 goes to
zero. Let s[1], . . . , s[K] denote a permutation of the user
indices such that the weights are sorted in a nonincreasing
fashion, i.e., ws[1] ≥ . . . ≥ ws[K]. If all weights are different,
the asymptotically optimum user selection starts by allocating
min{N, Ms[1]} streams to user s[1]. If N ≤ Ms[1], all streams
are allocated to user s[1], otherwise, we start to fill the
remaining N − Ms[1] streams to user s[2] with the second
largest weight, but no more than Ms[2], and so on. When
some users share the same weight, all possible combinations
of stream allocation have to be probed.
In the following, we investigate a two user system where

N < M1 + M2, i.e., the base station has less antennas than
both users have in sum. Furthermore, we assume either that
user one applies full multiplexing with B1 = M1 < N and
user two multiplexes B2 = N − M1 < M2 streams (when
w1 ≥ w2), or that user two applies full multiplexing with B2 =
M2 < N and user one multiplexes only B1 = N −M2 < M1

streams (when w1 ≤ w2). Thus, the composite precoder matrix
T is no longer square and cannot be inverted. However, we
may still neglect the identity matrix in the inverse of (2) and
apply the block inversion lemma for partitioned matrices to
(T HHHC ′−1

η HT )−1 to extract the two main diagonal blocks
of the inverse. The upper left one reads as
[
T H

1 HH
1

[
I−H2T2(T

H
2 HH

2 H2T2)
−1T H

2 HH
2

]
H1T1

]−1

(7)

and the lower right one as
[
T H

2 HH
2

[
I−H1(H

H
1 H1)

−1HH
1

]
H2T2

]−1

. (8)
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Note that we assumed C ′
η = I in above and all following

expressions for a simpler notation which can always be

achieved by pre-whitening all channels via Hk → C
′− 1

2

η Hk.
Plugging (8) into the expression in (2), the rate of user two
asymptotically reads as

R2
∼= log2

⎪⎪⎪⎪⎪⎪
1

σ2
T H

2 H̄H
2 H̄2T2

⎪⎪⎪⎪⎪⎪, (9)

where H̄2 = [I−H1(H
H
1 H1)

−1HH
1 ]H2 is the channel of

user two projected into the null space of the channel H1 of
user one. Since T1 has full rank and is thus invertible, the
asymptotic expression for R2 does not depend on the actual
choice for T1. In contrast, the asymptotic behavior of R1 still
depends on T2 since the null space projector in (7) explicitly
varies with T2 for B2 < M2. Using (7) for the rate term in (2)
and neglecting the identity in the inverse, few manipulations
of the resulting expression together with arguments similar to
(3) and (4) lead to

R1
∼= M1 log2

P1

σ2M1
+ log2

⎪⎪⎪⎪HH
1 H1

⎪⎪⎪⎪+ log2

⎪⎪⎪⎪T H
2 H̄H

2 H̄2T2

⎪⎪⎪⎪⎪⎪⎪⎪T H
2 HH

2 H2T2

⎪⎪⎪⎪.

Again, all users have to transmit with full power to maximize
their rates. Combining the last two equations, the asymptoti-
cally optimum weighted sum rate w1R1 + w2R2 can now be
decomposed into a summand depending on T2 and a constant,
which does not depend on T2:

w1R1 + w2R2
∼= w1 log2

⎪⎪⎪⎪T H
2 H̄H

2 H̄2T2

⎪⎪⎪⎪1+
w2

w1⎪⎪⎪⎪T H
2 HH

2 H2T2

⎪⎪⎪⎪ + const.

The precoder dependent part of the asymptotic weighted sum
rate entails the optimization

maximize
T2∈CM2×B2

⎪⎪⎪⎪T H
2 H̄H

2 H̄2T2

⎪⎪⎪⎪α

⎪⎪⎪⎪T H
2 HH

2 H2T2

⎪⎪⎪⎪ s.t.: ‖T2‖
2
F = P2 (10)

with α ∈ (1, 2] since letting user one multiplex all of his
M1 streams and user two the remaining N − M1 can only
be asymptotically optimum for weights w2 ≤ w1. For α > 1,
the constraint in (10) is active, and the associated Lagrangian
function reads as

L(T2, μ) =

⎪⎪⎪⎪T H
2 H̄H

2 H̄2T2

⎪⎪⎪⎪α

⎪⎪⎪⎪T H
2 HH

2 H2T2

⎪⎪⎪⎪ − μ
[
tr(T H

2 T2)− P2

]
. (11)

The optimum Lagrangian multiplier μ̌ can be computed via

tr
[
T H

2

∂L(T2, μ)

∂T ∗
2

]∣∣∣
T2=Ť2,μ=μ̌

= 0 ⇔

μ̌ =
B2

P2
(α− 1)

⎪⎪⎪⎪Ť H
2 H̄H

2 H̄2Ť2

⎪⎪⎪⎪α

⎪⎪⎪⎪Ť H
2 HH

2 H2Ť2

⎪⎪⎪⎪,

(12)

so μ̌ is (α− 1)B2/P2 times the optimum utility and vanishes
only for α = 1. Reinserting μ̌ into the partial derivative of
L(T2, μ) with respect to T ∗

2 and left-hand side multiplying by
the Hermitian optimum precoder Ť H

2 yields

Ť H
2

∂L(T2, μ)

∂T ∗
2

∣∣∣
T2=Ť2,μ=μ̌

= 0 ⇔ Ť H
2 Ť2 =

P2

B2
· IB2

, (13)

so the optimum Ť2 asymptotically maximizing the weighted
sum rate is a weighted partial isometry and Ť2Ť

H
2 is a

scaled projector. For single stream transmission, the optimum
precoding vector ť2 can be found by computing a sequence of
dominant eigenvectors and the utility in (10) then corresponds
to the principal eigenvalue, which will be shown in the
following.
Setting the derivative of L(t2, μ) in (11) with respect to

t∗2 to zero and evaluating the resulting expression at the
optimum precoder ť2 and the optimum Lagrangian multiplier
μ̌ from (12), we obtain
(
αβ(ť2)

α−1H̄H
2 H̄2 −

α−1

P2
β(ť2)

αI
)
ť2 = u(ť2)H

H
2 H2ť2,

(14)
with the precoder-dependend utility

u(t2) =
(tH2 H̄H

2 H̄2t2)
α

tH2 HH
2 H2t2

and the Hermitian form substitution β(t2) = tH2 H̄H
2 H̄2t2.

The dependency of β(ť2) on the optimum precoder ť2 prevents
from a closed form solution of (14) for ť2 via a single eigen-
value decomposition. Nonetheless, the utility u(t2) can be
maximized by an iterative principal eigenvector computation
based on the KKT condition in (14). To this end, the optimum
precoder ť2 in the Hermitian form β(ť2) in (14) is replaced by
the precoder t

(n)
2 of iteration n, whereas the expression ť2 in

the two matrix-vector products in (14) is replaced by t
(n+1)
2 ,

i.e., by the precoder for the next iteration n + 1. This yields
the eigenvalue problem

K(n)t
(n+1)
2 = λ(n+1)t

(n+1)
2 , (15)

where the matrix K(n) is defined in analogy to (14) as

K(n) :=
[
HH

2 H2

]−1
(
αβ(t

(n)
2 )α−1H̄H

2 H̄2−
α−1

P2
β(t

(n)
2 )αI

)

and depends only on the precoder of iteration n. The precoder
t
(n+1)
1 of the next iteration is chosen to be the principal
eigenvector of K(n) corresponding to the largest eigenvalue
λ(n+1), because in the limit n → ∞, the eigenvalue λ(n+1)

corresponds to the utility u(t
(n+1)
2 ) which of course shall be

maximized. The monotonic convergence of the utility u(t
(n)
2 )

and the precoder t
(n)
2 is shown in [9].

So far we have shown how to compute the optimum
precoder ť2 in case user one has a higher priority than user two,
i.e., w1 > w2. If w2 > w1, the same derivation remains valid
if the two user indices are interchanged, so ť1 can be computed
analogously. In case of equal weights w1 = w2, both stream
configurations have to be probed to find the maximum sum
rate. It is not known in advance but rather depends on the
channel realization which user needs to apply single stream
beamforming to achieve the maximum sum rate.

IV. GRAPHICAL VISUALIZATION

The scenario with enough degrees of freedom at the base
station is shown in Fig. 1. The two users with M1 = M2 = 2
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Fig. 1. Convex hull of two user rate region for an N = 5 antenna base
station serving two users with M1 = M2 = 2 antennas each. The noise
variance is 10 log10 σ

2 = −37dB.

antennas each are served by an N = 5 antenna base station and
the individual transmit powers p1 and p2 are upper bounded
by p1 ≤ P1 = 1 and p2 ≤ P2 = 1, respectively, and the
noise variance is given by 10 log10 σ2 = −37dB. The black
curve without marker shows the achievable rate region when
both users apply full multiplexing with transmit covariance
matrices Q1 = p1/2 · I2 and Q2 = p2/2 · I2. The almost
horizontal part of this curve corresponds to the case when
user two transmits with full power (p2 = P2) and user one
varies his power from p1 = 0 to p1 = P1, whereas for the
almost vertical part user two varies his power from p2 = 0
to p2 = P2 with p1 = P1 fixed. The sharp 90-degree edge at
the rate pair R1 ≈ 28 bits per channel use and R2 ≈ 26 bits
per channel use shows that the weighted sum rate maximizer
is independent of the chosen weight vector w > 0 in case
of full multiplexing as derived in Section III-A. In addition
to the black curve depicting the full multiplexing transmission
strategy, the convex hull of the rate region is shown by the
red curve with the circle marker. As we can see, the angle
of intersection at the sharp edge is slightly larger than 90
degrees. For extreme weight ratios w1/w2 � 1 or w1/w2  1
and the given noise variance, the weighted sum rate might be
maximized when only one user applies full multiplexing and
the other one applies single stream beamforming according to
Section III-B, see the circle markers for the respective rate
pairs. However, with diminishing noise variance, the angle of
intersection at the full multiplexing edge becomes smaller and
smaller, and in the limit σ2 → 0, it converges to 90 degrees,
such that the full multiplexing configuration leads to the largest
weighted sum rate for any positive weight vector w. When the
noise variance is reduced to 10 log10 σ2 = −57dB, the angle
of intersection at the full multiplexing edge has almost reached
90 degrees, see Fig. 2. In contrast, a larger noise variance of
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Fig. 2. Convex hull of two user rate region for an N = 5 antenna base
station serving two users with M1 = M2 = 2 antennas each. The noise
variance is 10 log10 σ

2 = −57dB.

10 log10 σ2 = −17dB leads to the fact that the beamforming
configuration for one user yields the largest weighted sum rate
even for moderately different user priorities w1 and w2, see
Fig. 3. Despite the fact that the full multiplexing configuration
still features the sharp edge at the rate pair R1 ≈ 14 bits per
channel use and R2 ≈ 12 bits per channel use, the edge of
the convex hull shows an obtuse angle of about 150 degrees.
As a consequence, the full multiplexing configuration is the
optimum stream configuration only for rate ratios not too far
away from one.
For all reasonably small noise variances, the black curve

also represents the boundary of the rate region when time shar-
ing is not considered as long as the individual rates are larger
than the ones obtained by the single-stream configuration. In
Fig. 1 for example, the black curve represents the boundary
of the rate region for rates R1 > 16 bits per channel use and
R2 > 15 bits per channel use.
Reducing the number of antennas deployed at the base

station to N = 3 leads to the rate region shown in Fig. 4.
There, the full multiplexing configuration does not contribute
to the convex hull of the rate region, only the single-stream
beamforming configuration for one user from Section III-B is
relevant for the given setup. Besides the two rate pairs where
only one component is different from zero, i.e., where only
one user is active, only few positive rate pairs contribute to
the convex hull of the rate region. Even for different weight
vectors, almost the same rate point maximizes the weighted
sum rate for one of the two possible stream configurations
where only one user applies full multiplexing whereas the
other one uses single-stream beamforming. As a consequence,
the convex hull almost looks like a pentagon. The line segment
whose slope is approximately −45 degree resembles the lack
of the full multiplexing configuration. Rate pairs on that line
segment feature a multiplexing gain of only three compared to
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a multiplexing gain of four at the sharp edge in Fig. 1–Fig. 3.
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Fig. 3. Convex hull of two user rate region for an N = 5 antenna base
station serving two users with M1 = M2 = 2 antennas each. The noise
variance is 10 log10 σ

2 = −17dB.
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Fig. 4. Convex hull of two user rate region for an N = 3 antenna base
station serving two users with M1 = M2 = 2 antennas each. The noise
variance is 10 log

10
σ2 = −37dB.

V. CONCLUSION

We analyzed the asymptotic weighted sum rate maximiza-
tion in the MIMO multiple access channel with individual
power constraints for setups with both enough and too few
degrees of freedom for overall full multiplexing. It turned
out that the transmitters either have to apply white signaling
in case of enough degrees of freedom or a scaled projector
as transmit covariance matrix when not enough degrees of
freedom are available for the user to apply full multiplexing.

REFERENCES

[1] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative Water-filling
for Gaussian Vector Multiple-Access Channels,” IEEE Transactions on
Information Theory, vol. 50, pp. 145–152, January 2004.

[2] M. Kobayashi and G. Caire, “Iterative Waterfilling for the Weighted Rate
Sum Maximization in MIMO MAC,” in Signal Processing Advances in
Wireless Communications (SPAWC 2006), July 2006.

[3] C. Guthy, W. Utschick, R. Hunger, and M. Joham, “Weighted Sum Rate
Maximization in the MIMO MAC with Linear Transceivers: Algorith-
mic Solutions,” in 43rd Asilomar Conference on Signals, Systems, and
Computers (Asilomar 2009), November 2009.

[4] J. Lee and N. Jindal, “Dirty Paper Coding vs. Linear Precoding for MIMO
Broadcast Channels,” in 40th Asilomar Conference on Signals, Systems,
and Computers (Asilomar 2006), October 2006, pp. 779–783.

[5] ——, “High SNR Analysis for MIMO Broadcast Channels: Dirty Paper
Coding Versus Linear Precoding,” IEEE Transactions on Information
Theory, vol. 53, no. 12, pp. 4787–4792, December 2007.

[6] R. Hunger and M. Joham, “On the Asymptotic Optimality of Block-
Diagonalization for the MIMO BC under Linear Filtering,” in Workshop
on Smart Antennas (WSA 09), Berlin, February 2009.

[7] ——, “An Asymptotic Analysis of the MIMO Broadcast Channel under
Linear Filtering,” in Conference on Information Sciences and Systems
(CISS 2009), March 2009.

[8] R. Hunger, D. A. Schmidt, and M. Joham, “A Combinatorial Approach to
Maximizing the Sum Rate in the MIMO BC with Linear Precoding,” in
42nd Asilomar Conference on Signals, Systems, and Computers (Asilomar
2008), October 2008.

[9] R. Hunger, P. de Kerret, and M. Joham, “An Algorithm for Maximizing
a Quotient of Two Hermitian Form Determinants with Different Expo-
nents,” Submitted to ICASSP 2010.

1532

Authorized licensed use limited to: T U MUENCHEN. Downloaded on July 27,2010 at 12:29:35 UTC from IEEE Xplore.  Restrictions apply. 


