
A NEURAL NETWORK THAT EMBEDS ITS OWN META-LEVELSIn Proc. of the International Conference on Neural Networks '93, San Francisco. IEEE, 1993.J�urgen SchmidhuberDepartment of Computer ScienceUniversity of ColoradoCampus Box 430, Boulder, CO 80309, USAAbstractTraditional arti�cial neural networks cannot reect abouttheir own weight modi�cation algorithm. Once the weightmodi�cation algorithm is programmed, it remains `hard-wired' and cannot adaptively tailor itself to the needs ofspeci�c types of learning problems in a given environment.I present a novel recurrent neural network which (in prin-ciple) can, besides learning to solve problems posed bythe environment, also use its own weights as input dataand learn new (arbitrarily complex) algorithms for mod-ifying its own weights in response to the environmentalinput and evaluations. The network uses subsets of itsinput and output units for observing its own errors andfor explicitly analyzing and manipulating all of its ownweights, including those weights responsible for analyzingand manipulating weights. This e�ectively embeds a chainof `meta-networks' and `meta-meta-...-networks' into thenetwork itself.1 INTRODUCTIONConventional arti�cial neural networks cannot reectabout their own weight change algorithm. Once the weightchange algorithm is programmed, it cannot adapt itself tothe needs of speci�c types of learning problems in speci�cenvironments.This paper is intended to show the theoretical possibilityof a certain kind of `meta-learning' neural networks thatcan learn to run their own weight change algorithm and toimprove it in an adaptive manner.The paper is structured as follows: Section 2 introducesthe basic �nite architecture. This architecture involves aconventional sequence-processing recurrent neural-net (seee.g. [4], [12], [6]) that can potentially implement any com-putable function that maps input sequences to output se-quences | the only limitations being unavoidable time andstorage constraints imposed by the architecture's �nite-ness. These constraints can be extended by simply addingstorage and/or allowing for more processing time.

The major novel aspect of the architecture is its `self-referential' capability. Some of the network's input unitsserve to explicitly observe performance evaluations (e.g.,external error signals are visible through these special in-put units). In addition, the net is provided with the ba-sic tools for explicitly reading and quickly changing all ofits own adaptive components (weights). This is achievedby (1) introducing an address for each connection of thenetwork, (2) using some of the network's output unitsfor sequentially addressing all of its own connections (in-cluding those connections responsible for addressing con-nections), (3) using some of the input units for `readingweights' { their activations become the weights of con-nections currently addressed by the network, and (4) in-terpreting the activations of some of the output units asimmediate (possibly dramatic) changes of the weights ofconnections addressed by the network. These unconven-tional features allow the network (in principle) to com-pute any computable function mapping algorithm compo-nents (weights) and performance evaluations (e.g., errorsignals) to algorithm modi�cations (weight changes) { theonly limitations again being unavoidable time and storageconstraints. This implies that algorithms running on thatarchitecture (in principle) can change not only themselvesbut also the way they change themselves, and the way theychange the way they change themselves, etc., essentiallywithout theoretical limits to the sophistication (computa-tional power) of the self-modifying algorithms.In section 3, an exact gradient-based initial weightchange algorithm for `self-referential' supervised sequencelearning is derived. The system starts out as tabula rasa.The initial weight change procedure serves to �nd im-proved weight change procedures { it favors algorithms(weight matrices) that make sensible use of the `introspec-tive' potential of the hard-wired architecture, where `use-fulness' is solely de�ned by conventional performance eval-uations (the performance measure is the sum of all errorsignals over all time steps of all training sequences).A disadvantage of the algorithm is its computationalcomplexity per time step which is independent of the se-quence length and equals O(n2connlognconn), where nconn1

is the number of connections. Another disadvantage is thehigh number of local minima of the unusually complex er-ror surface.The purpose of this paper, however, is not to come upwith the most e�cient or most practical `introspective' or`self-referential' weight change algorithm, but to show thatsuch algorithms are possible at all.2 THE `SELF-REFERENTIAL'NETWORKThroughout the remainder of this paper, to save indices, Iconsider a single limited pre-speci�ed time-interval of dis-crete time-steps during which our network interacts withits environment. An interaction sequence actually maybe the concatenation of many `conventional' training se-quences for conventional recurrent networks. This will (intheory) help our `self-referential' net to �nd regularitiesamong solutions for di�erent tasks.Conventional aspects of the net. The network's outputvector at time t, o(t), is computed from previous inputvectors x(�); � < t, by a discrete time recurrent networkwith nI > nx input units and ny non-input units. A subsetof the non-input units, the `normal' output units, has acardinality of no < ny.For notational convenience, I will sometimes give dif-ferent names to the real-valued activation of a particularunit at a particular time step. zk is the k-th unit in thenetwork. yk is the k-th non-input unit in the network. xkis the k-th `normal' input unit in the network. ok is thek-th `normal' output unit. If u stands for a unit, then u'sactivation at time t is denoted by u(t). If v(t) stands fora vector, then vk(t) is the k-th component of v(t) (this isconsistent with the last sentence).Each input unit has a directed connection to each non-input unit. Each non-input unit has a directed connectionto each non-input unit. Obviously there are (nI+ny)ny =nconn connections in the network. The connection fromunit j to unit i is denoted by wij . For instance, one ofthe names of the connection from the j-th `normal' inputunit to the the k-th `normal' output unit is wokxj . wij 'sreal-valued weight at time t is denoted by wij(t). Beforetraining, all weights wij(1) are randomly initialized.The following de�nitions will look familiar to the readerknowledgeable about conventional recurrent nets (e.g.[13]). The environment determines the activations of a`normal' input unit xk . For a non-input unit yk we de�nenetyk(1) = 0; 8t � 1 : yk(t) = fyk(netyk(t));8t > 1 : netyk(t) =Xl wykl(t� 1)l(t� 1); (1)where fi is the activation function of unit i.

The current algorithm of the network is given by itscurrent weight matrix (and the current activations). Note,however, that I have not yet speci�ed how the wij(t) arecomputed.`Self-referential' aspects of the net. The following is a listof four unconventional aspects of the system, which shouldbe viewed as just one example of many similar systems.1. The network sees performance evaluations. The net-work receives performance information through the evalunits. The eval units are special input units which are not`normal' input units. evalk is the k-th eval unit (of nevalsuch units) in the network.2. Each connection of the net gets an address. Oneway of doing this which I employ in this paper (but cer-tainly not the only way) is to introduce a binary address,adr(wij), for each connection wij . This will help the net-work to do computations concerning its own weights interms of activations, as will be seen next.3. The network may analyze any of its weights. anak isthe k-th analyzing unit (of nana such units) in the network.The analyzing units are special non-input units which arenot `normal' output units. They serve to indicate whichconnections the current algorithm of the network (de�nedby the current weight matrix plus the current activations)will access next. It is possible to endow the analyzing unitswith enough capacity to address any connection, includingconnections leading to analyzing units1.One way of doing this is to setnana = ceil(log2nconn) (2)where ceil(x) returns the �rst integer � x.A special input unit that is used in conjunction with theanalyzing units is called val. val(t) is computed accordingto val(1) = 0; 8t � 1 : val(t+ 1) ==Xi;j g[kana(t)� adr(wij)k2]wij(t); (3)where k : : : k denotes Euclidean length, and g is a functionemitting values between 0 and 1 that determines how closea connection address has to be to the activations of the an-alyzing units in order for its weight to contribute to val at1Note that we need to have a compact form of addressing connec-tions: One might alternatively think of something like `one analyzingunit for each connection' to address all weights in parallel, but ob-viously this would not work | we always would end up with moreweights than units and could not obtain `self-reference'. It shouldbe noted, however, that the binary addressing scheme above is byfar not the most compact scheme. This is because real-valued ac-tivations allow for representing theoretically unlimited amounts ofinformation in a single unit. For instance, theoretically it is possibleto represent arbitrary simultaneous changes of all weights within asingle unit. In practical applications, however, there is nothing likeunlimited precision real values. And the purpose of this paper is notto present the most compact `self-referential' addressing scheme butto present at least one such scheme.

that time. Such a function g might have a narrow peak at 1around the origin and be zero (or nearly zero) everywhereelse. This would essentially allow the network to pick outa single connection at a time and obtain its current weightvalue without receiving `cross-talk' from other weights.4. The network may modify any of its weights. Somenon-input units that are not `normal' output units or ana-lyzing units are called the modifying units. modk is the k-th modifying unit (of nmod such units) in the network. Themodifying units serve to address connections to be mod-i�ed. Again, it is possible to endow the modifying unitswith enough capacity to sequentially address any connec-tion, including connections leading to modifying units. Oneway of doing this is to setnmod = ceil(log2nconn) (4)A special output unit used in conjunction with the mod-ifying units is called 4. f4 should allow both positive andnegative activations of 4(t). Together, mod(t) and 4(t)serve to explicitly change weights according towij(t+1) = wij(t) +4(t) g[kadr(wij)�mod(t)k2]: (5)Again, if g has a narrow peak at 1 around the origin and iszero (or nearly zero) everywhere else, the network will beable to pick out a single connection at a time and changeits weight without a�ecting other weights. It is straight-forward, however, to devise schemes that allow the systemto modify more than one weight in parallel.Together, (1), (3), and (5) make up the hard-wired sys-tem dynamics.2.1 COMPUTATIONAL POWER OFTHE NETI assume that the input sequence observed by the net-work has length ntime = nsnr (where ns; nr 2 N) and canbe divided into ns equal-sized blocks of length nr duringwhich the input pattern x(t) does not change. This doesnot imply a loss of generality | it just means speedingup the network's hardware such that each input patternis presented for nr time-steps before the next pattern canbe observed. This gives the architecture nr time-steps todo some sequential processing (including immediate weightchanges) before seeing a new pattern of the input sequence.Although the architecture may inuence the state of theenvironment within such a block of nr time steps, thechanges will not a�ect its input until the beginning of thenext block.With appropriate constant (time-invariant) wij(t), sim-ple conventional (threshold or semi-linear) activation func-tions fk, su�cient nh `hidden' units, and su�cient block-size nr, by repeated application of (1), the network cancompute any function (or combination of functions)f : f0; 1gnx+1+neval+no+nana+nmod+1 !

! f0; 1gno+nana+nmod+1 (6)computable within a constant �nite number ncyc of ma-chine cycles by a given algorithm running on a given con-ventional digital (sequential or parallel) computer withlimited temporal and storage resources. This is becauseinformation processing in conventional computers can bedescribed by the repeated application of boolean functionsthat can easily be emulated in recurrent nets as above.With the particular set-up of section 2.2, at least the 4output unit and the val input unit should take on not onlybinary values but real values. It is not di�cult, however,to show that the range f0; 1g in (6) may be replaced by Rfor any unit (by introducing appropriate simple activationfunctions).We now can clearly identify the storage constraint nhand the time constraint nr with two parameters, withouthaving to take care of any additional hardware-speci�c lim-itations constraining the computational power of the net2.3 EXACT GRADIENT-BASEDLEARNING ALGORITHMHardwired aspects of the learning algorithm. Why doesthe sub-title of this paragraph refer to hardwired learningalgorithms, although this paper is inspired by the idea oflearning learning algorithms? Because certain aspects ofthe initial learning algorithm may not be modi�ed. Thereis no way of making everything adaptive | for instance,algorithms leading to desirable evaluations must alwaysbe favored over others. We may not allow the system tochange this basic rule of the game. The hardwired aspectsof the initial learning algorithm will favor algorithms thatmodify themselves in a useful manner (a manner that leadsto `more desirable' evaluations).This section derives an exact gradient-based algorithmfor supervised sequence learning tasks. For the purposes ofthis section, fk and g must be di�erentiable. This will al-low us to compute gradient-based directions for the searchin algorithm space. For another variant of the architec-ture, [8] describes a more general but less informed andless complex reinforcement learning algorithm.With supervised learning, the eval units provide infor-mation about the desired outputs at certain time steps.Arbitrary time lags may exist between inputs and latercorrelated outputs. For ok(t) there may be a target value,dk(t), speci�ed at time t. We set neval = no, which meansthat there are as many eval units as there are `normal' out-put units. The current activation of a particular eval unitprovides information about the error of the corresponding2It should be mentioned that since nconn grows with nh, nanaand nmod also grow with nh (if they are not chosen large enoughfrom the beginning). However, nana and nmod grow much slowerthan nh.

output unit at the previous time step (see equation (10)).We assume that inputs and target values do not depend onprevious outputs (via feedback through the environment).To obtain a better overview, let us summarize the systemdynamics in compact form. In what follows, unquantizedvariables are assumed to take on their maximal range:netyk(1) = 0; 8t � 1 : xk(t) environment;yk(t) = fyk(netyk(t));8t > 1 : netyk(t) =Xl wykl(t� 1)l(t� 1); (7)8t � 1 : wij(t+1) = wij(t)+4(t) g[kadr(wij)�mod(t)k2];(8)val(1) = 0; 8t � 1 : val(t+ 1) ==Xi;j g[kana(t)� adr(wij)k2]wij(t): (9)The following aspect of the system dynamics is speci�c forsupervised learning and therefore has not yet been de�nedin previous sections:evalk(1) = 0; 8t � 1 : evalk(t+ 1) == dk(t)� ok(t) if dk(t) exists; and 0 else: (10)Objective function. As with typical supervised sequence-learning tasks, we want to minimizeEtotal(nrns); where Etotal(t) = tX�=1E(�);where E(t) = 12Xk (evalk(t+ 1))2:Note that elements of algorithm space are evaluatedsolely by a conventional evaluation function3.The following algorithm for minimizing Etotal is partlyinspired by (but more complex than) conventional recur-rent network algorithms (e.g. [4], [10], [2], [3], [13]).Derivation of the algorithm. We use the chain rule tocompute weight increments (to be performed after eachtraining sequence) for all initial weights wab(1) accordingto wab(1) wab(1)� � @Etotal(nrns)@wab(1) ; (11)where � is a constant positive `learning rate'. Thus weobtain an exact gradient-based algorithm for minimizing3It should be noted that in quite di�erent contexts, previous pa-pers have shown how `controller nets' may learn to perform appro-priate lasting weight changes for a second net [7][1]. However, theseprevious approaches could not be called `self-referential' | they allinvolve at least some weights that can not be manipulated other thanby conventional gradient descent.

Etotal under the `self-referential' dynamics given by (7)-(10). To reduce writing e�ort, I introduce some short-handnotation partly inspired by [11]:For all units u and all weights wab we writepuab(t) = @u(t)@wab(1) : (12)For all pairs of connections (wij ; wab) we writeqijab(t) = @wij(t)@wab(1) : (13)First note that@Etotal(1)@wab(1) = 0; 8t > 1 : @Etotal(t)@wab(1) == @Etotal(t� 1)@wab(1) �Xk evalk(t+ 1)pokab(t): (14)Therefore, the remaining problem is to compute the pokab(t),which can be done by incrementally computing all pzkab(t)and qijab(t), as we will see.At time step 1 we havepzkab(1) = 0: (15)Now let us focus on time steps after the �rst one. Fort � 1 we obtain the recursionpxkab (t+ 1) = 0; (16)pevalkab (t+1) = �pokab(t); if dk(t) exists; and 0 otherwise;(17)pvalab (t+1) =Xi;j @@wab(1) [g(kana(t)�adr(wij)k2)wij(t)] =Xi;j f qijab(t)g[kana(t)� adr(wij)k2)] ++wij(t) [g0(kana(t)� adr(wij)k2)��2Xm (anam(t)� adrm(wij))panamab (t)] g (18)(where adrm(wij) is the m-th bit of wij 's address),pykab(t+ 1) = f 0yk(netyk(t+ 1))Xl @@wab(1) [l(t)wykl(t)] =f 0yk(netyk(t+ 1))Xl wykl(t)plab(t) + l(t)qyklab (t); (19)whereqijab(1) = 1 if wab = wij ; and 0 otherwise; (20)8t > 1 : qijab(t) =

= @@wab(1) "wij(1) +X�<t4(�)g(kmod(�)� adr(wij)k2)# =qijab(t�1)+ @@wab(1)4(t�1)g(kmod(t�1)�adr(wij)k2) =qijab(t� 1) + p4ab(t� 1)g(kmod(t� 1)� adr(wij)k2)+24 (t� 1) g0(kmod(t� 1)� adr(wij)k2)��Xm [modm(t� 1)� adrm(wij)]pmodmab (t� 1): (21)According to equations (15)-(21), the pjab(t) and qijab(t)can be updated incrementally at each time step. This im-plies that (14) can be updated incrementally at each timestep, too. The storage complexity is independent of thesequence length and equals O(n2conn). The computationalcomplexity per time step is O(n2connlognconn).Again: The initial learning algorithm uses gradient de-scent to �nd weight matrices that minimize a conventionalerror function. This is partly done just like with conven-tional recurrent net weight changing algorithms. Unlikewith conventional networks, however, the network algo-rithms themselves may choose to change some of the net-work weights in a manner unlike gradient descent (possi-bly by doing something smarter than that) | but only ifthis helps to minimize Etotal. In other words, the `self-referential' aspects of the architecture may be used by cer-tain `self-modifying' algorithms to generate desirable eval-uations. Therefore the whole system may be viewed asa `self-referential' augmentation of conventional recurrentnets. Further speed-ups (like the ones in [11], [13], [6]) arepossible but not essential for the purposes of this paper.4 CONCLUDING REMARKSThe network I have described can, besides learning tosolve problems posed by the environment, also use its ownweights as input data and can learn new algorithms formodifying its weights in response to the environmental in-put and evaluations. This e�ectively embeds a chain of`meta-networks' and `meta-meta-...-networks' into the net-work itself.Biological plausibility. It seems that I cannot explicitlytell each of my 1015 synapses to adopt a certain value. Iseem able only to a�ect my own synapses indirectly | forinstance, by somehow actively creating `keys' and `entries'to be associated with each other. Therefore, at �rst glance,the neural net in my head appears to embody a di�erentkind of self-reference than the arti�cial net of section 2.1and 2.2. But does it really? The arti�cial net also doesnot have a concept of its n-th weight. All it can do isto �nd out how to talk about weights in terms of activa-tions | without really knowing what a weight is (just likehumans who did not know for a long time what synapses

are). Therefore I cannot see any evidence that brains usefundamentally di�erent kinds of `introspective' algorithms.On the other hand, I am not aware of any biological evi-dence supporting the theory that brains have some meansfor addressing single synapses4.Ongoing and future research. Due to the complexity ofthe activation dynamics of the `self-referential' network,one would expect the error function derived in section 3 tohave many local minima. [9] describes a variant of the ba-sic idea (involving a biologically more plausible weight ma-nipulating strategy) which is less plagued by the problemof local minima. In addition, its initial learning algorithmhas lower computational complexity than the one from sec-tion 3. In fact, this opens the door for another interestingmotivation of recurrent networks that can actively changetheir own weights: It is possible to derive exact gradient-based learning algorithms for such networks that have alower ratio between learning complexity and number oftime varying variables than existing recurrent net learningalgorithms [9].A major criticism of the learning algorithm in section3 is that it is based on the concept of �xed interactionsequences. All the hard-wired learning algorithms doesis �nd initial weights leading to `desirable' cumulativeevaluations. After each interaction sequence, the �nalweight-matrix (obtained through self-modi�cation) is es-sentially thrown away. A simple alternative would be torun (after each interaction sequence) the �nal weight ma-trix against the best algorithm so far and keep it if it isbetter5. Again, performance cannot get worse but can onlyimprove over time. I would, however, prefer a hypothet-ical `self-referential' learning system that is not initiallybased on the concept of training sequences at all. Instead,the system should be able to learn to actively segmenta single continuous input stream into useful training se-quences. Future research will be directed towards buildingprovably working, hard-wired initial-learning-algorithmsfor such hypothetical systems.Although the systems described in this paper have amechanism for `self-referential' weight changes, they muststill learn to use this mechanism. Experiments are neededto discover how practical an approach this is. This paper6does not focus on experimental evaluations; it is intendedonly to show the theoretical possibility of certain kinds4As mentioned before, however, this paper does not insist on ad-dressing every weight in the system individually. (See again footnote1.) There are many alternative, sensible ways of choosing g andrede�ning equations (3) and (5) (e.g. [9]).5With the algorithms of section 3, the weight changes for the ini-tial weights (at the beginning of a training sequence) are hard-wired.The alternative idea of testing the �nal weight matrix (at the end ofsome sequence) against the best previous weight matrix correspondsto the idea of letting the system change its initial weights, too.6This paper is partly inspired by some older ideas about `self-referential learning' | [5] describes a `self-referential' genetic algo-rithm, as well as a few other `introspective' systems.

of `self-referential' weight change algorithms. Experimen-tal evaluations of alternative `self-referential' architectureswill be left for the future.5 ACKNOWLEDGMENTThanks to Mark Ring, Mike Mozer, Daniel Prelinger, DonMathis, and Bruce Tesar, for helpful comments on drafts ofthis paper. This research was supported in part by a DFGfellowship to the author, as well as by NSF PYI award IRI{9058450, grant 90{21 from the James S. McDonnell Foun-dation, and DEC external research grant 1250 to MichaelC. Mozer.References[1] K. M�oller and S. Thrun. Task modularization by net-work modulation. In J. Rault, editor, Proceedings ofNeuro-Nimes '90, pages 419{432, November 1990.[2] B. A. Pearlmutter. Learning state space trajectoriesin recurrent neural networks. Neural Computation,1(2):263{269, 1989.[3] F. J. Pineda. Time dependent adaptive neural net-works. In D. S. Touretzky, editor, Advances in Neu-ral Information Processing Systems 2, pages 710{718.San Mateo, CA: Morgan Kaufmann, 1990.[4] A. J. Robinson and F. Fallside. The utility driven dy-namic error propagation network. Technical ReportCUED/F-INFENG/TR.1, Cambridge University En-gineering Department, 1987.[5] J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: themeta-meta-... hook. Institut f�ur Informatik, Technis-che Universit�at M�unchen, 1987.[6] J. Schmidhuber. A �xed size storage O(n3) time com-plexity learning algorithm for fully recurrent continu-ally running networks. Neural Computation, 4(2):243{248, 1992.[7] J. Schmidhuber. Learning to control fast-weight mem-ories: An alternative to recurrent nets. Neural Com-putation, 4(1):131{139, 1992.[8] J. Schmidhuber. Steps towards \self-referential"learning. Technical Report CU-CS-627-92, Dept.of Comp. Sci., University of Colorado at Boulder,November 1992.

[9] J. Schmidhuber. On decreasing the ratio betweenlearning complexity and number of time varying vari-ables in fully recurrent nets. Technical report, Insti-tut f�ur Informatik, Technische Universit�at M�unchen,1993. In preparation.[10] P. J. Werbos. Generalization of backpropagation withapplication to a recurrent gas market model. NeuralNetworks, 1, 1988.[11] R. J. Williams. Complexity of exact gradient com-putation algorithms for recurrent neural networks.Technical Report Technical Report NU-CCS-89-27,Boston: Northeastern University, College of Com-puter Science, 1989.[12] R. J. Williams and D. Zipser. A learning algorithm forcontinually running fully recurrent networks. NeuralComputation, 1(2):270{280, 1989.[13] R. J. Williams and D. Zipser. Gradient-based learningalgorithms for recurrent networks and their computa-tional complexity. In Back-propagation: Theory, Ar-chitectures and Applications. Hillsdale, NJ: Erlbaum,1992.

