A NEURAL NETWORK THAT EMBEDS ITS OWN META-LEVELS

In Proc. of the International Conference on Neural Networks '93, San Francisco. IEEE, 1993.

Jiirgen Schmidhuber
Department of Computer Science

University of Colorado
Campus Box 430, Boulder, CO 80309, USA

Abstract

Traditional artificial neural networks cannot reflect about
their own weight modification algorithm. Once the weight
modification algorithm is programmed, it remains ‘hard-
wired’ and cannot adaptively tailor itself to the needs of
specific types of learning problems in a given environment.
I present a novel recurrent neural network which (in prin-
ciple) can, besides learning to solve problems posed by
the environment, also use its own weights as input data
and learn new (arbitrarily complex) algorithms for mod-
ifying its own weights in response to the environmental
input and evaluations. The network uses subsets of its
input and output units for observing its own errors and
for explicitly analyzing and manipulating all of its own
weights, including those weights responsible for analyzing
and manipulating weights. This effectively embeds a chain
of ‘meta-networks’ and ‘meta-meta-...-networks’ into the
network itself.

1 INTRODUCTION

Conventional artificial neural networks cannot reflect
about their own weight change algorithm. Once the weight
change algorithm is programmed, it cannot adapt itself to
the needs of specific types of learning problems in specific
environments.

This paper is intended to show the theoretical possibility
of a certain kind of ‘meta-learning’ neural networks that
can learn to run their own weight change algorithm and to
improve it in an adaptive manner.

The paper is structured as follows: Section 2 introduces
the basic finite architecture. This architecture involves a
conventional sequence-processing recurrent neural-net (see
e.g. [4], [12], [6]) that can potentially implement any com-
putable function that maps input sequences to output se-
quences — the only limitations being unavoidable time and
storage constraints imposed by the architecture’s finite-
ness. These constraints can be extended by simply adding
storage and/or allowing for more processing time.

The major novel aspect of the architecture is its ‘self-
referential’ capability. Some of the network’s input units
serve to explicitly observe performance evaluations (e.g.,
external error signals are visible through these special in-
put units). In addition, the net is provided with the ba-
sic tools for explicitly reading and quickly changing all of
its own adaptive components (weights). This is achieved
by (1) introducing an address for each connection of the
network, (2) using some of the network’s output units
for sequentially addressing all of its own connections (in-
cluding those connections responsible for addressing con-
nections), (3) using some of the input units for ‘reading
weights’ — their activations become the weights of con-
nections currently addressed by the network, and (4) in-
terpreting the activations of some of the output units as
immediate (possibly dramatic) changes of the weights of
connections addressed by the network. These unconven-
tional features allow the network (in principle) to com-
pute any computable function mapping algorithm compo-
nents (weights) and performance evaluations (e.g., error
signals) to algorithm modifications (weight changes) the
only limitations again being unavoidable time and storage
constraints. This implies that algorithms running on that
architecture (in principle) can change not only themselves
but also the way they change themselves, and the way they
change the way they change themselves, etc., essentially
without theoretical limits to the sophistication (computa-
tional power) of the self-modifying algorithms.

In section 3, an ezact gradient-based initial weight
change algorithm for ‘self-referential’ supervised sequence
learning is derived. The system starts out as tabula rasa.
The initial weight change procedure serves to find im-
proved weight change procedures it favors algorithms
(weight matrices) that make sensible use of the ‘introspec-
tive’ potential of the hard-wired architecture, where ‘use-
fulness’ is solely defined by conventional performance eval-
uations (the performance measure is the sum of all error
signals over all time steps of all training sequences).

A disadvantage of the algorithm is its computational
complexity per time step which is independent of the se-
quence length and equals O(n?,,,,,109mconn), Where neonn

is the number of connections. Another disadvantage is the
high number of local minima of the unusually complex er-
ror surface.

The purpose of this paper, however, is not to come up
with the most efficient or most practical ‘introspective’ or
‘self-referential’ weight change algorithm, but to show that
such algorithms are possible at all.

2 THE ‘SELF-REFERENTIAL’
NETWORK

Throughout the remainder of this paper, to save indices, I
consider a single limited pre-specified time-interval of dis-
crete time-steps during which our network interacts with
its environment. An interaction sequence actually may
be the concatenation of many ‘conventional’ training se-
quences for conventional recurrent networks. This will (in
theory) help our ‘self-referential’ net to find regularities
among solutions for different tasks.

Conventional aspects of the net. The network’s output
vector at time ¢, o(t), is computed from previous input
vectors x(7), 7 < t, by a discrete time recurrent network
with ny > n, input units and n, non-input units. A subset
of the non-input units, the ‘normal’ output units, has a
cardinality of n, < n,.

For notational convenience, I will sometimes give dif-
ferent names to the real-valued activation of a particular
unit at a particular time step. zj is the k-th unit in the
network. y;, is the k-th non-input unit in the network. x;,
is the k-th ‘normal’ input unit in the network. oy is the
k-th ‘normal’ output unit. If » stands for a unit, then u’s
activation at time ¢ is denoted by u(t). If v(t) stands for
a vector, then vy (¢) is the k-th component of v(¢) (this is
consistent with the last sentence).

Each input unit has a directed connection to each non-
input unit. Each non-input unit has a directed connection
to each non-input unit. Obviously there are (n;+ny)n, =
Neonn connections in the network. The connection from
unit j to unit ¢ is denoted by w;;. For instance, one of
the names of the connection from the j-th ‘normal’ input
unit to the the k-th ‘normal’ output unit is wy,.;. wi;’s
real-valued weight at time ¢ is denoted by w;;(t). Before
training, all weights w;;(1) are randomly initialized.

The following definitions will look familiar to the reader
knowledgeable about conventional recurrent nets (e.g.
[13]). The environment determines the activations of a
‘normal’ input unit x;. For a non-input unit y; we define

netyk(]-) =0, Vt>1: yk(t) = fyk (netyk (f))

Vi>1: nety,(t) = Z“’ykl(t - DIt —1),
1

(1)

where f; is the activation function of unit 4.

The current algorithm of the network is given by its
current weight matrix (and the current activations). Note,
however, that I have not yet specified how the w;;(t) are
computed.

‘Self-referential’ aspects of the net. The following is a list
of four unconventional aspects of the system, which should
be viewed as just one example of many similar systems.

1. The network sees performance evaluations. The net-
work receives performance information through the eval
units. The eval units are special input units which are not
‘normal’ input units. evaly, is the k-th eval unit (of neyar
such units) in the network.

2. Each connection of the net gets an address. One
way of doing this which I employ in this paper (but cer-
tainly not the only way) is to introduce a binary address,
adr(w;j), for each connection w;;. This will help the net-
work to do computations concerning its own weights in
terms of activations, as will be seen next.

3. The network may analyze any of its weights. anay, is
the k-th analyzing unit (of n4y,, such units) in the network.
The analyzing units are special non-input units which are
not ‘normal’ output units. They serve to indicate which
connections the current algorithm of the network (defined
by the current weight matrix plus the current activations)
will access next. It is possible to endow the analyzing units
with enough capacity to address any connection, including
connections leading to analyzing units'.

One way of doing this is to set

(2)

Nana = ceil(loganconn)

where ceil(z) returns the first integer > z.

A special input unit that is used in conjunction with the
analyzing units is called val. val(t) is computed according
to

val(1) =0, VE>1: val(t+1) =

= > glllanat) — adr(ws;) s (1), 3)

where || .. .|| denotes Euclidean length, and ¢ is a function
emitting values between 0 and 1 that determines how close
a connection address has to be to the activations of the an-
alyzing units in order for its weight to contribute to val at

INote that we need to have a compact form of addressing connec-
tions: One might alternatively think of something like ‘one analyzing
unit for each connection’ to address all weights in parallel, but ob-
viously this would not work we always would end up with more
weights than units and could not obtain ‘self-reference’. It should
be noted, however, that the binary addressing scheme above is by
far not the most compact scheme. This is because real-valued ac-
tivations allow for representing theoretically unlimited amounts of
information in a single unit. For instance, theoretically it is possible
to represent arbitrary simultaneous changes of all weights within a
single unit. In practical applications, however, there is nothing like
unlimited precision real values. And the purpose of this paper is not
to present the most compact ‘self-referential’ addressing scheme but
to present at least one such scheme.

that time. Such a function g might have a narrow peak at 1
around the origin and be zero (or nearly zero) everywhere
else. This would essentially allow the network to pick out
a single connection at a time and obtain its current weight
value without receiving ‘cross-talk’ from other weights.

4. The network may modify any of its weights. Some
non-input units that are not ‘normal’ output units or ana-
lyzing units are called the modifying units. mody, is the k-
th modifying unit (of 1,4 such units) in the network. The
modifying units serve to address connections to be mod-
ified. Again, it is possible to endow the modifying units
with enough capacity to sequentially address any connec-
tion, including connections leading to modifying units. One
way of doing this is to set

(4)

A special output unit used in conjunction with the mod-
ifying units is called A. fa should allow both positive and
negative activations of A(t). Together, mod(t) and A(t)
serve to explicitly change weights according to

wij(t+1) = wi; () + A(t) g[lladr(wi;) — mod(t)|* 1. (5)

Nmod = ceil(logaNconn)

Again, if g has a narrow peak at 1 around the origin and is
zero (or nearly zero) everywhere else, the network will be
able to pick out a single connection at a time and change
its weight without affecting other weights. It is straight-
forward, however, to devise schemes that allow the system
to modify more than one weight in parallel.

Together, (1), (3), and (5) make up the hard-wired sys-
tem dynamics.

2.1 COMPUTATIONAL POWER OF

THE NET

I assume that the input sequence observed by the net-
work has length n¢jme = nsn, (where ng,n, € N) and can
be divided into ns equal-sized blocks of length n, during
which the input pattern z(t) does not change. This does
not imply a loss of generality it just means speeding
up the network’s hardware such that each input pattern
is presented for n, time-steps before the next pattern can
be observed. This gives the architecture n, time-steps to
do some sequential processing (including immediate weight
changes) before seeing a new pattern of the input sequence.
Although the architecture may influence the state of the
environment within such a block of n, time steps, the
changes will not affect its input until the beginning of the
next block.

With appropriate constant (time-invariant) w;;(t), sim-
ple conventional (threshold or semi-linear) activation func-
tions fy, sufficient nj ‘hidden’ units, and sufficient block-
size m,, by repeated application of (1), the network can
compute any function (or combination of functions)

f:{o, 1}n2+1+nﬁwal+no+nana+nmnd+1 N

— {0, 1}n0+nana+nmod+1 (6)
computable within a constant finite number n.,. of ma-
chine cycles by a given algorithm running on a given con-
ventional digital (sequential or parallel) computer with
limited temporal and storage resources. This is because
information processing in conventional computers can be
described by the repeated application of boolean functions
that can easily be emulated in recurrent nets as above.

With the particular set-up of section 2.2, at least the A
output unit and the val input unit should take on not only
binary values but real values. It is not difficult, however,
to show that the range {0,1} in (6) may be replaced by R
for any unit (by introducing appropriate simple activation
functions).

We now can clearly identify the storage constraint ny,
and the time constraint n, with two parameters, without
having to take care of any additional hardware-specific lim-
itations constraining the computational power of the net?.

3 EXACT GRADIENT-BASED
LEARNING ALGORITHM

Hardwired aspects of the learning algorithm. Why does
the sub-title of this paragraph refer to hardwired learning
algorithms, although this paper is inspired by the idea of
learning learning algorithms? Because certain aspects of
the initial learning algorithm may not be modified. There
is no way of making everything adaptive for instance,
algorithms leading to desirable evaluations must always
be favored over others. We may not allow the system to
change this basic rule of the game. The hardwired aspects
of the initial learning algorithm will favor algorithms that
modify themselves in a useful manner (a manner that leads
to ‘more desirable’ evaluations).

This section derives an exact gradient-based algorithm
for supervised sequence learning tasks. For the purposes of
this section, f; and g must be differentiable. This will al-
low us to compute gradient-based directions for the search
in algorithm space. For another variant of the architec-
ture, [8] describes a more general but less informed and
less complex reinforcement learning algorithm.

With supervised learning, the eval units provide infor-
mation about the desired outputs at certain time steps.
Arbitrary time lags may exist between inputs and later
correlated outputs. For og(t) there may be a target value,
di(t), specified at time t. We set n.yq; = n,, which means
that there are as many eval units as there are ‘normal’ out-
put units. The current activation of a particular eval unit
provides information about the error of the corresponding

21t should be mentioned that since neonn grows with ny, nana
and n,,,q also grow with ny (if they are not chosen large enough
from the beginning). However, ngne and n,,,q grow much slower
than ny,.

output unit at the previous time step (see equation (10)).
We assume that inputs and target values do not depend on
previous outputs (via feedback through the environment).
To obtain a better overview, let us summarize the system
dynamics in compact form. In what follows, unquantized
variables are assumed to take on their mazrimal Tange:

nety, (1) =0, Vt>1: zy(t) «— environment,

Yk (f) = fyk (netyk (t))a

VE> 10 met,, (t) =Y wy (t—DIE-1), (7)
l

VE> 1 wij(t+1) = wij(1)+A(t) g[|adr(w;j)—mod(t)||?]

(8)
val(1) =0, Vt>1: val(t+1) =

= gllana(t) — adr(wi;)||*Jwi; (t).

4,7

(9)

The following aspect of the system dynamics is specific for
supervised learning and therefore has not yet been defined
in previous sections:

evaly(1) =0, Vi>1:evalp(t+1) =

=dp(t) —or(t) if dip(t) ewists, and 0 else. (10)

Objective function. As with typical supervised sequence-
learning tasks, we want to minimize

t
Ettal(n,.n,), where E°(t) = Z E(1),

T=1

where E(t) = % Z(evalk(t +1))%
k

Note that elements of algorithm space are evaluated
solely by a conventional evaluation function?®.

The following algorithm for minimizing E*°** is partly
inspired by (but more complex than) conventional recur-
rent network algorithms (e.g. [4], [10], [2], [3], [13]).

Derivation of the algorithm. We use the chain rule to
compute weight increments (to be performed after each
training sequence) for all initial weights w,;(1) according

to
6Etotal(nrn3)

Owap (1)

where 7 is a constant positive ‘learning rate’. Thus we
obtain an ezact gradient-based algorithm for minimizing

wap(1) — wap(l) — 7 (11)

31t should be noted that in quite different contexts, previous pa-
pers have shown how ‘controller nets’ may learn to perform appro-
priate lasting weight changes for a second net [7][1]. However, these
previous approaches could not be called ‘self-referential’ — they all
involve at least some weights that can not be manipulated other than
by conventional gradient descent.

E°tal under the ‘self-referential’ dynamics given by (7)-
(10). To reduce writing effort, I introduce some short-hand
notation partly inspired by [11]:

For all units u and all weights w,, we write

Ou(t)

v () = ————. 12
p(zb() a’wab(l) ()
For all pairs of connections (w;;, wap) we write
i Ow;; (1)
w(t) = —L=. 13
qab() awab(l) ()
First note that
6Et°tal 1 aEtotal
O () g wpsq: 22700
awab(l) awab(l)
Etof,al t—1
el Gl VS > evaly(t+ 1)pls(t). (14)

Dwas(1) -

Therefore, the remaining problem is to compute the pl; (t),
which can be done by incrementally computing all p;} (t)

and qub(t) as we will see.
At time step 1 we have

pii(1)=0.

Now let us focus on time steps after the first one. For
t > 1 we obtain the recursion

(15)

pip(t+1) =0, (16)

if di(t) exists, and 0 otherwise,
(17)

pop' (t41) = Z %})(U[g(llana(t)adr(ﬂw)IIQ)wl'j)] =

Pt (¢4 1) = =ik 1)

Z{ q;Jb(f)q[H()'ng(f) *(I,d"'(wij)HQ)] +

i.j

(1) [g'(lana(t) — adr(w;;)]2)

X2 Z(anam(f) — adry, (wi;))pe, () 1} (18)
(where adrp, (w;;) is the m-th bit of w;;’s address),
P+ 1) = Jpy (et (04 1) Y 50wy (1)) =

ab Yk Yk l 811)(1{,(].) Yk
Fo(nety, (t+1)) D wya(O)phy(t) + U1l (1), (19)
1
where
qub(l) =1if wep = w4j, and 0 otherwise, (20)

Vt>1: qz)(t) =

0
— Owap(1)

wij (1) + Y A(r)g([mod(r) — adr(wy;)||*)

g (t—1)+ A(t—1)g(lmod(t—1) —adr(w;;)||*) =

Owap(1)
qoh(t = 1) + ply (¢ — 1)g(|lmod(t — 1) — adr(w;;)||*)+
2A (t—1) g'(Ilmod(t — 1) — adr(w;;)||?)

Y [mody, (t — 1) — adry (wi;)]pl’* (t— 1), (21)

According to equations (15)-(21), the p'zlb(t) and qub(t)
can be updated incrementally at each time step. This im-
plies that (14) can be updated incrementally at each time
step, too. The storage complexity is independent of the
sequence length and equals O(n?,,,,). The computational
complexity per time step is O(n2,,,,09%conn)-

Again: The initial learning algorithm uses gradient de-
scent to find weight matrices that minimize a conventional
error function. This is partly done just like with conven-
tional recurrent net weight changing algorithms. Unlike
with conventional networks, however, the network algo-
rithms themselves may choose to change some of the net-
work weights in a manner unlike gradient descent (possi-
bly by doing something smarter than that) but only if
this helps to minimize E*°*®!. In other words, the ‘self-
referential’ aspects of the architecture may be used by cer-
tain ‘self-modifying’ algorithms to generate desirable eval-
uations. Therefore the whole system may be viewed as
a ‘self-referential’ augmentation of conventional recurrent
nets. Further speed-ups (like the ones in [11], [13], [6]) are
possible but not essential for the purposes of this paper.

4 CONCLUDING REMARKS

The network T have described can, besides learning to
solve problems posed by the environment, also use its own
weights as input data and can learn new algorithms for
modifying its weights in response to the environmental in-
put and evaluations. This effectively embeds a chain of
‘meta-networks’ and ‘meta-meta-...-networks’ into the net-
work itself.

Biological plausibility. It seems that I cannot explicitly
tell each of my 10'® synapses to adopt a certain value. I
seem able only to affect my own synapses indirectly for
instance, by somehow actively creating ‘keys’ and ‘entries’
to be associated with each other. Therefore, at first glance,
the neural net in my head appears to embody a different
kind of self-reference than the artificial net of section 2.1
and 2.2. But does it really? The artificial net also does
not have a concept of its n-th weight. All it can do is
to find out how to talk about weights in terms of activa-
tions — without really knowing what a weight is (just like
humans who did not know for a long time what synapses

are). Therefore I cannot see any evidence that brains use
fundamentally different kinds of ‘introspective’ algorithms.
On the other hand, I am not aware of any biological evi-
dence supporting the theory that brains have some means
for addressing single synapses®.

Ongoing and future research. Due to the complexity of
the activation dynamics of the ‘self-referential’ network,
one would expect the error function derived in section 3 to
have many local minima. [9] describes a variant of the ba-
sic idea (involving a biologically more plausible weight ma-
nipulating strategy) which is less plagued by the problem
of local minima. In addition, its initial learning algorithm
has lower computational complexity than the one from sec-
tion 3. In fact, this opens the door for another interesting
motivation of recurrent networks that can actively change
their own weights: It is possible to derive exact gradient-
based learning algorithms for such networks that have a
lower ratio between learning complexity and number of
time varying variables than existing recurrent net learning
algorithms [9].

A major criticism of the learning algorithm in section
3 is that it is based on the concept of fixed interaction
sequences. All the hard-wired learning algorithms does
is find initial weights leading to ‘desirable’ cumulative
evaluations. After each interaction sequence, the final
weight-matrix (obtained through self-modification) is es-
sentially thrown away. A simple alternative would be to
run (after each interaction sequence) the final weight ma-
triz against the best algorithm so far and keep it if it is
better®. Again, performance cannot get worse but can only
improve over time. I would, however, prefer a hypothet-
ical ‘self-referential’ learning system that is not initially
based on the concept of training sequences at all. Instead,
the system should be able to learn to actively segment
a single continuous input stream into useful training se-
quences. Future research will be directed towards building
provably working, hard-wired initial-learning-algorithms
for such hypothetical systems.

Although the systems described in this paper have a
mechanism for ‘self-referential’ weight changes, they must
still learn to use this mechanism. Experiments are needed
to discover how practical an approach this is. This paper®
does not focus on experimental evaluations; it is intended
only to show the theoretical possibility of certain kinds

4 As mentioned before, however, this paper does not insist on ad-
dressing every weight in the system individually. (See again footnote
1.) There are many alternative, sensible ways of choosing g and
redefining equations (3) and (5) (e.g. [9]).

5With the algorithms of section 3, the weight changes for the ini-
tial weights (at the beginning of a training sequence) are hard-wired.
The alternative idea of testing the final weight matrix (at the end of
some sequence) against the best previous weight matrix corresponds
to the idea of letting the system change its initial weights, too.

6This paper is partly inspired by some older ideas about ‘self-
referential learning’ — [5] describes a ‘self-referential’ genetic algo-
rithm, as well as a few other ‘introspective’ systems.

of ‘self-referential” weight change algorithms. Experimen-
tal evaluations of alternative ‘self-referential’ architectures
will be left for the future.

5 ACKNOWLEDGMENT

Thanks to Mark Ring, Mike Mozer, Daniel Prelinger, Don
Mathis, and Bruce Tesar, for helpful comments on drafts of
this paper. This research was supported in part by a DFG
fellowship to the author, as well as by NSF PYI award IRI
9058450, grant 90 21 from the James S. McDonnell Foun-
dation, and DEC external research grant 1250 to Michael
C. Mozer.

References

[1] K. Méller and S. Thrun. Task modularization by net-
work modulation. In J. Rault, editor, Proceedings of
Neuro-Nimes '90, pages 419 432, November 1990.

B. A. Pearlmutter. Learning state space trajectories
in recurrent neural networks. Neural Computation,

1(2):263 269, 1989.

F. J. Pineda. Time dependent adaptive neural net-
works. In D. S. Touretzky, editor, Advances in Neu-
ral Information Processing Systems 2, pages 7T10-718.
San Mateo, CA: Morgan Kaufmann, 1990.

A. J. Robinson and F. Fallside. The utility driven dy-
namic error propagation network. Technical Report
CUED/F-INFENG/TR.1, Cambridge University En-
gineering Department, 1987.

[5] J. Schmidhuber. Evolutionary principles in self-
referential learning, or on learning how to learn: the
meta-meta-... hook. Institut fiir Informatik, Technis-
che Universitat Miinchen, 1987.

[6] J. Schmidhuber. A fixed size storage O(n?) time com-
plexity learning algorithm for fully recurrent continu-
ally running networks. Neural Computation, 4(2):243

248, 1992.

[7] J.Schmidhuber. Learning to control fast-weight mem-
ories: An alternative to recurrent nets. Neural Com-
putation, 4(1):131-139, 1992.

[8] J. Schmidhuber. Steps towards “self-referential”
learning. Technical Report CU-CS-627-92, Dept.
of Comp. Sci., University of Colorado at Boulder,
November 1992.

(9]

[10]

[11]

[12]

[13]

J. Schmidhuber. On decreasing the ratio between
learning complexity and number of time varying vari-
ables in fully recurrent nets. Technical report, Insti-
tut fiir Informatik, Technische Universitdt Miinchen,
1993. In preparation.

P. J. Werbos. Generalization of backpropagation with
application to a recurrent gas market model. Neural
Networks, 1, 1988.

R. J. Williams. Complexity of exact gradient com-
putation algorithms for recurrent neural networks.
Technical Report Technical Report NU-CCS-89-27,
Boston: Northeastern University, College of Com-
puter Science, 1989.

R. J. Williams and D. Zipser. A learning algorithm for
continually running fully recurrent networks. Neural

Computation, 1(2):270 280, 1989.

R. J. Williams and D. Zipser. Gradient-based learning
algorithms for recurrent networks and their computa-
tional complexity. In Back-propagation: Theory, Ar-
chitectures and Applications. Hillsdale, NJ: Erlbaum,
1992.

