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Modeling the Interaction of Wind and Membrane Structures by
Numerical Simulation

Abstract

In the scope of this thesis, a methodology for the numerical analysis of the interaction of
wind and membrane structures is developed. The high flexibility of membranes leads to
considerably large deformations for external loadings, which makes membrane structures
susceptible to wind induced aeroelastic effects.

The focus of this work is the appropriate combination of different physical and numeri-
cal disciplines to account for the relevant factors inherent to the coupled simulation of light,
flexible structures and highly turbulent air flows. To fulfill these requirements, the occur-
ring wind-structure interaction is modeled by a surface-coupled fluid-structure interaction
(FSI) method. This is realized with a partitioned coupling approach in a modular software
environment that can be applied to various problems of fluid-structure interaction. In the
partitioned coupling approach, the multiphysics problem is separated into a structural part
and a fluid part. In the structural part, the stresses and deformations of the construction
due to wind loading are computed. The air flow around and the surface pressure on the
structure are simulated in the fluid part. The physical coupling between the structural part
and the fluid part, i.e. between the membrane structure and the wind flow, is accounted
for by means of exchanging the necessary boundary conditions between the two numerical
computations.

To derive the initial shape of the prestressed membrane, numerical form finding com-
putations are used. Special care is taken towards the realistic modeling of wind flow in a
neutrally stratified Atmospheric Boundary Layer. As a prerequisite for the assessment of
aeroelastic problems, the utilization of stable as well as efficient coupling strategies and fur-
ther aspects of coupled computations are discussed in detail. Already existing single field
solvers are modified for the application in coupled simulations. In order to efficiently im-
plement the coupling strategies into the software environment, a central coupling tool is
developed, which organizes the data exchange within the coupled computation.

The potential of the developed software environment is illustrated with the simulation
of wind induced, aeroelastic effects on the mobile canopy structure ARIES. The significance
of the results obtained is discussed and the method is placed in the framework of wind
engineering.
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Numerische Simulation der Wechselwirkung zwischen Wind und
Membranbauwerken

Zusammenfassung

Im Rahmen dieser Arbeit wird eine Methodik zur numerischen Untersuchung von Wind-
einflüssen auf Membranbauwerke entwickelt. Durch die hohe Flexibilität des Membranma-
terials, die zu großen Verformungen infolge externer Lasten führt, hat die Betrachtung von
aeroelastischen, windinduzierten Effekten eine große Bedeutung für den Entwurf und die
Konstruktion von Membranbauwerken.

Der Schwerpunkt dieser Arbeit liegt in der Kombination unterschiedlicher physikali-
scher Fragestellungen und numerischer Ansätze, um alle relevanten Effekte der Wechselwir-
kung von leichten und flexiblen Bauwerken mit einer hochturbulenten Windumströmung
abzubilden. Dazu wird die Wind-Bauwerk-Wechselwirkung als ein oberflächengekoppeltes
Problem der Fluid-Struktur-Interaktion betrachtet und modelliert. Im Rahmen dieser Arbeit
wird eine modulare Berechnungsumgebung entwickelt, die sich für verschiedenste Simula-
tionen von oberflächengekoppelten Problemen anwenden lässt. Zur numerischen Simulati-
on des physikalischen Mehrfeldproblems wird ein partitioniertes Verfahren eingesetzt, das
eine separate Betrachtung der einzelnen Teilgebiete, hier die Struktur- und die Strömungs-
simulation, ermöglicht. Die Kopplung zwischen Bauwerk und Windumströmung erfolgt
durch den entsprechenden Austausch von Randbedingungen zwischen den Berechnungs-
programmen.

Zur Ermittlung der Ausgangsgeometrie der vorgespannten Membrankonstruktion wer-
den numerische Formfindungsmethoden eingesetzt. In der Strömungssimulation liegt ein
besonderes Augenmerk auf der realistischen Modellierung der neutralen atmosphärischen
Grenzschichtströmung. Zur Simulation aeroelastischer Probleme werden stabile und effizi-
ente partitionierte Kopplungsmethoden, neben anderen Aspekten gekoppelter Berechnun-
gen, im Detail vorgestellt. Bestehende Simulationsprogramme werden für den Einsatz in
gekoppelten Berechnungen entsprechend erweitert. Für den Austausch der physikalischen
Randbedingungen zwischen den Simulationsprogrammen wird ein zentrales Schnittstellen-
programm entwickelt und eingesetzt.

Die Leistungsfähigkeit der numerischen Berechnungsumgebung wird anhand der Un-
tersuchung von windinduzierten Effekten an der mobilen Tribünenüberdachung ARIES ge-
zeigt. Abschließend werden die Anwendbarkeit der Methode und die Aussagekraft der Er-
gebnisse der Arbeit im Rahmen des Windingenieurwesens diskutiert.
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Chapter 1

Introduction

1.1 Motivation and Thematic Framework

The demand for sustainable buildings, the application of new construction techniques, and
the possibilities due to new construction materials give rise to light and slender structures
in civil engineering. Designing these types of structures in such a way, that they resist ex-
ternal loadings typical in civil engineering, the more effort has to be put into analyzing the
behavior of the structure, the lighter and more slender it becomes.

In case of wind loads, a detailed analysis is very complicated due to the stochastic na-
ture of wind. However, what Simiu and Scanlan state in [SS96] holds even more for highly
optimized constructions: "It is the task of an engineer to ensure the performance of struc-
tures subjected to the action of wind will be adequate during their anticipated life from the
standpoint of both safety and serviceability."

Membrane Structures

Membrane structures are a good example of extremely light-weight and highly optimized
constructions. Due to the constant stress state over the thickness, the material strength is op-
timally used. In the last years, the use of membranes in structural engineering became more
and more common. With the development of new materials, the spectrum of membrane
structures became wider, reaching from large span roof and mobile structures to elements
for cladding. As a result of spectacular public buildings such as the Allianz Arena in Mu-
nich, membrane structures are in the focus of public interest.

Membrane structures are very special types of constructions because of the membrane’s
properties. Membranes have no or very little bending stiffness. Therefore, their load car-
rying behavior is based on tension stresses tangential to their surface. In case of tangential
compression stresses, the membrane loses its stiffness and starts to wrinkle. External load
not tangential to the surface of the membrane causes relatively large deformations. In or-
der to prevent the occurrence of large deformations even for small external loadings, mem-
brane structures are designed as doubly curved geometries and are stabilized by applying
prestress. The initial shape of the prestressed membrane is determined by the mechanical
property of equilibrium of internal membrane stresses and the dead load. Accordingly, the
initial, doubly curved shape is generally unknown and has to be derived by experimental
approaches or numerical form finding computations. Typically, the resulting initial shape is
a free-form membrane structure, which closes itself to any analytical description.

1



CHAPTER 1 INTRODUCTION

Analysis of Wind Effects on Membrane Structures

The lightness and flexibility in material and construction of membrane structures brings
along a high responsiveness to external loadings. Especially for wind loading, membrane
structures show high susceptibility. Moreover, in contrast to other load cases, such as dead
or snow load, the wind load on membrane structures can not generally be presumed as a
static load case, but in some cases the dynamics of the loading and the structural response
have to be considered. Analysis of wind load on membrane structures is further complicated
in case of aeroelastic behavior, in which the large deformations of the membrane lead to an
interaction between membrane and wind flow.

The usual approach in structural engineering of reducing the complex problem of struc-
tures subjected to wind to simpler models by finding appropriate assumptions involves the
risk of neglecting essential effects, which result from the interaction of wind and structure.
A generic tool to analyze dynamic effects in wind engineering is the experimental simula-
tion in wind tunnels. A basic requirement for this experimental approach is the resemblance
of dynamic behavior between reality and model. For small scale models this requirement
is difficult to meet, especially in the analysis of aeroelasticity. As a result, corresponding
wind tunnel experiments are complicated, as well as elaborate and expensive. Accordingly,
Williams [Wil95] described the state of the analysis of membrane structures in 1995 as the
following: "The behavior of a membrane structure in wind can be extremely complex. There
is no one satisfactory design method and it’s a question of combining experimental results
with simple theories and experience with similar structures."

Next to the established methods of wind tunnel experiments, the application of numer-
ical methods, namely Computational Fluid Dynamics (CFD), becomes applicable for the
analysis of wind effects, as the available computational power steadily increases. The use
of CFD methods in wind engineering is a rather young subdomain called Computational
Wind Engineering (CWE). Developments in CWE are generally driven along two lines: the
correct modeling of the boundary conditions and the correct modeling of the turbulent wind
flow.

Numerical Simulation of Wind-Membrane Structure-Interaction

The application of numerical methods to the analysis of wind induced effects on membrane
structures provides, among other advantages, the possibility to overcome the limitations
of experimental approaches in the modeling of aeroelastic effects. The wind load on the
structure can be simulated by a numerical fluid simulation. The responses of the membrane
structure, namely the deformations due to the wind loads, result from a numerical struc-
tural analysis. Combining fluid and structural analysis leads to a multi-physics approach,
which is realized by a coupled simulation of fluid-structure interaction. Within this thesis,
numerical methods for the analysis of surface coupled problems are applied to model the
interaction between wind and membrane structure.

For a correct modeling of wind-membrane structure interaction, the following require-
ments for a coupled numerical analysis are identified:

� Availability of form finding methods to determine the proper initial geometry.

2



1.1 Motivation and Thematic Framework

� Correct numerical analysis of the structural behavior of membrane structures with
respect to geometrical nonlinearities.

� Adequate modeling of a complex, highly turbulent wind flow in a neutrally stratified
Atmospheric Boundary Layer (ABL).

� Representation of strong interaction between wind and membrane by appropriate cou-
pling methods of fluid and structural analysis.

� At the fluid-structure interface, treatment of moving boundaries and accurate transfer
of boundary conditions.

Within this thesis, a framework for the simulation of wind-membrane structure interac-
tion, which is able to satisfy these requirements, is developed and presented.

ARIES mobile canopy structure

The capability of the framework developed within this thesis is shown on the example of
the mobile canopy structure ARIES, for which the wind-membrane interaction is analyzed.

ARIES is a lightweight, deployable canopy system designed to provide weather protec-
tion for modular temporary events seating (see fig. 1.1). It was developed at the University
of Dundee [BG05] and the Technische Universität München, [Gen05, Gen04], together with
Arena Seating, United Kingdom. A Teaching Company Scheme grant funding was awarded
in 2000 for a 2-year programme to develop and construct a prototype, which was completed
in 2002. It was developed to combine flexibility and operator safety as well as to signifi-
cantly reduce operational costs. It can be deployed by only two people, who prepare and
erect an entire canopy module.

Figure 1.1: ARIES mobile canopy structure.

3



CHAPTER 1 INTRODUCTION

The construction is a hybrid tensile restrained structure with a cantilevered free span of
13m and a width of 6m. The completed canopy represents a highly efficient composite post-
tensioned tensile structure with an anticlastic membrane supported by aluminum trusses.
The trusses are stressed into a curved shape, defined by the supporting cables and A-frames.

The environmental loading was assessed with wind tunnel testing on rigid, small-scale
models. The pressure coefficients from the tests, in conjunction with a wind code assess-
ment, gave an indication of the magnitude of the wind loading likely to be experienced
by the canopy. However, the question, if and to which extent, an interaction between the
flexible canopy structure and the wind flow occurs, remained open.

By using numerical methods of fluid-structure interaction, the wind-ARIES structure
interaction is analyzed within this thesis. As ARIES features a prestressed membrane, an
appropriate numerical model has to meet all the requirements formulated above.

1.2 Aim of This Thesis and Approach

The aim of this thesis is to develop a software environment as a numerical tool for the anal-
ysis of the interaction between wind flow and membrane structures. The wind flow around
the structure is modeled by methods of Computational Fluid Dynamics (CFD). The struc-
tural behavior is computed using the Finite Element Method (FEM), which includes form
finding computations. Structural and fluid simulations are combined in a multi-physics
simulation for the modeling of strong physical coupling between wind flow and membrane
structure.

Within this work, the analysis of wind effects on membrane structures is performed in a
deterministic way for specific setups of wind speed, wind turbulence, and wind direction.
Thereby, necessary approximations, mainly in modeling the turbulent air flow, have to be
made. As a consequence, the aim of this thesis is not to represent all possible wind induced
effects, and, therefore, the results of this work cannot be directly used as design loads. How-
ever, possible ways of how to extend the results derived by the numerical computation into
design loads for membrane are provided.

In order to meet the requirements identified above as necessary for the numerical anal-
ysis of an interaction between wind and membrane structures, a partitioned approach is
chosen. In a partitioned approach, the surface-coupled multi-field problem is solved by us-
ing individual single field solvers for the different physical fields. In case of fluid-structure
interaction, the involved physical fields of structural and fluid analysis can be solved in
specialized, well-suited, and tested single field simulation programs. The physical cou-
pling between the single fields is realized by exchanging the specific boundary conditions.
Thereby, existing simulation programs for the modeling of the air flow and the structural be-
havior can be reused. However, several modifications of the existing simulation programs
are necessary, in order to realize the coupling methods.

In the current approach, the form finding and the structural part are solved by the re-
search code CARAT, the fluid part by the general purpose Computational Fluid Dynamics
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Code CFX-11 of Ansys Inc., and for the coupling, a central coupling tool called COMA is
developed.

1.3 Organization of This Thesis

The introductory Chapter 1 presents the motivation for this work and a brief overview about
the thematic framework. Due to the complexity of the multi-physics problem and the exten-
sion of the field of wind engineering, a review of representative publications describing the
state of the art is provided in the respective chapters.

The thesis is structured following the physical decomposition of the partitioned ap-
proach into chapters, which discuss the structural field and the fluid field. Within each
of the two chapters, the specific problem is discussed, fundamentals about the considered
physical field are presented, and the numerical approach for modeling and simulating the
physical field is provided. Finally, the numerical methods of the single fields are applied on
the ARIES structure.

In Chapter 2, the main characteristics of membrane structures are discussed. Based on
these characteristics, appropriate methods for the numerical simulation with the Finite Ele-
ment Method (FEM) are introduced. These methods are applied to setup a numerical model
of the ARIES canopy structure.

Chapter 3 presents the several approaches to analyze wind loads on membrane struc-
tures. Fundamentals of fluid mechanics are presented and used to derive the Finite Volume
Method (FVM). A strong focus lies on the correct modeling of the ABL flow and the flow
for CWE. By using a rigid structural representation, the wind load on the ARIES structure is
simulated.

Chapter 4 brings together the simulation of fluid and structural fields. Theory and differ-
ent approaches for the simulation of multi-physics problems are discussed. Selected aspects
of coupled fsi simulations, which are necessary ingredients for the computational setup, are
discussed in detail. The concept of the software environment, the necessary modification in
the single field solvers, and the newly developed central coupling tool are described. Finally,
this software setup is used to analyze the reaction of the ARIES structure to wind loading.

In chapter 5 a summary of the methods developed and the results obtained in this re-
search is presented. The thesis concludes with a discussion, how and to which extent, the
tools and results obtained can be used for the design of membrane structures.
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CHAPTER 1 INTRODUCTION
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Chapter 2

Structural Modeling of Light-Weight
Structures

In this chapter, the characteristics of membrane structures are studied. For a detailed analy-
sis of wind loading on membrane structures, an appropriate numerical model, which is able
to represent the correct structural behavior, is necessary. Due to the special properties of
membranes, suitable methods are needed for numerical modeling and analysis. Through-
out the whole thesis, structural modeling is based on the Finite Element Method (FEM).
Starting from the basics of continuum mechanics and introducing methods of space and
time discretization, the formulation for a generic hexahedral 3-dimensional Finite Element
is derived.

For the modeling of membrane structures, a special type of Finite Elements are derived
based on the generic hexahedral element. Usually, membrane structures used in civil en-
gineering are prestressed. The consideration of this prestress state requires experimental
or computational techniques, commonly referred to as form finding procedures, which are
briefly introduced.

All the techniques presented in this chapter are applied to set up the complex structural
model of the ARIES mobile canopy structure. In the following chapters, this model is used
for further analysis with respect to wind loading, both on a rigid structure (in chapter 3) and
with taking into account aero-elastic effects using methods of Fluid-Structure Interaction (in
chapter 4).

2.1 Characteristics of Membrane Structures

Shape and physical behavior of fabric structures is very different to those of conventional
constructions based on stiff frames. These differences result from the missing bending stiff-
ness of membrane material. Without the possibility of load transfer via bending action, the
whole load transfer has to be carried out through stress acting tangential to the membrane
surface. This tangential acting stress is referred to as membrane stress. The membrane is
able to carry tension stress only. Compression in the membrane leads to a phenomenon of
structural instability, the occurrence of wrinkles. According to their properties, membrane
structures can be identified as tensile structures.
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CHAPTER 2 STRUCTURAL MODELING OF LIGHT-WEIGHT STRUCTURES

The lack of bending action implies certain properties for membrane structures. Due to
the fact that the distribution of the tangential stress over the membrane thickness is constant,
the utilization of the material strength is optimal. However, a strong interaction between
shape and structural behavior occurs. In a static configuration the tangential tension stresses
of the membrane are in equilibrium at every point. If this equilibrium is disturbed, e.g. by
an external load, the membrane will react with deformations in such a way, that the internal
membrane stress and the external loading reach a new state of equilibrium. For loads acting
perpendicularly to the membrane surface this usually results in large deformations.

The sensitivity of membrane structures with respect to external loadings is determined
by their stiffness. This stiffness is mainly a result of two factors: geometry and prestress.

For distributed loads acting not only tangential to the surface, including dead load of the
membrane material, the geometry of the membrane needs to be curved in order to enable
equilibrium between internal membrane stress and loading. These double curved surfaces
can be classified as synclastic or anticlastic, depending on the sign of their Gaussian curva-
ture.

Prestress is introduced in membrane structures to provide the flexible fabric with an
additional geometric stiffness and ensure that for all load cases no compressive stress occurs.
The initial geometry of the prestress membrane is the shape, for which the membrane forces
introduced by the prestress and those due to dead load are in equilibrium. In general, this
shape is unknown and form-finding procedures are used to determine the initial shape.
These can be conducted as experiments or by numerical computations, the form-finding
computations.

For membrane structures, the prestress is realized as mechanical or pneumatic prestress.
Since prestress can only be imposed as tension, it is also known as pretension.

� Pneumatically imposed prestress

Pneumatically imposed prestress is caused by a pressure difference between both sides
of the membrane. This leads to overall synclastic shapes with positive Gaussian cur-
vature, such as balloons or cushions. Air supported structures, usually in the form of
shallow spherical ’caps’ are another typical application. Fig. 2.1 provides examples of
synclastic, pneumatically prestressed constructions.

(a) Balloon shape. (b) Cushion shape.

Figure 2.1: Generic synclastic shapes.
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� Mechanically imposed prestress

Mechanically imposed prestress is introduced by tightening the anchorage. Typically,
the geometries for mechanically prestressed structures are anticlastic, meaning the
sign of their Gaussian curvature is negative. In fig. 2.2 the four generic types of an-
ticlastic surfaces are presented: cone, saddle-surface, hyperboloid and "ridge and val-
ley".

(a) Saddle shape. (b) Cone shape.

(c) ’Ridge & valley’ shape. (d) Hyperboloid shape.

Figure 2.2: Generic anticlastic shapes.

In the following, only mechanically prestressed structures shall be considered.

Prestressed membrane structures commonly require continuous support along the edges
to maintain a prestressed state. This support can be rigid, such as a stiff beam or anchorage
or, more commonly, flexible. Flexible support is realized by cables attached to the edges of
the membrane. They are curved due to the (pre-)tension stress of the membrane and, there-
fore, also subject to (pre-)tension. If the stress at the edges of the membrane acts tangential
to the edge cables, the membrane might slide along the cable, which is usually prevented by
additional fittings.

For the realization of membrane structures, a variety of synthetic materials with different
properties is available. They can be categorized into two groups: fabrics and foils.

� Fabrics

Fabrics show an anisotropic behavior in the directions of their fibers. Corresponding to
the manufacturing process of fabrics, the two directions are called warp and weft. The
fabric determines the load carrying behavior. Commonly a coating is applied which
protects the fibers from mechanical, chemical, or biological damages and determines
the transparency and sealing. Typical examples for these composite materials are PVC
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(Polyvinylchlorid) coated polyester fabrics or PTFE (Polyetrafluoroethylene) coated
glass fiber fabrics.

� Foils

Foils have an isotropic material behavior. A typical material for foil constructions in
civil engineering is ETFE (Ethylentetrafluoroethylene). ETFE is highly transparent, has
a high chemical resistance and a penetrability towards air that is small enough for the
usage in pneumatic structures. Compared to fabric materials of the same thickness,
foils typically have a lower load carrying capacity. Therefore, foil structures usually
have a limited free span.

2.2 Fundamentals of Structural Analysis

2.2.1 Fundamentals of Continuum Mechanics

In the following, a brief introduction to the field of continuum mechanics is given. The pre-
sented explanations are restricted to those most relevant to the topic of light-weight struc-
tures. Full and detailed derivations can be found, among others, in [BW00], [Hol00], [Par03],
[SR04].

2.2.1.1 Differential Geometry

A material point M of a continuous body B in a three dimensional space can be identified
by its position vector x(θ1, θ2, θ3). The position vector refers to curvilinear convective coor-
dinates θ i (fig. 2.3). In the following, the summation convention by Einstein will be used.
Latin indices take to values 1 to 3, while Greek indices take values 1 and 2. The base vectors
of the curvilinear coordinate system θ i can be derived as:

gi =
∂x
∂θi (2.1)

The elements gi are called covariant base vectors. Additional to the covariant basis, a recip-
rocal (or dual) basis is introduced. The elements of the reciprocal basis are called contravari-
ant base vectors gi. The two bases gi and gi satisfy the following condition:

gi · gj = δi
j (2.2)

δi
j is the (mixed) Kronecker delta. Based on the curvilinear coordinate system θ i the con-

travariant base vectors can be derived by the following equation:

gi =
∂θi

∂x
(2.3)

By using the scalar product on two covariant base vectors, the metric coefficients gij of the
covariant basis are calculated. Same holds for the contravariant base vector and the metric
coefficients gij of the contravariant basis:

gij = gi · gj gij = gi · gj (2.4)
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e3

e2
e1

x

g3

g1

g2

θ3

θ2

θ1

Figure 2.3: Geometry in curvilinear coordinates.

The Unity (or Identity) tensor or Metric tensor of a coordinate system is derived as:

I = gij gi ⊗ gj = gij gi ⊗ gj = gi ⊗ gj = gi ⊗ gj (2.5)

with ⊗ as the dyadic product.

2.2.1.2 Kinematics

For each material point M of a continuum body B the mapping κ assigns a position x at a
certain time t. The configuration at a defined time t = t0 is called the reference configuration
and is the initial configuration of the system. Configurations for t > t0 are called current
configurations. In the following, all quantities based on the reference configuration are ex-
pressed in upper case letters, while those based on current configurations are expressed in
lower case letters.

The motion χ is defined as the transformation from reference to current position at a
time t:

x = χ(X, t) (2.6)

Commonly, in structural mechanics, a Lagrangian description is used, in which the coordi-
nate system "sticks" to a material point and changes, when the position of the material point
is modified. Therefore, a material point is identified by its Lagrange coordinates X(θ 1, θ2, θ3)
and the point in time t. The displacement field d from reference to current configuration can
be expressed as:

d(X, t) = χ(X, t) − X = x(X, t) − X (2.7)

According to the definition of the co- and contravariant base vectors in the current con-
figuration (gi and gi) at a position x(θ1, θ2, θ3) (eq. 2.1 and eq. 2.3), the co- and contravariant
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Reference

configuration
Current

configuration

Ω0

e2
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κ
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χ( ,t)X

body

Figure 2.4: Configuration and motion of a continuum body and a material point.

base vectors of reference configuration at a position X(θ1, θ2, θ3) are:

Gi =
∂X
∂θi Gi =

∂θi

∂X
(2.8)

The material deformation gradient F describes the mapping of a differential line element
in the reference configuration dX = Gidθi into a line element in the deformed configuration
dx = gi dθi:

dx =
∂x
∂X

dX = F · dX (2.9)

Commonly, F is an asymmetric second order tensor. As the mapping of a line element is
equivalent to the mapping of a base vector from reference to current configuration the de-
formation gradient can be used to relate co- and contravariant base vectors in reference and
current configuration:

gi = F · Gi gi = F−T · Gi Gi = F−1 · gi Gi = FT · gi (2.10)

Accordingly, F can be derived as:

F =
∂x
∂X

= gi ⊗ Gi FT = Gi ⊗ gi �= F F−T = gi ⊗ Gi F−1 = Gi ⊗ gi (2.11)

The deformation gradient contains information about the complete deformation process,
including rigid body deformations. Therefore, it is not objective and cannot be used directly

12



2.2 Fundamentals of Structural Analysis

as a strain measure. Instead, the objective, symmetric Green-Lagrange (GL) strain tensor E
is introduced for the description of large displacements (with I as the identity tensor):

E =
1
2
(FTF − I) = Eij Gi ⊗ Gj =

1
2
(gij − Gij)Gi ⊗ Gj (2.12)

2.2.1.3 Constitutive Equations

The constitutive equation describes the connection between static and kinematic quantities,
thus between stress and strains. The energetically conjugate quality for the Green-Lagrange
(GL) strain tensor E is the symmetric second Piola-Kirchhoff (PK2) stress tensor S.

GL strain tensor and PK2 stress tensor are used to compute the internal energy of a
deformed body. The property of orthogonality of the co- and contravariant metrics are used
to ensure that the internal energy is independent of the used metric: the strain tensor is based
on the covariant, while the stress tensor is based on the contravariant basis. The PK2 stress
tensor is based in the reference configuration and has no physical meaning. A measurement
for the real physical stress is the symmetric Cauchy stress tensor σ:

σ = σijgi ⊗ gi (2.13)

With the use of the deformation gradient, the PK2 stress tensor can be transformed into the
Cauchy stress tensor and vice versa:

σ = (detF)−1F S FT S = detF F−1σF−T (2.14)

In the scope of this work, large deformations with small strains are analyzed. The St.
Venant-Kirchhoff material law is used, which is a generalization of the linear elastic Hooke’s
material law for large rotations [BLM00]. Using the strain energy density W int(E), the con-
stitutive relation can be formulated as:

S =
∂Wint(E)

∂E
(2.15)

The fourth order elasticity tensor C is derived by linearizing the constitutive relation:

C =
∂S
∂E

with C = CijklGi ⊗ Gj ⊗ Gk ⊗ Gl (2.16)

and describes a linear relation between the GL strain tensor E and the PK2 S stress tensor:

S = C : E with Sij = CijklEkl (2.17)

The general elasticity tensor has 34 = 81 independent coefficients, which can be reduced to
36 due to the symmetry of the PK2 stress and GL strain tensors. For an isotropic material,
two parameters are sufficient to describe the material properties. In a mathematical con-
text usually the Lamé constants λ and μ are used, while in an engineering context Young’s
modulus E and Poisson’s ratio ν are applied.

λ =
Eν

(1 + ν)(1 − 2ν)
μ =

E
2(1 + ν)

(2.18)

Using the Lamé constants, the components of the elasticity tensor for an isotropic material
can be determined by:

Cijkl = λGijGkl + μ[GikGjl + GilGkj] (2.19)
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2.2.1.4 Equilibrium Conditions

Within this work, no velocity dependent physical damping is considered. The momentum
balance principle states that inner forces, inertia forces, external forces, and body forces
acting on a body and its surface have to be in equilibrium. In the current configuration, this
equilibrium is expressed in eq. 2.20, which is known as Cauchy’s firsts equation of motion.
A detailed derivation can be found in [Hol00].∫

Ω
(∇ · σ + b − ρd̈)dΩ = 0 (2.20)

In the reference configuration, the momentum balance principle is formulated as:∫
Ω0

(∇ · P + B − ρ0d̈)dΩ0 = 0 (2.21)

B and b are vectors of body forces per volume unit, acting in the reference and current
configuration respectively. The acceleration field d̈ is the second derivative of the displace-
ment field with respect to time. P is the first Piola Kirchhoff (PK1) stress tensor, which is
asymmetric and defined in both, the current and the reference configuration. Therefore, it is
advantageous to exchange it for the PK2 stress tensor using eq. 2.22.

P = F S (2.22)

The equation of motion expressed with the PK2 stress tensor is the following:∫
Ω0

(∇ · (F S) + B − ρ0d̈)dΩ0 = 0 (2.23)

Since the equation of motion has to be fulfilled for every domain Ω0 it can be transferred
into a local perspective:

∇ · (F S) + B − ρ0d̈ = 0 (2.24)

Together with appropriate initial conditions and boundary conditions, eq. 2.12, eq. 2.17,
and eq. 2.24 present the strong form of the elastic dynamic boundary value problem in mate-
rial description. It is a system of nonlinear coupled hyperbolic partial differential equations.
The initial conditions describe position, state of deformation, and state of motion at the ini-
tial point in time. Therefore, the displacement field d = d0 and the velocity field ḋ = ḋ0 are
to be prescribed at time t = t0 for the whole domain Ω0 .

The boundary conditions on the body surface Γ consist of the Dirichlet boundary condi-
tion ΓD, which specifies a prescribed deformation d̂ of the boundary surface and the Neu-
mann boundary condition ΓN, which specifies a prescribed force vector T̂N on the boundary.

d = d̂ for ΓD ∀ t ∈ [t0, T]
T = T̂N for ΓN ∀ t ∈ [t0, T]

(2.25)

At a specific point of the boundary for a specific degree of freedom, either a Dirichlet or a
Neumann boundary condition can be prescribed:

ΓN ∩ ΓD = 0 with Γ = ΓN ∪ ΓD (2.26)
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2.2.1.5 The Weak Form - the Principle of Virtual Work

For two- or three-dimensional problems, an exact solution of elastic dynamic boundary
value problem is in general not possible. In the scope of this work, the well established
Finite Element Method is used to solve problems of structural mechanics.

The Finite Element Method is based on variational principles and provides a solution
technique in which selected field equations and selected boundary conditions are satisfied
in integral form. In contrast to the original differential equation, in the integral formulation
the requirements for differentiability of the solution functions are weaker. Therefore, the
integral form is referred to as the weak form, whereas the original differential equation is
referred to as the strong form of the problem.

The most basic and common variational principle is the principle of virtual work. It is
the basis of standard Galerkin finite element models. Using the principle of virtual work,
the equilibrium condition and the traction boundary conditions are not exactly satisfied but
are approximated in an integral sense. The kinematic equation and the material law are
represented exactly.

To derive the principle of virtual work, the first Cauchy equation of motion and the
Neumann boundary conditions are multiplied by an arbitrary test function and integrated
over the volume of the domain Ω0 [Bat02],[BLM00],[Hug00]. The test function is chosen as
a variation of the displacement field δd. This virtual displacement field can be arbitrary but
has to be compatible to the Dirichlet boundary conditions. By multiplication of the equation
of motion and the Neumann boundary conditions with a virtual displacement field, the
existence of a virtual work is assumed. In a state of equilibrium, the virtual work δW, that is
performed by the internal and external forces of the system due to the virtual displacement
field shall be zero.

δW = δWdyn + δWint − δWext = 0 (2.27)

The virtual work δW can be separated in contributions due to inertia forces δWdyn, internal
forces δWint, and external forces δWext.

δWdyn =
∫

Ω0

ρ0d̈ · δd dΩ0 (2.28)

δWint =
∫

Ω0

δE : S dΩ0 (2.29)

δWext =
∫

Γ0

T̂ · δd dΓ0 +
∫

Ω0

ρ0B · δd dΩ0 (2.30)

Equation 2.29 contains the expression of virtual strain δE. δE is related to the virtual dis-
placement δd by the following relations:

δE =
1
2
(δFT · F + FT · δF) (2.31)

with

F = I +
∂d
∂X

and δF =
∂(δd)

∂X
(2.32)
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Inserting eq. 2.28, eq. 2.29, eq. 2.30 into eq. 2.27, the weak form of the boundary value
problem of nonlinear elastic dynamics based on the principle of the virtual work is formu-
lated:

δW =
∫

Ω0

ρ0d̈ · δd dΩ0 +
∫

Ω0

δE : S dΩ0 −
∫

Γ0

T̂ · δd dΓ0 −
∫

Ω0

ρ0B · δd dΩ0 = 0 (2.33)

The principle of virtual work is equivalent to the field equations (eq. 2.12, eg. 2.17, and
eq. 2.24), as long as the same function spaces are used to solve both system of equations. For
the derivation of the principle of virtual work, only the variation of the displacement is per-
formed. There is a practically infinite multitude of alternative variational formulations, con-
taining all possible combinations of weak and strong satisfaction of the field equations and
boundary conditions, as well as additional variants that can be obtained by weighted combi-
nations of these basic principles ("parameterized variational principles") [Bis03]. Next to the
principle of virtual displacement the most important principles are the Hellinger-Reissner
principle and the Hu-Washizu principle. Table 2.1 gives a brief comparison between the
most important variational principles in context of the finite element method.

principle variables
Euler-Lagrange equations subsidiary conditions
(weakly satisfied) strongly satisfied

virtual
work

d
equilibrium

kinematic equation
material law

traction boundary conditions displacement boundary cond.

Hellinger-
Reissner

d, σ

equilibrium

material law
kinematic equation
traction boundary cond.
displacement boundary cond.

Hu-
Washizu

d, σ, ε

equilibrium
kinematic equation
material law
traction boundary cond.
displacement boundary cond.

Table 2.1: Comparison of variational principles, source: [Bis03]

2.2.2 Numerical Modeling

In order to apply the Finite Element Method, the continuous formulation of the boundary
value problem of nonlinear elasto-dynamics has to be transformed into a discretized form.
Starting from the weak form (eq. 2.33), a time and space wise discretization is conducted.
This leads to a non-linear system of equations, which can be solved conveniently in an iter-
ative manner using computer resources. The following sections introduce the fundamental
ideas and methods of space and time integration. Further information about the specific
element formulations used in the scope of this work are presented in section 2.3.1.
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2.2.2.1 Space Discretization

A continuous body B is divided into non-overlapping domains Ωe, the so-called finite ele-
ments (eq. 2.34). The quantities of the considered problem, such as displacements or stress,
are specified by element wise functions within the finite elements. Thereby, the relevant
continuous quantities are transferred to a discrete set of unknowns and thus approximated
on a local level.

B ≈ Bh =
nele⋃
e=1

Ωe (2.34)

In the following, the formulation of a basic three-dimensional brick element shall be
derived.

For a finite element Ωe, the shape functions Ni(ξ, η, μ) for all nodes i of the element are
described by the natural coordinates ξ, η, and μ as parameters. For the requirements and
effects of different sets of shape functions, see [Bat02], [Hug00], [ZTZ05]. The position vector
of the reference and the current configuration of a point can be described as:

X ≈ Xh(ξ, η, μ) =
nnod∑
i=1

Ni(ξ, η, μ) · Xi (2.35)

x ≈ xh(ξ, η, μ) =
nnod∑
i=1

Ni(ξ, η, μ) · xi (2.36)

The superscript h indicates an approximated quantity. nnod is the number of nodes within
the finite element. Assuming that the position vectors of the nodes (X i, xi) refer to the global
Cartesian base, the parameters ξ, η, μ can be identified as the coordinates θ1, θ2, θ3. The
same coordinates were used in section 2.2.1.1 for the description of the differential geometry.
Considering eq. 2.7, the displacement field can be approximated to:

d(θ1, θ2, θ3) ≈ dh(θ1, θ2, θ3) = xh(θ1, θ2, θ3)− Xh(θ1, θ2, θ3)

=
nnod∑
i=1

Ni(θ1, θ2, θ3) · (xi − Xi) (2.37)

=
nnod∑
i=1

Ni(θ1, θ2, θ3) · di

Comparing 2.35, eq. 2.36, and eq. 2.37 it becomes obvious that the same set of shape func-
tions Ni can be used to approximate both: geometry and displacements. This duality in
element formulations is known as the iso-parametric concept. As the shape functions are
time independent, velocity and acceleration can be derived in eq. 2.38 and eq. 2.39 in dis-
cretized form:

ḋh(θ1, θ2, θ3) =
nnod∑
i=1

Ni(θ1, θ2, θ3) · ḋi (2.38)

d̈h(θ1, θ2, θ3) =
nnod∑
i=1

Ni(θ1, θ2, θ3) · d̈i (2.39)
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Accordingly, with eq. 2.2 and eq. 2.3, the covariant base vectors of the discretized geometry
for reference and current configuration are:

Gh
l = Xh,l =

∂Xh

∂θl =
nnod∑
i=1

Ni(θ1, θ2, θ3),l ·Xi (2.40)

gh
l = xh,l =

∂xh

∂θl =
nnod∑
i=1

Ni(θ1, θ2, θ3),l ·xi (2.41)

Using eq. 2.40 and eq. 2.41 in combination with eq. 2.11 the discretized deformation gradient
and, via eq. 2.12, the discretized Green-Lagrange strain tensor is formulated.

The Bubnov-Galerkin method - that is applied here - uses the same interpolation concept
for real quantities of the problem as for assumed test or virtual quantities. The variation of
the displacement in the discretized form, according to eq. 2.37, is:

δdh(θ1, θ2, θ3) =
nnod∑
i=1

Ni(θ1, θ2, θ3) · δdi (2.42)

As the geometry is discretized into non-overlapping finite domains, so-called elements,
the principle of virtual work can be expressed on an element level. The integration is per-
formed numerically by applying the Gauss quadrature rule in an element wise manner.
Therefore, element based, local coordinate systems are introduced. The change of base from
the physical curvilinear coordinate system to the element wise local system has to be in-
corporated into the integration. Details about the integration procedure can be found in
[Hug00],[AM88], and [ZTZ05].

In the following, element based quantities are indicated by the superscript e. The contri-
butions of virtual work on all elements sum up to the virtual work of the whole system:

δWh = δWh
dyn + δWh

int − δWh
ext =

nele∑
e=1

δWe
dyn +

nele∑
e=1

δWe
int −

nele∑
e=1

δWe
ext (2.43)

For the discretization of the virtual work due to forces of inertia, the approximations
introduced in eq. 2.39 and eq. 2.42 are used. The contribution of one element is:

δWe
dyn =

∫
Ωe

0

ρ0 δdh · d̈h dΩe
0 (2.44)

=
∫

Ωe
0

ρ0

(nnod∑
i=1

Ni(θ1, θ2, θ3) · δdi

)⎛⎝nnod∑
j=1

Nj(θ1, θ2, θ3) · d̈j

⎞
⎠ dΩe

0 (2.45)

=
nnod∑
i=1

nnod∑
j=1

δd̄i ·
[∫

Ωe
0

ρ0 Ni(θ1, θ2, θ3) Nj(θ1, θ2, θ3) I dΩe
0

]
︸ ︷︷ ︸

me ij

· ¨̄dj (2.46)

=
nnod∑
i=1

nnod∑
j=1

δd̄i · me ij · ¨̄dj (2.47)
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2.2 Fundamentals of Structural Analysis

Summarizing the nodal degrees of freedom within one element to a vector d̄e, the mass
matrix of an element can be correspondingly expressed as me. Using this notation, the con-
tribution of the forces of inertia to the virtual work can be written as:

δWe
dyn = δd̄eT

me ¨̄d e (2.48)

For distributed, non-constant external loading on the boundary, the consistent nodal
load vector is derived by integration of the load over the element surface using the shape
function. In the following, it is assumed, that external loads and body forces are indepen-
dent of the deformation of the structure: T̂h,d = 0 and Bh,d = 0 [MWBR99].

δWe
ext =

∫
Γe

0

T̂ · δdh dΓe
0 +

∫
Ωe

0

ρ0 B · δdh dΩe
0 (2.49)

=
∫

Γe
0

T̂ ·
(nnod∑

i=1

Ni(θ1, θ2, θ3) · δd̄i

)
dΓe

0 +

∫
Ωe

0

ρ0 B ·
(nnod∑

i=1

Ni(θ1, θ2, θ3) · δd̄i

)
dΩe

0 (2.50)

=
nnod∑
i=1

δd̄i ·
[∫

Γe
0

T̂ · Ni(θ1, θ2, θ3) dΓe
0 +

∫
Ωe

0

ρ0 B · Ni(θ1, θ2, θ3) dΩe
0

]
(2.51)

=
nnod∑
i=1

δd̄i · re i
ext (2.52)

Integrating the contribution of the consistent nodal load vectors r e i
ext the load vector re

ext is
derived, which corresponds to the vector of unknown displacements d̄e of the problem.
Assuming a time dependent load, the element load vector is r e

ext(t). The discretized form of
the virtual work due to time dependent external loading can be written as:

δWe
ext = δd̄ere

ext(t) (2.53)

The contribution of the internal forces is more difficult to be discretized due to the non-
linearity of the Green-Lagrange strain tensor E(d̄) with respect to displacements d̄. The
variation of the Green-Lagrange strain tensor is derived in a discretized form, using d̄e as a
vector of the unknown displacements:

∂Eh(d̄)
∂d̄e

δd̄e = Eh,d̄e δd̄e (2.54)

Using this, the contribution of the internal forces can be transformed to:

δWe
int =

∫
Ωe

0

Sh : δEh dΩe
0 =

∫
Ωe

0

Sh : Eh,d̄e δd̄e dΩe
0 (2.55)

= δd̄e[
∫

Ωe
0

Sh : Eh,d̄e dΩe
0] =

nnod∑
i=1

δd̄e
i · re i

int(d̄) = δd̄e · re
int(d̄) (2.56)

Summarizing the contributions of virtual work for one element, the spacial discretized
equation of motion is derived.

δWe = δWe
dyn + δWe

int − δWe
ext = δd̄e · [me ¨̄d

e
+ re

int(d̄) − re
ext] = 0 (2.57)
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CHAPTER 2 STRUCTURAL MODELING OF LIGHT-WEIGHT STRUCTURES

The virtual work for the whole system is deduced by assembling the contributions from
each element according to 2.43:

δW = δWdyn + δWint − δWext = δd̄ · [M ¨̄d + rint(d̄) − rext] = 0 (2.58)

Correspondingly, M resembles the mass matrix of the system, which has to be computed
only once due to the Lagrangian formulation. The vector d̄ contains all unknown degrees of
freedom of the system. As well as its variation, the size and location of d̄ and its variation
δd̄ have to comply with the Dirichlet boundary conditions.

Applying the fundamental lemma of variational calculus, the spacial discretized, non-
linear differential equation and the initial conditions are derived:

M ¨̄d + rint(d̄) = rext
¨̄d(t = t0) = ¨̄d0, d̄(t = t0) = d̄0 (2.59)

2.2.2.2 Time Discretization

After the spacial discretization in finite elements, eq. 2.59 states the semi-discrete problem.
As the next step, time discretization is performed. The continuous time period [t 0, T] is
divided into nt time steps of equal length Δt. The system quantities are not regarded as time
wise continuous anymore, but as defined at discrete points in time tn:

tn = t0 + Δt n with n ∈ [0, nt] (2.60)

In a time integration scheme the system quantities at the end of the new time step t n+1 are
computed based on those at the the end of the previous time-steps t n, tn−1, tn−2, etc. Time
integration schemes can be classified into one-step and multi-step schemes, depending on
the number of previous time steps used to derive the values for the new time step.

In explicit time integration schemes, the dynamic equilibrium based on the equation of
motion is computed at the beginning of the time step. For implicit time integration schemes,
the equilibrium is considered at the end of the time step. In an implicit scheme, the state of
motion at the end of a time step depends on itself. Thus, for each time-step a system of
equations has to be solved.

For the solution of problems concerning structural dynamics, implicit and explicit one-
step time integration schemes have proven to be especially well suited . In the simulation
of light-weight structures under wind loading, modes with relatively low frequencies are
expected. Therefore, considerably large time step lengths are sufficient to capture the phys-
ically relevant responses. For the applicable time step length, stability issues of the time
integration scheme have to be considered. A time integration scheme is called uncondition-
ally stable, if the stability of the method does not depend on the time step length. Usually,
explicit time integration methods are only conditionally stable. For linear structural behav-
ior, established methods based on the Newmark scheme show an unconditionally stable
behavior [Bel83], [Hug00]. For the non-linear structural behavior, unconditionally stable
time integration schemes are still a topic of ongoing research .
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2.2 Fundamentals of Structural Analysis

Within this work, small numerical dissipation is applied to ensure the stability of the
time integration scheme. Since this proved to be sufficient more elaborate energy conserving
schemes could be omitted. Numerical dissipation occurs if the time integration scheme
causes an error in computing the amplitude of a dynamic response. This effect is welcome in
reducing the nonphysical so-called spurious higher frequency modes that are likely to occur
in time integration methods for Finite Element Methods [Hug00]. For the lower frequency
modes, which are of interest for the accuracy of the analysis, the influence of numerical
dissipation has to be restricted.

In the scope of this work, the Generalized-α time integration scheme is used [CH93],
[Cri97], [Hul04]. Thereby, it is possible to control the dissipation on the spurious higher
frequency modes and to minimize the dissipation in the lower frequency modes. Compared
to the Newmark method [New59], the Generalized-α time integration scheme’s advantage
is to maintain second order accuracy, providing that the relevant parameters are chosen in
an appropriate way.

As in the Newmark scheme, displacements dn+1 and the velocity ḋn+1 at the end of time
step Δt = tn+1 − tn can be approximated to:

dn+1 = dn + Δt ḋn + Δt2
((

1
2
− β

)
d̈n + β d̈n+1

)
(2.61)

ḋn+1 = ḋn + Δt
(
(1 − γ) d̈n + γd̈n+1

)
(2.62)

β and γ are the so-called Newmark parameters. Using the displacements dn+1 as primary
variable, velocity ḋn+1 and acceleration d̈n+1 can be found by transforming eq. 2.61 and
eq. 2.62 to:

ḋn+1 =
γ

βΔt
(dn+1 − dn)− γ − β

β
ḋn − γ − 2β

2β
Δtd̈n (2.63)

d̈n+1 =
1

βΔt2 (dn+1 − dn) − 1
βΔt

ḋn − 1 − 2β

2β
d̈n (2.64)

For the Generalized-α method, two additional shift parameters αm and α f are introduced.
In the time interval [tn, tn+1], αm and α f are applied for interpolation:

d̈α = (1 − αm)d̈n+1 + αm d̈n (2.65)

ḋα = (1 − α f )ḋn+1 + α f ḋn (2.66)

rint
α = (1 − α f )rint

n+1 + α f rint
n (2.67)

rext
α = (1 − α f )rext

n+1 + α f rext
n (2.68)

Inserting eq. 2.61 and eq. 2.62 as well as eq. 2.65 - 2.68 into the semi-discrete equation of
motion eq. 2.59, the dynamic equilibrium can be formulated as:

1−αm
βΔt2 Md̄n+1 + (1 − α f )rint

n+1 = (1 − α f )rext
n+1 + α f rext

n − α f rint
n +

M
[

1−αm
βΔt2 d̄n + 1−αm

βΔt
˙̄dn +

(
1−αm

2β − 1
)

¨̄dn

]
(2.69)

21



CHAPTER 2 STRUCTURAL MODELING OF LIGHT-WEIGHT STRUCTURES

By the choice of the Newmark parameters β and γ and the interpolation parameters αm and
α f , the degree of numerical dissipation is controlled. Depending on the spectral radius ρ∞,
the four parameters can be determined as:

αm =
2ρ∞ − 1
ρ∞ + 1

α f =
ρ∞

ρ∞ + 1
β =

1
4
(1 − αm + α f )2 γ =

1
2
− αm + α f (2.70)

For the high frequency range, the numerical dissipation can be evaluated by the spectral ra-
dius ρ∞ ∈ [0, 1]. For ρ∞ = 1 no numerical dissipation is applied, but the computation might
face instable behavior for nonlinear problems. A choice of ρ∞ in the range of [0.85, 0.95] in-
troduces a numerical damping in the high frequency modes, which proved to be sufficient
for the examples presented in the scope of this work. However, this method requires the
time step to be small enough, so that relevant physical modes are not regarded as spurious
and subject to numerical dissipation.

2.2.2.3 Linearization

For the linearization of the problem, eq. 2.69 is transformed into a residual form:

R
(
d̄n+1

)
=

1 − αm

βΔt2 Md̄n+1 + (1 − α f )rint (d̄n+1
)− (1 − α f )rext

n+1 −

α f r
ext
n + α f r

int (d̄n
)− M

[
1 − αm

βΔt2 d̄n +
1 − αm

βΔt
˙̄dn +

(
1 − αm

2β
− 1

)
¨̄dn

]
= 0 (2.71)

The solution is computed by a Newton-Raphson iteration [Cri91]. For the iteration, a
new index k is introduced, which describes the number of the current iteration. For a specific
time step n + 1, starting from the last computed residuum vector R( d̄k), the new residuum
vector R(d̄k+1) shall be computed. For the linearization the Taylor-series is used:

R(d̄k+1
n+1) = R(d̄k

n+1) +
∂R(d̄k

n+1)
∂d̄n+1

Δd̄k+1
n+1 +O

((
Δd̄k+1

n+1

)2
)

= 0 (2.72)

with Δd̄k+1
n+1 = d̄k+1

n+1 − d̄k
n+1 (2.73)

By truncating the Taylor-series after the linear term, a linear system of equations is deduced:

∂R(d̄k
n+1)

∂d̄n+1
Δd̄k+1

n+1 = −R(d̄k
n+1) (2.74)

Inserting eq. 2.71 into eq. 2.74, the following equation is derived:⎡
⎢⎢⎢⎣1 − αm

βΔt2 M + (1 − α f )
∂rint

(
d̄k

n+1

)
∂d̄n+1︸ ︷︷ ︸

KT

⎤
⎥⎥⎥⎦Δd̄k+1

n+1 =

−1 − αm

βΔt2 Md̄k
n+1 − (1 − α f )rint

(
d̄k

n+1

)
+ (1 − α f )rext

n+1 (2.75)

−α f r
ext
n + α f r

int (d̄n
)
+ M

[
1 − αm

βΔt2 d̄n +
1 − αm

βΔt
˙̄dn +

(
1 − αm

2β
− 1

)
¨̄dn

]
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KT(d̄k
n+1) is the tangential stiffness matrix after time step n + 1 and iteration step k. The

term in brackets on the left side of eq. 2.75 can be identified as the effective stiffness matrix
Ke f f

T

Ke f f
T (d̄k

n+1) =
[

1 − αm

βΔt2 M + (1 − α f )KT

(
d̄k

n+1

)]
(2.76)

and the term on the right side of eq. 2.75

re f f (d̄k
n+1, d̄n) = −1 − αm

βΔt2 Md̄k
n+1 − (1 − α f )rint

(
d̄k

n+1

)
+ (1 − α f )rext

n+1+

α f r
ext
n + α f r

int (d̄n
)
+ M

[
1 − αm

βΔt2 d̄n +
1 − αm

βΔt
˙̄dn +

(
1 − αm

2β
− 1

)
¨̄dn

]
(2.77)

as the effective load vector. Using efficient stiffness and efficient load vector, the linearized
nonlinear elastic problem is stated as:

Ke f f
T (d̄k

n+1) Δd̄k+1
n+1 = re f f (d̄k

n+1, d̄n) (2.78)

Equation 2.78 is solved for Δd̄k+1
n+1. The solution is used to update d̄k

n+1 by applying eq. 2.73.
For a converged solution it holds: d̄k+1

n+1 ≈ d̄k
n+1. Using a good initial predictor for this

Newton scheme, quadratic convergence can be reached. Velocity ˙̄dn and acceleration ¨̄dn at
the beginning and end of a time step are derived based on eq. 2.61 and 2.62.

2.3 Modeling of Membrane Structures

2.3.1 Numerical Analysis of Structural Behavior of Membrane Structures

Membrane structures are classified as surface structures, since their ratio of thickness h
to span L is usually h/L << 1. Each material point on the surface can be identified by
two Gaussian surface parameters θ1 and θ2 at a certain time t in the current configuration
x(θ1, θ2) and in the reference configuration X(θ1, θ2). Using these properties, the equations
derived in section 2.2.1 can be simplified by an early semi-discretization in thickness di-
rection θ3 [Bis99], while the other dimensions stay continuous. Furthermore, based on the
spatial load carrying behavior of membranes, the following assumptions are introduced:

� The thickness of the membrane is considered as constant and comparably thin. In
accordance with the behavior of available membrane material the Poisson effect in
thickness direction is neglected.

� Normal stress is constant over the thickness.

� Only normal and in-plane shear stresses are acting in the mid plane. All stress and
strain components with respect to the thickness direction are zero.

23



CHAPTER 2 STRUCTURAL MODELING OF LIGHT-WEIGHT STRUCTURES

Due to the ’in advance’ discretization in thickness direction, the element wise contributions
of virtual work in the spatially fully discretized system can be simplified for eq .2.44, eq. 2.49,
and eq. 2.55 to:

δWe
dyn = h

∫
Ae

0

ρ0 δdh · d̈h dAe
0 (2.79)

δWe
ext =

∫
Γe

0

T̂ · δdh dΓe
0 + h

∫
Ae

0

ρ0 B · δdh dAe
0 (2.80)

δWe
int = h

∫
Ae

0

δEh : Sh dAe
0 (2.81)

Ae
0 is the area of a finite surface element in initial configuration. With spatial discretiza-

tion for all dimensions at a certain point in time t, the displacement d(θ1, θ2) = x(θ1, θ2) −
X(θ1, θ2) and the virtual displacement δd(θ1, θ2) for a material point can be approximated
as:

d(θ1, θ2) =
nnod∑
i=1

Ni(θ1, θ2) · d̄i (2.82)

δd(θ1, θ2) =
nnod∑
i=1

Ni(θ1, θ2) · δd̄i (2.83)

This holds for the time derivative of the displacement vector δd(θ1, θ2), the velocity vector
δḋ(θ1, θ2), and the acceleration vector δd̈(θ1, θ2), respectively.

All stress components normal to the surface are zero, i.e.:

Si3 = S3i = 0 and σi3 = σ3i = 0 (2.84)

The strain state can be derived via the strain tensor of the mid surface:

E =
1
2
(gαβ − Gαβ)Gα ⊗ Gβ (2.85)

The artificially imposed prestress is taken into account as a residual stress added to the
elastic stress in the reference configuration. The resulting PK2 stress tensor S in reference
configuration is the sum of the prestress tensor S pre and the elastic stress tensor Sel:

S = Spre + Sel = Spre + C : E (2.86)

For the usage of foils, an isotropic material behavior can be assumed. Accordingly, the
components of the material tensor C can be derived as:

Cαβγδ = λGαβGγδ + μ(GαγGβδ + GαδGβγ) (2.87)

with λ =
2λμ

λ + 2μ
=

Eν

1 − ν2 and μ =
E

2(1 + ν)
(2.88)

Fabrics initially show an anisotropic, mainly orthotropic behavior in the perpendicular di-
rections of warp and weft. Furthermore, fabrics feature non-elastic, time and load history
dependent properties [FM04]. For detailed information about the derivation of the material
tensor for fabrics, see for example [MR95], [Rai03].
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The procedures for time discretization and the linearization of membrane and cable ele-
ments are derived according to those presented in section 2.2.2.2 and section 2.2.2.3.

For the discretization of edge cables, a cable element formulation can be derived by
introducing a second early spatial discretization. All stress components perpendicular to
the cable axis vanish and the cross section features a constant stress distribution. For a
detailed derivation of this element type, see [WB05], [Wüc07].

2.3.2 Form Finding

Already in their initial state, membrane structures are subject to dead load and prestress.
As explained above, the geometry of the structure has to ensure an equilibrium of internal
membrane forces (including those due to prestress) and loadings. Therefore, the initial ge-
ometry of a membrane structure cannot be easily derived, but is the result of experimental
or numerical analysis. The resulting shape resembles a free form surface, which generally
cannot be generated by analytical methods.

The procedure of deriving the initial shape of a membrane structure is called form find-
ing. As the form finding procedure is an both essential and a challenging task in the design
of membrane structures, fundamental equations and solution methods are introduced in the
following sections.

In a classical structural analysis, deformation and stress of a structure are computed
based on the known geometry, the known load conditions, and material parameters. In
contrast, the aim of a form finding procedure is to find a geometry for which a certain inter-
nal stress state and, in case, an external loading state, are in equilibrium. Additionally, the
geometry has to satisfy prescribed geometric boundary conditions. As the geometry is the
unknown while the internal and external stress distributions are prescribed, form finding
can be identified as an inverse problem.

In experimental approaches, small scale models are used to simulate a certain stress
distribution in a flexible material and to record the resulting shapes. If a shape satisfies
all requirements, it is upscaled and used as initial geometry for further design processes.
Rubber, thin fabrics, or soap films are used as materials in the small scale models.

In a numerical approach, the inverse problem of form finding is solved by computations.
An arbitrary initial geometry, which satisfies the geometric boundary conditions, such as
placement and type of supports, is chosen. This geometry serves as a known reference
configuration (see fig. 2.5(a) ). The aim is to derive a new geometry as current configuration,
which is in equilibrium for a prescribed prestress state (see fig. 2.5(b) ). In the following
section, the problematic and solution strategies for a numerical form finding are introduced.

2.3.2.1 Numerical Form Finding

In the following a mechanically prestressed structure is assumed. For form finding consid-
erations, the low self-weight of the membrane itself has little influence on the result com-
pared to the prestress. Therefore, it is neglected as well as all external loads. Performing the
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Top view

Isoparametric view

(a) Arbitrary initial shape (reference configura-
tion)

Top view

Isoparametric view

(b) Resulting equilibrium shape (current
configuration)

Figure 2.5: form finding computation

form finding procedure without any loading but prestress, the geometry of the membrane
solemnly depends on the distribution of membrane prestress and, in case, the ratio to pre-
stress of edge cables. In the design process this fact is utilized. Firstly, the distribution of
prestress in the different structural elements is adjusted to derive an acceptable shape. Sec-
ondly, while keeping the prestress distribution constant, the level of the prestress is adjusted
according to further requirements, such as the capability to withstand design loads.

The state of equilibrium of the internal forces in the membrane can be described by the
principle of virtual work in the integral (weak) sense:

δWσ = h
∫

a
σ : δd,x da = 0 (2.89)

This resembles the state of equilibrium in the current configuration x, with σ as the Cauchy
stress tensor and a as the area of the membrane surface. The displacement vector d describes
the change of geometry from reference to current configuration, from the assumed initial
geometry to the aspired "geometry of equilibrium". d,x is the derivative of the displacement
vector with respect to the current configuration.

The state of equilibrium can be described in the reference configuration X equivalently:

δWS = h
∫

A
(F · S) : δF dA = 0 (2.90)

with S as the second Piola-Kirchhoff stress tensor and A as the area of the membrane surface
in reference configuration. The deformation gradient F connects the reference configuration
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to the current configuration:
dx = F · dX (2.91)

Using the deformation gradient together with further rearrangement [WB05], the principle
of virtual work in the current configuration can be transformed to:

δWσ = h
∫

A
detF (σ · F−T) : δF dA = 0 (2.92)

In the general case, no analytical solution is possible. The Finite Element Method is used
to solve the problem in a point wise manner for a discretized geometry. The translational
degrees of freedom of the nodes of the finite element mesh are chosen as variables. Using
the iso-parametric concept, the discretized geometry xh(θ1, θ2) and displacement dh(θ1, θ2)
of the structure are approximated based on the position of the nodes of the finite element
mesh via the shape functions:

xh(θ1, θ2) =
nnod∑
k=1

Nk(θ1, θ2) · xk (2.93)

dh(θ1, θ2) =
nnod∑
k=1

Nk(θ1, θ2) · d̄k (2.94)

In a Cartesian coordinate system with orthogonal basis ei, the position xk and displacement
d̄k of a node k can be determined by the their coefficients xi

k and di
k:

xk = x1
ke1 + x2

ke2 + x3
ke3 (2.95)

d̄k = d1
ke1 + d2

ke2 + d3
ke3 (2.96)

The unknown coefficients of the nodal displacements di
k are identified as unknowns of the

form finding computation. They are summarized into a vector b of size ndof, whose com-
ponents br resemble the r-th degree of freedom of the discretized problem. Using the fun-
damental lemma of variational calculus and the vector of unknowns br, the following non-
linear system of equations with ndof equations can be derived:

∂Wσ

∂br
= h

∫
A

detF (σ · F−T) :
∂F
∂br

dA = 0 ∀ r ∈ [1, ndof] (2.97)

For the linearization of eq. 2.97 similar procedures to those described in section 2.2.2.1 are
applied for the membrane and cable elements introduced in section 2.3.1 [WB05]. Following
the common procedure of geometrically nonlinear structural analysis, a direct solution via
an iterative Newton-Raphson iteration seems to be possible.

2.3.2.2 Solving the Inverse Problem

Typically, inverse problems are ill posed in contrast to well posed problems, where a known
physical situation is modeled. According to the French mathematician Jacques Hadamard
(*1865, †1963), a well posed problem is defined by the properties of existence, uniqueness
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and stability of its solution. Ill-posed problems usually need to be re-formulated for nu-
merical treatment. Typically this involves including additional assumptions. This process is
known as regularization.

Form finding is an ill-posed problem. Especially the non-uniqueness of the solution can
be easily explained: An identical surface can be approximated by different sets of nodal co-
ordinates for a finite element discretization (fig. 2.6). This is due to the fact that except for
the nodes at the edge, the FE-based nodes can move tangentially to the surface without this
movement causing any strain energy. Therefore, the stiffness matrix of the system is singu-
lar for tangential movements within the membrane surface. Thus, eq. 2.97 is not solvable in
a standard computation. A restriction of the degrees of freedom for the form finding compu-

(a) Isometric view. (b) Solution 1 (Top view).

(c) Solution 2 (Top view). (d) Solution 3 (Top view). (e) Solution 4 (Top view).

Figure 2.6: Multiple valid solutions for a form finding problem.

tation to those perpendicular to the membrane surface would enable a simple solution, but
is not applicable [Wüc07], since e.g. for flexible cable support, the possibility of tangential
movements is necessary for a realistic physical modeling.

Several methods have been developed to overcome the difficulties of the inverse form
finding problem. In the following, the basic ideas of the most common methods are pre-
sented:

� Modified linearization of the problem

For the Newton-Raphson type iterative solution of the discretized problem, a not con-
sistently derived, non-singular stiffness matrix is used to approximate the problem
[HP72], [AAB74].
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� Dynamic Relaxation

Applying dynamic relaxation, the steady-state form finding problem is transferred
into a dynamic problem by adding inertia and damping effects to the system. Thereby,
the initially ill-posed problem becomes well-posed. The process of form finding is
modeled as decay of an oscillation. The quiescent state serves as resulting geometry
of the form finding computation [Bar75], [Bar99].

� Homotopy methods

General mathematical methods to approach a solution of a singular problem are meth-
ods of numerical continuation , also called homotopy methods [Ble97]. A homotopy
is a continuous transformation of one function into another. The basic idea to use ho-
motopy in form finding is to modify the originally singular problem by a related well
defined one, which fades out as the solution is approached. As an example, a singular
problem f (x) = 0 is modified by a non-singular problem g(x) = 0 to the homotopy
h(x) = 0 with the homotopy factor λ ∈ [0; 1]:

h(x) = λ f (x) + (1 − λ)g(x) = 0 (2.98)

The solution of h(x) = 0 approaches the solution of f (x) = 0 for λ approaching 1. The
method is more successful as the function g(x) = 0 is closer to the original function
f (x) = 0. Applied to the problem of form finding, the original singular function is
the formulation of virtual work in the current configuration: δWσ = 0. The related
non-singular function is the formulation of virtual work in the reference configuration
with prescribed PK2 stress: δWS = 0.

δWλ = λδWσ + (1 − λ)δWS

= λh
∫

A
detF (σ · F−T) : δF dA + (1 − λ)h

∫
A

(F · S) : δF dA = 0 (2.99)

The stabilizing effect of δWS is due to the constant and known reference configuration,
for which the PK2 stress is prescribed. By increasing λ form 0 to 1 until the solution
fails, the geometry derived by the modified problem can be taken as an approximate
solution of the original problem. The closer the homotopy factor λ is to 1, the closer
the solution of the modified problem is to the solution of the original problem.

Another important property of eq. 2.99 is that the closer the reference configuration is
to the current configuration, the better the stabilization term δWS describes the original
problem. This property is used in the Updated Reference Strategy.

– Updated Reference Strategy (URS)

The Updated Reference Strategy was developed by Bletzinger [Ble98], [BR99]
and uses homotopy introduced above in an iterative manner. The solution of
the modified problem (eq. 2.99) is used as reference configuration for the next
iteration step. For each iteration step, the desired Cauchy stress σ and second
Piola-Kirchhoff stress S are newly prescribed. The update of the reference con-
figuration by the solution of the modified problem gave name to the Updated
Reference Strategy.
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With each iteration step, the difference between reference and current configura-
tion decreases and the stabilization term δWS more accurately describes the orig-
inal problem. Convergence is reached, if the difference between reference and
the current configuration is smaller than a certain threshold. For this solution,
σ = S and the solution of the modified problem is identical to the solution of the
original problem.
The convergence is independent of the value of the homotopy factor λ, as long
as λ is small enough to enable the solution of the modified problem. For a small
homotopy factor, the solution procedure is more robust but needs more iterations.
For a larger choice of λ, less iteration steps are needed, as long as the solution of
the modified problem is possible. In order to increase the performance of the
form finding procedure, λ can be increased during the computation.

– Force Density Method

Initially, the Force Density Method was developed for the design of cable net con-
structions for the Olympic Stadium in Munich, Germany [GMSS00]. Meanwhile
it has been extended for the application of membrane structures [MM98]. The
singular original problem is modified by assuming a constant force density. With
this modification, the problem is well-posed and can be solved. In an iterative
manner, the solution is used as a new reference configuration [Lin99b], [Lin99a].
The force density can be interpreted as a constant PK2 stress. Accordingly, the
Force Density Method is a special form of the URS for λ = 0. Only the stabiliza-
tion term δWS = 0 is solved as the modified problem. Therefore, the force density
method appears to be a consistent part of the more general URS.

2.4 Example: ARIES Mobile Canopy Shelter

In the following, the structural model of the mobile canopy structure ARIES, introduced
in section 1.1, shall be created. The aim is to create a structural model that can be used
in further analysis with respect to wind loadings. The membrane of the ARIES structure
is prestressed, which imposes prestress on the hole structure. Therefore, the setup of the
structural model is not trivial and has to incorporate form finding and non-linear analysis.

2.4.1 Initial Considerations

The canopy structure gains its stiffness from the anticlastic prestressed membrane, which
is supported by two cantilevers. The prestress is induced into the membrane and the can-
tilevers by cables at the lower and upper edges of the membrane and the vertical tie-down
cable attached to the membrane. The placement of the vertical tie-down cable causes the
cone like shape at the front of the membrane. The cantilever beams consist of sections of
aluminum trusses and are supported by a pivoting connection at the rear of the grandstand.
The cantilevers are interconnected by tubular aluminum purlins. [BG05]

Large displacements of the membrane and the cantilever beams are to be expected.
Therefore, the numerical model of ARIES has to take into account non-linear kinematics.
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2.4 Example: ARIES Mobile Canopy Shelter

This necessitates a geometrically non-linear analysis. As only small to moderate strains and
stresses are expected, a linear elastic material law is applied.

Inherent to geometrically non-linear structural analysis is the load-path dependency of
the solution: for multiple load states, the structural deformation and stress state depend on
the order in which the load states are applied. Thus, a load superposition is not sufficient
for the consideration of multiple load cases. The application of prestress by tensing the
respective cables, can be interpreted as an initial load case "prestress". The aim is to find a
prestressed shape for the membrane with a uniform stress distribution. This is achieved by
a form finding computation.

The setup of an exact prestressed structural model of the ARIES prototype requires de-
tailed information about geometry and stress states. From literature by Gengnagel et al.
[Gen05, Gen04],[BG05], and [DB04], the shape of the structure and the dimensions of parts of
the structure are known. Detailed data about the initial stress state of the prestressed struc-
tural members, in general, and the membrane, in particular, is limited. Therefore, within
this work, the ARIES structural model cannot represent the actual ARIES prototype exactly.
However, the shape of the membrane resembles the prototype closely, so that later compar-
isons with results from wind tunnel experiments for this particular membrane shape are
possible.

2.4.2 Form Finding Computation

The geometry and topology of the cantilever structures is taken from the original ARIES
prototype structure. The lattice structures are modeled by truss elements only. Details can
be seen in fig. 2.7, which shows the structural model without the membrane and the edge
cables.

During the form finding computations for the membrane and edge cables, the cantilever
beams are modeled as flexible and are subject to geometrically non-linear analysis. This
is an important feature, as by prestressing the membrane in the form finding procedure,
the supporting cantilever beams are stressed as well. The prestress of the cantilever beams
has to be included in the model to enable a state of force equilibrium in the initial state for
further computations. Furthermore, as the cantilever beams change their geometry due to
the prestress-loading from the membrane, the shape of the structure highly depends on the
prestress state of the cantilever beams.

For the membrane, PVC type I material with a thickness of 1 mm and a tensile yield
strength of 60 kN/m, both in warp and weft direction is used. According to DIN-EN-13782
[Nor05b], the permanent prestress of the membrane has to be limited to 5% of the yield
stress. For the PVC type I fabric, this leads to a maximum prestress of 3kN/m.

For form finding computations, the URS algorithm is used. The homotopy factor varies
linearly for iteration step 1 to 4 between 0.6 and 0.9. For further iteration steps, the homo-
topy factor equals 0.9 to ensure quicker convergence. As the prestress distribution in the
membrane of the ARIES structure is unknown, an isotropic prestress of 2 kN/m is assumed,
which is a realistic choice. The prestress of the cables at the membrane edge between the
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Figure 2.7: Non-prestresses cantilever structure without membrane.

two lattice beams is adjusted to resemble the geometry of the prototype closely. Best ap-
proximation was found for a prestress of 3.8 kN in both cables. Fig. 2.8 presents the initial
geometry for the form finding procedure, intermediate solution steps, and the converged
geometry for the prescribed prestress of 2 kN/m.

A significant difference compared to the prototype structure can be found in the tie-
down force of the vertical cable. While in the prototype, a tensile force of 5.0 kN is assumed,
by form finding, a tensile force of only 1.0 kN can be considered. This is due to the special
character of the form finding computation, which does not take into account any material
law (see section 2.3.2.1). In case the prescribed force in the vertical cable is too big to reach
equilibrium with the membrane stresses, form finding results in a boundless stretching of
the membrane.

To illustrate the process of form finding with respect to the membrane prestress, fig. 2.9
presents the von Mises stress distribution in the membrane after the first and the final form
finding step. In the final step, the URS-based form finding results in the uniform stress
distribution of 2 kN/m in the membrane and the correct shape of the front and back edge
cables.

The convergence of the shape of the structure in the form finding computation requires
a considerably large number of form finding steps. The overall shape of the membrane
seems to converge quickly, but persistent local changes in the shape cause an overall slow
convergence. 50 form finding steps are necessary to achieve sufficient convergence of the
geometry for further computations. To illustrate the convergence of the shape during form
finding, in fig. 2.10 displacement and von Mises stress of node A are plotted over the number
of form finding steps.

As presented above, the force in the vertical cable can only be considered as 1.0 kN in
the form finding computation. However, the magnitude of the tie-down force proved to be
an important variable for the load carrying behavior of the structure. To achieve a more
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(a) Initial geometry, isometric view. (b) Initial geometry, side view.

(c) Iteration step 1, side view. (d) Iteration step 4, side view.

(e) Iteration step 50, side view. (f) Iteration step 50, isometric view.

Figure 2.8: ARIES form finding

realistic load carrying behavior, the structural model is further prestressed by increasing
the tie-down force in the vertical restraint to 4.0 kN in the non-linear structural analysis.
Fig. 2.11 presents the von Mises stress distribution for the tie-down force of 4.0 kN. For
this prestress state, the maximum stress at the membrane cone exceeds the recommended
maximum prestress of 3 kN/m. Therefore, the material has to be reinforced at regions with
high stress, which is commonly achieved by the addition of another layer of membrane
material. For the following computations, it is assumed that the maximum membrane stress
is unproblematic due to this design feature.

With a combination of classical form finding computation and non-linear steady-state
structural analysis computation a realistic, prestressed structural model is derived. This
model, presented in fig. 2.12, will be used for further analysis.
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von Mises stress
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(a) von Mises stress distribution after form finding step 1.

von Mises stress
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(b) von Mises stress distribution after form finding step 50.

Figure 2.9: ARIES form finding von Mises stress distribution in the membrane

2.5 Summary

From the structural analysis point of view, the missing bending stiffness of membranes de-
mands for additional considerations for the usage in civil engineering. Large deformations
are to be expected, which necessitates the consideration of geometrically non-linear effects.
Membrane structures react with large deformations to loadings acting perpendicular to their
surface. In order to limit the deformations and increase the stiffness of the membrane, it is
usually subject to prestress. Due to the typically geometrically non-linear behavior of mem-
brane structures, a load case superposition is not possible. Therefore, the prestress has to
be treated as an initial load case. This is done in the form finding computation. The results
of the form finding computation are shape and stress state of the prestressed membrane
structure, which are used as initial configuration for further analysis.

This chapter presented the fundamentals of numerical structural analysis by the Finite
Element Method for cases of small strains and large deformations. Special emphasis lies on
the analysis of membrane structures, which includes form finding computations.

With the example of the mobile canopy structure, form finding computation is per-
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Figure 2.10: Plots of von Mises stress and deformation at node A.
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Figure 2.11: von Mises stress distribution in the membrane for a tie-down force of 4.0 kN.

formed and enhanced by an additional geometrically non-linear computation. The resulting
structural model is the basis for further analysis of the structure towards wind loadings.
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(a) Final prestressed geometry, side view.

(b) Final prestressed geometry, top view.

(c) Final prestressed geometry, isometric view.

Figure 2.12: Final prestressed geometry of ARIES structure for further computations.
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Chapter 3

Modeling of Wind Loads on
Membrane Structures

The prediction of wind effects on membrane structures is difficult due to their complex
geometry and load carrying behavior. In the first part of this chapter, methods used to
assess wind loading on membrane structures are reviewed in brief.

Within the current work, numerical fluid simulations are used to analyze the air flow
around a membrane structure and to calculate loads resulting from this air flow. Therefore,
it is necessary to discuss the fundamentals of fluid mechanics with a special focus on the
assessment of turbulence modeling, which is done in the second section.

Based on these fundamentals, the Finite Volume Method (FVM) is introduced, which
enables a numerical simulation of the fluid flow. To include the possibility of deformations
due to wind loadings, enhancements for the modeling with moving boundary conditions
are necessary.

Subsequently, the application of numerical fluid simulations in the scope of wind engi-
neering is broadly discussed. Details about the application of the finite volume method with
respect to relevant physics and boundary conditions for the simulation of air flow around a
membrane are given.

Finally, the geometry of the ARIES membrane structure, derived in section 2.4 is used in
a rigid, CFD based numerical model, to assess the mean wind load by the computation of c p

values.

3.1 Wind Loads on Membrane Structures

Wind, especially in the form of an uplift, is regularly the critical load case for membrane and
cable stresses in light-weight membrane structures [BD04].

Quasi-static approach

Assuming that no dynamic wind induced effects have to be considered for a membrane
structure and that the construction undergoes only deformations, which are small enough
to be neglected, wind load can be considered as a static load case. With this assumption,
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wind loads can be derived according to building codes, such as EN1991-1-4 [CEN05]. Here,
this approach is briefly described at the example of mean wind loads. For computing design
loads, in case, additional consideration about the peak wind loads can be necessary.

Applying EN1991-1-4, the mean wind load at a certain point on the surface of a structure
is computed as the product of a mean dynamic pressure at a specific point, a dimensionless
pressure coefficient, and further coefficients. The distribution of the dimensionless pressure
coefficients cp depends on the geometry of the building and the angle of approach of the
wind towards the building. The wind environment around the structure is represented
by the mean dynamic pressure value and the further coefficients, which characterize the
influences of wind turbulence, topology, terrain roughness, exposure, etc.

cp values are dimensionless characteristic pressure coefficients, which describe the ratio
of the characteristic pressure value p at the point of interest to the dynamic pressure qre f at
a specific reference height zre f :

p = cp qre f with qre f =
1
2

ρ u2
re f (3.1)

ure f is the mean velocity at height zre f and ρ is the density of air (≈ 1.2 kg/m3). For the
roof, often the ridge height is taken as reference height zre f . cp values are usually based on
the results of wind tunnel tests using small scale models with similar characteristic shapes
[Coo85].

In EN1991-1-4, pressure coefficients are given for surface areas of 1m2 or smaller (cpe,1)
and for surface areas of 10m2 or larger (cpe,10). For surface areas between 1m2 and 10m2,
values can be interpolated. cpe,10 is smaller than cpe,1 due to the assumption that a maximum
pressure will not appear at each point of a larger surface at the same time. cpe,1 is used
for cladding or roofing, where the occurring local wind pressure on a small area has to be
considered. cpe,10 is applied in the calculation of wind loads on larger areas or the whole
building.

For the representation of pressure difference between the inside and the outside of a
building, cp values have to be considered both due to internal and external wind pressure.
Depending on the building’s face and the ratio of area of the surface opening to the total
surface area, the internal pressure coefficient cpi can be determined as a fraction of the exter-
nal pressure coefficient cpe [HK07]. The total loading on the roof and walls of a building has
to be calculated by adding the forces from both external and internal wind pressure.

For simply shaped structures, c p values can be found in building codes and literature,
such as [Zur69], [FM04], or [Coo90].

For complex and irregular forms, which differ from the shapes for which data is pro-
vided in the literature, wind tunnel tests need to be used to derive c p values. This is the case
for membrane structures, which can have free-form shapes resulting from the requirement
of equilibrium of inner forces, as explained in section 2.1. With respect to external and inter-
nal cp-values, it has to be distinguished whether a membrane structure has open or closed
sides.
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Dynamic effects

Membrane structures have a considerably low natural frequency of typically 0.5 to 1.5 Hz.
They are commonly considered as lightly damped structures in terms of their structural
damping ratio. This damping results from the crimp interchange of the yarns. An additional
damping effect for enclosed and open-sided membrane structures is provided by the air
around the membrane. The mass of the air that is moved by the deflection of the membrane
is often much larger than the mass of the membrane itself. Due to the inertia of this air,
membrane structures show a highly damped behavior in physical experiments.

Generally, membrane structures are considered insusceptible to effects of aerodynamic
instability [BD04]. A local flutter behavior can occur at the membrane’s edges, where a
small change in the wind flow direction relative to the membrane’s surface results in a large
change of surface pressure. This situation is likely to occur at front edges, where the mem-
brane is more or less parallel to the wind flow. For membrane structures with considerably
little prestress and/or small curvature, small traveling waves have been observed. This ef-
fect is visible on sails, flags etc. It occurs especially in pneumatic structures, as they often
have low Gaussian curvature and little prestress due to a small pressure difference between
their inside and outside.

As with most structures and materials, movement and oscillations reduce the lifespan
of the material due to fatigue effects. As membrane structures are likely to undergo large
deflections, dynamic effects can limit the usability of the structure. Irritating or disturbing
visual and acoustic effects can occur.

An additional aspect in safety considerations of a membrane structure in extremely high
wind speed conditions is the presence of flying debris. Because of its small thickness and
its vulnerability to punctuation and tear, membrane structures can be destroyed by flying
objects. An overview and assessment of the threat from flying debris is provided in [Hol01]

Experimental approaches

Typically, wind tunnel experiments are necessary to determine the wind load on membrane
structures, due to their individual geometry. The majority of wind tunnel tests for mem-
brane structures are carried out on rigid models, that do not take into account changes in
the wind surface pressure, which occur for a deflection of the membrane surface. For ex-
perimental wind tunnel data based on rigid structural models, the structural response of
the membrane can be computed by numerical structural simulations. Still, this approach
neglects the influence that the deformed membrane can have on the wind flow around the
structure. Therefore, rigid model tests are limited in the prediction of wind load for deflec-
tion sensitive membrane surfaces, but often the only option. Wind tunnel testings using
rigid structural models of membrane structures can be found, among many other works,
in [RW07] and [BD04]. Extensive investigations have been made for load estimations on
stadium roofs: [Nat00], [BBM+06], [BBF07]

For special purposes, more complex aeroelastic replica models are used. In case of mem-
brane structures, replica models are very difficult to build and do not always provide consis-
tent answers [BD04]. The limited accuracy of the results is caused by the strict requirements
for similarity in the properties of the small scale model and the full scale structure. In order

39



CHAPTER 3 MODELING OF WIND LOADS ON MEMBRANE STRUCTURES

to correctly represent aeroelastic effects, this similarity has to hold with respect to flow con-
ditions and dynamic structural properties. An overview of the requirements of similarity for
the aeroelastic simulation of membrane structures in civil engineering is provided in [SL85].
Examples of aeroelastic models for membrane structures in wind tunnel experiments can be
found in [Kaz98] and [Kai03].

Numerical approaches

A few attempts have been made to apply numerical methods of Computational Fluid Dy-
namics to the analysis of membrane structures. Examples are the works of Saberi-Haghighi
[SH97], and Hübner [Hüb03]. Especially the work of Glück and Halfmann shall be men-
tioned [GBD+03, GBD+01, Glü02, Hal02], as they analyze membrane-wind-interaction by
numerically fully coupled fluid-structure interaction simulation, however, with simplified
boundary conditions for the fluid analysis.

Within the current work, numerical fluid simulations are used to analyze the air flow
around a membrane structure and to calculate loads due to this air flow. In chapt. 4, the
modeling of the air flow around the structure is combined with the structural modeling to
account for the membrane-wind interaction. In the following, the necessary fundamentals
of fluid mechanics are presented. Subsequently, a special focus is put on the appropriate
modeling of the wind flow conditions.

3.2 Fundamentals of Fluid Mechanics

3.2.1 Basic Equations

Fluid mechanic is based on three fundamental principles [And08]:

� Conservation of mass

� Newton’s second law

� Conservation of energy

For the derivation of the basic equations, here an isothermally and chemically inert flow is
assumed. Therefore, the principle of conservation of energy is not relevant.

Conservation laws can be derived based on a given material point. This Lagrangian
description was applied throughout chapter 2. In fluid mechanics, the Eulerian description
is widely used. In the Eulerian description, conservation laws are derived based on a certain
spacial region, called the control volume, with fixed position and dimension within the fluid
domain ΩF.

In the following, a Newtonian fluid shall be assumed. For Newtonian fluids, the shear
stress in the fluid is proportional to the velocity gradient. For a Newtonian fluid, the stress
tensor σ acting on a control volume is:

σ = −
(

p +
2
3

μ∇u
)

I + 2μD (3.2)
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with μ as the dynamic viscosity, I as unit tensor, p as thermodynamic pressure and D as
’rate-of-velocity’ tensor:

D =
1
2

[
∇u + (∇u)T

]
(3.3)

and u as velocity vector.

The Reynolds transport theorem states that the rate of change of the amount of any scalar,
vector, or tensor function F(x, t) inside a control volume (CV) with volume V is equal to the
rate of change of the amount of F(x, t) inside the CV plus the net rate of outwards flux of
F(x, t) due to the mass transport with velocity u through the surface S enclosing the CV:

D
Dt

∫
V

F (x, t) dV =
∫

V

∂

∂t
F (x, t) dV +

∫
S

F (x, t) (n · u) dS (3.4)

with u as the velocity vector and n as the unit outward normal vector of surface S.

Conservation of mass

The principle of conservation of mass states that the mass m within a CV shall be constant
with time:

Dm
Dt

=
D
Dt

∫
V

ρ (x, t) dV = 0 (3.5)

Applying the Reynolds transport theorem to the density field ρ (x, t), eq. 3.5 can be trans-
formed to:

∂

∂t

∫
V

ρdV +
∫

S
ρ (n · u) dS = 0 (3.6)

Using gauss divergence theorem [BSMM00], an integral form of eq. 3.6 is derived with ∇ as
the spacial gradient operator: ∫

V

∂ρ

∂t
dV +

∫
V
∇ · (ρu)dV = 0 (3.7)

As eq. 3.7 also holds for infinitesimally small CVs, its differential form can be derived:

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.8)

Conservation of momentum

According to Newton’s second law of motion, momentum mu can be changed by the action
of a force vector f:

d(mu)
dt

= f (3.9)

The change of momentum in the control volume (CV) can be described by the Reynolds
transport theorem. The quantity subject to transportation F (x, t) shall now be the momen-
tum per unit mass ρu. Accordingly, the change of momentum within the CV is:

D
Dt

∫
V
(ρu) (x, t) dV =

∂

∂t

∫
V
(ρu)dV +

∫
S
(ρu) (n · u) dS =

∫
S

σ · n dS +
∫

V
ρb dV (3.10)
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The right side of eq. 3.10 describes the sum of forces acting on the surface of the CV and the
body force b per unit mass. Using Gauss divergence theorem, eq. 3.10 can be transformed
to:

∂

∂t

∫
V
(ρu)dV +

∫
V
∇ · ((ρu) ⊗ u) dV =

∫
V
∇ · σ dV +

∫
V

ρb dV (3.11)

Since eq. 3.11 has to be fulfilled for every control volume V, its differential form is:

∂(ρu)
∂t

+∇ · ((ρu) ⊗ u) = ∇ · σ + ρb (3.12)

Historically, the equations describing the conservation of momentum in viscous flow
were named Navier-Stokes equations after the French engineer and physicist Claude-Louis
Navier (*1785, †1836) and the British mathematician and physicist George Gabriel Stokes
(*1819, †1903). In modern literature, this terminology has been expanded to include the
entire system of equations describing viscous fluid flow. This includes the equations of con-
servation of momentum, mass and, if applicable, the equations of conservation of energy.
The later terminology is used within this work.

The Navier-Stokes equations form a system of non-linear mixed hyperbolic-parabolic
partial differential equations. A classification of the partial differential equations can be
found in [BSMM00]. In order to solve this initial boundary value problem, initial and bound-
ary conditions are necessary. These are introduced in the following.

Initial and boundary conditions

The vector field of the velocity u0 at time t = t0 is prescribed on the fluid domain ΩF. This
initial velocity field has to satisfy the principle of conservation of mass.

u = u0 in ΩF for t = t0 with ∇ · u0 = 0 (3.13)

As in solid mechanics, the boundaries of the fluid domain Γ are separated into Dirichlet
ΓD and Neumann ΓN boundary conditions with Γ = ΓN ∪ ΓD and ΓN ∩ ΓD = 0. For Neu-
mann boundary conditions the normal component of the stress t = n · σ on the boundary is
prescribed:

t = n · σ = t̂ on ΓN ∀ t ∈ [t0, T] (3.14)

while for Dirichlet boundary conditions a certain velocity û is prescribed:

u = û on ΓD ∀ t ∈ [t0, T] (3.15)

The assumed incompressibility of the flow together with the principle of conservation of
mass results in the requirement that for all moments in time the volume entering the domain
ΩF at some region has to flow out of the domain at another region:

∫
ΓD

n · û dΓD = 0 ∀ t ∈ [t0, T] (3.16)
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In fluid mechanics, the most common boundary conditions are:

� no-slip boundary condition

At a solid wall, the velocity of a fluid particle has to be identical to the velocity of
the wall uw. In the usual case of non-moving walls uw = 0. For uw = 0 at the wall
and u �= 0 in some distance from the wall, a velocity gradient normal to the wall
develops. This effect is known as the law of the wall (see section 3.2.5) and is an
ongoing challenge to modeling.

u = uw on ΓD ∀ t ∈ [t0, T] (3.17)

� free-slip boundary condition

For a free-slip boundary condition, only the velocity component normal to the bound-
ary surface is prescribed:

n · u = n · uw on ΓD ∀ t ∈ [t0, T] (3.18)

� inflow boundary condition

Inflow boundary conditions are Dirichlet boundary conditions with a prescribed ve-
locity. Usually, the velocity distribution over the boundary surface is specified. Ad-
ditionally, in case of RANS simulations, the distributions of the turbulent quantities
have to be prescribed.

� outflow boundary condition

The outflow conditions for an arbitrary fluid flow are difficult to predict and also dif-
ficult to prescribe. Mostly, simplified assumptions are used. Among others, the "zero
gradient" condition [Glü02], average pressure boundary condition and the ’do noth-
ing’ boundary condition [Gra03] shall be mentioned here.

� periodic boundary condition

Assuming an infinite number of identical flow conditions subsequently located one
after the other in the periodic direction, the computational effort can be reduced by
periodic boundary conditions. At periodic boundary conditions, all variables are as-
sumed to be identical: for example in case of two periodic boundaries at the front and
the end of the domain, the flow conditions at the end of the domain are prescribed at
the front of the domain again.

� symmetry boundary condition

In the case of a symmetric flow simulation, the computational domain can be halved
and thus the computational effort can be halved as well. Halving a system can only
be performed for laminar and RANS simulations. At symmetry boundary conditions,
the velocity component normal to the surface, and for all quantities Φ, the gradient
normal to the boundary surface, are assumed to be zero.

u · n = 0 ∀ t ∈ [t0, T] and (3.19)

∇Φ · n = 0 ∀ t ∈ [t0, T] (3.20)
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Incompressibility condition

A fluid flow, in which the density of the fluid is constant is called incompressible. This in-
compressibility is not a characteristic of the fluid, but a characteristic of the flow. Liquid
flows are usually treated as incompressible, while gas flows show incompressible behavior
under certain circumstances [FP99]. As a rule of thumb, gas flows with a Mach number Ma
smaller than 0.3 can be treated as incompressible. The Mach number relates the characteris-
tic velocity u of a flow to the velocity of sound c:

Ma =
u
c

(3.21)

Assuming a constant density ρ, the principle of mass conservation in differential form
(eq. 3.8) can be simplified to:

∇ · u = 0 (3.22)

Accordingly, the principle of conservation of momentum (eq. 3.12) can be expressed as:

∂u
∂t

+∇ · (u ⊗ u) =
1
ρ
∇ · σ + b (3.23)

Using eq. 3.22, the constitutive equation eq. 3.2 can be simplified to:

σ = −pI + 2μD (3.24)

Because the ’rate-of-velocity’ tensor D is a traceless tensor, the pressure p constitutes the
mean normal compressive stress in the stress tensor σ. Without boundary conditions pre-
scribing a pressure level, the pressure can only be determined up to a constant [FP99]. In
the scope of this work, it is assumed that body forces b can be neglected.

The index notation is more commonly used in fluid mechanics. Therefore, it will be
applied in the following. Neglecting the body forces, the Navier-Stokes equations for in-
compressible flows (eq. 3.22 and eq. 3.23 together with eq. 3.24) for each spacial direction
i = 1, 2, 3 are in index notation:

∂ui

∂xi
= 0 (3.25)

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)
= − ∂p

∂xj
−

∂τmol
ij

∂xi
(3.26)

The left side of eq. 3.26 describes the change of momentum over time as the sum of local time
dependent change of momentum and the convective transportation of momentum. This has
to be in equilibrium with the right side of the equation, which consists of the sum of pressure
forces and forces due to the diffusive momentum transport:

τmol
ij = −μ

(
∂ui

∂xj
+

∂uj

∂xi

)
(3.27)
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3.2.2 Turbulence

Observing fluid flow, two fundamentally different flow types can be identified. In case
of a fluid flow with low velocity and high viscosity, a regular flow field can be observed
for a certain stretch along the main flow direction. With increasing fluid velocity and/or
decreasing viscosity, the degree of regularity decreases and the flow shows an increasingly
chaotic behavior. In this unstable flow, the main velocity field is superimposed by random
velocity fluctuations. Such chaotic flow is called turbulent flow. In the following, the main
characteristics of turbulent flows are introduced, following the work of Wengle [Wen01].

The phenomenon of turbulence, common in everyday life, is still one of the most difficult
problems in modern physics. Difficulties with understanding of turbulent flow are mainly
due to two reasons:

� Randomness of turbulence

The velocity fluctuations seem to occur randomly on a macroscopic level. The flow is
unstable and highly sensitive to perturbations. Statistical methods are usually used to
quantify turbulent flows.

� Involved scales of turbulence

The phenomenon of turbulence incorporates an extensive range of scales. The largest
scale L can be identified as a characteristic length of the flow condition. The kinetic
energy of turbulent velocity fluctuations is introduced at the large scale. The turbulent
velocity fluctuations lead to vortices, called eddies. As energy is dissipated in the
turbulent flow, the large scale eddies decay into smaller size eddies by loosing energy.
Thereby, an energy cascade is formed, the Richardson Energy Cascade. Along the
energy cascade, eddies decay into smaller size eddies until finally a stable eddy motion
is reached. At this level, the turbulent energy is transferred into thermal energy due to
the viscosity of the fluid. This end of the energy cascade is characterized by the small
scales of motion, which is known as the Kolmogorov length lK.

In a turbulent flow, all scales of eddies between L and lK exist. For a Reynolds number
ReL (based on the length of L), the ratio between large and small scale can be estimated
as:

L
lK

∼ Re
3
4
L (3.28)

For a ReL = 107 the largest scale L is 177828 times larger than the smallest scale lK.
Corresponding to the minimal spatial length occurring in a turbulent flow, ratio be-
tween the largest characteristic time length T and the minimum time length tK can be
specified:

T
tK

∼ Re
1
2
L (3.29)

In principle, the Navier-Stokes equations can be used to describe turbulent flows, as
long as the phenomenon is within the limits of continuum mechanics. This holds even for
smallest scale turbulence on the Kolmogorov length level. Therefore, all turbulent flow can
be described using only the basic Navier-Stokes equations. This approach to use the basic
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Navier-Stokes equations for numerical turbulent flow simulation is called Direct Numerical
Simulation (DNS). However, for a complete description of turbulent flow, the resolution of
all involved scales is necessary. For a three dimensional fluid domain as large as the largest
scale eddies of size L and resolving the smallest length scale lk (e.g. by the Finite Volume
Method introduced in section 3.3.1) the number of degrees of freedom can be estimated to:

NS =
(

L
lk

)3

∼
(

Re
3
4
L

)3

= Re
9
4
L (3.30)

Accordingly, the time wise resolution has to be resolved as well, which leads to an estimation

of nT = T
tk
∼ Re

3
4
L time steps to simulate one period corresponding to the characteristic time

length T 1.

At the current level of computational power, it is not possible to use DNS for the de-
scription of turbulent flows with high Re numbers. DNS is mainly used in basic research
and for the validation of alternative approaches for the modeling of turbulent flows. Due to
the severe limitations to simulate flows of practical relevance with full resolution of turbu-
lence, turbulence models have been suggested. The turbulence models introduce additional
assumptions about the turbulent flow to omit the necessity to resolve all spatial and time
scales. However, modeling the unresolved scales requires the use of experimental data and
introduces additional uncertainties. In the following, the most common types of turbulence
modeling are introduced.

3.2.3 RANS-based Turbulence Modeling - Time Averaging

In the Reynolds decomposition, a quantity of the turbulent flow Φ(x, t) at a certain position x
and at a certain time t is separated into a mean value Φ(x, t) and a fluctuating value Φ′(x, t):

Φ(x, t) = Φ(x, t) + Φ′(x, t) (3.33)

with

Φ(x, t) = lim
Δt→∞

1
Δt

∫ t0+Δt

t0

Φ(x, t) dt (3.34)

Φ(x, t) = Φ(x, t) Φ′(x, t) = 0 (3.35)

In the case of time-dependent fluid flow, time averaging has to be performed as an ensemble
averaging:

ΦT(x, t) = lim
N→∞

1
N

N∑
n=1

Φ(x, t) (3.36)

1 In this estimation an optimum Courant number Co of 1 is assumed. The Courant number is defined as:

Co =
u Δt
Δx

(3.31)

with Δt as time step length and Δx as characteristic spatial discretization. Accordingly, the number of time steps
for full time resolution of one period of the characteristic time length T is:

nT =
T
tk

=
L/u
lk/u

=
L
lk

= Re
3
4 (3.32)
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where N is the number of ensembles. N has to be sufficiently large to ensure the elimination
of effects of the fluctuation on the mean value.

By inserting Reynolds averaging for velocity and pressure into the Navier-Stokes equa-
tions, the Reynolds-averaged Navier-Stokes (RANS) equations are derived.

∂ui

∂xi
= 0 (3.37)

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)
= − ∂p

∂xj
− ∂

∂xi

⎡
⎢⎢⎢⎢⎢⎣−μ

(
∂ui

∂xj
+

∂uj

∂xi

)
︸ ︷︷ ︸

τmol
ij

+ ρu′
iu

′
j︸ ︷︷ ︸

τturb
ij

⎤
⎥⎥⎥⎥⎥⎦ (3.38)

The viscous stress term τmol
ij describes the transfer of momentum at the molecular level. An

additional term compared to the basic Navier-Stokes equation is the Reynolds stress tensor
τturb

ij , which describes the momentum transfer due to the fluctuating velocity field. For a
fully turbulent flow, τturb

ij >> τmol
ij is assumed.

In the basic Navier-Stokes system of equations, three components of the momentum
equation and the continuity equation are used to determine the four unknowns u 1, u2, u3,
and p. Due to the Reynolds stress tensor, the RANS system of equations contains six addi-
tional variables, without additional equations. This dilemma is known as the closure prob-
lem of RANS. It can be explained by a loss of information necessary to fully describe the
turbulent flow during the Reynolds averaging process. Applying additional transport equa-
tions for the determination of the six unknowns introduces a set of 22 additional unknowns
and thus worsens the closure problem.

The aim of RANS-based turbulence models is to close the RANS system of equations
by using empirical or half-empirical data. RANS turbulence models can be subdivided into
eddy viscosity models and Reynolds stress models.

3.2.3.1 Eddy Viscosity Turbulence Models

The Boussinesq turbulent viscosity assumption, named after the French mathematician and
physicist Joseph Boussinesq (*1842, †1929), uses the analogy between momentum transfer
at the molecular level, represented by the viscous stress tensor, and momentum transfer by
the fluctuating velocity field, represented by the Reynolds stress tensor. Since in laminar
flows, the energy dissipation and the transportation of mass and momentum normal to the
local flow direction occurs due to the viscosity of the fluid, in turbulent flows, additional
dissipation and transport phenomena can be treated by assuming an increased viscosity.
Boussinesq assumes a linear relationship between the deviatoric part of the Reynolds stress
tensor and the ’rate-of-velocity’ tensor for the mean flow:

τturb
ij = −μt

(
∂ui

∂xj
+

∂uj

∂xi

)
+

2
3

δijk (3.39)
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with k as the turbulent kinetic energy defined as:

k =
1
2

(
u′

iu
′
i

)
(3.40)

The Boussinesq assumption is not generally valid, as the Reynolds stress tensor is not
necessarily proportional to the strain rate tensor. For simple flows such as straight boundary
layers and wakes, the Boussinesq assumption is valid, but not in complex flows, such as
flows with strong curvature, or strongly accelerated or decelerated flows. Even though
the Boussinesq hypothesis is the basis of a widespread number of turbulence models and
carefully applied, it can provide reasonably good results for a large variety of flows.

Analyzing eq. 3.39, τturb
ij can be separated into an isotropic term 2

3 δijk(x, t) and an

anisotropic term −μt

(
∂ui
∂xj

+ ∂uj
∂xi

)
. The isotropic term corresponds to an additional normal

stress, and therefore, is usually treated as an additional pressure term. The anisotropic term
distinguishes itself from the diffusive term of the laminar flow only due to its different vis-
cosity μt. Using this separation, the RANS equation with implemented Boussinesq assump-
tion is:

ρ

(
∂uj

∂t
+ ui

∂uj

∂xi

)
= −

[
∂p
∂xj

+
∂

∂xi

(
2
3

δijk
)]

− ∂

∂xi

[
−(μ + μt)

(
∂ui

∂xj
+

∂uj

∂xi

)]
(3.41)

Unlike μ, which depends on material properties of the fluid, the turbulent viscosity μ t is
determined by parameters of the turbulent flow. Therefore, μ t is neither a uniform nor a
constant quantity, but depends on position and time: μ t(x, t).

In the simplest description, turbulence can be characterized by two parameters, the tur-
bulent kinetic energy k, or equivalently, the average velocity of the eddies uc and a length
scale L. According to the number of equations used to derive these two parameters or their
representatives, eddy viscosity models can be subdivided into zero-, one-, or two-equation
models.

In the following, two basic two-equation models are introduced.

The standard k-ε turbulence model

The standard k-ε turbulence model is based on the assumption that in equilibrium turbulent
flows, the rate of production and destruction of turbulence are in near-balance. The dissi-
pation rate ε is the turbulent kinetic energy of a unit mass that is transferred into thermal
energy per time unit. It is assumed that only as much energy can be dissipated as is pro-
duced by the largest scales. Accordingly, ε, the kinetic turbulent energy k, and the length
scale L are related as:

ε ≈ k
3
2

L
(3.42)

Introducing the constant Cμ, the eddy viscosity μt is expressed as:

μt = ρCμ

√
kL = ρCμ

k2

ε
(3.43)
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The turbulent kinetic energy k is determined by the transport equation:

ρ
∂(k)
∂t

+ ρ
∂(ujk)

∂xj
=

∂

∂xi

(
Γk

∂k
∂xi

)
+ Pk − ρ ε (3.44)

with Pk as the production term of the kinetic energy and Γk as the turbulent diffusion coeffi-
cient of kinetic energy:

Pk = μt

(
∂ui

∂xj
+

∂uj

∂xi

)
∂ui

∂xj
Γk = μ +

μt

σk
(3.45)

The transport equation for the dissipation rate ε is:

ρ
∂(ε)
∂t

+ ρ
∂(ujε)

∂xj
= Cε1Pk

ε

k
− ρCε2

ε2

k
+

∂

∂xj

(
Γε

∂ε

∂xj

)
(3.46)

with Γε as the turbulent diffusion coefficient of the dissipation rate:

Γε = μ +
μt

σε
(3.47)

Based on extensive experimental examination of turbulent flows, the five parameters of the
k-ε turbulence model are most commonly chosen to be [Pop00]:

Cμ = 0.09 Cε1 = 1.44 Cε2 = 1.92 σk = 1.00 σε = 1.30

The k-ε turbulence model has been widely applied, extensively tested, and is still a quasi
standard for industrial applications [Wil06]. Despite its well-known limitations, it is possible
to provide reasonable results for a large variety of applications. Moreover, it has a robust
formulation and leads to results with comparably small computational effort.

One deficit of the standard k-ε turbulence model is known as the "stagnation point
anomaly". In regions with high pressure gradients the production of the turbulent kinetic
energy k is overestimated. This leads to wrong results for the pressure distribution within
these areas. Several improvements to the standard k-ε turbulence model have been sug-
gested to overcome this deficit, e.g. by [Dur96], [MMK+98].

Another deficit are difficulties in the modeling of near-wall flow (see section 3.2.5). This
leads to inaccurate predictions of flow separation and thus to problems in the modeling of
complex flow conditions.

Research efforts to resolve these deficits have lead to the development of the Renormal-
ization Group (RNG) k-ε turbulence model [YO86] and the Realizable k-ε (RKE) turbulence
model [SLS+95] et al.

The standard k-ω turbulence model

In the k-ω turbulence model besides the kinetic turbulent energy k, the "turbulent frequency"
ω is modeled as variable that determines the scale of the turbulence. The inverse of ω re-
sembles the local turbulent time scale. The k-ω turbulence model assumes that the turbulent
viscosity is linked to the turbulent kinetic energy and turbulent frequency via the relation:

μt = ρ
k
ω

(3.48)
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The transport equation for the turbulent kinetic energy is:

∂(ρk)
∂t

+
∂(ρkuj)

∂xj
= Pk − β∗ ρ ωk +

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
(3.49)

The production rate of the turbulence Pk is the same as for the k-ε turbulence model
(eq. 3.45). The transport equation for the turbulent frequency is:

∂(ρω)
∂t

+
∂(ρωuj)

∂xj
= Cω1 Pk

ω

k
− ρ Cω2 ω2 +

∂

∂xj

[(
μ +

μt

σω

)
∂ω

∂xj

]
(3.50)

For the k-ω turbulence model the following variables are applied:

β∗ = 0.09 Cω1 = 0.5555 Cω2 = 0.075 σk = 2.00 σω = 2.00

The k-ω turbulence model shows a superior performance in the modeling of low
Reynolds flows as compared to k-ε turbulence models because it features a reduced length
scale measure. Near-wall flow can be simulated by using an appropriate resolution with-
out additional modeling. However, the k-ω turbulence model proved to be inaccurate in
the simulation of free-stream flows. After the k-ε model, the k-ω model is the second most
widely used turbulence model.

The k-ω SST turbulence model

The SST-turbulence model introduced by Menter [Men93] is a zonal model which aims at
combining the advantages of the k-ε model for free flow regions and the k-ω turbulence
model’s superior performance in near-wall flow. The k-ω turbulence model is used in near-
wall regions, while the k-ε turbulence model is applied elsewhere. The standard k-ε model
is transformed into the k-ω form. The transport equations for k and ω are:

∂(ρk)
∂t

+
∂(ρkuj)

∂xj
= Pk − β∗ ρ ωk +

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
(3.51)

∂(ρω)
∂t

+
∂(ρωuj)

∂xj
= C1 Pk

ω

k
− ρ C2 ω2 +

∂

∂xj

[(
μ +

μt

σ1

)
∂ω

∂xj

]
(3.52)

+ 2ρ(1 − F1)
1

σ2ω

∂k
∂xj

∂ω

∂xj

The last term in the ω transport equation originates from the transformed ε equation. It is
called the cross-diffusion term and makes the model insensitive to free stream ω [HL97].

The transition between the two turbulence models is performed via a blending function
F1. The constants of the SST model are a linear combination of the constants of the corre-
sponding underlying models:

C1 = F1Cω1 + (1 − F1)Cε1 (3.53)

C2 = F1Cω2 + (1 − F1)Cε2 (3.54)

σ1 = F1σω2 + (1 − F1)Cε2 (3.55)

σ2 = F1σω2 + (1 − F1)Cε2 (3.56)
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For the SST turbulence model the following variables are applied [CFX06]:

β∗ = 0.09 Cω1 = 0.5555 Cω2 = 0.075 σk = 2.00 σω = 2.00

Cε1 = 0.44 Cω2 = 0.0828 σε1 = 1.00 σε2 = 1/0.856 (3.57)

The blending function F1 is given by:

F1 = tanh
(

arg1
4
)

(3.58)

with:

arg1 = min

{
max

[ √
k

0.5 ωy
;

500ν

ωy2

]
;

4Cε1k
CDkωy2

}
(3.59)

CDkω = max
[

2Cε1ω−1 ∂k
∂xj

∂ω

∂xj
; 10−20

]
(3.60)

where y is the distance to the nearest wall and ν is the kinetic viscosity.

The SST model accounts for the transport of the turbulent shear stress inside the bound-
ary layers by modifying the turbulent eddy-viscosity function. In order to prevent exces-
sive shear stress levels, which are typically predicted with eddy-viscosity models based on
the Boussinesq’s approximation, an upper limit for the turbulent shear stress is introduced.
With this modification, the eddy viscosity is defined as:

μt =
Cω1ρk

max(α1ω; |Ω|F2)
(3.61)

with α1 = 0.31 and |Ω| as the absolute value of the vorticity. The bounding function F2 is
constructed as:

F2 = tanh
(
arg2

2

)
(3.62)

arg2 = max

[
2

√
k

0.09ωy
;

500ν

ωy2

]
(3.63)

This limitation for μt significantly improves the performance for adverse pressure gra-
dient boundary flows, as well as the flow with pressure induced boundary layer separation,
and thus enables a more realistic simulation of flow separation. The SST turbulence model
proved its superior behavior compared to other two-equation RANS models in different
comparisons, e.g. [BHC97], [MKL03].

Non-linear two equation models:

In Boussinesq’s approximation (eq. 3.39), a linear dependency of the Reynolds stress and the
velocity gradients is assumed. As an extension, in non-linear two equation RANS models
a non-linear dependency is assumed. Examples for non-linear two equation RANS models
can be found in: [Lum70], [Pop75], [Spe87], and [CLS96].
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As an example, the constitutive equation of the Reynolds stress according to [CLS96] is
given:

ρu′
iu

′
j = −μtSij +

2
3

δijk (3.64)

+ C1μt
k
ε

(
SikSkj − 1

3
SklSklδij

)
(3.65)

+ C2μt
k
ε

(
ΩikSkj − 1

3
ΩkjSki

)
(3.66)

+ C3μt
k
ε

(
ΩikΩjk − 1

3
ΩlkΩlkδij

)
(3.67)

with

Sij =
(

∂ui

∂xj
+

∂uj

∂xi

)
(3.68)

Ωij =
(

∂ui

∂xj
− ∂uj

∂xi

)
(3.69)

(3.70)

C1, C2, and C3 are constants derived on measurements. Non-linear turbulence models are
reported to provide improved results in case of anisotropic normal Reynolds stresses, e.g. in
the prediction of reattachment length of separated regions behind a backwards facing step
[CLS96].

3.2.3.2 Second Moment Closure Models

Second moment closure is based on transport equations for the individual Reynolds stresses
and fluxes in eq. 3.38. Additional to the four equations for conservation of momentum and
the continuity equations, six transport equations for the Reynolds stresses and one transport
equation for the dissipation rate ε have to be solved. The second moment models provide
the most general approach to solve and thereby close RANS equations. Among many others,
details can be found in the works of [LRR75] and [SSG91].

Due to their exact modeling of the transport of Reynolds stresses, second moment clo-
sure models are qualified for simulating complex flow situation. However, in practice, the
results obtained by second moment closure models are not significantly better than those
obtained trough other two equation models [WE99, Mur98] for the specific area of interest
of this thesis. In addition to this, second moment closure models lead to a highly increased
computational effort due to the seven additional transport equations. Out of these reasons,
second moment closure models are not considered within this work.

3.2.4 Large Eddy Simulations - Spatial Averaging/Filtering

As stated above, the phenomenon of turbulence includes a large range of scales. The Large
Eddy simulation (LES) uses the property, that the large and medium scale eddies dominate
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transport processes in the flow. The small scale eddies are responsible for the dissipation
of energy and have little significant influence on the macro scale structure of the turbulent
flow. In an LES turbulence model, the larger scale eddies are resolved by a direct numerical
simulation using the NS equations, while the smaller scale eddies are modeled.

In the common filtering approach, space filtering over a small area is applied. This filter
is associated with a certain length scale Δ, which is related but not necessarily identical to
the grid scale of the computational grid. Eddies larger than the filter length Δ are resolved,
while those smaller than Δ are not. The velocity uj and the pressure p at a certain point are
separated in a resolved part ũj, p̃ and an unresolved part u′

j, p′:

uj = ũj + u′
j , pj = p̃j + p′j (3.71)

The basic Navier-Stokes equations of the LES are [FP99, Bre02]:

∂ui

∂xi
= 0 (3.72)

ρ

(
∂ũj

∂t
+ ũi

∂ũj

∂xi

)
= − ∂p̃

∂xj
−

∂τ̃mol
ij

∂xi
−

∂τSGS
ij

∂xi
(3.73)

with the tensor for the molecular transport of momentum:

τ̃mol
ij = −μ

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(3.74)

τSGS
ij is the sub-grid scale (SGS) Reynolds stress and stands for the large scale momentum

flux caused by the action of the unresolved scales. Typically, the sub-grid scale Reynolds
stress is separated into an anisotropic and an isotropic part. The isotropic part is usually
treated as an additional pressure term (see also eq. 3.38), while the anisotropic part τij is
subject to modeling:

τSGS
ij = τij +

1
3

δijτ
SGS
kk (3.75)

Analog to the RANS models, LES models can be structured by the amount of equations
used to model τij. A common model is the zero-equation Smagorinsky model (1963):

τij = 2μtS̃ij (3.76)

with

S̃ij =
1
2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
(3.77)

μt = C2
s ρΔ2|S̃| (3.78)

and Cs as the model parameter, Δ as the filter length scale and |S̃| =
√

S̃ijS̃ij. Cs is not a
constant parameter but subject to the flow conditions. It can vary between values of 0.065
for channel flow and 0.2 for isotropic turbulence [FP99]. In regions close to walls, the values
of Cs have to be reduced even further.
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Compared to DNS, a much coarser computational grid can be used, since it is not neces-
sary to resolve the eddies down to the Kolmogorov micro scale. Therefore, the simulation
of flows with higher Reynolds numbers is possible.

Compared to the RANS models, LES models have the advantage that only the small scale
turbulence is modeled. In comparison to modeling the whole turbulent spectrum, modeling
of the small scale turbulence is less difficult, since the small scale turbulence to a large de-
gree shows a homogenous and isotropic behavior. Furthermore, with LES the simulation of
unsteady, large-scale turbulent structures is possible, and hence can be used to study phe-
nomena such as unsteady aerodynamic load on structures. The computational grid has to
be sufficiently well designed to ensure the resolution of the bulk of turbulent energy and
thereby avoiding grid dependent results. For statistically useful interpretation, LES is ex-
pected to be more computationally expensive by approximately two orders of magnitude
for each direction compared to a RANS solution [Pop00]. Computational efforts increase
even more, if the resolution of near wall flow is necessary. If the computational grid and
the filter are too coarse to resolve 80% of the turbulent energy, the name of Very-large-eddy
simulation VLES is used [Pop00]. For VLES a coarser mesh can be used, however, additional
care has to be taken in modeling the sub-scale turbulence as it contains a larger fraction of
the total turbulent energy of the flow.

The Detached Eddy Simulation (DES) combines Unsteady RANS and LES models. De-
pendent on the grid resolution and the turbulent length scale, either the RANS turbulence
model (in boundary layer flow) or the LES turbulence model (in free stream) is used. Re-
gions near solid boundaries and those in which the turbulent length scale is smaller than
the maximum grid resolution are solved using RANS models. In regions in which the tur-
bulent length scale exceeds the grid dimension the LES model is applied. The grid res-
olution is not as demanding as pure LES. In its original form, DES is formulated for the
one-equation Spalart-Allmaras model [SJSA97] and can be seen as LES with a wall model.
For two-equation RANS models, DES is a non-zonal approach of hybrid RANS-LES model.
However, grid generation is complicated by the different requirements of RANS and LES.
Applied to the same mesh, DES and LES models lead to similar results [BJM03].

3.2.5 Law of the Wall

At no-slip boundary wall, strong gradients in the flow variables exist since both mean and
fluctuating part of velocity vanish. As a consequence, k and thus μe f f are exactly zero at
the wall. At high Reynolds numbers, this results in very large flow gradients near the wall.
Moreover solid boundaries selectively damp fluctuations normal to the wall.

Experiments and mathematical analysis have shown that the flow close to a no-slip wall
in a two-dimensional turbulent boundary layer without pressure gradient can be divided
into different layers. In the inner layer, viscous and turbulent stresses are of importance. In
the outer layer, viscous stresses can be neglected and the application of turbulence models
introduced above is possible.

In the following, the non dimensional velocity u+, the averaged wall shear stress τw and
the shear velocity uτ are used. The distance to the wall y is expressed as a non dimensional
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wall distance y+ with the kinematic viscosity ν = μ
ρ .

u+ =
u
uτ

uτ =

√
τw

ρ
y+ =

uτz
ν

(3.79)
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Figure 3.1: Typical velocity profile for a turbulent boundary layer, after [Wil06].

Fig. 3.1 presents the typical velocity profile for a turbulent boundary layer. In a turbulent
boundary layer, the following four regions can be identified:

1. Linear (viscous) sub-layer: y+ < 5

The fluid region is in direct contact with the wall. Laminar, molecular viscosity effects
are dominating.

2. Buffer layer: 5 < y+ < 30

Effects of molecular velocity and turbulence are of equal importance.

3. Logarithmic layer: 30 < y+ < 500

Turbulent region close to the wall with Reynolds stresses as dominant effects.

A logarithmic velocity distribution is assumed:

u+ =
1
κ

ln(y+) + C (3.80)

The parameters are the Kàrmàn constant κ = 0.4 and C = 5.0 for hydrodynamically
perfectly-smooth walls. For completely rough walls, C varies with the surface sand-
grain roughness ks, with roughness elements of average roughness k s. For large rough-
ness height with uτks

ν � 1, C can be calculated by eq. 3.81 [Wil06]:

C = 8.0 − 1
κ

ln
(

uτks

ν

)
(3.81)
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4. Outer (or defect) layer: 500 < y+

Inertia dominated region far from the wall.

In the modeling of this near wall flow for RANS turbulence models, two approaches are
possible.

� Low-Re models

In low-Re models the velocity distribution is solved down to the wall. The increasing
importance of viscosity is incorporated in the transport equations for k and ω. Low-Re
models are much more computationally expensive but provide a more profound anal-
ysis in case near wall behavior is relevant. For k-ε based turbulence models, low-Re
formulations are more difficult to derive and therefore less commonly used [Man08].

� Wall functions

Using wall functions, the flow in the near wall region is not resolved but theoretical
profiles close to the boundary surface are assumed. These profiles are mainly valid for
near-equilibrium boundary layers, which limits the applicability of wall functions. For
wall functions, mostly a logarithmic velocity profile is assumed. The computational
grids at the wall have to be chosen in such a way, that the necessary boundary resolu-
tion required by the wall function is maintained: the y+ distance of the first node close
to the wall should be sufficiently small [Aps06].

3.3 Numerical Simulation of Fluid Flow

The Navier-Stokes equations are a coupled system of nonlinear partial differential equa-
tions, which are difficult up to impossible to solve analytically. For the usage of computa-
tional methods, the equations have to be transformed and discretized. Therefore, the set of
partial differential equations, which are valid in the entire domain, is transferred into a set of
discrete algebraic equations, which are valid at specific points in the domain. The simulta-
neous solution of these interdependent discrete equations provides the numerical solution.
The most common discretization techniques for fluid dynamics are:

� Finite Difference Method (FDM)

� Finite Volume Method (FVM)

� Finite Element Method (FEM)

Within this work, the Finite Volume Method is used. It is the most widely used approach
in Computational Fluid Dynamics (CFD). In this method, the domain is divided into a grid
of finite control volumes (CV). The centroids of the CVs represent discrete points, at which
the algebraic equations for all flow variables have to be fulfilled. This corresponds to a co-
located grid. In the following, the FVM for co-located grids will be introduced. For more
detailed discussion see [FP99] or [Sch99].
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3.3 Numerical Simulation of Fluid Flow

3.3.1 The Finite Volume Method (FVM)

The FVM is based on the conservation equations in the integral form. To derive the integral
form, here, the Reynolds transport theorem for an arbitrary scalar quantity Φ is considered: 2

ρ
∂Φ
∂t︸ ︷︷ ︸

unsteady term

+ ρ
∂(Φui)

∂xi︸ ︷︷ ︸
convective term

− ∂

∂xi

(
ΓΦ

∂Φ
∂xi

)
︸ ︷︷ ︸

diffusive term

= sΦ︸︷︷︸
source term

(3.82)

The quantity Φ represents any of the averaged quantities introduced in section 3.2. By insert-
ing the relevant quantities, the simple NS equations (see tab. 3.1) as well as RANS, URANS,
and LES-averaged NS equations can be expressed. Additional to the convective, diffusive,
and unsteady term, eq. 3.82 has a source term, which can be found in the transport equations
for k, ε, and ω introduced in section 3.2.3.

term Φ ΓΦ sΦ

conservation of mass 1 0 0
conservation of momentum ui μ − ∂p

∂xj

Table 3.1: Terms of NS equations for Reynolds transport theorem

The integral form is derived by integration over the control volume V:∫
V

ρ
∂Φ
∂t

dV +
∫

V
ρ

∂(Φui)
∂xi

dV −
∫

V

∂

∂xi

(
ΓΦ

∂Φ
∂xi

)
dV =

∫
V

sΦ dV (3.83)

Using the Gauss theorem, the volume integral of the convective and diffusive term can be
described by an integral over the volume’s surface S:∫

V
ρ

∂Φ
∂t

dV︸ ︷︷ ︸
unsteady term

+
∫

S
ρ(Φui) dSi︸ ︷︷ ︸

convective term

−
∫

S

(
ΓΦ

∂Φ
∂xi

)
dSi︸ ︷︷ ︸

diffusive term

=
∫

V
sΦ dV︸ ︷︷ ︸

source term

(3.84)

For the discretization, structured and unstructured grids can be used. Figure 3.2 shows
a control volume in a structured two-dimensional grid, which will be used in the following.
The volume is enclosed by four surfaces Sl with unit normal vector nl, labeled according to
the compass notation as East, West, North, and South.

3.3.2 Approximation of Convective Term

The integral over the surface S of the control volume V can be split into four integrals over
the surface parts Sw, Se, Sn, and Ss. These integrals describe the convective fluxes FC over
the four surfaces: ∫

S
ρ (Φui) dSi =

∑
l=w,e,s,n

FC
l =

∑
l=w,e,s,n

∫
Sl

ρ nl i ui Φ dSl (3.85)

2In case of NS with turbulence models based on averaging, the averaged velocity ui has to be used instead
of ui.
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Figure 3.2: Control volume CV with compass notation, after [Fra06].

For computing the integral over the face in direction l, the midpoint rule is applied, which
approximates the mean value over the surface as the value in the surface center, Φ l and ul.
This approximation is of second order accuracy with respect to the grid width. For the East
surface, exemplary the flux is approximated as:

FC
e =

∫
Se

ρ ne i ui Φ dSe ≈ ρ ne i ue i Φe Se (3.86)

The value ul iΦl at the center of surface Sl has to be approximated by interpolation, as only
the values at the cell centers are known. Here, the three most common interpolation meth-
ods are explained based on the East surface Se of the volume:

� Upwind interpolation scheme (UDS)

The UDS is the simplest interpolation scheme and is based on the direction of the flux:

ΦUDS
e =

{
ΦP for ue i ne i ≥ 0

ΦE for ue i ne i < 0
(3.87)

The UDS is first order accurate. The truncation error behaves like a diffusion term and
contributes to the effect of numerical diffusion. The diffusion coefficient can be calcu-
lated as Γnum = 0.5ue ine iΔx. For high Re-numbers, the Γnum can become significantly
larger than the physical diffusion coefficient Γmol in high Re flows. Therefore, the UDS
is known as an over-dissipative and generally inaccurate method.

� Central interpolation scheme (CDS)

The CDS is a second order interpolation scheme. The value at the face center is a linear
interpolation between the cell centers, with the distance to the cell center as weighting
factor:

ΦCDS
e = λeΦE + (1 − λe)ΦP with λe =

xe − xP

xE − xP
(3.88)
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3.3 Numerical Simulation of Fluid Flow

CDS does not introduce numerical diffusion into the solution. In regions with high
flow gradients and insufficient grid resolution, oscillation occur in the solution. These
oscillations can be removed by mesh refinement.

� Quadratic Upwind Interpolation for Convective Kinematics (QUICK)

The QUICK is third order accurate for equidistant and second order accurate for non-
equidistant grids. For the QUICK interpolation, information of a second node in up-
stream direction is considered: for ue i ne i ≥ 0, W is considered as additional node,
and for ue i ne i < 0, the centeriod of the next CV east of E is considered. As an
example for a flow in direction P to E, the interpolation for equidistant grids is:

ΦQUICK
e =

6
8

ΦP +
3
8

ΦE − 1
8

ΦW (3.89)

Even so the QUICK interpolation is slightly more accurate compared to CDS, in prac-
tice, differences in convergence and accuracy are small for sufficiently fine grid reso-
lution.

In most CFD software codes apply a combination of high and low order approximation.
Thereby, oscillating solutions can be omitted at the cost of small numerical diffusion.

3.3.3 Approximation of Diffusive Term

The diffusive term describes the diffusive fluxes FD of the the surface S of the control volume
V. ∫

S
niΓ

∂Φ
∂xi

dS =
∑

l=w,e,s,n

FD
l =

∑
l=w,e,s,n

nl i

∫
Sl

(
Γ

∂Φ
∂xi

)
dSl (3.90)

Similar to the convective term, for the diffusive term the second order midpoint rule is ap-
plied to approximate the surface integrals on the surface Si. For the surface Se, the approxi-
mation is: ∫

Se

ne i

(
Γ

∂Φ
∂xi

)
dSe ≈ ne i

(
Γ

∂Φ
∂xi

)
e
Se (3.91)

This linear interpolation is second order accurate for equidistant grids and first order for
non-equidistant grids. Since the derivative ∂Φ

∂xi
is unknown at the face center, an additional

approximation is necessary. Assuming a linear profile between the derivatives in the points
P and E, the same linear interpolation introduced in eq. 3.88 can be used. Accordingly, the
local gradient is approximated as: (

∂Φ
∂xi

)
≈ ΦE − ΦP

xE − xP
(3.92)

Another possibility is to first compute the derivative in the cell centers and then interpolate
it onto the surface centers, using the same interpolation techniques as for the convective
term.
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3.3.4 Approximation of Source Term

The source term requires an integration over the whole control volume V. It can be derived
assuming a constant or linear profile of the source term and approximated by its value sΦ,P

at the cell center P. This approximation is second order accurate and reads as:∫
V

sΦ dV ≈ (sΦ)P V (3.93)

3.3.5 Approximation of Unsteady Term

Inserting the spatial approximations for the convective and diffusive term together with the
source term, eq. 3.84 is discrete in space but still continuous in time. Time discretization
is introduced via the unsteady, time dependent-term. Similar to the source term, volume
averaging is performed to compute the value at the CV’s center.∫

V
ρ

∂Φ
∂t

dV ≈ ρ
∂ΦP

∂t
V (3.94)

for an application to wind engineering, considerably large time-steps are sufficient for a
time resolution of the relevant physical effects. In order to be able to use larger time-step
size, only implicit time integration schemes are considered.

The Euler Backwards time integration scheme is the most simple implicit first order
scheme: (

∂ΦP

∂t

)
t=tn+1

≈ ΦP(tn+1) − ΦP(tn)
tn+1 − tn

(3.95)

A common second order time integration scheme is the Three-Time-Level method:(
∂ΦP

∂t

)
t=tn+1

≈ 3ΦP(tn+1)− 4ΦP(tn) + ΦP(tn−1)
2((tn+1)− tn)

(3.96)

Because the right side of eq. 3.95 and eq. 3.96 include the unknown value of Φ at the new
time step n + 1, they has to be solved in an iterative manner for each time step.

3.3.6 Solution Methods

By including the discrete terms derived above in the general transport equation in integral
form, for each control volume and each scalar variable Φ, a linear equation of the following
type can be formulated:

aPΦP =
∑

l=w,e,s,n

alΦl + qP (3.97)

The value in the cell center depends on the values of the surrounding cell centers and the lo-
cal source qP. For the Navier-Stokes equations, these scalar variables are the velocity in three
spatial directions and the quantities necessary for turbulence modeling. The unknown pres-
sure requires a special treatment, as no equation exists to directly derive it. The pressure can
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3.3 Numerical Simulation of Fluid Flow

be determined through a combination of equations for the conservation of momentum and
mass. For the Navier-Stokes equation with a k-ε turbulence model, this leads to a coupled
system of equations of the following basic type for one CV [Sch04]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

au1u1 au1u2 au1u3 au1 p au1k au1ε

au2u1 au2u2 au2u3 au2 p au2k au2ε

au3u1 au3u2 au3u3 au3 p au3k au3ε

apu1 apu2 apu3 app 0 0
aku1 aku2 aku3 0 akε akk

aεu1 aεu2 aεu3 0 aεk aεε

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

p
k
ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

bu1

bu2

bu3

bp

bk

bε

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.98)

For all N control volumes in the computational domain, the system of equations can be
summarized to:

A(Φ) · Φ = b(Φ) (3.99)

with A as a sparse coefficient matrix for all the conservation laws with the size GxG with
G = N · "number of unknown quantities per cell" , Φ as a vector of all unknowns of size G and
b as the right hand side. Since the entries of matrix A(Φ), as well as those on the right hand
side b(Φ), dependent on the unknowns Φ, eq. 3.99 is a nonlinear system of equations.

For the solution of the Navier-Stokes equation, two different approaches are possible:

� Segregated solution

In a segregated solver, the transport equations for the velocities and turbulent quanti-
ties, as well as for the conservation of mass, are solved in a sequential manner. To en-
sure the coupling of the equations, an iterative procedure is necessary. A certain pres-
sure distribution is assumed for the computation of the remaining unknowns. Once all
the other unknowns are computed, the pressure equation is solved and the pressure
distribution is corrected. In the next iteration step the corrected pressure distribution
is used to derive a solution for the remaining variables.

As pressure is used to correct the solution, this procedure is also known as pressure
correction method. A well-known solution algorithm based on this method is the
SIMPLE algorithm.

� Simultaneous solution

In a simultaneous solver, the system of equations is solved for all unknowns at once.
Compared to a segregated solver, this solution method demands for higher computa-
tional power and memory and is more robust.

For linearization of the nonlinear system of equations, Newton or quasi-Newton meth-
ods are applied. Full Newton methods are restricted to small or special types of applications
because of the high effort to compute the derivatives. Accordingly, approximate lineariza-
tion schemes are more common.

The linearized system can be solved by direct or iterative solvers. Because of the size
of the system of equations, iterative methods are preferred. Furthermore, the multi-grid

61



CHAPTER 3 MODELING OF WIND LOADS ON MEMBRANE STRUCTURES

method is an enhanced solution technique, which is well suited for CFD problems. Ap-
plying the multi-grid method, the equation system is solved on grids of different levels of
coarseness. Exemplary, in the common ’V-cycle’ procedure, the multi-grid solution is started
on the grid level with highest resolution. The results from the fine grid are transferred to
progressively coarser grids. On the coarser grid, the solution is performed again and results
on the coarser grid are transferred back to the finer grid. This procedure is done succes-
sively. It enables a fast damping of the small scale oscillations in the numerical solution and
thus increases the convergence of the solution.

3.3.7 Moving Boundaries

In many industrial applications the geometric boundaries of the fluid domain are not con-
stant but rather changing in time. In these cases, the computational grid has to be adapted.
The capacity to include moving boundaries into the CFD computation is essential for its
application to solve surface coupled FSI-problems introduced in the next chapter.

If the boundaries of the fluid domain are modified, such change has to be included into
the system of equations. An overview of different methods available for the treatment of
moving boundaries in fluid simulations is taken from [WGG+06] and includes:

� The Immersed Boundary Method [Pes02, MI05]

� The Distributed Lagrangian Multiplier / Fictious domain [Baa01, vLAdHB05, Zha05]

� eXtended Finite Element Method (XFEM) [BB99, GW06]

� Level-set methods [LCB06]

� Overlapping domain decomposition / Chimera-like methods [SDB83, WGG+06]

� Arbitrary Lagrangian-Eulerian (ALE) formulation [DHPRF04]

While the first four listed methods belong to the group of fixed-grid methods, in the ALE
method, the fluid mesh is adapted to the moving boundaries. These moving boundaries
need to be considered in the equations describing the fluid domain.

In the context of this work, moving boundaries are imposed via the continuous Arbi-
trary Lagrangian-Eulerian (ALE) formulation [DHPRF04]. This formulation brings together
the Lagrangian description, as used in section 2.2.1, and the Eulerian description introduced
in section 3.2.1. The local change of the boundary condition is spread throughout a certain
region of the computational grid, thus causing a change in volume and/or position of the
control volumes. Methods how to spread the local change of boundaries into the computa-
tional fluid domain are discussed in section 4.4.2.

In the following, the integral form of the general Reynolds transport equation eq. 3.84
is considered. With the ALE extension, volume V and surface S of the CV do not have to
remain constant but can be time-dependent values V(t), S(t). This has no influence on the
surface integrals in eq. 3.84 since they contain no derivatives with respect to time. They
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are evaluated at a specific point in time for which V and S are assumed constant. However,
the unsteady term requires modification. With the help of the Leibnitz’s law and the Gauss
theorem, the time dependent volume integral of the unsteady term can be transformed into
two terms: ∫

V
ρ

∂Φ
∂t

dV︸ ︷︷ ︸
AE

=
d
dt

∫
V

ρ Φ dV︸ ︷︷ ︸
AL

−
∫

S
ρ ug i Φ dSi︸ ︷︷ ︸

Kg

(3.100)

AE is the unsteady term of a fixed CV. AL is the unsteady term in the modified CV and Kg is
the convective flux through the surface of the CV due to its grid velocity ug i.

In order to describe the conservation of mass with the general Reynolds transport equa-
tion eq. 3.84 the following parameters Φ = 1, Γ = 0, and s = 0 have to be applied. In the case
of an incompressible flow, the AE term vanishes as the mass within a fixed control volume
has to be constant. The remaining equation is known as the "geometric conservation law"
(GCL) [FLM95, Wal99, Mok01] or the "space conservation law" (SCL) [FP99, Glü02, DP88]:

d
dt

∫
V

dV −
∫

S
ug i dSi = 0 (3.101)

The GCL condition states that between two time steps the volume swept over by the move-
ments of the cell boundaries equals the change of volume of the cell. For incompressible
problems, violations of the GCL result in artificial mass sources, which can accumulate and
compromise the computation [LF96]. The GCL can be introduced as an additional conserva-
tion equation [TL79] or can be integrated into the continuum equation [LF96]. The second
approach is more common as the GCL is automatically fulfilled, if the grid velocities are
consistently derived from the grid position with respect to the time-integration scheme. An
example of an implementation in the FV scheme can be found in [Glü02].

The difference between the physical, Eulerian fluid velocity ui and the velocity of the
grid movement ug i is the relative fluid velocity of the fluid motion compared to the grid
deformation. The conservation equations for scalar quantities are therefore easily derived by
replacing the velocity vector in the convective term with the relative velocity uc = ui − ug i.

For moving boundaries, the Reynolds transport equation with the ALE formulation for
a scalar quantity Φ reads as:

d
dt

∫
V

ρΦ dV︸ ︷︷ ︸
unsteady term︸ ︷︷ ︸

Lagrangian

+
∫

Si

ρΦui dSi︸ ︷︷ ︸
convective term︸ ︷︷ ︸

Eulerian

−
∫

Si

ρΦug i dSi︸ ︷︷ ︸
convective grid fluxes

−
∫

Si

ΓΦ
∂Φ
∂xi

dSi︸ ︷︷ ︸
diffusive term

=
∫

V
sΦ dV︸ ︷︷ ︸

source term

(3.102)

or further simplified as:

d
dt

∫
V

ρΦ dV︸ ︷︷ ︸
unsteady term

+
∫

Si

ρ
(
ui − ug i

)
Φ dSi︸ ︷︷ ︸

convective term︸ ︷︷ ︸
for moving boundaries (Lagrangian)

−
∫

Si

ΓΦ
∂Φ
∂xi

dSi︸ ︷︷ ︸
diffusive term

=
∫

V
sΦ dV︸ ︷︷ ︸

source term

(3.103)
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3.4 Application of CFD to Analyze Wind Loads on Membrane
Structures

In this section, the application of the fundamentals of fluid mechanics and the numerical
methods for the computation of wind loads on membrane structures is discussed.

Compared to the application of Computational Fluid Dynamics (CFD) in automotive or
aviation industry, using CFD in wind engineering is difficult because of the specific physics
of the wind flow. In the following, the wind flow is considered as the neutrally stratified
atmospheric boundary layer flow, properties of which are presented in section 3.4.3.

The application of numerical methods of fluid mechanics in wind engineering created
the rather young sub-discipline of Computational Wind Engineering (CWE), which deals
with the application of CFD in the context of the simulation of wind flow around buildings.

3.4.1 Computational Wind Engineering

In Computational Wind Engineering, the numerical simulations are typically based on the
Navier-Stokes equations. Recent advances in simulations based on the Lattice-Boltzmann
Method [MTB+08], [MCB+07] show very promising results.

For an application in wind engineering, CFD-based methods have the potential to pro-
vide the following advantages for the prediction of wind loads, assuming the realistic mod-
eling of the ABL flow:

� Simulation of wind effects on full scale models.

� Accessability of all relevant physical quantities in arbitrary points of the simulation
field.

� Flexibility for changes in geometry and design of the structure including the potential
for optimization.

State of the art in Computational Wind Engineering

The majority of computations of wind pressure on buildings refer to prismatic building
geometries. For these simple shapes, several experimental data is available, both from full
scale measurements and wind tunnel experiments. Among others, the famous Silsoe full
scale experiment [RHS01] is a valuable source of reference values. In [LM92b] and [LM92a]
further data is available based on full scale measurements at Texas Tech. Recent numerical
simulations that use prismatic geometries can be found in the works of Robertson et al.
[RHRF97], Gao et al. [Gao05], Cheng et al. [CLYS03], and many others. For more complex
geometries, fewer examples exists. Among other works, e.g. a CFD-based wind pressure
estimation for a complex building geometry was conducted by Suh et al. [SRK+97]. An
extensive analysis for a large optical telescope can be found in the work of Mamou et al.
[MCB+07, MTB+08].
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In the field of computational wind engineering, three major modeling issues have to be
resolved:

1. Generation of atmospheric boundary layer

For the generation of the atmospheric boundary layer in a numerical flow summations,
several strategies are available. Most common is the generation of averaged velocity
profiles and the distribution of the turbulence intensity according to meteorological
measurements [PSN97, Kov94]. For the simulation methods including a high resolu-
tion in the time domain, instead of the turbulence intensity, the spacial and time-wise
correlated velocity fluctuations of the wind can be used [UO99].

2. Modeling of turbulence

Murakami [Mur97] presented a comparison of results in CWE derived from the use
of different turbulence models, which is still valid. Dynamic Large Eddy Simulations
(LES) show the most promising results in many wind engineering applications. How-
ever, LES proved to be a very expensive variant in terms of computational effort. De-
pending on the application, sufficiently accurate results can be obtained by Reynolds-
averaging based turbulence models.

3. Robustness of simulation with respect to accuracy and reliability

Most studies are focused on the flow fields of buildings with prismatic shapes. Gener-
ally, good coincidence with experimental results has been achieved in the works listed
above. However, most of these simulations were focused on particular cases, partly
with experimental results a priori available. The ability to obtain these results cannot
be extended to the notion of being able to predict an arbitrary turbulent flow around
a complex building geometry. Hence, the applicability of the used techniques and the
accuracy of the results has to be evaluated anew for any new setup using CFD-based
simulations in wind engineering.

Up to now, wind engineers have been reluctant to use CWE results to compute design
loads for buildings. This could change, as with a further increase in computational power,
CWE, even with advanced turbulence modeling, comes into the reach of the practicing de-
signer. However, the accuracy of computations and the reliability of the results will always
largely depend on the training, experience, and qualification of the practitioner, who con-
ducts the simulations.

In principle, many state of the art CFD simulations have the capability to predict mean
wind pressures on buildings with reasonable accuracy. This enables the analysis of quasi-
static wind effects, such as the stagnation pressure, and can be used to derive wind loads
for cases, in which quasi-static effects are dominant. However, up to now, the modeling of
fluctuating and peak pressures is not sufficiently accurate [Hol01]. This limits the applica-
tion of CFD for cases, in which effects due to fluctuation wind pressure are decisive. The
reason for the insufficient representation of pressure fluctuations is primarily the necessity
to incorporate simplifying representations of the turbulence in the fluid flow equations, in
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order to keep the computational effort manageable (see sections 3.2.3 and 3.2.4). CFD tech-
niques are, however, currently capable of providing useful insights into wind flow around
buildings for environmental considerations.

According to Stathopoulos [Sta03], CWE is still in its infancy and in the foreseeable fu-
ture, CFD simulation will not replace the use of wind tunnel experiments. However, CWE
shows a huge potential, if not to replace, then to complement physical experiments.

Guidelines for CWE

To a large extent, CFD is an experience driven method. Besides a well-suited simulation soft-
ware, the quality of results largely depends on modeling issues. These modeling issues lie
in the responsibility of the user, who can handle them in a better or worse manner, depend-
ing to his knowledge and experience with CFD. Knowledge about CFD can be taken from
literature, especially textbooks and publications. A rich source of information and recom-
mendations are Best Practice Guidelines, which ideally summarize, condense, and discuss
the information from publications and textbooks.

Considerations about the discretization and solution of the underlying differential equa-
tions are common for all applications of CFD. These aspects depend rather on the underly-
ing flow regime than the specific application. For industrial applications of Computational
Fluid Dynamics, several Best Practice Guidelines exist. Among others, here the ERCOF-
TAC guideline [ERC02], which constitutes generic advice on how to carry out quality CFD
calculations, shall be mentioned. Menter proposed an extended version in the scope of
the ECORA project in [Mea02]. Further guidelines have been proposed by the Thematic
Network for Quality and Trust in the Industrial Application of CFD (QNET-CFD). The EU-
funded, collaborative project QNET-CFD provides a collection of CFD-related knowledge
and know-how across a range of applications from a wide variety of sources [QNE08].

However, these guidelines are not specific to the application of CFD in the scope of CWE.
For the simulation of pedestrian wind in built urban areas, the working group of the COST
action C14 proposed a guideline in [FHJ+04]. A further guideline is proposed for the predic-
tion of flow and transport processes in urban or industrial environments by working group
COST action 732 [FHSC07]. The German ’Verein Deutscher Ingenieure’ (VDI) published
a guideline on the simulation of micro scale flow fields around obstacles and buildings
[Ver05]. Even though these guidelines concentrate mainly on the prediction of wind com-
fort and the pollution dispersion, they can also be applied to the prediction of wind loading
[Fra07]. A guideline including the numerical prediction of wind loading in Japanese [Arc05]
and in a short version in English [TNK08] and [TMY+08] is provided by the Architectural
Institute of Japan. Additional recommendations on the setup of a numerical model for the
simulation of wind loads on buildings was published by Franke in [Fra06].

All specific guidelines for CWE focus on the recommendations for correct physical mod-
eling of the flow condition, the Atmospheric Boundary Layer (ABL). In the following, the
properties of the air flow within the ABL shall be discussed. Based on the properties of
the ABL, modeling aspects specific to CWE are presented. Using the guidelines presented
above, together with recent publications, suitable physical models and boundary conditions
are identified. Regarding aspects of general CFD, e.g. the required quality and resolution
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of the computational grid, the choice of numerical approximations, the time-step size, and
the iterative convergence criteria, the general guidelines for CFD computations mentioned
above are recommended together with the specific literature.

3.4.2 Definition of the Target Results

For the prediction of wind loads on conventional buildings or its parts, Tamura et al.
[TNK08] suggest a classification into two applications with different requirements (see
fig. 3.3):

1. Wind loads on cladding

Peak wind pressure coefficients must be calculated from the CFD results (fig. 3.3(a) ).
Thereby, size effects have to be included. These can be evaluated by a filtering method
or spatial integration [Arc04]. However, time history data of the fluctuating wind
pressure, which can only be obtained by transient analysis, is necessary.

2. Wind loads on structural frames

For the computation of the structural load, RANS and LES simulations can be used
(fig. 3.3(b) ). The loadings can be calculated by multiplying wind loads based on a
mean flow field with a gust factor [Arc04] or by spectral analysis or time-history re-
sponse analysis of time dependent data. Alternatively, the load on the structural frame
can be computed directly, using methods of fluid-structure interaction.

This separation into a ’larger scale’ point of view and a local point of view corresponds
to the distinction found in building codes such as the DIN 1055-4 [Nor05a], where the com-
putation of wind loads is separated for small surfaces areas (e.g. for cpe,1) and larger surface
areas (e.g. for cpe,10), as explained in chap. 3.1.

The important consideration, which arises from the two approaches presented in fig. 3.3,
is the decision, whether a time-dependent (transient) or a steady-state physical model will
be necessary for the analysis. In general, with the use of further interpretation, steady-
state results can be retrieved from transient analysis. Moreover, a time-dependent approach
is considered to yield more accurate results than steady-state, time averaged simulations
[FHJ+04]. Therefore, transient computations can be regarded as advantageous. However, to
compute transient results an extremely higher computational effort is necessary compared
to steady-state results. Therefore, the requirements of the analysis should be checked as a
first step in CWE, in order to decide, which kind of target results shall be obtained from the
simulation and what methods are necessary to compute these results.

In the scope of this work, Reynolds-averaged methods are used to describe the turbulent
wind flow. As presented in section 3.2.3, the influence of turbulence is modeled by averaged
turbulence quantities in RANS methods. Thereby, the effects of turbulence on a building can
only be considered in averaged means. Accordingly, small scale fluctuations in wind speed
and direction are not explicitly present in the model. Due to the missing representation
of statistically sufficient fluctuations of wind turbulence of all important scales, it is not
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Figure 3.3: AIJ recommendation for the prediction of wind loads using CFD. [TNK08]

possible to directly generate design loads based on RANS computations, as illustrated in
fig. 3.3.

Therefore, the current work can be considered along the upper line of fig. 3.3b in deter-
mining the mean wind load. Within this chapter, this is done by computing cp values for
the membrane structure. Additionally, the computation of dimensionless c p values enables
a comparison with wind tunnel experiments. Further consideration of the significance and
applicability of the obtained results are discussed in section 5.2.

3.4.3 Properties of the Neutrally Stratified Atmospheric Boundary Layer

In order to correctly model the wind flow within an Atmospheric Boundary Layer (ABL) in
a numerical model, the main characteristics of the ABL wind flow have to be understood.
Therefore, preceding further consideration of the CFD models in CWE, in this section, the
distribution of velocity, turbulence, and reference wind speed of the ABL is discussed.

The friction of air moving over the ground influences the wind flow, which results in
the ABL wind flow. The depth of the atmospheric boundary layer varies between a few
hundred meters and several kilometers, depending on wind velocity, roughness of terrain,
and angle of latitude [SS96]. The properties of the air flow within the atmospheric bound-
ary layer are essential for wind engineering as buildings are located on the Earth’s surface,
thus within the ABL. In the following section, the properties of the atmospheric boundary
layer shall be analyzed. The focus of the analysis lies on a neutrally or stably stratified at-
mospheric boundary layer as it is characteristic for strong wind events. The characteristic
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of a neutrally stratified atmospheric boundary layer is, that the mechanically produced tur-
bulence is dominant over the convective turbulence produced by an unstable temperature
gradient over height [Ver06]. Accordingly, effects due to convective instability and thermal
mixing through convection can be neglected. Thereby, the correct prediction of wind effect
due to local meteorological events, such as thunderstorms or tornados, is only limited for
analysis based on the neutrally stratified ABL.

3.4.3.1 Mean Velocity Profiles

Analyzing the air flow around a building, as a first step, a constant thickness and horizontal
homogeneity of the boundary layer flow can be assumed [SS96]. The boundary layer itself
can be divided into three different sublayers:

� laminar / viscose sublayer on the ground

� Prandl-layer or surface layer

� the Ekman-layer

The thickness of the Prandl-layer is assumed to be 10-15% of the thickness of the atmospheric
boundary layer. Within the Prandl-layer, the deviation of the flow direction to the gradient
flow direction, which occurs due to friction of the air flow on the surface and the Earth’s ro-
tation, is regarded as constant with an angle between 6° and 30° in the northern hemisphere
[Zur69, SS96]. Within the Ekman layer, Lawson [Law80] suggests a linear relation between
a decreasing effect of this deflection and an increasing height. As a consequence, except for
super tall buildings, the deflection of the wind flow over height, and thus, the change of
wind direction over the height of a building, has a negligible influence on the wind load
assumptions [Hol04, SS96].

The logarithmic law

With the knowledge about the distribution of wind speed over height, the wind speed at any
specific height in the ABL can be determined, if a reference wind speed at a specific height is
specified. According to the World Meteorological Organization (WMO), the reference mean
wind speed is measured at a height of 10m. To describe the wind speed distribution over
height, two approaches are common: the power law and the logarithmic law. Currently,
the logarithmic law is regarded as superior to represent strong wind profiles in the lower
atmosphere. The effects of the earth’s rotation, the Coriolis force, and the molecular velocity
are neglected [Hol01].

Similar to the boundary layer flow over an arbitrary even surface, the wind velocity dis-
tribution over the ground can be described by a logarithmic law using eq. 3.104. Thereby,
the logarithmic law has a profound theoretical basis for fully developed flow over homoge-
neous terrain. However, the supposed ideal flow and surface conditions are rarely met in
practice.

u(z) =
uτ

κ
ln(

z
z0

) (3.104)
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Eq. 3.104 describes the mean wind speed u(z) depending on the height z over ground, z 0

as the roughness length, and κ as the Kàrmàn’s constant, which is generally assumed as
κ � 0.4. uτ is the frictional velocity and related to the ground roughness. It can be deter-
mined by using eq. 3.105:

τ0 = ρu2
τ (3.105)

with τ0 as the ground shear force and ρ as the density of air. For practical purposes, eq.
3.106 can be derived from eq. 3.104 in order to relate the wind speed at a certain height to
the reference wind speed:

u(z)
u(zre f )

=
ln(z/z0)

ln(zre f /z0)
(3.106)

The logarithmic law is only valid, if the height of the roughness elements is finite. Oth-
erwise, a modification of equation 3.104 is necessary: the logarithmic velocity distribution
is applied including an offset to the ground:

z = zg − zd (3.107)

where zg is the height above the ground and zd is a length known as the zero plane displace-
ment. The quantity z is called the effective height and used instead of z in eq. 3.104 and in
eq. 3.106 respectively (see fig. 3.5).

u(z)

z

z0

Figure 3.4: Velocity distribution in the bound-
ary layer [Huc02]

Figure 3.5: Roughness and effective height

The parameters z0 and zd are empirical and depend on the nature, height, and distribu-
tion of the roughness elements. The roughness length z 0 is a measure of the eddy size at the
ground. Based on extensive full-scale measurement, the values in table 3.2 are suggested by
[SS96] for surface roughness length z0 (in conjunction with the assumption zd = 0).

The zero plane displacement zd can be estimated by a fraction of the height of the rough-
ness elements, which is zd

h = 2
3 according to [Huc02], or zd

h = 3
4 according to [Hol01]. For

practical purposes, the concept of the effective height introduces complications in that the
logarithmic function can not be evaluated for a height zg that is smaller than zd and is diffi-
cult to integrate.
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Type of Surface z0[m]
Sand 0.001-0.01
Snow surface 0.01-0.06
Mown grass ( 0.01 m) 0.01-0.1
Low grass, steppe 0.1-0.4
Fallow field 0.2-0.3
High Grass 0.4-1.0
Palmetto 1-3
Pine forest (mean tree height: 15 m; one tree per m2) 9-10
Sparsely built-up suburbs 2-4
Densely built up suburbs, towns 8-12
Centers of large cities 20-30

Table 3.2: Values for surface roughness length [SS96]

Change of Terrain

When strong winds in a fully-developed boundary layer encounter a change of surface
roughness, an adaptation of the flow occurs. After a certain transition zone, the shape of the
velocity distribution has the characteristics of the new terrain. The length of the transition
zone is in the range of several hundred meters to several kilometers. Detailed approaches
with regards to the size of the transition zone and the velocity distribution within this zone
can be found in [Hol01, SS96, Soc94].

3.4.3.2 Turbulence in the ABL Flow

The wind over the ground is not homogenous in time and space. At a certain height, the
wind is subject to local variations of speed and direction. Momentary increases in wind
speed are called wind gusts. Due to this fluctuating behavior, properties of wind within the
atmospheric boundary layer are described by statistical methods. Wind speed in the three
spacial directions x, y, z is divided into constant mean wind speeds ui and time-dependent
turbulence components u′

i representing the fluctuation in wind speed:

ui(t) = ui + u′
i (3.108)

The mean wind speed ui is calculated as:

ui =
1

ΔT

∫ t0+ΔT

t0

ui(t) dt (3.109)

with u′
i(t) = 0 . ui is dependent on the averaging time interval ΔT. For a smaller averaging

time, a higher maximum wind velocity is determined.
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Turbulence Intensity:

The ratio of the standard deviation σui of the fluctuating component and the mean wind
speed is known as the turbulence intensity of that component:

Ii =
σui

ui
(3.110)

with σui =
√

1
ΔT

(∫ ΔT
0 [ui(t) − ui]

2 dt
)

and ΔT as averaging time interval.

As the frictional effect of the surface roughness decreases with increasing height, so does
the turbulence intensity. Approximately, I1, the turbulence intensity in longitudinal direc-
tion at a certain height z, can be determined by eq. 3.111.

I1 =
1

ln(z/z0)
(3.111)

The lateral and vertical turbulence intensities I2 in lateral direction and I3 in vertical direc-
tion are usually smaller than the longitudinal turbulence intensity I1. Estimated ratios for
the turbulence intensities in different directions are presented in table 3.3.

Source I1 I2 I3

[Soc94] 1 0.75 0.5
[Hol01] 1 0.88 0.55

Table 3.3: Ratio of longitudinal to lateral and vertical turbulence intensity.

For a time-dependent numerical analysis, the fluctuation of the velocities has to be ex-
plicitly represented in the numerical model. Therefore, additionally to the turbulence inten-
sity, the following characteristics of the ABL flow have be be considered:

� Spectrum of turbulence

The energy of turbulence varies over the frequency of the turbulent effect. The spectral
density of turbulence is used to describe this distribution of turbulent kinetic energy
over a frequency range. The spectral energy distribution of the wind turbulence is of
high interest for a comparison with building eigenfrequencies, in order to assess the
possible excitation of vibrations due to buffeting effects.

� Spatial correlation of turbulence

The spatial correlation of wind turbulence enables the determination of gust sizes by
relating the velocity at two different points in space, e.g. two points on the surface of
a building. This is an important quantity for the calculation of fluctuating wind loads
for big size constructions, such as large roofs or tall towers.
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3.4.3.3 Determination of the Reference Wind Speed

In section 3.4.3.1 and section 3.4.3.2, the relative distribution of velocity and the turbulence
intensity in the ABL were presented. However, no indication has been provided about the
scale of the occurring wind speeds.

For making a rational decision in the design process on the magnitude of wind loads,
the extreme wind conditions, which might affect the structure during its lifetime, have to
be estimated. Procedures for estimating extreme winds are based on probabilistic meth-
ods applied on parent data measured by meteorological stations. According to extensive
measurements, the total population of wind speed is usually fitted by a Weibull-type dis-
tribution [Soc94, Hol01, Law80]. The asymptotic extreme value distribution for the Weibull
parent distribution is the Gumbel (extreme value type I) distribution. However, since the
events of high wind speeds measured in the parent data are generally not statistically in-
dependent , it proved to be advantageous to consider only the annual maxima of the wind
speed and fit these measurements to an appropriate probability distribution [Soc94, Hol01].

Within this work, the reference wind speed of the German DIN 1055-4:2005-3 [Nor05a] is
used as average wind speed at a height of 10 m. In DIN 1055-4:2005-3, the map of Germany
is divided into four zones with different reference wind speeds. For each wind zone, a
specific reference wind speed ure f is given. ure f is derived by averaging the wind speed in a
time-interval of 10 minutes at a height of 10 m for a terrain category II, which corresponds
to a surface roughness length of z0 = 0.05 (see tab. 3.2). The probability of exceedance of the
mean wind speed within one year is 0.02, which corresponds to return period of 50 years. It
should be noted, that ure f is not the design wind speed according to DIN 1055-4:2005-3.

3.4.4 Definition of the Physical Model

In virtually all practical aerodynamic problems, the fluid can be assumed to be Newto-
nian [And08]. Density fluctuations in conservation of mass equation are ignored, since the
considered flow is substantially subsonic [PSN97]. Navier-Stokes equations for Newtonian
fluid and non-compressible flow condition can be applied (eq. 3.25, 3.26).

CWE features a fluid with a low viscosity in large domains at moderate fluid velocities.
This postulates a highly turbulent flow with high Re-numbers. Therefore, Direct Numerical
Simulation (DNS) is not possible, since in practice, the resolution of all relevant scales of
turbulence is not possible.

RANS based turbulence modeling

The most widely used approach for turbulence model in CWE is RANS, based on the
Reynolds averaged Navier-Stokes equations (eq. 3.38) introduced in section 3.2.3. The use of
the standard k-ε turbulence model in its original form is not recommended due to the stag-
nation point anomaly discussed above. Improved models such as the renormalization group
(RNG) k-ε turbulence model [YO86] (e.g. applied in [ZGZ05]), the realizable k-ε turbulence
model [SLS+95] (e.g. applied in [SvBRO02]), or the SST k-ω turbulence model [Men93] (e.g.

73



CHAPTER 3 MODELING OF WIND LOADS ON MEMBRANE STRUCTURES

applied in [LAF08]) are preferable. Besides the choice of turbulence modeling, the adjust-
ment of the parameters used in these models can significantly increase their performance
[Lóp02], [YQX+08]. Nonlinear eddy viscosity models are expected to provide better results,
as they are able to model anisotropy in the Reynolds stresses [FHJ+04]. In a comparison of
non-linear models, Ehrhard et al. [EKM00] found only one model suitable for application
to ABL flow and ascribed this fact to a lack of calibration towards CWE of the other mod-
els. Reynolds stress models showed higher computational effort due to additional transport
equations and to the requirement of high quality computational grids [FHJ+04]. Compar-
isons of the performance of different RANS based turbulence models can be found among
others in [Mur97], [RHS01], [Sta97], [Unh04], [Eas00], [LAF08]. These comparisons come to
different, sometimes contradicting conclusions about the performance of RANS models for
different types of applications.

Models used for statistically steady RANS can be extended for time dependent simula-
tions to Unsteady RANS (URANS) models. This allows for simulating temporal changes in
the flow field. Since URANS requires a rather high spatial resolution, LES and DES simula-
tions are usually preferred for unsteady simulations [FHSC07].

LES based turbulence modeling

Recent increase in computational power as well as algorithmic improvements are provid-
ing the possibility of carrying out LES simulations for flow around actual shaped build-
ings within a reasonable computational time [TNK08]. For bluff body flows, LES or hybrid
methods such as DES are expected to provide better results at higher computational costs
compared to RANS models [Rod97] [FHJ+04] [XC06]. In contrast to RANS, in an LES/DES
simulation, not only data about the mean flow field, but also more detailed information
about fluctuations in the flow are acquired. This enables a detailed analysis, especially with
respect to extreme values. However, in order to derive highly detailed results, boundary
conditions with the same level of detail are required. Otherwise, for example for insufficient
modeling of inflow turbulence, Tamura et al. [TNK08] found LES simulations to give worse
results, as compared to RANS. The requirement of highly resolved and well documented
boundary conditions is difficult to meet, as data of this quality is rarely available in CWE
[FHSC07].

3.4.5 Definition of the Computational Domain.

The setup of the computational domain defines the area in which the CFD analysis is con-
ducted. For a detailed discussion and literature review of the definition of the computational
domain, see [FHJ+04], [Fra06], or [FHSC07].

The real world ABL extends for a considerable distance over the Earth’s surface and
has a height of several hundreds of meters. Because of limitations in computational re-
sources and the complexity of the required meteorological models, a CFD simulation can
only represent a smaller finite horizontal distance and a limited height in the computational
domain. This computational domain has to be big enough to enclose the area of interest
and large enough to contain the largest energetically relevant flow structure [FHSC07]. The

74



3.4 Application of CFD to Analyze Wind Loads on Membrane Structures

environment around the computational domain has to be represented or approximated by
appropriate boundary conditions.

Obstacles, such as buildings, topology, or large plants in front of the area of interest shall
be explicitly modeled, if their distance to the building of interest dn is smaller than 6 − 10
times their height Hn [FHSC07].

3.4.5.1 Size of the Computational Domain

Since the computational domain can be seen as the resemblance of an experimental wind
tunnel, requirements similar to those for experimental wind tunnels can be identified. In
the following, a computational domain with a rectangular floor plan is assumed.

The cross-section of the computational domain around the area of interest has to be large
enough, so that it does not influence the flow conditions at the buildings. According to
[Fra06], the distance above the area of interest is recommended to be 5 − 6Hmax with Hmax

as the maximum height of the buildings. For the lateral direction, a distance of 5Hmax is
recommended. For a building with a quadratic cross section (height = width), this leads to
a cross section area of the computational domain of

AQS = (5 − 6)Hmax · ((2 · 5Hmax) + Hmax) = 55 − 66H2
max (3.112)

and to a blocking ratio of

H2
max/AQS · 100% = 1.5% − 1.8%. (3.113)

Generally, in CFD a minimum blocking ratio of 3% is recommended, which is more than
fulfilled for the cross-section dimensions recommended here. In case the cross-section of the
building’s windward side is considerably large in its width as compared to its height, the
cross-section of the domain should resemble this width/heigth-ratio.

In case of comparison with wind tunnel experiments, the computational domain should
be chosen to represent the wind tunnel. Thereby, the CFD model can accurately resem-
ble the geometry of the experiment. However, if the wind tunnel cross-section dimensions
are larger than the dimensions given above, the size of the computational domain can be
reduced.

If the inflow conditions are well-known, a distance of 5Hmax between inflow boundary
and area of interest should be kept. For unknown inflow conditions, the usage of a longer
distance can allow a realistic flow establishment. Depending on the outflow boundary con-
dition, the outflow boundary should have a distance of 10− 15Hmax from the area of interest
to allow for flow development. Fig. 3.6 visualizes these required distances.

3.4.5.2 Level of Details

Details of buildings, such as facades and small structural members are of secondary interest
compared to the overall mass distribution of the building and its surroundings. The level of
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Figure 3.6: Recommendation for the dimension of the computational domain. [Fra06]

detail required for the surrounding can decrease with increasing distance from the area of
interest. Generally, the required level of detail depends on the application and the specific
area of interest. For example, modeling surface pressures on a roof has higher demands for
level of detail than modeling of pollution dispersion from a high stack. The level of detail
also depends on the possible grid resolution. General recommendations with respect of the
level of detail are not feasible and, in case, sensitivity should be checked by a set of similar
examples with different detail level.

3.4.5.3 Boundary Conditions

In contrast to wind tunnel experiments, the real world wind flow near the surface is not
enclosed by boundaries other than the ground and can develop along a considerable dis-
tance to a neutrally stratified Atmospheric Boundary Layer (ABL). In a simulation, the ap-
propriate boundary conditions have to account for the influence of the shorter length on
flow development and the artificial surroundings limiting the modeled domain. The cor-
rect choice of the boundary conditions is crucial for the accuracy of the solution. However,
these boundary conditions are usually not fully known. Therefore, the distance between the
boundary and the area of interest has to be large enough, so that the uncertainties in the
boundary conditions do not influence the solution [FHSC07].

Inflow boundary conditions

Information about the wind speed at the reference height can be taken from meteorological
measurements or building codes. At the inflow condition, the flow of a fully developed,
neutrally stratified ABL should be described, which corresponds to upwind terrain and can
be characterized by the upstream surface roughness length z0 introduced in section 3.4.3.
To prescribe an ABL flow, the distribution of the mean velocity and also the distribution of
turbulent quantities, e.g. for RANS simulations, the turbulent energy k and the dissipation
rate ε, have to be included. For the standard k-ε turbulence model, Richards and Hoxey
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[RH93] proposed the following distributions for a fully developed, neutrally stratified ABL:

u =
u∗
κ

ln
(

z + z0

z0

)
(3.114)

k =
u2∗√
Cμ

with u∗ =
√

τw

ρ
(3.115)

ε =
u3∗

κ(z + z0)
(3.116)

with κ = 0.4 as the von Kàrmàn’s constant, Cμ = 0.09 as a constant of the turbulence
model and τw as the shear stress, which is assumed constant throughout the boundary layer.
In the case of comparison with wind tunnel results, the distributions measured in the exper-
iment can be used.

For the accuracy of the simulation, it is essential, that the prescribed ABL flow-profiles
are maintained up to the area of interest. With the use of standard turbulence models and
wall functions this is generally not possible as velocity and turbulence profiles decay, even
in the absence of obstacles [HW06]. This decay in velocity and turbulent quantities is mainly
due to the roughness length used in the wall functions and the top boundary condition (see
below). In order to achieve constant distributions of velocity and turbulent quantities over
the length of the domain, the profiles obtained in a preliminary simulation of an empty do-
main with identical computational grid and periodic boundary conditions can be prescribed
at the inflow boundary [WE99]. The parameters of this empty domain simulation have to
be adjusted so that the resulting profiles fit the meteorological measurements. Additionally,
roughness elements can be introduced into the empty domain to enhance the comparability
with turbulence generation in wind tunnel experiments.

For unsteady simulations such as LES and URANS, time dependent inflow boundary
conditions are required. Using periodic boundary conditions for the simulation of an empty
fetch [TMP06] or a fetch with roughness elements [NT02] have been applied for LES simu-
lations with success. Another possibility is to use statistical data based on measurements to
generate a corresponding artificial inflow data [KMM97], [FKB+08].

Wall boundary conditions

In wind engineering, the surface roughness is usually specified by the roughness length
z0. For the simulation of rough walls, many general purpose CFD codes use the roughness
height ks as measurement for the sand-roughness of a surface. For a fully rough surface and
a logarithmic velocity profile, the relation of ks and z0 can be assumed as [FHJ+04], [BSC07],
[Fra06]:

ks ≈ 30z0 (3.117)

Using this relation, the roughness height of flow in suburban (z0 = 0.3 m) and urban
(z0 = 1.0 m) environment is in the range of ks = 9 m−30 m. In order to maintain the correct
profile of the boundary layer flow, this roughness height should be maintained.

However, for the use of wall functions, the cell center closest to the wall is required to
have distance larger than ks to the wall. For ABL flow in urban territory, this leads to an

77



CHAPTER 3 MODELING OF WIND LOADS ON MEMBRANE STRUCTURES

extremely large grid resolution close to the ground. Consequently, for the use of standard
boundary conditions a dilemma between using the correct roughness height to maintain the
ABL flow profiles and achieving an adequate grid resolution near the surface exists.

Hargreaves and Wright [HW06] used the commercial CFD codes Ansys CFX and An-
sys Fluent with standard k-ε turbulence model and standard wall functions to analyze this
problem. For the relation ks ≈ 20z0, which allows for slightly better resolution than the ra-
tio presented above, a significant change in the distribution of the turbulent kinetic energy
along the flow direction of an empty fetch was found. Hargreaves and Wright state that this
problem can only be resolved by the introduction of modified wall functions, e.g. those sug-
gested by Richards and Hoxey [RH93]. Blocken et al [BSC07] experienced similar deviation
of flow profiles and suggest several remedial measures for improvement.

Top boundary condition

The real world ABL flow is driven by the geostrophic wind, while its energy is removed by
friction over the ground. For a neutrally stratified ABL this results in a constant shear stress
of the height. Ideally, the flow in the computational domain should resemble this constant
shear stress along the fetch. To achieve this, at the top boundary condition a constant shear
stress, which corresponds to the chosen inflow velocity profile, is recommended [FHSC07].
Blocken et al. [BSC07] suggest prescribing the top values of the inflow profile to the top
boundary along the whole domain.

Lateral and outflow boundary conditions

Lateral and outflow boundary conditions have to be chosen in an appropriate way, so that
they don’t influence the flow at the area of interest. Usually symmetric boundary conditions
for the lateral boundaries are sufficient, if the distance between them and the area of interest
is large enough.

Different boundary conditions can be used for the outlet boundary, assuming that the
distance to the area of interest is large enough for the flow to develop.

3.4.6 Validation and Application

Assuming a well tested and certified software, the verification of the software and the nu-
merical modeling is necessary. This includes studies on the domain size, mesh resolution,
and applicability of turbulence modeling. To quantify numerical errors from the grid reso-
lution, Franke et al. [FHSC07] suggest a systematic grid convergence study using Richard-
son extrapolation. If restrictions of the computational capacities limit a uniform refinement,
studies on local grid refinement should be carried out. Generally, at least computations with
two different settings of unknown or unsure modeling aspects should be tried in order to
assess the sensitivities [Mea02], [Ver05]. Before the simulation over obstacles is done, anal-
ysis should be carried out, whether the chosen grid and boundary conditions are consistent
and no substantial change in the specified ABL boundary profiles occurs [FHSC07].

Even in case of a well verified software and an experienced user, CFD-based results still
have to be checked for correct physical modeling. Due to the uncertainties in the CFD sim-
ulation, especially for problems of wind engineering, as presented above, the validation of
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the solution is an essential requirement. In the scope of design loads, CFD results without
validation by experiments are still regarded as critical. Validation has to be carried out with
respect to target values defined for the problem. Relative or absolute values can be com-
pared. As a possibility to assess the difference between values from physical and numerical
experiments, a hit rate is suggested by the VDI guideline [Ver05].

For the validation of CFD-based results, two possibilities exist:

� Comparison with wind tunnel experiments

For the comparison with wind tunnel experiments, small scale models are simulated
by CFD computations. The physical experiments have to fulfill certain criteria, with
respect to completeness and accuracy of the measured data, to enable the comparison
with CFD results. The well controlled conditions of the wind tunnel provide the pos-
sibility to derive steady-state results for the comparison with RANS models and time-
dependent results for the comparison with URANS and LES models. The database
CEDVAL [Met04] at the Hamburg University compiles high quality wind tunnel ex-
periments for the validation of numerical dispersion models and is available online.

� Comparison with full scale experiments

The comparison with full scale experiments is more difficult, since boundary condi-
tions are most likely unknown or have large uncertainties. For the comparison with
steady-state results, a constant flow condition is necessary, which is naturally only
given for a time span of few minutes. This excludes to some degree the possibility
for the validation of RANS models, which are based on time-averaging [TNK08]. The
numerical simulation of highly turbulent wind flow around full scale buildings also
requires an elaborate validation of the physical models used, as high computational
effort poses limits to the computational domain and/or resolution.

Validated and, in case, adjusted simulations offer the possibility to extend the analysis
based on the small scale wind tunnel models beyond the limits of physical wind tunnel
experiments, e.g. more detailed analysis of the flow conditions or direct simulation of fluid-
structure interaction. Parameter studies for modified geometries within some limits are also
possible.

Furthermore, for similar problems with respect to geometry and flow regime, the mod-
eling aspects of a validated problem can be extended to a slightly modified setup, enabling
parameter studies on geometrical changes as well as reducing the validation effort for new
examples. However, with decreasing similarity between the settings, the uncertainties about
the modeling aspects increase.

3.5 Example: Static Wind Load Analysis of ARIES Using Ansys
CFX

The numerical principles of Computational Fluid Dynamics, which have been introduced
in section 3.3, are now applied to compute the wind loading on the ARIES canopy structure.
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Thereby, the modeling aspects for the neutrally stratified atmospheric boundary layer flow
in general and their application to wind engineering in particular are applied. For the flow
simulation, the CFD software Ansys CFX 11 is used.

3.5.1 Ansys CFX Software Package

Ansys CFX is a commercial multipurpose CFD solver. Its originates in the program CFX-4,
formerly known as Flow3D. Its developement started as an in-house code of the United
Kingdom Atomic Energy Authority (UKAEA) as early as the late 1980s and was commer-
cialized in the mid 1990s. Before becoming part of Ansys Inc. in 2006, CFX was developed
by AEA Technology.

Ansys CFX is applied for a large range of applications, from analyzing flow around ship
hulls to aircraft turbines. Computations in the scope of wind engineering, in which CFX is
used, can be found, among others, in the works of Easom [Eas00], Knapp [Kna07], Yang et
al. [YQX+08], and Wevers [Wev08]

For this research, CFX was chosen on basis of the following reasons:

� CFX has state of the art features of CFD computations.

� CFX is widely used in industry and thus has been validated for different test cases in
various application areas.

� CFX is subject to steady development and rapid implementation of new models and
methods for CFD simulation.

� CFX software support, formerly performed by AEA Technology and later by Ansys
Inc., enabled the implementation and realization of a multi-physics environment using
the in-house CSD code CARAT.

In contrast to the standard discretization scheme for the Finite Volume Method (FVM),
presented in section 3.3.1, the control volumes (CVs) used by CFX are not identical to the
grid volume elements. CFX uses the grid nodes as centroids of its CVs, which is illustrated
in fig. 3.7 for a 2D case.

Surface and volume integrals are evaluated for the surface and volume parts, in the 2D
case in fig. 3.7 on the four gray surface parts. Ansys CFX uses a co-located (non-staggered)
grid layout. In order to avoid oscillations in the pressure field caused by the decoupling of
the pressure field, the advection velocity at each integration point is modified. More details
about the CFX solver theory are available in the respective documentation [CFX06].

CFX offers several options for the discretization of the convective term. In the following
computations, a first solution was obtained using the Upwind Advection Scheme. This
solution was used for preconditioning further simulations as initial value data. All final
results were computed using the High Resolution Scheme, which is first order accurate near
discontinuities and otherwise second order accurate.
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Control volume (CV)
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Figure 3.7: Control volume definition in Ansys CFX.

Fig. 3.8 shows a flowchart of the solution scheme used by CFX in the case of moving
meshes. The coefficient iteration loop is the solver loop and the time-step loop runs over
all time-steps, until the specified maximum simulation time is reached. The solution of the
mesh displacement for the ALE approach, as explained in section 4.5.2, can be performed
before every new time-step or before every coefficient interaction step. This feature will be
elaborated on in section 4.5.2.
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Figure 3.8: Solution scheme of Ansys CFX.
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3.5.2 Example Setup

The wind effect on the ARIES canopy structure shall be analyzed using CFX. The best prac-
tice guidelines, which have been introduced above, are followed to realize an appropriate
ABL flow.

Numerical full scale analysis

As the structure should be subject to analysis of fluid-structure interaction, the usage of a
downscaled structural model, such as used in the wind tunnel, is not possible. This is due
to the model laws, which have to be fulfilled for a small scale model, if it should represent
the static and dynamic behavior of the structural model. Even so, the setup of an equivalent
small scale model in a numerical way is much easier than the one for a physical experiment,
it still introduces further complications and uncertainties. Therefore, a full scale structural
model, which was already introduced in section 2.4, is applied.

The geometry of the full scale structural model is used for the resemblance of the rigid
canopy structure in the CFD computation. The lattice cantilevers supporting the membrane
are not modeled in the CFD computation. Only the membrane and the tribune resemble
the canopy structure. Within this work, it is assumed that the flow conditions around the
membrane structure do not significantly change whether the lattice structures are included
or not. For considerations about the wind pressure on the lattice structure, which arise for
the computations of fluid-structure interaction, it is further assumed, that the majority of the
loads are due to the wind effects on the membrane. Thus neglecting the cantilever structures
is expected to have a limited effect on the results. The tribune is included in the CFD model,
since it has a crucial influence on the flow conditions at the lower end of the membrane.

Wind directions and conditions

Same as in the wind tunnel experiments, in the CFD computation the wind direction of
interest is parallel to the axis of symmetry of the ARIES structure. The wind directions are
named "wind from the front" and "wind from the back" with respect to the canopy structure.
The "wind from the back" situation is with main fluid flow in positive x-direction, and "wind
from the front" with the main fluid flow against the positive x-direction with respect to
fig. 3.10.

Upstream of the canopy structure, no large objects are assumed. The canopy is placed on
a terrain category 1 according to DIN EN1055-4.2005-03 [Nor05a]. This corresponds to the
location next to a large lake or on a flat countryside without large obstacles. The upstream
roughness length is assumed to be z0 = 0.01m. The location is chosen to be in Germany
in wind zone II, which provides a reference wind speed of ure f = 25 m/s for a 10 minute-
average measurement at a height of 10 m above the ground with the exceedance probability
of 2% in one year (see section 3.4.3.3).

3.5.2.1 The Computational Domain

The general idea in setting up the computational grid for the CFD simulation is to introduce
two domains with different discretizations:
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� One larger outer domain with coarse discretization and hexahedral control volumes.

� One smaller inner domain, which contains the canopy structure, with finer discretiza-
tion and tetrahedral as well as prism type control volumes.

For the analysis of the two wind directions of interest, the same outer domain is used.
The inner domain is rotated by 180° around the vertical axis. Thus, without major changes
in the setup of the computational domain and its discretization, both wind directions can be
analyzed.

Outer domain

A coarser discretization is applied in the outer domain. On the one hand, this enables a
reduction in computational effort, as less finite volume elements are used, and therefore,
less degrees of freedom need to be computed. On the other hand, the requirement for the
correct functioning of the wall functions concerning the distance of the first CV centroid
from the rough wall is met by a coarse discretization at the lower boundary of the domain.
For the discretization of the outer domain only hexahedral elements are used. Close to the
boundaries of the inner domain, the element size is reduced, while towards the inlet and the
outlet boundary, the element size in longitudinal direction is increased.

The outer domain is created large enough to minimize the influence on the boundaries,
as explained in section 3.4.5.1. Compared to fig. 3.6, the recommended distance to the lateral
boundaries is slightly decreased, while a blocking ration of ≈ 1.7% is reached. Fig. 3.9
presents the dimensions of the outer domain and a resemblance of the computational grid.

30 m

71 m

105 m14 m

43
m

20 m

20 m
8 m48 m

Figure 3.9: Outer domain: dimensions and discretization for "wind from the back"-setup
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Inner domain

In the inner domain, a fine mesh resolution is applied. As explained above, for the CFD com-
putation, the lattice cantilever beams supporting the structure are neglected and thus only
the membrane itself and the tribune are modeled. The complex, doubly curved membrane
geometry motivates the use of tetrahedral finite volume elements. Close to the membrane
and the tribune, surface layers consisting of prism elements are applied to ensure a sufficient
resolution of the boundary layer for a good prediction of flow separation. The dependency
of the solution was checked for three different grid densities.

Fig. 3.10 shows the inner domain and the surface discretization of the membrane, tri-
bune, and floor. In fig. 3.11, a cross-section through the middle of the inner domain is
presented, showing the computational grid with boundary resolution by prism layers.
Fig. 3.12(a) provides a detailed view of the boundary layer resolution of the membrane,
while fig. 3.12(b) shows the surface discretization of the upper side of the membrane at the
cone.

14 m

8
m

8 m

Figure 3.10: Inner domain: dimensions and selected surface discretization.

Inner and outer domains are connected via General Grid Interface (GGI) function, avail-
able in the CFX solver. GGI allows to connect multiple fluid domains for one computation
with non-matching grid interfaces. Therefore, these domains can feature different mesh
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Figure 3.11: Inner domain: cross-section with discretization.

(a) Inner domain: boundary layer resolution (b) Inner domain: surface resolution of the mem-
brane

Figure 3.12: Inner domain: detailed views of the computational mesh.

topologies and allow for the selection of the best suited meshes for different parts of the ge-
ometry. The GGI interface treatment claims to be conservative with respect to fluxes across
the interface surface, such as mass, momentum, energy, etc. Further details about the GGI
domain interface function can be found in [CFX06]. The GGI interface function is applied
on the respective five interface sides between the outer and the inner domains.

3.5.2.2 Boundary Conditions

The boundary conditions are selected to create and maintain an ABL flow along the compu-
tational domain.

85



CHAPTER 3 MODELING OF WIND LOADS ON MEMBRANE STRUCTURES

At the inflow boundary condition, velocity and turbulence are prescribed according to
Richards and Hoxey [RH93]:

ux,inlet(z) =
u∗
κ

ln
(

z + z0

z0

)
= 3.61912 ln(100 z + 1)

[m
s

]
(3.118)

kinlet =
u2∗√
Cμ

= 6.9856
[

m2

s2

]
(3.119)

εinlet(z) =
u3∗

κ (z + z0)
=

7.5845
z + 0.01

[
m2

s3

]
(3.120)

where z is the height over ground, ux the velocity component in x-direction, uy and uz are
prescribed as 0 m/s at the inflow boundary. 3

The top boundary of the outer domain is modeled not as a wall but as an inlet boundary
condition. The velocities ux = ux,inlet(zmax), with zmax being the height of the domain and
uy = uz = 0, are prescribed. Furthermore, kinlet(zmax) and εinlet(zmax) are prescribed. As
explained in section 3.4.5.3, the ABL flow profile is better maintained using this modeling,
as compared to a simple wall boundary condition at the top of the domain.

At the outflow boundary, an average static pressure of 0 Pa is prescribed. The lateral side
boundaries are modeled as symmetry boundary conditions.

At the bottom of the outer domain, a no-slip wall boundary condition with a roughness
height of ks = 30 · z0 = 0.3 m is specified (see section 3.4.5.3). The height of the first element
close to the ground in the outer domain is chosen as 0.6 m , in order to ensure the applica-
bility of the rough wall function. In the inner domain, a smooth no-slip wall boundary is
assumed for the bottom of the domain.

The membrane’s upper and lower sides are modeled as no-slip wall boundaries.

3.5.2.3 Applied Models

The k − ω Shear Stress Transport (SST) turbulence model introduced in section 3.2.3.1 is
used. A rough wall function is applied at the bottom of the outer domain. 4 For non-slip
walls of the inner domain, a "Scalable Wall Function" is used. This wall function provides
the possibility of a fine boundary layer discretization by limiting the application of a wall
function, if the first node close to the wall lies within the viscous sub-layer.

The fluid is air with a density of ρ = 1.185 kg/m3 and a dynamic viscosity of μ =
1.831 10−5 kg/(m s). The density of the fluid is assumed constant and thus the fluid flow is
incompressible. The reference pressure is set to 0 Pa.

The computation is steady-state. Accordingly, a steady-state inflow is assumed with
time averaged turbulence quantities. The convergence criterion is the RMS of the transport
quantities and the convergence limit is set to 10−5.

3 u∗ is determined by solving eq. 3.114 with ux(z=10 m) = 25 m/s.

4The rough-wall function based on the k-ω turbulence model exists only as a beta feature and was applied
with the help of Ansys Support.
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3.5.3 Results and Discussion

For the analysis of the canopy structure towards wind loadings, the quantity of prime in-
terest is the surface pressure on the membrane. The surface pressure is described by com-
puting dimensionless pressure coefficients, the c p-values. This enables the comparison with
data from experimental wind tunnel testing.

In order to be able to judge the quality of the simulation results with respect to the ac-
curate representation of the atmospheric boundary layer, a preliminary analysis was carried
out using an empty domain. Subsequently, the same discretization as for the empty domain
was applied to model the flow conditions around the ARIES structure.

3.5.3.1 Preliminary Analysis Using Empty Domains

In the full setup, including the membrane structure and the tribune, quality of the flow with
respect to the fully developed, neutrally stratified ABL is very difficult to assess, as flow ef-
fects caused by the obstacle overlay the ABL flow. Therefore, as discussed in section 3.4.5.3,
a preliminary analysis of the empty domain was carried out. In order to account for the
influence of the specific computational grid in this preliminary analysis, the same spatial
discretization as for further computations is used. For the outer domain exactly the same
computational grid is applied. In the inner domain, the membrane and the tribune were
treated as non-existing and the prism-layers around the surfaces were removed. Otherwise,
the grid in the inner domain remained unchanged, still featuring the unstructured compu-
tational grid adapted to the shape of the membrane structure.

For the qualitative analysis of the neutrally stratified ABL flow through the empty chan-
nel, the development of the turbulent kinetic energy k, the dissipation rate ε, and the velocity
component in flow direction ux are plotted. Fig. 3.13 shows the position of the significant
vertical lines located in the symmetry plane in x-z-direction of the channel. Along these
lines, the relevant quantities are plotted in fig. 3.14, fig. 3.15, and fig. 3.16. The figures with
index (a) provide a plot over the full height of the channel, and those with index (b) give a
detailed view in front and within the inner domain.

inner domain

(without membrane structure)

outer domain

x = -25 m

x = -10 m

x = +/- 0.01 m

x

in
le

t
b

o
u

n
d

ar
y

Figure 3.13: Location of lines for evaluation of flow quantities in the empty domain.

Up to the beginning of the inner domain, the velocity profile ux in the main flow direction
is equally well preserved over the complete height and in the detailed view. Compared to
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(a) Profiles upstream of the inner domain. (b) Detailed profiles at the inner/outer domain in-
terface.

Figure 3.14: Changes in the profile of the velocity ux in the main flow direction.

(a) Profiles upstream of the inner domain. (b) Detailed profiles at the inner/outer domain in-
terface.

Figure 3.15: Changes in the profile of the turbulent kinetic energy k.

the velocity profile at the inlet, in 3.14(b) , a slight increase in the velocity gradient dux/dz is
noticeable. It is caused by the wall function used at the bottom of the outer domain.

In the ideal fully developed, neutrally stratified ABL, the distribution of the turbulent ki-
netic energy over the height of the channel is considered as constant (see section 3.4.5.3). In
the computation, the profile of the turbulent kinetic energy k shows a significant peak close
to the ground in fig. 3.15(a) . The peak increases with the distance to the inlet boundary. This
distortion of the profile is commonly noticed in the application of generic RANS-based tur-
bulence models with wall-functions and resembles an over production of turbulence by the
wall function. Similar results can be found, among many others, in [BCS07], [HW06], and
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(a) Profiles upstream of the inner domain. (b) Detailed profiles at the inner/outer domain in-
terface.

Figure 3.16: Changes in the profile of the dissipation rate ε.

[YQX+08]. The detailed view of fig. 3.15(b) shows, that the over production of turbulence
is significant in the lower parts of the flow. The maximum distortion, compared to k of the
fully developed, neutrally stratified ABL, is 15.6 %. With greater distance to the ground, the
profile of the turbulent kinetic energy returns to the expected value and only slightly differs
at the end of the domain.

The turbulent energy dissipation rate ε shows a typical singular behavior towards the
ground in fig. 3.16. Overall, the profile of ε is assumed as well preserved in the channel.

Within the inner domain, the flow quantities change rapidly as a result of the smooth
wall boundary condition specified at the bottom of the inner domain. Behind the inner
domain, the velocity ux and dissipation rate ε quickly regain similar profiles compared to
those presented in fig. 3.14 and fig. 3.16. Further distortions are visible in the turbulent
energy k in and behind the inner domain.

To overcome the deterioration of the profile of flow quantities compared to those of the
fully developed, neutrally stratified ABL, in section 3.4.5.3, different techniques were dis-
cussed. For the current application the author regarded the flow profiles as sufficiently
accurate for further computations.

3.5.3.2 Visualization of the Flow Field Around the Structure

Following the preliminary analysis of empty domains, the flow around the rigid ARIES
structure is simulated. Here, selected results from the CFD computation are visualized and
briefly discussed. As it is generally the case in wind engineering, surface pressures, which
act as suction, have a negative sign, while those "pushing" on the surface have a positive
sign.
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Wind from the back side of the ARIES structure

As results from the simulation of wind from the back side of the structure, velocity vectors in
the symmetry plane and the surface pressure on the upper side of the membrane are shown
in fig. 3.17. Fig. 3.17 gives an overview of the pressure distribution around the membrane,
mapped on the symmetry plane.
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Figure 3.17: Wind from back side: velocity vectors close to the structure.

The air flow is deflected by the ARIES membrane surface and mostly circumvents the
construction over the top or to the sides. A small portion of the flow enters under the mem-
brane through the gap between the membrane and the tribune and through the hole in the
center of the membrane cone.

On the upper side of the membrane, the flow separates, which results in a change of
sign of pressure on the membrane surface in fig. 3.18. Below and behind the membrane, a
complex recirculation zone is observed.
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Figure 3.18: Wind from back side: Pressure distribution around the membrane structure.

Regarding the surface pressure on the membrane, the dynamic pressure on the back of
the structure results in a positive pressure up to a certain height. After the flow separation,
strong suction forces are observed on the upper parts of the membrane. Below the mem-
brane, due to the recirculation, moderate suction in detected. The flow between the gap of
the membrane and the tribune results in local suction within the gap.

Wind from the front side of the ARIES structure

For wind flow from the front of the structure, in fig. 3.19 the velocity vectors on the symme-
try plane are visualized. Fig. 3.20 presents the pressure distribution around the structure in
the symmetry plane and on the upper side of the membrane.

In this setup, the airflow enters the ARIES structure from its "open side". The flow sepa-
rates above the membrane and at the lateral edges. According to the flow separation, recir-
culation occurs behind the construction.

The entering of the flow underneath the membrane results in high pressure forces on
the lower membrane side. This results in lifting effects, which are increased in the rear part
of the membrane, where negative pressure acts on the upper membrane side. Small local
suction forces are observed in the gap between the membrane and the tribune.
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Figure 3.19: Wind from front side: Velocity vectors in the symmetry plane.

Brief parameter study regarding details of the ARIES construction

In a parameter study, the influence of the gap between the membrane and the tribune, as
well as the influence of the hole in the center of the membrane cone, have been analyzed.
For the magnitude of the surface pressure on the membrane, an easing effect was observed
due to the existence of both openings. As these openings are also part of the prototype
construction, they are included in the numerical model. However, for a worst case setup
with respect to surface pressure the openings should be considered as closed.

3.5.3.3 cp-values

The surfaces pressure on the membrane is the primary quantity of interest. As common
in civil engineering, cp values, introduced in section 3.1, are used to describe the surface
pressure on the membrane. The maximum height of the middle line of the surface zre f = 6 m
was chosen as reference height zre f for the computation of cp. The distribution of the cp-
values showed no dependency on the wind speed at reference height, which was analyzed
for a wind speed range from 5 m/s up to 25 m/s.

The cp values are evaluated at 12 points on the membrane’s surface in its symmetry axis.
The location of points is shown in fig. 3.21. These 12 points have been chosen in accordance

92



3.5 Example: Static Wind Load Analysis of ARIES Using Ansys CFX

-8
.9

02
e+

02

-5
.9

52
e+

02

3.
00

1e
+0

2

5.
05

0e
+0

0

2.
90

0e
+0

2

Pressure distribution in the symmetry plane [Pa]

Figure 3.20: Wind from front side: Pressure distribution around ARIES structure.

with the location of the monitoring points in the wind tunnel experiment. Thereby, it is
possible to directly compare the results of the wind tunnel experiment and the numerical
simulation.

For each of these 12 points, two cp values are specified: cpe describes the normalized
pressure on the upper/outer side of the membrane, c pi describes the normalized pressure
on the lower/inner side of the membrane. cp net is defined as cpe − cpi and thus, positive
values of cp net describe a net pressure from the outside of the construction towards the
inside.

Experimental results are taken from wind tunnel testing published in [Bag01] and
[DB04]. Unfortunately, no precise data about the condition of the wind tunnel experiments
is available. Fig. 3.22 presents a picture of the rigid, small scale model of ARIES structure in
the wind tunnel experiment. Only values for cpe are available from the wind tunnel experi-
ments. The cp values derived are summarized in tab. 3.4 for wind from the back side of the
structure and in tab. 3.5 for wind from the front side.

Comparing the results of wind tunnel experiments and numerical analysis, several ob-
servations can be made:

� The general distribution of the pressure coefficients on the upper side of the membrane
is consistent for both the experiment and the numerical computation.
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Figure 3.21: Points at which cp values are determined.

Figure 3.22: Wind tunnel tests of the ARIES structure. [DB04]

� The numerical simulation results show slightly larger values for positive pressure,
such as in points 1 to 4 for wind from the back side. This corresponds to the over-
prediction of turbulent kinetic energy by RANS models (see section 3.2.3.1).

� Negative pressure is slightly underestimated in the numerical computation.

Regarding the difference between results from experiment and numerical computation,
beside modeling issues of the CFD based computation, several other factors have to be con-
sidered:

� Without the availability of further data about the setup of the wind tunnel experiment,
especially with respect to the ABL modeling and to the surface roughness of the model,
the quality of the wind tunnel experiments is difficult to judge.

� In the development of the ARIES structure, wind tunnel testing was conducted early to
assess the wind loads as decisive factor for the design process. Therefore, it is not clear,
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experimental results results from numerical analysis
Point Nr. x-coord [m] cpe [-] cpe [-] cpi [-] cp net

1 0.92 0.50 0.71 -0.23 0.94
2 0.99 0.44 0.77 -0.22 0.99
3 1.27 0.00 0.79 -0.20 0.99
4 1.98 -0.42 0.34 -0.26 0.60
5 2.90 -0.94 -0.27 -0.29 0.02
6 4.01 -1.10 -0.68 -0.31 -0.37
7 5.17 -0.96 -0.74 -0.32 -0.42
8 6.36 -0.88 -0.66 -0.33 -0.34
9 7.52 -0.62 -0.56 -0.33 -0.23

10 8.69 -0.54 -0.42 -0.33 -0.09
11 9.84 - -0.21 -0.36 0.14
12 11.01 - -0.30 -0.33 0.03

Table 3.4: Wind from back side: cp values for specified points on the ARIES membrane.

experimental results results from numerical analysis
Point Nr. x-coord [m] cpe [-] cpe [-] cpi [-] cp net

1 0.92 -0.62 -0.38 -0.32 -0.06
2 0.99 -0.62 -0.27 0.36 -0.63
3 1.27 -0.66 -0.35 0.79 -1.14
4 1.98 -1.16 -0.32 0.84 -1.16
5 2.90 -1.44 -1.24 0.71 -1.95
6 4.01 -1.34 -1.44 0.57 -2.02
7 5.17 -1.03 -1.06 0.52 -1.58
8 6.36 -0.78 -0.69 0.45 -1.14
9 7.52 -0.54 -0.40 0.46 -0.86

10 8.69 -0.31 -0.13 0.28 -0.41
11 9.84 - 0.28 0.42 -0.14
12 11.01 - 0.08 0.16 -0.08

Table 3.5: Wind from front side: cp values for specified points on the ARIES membrane.

to which extent the geometry used in the wind tunnel represents the prototype. This
uncertainty exists also with regard to the question, whether or not the gap between
the membrane and the tribune as well as the hole in the center of the membrane cone
have been considered in the experimental approach.

Concluding, the computation of dimensionless pressure coefficients enables the compar-
ison of wind tunnel experiments and numerical simulation towards mean wind loading. In
the specific analysis of the ARIES structure, comparing experiment and simulation is done
in a qualitative way. For a more specific, quantitative analysis, further details about the
wind tunnel testing need to be obtained.
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3.6 Summary

In this chapter, a brief summary of approaches for the analysis of wind load in membrane
structures is given. The fundamentals of fluid mechanics, including turbulence modeling
and near wall flow have been presented. By introducing the Finite Volume Method, a
method of computational fluid dynamics (CFD) was introduced.

The application of CFD in wind engineering falls in the young subdiscipline of Compu-
tational Wind Engineering (CWE). Within CWE, not only the methods used, but more the
modeling techniques are essential for deriving high quality results. Therefore, the proper-
ties of the neutrally stratified Atmospheric Boundary Layer (ABL) flow were discussed and
simulation aspects have been presented, to correctly model the ABL flow by methods of
CFD.

The appropriate methods of CFD together with the essential modeling aspects were used
to setup a numerical model for the analysis of wind flow around the ARIES canopy struc-
ture. Special care was put into assuring the quality of the ABL flow. As results, c p values
have been derived for wind directions from the front and from the back side. These values
have been compared with those derived from wind tunnel experiments.

In the following chapter, the numerical CFD model derived for the rigid ARIES structure
is used to simulate the fluid part in the partitioned analysis of the interaction of the ARIES
structure with wind.
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Chapter 4

Coupling Fluid and Structural
Analysis

In the previous chapters, the fundamentals, numerics, and applications of structural and
fluid problems have been introduced, drawing a focus on the simulation of wind influence
on membrane structures. The structural and the fluid simulation were treated as indepen-
dent single field problems. In the following, they are considered together as one multi-
physics problem, consisting of a fluid and a structural part. For a multi-physics analysis, the
term coupled analysis is also common, since the coupling between multiple physical fields
is considered.

4.1 Wind - Membrane Structure Interaction in Coupled Problem
Analysis

As explained in section 2.3, due to their missing bending stiffness, membrane structures
react to forces acting perpendicular to their surface with large deformations. These defor-
mations can become large enough to influence the flow conditions around the structure.

An every-day example for wind-structure interaction is the behavior of a flag in the
wind: as the wind changes its direction and/or speed, the flag immediately changes its
shape. This change in shape strongly influences the flow conditions around the structure.
Accordingly, the surface pressure on the flag’s surface will change, as the flag changes its
shape. The change of the load condition, in turn, results in a new shape of the structure, and
so on. For the example of a flag in the wind, the interaction of flow and structure results in
a highly chaotic and unstable behavior.

The interaction of inertial and elastic forces with aerodynamic forces, such as described
in the flag-in-the-wind example, is also referred to as an aeroelastic problem.

For the application of wind engineering, it is necessary to evaluate, in which way the in-
terdependency of flow and structure necessitates a multi-field analysis. For rigid structures
of limited height, such as small houses or low buildings, the geometry of the structure does
not change due to wind loading or if it does, then only to a very small degree. Therefore,
the separate analysis of the flow condition around the structure and the deformation of the
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structure due to surface pressure from the wind is sufficient. For high, slender construc-
tions, such as towers, stacks, or pylons, as well as for bridges, wind effects can lead to large
enough deformations so that a multi-physics analysis has to be considered. Depending on
the size and effect of the deformation, techniques based on linear assumptions, such as field
elimination techniques, or semi-analytical methods can be applied.

In case of flexible and light-weight membrane structures the application of simplified
methods is quite limited due to the magnitude of the changes in shape and the non-linearity
of the structural behavior. Here, multi-physics analyses have the potential to give better
prediction of wind effects. Within this work, for the analysis of wind effects on membrane
structures, a fluid simulation is used to analyze the flow conditions around the structure and
to compute the surface load due to the air flow. This surface load is used as a load condition
for the structural computation, which computed the reaction of the structure. In order to
represent the physical coupling of fluid and structure, the fluid simulation has to take into
account the change of the structure’s geometry.

The wind-membrane structure interaction is a surface coupled problem with the struc-
ture’s surface separating the fluid and the structural domain. The domains are non-
overlapping. The fluid-structure interface Γ is the part of the structure’s surface that is in
contact with the fluid, and vice versa, the part of the fluid domain, which is in contact with
the structure. Within this work, the fluid-structure interaction is represented using an ALE
approach in which the deformation of the structure’s wetted surface is used to update the
boundaries of the computational fluid domain. This coupling can be identified as Dirichlet-
Neumann coupling. The Dirichlet boundary condition for the fluid is determined by the
structural displacement dΩS

Γ . For the structural domain, the fluid loads on the domain fΩF
Γ

are interpreted as Neumann boundary conditions.

The simulation of wind-membrane interaction is complicated due to the strong non-
linearities of the coupled problem. This non-linearity is caused by the non-linearity of the
inertia term in the fluid solution, the moving boundaries of the fluid domain and the large
structural displacements.

4.2 Strategies to Solve Multi-Physics Problems

For the treatment of non-linear multi-physics problems, two general approaches can be iden-
tified:

� Simultaneous analysis

In simultaneous analysis, also referred to as monolithic analysis, the entire multi-
physics problem, with all physical fields involved, is summarized in one set of
equations, discretized, and solved as one. Examples for simultaneous solution of
multi-physics problems can be found among many others in [MHvBdB04], [HWD04],
[Hei04], [BCZH06], [Tez07].
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� Partitioned analysis

In partitioned analysis, the physical fields are solved independently. The term ’parti-
tioned’ refers to a spatial decomposition, which in the case of fluid-structure interac-
tion means the decomposition into a structural and a fluid domain. The coupling of
the individual fields is realized by the exchange of boundary conditions. Examples for
partitioned analysis are, among many others, the works of [FL00], [Wal99], [MW01],
[GV03], [MS03], [LTM01], [PFO01], [TSS06].

Different aspects inherent to the two approaches will be briefly discussed in the follow-
ing:

� Simultaneous analysis of multi-physics problems shows superior performance with
respect to convergence and accuracy of the solution.

� Simultaneous approaches usually need to use an identical spatial discretization for
all involved fields. In contrast, by using an individual spatial discretization in a par-
titioned analysis, the best suited spatial discretization can be used for the involved
physical fields. To solve different single field problems, different time step sizes may
be necessary. In a simultaneous analysis, the smallest necessary time-step has to be
used to solve the complete problem. In partitioned analysis, sub-cycling can be used
to choose different time-step length and therefore to reduce the computational effort.

� A simultaneous solution has to include all unknowns in one large system of equations.
Depending on the computational resources, this can lead to a limitation of the prob-
lem size. In a partitioned analysis, the whole problem is separated according to the
physical fields in smaller ’partitions’ and each physical field is solved separately.

� Due to the varying nature of the involved single field problems the complete system
of equations for a simultaneous approach can be severely ill-conditioned. This po-
tentially ill-conditioned system of equations has to be solved by a single solver. In
contrast, in a partitioned analysis, several systems of equations exist, each describ-
ing a single physical field. These systems of equations can be solved by specialized
solution approaches.

� Partitioned analysis enables a highly modular setup, because different specialized
solvers for the single physical fields can be combined. This modular setup enables
the reuse of existing, well-proven, and specialized software.

Due to the advantages of the partitioned analysis, especially with respect to realization,
most multi-physics analyses are conducted using partitioned techniques. With respect to
accuracy, simultaneous solution strategies remain the reference. Due to their requirements
and limitations, applications of simultaneous analysis are limited to small scale or academic
problems.

In the case of fluid-structure interaction, different requirements for spatial discretiza-
tions, both with respect to grid topology and grid density, have to be met for the structural
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and the fluid field. Typically, the fluid field requires a much finer discretization as com-
pared to the structural field, because of special requirements for boundary resolution. These
differences in spatial requirements can be best met in a partitioned analysis.

As discussed in the previous chapter, computational wind engineering typically leads to
fluid problems with a very large number of unknowns. Furthermore, to model air flow at
high Reynolds numbers, sophisticated methods for modeling of turbulence and wall flow
are necessary. Considering the structural side of the application, in section 2.3.1 numerous
requirements of a structural solver for simulating the behavior of membrane structures were
presented. Considering these special demands of the single field solvers, the possibility to
use already existing, highly specialized solvers in a partitioned analysis seems to be the
only promising approach to realize the simulation of wind-membrane structure interaction.
Therefore, within this work partitioned analysis strategies are used to solve the problem of
wind-structure interaction.

4.3 Partitioned Analysis of Multi-Physics Problems

In the following, requirements for the partitioned analysis are identified. On the basis of
these requirements, two coupling approaches, weak coupling and strong coupling, are intro-
duced and discussed.

4.3.1 Requirements for Partitioned Analysis Strategies

In a partitioned approach, the exchange of boundary conditions between the single field
solvers represents the coupling of the physical fields. The coupling algorithm determines,
when the single field problems are solved as well as when, how, and in which form the
boundary conditions are exchanged. To ensure the correct representation of the physical
coupling in the partitioned coupled computation, several conditions have to be met by the
coupling algorithm. These demands are discussed in the following by focusing on problems
of fluid-structure interaction:

� Stability of the computation, even for arbitrary non-linear problems.

� Accuracy of the results with respect to the ’real’ physical problem.

� Robustness of the method for the usage in different applications.

To achieve stability and accuracy in coupled computations, several requirements, which are
based on the physics of the coupled fluid-structure problem, have to be met by the coupling
algorithm:

Conservation of volume

At the fluid-structure interface, no volume has to be generated or discreated due to the
partitioned analysis strategy. In case of incompressible flows, this corresponds to the re-
quirement of a conservation of mass in the fluid domain. For the fluid simulation alone,
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this requirement has already been introduced as the Geometric Conservation Law (GCL)
for moving boundaries in section 3.3.7. In the context of coupled computations, the conser-
vation of volume leads to the requirement, that the fluid and the structural domain have
to stick together at the interface. Therefore, any deformation of the fluid-structure interface
has to be identical for the fluid and the structural domain at any time t:

dΩF
Γ (t) = dΩS

Γ (t) (4.1)

Conservation of momentum

For the entire coupled problem, no additional momentum ΔmΓ can be created at the inter-
face, nor any momentum can be lost [Mok01]. Momentum can only be transferred through
the interface from one domain to the other. Therefore, the sum of momentum transferred
from the fluid domain to the interface and from the interface to the structural domain and
vice versa has to be zero in a certain time period tn+1 − tn.

ΔmΩ,n→n+1
Γ = ΔmΩF ,n→n+1

Γ + ΔmΩS ,n→n+1
Γ

=
∫ tn+1

tn

(∫
Γ

σΩF
cauchy,Γ(t) nΩF

Γ (t) dA
)

dt

+
∫ tn+1

tn

(∫
Γ

σΩS
cauchy,Γ(t) nΩS

Γ (t) dA
)

dt = 0 (4.2)

with nΓ,F and nΓ,S as the surface normal vector at the interface. This condition can only
be fulfilled, if the Cauchy stress tensor at the interface is equal in the fluid domain and the
solid domain:

σΩF
cauchy,Γ(t) nΩF

Γ (t) = σΩS
cauchy,Γ(t) nΩS

Γ (t) (4.3)

Assuming an identical spatial discretization of the fluid-structure interface in both do-
mains, the integral of the Cauchy stresses over the interface can be interpreted as forces
fΩi

Γ (t) acting on the nodes of the discretized interface Γd. The requirement for the conserva-
tion of momentum can be expressed as:

f ΩF
Γd

(t) = f ΩS
Γd

(t) (4.4)

Conservation of energy

Similar to the first two requirements, the requirement of the conservation of energy states
that no energy should be created or dissipated at the boundary. The sum of the transferred
energy at the boundary with a certain time period has to be zero:

ΔEΩ,n→n+1
Γ = ΔWΩF ,n→n+1

Γ + ΔWΩS ,n→n+1
Γ

=
∫ tn+1

tn

(∫
Γ

σΩF
cauchy,Γ(t) nΩF

Γ (t) ḋΩF
Γ (t) dA

)
dt

+
∫ tn+1

tn

(∫
Γ

σΩS
cauchy,Γ(t) nΩS

Γ (t) ḋΩS
Γ (t) dA

)
dt (4.5)

=
∫ tn1

tn

(
f ΩF

Γ (t) ḋ
ΩF

Γ (t) + f ΩS
Γ (t) ḋ

ΩS

Γ (t)
)

dt = 0 (4.6)
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with ḋΓ as the time derivative of the displacement of the interface and ḋΓ as its discretized
form (see section 2.2.2.2). Using eq. 4.4, eq. 4.6 can be simplified to:

ΔEΩ,n→n+1
Γ =

∫ tn1

tn
f ΩF

Γ (t)
(

ḋ
ΩF

Γ (t) − ḋ
ΩS

Γ (t)
)

dt = 0 (4.7)

which can only be fulfilled, if

ḋ
ΩF

Γ (t) = ḋ
ΩS

Γ (t) (4.8)

Influence of time discretization

For a semi-discrete problem, which is discretized in space but continuous in time, eq. 4.1
and eq. 4.8 can be treated as one condition. In a partitioned analysis, typically different time
discretization schemes are used, as introduced in section 2.2.2.2 for the structural problem
and in section 3.3.5 for the fluid problem. For time integration schemes, usually one primary
variable is used, while the other time dependent variables are computed depending on this
primary variable. In the structural problem, the primary variable is typically the displace-
ment d, while in the fluid domain, the primary variable is typically fluid velocity u. Also,
for the use in different time integration schemes, the primary variables can be evaluated at
different times within one time-step. Therefore, only for special pairs of time-integration
schemes, such as the Bossak-α method for the structural problem and the Backward-Euler
method for the fluid problem, eq. 4.1 and eq. 4.8 can both be satisfied.

In case eq. 4.1 and eq. 4.8 cannot be satisfied simultaneously, eq. 4.8 is likely to be vio-
lated, as eq. 4.1 absolutely has to be fulfilled with respect to the conservation of volume. The
violation of eq. 4.8 results in an error in the energy conservation. Mok [Mok01] discusses
that this error is similar to errors introduced by time discretization, both with respect to size
and order. More specific, this error is expected to be of the same order as the time integration
schemes used for the single field problems. In test computations performed by Mok et al.
[Mok01], the error proved to have little influence on the stability and accuracy of partitioned
computations compared to simultaneous computations.

Coupling conditions

Based on the requirements of the conservation of volume, momentum, and energy discussed
above, two coupling conditions (also named ’interface continuity conditions’ or ’transmis-
sion conditions’) , which have to be fulfilled at any time t on the discretized fsi interface Γd

can be identified:

� Kinematic continuity condition

d
ΩF
Γd

(t) = d
ΩS
Γd

(t) (4.9)

� Dynamic continuity condition

f
ΩF
Γd

(t) = f
ΩS
Γd

(t) (4.10)
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4.3.2 Sequentially Staggered / Weak Partitioned Coupling

Fig. 4.1 represents a simple staggered fluid-structure interaction problem, in which the fluid
part is solved (1), the loads are transferred to the structural domain (2), the structural field
is solved (3), and finally, the structural deformation is transferred to the fluid domain (4).
Subsequently, the next time-step begins.
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Figure 4.1: Sequentially staggered / weak / explicit coupling scheme.

The single field solvers run in a staggered scheme. Within one time step, boundary con-
ditions are only exchanged once between the structural domain ΩS and the fluid domain ΩF

and no iteration over the single field solvers is performed. The one-time solution of the sin-
gle field problems within one time-step can be done in a sequential ("sequentially staggered
scheme") or parallel ("parallel staggered scheme") manner. As simple staggered coupling
schemes without iteration over the single field problems cannot represent the interaction
between the physical single field problems correctly, they are also referred to as weak cou-
pling systems. Taking an analogy to time integration, due to their explicit nature, weakly
partitioned schemes are also known as "explicit coupling schemes".

As the coupling information is exchanged only once per time-step, for at least one single
field, the boundary conditions from the other single field(s) are only known at the beginning
t = tn of the common time-step tn → tn+1. Therefore, not all coupling conditions can
be satisfied at the end of the time-step t = tn+1, hence one single field problem will not
have the correct boundary condition at t = tn+1. In the coupling algorithm suggested in
fig. 4.1, the fluid loads are known at the end of the time-step as boundary conditions for
the structural solution. For the solution of the fluid field, the boundary condition posed by
the structural field, namely the structure’s geometry, is only known at the beginning of the
time-step and therefore, eq. 4.9 cannot be satisfied at the end of the time-step. Since in the
coupled problem the solutions of the single field problems are interdependent, the solution
of both single fields cannot be exact.

The effects for the coupled solution, that arise from not fully satisfying the coupling
conditions, depend on the actual coupling algorithm and the application. Within every
time step, a small error in the energy, which is transferred at the boundary, is introduced.
This error is likely to sum up over several time-steps, leading to an instable simulation
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and/or decay in accuracy. Weak coupling is regarded to be only conditionally stable and
only first order accurate with respect to time, even if the time integration schemes of the
single fields have higher orders of accuracy. For coupled problems of fluid-structure inter-
action in compressible flows with low fluid densities, e.g. in aeronautics, simple staggered
schemes proved to be sufficiently stable and accurate [FL00]. In fsi problems with incom-
pressible flows, simple staggered schemes show an instable behavior, which will be further
discussed in section 4.3.4.

To decrease the error made in satisfying the coupling conditions, predictions for the
transferred boundary conditions, typically for the displacements, have been suggested
[Pip97],[PF01]. These predictors are used to obtain a more accurate estimation of the fsi
interface geometry, which is expected at time t = tn+1. The "predicted" interface geometry
is applied as modified boundary condition for the fluid simulation for t = tn. The usage of
structural predictor might improve weak coupling with respect to stability and accuracy in
case of compressible flows.

4.3.3 Iteratively Staggered / Strong Partitioned Coupling

Fig. 4.2 shows an instance of an iteratively staggered coupling algorithm applied to a prob-
lem of fluid-structure interaction. In an iterative manner, each single field problem is solved
multiple times within one time-step. The single field problems are continuously updated
with the boundary conditions resulting from the other field(s). In the following, one se-
quence of fluid-solution (step 1), transfer of interface loads (step 2), structural solution
(step 3), and transfer of displacements (step 4) will be referred to as one step in the inter-
field iteration. These inter-field iterations are also known as outer-loop iterations.
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Figure 4.2: Iteratively staggered / strong / implicit coupling scheme.

In case of convergence of the inter-field iterations, the iterative scheme converges to-
wards the solution of a simultaneous approach. Since these coupling schemes represent
the strong coupling of the physical fields, they are also named strong partitioned coupling
schemes. Within this coupling approach, the coupling conditions are satisfied at the end of
each time-step t = tn+1, therefore these schemes are also called implicit coupling methods.
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Compared to the weak partitioned coupling schemes, strong partitioned coupling
schemes show a superior behavior with respect to stability and accuracy. The weak cou-
pling can be interpreted as strong coupling with only one inter-field iteration step. A full
iteratively coupled solution has the same properties with respect to order of accuracy and
stability as the single field problems. However, strong coupling requires a considerably
higher effort compared to weak coupling. As each field is solved multiple times within one
time-step, the computational effort multiplies as well. Convergence within one time-step
can be limited or slowed down due to the "artificial added mass effect", which is discussed
in section 4.3.4.

To simplify the following discussion of iterative staggered fsi coupling schemes, the sin-
gle field problems are expressed using the coupled degrees of freedom on the interface,
namely the interface loading fΓ and the interface displacement dΓ. Now, the structural prob-
lem is abbreviated as a non-linear function S, which, at time step tn+1, relates the interface
loads received from the fluid fn+1

Γ to the displacements on the interface dn+1
Γ .

dn+1
Γ = S

(
fn+1

Γ

)
(4.11)

Accordingly, the fluid problem can be seen as a non-linear function F using the interface
displacements dn+1

Γ to compute the interface loading fn+1
Γ .

fn+1
Γ = F

(
dn+1

Γ

)
(4.12)

Using eq. 4.11 and eq. 4.12, the coupled fluid-structure interaction is contained in the fol-
lowing non-linear system of equation:

dn+1
Γ = S

[
F
(

dn+1
Γ

)]
= S ◦ F

(
dn+1

Γ

)
(4.13)

or equivalently as:

fn+1
Γ = F ◦ S

(
fn+1

Γ

)
(4.14)

Iteratively staggered coupling schemes can be classified according to their general ap-
proach of solving eq. 4.13 or eq. 4.14 into methods based on fixed-point iteration and Newton-
based methods, which will be explained in the following. An overview of the available itera-
tively staggered coupling schemes can be found, e.g. in [Sch06].

4.3.3.1 Methods Based on Fixed-point Iteration

Fixed-point iteration based methods are widely used in the scope of partitioned simulation
of fluid-structure interaction [LTM01], [Mok01]. Equation 4.13 is treated as a fixed-point
problem to find the fixed-point x∗ for which holds:

x∗ = Φ (x∗) (4.15)

The fixed-point problem can be solved using a fixed-point iteration. It starts with an initial
value x0 and uses eq. 4.16 to create a sequence {x0, x1, ...}, which converges to the fixed-point
x∗, if the spectral radius of operator Φ is smaller than 1.

xk+1 = Φ (xk) (4.16)
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Transferred to the FSI-context, the fixed-point iteration is formulated as: by using
eq. 4.17 and an initial interface displacement dn+1

Γ,0 , a sequence of interface displacements
{dn+1

Γ,0 , dn+1
Γ,1 , ...} is created, which converges to the "equilibrium interface displacement" dn+1

Γ
at time t = tn+1.

dn+1
Γ,k+1 = S ◦ F

(
dn+1

Γ,k

)
(4.17)

To create this sequence, the structural problem S and the fluid problem F have to
be solved sequentially with updated boundary conditions. The coupling algorithm for
a problem of fluid-structure interaction is presented in Algorithm 1. The interface dis-
placement dn+1

Γ,0 at the beginning of each time-step is enhanced by a predictor according
to [Pip97],[PF01].

Algorithm 1 is the well-known Gauss-Seidel method. To improve the stability as well
as the efficiency of the Gauss-Seidel method, under-relaxation techniques have been intro-
duced. The under-relaxation can be applied to displacements or loads transferred at the
fluid-structure interface. For the under-relaxation of the interface displacements, in Algo-
rithm 1, step 4 is replaced and an additional fifth step is introduced. These changes are
shown in Algorithm 2, which is known as the Richardson iteration. For ω = 1.0, Algo-
rithm 2 resembles the Gauss-Seidel method again.

Exemplary for interface displacements, the concept of under-relaxation shall be ex-
plained here. The increment of the interface displacement from iteration step k to iteration
step k + 1 is:

Δdn
Γ,k+1 = d̃n

Γ,k+1 − dn
Γ,k (4.24)

The non-under-relaxed interface displacement d̃n
Γ,k+1 , which results directly from the

structural computation, is labeled with a tilde to distinguish it from the under-relaxed inter-
face displacement dn

Γ,k+1 . The value of the under-relaxation parameter ω ≤ 1 determines,
which fraction of the increments Δdn

Γ,k+1 is added to the displacement of the previous it-
eration step dn

Γ,k , to compute the under-relaxed interface displacement for the inter-field
iteration step k = k + 1:

dn+1
Γ,k+1 = dn

Γ,k + ωk+1Δd̃n
Γ,k+1 = ωk+1d̃n+1

Γ,k+1 + (1 − ωk+1) dn+1
Γ,k (4.25)

For a small value of ω, e.g. ω = 0.05, the change in displacement between the iter-
ation steps is very small. This usually results in a more ’stable behavior’ of the coupled
computation, compared to higher values for the under-relaxation factor. However, with a
small increment, the solution converges slower because typically more iteration steps are
necessary to reach convergence. The challenge posed by using under-relaxation is to find
the largest parameter ω, for which the coupling algorithm converges. Usually, the optimal
value of ω cannot be determined a priori, but is based on experience or can be the result of
a parameter study. Furthermore, the optimal under-relaxation value is expected to change
during the inter-field iteration: the increment in the interface displacement becomes smaller
as the coupled computation converges and, therefore, less under-relaxation is needed to
stabilize the computation.
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1. For k as the number of current inter-field iteration: Start with k = 0 and
predict the interface displacement dn+1

Γ,k for k = 0:

Predictor of 0-th order:
dn+1

Γ,0 = dn
Γ (4.18)

Predictor of 1-st order:
dn+1

Γ,0 = dn
Γ + δt ḋn

Γ (4.19)

Predictor of 2-nd order:

dn+1
Γ,0 = dn

Γ + δt
(

3
2

ḋn
Γ −

1
2

ḋn−1
Γ

)
(4.20)

2. Solve the fluid problem:

fn+1
Γ,k+1 = F

(
dn+1

Γ,k

)
3. Solve the structural problem:

dn+1
Γ,k+1 = S

(
fn+1

Γ,k+1

)
4. Check for convergence of the fixed-point iteration:

Res = CTol

(
dn+1

Γ,0 , ..., dn+1
Γ,k , dn+1

Γ,k+1, fn+1
Γ,0 , ..., fn+1

Γ,k , fn+1
Γ,k+1

)
≤ εTol (4.21)

with CTol as a function, with which a certain value is computed to judge the
convergence (see section 4.4.3), and εTol as a tolerance limit for the value
Res calculated according to CTol.

If Res > εTol:

dn+1
Γ,k = dn+1

Γ,k+1 k = k + 1

go to step 2 (to begin a new step in the outer iteration loop)

Else if Res ≤ εTol:

dn+1
Γ = dn+1

Γ,k+1 n = n + 1 k = 0

go to step 1 (to begin a new time step)

Algorithm 1: Gauss-Seidel method

It is worth mentioning that the choice of the under-relaxation parameter in a strongly
coupled approach only influences the stability of the computation and the number of neces-
sary inter-field iteration loops. In case the inter-field iterations converge, the solution is in-
dependent of the choice of the under-relaxation parameter. This effect is shown in [WKB07]
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1. For k as the number of current inter-field iteration: Start with k = 0 and
predict the interface displacement dn+1

Γ,k for k = 0 according to eqs. 4.18-
4.20

2. Solve the fluid problem:

fn+1
Γ,k+1 = F

(
dn+1

Γ,k

)
3. Solve the structural problem:

d̃n+1
Γ,k+1 = S

(
fn+1

Γ,k+1

)
4. Check for convergence of the fixed-point iteration:

Res = CTol

(
d̃n+1

Γ,0 , ..., d̃n+1
Γ,k , d̃n+1

Γ,k+1, fn+1
Γ,0 , ..., fn+1

Γ,k , fn+1
Γ,k+1

)
≤ εTol (4.22)

If Res ≤ εTol:

dn+1
Γ = d̃n+1

Γ,k+1 n = n + 1 k = 0

go to 1 (to begin a new time step)

5. Choice of the under-relaxation parameter ωk+1

6. Apply under-relaxation to interface displacements

dn+1
Γ,k+1 = ωk+1d̃n+1

Γ,k+1 + (1 − ωk+1) dn+1
Γ,k (4.23)

and update the interface displacements with under-relaxed values

dn+1
Γ,k = dn+1

Γ,k+1 k = k + 1

go to 2 (to begin a new step in the inter-field iteration loop)

Algorithm 2: Richardson iteration

on an example from the wind-engineering context.

Applying under-relaxation to the interface displacements is the common technique in
the simulation of fluid-structure interaction. However, the under-relaxation can also be ap-
plied to the loads transferred at the interface. Algorithm 3 represents the modified coupling
algorithm for under-relaxation of interfaces loads, in which step 3 is divided into several
sub-steps, while step 1, 2 and 4 remain unchanged. With respect to stability and efficiency,
the same considerations apply to the under-relaxation of the interface loads as to the under-
relaxation of the interface displacements.

To overcome the trade-off between stability and efficiency in the choice of ω, using
an adaptive choice of ω is advantageous. This extension is known as dynamic or adap-
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1. For k as the number of current inter-field iteration: Start with k = 0 and
predict the interface displacement dn+1

Γ,k for k = 0 according to eqs. 4.18-
4.20

2. Solve the fluid problem:

f̃n+1
Γ,k+1 = F

(
dn+1

Γ,k

)
3. (a) Choice of under-relaxation parameter ω f ,k+1

(b) Apply under-relaxation to interface loadings:

fn+1
Γ,k+1 = ω f ,k+1f̃n+1

Γ,k+1 +
(
1 − ω f ,k+1

)
fn+1

Γ,k (4.26)

(c) Solve the structural problem:

dn+1
Γ,k+1 = S

(
fn+1

Γ,k+1

)
4. Check for convergence of the fixed-point iteration:

Res = CTol

(
dn+1

Γ,0 , ..., dn+1
Γ,k , dn+1

Γ,k+1, f̃n+1
Γ,0 , ..., f̃n+1

Γ,k , f̃n+1
Γ,k+1

)
≤ εTol (4.27)

If Res > εTol:

dn+1
Γ,k = dn+1

Γ,k+1 k = k + 1

goto 2 (to begin a new step in the inter-field iteration loop)

Else if Res ≤ εTol:

dn+1
Γ = dn+1

Γ,k+1 n = n + 1 k = 0

goto 1 (to begin a new time step)

Algorithm 3: Gauss-Seidel method with under-relaxation of interface loads

tive under-relaxation and its two most common methods are introduced below for under-
relaxation of interface displacements. Other methods to choose the under-relaxation factor
exist, e.g. as presented in [Dep04] and [KW07]. To the knowledge of the author, their per-
formance is at best equal to the methods introduced here.

Choice of under-relaxation parameter ω by the steepest descent method

The adaption of the well-known steepest descent method for coupled problems was intro-
duced in [WMR99] and [WMR00] and revisited in [KW07]. The optimum search direction
for the solution on the interface displacement dn+1

Γ is the negative gradient direction, given
by the residuum vector rΓ,k:

rn
Γ,k = d̃n

Γ,k+1 − dn
Γ,k (4.28)
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The under-relaxation parameter is determined by:

ωk+1 = −
(

rn
Γ,k

)T
rn

Γ,k(
rn

Γ,k

)T
Jn

Γ rn
Γ,k

(4.29)

with Jn
Γ as the Interface-Jacobian

Jn
Γ = Jn

Γ (dΓ) =
∂rn

Γ (dΓ)
∂dΓ

(4.30)

For the solution of eq. 4.29, the Interface-Jacobian, which is not explicitly available, has to
be computed. It can be determined by specially enhanced fluid solvers. For black-box fluid
solvers, the Interface-Jacobian can be computed by a finite difference method (e.g. [KW07])
or by solving a simplified fsi-problem [Mok01]. Both methods require the additional solu-
tions of the structural and the fluid field to determine the under-relaxation parameter.

Choice of under-relaxation parameter ω by the Aitken’s Δ2-method

Aitken’s method has been proposed and successfully used for coupled problems of fluid-
structure interaction in [WMR99] and [MW01], a recent revisiting can be found in [KW07].
The original Aitken’s method was developed for scalar problems. For the usage of fixed-
point iterations with vectors, [IT69] extended the original method to the Aitken’s Δ2 method.
FSI solver based on the Aitken’s Δ2 method proved to be simple to implement, while effec-
tive with respect to stability improvements and reduction of computational effort.

In Aitken’s method, the under-relaxation factor ω is determined based on the previous
two iteration steps. The relaxation parameter ω is computed recursively according to:

ωk+1 = −ωk
ΔdΓ,k+1 · (ΔdΓ,k+1 − ΔdΓ,k)

|ΔdΓ,k+1 − ΔdΓ,k|2
(4.31)

for ΔdΓ,k+1 = d̃Γ,k+1 − dΓ,k

For the computation of ωk+1, only the deformations on the interface, which are naturally
available, need to be evaluated, and no additional solution of the single field problems is
necessary. Here, Aitken’s Δ2-method is applied for the under-relaxation of the interface dis-
placements. Equally, it can be used to compute an under-relaxation factor for the transferred
interface loads.

As the data of two previous steps is necessary to compute the relaxation parameter for
the current iteration step, the under-relaxation parameter ω n+1

1 for the first iteration step
within each time-step cannot be determined. Different solutions are possible to choose ω n+1

1 .
Using of the last under-relaxation value ωn from the previous time-step is sensible. How-
ever, this can cause problems with respect to the convergence of the single field solvers for
the first step of the inter-field iteration loop for high values of ω n. Therefore, in [KW07], it is
suggested, to limit the ωn+1

1 by ωmax:

ωn+1
1 = max (ωn, ωmax) (4.32)

To avoid problems, not only with ωn+1
1 being too high to ensure convergence, but also with

ωn+1
1 being too low at the beginning of a new time-step for efficient computation, the author

suggests the usage of a fixed value based on an educated choice, e.g. 0.2, for ω n+1
1 .
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4.3.3.2 Newton-based Methods

In contrast to the fixed-point iteration, the Newton-based methods are adapted from the
residuum formulation of the surface coupled problem:

rk = d̃Γ,k+1 − dΓ,k

= S ◦ F (dΓ,k)− dΓ,k (4.33)

= Φ (dΓ,k)− dΓ,k

with the aim to find an interface residuum for which r (dΓ,k) = 0.

A general Newton method for solving non-linear problems, known as the Newton-
Raphson method, is to find f (x∗) = 0 by starting from an initial solution x0 and applying
the iteration rule

xk+1 = xk − f (xk)
f ′(xk)

(4.34)

until f (xk+1) < Tol and thus x∗ ≈ xk+1 within the given tolerance limit of the iteration Tol.

Transferred to the fsi context, this means finding an interface displacement dΓ, for which
r (dΓ) = 0 by using the iteration rule:

dΓ,k+1 = dΓ,k − r′ (dΓ,k)
−1 r (dΓ,k) (4.35)

with r′ (dΓ,k) =
∂r (dΓ,k)

∂dΓ,k

r′ (dΓ,k) is the tangent operator, which again resembles the Interface-Jacobian JΓ introduced
in eq. 4.30.

A realization of a basic Newton algorithm coupling scheme for the solution of fsi prob-
lems is presented in Algorithm 4. The difficulty in this approach, which arises due to the
non-linear nature of the fsi-problem, is to determine the tangent operator r ′ (dΓ,k). This non-
linearity is caused by the non-linearity of the inertia term in the fluid solution, the moving
boundaries of the fluid domain and the large structural displacements. Only for special
type of problems, the Interface-Jacobian can be derived analytically [FM05]. Several meth-
ods have been suggested to approximate the Interface-Jacobian of the interface problem.
Thereby, the computational effort for solving eq. 4.35 can be reduced at the price of a slower
convergence in the inter-field iteration loop, depending on the quality of the approxima-
tion. Another approach is to solve eq. 4.36 by using an iterative matrix free Newton-Krylov
formulation [KAT03].

In the following, a brief summary of the most fsi solution schemes related to the Newton
method is given.

� Approximated Block-Newton by finite difference method

The finite difference method can be used to compute the Jacobian, which results in
a high computational effort [SM00], as the residuum of the coupled computation rk
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1. For k as the number of current inter-field iteration: Start with k = 0 and
predict the interface displacement dn+1

Γ,k for k = 0 according to eqs. 4.18 -
4.20

2. Solve the fluid problem:

fn+1
Γ,k+1 = F

(
dn+1

Γ,k

)
3. Solve the structural problem:

d̃n+1
Γ,k+1 = S

(
fn+1

Γ,k+1

)
4. Compute the increment displacement δd based on the Newton method

(a) Compute the residuum

rk = d̃n+1
Γ,k+1 − dn+1

Γ,k

(b) Solve the equation

r′
(

dn+1
Γ,k

)
δdk = −rk (4.36)

(c) Update the interface displacements

dn+1
Γ,k+1 = d̃n+1

Γ,k + δdk (4.37)

5. Check for convergence of the fixed-point iteration:

Res = C (δdk) ≤ εTol (4.38)

If Res > εTol:

dn+1
Γ,k = dn+1

Γ,k+1 k = k + 1

go to 2 (to begin a new step in the inter-field iteration loop)

Else if Res ≤ εTol:

dn+1
Γ = dn+1

Γ,k+1 n = n + 1 k = 0

go to 1 (to begin a new time step)

Algorithm 4: Basic Newton algorithm

needs to be computed several times, depending on the order of finite difference inter-
polation and the number of interface degrees of freedom. The approximated deriva-
tives computed by the finite difference methods depend on the size of the increment,
which describes the variation of the interface displacements. Therefore, an additional
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parameter is needed, which is likely to influence convergence and accuracy of the
computation.

Suggested improvements are to limit the usage of the finite difference method to blocks
of the tangent operator [MS03, MNS06] and to speed up the computation, at the cost
of limiting the accuracy, by using only one solution step in the fluid solver [Ste02].

� Approximated Block-Newton by simplified fluid and/or structural model

Gerbeau et al. [GV03] suggest the following simplification of the fluid and the struc-
tural model: the fluid domain is fixed, the structure problem is linearized, based on the
current configuration. The viscous and inertia terms are neglected in the fluid prob-
lem, which effectively reduces the fluid problem to a Poisson’s equation. This simpli-
fied model is not sufficient to describe the original fsi problem, but useful to determine
the tangent operator in the block-Newton algorithm and, therefore, to solve eq. 4.36.
This approach is modified by extending the simplified fluid problem in [Dep04].

� Approximated Block-Newton by Jacobi-free Krylov method

Michler et al. [Mic05, MvBdB05] and van Brummelen et al. [vBdB05] suggest the use of
fixed-point iterations as preconditioner to a Newton-Krylov method (GMRES), which
is applied to the interface degrees of freedom. By combining Newton and GMRES,
the reuse of Krylov vectors in subsequent solutions during the inter-field iterations
is possible. Thereby, a reduction in computational effort is expected for sufficiently
linear systems. Up to now, this method has been applied to academic problems and
still has to prove its applicability for real world problems.

� Approximated Block-Newton by constructed fluid model

Vierendeels et al. [VLDV07] suggests a method to approximate the Jacobian by using
reduced order models, which are constructed during the coupled inter-field iterations.
One of the advantages of this approach is the fact that black-box fluid solvers can
be used. In case the structural code can be modified, only a reduced order model
for the fluid solver is needed. During the coupled computation, the reduced order
model is gradually constructed by pairing interface displacements and corresponding
interface load states. The updated fsi interface displacements are computed by solving
the structural problem, while using the reduced order model as boundary condition,
instead of the original fluid problem. The interface loading computed by the fluid
solution for the updated boundary displacements is used to enhance the reduced order
model. This iteration loop over the structural solver, the reduced order fluid model,
and the original fluid model is repeated until convergence is reached. In the case of a
black-box structural solver, the method can be extended by using two reduced order
models.

4.3.4 Instabilities in Partitioned Analysis of Incompressible Flows

In the simulation of fsi with incompressible flows, sequentially staggered, weakly coupled
fsi schemes have been observed to face problems with respect to stability of the computa-
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tion [Mok01]. Iteratively staggered, strongly coupled schemes don’t show these instabili-
ties, but problems with convergence of the solution within one time-step can occur. This
phenomenon is known as the "artificial added mass effect", as it can be traced back to the
fluid masses, which surround the structure at the fsi interface, acting as additional mass in
the system of equations of the structural problem. However, the "artificial added mass ef-
fect" discussed here is only relevant to the computation of the coupled solution. It has to
be clearly distinguished from the added mass effect in aeroelastic problems, which is also
caused by the mass of a fluid surrounding a structure and is known to damp oscillations but
also to cause aeroelastic instabilities, e.g. for bridge cross-sections.

The artificial added mass effect is widely known and has been subject to several analy-
ses, among others in [Mok01],[LTM01], [Nob01]. Causin et al. [CGN05] created a simple,
linear model problem to express the influence of the fluid problem in the fsi computation
by an additional mass in the structural problem, introducing an "added mass operator". For
simplified problems, the added-mass effect can be well described using analytical analysis
[CGN05], [FWR07]. However, for real-world fsi problems, the analysis and prediction of
the artificial added-mass effect proved to be difficult due to the nonlinearities in fluid and
structural problem and additional influences, which are introduced by discretization and
approximations.

In the context of the artificial added mass effect, the unstable behavior results in un-
physical results for weak coupling schemes, which can be observed in interface loadings
and/or displacements as spurious high frequency oscillations and/or extremely high am-
plitudes, as compared to the expected results. For strong coupling schemes, the occurrence
of instability is more likely to be found in the convergence behavior within one time-step
rather than in the converged results of the inter-field iterations [CGN05]. In the case of
under-relaxed fixed-point iterations, this requires a small under-relaxation factor for a sta-
ble, but slow convergence. Depending on the actual formulation, Newton-Krylov-based
methods show superior behavior with respect to the number of necessary inter-field itera-
tions and computational effort for simulations affected by the artificial added mass effect
[KW07, KW09]

The degree of instability can be assessed by the magnitude of disturbance introduced
into the system and by the simulation time, after which this instability occurs. Using
these criteria, the correlation of the following parameters for coupled computations with
the added mass effect were observed:

� The ratio of the densities of fluid and structure has the most significant influence. A
higher mass ratio ρF/ρS worsens the instability. This is due to the fact, that by decreas-
ing the structural mass, the destabilizing added mass effect caused by the fluid mass
around the structure is increased.

� For simply staggered coupling schemes, decreasing the time step size could be ex-
pected to limit instabilities due to the explicit character of weak coupling schemes.
However, decreasing the time-step size worsens the instability. This holds also for it-
eratively staggered, strongly coupled schemes. It can be explained by the fact, that
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in eq. 2.69 the influence of the mass related terms becomes increasingly dominant, as
compared to the stiffness related terms, the smaller the time-step size is.

� The stiffness of the structure has an easing effect on the instability. This easing effect
can be increased, e.g. by introducing pre-stress into the structure. A higher fluid
viscosity seems to worsen the artificial added mass effect.

� For explicit coupling schemes, the usage of a higher order predictor for the interface
geometry increases the influence of the added mass effect. Best results are achieved by
using no predictor for weak coupling with incompressible flows.

� The usage of higher order time integration schemes used in fluid simulation also seems
to worsen the added mass effect.

In order to limit the artificial added mass effect in coupled computations, several reme-
dies have been suggested. Tezduyar et al. [TSKS06] suggest to increase the structural mass
on the left side of eq. 2.69 while leaving the right hand side unmodified. Fernández et al.
[FGG07] developed an approach using projection scheme for the inter-field iterations. In
[PF01] load and motion transfer have been modified to increase stability. A practical ap-
proach is to respect a lower limit of the time-step size, and thus, postpone the onset of the
added mass instability beyond the end of the time interval of interest. However, this ap-
proach is limited by the time-step size necessary to resolve the physical effects of interest.
Furthermore, an upper limit of the time-step size can exist due to the Courant-Friedrichs-
Lewy condition. Thus, the interval of possible time-step sizes might be very limited or even
empty.

The analysis of the artificial added mass effect in [CGN05] and [FWR07] allows to con-
clude, that weakly, sequentially staggered coupling schemes are only conditionally stable in
simulations involving incompressible fluid flow. Typically, an upper limit of ρF/ρS can be
found as instability condition.

In the application of wind-membrane interaction, in which the wind is modeled as in-
compressible air flow, no significant influence of the added mass effect is expected and ob-
served. This can be reasoned by the relatively low density of air compared to the structural
density. The worsening effect of the small structural stiffness is neutralized by the applied
prestress. In contrast to the analysis found e.g. in [CGN05], [FWR07], which is related to
the simulation of blood flow, in the simulation of wind-membrane interaction, the fluid has
access to both sides of the structure. To the author’s knowledge, the effects due to artificial
added mass for cases of a structure with fluid on both sides have yet to be analyzed.

4.4 Computational Aspects of Partitioned Analysis

After the discussion of coupling methods for the simulation of surface coupled problems of
fluid-structure interaction, in the following, certain aspects of fsi coupled simulations shall
be introduced. These aspects are essential for the setup of a computational environment,
which is suitable for the simulation of wind-membrane interaction.
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4.4.1 Non-matching Interface Discretization

In section 4.2, the usage of different spatial discretizations of the fluid-structure interface
Γ was named as an advantage of a partitioned fsi approach, as the best suited spatial dis-
cretization can be applied for all physical domains. By using individual discretization in the
different domains, the spatial surface discretization of the common interface is likely to vary
as well. In the most general case, this results in differences in discretization of the common
fsi interface, which can be in the density of the discretization or/and in the type of surface
elements. In the following, the spatial discretization of the fsi interface shall also be simply
named as interface mesh. Thereby, the case of individual interface discretization is referred
to as non-matching interface meshes. An example for non-matching fsi interface meshes is
given in fig. 4.3, which shows the surface mesh of a four-point tent, both in the structural
and fluid domain.

interface discretization

of the fluid side

interface discretization

of the structural side

Figure 4.3: Non-matching interface discretization upper side of a four-point tent structure.

To realize the physical coupling, the transfer of the coupling quantities has to be per-
formed. In case of non-matching interface meshes, this requires methods to transfer data
between various discretizations. The criteria for the data transfer methods can be derived
from the coupling conditions formulated in section 4.3, which were derived for the case of
matching interface discretizations. In the context of this work, these criteria are the conser-
vation of interface loads, as well as displacements and thus, energy at the interface. This
conservation has to be fulfilled locally, as well as globally for the summation of loads and
energy over the interface. Furthermore, the transfer method has to be sufficiently compu-
tationally efficient, since for every inter-field operation, the data transfer between the non-
matching meshes has to be performed at least twice.

Different methods for the data exchange on non-matching interface discretizations are
discussed in the following:
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� Next-Neighbor interpolation

The Next-Neighbor interpolation is a fast and simple method, in which the each node
on one side of the interface is linked to the closest node on the other side of the inter-
face [TBU00]. This method provides reasonable results only for interface discretiza-
tions that are almost identical, especially with respect to the interpolation of displace-
ments. While the sum of loads is interpolated in a conservative manner, the spatial
distribution of the loads can change significantly trough this data exchange method.

� Projection based methods

In projection based methods, a point of the target interface discretization is projected
onto the source mesh. Based on the position within the source mesh, the data is in-
terpolated onto the projected point and this data can be used in the original point
[FLL98]. Alternatively to the projection of nodal values, [CL97, CL05] suggest the pro-
jection of quadrature points. Similar to point-based projections, also whole elements
from the target mesh can be interpolated into the source mesh and the size of the area
of intersection can be used for interpolation [JH04],[fAC03]. A comparison of three
most common projection schemes can be found in [JJGL05].

� Spline based methods

Spline-based interpolation methods originate in the fields of computer graphics and
medical imaging. The idea is to approximate the interface data on both sides by sum
of shape functions, which are fitted to the interface geometry. This sum of shape
functions is used to define a transformation matrix for data transfer between the two
interface discretizations. Thereby, no projection and search algorithms are needed
[dBvZB07]. Especially radial basis functions are of interest, as they were found to
be well-suited for problems of fluid-structure interaction [BW01, SHC00, RA08].

� Weighted residual based methods

Weighted residual based methods aim to ensure a consistency of the transferred quan-
tity in an integral sense. Similar to the Galerkin method presented in section 2.2.1.5,
the coupling quantity is multiplied with a test function and integrated over the inter-
face. This leads to a linear system of equation, which includes all interface degrees
of freedom of the coupling quantity. The method can be enhanced by an appropriate
choice of the test function, typically the basis function from one interface side. As the
same test function has to be used on both interface discretizations, weighted-residual
based methods often necessitate projection and/or interpolation. Similar methods can
be derived based on Lagrangian multiplier methods [PFO01]. A particular technique
is the Mortar method [BMP94, Baa01].

Interpolation based data exchange method for non-matching interface discretization used
within this work

Within this work, an interpolation based method is used for the data transfer between non-
matching interface discretizations. It proved to be sufficiently accurate not to limit the sta-
bility of the computation and is easy to implement. Most importantly, it can be applied to
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interpolate data on curved surfaces with reasonable computational effort. To simplify the
further discussion, the terms of source and target mesh are introduced. The source mesh is
the spatial interface discretization, on which the coupling quantity data is located and the
target mesh is the interface discretization onto which the data shall be transferred.

To assess the relations between the two non-matching interface meshes, the so-called
neighborhood-search is preceding the data interpolation. In the neighborhood-search, each
node of the source mesh is projected onto the target mesh. The element on the target mesh,
in which the projected node is located, is identified and the position of the projected node is
expressed in the local coordinates of the specific element on the target mesh. This projection
is performed twice, firstly, with the interface mesh of the structural side as source mesh and
the interface mesh of the fluid side as target mesh and secondly, vice versa.

In the scope of this work, the fluid and the structure interfaces are assumed to stick
together. Sliding of domains in tangential direction to the interface surfaces is not permit-
ted. Therefore, the relations between interface discretization will remain constant and the
neighborhood-search has to be performed only once at the beginning of the simulation.

In order to fulfill the requirements of global and local conservation of coupling quanti-
ties, the interpolation scheme needs to be separated into two types of exchanged data: cou-
pling quantities of field-type, such as deformations or pressure, and quantities of flux-type,
such as nodal forces.

� Interpolation of field quantities

For field type quantities, the interpolation is performed based on the type and shape
functions of the source element. This is explained in the example of interpolation of
displacements.

The interface displacements shall be interpolated from the source interface mesh of the
structural side to the target mesh on the fluid side, which is illustrated in fig. 4.4(a) .
Therefore, the projection of fluid node i onto the structural source mesh is considered.
In the respective structural element eS with n nodes and n shape functions Ne

S,r(ξ, η),
ξS,i and ηS,i are the local coordinates of node i. The interpolated displacement dF,i for
fluid node i is computed as:

dF,i =
n∑

r=1

Ne
S,r(ξS,i, ηS,i)dS,r (4.39)

An identical procedure can be applied to transfer the pressure from the fluid to the
structural side, which is illustrated in fig. 4.4(b) . Now, a node j from the structural
side is projected to the fluid side and is located in fluid interface element eF with m
nodes and m shape functions Ne

F,l(ξ, η). Accordingly, based on the local coordinates
ξF,j and ηF,j of the projected structural node within the fluid element, the pressure p
on the structural node can be computed by:

pS,j =
m∑

l=1

Ne
F,l(ξF,j, ηF,j)pF,l (4.40)
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The presented transfer of displacements and/or pressure by a linear or bilinear inter-
polation does not guarantee the conservation of energy or displacement. However,
for moderately different interface meshes, the author observed no significant decrease
in accuracy or stability comparing fsi simulations with matching interface discretiza-
tion to those with data transfer by linear interpolation for non-matching interface dis-
cretization.

eS

�S

�S

i

r=1
r=2

r=3
r=4

fluid interface mesh
structural interface mesh

(a) Interpolation of displacements form a structural
surface element eS onto a fluid node i.

fluid interface mesh
structural interface mesh

eF

�F

�F

j

l=1 l=2

l=3l=4

(b) Interpolation of pressure form fluid surface ele-
ment eF onto a structural node j.

Figure 4.4: Interpolation of field-based quantities.

� Interpolation of flux quantities

For the transfer of nodal loads from the fluid to the structural side, the conservative
interpolation strategy is applied [FLL98], which is illustrated in fig. 4.5. Here, a fluid
node i from the source mesh is projected onto the structural element e S of the target
mesh. Within the element eS of the target mesh, the projected node i has again the local
coordinates ξS,i and ηS,i. Now, the nodal load fF,i of node i is transferred to the n nodes
of the element eS according to:

fS,r = Ne
S,r(ξS,i, ηS,i)fF,i (4.41)

Eq. 4.41 is used for all n nodes of element eS. This projection and transfer of nodal
loads is repeated for all fluid nodes of fluid interface mesh.

For linear shape functions Ne
S,r(ξ, η) holds:

n∑
r=1

Ne
S,r(ξ, η) = 1 (4.42)

which leads to the fact, that fluid node i transfers its complete nodal load to the n
nodes of structural element es:

fF,i =
n∑

r=1

fS,r (4.43)
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Figure 4.5: Interpolation of flux-based quantities.

As this procedure is performed for all fluid nodes, the sum of nodal loads on the
structural interface equals those on the fluid interface, which establishes a conservative
type of interpolation with respect to global conservation of interface loads.

Consideration about the used interpolation method

As with most interpolation methods, the result of the method used in this work is best, if the
two interface discretizations are quite similar. In case of larger differences in element sizes,
this interpolation method will perform with reduced accuracy. In case of flux quantities,
such as nodal loads, this will not affect the global conservation, e.g. the sum of forces before
and after the interpolation, but will have an impact on the distribution of these forces, thus
the local conservation. This can be easily explained using fig. 4.6.

Figure 4.6 shows a coarse discretization of the fluid side of the interface and a regular
discretization of the structural interface. On the fluid side, a uniform pressure distribution
is assumed. For these non-matching meshes, the uniform pressure load shall be consistently
transferred from the source mesh on the fluid side to the target mesh on the structural side.
Based on the regularity of the target mesh, as result of the interpolation of nodal loads repre-
senting a uniform pressure distribution on the source mesh, a uniform distribution of nodal
loads on the target mesh is expected. At the beginning of the data transfer, the pressure on
the fluid source mesh is transformed into nodal loads on the fluid source mesh. Then, these
nodal loads are transferred to the structural side by the interpolation procedure described
above. Due to the fact that the fluid interface discretization in the lower area is much coarser
than the structure’s discretization, not all nodes of the target mesh will have nodal forces as-
signed. Comparing the actual distribution of the nodal forces on the target mesh after the
interpolation with the correct solution, the incorrect distribution of loads becomes obvious.
However, the sum of interface nodal forces will still be equal on fluid and structural side.

While the relation of coarseness between fluid and structural side needs to be consid-
ered for plane interface geometries, for curve geometries, such as the surface of a cylinder,
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source mesh:

fluid interface

discretization

target mesh:

structural interface
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nodes of source mesh

nodes of target mesh, on

which no data is assigned

Figure 4.6: Interpolation of flux quantities for large difference in interface discretization.

problems with interpolation can result in a totally wrong interpolation, as not only the distri-
bution, but also the direction of the nodal forces on the target mesh can be highly incorrect.

A simple remedy to this problem is to use a finer source mesh when transferring flux-
based data. Fortunately, in the case of fluid-structure interaction, typically the fluid side
features a finer discretization than the structural side, so this criteria is implicitly met.

Considering the linear or bilinear interpolation for field-based quantities on interface dis-
cretizations with highly differing coarseness, no un-physical distribution of the transferred
quantities is expected. However, a loss of data and, therefore, a loss in accuracy occurs each
time data is transferred from a finer to a coarser mesh. Additional attention has to be paid
to non-matching interface discretization with curved fsi-interfaces. For field based quanti-
ties, which depend on the local coordinate system of the interface mesh, e.g. pressure acting
always perpendicular to the interface surface, the difference in surface normal direction be-
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tween source and target mesh at a specific point has to be respected.

4.4.2 Mesh Movement of the CFD Grid

As the structure is subject to deformations during the simulation of fluid-structure interac-
tion, the fsi interface, which describes the boundary between structural and fluid domains,
is deformed as well. In the simulation of wind-membrane interaction, large displacements
of the membrane are expected. However, rigid body rotations and displacements are not
analyzed, as the membrane structure is considered well grounded.

For the structural domain within this work, a Lagrangian approach is chosen. Therefore,
the moving fsi boundary does not necessitate any modification. For the fluid domain, which
is based on the Eulerian approach, the moving fsi boundary has to be explicitly respected.
In the scope of this work, the ALE-approach was chosen to handle the moving boundaries
in the fluid domain. The ALE approach has already been introduced in section 3.3.7. In
contrast to fixed-grid methods, in an ALE-based approach, the fluid mesh is adapted to
the moving fsi-boundaries. The challenge in adapting the computational grid of the fluid
simulation is not to deteriorate the quality of the computational grid. Therefore, the local
modification of the fluid domain at the fsi boundary is extended into the fluid domain. This
adaptation of the fluid computational grid has to be performed for every step in the inter-
field iteration loop.

The most direct method to include the changes of the boundaries of the fluid domain
in the coupled computation is to generate a new computational grid for the whole fluid
domain or parts of it. This approach is known as remeshing. However, remeshing is com-
putationally very expensive and can introduce various sources of inaccuracy. One source of
possible inaccuracy is the interpolation, which is necessary, to transfer the mesh-based data
of the fluid domain from the old to the new fluid grid. Additionally, a remeshed fluid do-
main necessitates a new setup of the interpolation method to transfer coupling data, e.g. to
conduct a new neighborhood search. For CFD computation on multiple processors, a new
domain decomposition has to be performed. Due to these considerations, remeshing of the
fluid domain shall be restricted to cases, in which other methods of mesh adaption already
have lead to an extremely distorted computational grid, e.g. due to large displacements, or
cases in which a change of the mesh topology is necessary, e.g. when the fluid penetrates
the structure at cracks. For all other cases, the usage of mesh moving methods is favorable,
with respect to accuracy, stability, and computational effort.

Mesh moving methods are methods, which transfer the local deformation at the fsi inter-
face into the computational grid of the fluid domain by changing the position of the grid
nodes while the topology of the computational grid remains unchanged. The requirement
to preserve the quality of the complex computational grid is not trivial. In order to re-
solve the flow boundary layer close to the fsi interface appropriately, the computational
fluid grid is usually very fine at the fsi interface. Therefore, in the area, in which the greatest
mesh deformations are expected, small size elements reside. Due to the difficulties of mesh
moving, the ALE approach has been interpreted as three field "fluid"-"computational fluid
grid"-"structure" problem, e.g. by [Wal99], [Far04].
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Summarizing the considerations above, the main criteria for the mesh movement meth-
ods, with respect to arbitrary deformations within a certain range, is to:

� retain a good mesh quality to avoid problems with convergence and/or accuracy of
the CFD solution.

� avoid the creation of control volumes with negative volume due to self penetration of
the CFD grid.

� limit the additional computational effort.

Different methods for mesh movement computations are available, which try to dis-
tribute the mesh distortion introduced at the fsi interface into the fluid domain while retain-
ing an acceptable mesh quality. In the following, the most widely used methods are divided
into three groups:

� Analytical and interpolation based methods

Analytical methods are easy to implement, fast to compute and reliable for geometri-
cally simple situations [SHC00]. For block structured meshes, simple linear and trans-
finite interpolation proved to give good results, while no system of equations needs to
be solved [GBD+01, Glü02]. For unstructured meshes, e.g. with fine boundary resolu-
tion, basic interpolation methods are not applicable.

A newer development in interpolation methods is the usage of radial basis function
[vZdBB07], [dBvdSB07], same as those which can be used for data interpolation at the
fsi interface. In order to derive the interpolation matrix, a linear system of equations
has to be solved to invert the matrix of correlation between the boundary nodes. This
method is reported to provide good results even for large displacements and rotations.
Additionally, by the use of radial basis functions, aspects of the mesh moving can be
combined with data interpolation for non-matching interface discretizations [RA08].

� Methods based on mesh smoothing

Laplacian method [LY96] and bi-harmonic approaches [Hel03] are well known as mesh
smoothing techniques, common in mesh generation in CFD and CSD. The solution
of an elliptic problem is used to generate a smooth distribution of a certain quantity
over a certain domain within the prescribed boundary conditions. In case of mesh
movement, the quantities distributed over the fluid domain can be the displacements
of the fsi interface. Compared to the Laplace method, the bi-harmonic approach has
the advantage to control the mesh spacing better but at the cost of a four time higher
computational effort.

By assigning a non-uniform distribution of diffusiveness, depending on the element
size and/or distance to the boundaries, within the fluid domain, the mesh deformation
can be influenced. This is necessary to avoid, that smaller and larger size elements are
subject to the same change in volume, which is very likely to lead to self-penetration
of the CFD mesh. Self-penetration of the fluid mesh can also result due to shear defor-
mations of the CFD elements. It is a disadvantage of basic mesh smoothing methods,
such as the Laplacian method, that the control of mesh shear deformation is limited.
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� Methods based on structural analogy

Methods based on structural analogy can be further subdivided into:

– Spring methods [Blo00], [DF02], [BDS05]

– Pseudo material approach [Wal99], [STB03], [STB04], [LQX06]

The idea for spring approach and the pseudo material approach is to use the principles
of structural mechanics to determine the mesh deformation. The fluid grid is treated
similar to a volume of material and the boundary deformation is typically introduced
as a Dirichlet boundary condition for a structural problem. Most commonly, a pseudo
static problem of the following type is produced:

Kg · dg = fg (4.44)

Kg is the pseudo stiffness, which is derived based on pseudo material parameters or
assumed springs. The load vector fg is based on the Dirichlet boundary conditions,
which represent the boundaries of the fluid domain, including the fluid-structure in-
terface. The solution of this linear system of equations results in the displacements of
nodes of the fluid grid dg. For the most general three-dimensional case, the system of
equations needs to contain the three possible displacements of all nodes of the fluid
grid which are subject to the grid adaption. For a large computational grid with up to
several millions of fluid nodes, the setup of the system of equations and its solution
can become computationally expensive.

Compared to the spring approach, in the pseudo material approach the distortion of
control volumes in the CFD grid can be easier controlled. The pseudo material quanti-
ties, such as the Lamé-parameter [STB03], can be assigned to the CFD grid depending
on the element size, and/or distance to the boundaries of the fluid domain. Thereby,
the distortion of smaller elements can be avoided, as they can be found at the domain
boundaries. In order to control mesh distortions in the spring methods, additional
configuration or additional spring types have been introduced, e.g. torsional and di-
agonal springs.

An interesting suggestion to reduce the computational effort for adaptation of the fluid
grid is to combine this method with interpolation techniques. Instead of the original
CFD grid, a coarser mesh is used to solve the pseudo material problem. Based on
the solution on the coarser mesh, the deformation of the finer original CFD mesh is
determined via interpolation. This interpolation can be based on a Delaunay diagram
[LQX06] or on shape function as used in CSD [Lef08].

For wind-membrane interaction, mainly deformations perpendicular to the pre-stressed
membrane surface are expected. Therefore, except for simple interpolation techniques, any
of the three mesh moving methods can be applied in this context. Details about the method
used are given in section 4.5.2.
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4.4.3 Convergence in Partitioned Analysis

The strongly coupled partitioned solution strategies, which were introduced above, use an
iterative scheme to reach a state of equilibrium for the interaction of fluid and structure
within each time step. By performing the inter-field iterations, the coupled solution con-
verges to this state of equilibrium. In order to assess the convergence of the coupled solu-
tion, an appropriate convergence criteria has to be formulated.

Deparis [Dep04] suggests a criterion based on the velocity u in the whole fluid domain,
the structural displacement d and velocity ḋ at the fsi interface. The check for convergence,
L2 or Euclidean norm || || is used together with two parameters:

||
(

d̃n+1
Γ,k+1, ˙̃d

n+1
Γ,k+1

)
−
(

dn+1
Γ,k , ḋn+1

Γ,k

)
|| ≤ C1 εTol (4.45)

||un+1
k+1 − un+1

k || ≤ C2 εTol (4.46)

The drawback of this approach is, that the relative error check in eq. 4.45 and 4.46 is not di-
mensionless and, therefore, additional to the tolerance limit εTol the choice of the parameters
C1 and C2 is problem depending.

Similarly, Küttler et al. [KW07, KW09] [Mok01] propose an convergence criterion based
on an absolute value using the interface displacements. This criterion uses only the length
scale norm of the residuum of the interface displacements rn+1

Γ,k+1 with a tolerance limit of
εTol and neq as the total number of degrees of freedom for the test quantity on the coupling
interface:

rn+1
Γ,k+1 = d̃n+1

Γ,k+1 − dn+1
Γ,k (4.47)

1√neq
||rn+1

Γ,k+1|| < εTol (4.48)

Alternatively to using absolute values of the coupling quantities, relative values can be
used to formulate a convergence criterion. In a relative convergence criterion, a reference
value, e.g. a reference displacement dre f , is defined, with which the value of the residuum
can be normalized. The choice of dre f is based on typical values expected for the specific
application. Deparis [Dep04] suggests to perform the convergence test by using:

||d̃n+1
Γ,k+1 − dn+1

Γ,k || < dre f εTol (4.49)

|| ˙̃d
n+1
Γ,k+1 − ḋn+1

Γ,k ||
|| ˙̃d

n+1
Γ,k+1||

<
dre f εTol

||d̃n+1
Γ,k+1||

(4.50)

||un+1
k+1 − un+1

k ||
||un+1

k+1 ||
<

dre f εTol

||d̃n+1
Γ,k+1||

(4.51)

A similar approach is used by Gerbeau et al. [GV03] and Glück [Glü02], but applied only to
the interface displacements.

Additionally to the convergence tolerance εTol, the absolute and relative convergence
criteria introduced above all necessitate the choice of a problem dependent parameter or
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reference value. Here, an enhanced relative convergence criterion is proposed, which is
used within this work.

In contrast to the convergence criterion presented, in the current approach, the reference
value can be automatically determined based on the data of coupling quantities obtained
during the inter-field iteration. As a first approach, the absolute change in two relevant
coupling quantities, e.g. the interface displacement dΓ and the interface load fΓ, since the
end of the last time step is used to normalize the residuum:

||d̃n+1
Γ,k+1 − dn+1

Γ,k ||
||d̃n+1

Γ,k+1 − dn
Γ||

< εTol (4.52)

||f̃n+1
Γ,k+1 − fn+1

Γ,k ||
||f̃n+1

Γ,k+1 − fn
Γ||

< εTol (4.53)

with dn
Γ as the interface displacement and fn

Γ as the interface load at the end of the previous
time-step. Both criteria have to be fulfilled to establish convergence within one time-step.

The advantage of this convergence criterion is to be able to omit the specification of a
problem dependent parameter additionally to the tolerance limit. Furthermore, the conver-
gence test is performed on all variables with the same accuracy. In case of small changes in
the coupling quantities since the end of the last time-step, the requirement for establishing
convergence is increased, compared to the methods presented above. By applying the con-
vergence criteria to both, interface displacements and loads, it is ensured that the influence
of under-relaxation on the convergence criterion is limited, which is discussed below. Mon-
itoring the relative change of the coupling quantities at the interface during the inter-field
iterations proved to be a valuable byproduct for the analysis of computational instabilities
or failures. It provides the possibility to trace drastic changes in the coupling quantities
to one single field solver and thus a separation into "cause and effect", which is otherwise
difficult because of the interdependencies of the involved computation.

Remarks on convergence criteria for fixed-point iterations with under-relaxation

For methods based on fixed-point iteration with under-relaxation, the convergence crite-
ria have to be applied to the non-under-relaxed quantities. In the discussion above, this is
indicated by marking the non-under-relaxed values with a tilde. Based on the author’s ex-
perience, it is highly suggested to consider that even by using the non-under-relaxed values
for the convergence check, the influence of the under-relaxation is still existent in the con-
vergence criteria due to the interdependency of the coupling quantities, which are used to
judge the state of convergence.

An example is the usage of a very low under-relaxation factor, e.g. 10−3 for the inter-
face displacements and a relatively high convergence limit of 10−2. The convergence check
after the first inter-field-iteration uses the non-under-relaxed values. Therefore, the low
under-relaxation factor has no influence. However, due to a small change in the interface-
displacements, the fluid solution is very likely to result only in a small change of the interface
loads. The interface displacements, which are computed based on these only slightly mod-
ified interface loads, will only slightly differ from those at the end of the previous interface
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displacements. Now, the convergence check for the interface displacements and the inter-
face loadings will indicate convergence due to the small changes compared to the previous
inter-field iteration step.

However, this convergence is only artificially achieved due to the high under-relaxation.
For further time-steps, this can result in slower convergence within the inter-field iteration
loop or even in the occurrence of instabilities in the coupled computation. These effects have
been found to be more severe in case of the usage of predictors.

By dynamically determining the under-relaxation factor with the Aitken’s method,
considerations about very small under-relaxation factors could be omitted, as the under-
relaxation factor increases when coupled computation converges. It shall be noted that this
assumes a good convergence of the coupled simulation. For strongly coupled computations
that face instabilities, e.g. due to the artificial added mass effect introduced above, even
under-relaxation factors determined with the Aitken’s method can easily be very low.

Concluding, for the usage of under-relaxation in fixed-point based methods, special care
should be taken to avoid failures of the convergence criteria due to the under-relaxation.
In the current work, the under-relaxation factor was limited to values larger than 10−2 for
convergence limits typically in the range of 10−4.

Convergence in the coupled simulation and in the single field solutions

Due to the strong physical coupling, the convergence of the coupled partitioned solution
is depending on the convergence of the single field solvers. The single field solvers have
to reach convergence for the respective current boundary conditions within every step of
the inter-field iteration loop. The tolerance limit, which has to be met to establish a state of
convergence for the coupled computation, was identified above by the value εTol. In order
to reach εTol for the coupled computation, the tolerance limit for the convergence criteria
of the single field solvers εTol, single field has to be smaller than εTol, since the accuracy of
the coupled simulation will naturally be limited by the accuracy of the single field solvers.
Deparis [Dep04] suggests to apply a similar convergence criteria for the single field solvers
as for the coupled computation and to choose the tolerance limit for the single field solver to
εTol, single field = εTol/10. This corresponds with the author’s recommendation to choose the
convergence limit of fluid and structural solver one magnitude smaller than the convergence
limit expected for the coupled computation. Strong fluctuations of the coupling quantities
in the inter-field iteration, which start to occur below a certain limit, have been found as an
indication of a too high convergence limit for one of the single field solvers.

4.5 Computational Concept

The previous sections discussed the different elements necessary to perform a fully-coupled
fsi simulation. This section presents the implementation of the coupling approach in a soft-
ware environment.

The highly demanding requirements for the simulation of wind-membrane interaction
are met by using a partitioned approach. For this partitioned approach, the specialized
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software codes CARAT for the structural computation and Ansys CFX 11 for the fluid com-
putation are used. These single field solvers have already been introduced in the previous
chapters.

Three software setup

For an efficient realization of a software environment for coupled simulation of wind-
membrane interaction, it is advantageous to reuse existing single field solvers and to limit
the necessary modifications as much as possible. This is especially important in the case of
Ansys CFX, which is a commercial software, whose source code is not available. Therefore,
all modifications in Ansys CFX have to be introduced using the User Fortran Programming
interface.

To limit the modifications in the existing codes, the data exchange in the current envi-
ronment is handled by a third software programm, which is called the coupling tool in the
following. The main purpose of the coupling tool is to perform the data transfer of the cou-
pling quantities for non-matching interface discretization. It is sufficient for each single field
solver to just consider the data on its side of the fsi-interface based on its appropriate inter-
face discretization. The coupling quantities are sent from one code based on the respective
interface discretization to the coupling tool, which performes the data transfer and sends
the coupling data based on the interface discretization of the second solver to the second
solver. This data transfer between the three involved software codes, the structural solver,
the coupling tool, and the fluid solver, is shown in fig. 4.7

Structural Simulation

(CSD):
CARAT

-

Fluid-Simulation (CFD):

Coupling tool:

Ansys CFX-11

CoMA

data exchange on
non-matching

interface
discretizations

Figure 4.7: Exchange of coupling data using three software codes.
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Additional advantages of using a separate software for the data exchange are:

� Different software codes for the simulation of the single field solvers can be used.
The possible exchange of single field solver in the current environment necessitates
that each solver has the specific software interface to communicate with the central
coupling tool.

� The application of the central coupling tool is independent of the type of problem.
Therefore, its application can be extended to other multi-field simulations, in which
the data exchange based on the discretization of a common interface is necessary.

� The central coupling tool has all information about the degrees of freedom on the fsi
interface. Thereby, the implementation of methods in the coupling tool is possible,
to modify or interpret the interface data from the two coupling codes and thereby, to
enhance the coupled simulation.

� Extending the functionalities of the central coupling tool further, a client server soft-
ware environment setup is possible. In this setup, the central coupling tool manages
the complete coupling simulation and activates the single field solvers as updated sin-
gle field solutions are required. Possible applications are the optimization in context
of multi-physics problems, especially, fluid-structure interaction. Another possible
application would be the realization of the fsi coupling scheme using reduced order
models, as introduced in section 4.3.3.2.

In order to realize these advantages, the central coupling tool CoMA was developed
within this work. Details about the coupling tool are given in section 4.5.3.

Coupling scheme

To fully represent the strong coupling between wind flow and the deformation of the mem-
brane structure, a strongly, iteratively staggered coupling scheme is necessary. As explained
in section 4.3.3, this can be realized by using schemes based on fixed-point iteration or
Newton-based schemes.

In the proposed software environment, the application of Newton-based coupling
schemes is restricted by the lack of access to the source code of the commercial fluid solver
Ansys CFX. Without the possibility to make major modifications in the fluid solver, the
usage of Newton-based schemes is restricted to methods, which are not enhanced by the
solution of a subproblem. Additionally, for the application of wind-membrane interaction,
no experience is available, to which extent subproblems contain the necessary physical re-
lations to sufficiently model the wind flow around a building or a membrane construction.
Newton schemes based on the Jacobi-free Krylov method still have to prove their applicabil-
ity to large scale problems and for the Newton-based methods based on the finite-difference
schemes, no significant improvements are expected compared to the application of an ad-
vanced fixed-point iteration scheme. The only Newton-based method, which is of interest,
is the one using a constructed fluid model.

Concluding, Newton-based methods are extremely difficult to realize with a black-box
single field solver, while for possible Newton-based schemes no significant improvements
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compared to schemes based on fixed-point iterations are expected. Therefore, within this
work, a coupling scheme based on the fixed-point iteration is used with stabilization by
adaptive under-relaxation based on the Aitken method, which has been presented in sec-
tion 4.3.3.1. A flow-chart of the sequence of computations for the coupling scheme and the
necessary data transfer is presented in fig. 4.8. This coupling scheme is a realization of the
schemes presented in Algorithm 2 or Algorithm 3, depending whether the under-relaxation
is applied to the interface displacements or interface loadings. As initial step, the surface
mesh of the fsi interface discretization is sent from both solvers to the coupling tool, before
the iteratively sequentially coupled computation starts.

fluid analysis

structural analysis

mesh mesh

surface load

displacementdisplacement

surface load

CFD coupling tool CSD

convergence ?
next inter-field

iteration step

next time-step

no

yes

max. time

reached ?

no

yes

end of computation

Figure 4.8: Flow-chart of computations and data exchange in the current approach.

The necessary modifications of the single field solvers CARAT and Ansys CFX for an
application within this coupling scheme are presented in the following sections.

Geometrical models in fluid and structural domains

Surface coupled multi-physics problems, such as simulation of fluid-structure interaction,
requires special consideration about the type of the computational and geometrical models
used in the single field solvers. This can be easily explained at the example of aero-elastic
analysis of an aircraft wing. From the structural point of view, the wing can be sufficiently
represented by a beam or plate type computational model. The structural model can be
connected to the geometrical model by projection schemes . For correct modeling of the fluid

130



4.5 Computational Concept

flow around the wing, the complete three-dimensional geometry of the wing is necessary in
the fluid domain. Therefore, the computational model of the wing in the fluid domain has
to be identical to the geometrical model. The possible difference between the computational
models used in structural and fluid domain needs to be considered, when setting up fsi
analysis.

In the case of membrane structure-wind interaction, considerations about dimension of
the used structural and fluid models can be separated into those concerning the membrane
itself and the supporting structure. As explained in section 3.5.2, the influence of the sup-
porting structure is neglected in the fluid simulation within this work. Accordingly, the
supporting structure is not represented in the fluid domain.

The geometry of a prestressed membrane by itself is a curved surface with a very small
thickness compared to the lateral dimensions. In structural simulations, including the form
finding computation, the thickness of the membrane is treated as a constant parameter.
Thereby, the membrane’s geometry can be reduced to an infinitely thin plane, to a two-
dimensional structure in a three-dimensional space. This two-dimensional surface is used
as the structural computational model.

In the fluid simulation, the membrane structure can be modeled as an infinitely thin
surface as well, as no significantly different flow effects are expected whether the membrane
is modeled with or without considering its thickness. To be able to distinguish the flow
conditions on the upper and lower side of the membrane, the membrane geometry needs
to have two sides in the fluid simulation. Thus, the two-dimensional membrane has to
be described by two separate surfaces in the geometric and computational model of the
membrane in the fluid domain.

To create a compatible geometrical model in the structural domain, the surface used in
the structural model is doubled. The orientation of the normal vector of the two surfaces
are adjusted so, that they point in opposite directions into the fluid domain. The mapping
from the computational structural model to the geometry model is straightforward, as the
same surface discretization is used for both models, thus only the different orientation of
the surface normal vector has to be considered.

4.5.1 Structural Solver: CARAT

The extension of the structural solver CARAT for coupled problems is straightforward. For
static, geometrically non-linear analysis, the respective solution algorithm is enhanced by
a staggering procedure. For dynamic, time-dependent geometrically non-linear analysis,
each time-step can be repeated multiple times during the inter-field iteration loop [BWK06].

The surface loads on the fsi interface, which are computed by the fluid solver and trans-
ferred by the coupling tool, are treated as ordinary surface loads. Forces are directly used as
nodal loads, while surface pressure and traction are integrated to nodal loads based on the
discretization of the fsi interface and the form functions used in the structural model. The
resulting nodal loads are exclusively used on the right hand side of eq. 2.59. Therefore, they
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are not treated as follower loads in the classical sense. However, by iterating in the inter-
field iteration loop and therefore, by repeating the structural computation for geometries,
with small changes in deformation as the coupled computation converges, the effects of the
follower forces is fully included in the current setup.

In the current setup, the modification of the coupling quantities, the interface load and
interface displacements, are performed inside CARAT. The used method of adaptive under-
relaxation based on the Aitken’s method has already been introduced in section 4.3.3.1, as
well as the convergence check for the inter-field iteration in section 4.4.3. The convergence
check is performed within CARAT using the change of the coupling quantities on the struc-
tural fsi interface discretization.

Central geometrical model

As explained in section 2.1, for pre-stressed membrane structures, the initial geometry can
not be assessed directly. It is the result of a form finding computation, which computes the
geometry, for which the inner forces due to prestress and initial loading conditions are in
equilibrium. In the simulation of prestressed membrane structures, the form finding com-
putation has to precede the ’real’ structural analysis.

In the current environment, the initial geometry of the membrane is computed using
the structural analysis programm CARAT. According to considerations about the consis-
tency of computational and geometrical models in fluid and structural domains, the initial
membrane geometry is described by two surfaces with identical surface discretization and
identical position of the nodes, but with opposite directions for the surface normal vectors.
The two surfaces are stored in facetted description in the stereolithography (STL) file for-
mat. The STL-file format contains only the surface geometry of a three dimensional object.
The STL-files describing the membrane’s upper and lower sides are used to model the mem-
brane in both the structural and the fluid domain. Thereby, a consistency of the geometrical
models in both domains is ensured and the facetted geometrical representation of the mem-
brane serves as the central geometrical model for the coupled problem.

4.5.2 Fluid Solver: Ansys CFX

Within this work, the numerical simulation of wind flow is performed by the commercial
CFD-package Ansys CFX 11 of Ansys Inc. The basic flowchart of the solution algorithm of
CFX has been presented in fig. 3.8 in section 3.5.1.

For the simulation of fluid-structure interaction, additional routines have been imple-
mented via the User Fortran Programming Interface. Ansys CFX provides the possibility to
call User Fortran Routines at specified points during the CFD solution, e.g. at the beginning
or end of every time step or every coefficient iteration step of the solver. In order not to inter-
fere with the MPI and VPM environment used by CFX for parallelization, the data exchange
for fsi simulation is file-based. Therefore, the interface loading and control sequences are
written into ascii-files, while interface displacements and further control sequences are read
from ascii-files.
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Realization of a weak, simply staggered coupling scheme

Figure 4.9 presents the realization of a simple staggered coupling scheme in Ansys CFX,
which requires only little modification of the CFX solution scheme. The boundary condi-
tions are exchanged at the end of the fluid time-step. For this exchange, first the interface
loads and control flags are transferred to the coupling tool. Then the Ansys CFX solver
waits until it receives the interface displacements and further control flags. Afterwards, it
updates the computational mesh according to the new boundary conditions and starts a
new time-step.

Solve mesh

displacement

Maximum

time reached?

START

STOP

No

No

Yes

Convergence within

coefficient loop?

Solve

system

fluid

dynamic

Send loads on

interface to

structural code

Yes

Receive modified

interface geometry from

structural code

CoefficientiterationloopIteration within

one time step

CoefficientiterationloopAdvance in time

Modifications of

Ansys CFX solution

algorithm for a

staggered coupling scheme

simply

Figure 4.9: Modified CFX solution scheme for weak, simply staggered fsi coupling.

Realization of a strong, iteratively staggered coupling scheme for steady-state fsi prob-
lems

The feature to solve the mesh displacements and, therefore, to adapt the computational CFD
grid to the changed boundary conditions is only available for transient computations. For
some applications with constant flow conditions, a steady-state behavior of the structure
can be expected as result from a computation of fluid-structure interaction. An exemplary
case is a flexible plate as an obstacle in a channel with laminar flow, which will bend due
to the fluid pressure on its surface. For constant flow conditions, a static behavior of this
plate is expected. To model this application of fluid-structure interaction, a transient, time-
dependent simulation can be used. It will model the dynamic, oscillating behavior of the
structure until the oscillation settles.
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In the scope of this work, modeling a steady-state solution is performed in a more effi-
cient way. By using the implementation presented in fig. 4.9 and choosing a time-step size,
which is larger than the period of the smallest eigenfrequency of the structure in the cou-
pled system, the time dependency of the computation can be circumvented. The transient
fluid solution resembles a series of snapshots of the fluid solution, separated by a consid-
erably long time interval. Thereby, the transient effects of the fluid solution are neglected.
However, this implies the usage of a time integration scheme, which converges for time-step
sizes clearly violating the CFL condition.

This approach shows a much more stable computational behavior compared to a fully
transient simulation. Furthermore, fewer steps of the inter-field iteration loop are necessary
to reach the steady-state solution compared to the transient analysis with declining oscil-
lations. Thereby, the computational effort can be greatly reduced. An evaluation by com-
paring this iteratively-staggered steady-state solution scheme with a completely transient
scheme is presented in section 4.6.2 on the example of the ARIES membrane structure.

Realization of a strong, iteratively staggered coupling scheme for transient fsi problems

For transient, time-depending fsi simulations with strong, iteratively staggered coupling
schemes, as presented in section 4.3.3, the fluid solver has to be capable to run solutions of
the same time-step multiple times. If there is no convergence within the coupled solution
after one inter-field iteration, the time-step is repeated with updated boundary conditions.
Therefore, at the beginning of each iteration step in the inter-field iteration loop, the state of
the CFD solver has to be reset to the one at the end of the previous time-step. This reset of
the state of the solution was not available in Ansys CFX in the scope of this work .

A different implementation of the implicit coupling scheme was chosen within this
work, which is visualized in fig. 4.10. It is implemented by modifying the coefficient itera-
tion loop. Until the solution within the coefficient iteration loop is converged, the solution
algorithm remains unchanged. Once the convergence criterion for the solution of the co-
efficient loop iteration is satisfied, the computed interface loads are sent to the structural
solver. The fluid solver stops until it receives updated boundary displacements from the
structural solver. Additionally, the fluid solver receives notifications, if the convergence for
the coupled solution is reached. If it is not, the fluid mesh is updated with the new interface
displacements and the computation is continued within the coefficient iteration loop. Once
convergence for the coupled solution is reached, the simulation code proceeds in time.

The advantage of this approach is that the complete FSI inter-field iteration loop is imple-
mented within the structure of the coefficient loop. Considering all additional FSI-specific
steps of the inter-field iteration loop as functions which can be skipped, if the convergence
criterion within the coefficient loop is not fulfilled, the coefficient loop remains unchanged
during most of the computation. Therefore, the solution algorithm of the fluid solver "does
not know or need to know" of the existence of an additional inter-field iteration loop. From
the point of view of the solver, only additional cycles in the coefficient iteration loop are
performed. This extension of the solution scheme is applicable for FSI-implementations in
CFD-Codes, which do not support "time step repetition".

As the coupled solution converges, the change in the interface displacement between
two cycles in the inter-field iteration loop becomes very small. This results in a quick conver-
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gence of the coefficient iteration loop within one inter-field iteration. Through the ongoing
iteration in the coefficient iteration loop, while converging towards the coupled solution,
the accuracy of the fluid solution is increased as well. It can be interpreted as reusing the
previous solutions reached within the inter-field iteration loop, in order to accelerate the
convergence of the coefficient iteration loop. This is an advantage over the standard iter-
atively staggered fsi implementation, in which at the beginning of a step in the inter-field
iteration loop the fluid solution is reset to the state at the end of the last time-step, and thus,
the information of the previously computed converged inter-field iteration steps is lost.
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Figure 4.10: Modified CFX solution scheme for strong, iteratively staggered fsi coupling.

Mesh movement scheme used in Ansys CFX

By applying the above mentioned ALE approach, Ansys CFX offers the possibility of mov-
ing and deforming grids such as they are necessary for the deformation of a FSI interface
during a coupled simulation [CFX06]. The adaptation of the CFD grid to the updated
boundary conditions is performed by solving a diffusion problem. This resembles a spe-
cial case of the mesh moving model proposed in [JT94], [STB03].

∂

∂x

(
KMesh

∂

∂xi
di

)
= 0

with x
∣∣∣Γ f si = xb for deformed surfaces

and x |Γ0 = 0 for undeformed surfaces

(4.54)
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with di as the displacement of the CFD mesh in i-th direction and KMesh as the diffusion co-
efficient, which has the function of a the mesh stiffness. In order to prevent self penetration
of the finite volume elements in the adapted computation grid, it has been proven useful
to increase the "mesh stiffness" of especially small finite volume cells by determining the
parameter KMesh depending on the volume of the cells to:

KMesh =
(

1
VFVE

)m

(4.55)

where VFVE is the volume of a specific finite volume cell and m a natural number. For
numbers m greater than 3, depending on the volume of the smallest finite volume cell and
the computational precision, floating point exceptions are likely to occur.

Using m = 3, the mesh moving algorithm provides smooth computational grids, while
preserving the boundary layer discretization for interface deformations perpendicular to the
fsi interface. For shear type of deformations, modifying the "mesh stiffness" K Mesh does not
diminish the susceptibility of the finite volume cells towards distortion. Therefore, large
shear deformations can result in overlapping of the computational grid close to the fsi inter-
face, thus making the grid unusable and stopping the computation.

An important aspect of mesh movement in Ansys CFX is that the mesh deformation is
based on the difference between the new mesh and the previously used mesh. In case of an
iteratively coupled scheme, the reference mesh is the one of the previous inter-field iteration
step. This is advantageous in the case of known interface displacements, which are applied
gradually.

In the case of unknown interface displacements, such as in fsi, this gradual mesh update
is problematic. Since no fixed reference mesh is used, all distortions introduced during inter-
field iteration in the coupled simulation remain within the mesh. For coupled computations,
which involve a large number of inter-field iterations, and thus, a large number of mesh
deformation operations, the mesh quality quickly decreases. This results in less accurate
fluid computations, less accurate interface loading, and therefore, even higher disturbances
in the interface displacements computed by the structural solver.

4.5.3 Coupling and Data Transfer Tool: CoMA

In the scope of this work, the data exchange was handled by a third program, which man-
ages the setup of the computation and the communication between the codes.

For this type of application, the commercial software package MpCCI is available.
MpCCI stands for Mesh-based parallel Code Coupling Interface and was developed by the
Fraunhofer Institute for Algorithms and Scientific Computing SCAI as a standardized tool
for the coupling of multiple solvers [fAC03]. MpCCI supports the data exchange for differ-
ent discretizations of the fsi-interface. Communication of MpCCI is based on the common
Message Passing Interface-Library (MPI). It is available on different platforms and allows
coupled simulations with codes across diverse platforms.
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The in-house coupling tool CoMA (Coupling for Multiphysics Analysis) was developed
at the Chair of Structural Analysis, Technische Universität München, based on the experi-
ences with MpCCI and the aim to realize additional functionalities. It has an object-oriented,
C++ based implementation and is able to run on different platforms and in various software
environments. In the development of CoMA, special focus was put on a high modularity
of the software. Therefore, a very flexible tool was created, which is applicable for a large
variety of multi-physics problems as well as diverse software environments.

The key features in the concept of the coupling tool CoMA are:

� Support of different single field solvers

� Support of different communication concepts

� Support of parallelization of the single field solvers

� Flexible data exchange for various multi-physics simulations

� Support of multiple data transfer methods for non-matching grids

� Support of overlapping interface patches

� Possibility to include key components of the coupled computation in the central cou-
pling tool.

Within this thesis, the main features of the coupling tool CoMA are discussed further.
The implementation of the functionalities is to some degree straightforward, in other cases,
complicated by details. Where available, references providing more details about the imple-
mentation are given.

Support of different single field solvers

In the first version, CoMA was used for the communication between the in-house structural
code CARAT and the commercial fluid solver Ansys CFX 11 as well as the open source
fluid solver OpenFOAM [GKI+09]. The implementation in the fluid solver FASTEST (Flow
Analysis Solving Transport Equations with Simulated Turbulence) is in progress.

Support of different communication concepts

Methods for data exchange between the central coupling tool and the single field solvers are
implemented in a modular way in CoMA. Thereby, different communication concepts can
be supported. depending on the current software environment.

As a basic communication concept, a file based data interface was used within this work.
This implementation was chosen as a flexible data interface, which does not interfere with
communication methods used for the parallelization of the single field solvers. During the
coupled computation, the sending program writes to disk an ascii-file containing the data
of a coupling quantity or of control flags. This file is read in by the receiving program. Each
code waits, until the data file necessary to proceed is available. The availability of a data
file is indication by the existence of an additional blank file. The format for the files used
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for the exchange of coupling quantities was chosen in such a way, that the files can be easily
visualized using GID as a postprocessing tool.

Meanwhile, the communication concept in CoMA has been enriched by a communica-
tion concept based on the Message Passing Interface (MPI) [GKI+09].

Support of parallelization of the single field solvers

For the computation of wind-membrane interaction, fluid simulations with high computa-
tional effort have to be performed. This necessitates the possibility to parallelize the fluid
solver. In an arbitrary decomposed domain, the patches of the fsi interface are likely to be
scattered among different processes. For an efficient parallelization strategy in the coupled
computation, it is therefore advantageous, if the data transfer is possible between CoMA
and the various parallel fluid processes, among which the fluid solution is split up.

To enable this individual communication, CoMA provides the possibility to handle an
interface surface, which is split into multiple surfaces called (interface) partitions. This is
visualized in fig. 4.11, which shows two surface discretizations, used by code 1 and code 2,
and each split into different partitions. This approach provides the necessary flexibility to
work with parallel solvers, as each partition can be assigned to one process of the solver.

partition 1.1

partition 1.2

partition 2.1 partition 2.2

partition 2.3

exchange of data
by CoMA

code 1:

fsi interface discretization

code 2:

fsi interface discretization

Figure 4.11: Data transfer scheme based on partitions of the fsi interface surface.
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Flexible data exchange for various multi-physics simulations

The functionality of exchanging data between arbitrary surfaces with non-matching dis-
cretization is necessary for many numerical multi-field simulations. To extend the usage of
CoMA beyond fluid-structure interaction, the exchange of mesh-based data has to be flexi-
ble with respect to the type of the exchanged data. In the current setup, the data exchange
is possible for flux and field based data, which can be scalars or vectors.

Additionally to the flexibility regarding the type of exchanged data, CoMA is flexible
regarding the point in time, in which the data is exchanged. This is realized by a concept of
exchange points, which are specified in the input-file of CoMA. For each exchange point the
code acting as data source, the code receiving data, and the data type are specified.

Fig. 4.12 gives an example for a fsi simulation between one structural solver (CSD) and
a fluid solver consisting of two fluid solver processes (CFD1 and CFD2). As initial step,
the fsi-interface mesh of each code is sent to CoMA to establish the relations between the
interface discretizations. At exchange points 1 and 2, surface pressure is transferred from
the fluid code’s processes to the structural solver via the coupling tool CoMA. In exchange
point 3 and 4, the interface displacement is sent from the structural solver to the two fluid
processes. As final control step within one inter-field iteration loop, the simulation status
of each code is sent to CoMA, which compiles these and sends instructions how to proceed
with the computation.
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CFD 2

setup exchange
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control
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Figure 4.12: Data transfer scheme using exchange points.

In the example presented in fig. 4.12, the data transfer is organized by the interface par-
titions, as each fluid code is assigned to certain partitions of the fsi interface (e.g. referring
to fig. 4.11: partition 2.1 and 2.2 for fluid process 1 and partition 2.3 for fluid process 2),
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while the complete fsi surface is assigned to the only structural code process (e.g. reffering
to fig. 4.11: partition 1.1 and 1.2 of the structural solver). With the combination of the con-
cept of surface patches and exchange points, a great flexibility for different application with
multiple involved single field solvers is achieved.

Support of multiple data transfer methods for non-matching grids

In section 4.4.1 different methods for data transfer between non-matching interface dis-
cretizations were introduced. Due to its modular setup, CoMA provides the flexibility to
implement any of these methods in the proposed environment. Currently, linear and bi-
linear interpolations for field-based quantities and the conservative interpolation for flux-
based quantities is implemented. These interpolation-based methods are described in sec-
tion 4.4.1. Supported discretizations are linear triangular and bilinear quadrilateral surface
meshes. Details about the implementation can be found in [IKL+07].

In future work the basic data transfer methods will be enhanced. This will be necessary
due to the need for exchange of different coupling quantity types, e.g. sensitivities, or due
to different shape functions used in the single field solver, e.g. for isogeometric analysis.

Support of overlapping interface patches

In section 4.5, the geometrical model of the fluid-structure interface for membrane-wind in-
teraction is deduced as two sides on an infinitely thin membrane, which are modeled by two
identical surfaces with identical or different discretization. These two surfaces represent the
fsi-interface in the structural and in the fluid model. Establishing a neighborhood search,
which is necessary for the interpolation-based data transfer methods as introduced in sec-
tion 4.4.1, is not trivial. The two surfaces in the structural and fluid domain are lying on each
other and in case of an identical discretization, such as for the structural domain, even the
nodal coordinates of the surface meshes are identical. Therefore, for a correct matching of
these overlapping surfaces it is necessary to distinguish between upper and lower surface
in the fluid and structural model. This can be achieved by using the direction of the surface
normals. Within CoMA, a more general approach is used, in which tags are assigned to the
interface partitions. Only partitions with identical patches are related to each other.

As an example, the fsi interface in the structural domain, and analog in the fluid domain,
can be described as one surface consisting of two partitions. The partitions represent the sur-
faces describing the upper and lower side of the interface. Now, an identical tag is assigned
to the upper side partition in both, the fluid model and the structural model. The same is
done for the lower sides. Thereby, the two upper sides of the models can be identified by
CoMA and will be related to each other. Same holds for the lower sides. This selective pair-
ing of interface partitions enables the usage of a standard neighborhood search in CoMA,
while using overlapping partitions.

Possibility to include key components of the coupled computation in the central coupling
tool.

By transferring functionalities from the single field solvers to the central coupling tool
CoMA, the flexibility of the software environment is enhanced. By not only performing
data transfer for the current values of the coupling quantities, but also retaining a history
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of quantities on the interface, the convergence of a coupled simulation can be monitored.
Furthermore, stabilizing methods, such as adaptive under-relaxation, or methods enhanc-
ing the computational efficiency, such as the use of predictors, can be implemented in the
central coupling tool. These methods are then available for any multi-physics application
using CoMA.

Functionalities, such as the error estimation of the transferred coupling quantities, are
only possible for a code, which has access to all discretizations of the fsi-interface and the
coupling quantities based on these surface discretizations. This makes the coupling tool,
which actually performs the data transfer between the non-matching meshes, an ideal plat-
form to assess this error.

4.6 Example: Wind Effects on ARIES Membrane Structure in Cou-
pled Computation

The methods of fluid-structure interaction, which have been described in this chapter and
implemented in the software environment, are now applied to analyze the interaction be-
tween the ARIES membrane structure and wind flow.

4.6.1 Setup of the Coupled Computational Model

The coupled computational model essentially consists of the numerical fluid and structural
modeling that have been described in the previous chapters. The purpose of the proposed
software environment is to combine these numerical models for a coupled analysis.

The fully prestressed configuration of the ARIES structure, which was computed in sec-
tion 2.4, is used as the numerical structural model. The structural part of the coupled com-
putation is carried out by the finite element program CARAT.

The CFD model consists of a finely discretized inner domain and an outer domain with a
coarser computational grid. This model has been discussed in section 3.5. For an appropri-
ate simulation of the neutrally stratified ABL flow, same turbulence models, wall treatment,
and boundary conditions, as presented in section 3.5.2.2 and section 3.5.2.3, are applied.

As the ARIES structure is completely included in the inner domain, moving boundaries
have to be considered only in the inner domain. Same as in section 3.5.2.1, the ARIES struc-
ture is represented by the membrane surface within the fluid model. The surface is separated
into an upper and a lower part, in order to compute the pressure difference between both
sides of the membrane.

As initial solution for the fluid part of the coupled computation, the flow field results
from previous analysis of the rigid ARIES structure are used. Thereby, the computational
time of the first fluid solution in the first inter-field iteration step can be significantly re-
duced.
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The fsi interface is represented by the upper and lower sides of the membrane. Each
upper and lower interface surface is discretized by 17328 triangular elements on the fluid
side and 3450 quadrilateral elements on the structural side. In the coupling tool CoMA,
the two membrane sides are treated as two surface partitions. In the fluid as well as in the
structural model tags are assigned to the two partitions, in order to establish the correct re-
lations (see section 4.5.3). The exchanged coupling quantities are the surface pressure and
interface displacements. For both quantities, the bilinear interpolation method described in
section 4.4.1 is applied. Based on the structural discretization of the fsi interface, the surface
pressure is transferred to nodal loads within the structural solver. Thereby, the tangential
shear stresses induced by the fluid on the membrane are neglected. This is considered as
acceptable because the tangential shear stresses were two magnitudes smaller, as compared
to the pressure. Furthermore, the membrane structure is susceptible to loads acting per-
pendicularly to the surface, which makes forces resulting from surface pressure the decisive
loads.

The control of the coupled computation is performed by CoMA as well. For all compu-
tations, an iteratively staggered, fixed-point iteration based coupling scheme, as described
in section 4.3.3.1, is applied. Adaptive under-relaxation according to the Aitken’s method
was applied in all simulations in order to stabilize the computation and decrease the com-
putational effort.

Convergence of the coupled simulations within the inter-field iteration loop is checked
by using the convergence criterion introduced in section 4.4.3. The tolerance limit for the
coupled simulation is 10−4. For the single field solvers, a Root Means Square (RMS) criterion
was used with a tolerance limit of 10−9 for the structural computation and 10−5 for the fluid
computation.

4.6.2 Simulation of Steady-State Solution

Firstly, steady-state response of the structure is analyzed for two different reference wind
speeds and each for two wind directions. In this steady-state simulation, a time-wise con-
stant inflow velocity distribution and time averaged turbulence is assumed. The distribu-
tion of velocity and the turbulence quantities is prescribed according to eqs. 3.118, 3.119, and
3.120.

Due to the constant flow conditions, the structure is expected to reach a static state of
deformation. In this static state, effects of inertia of the structure can be neglected, as no
displacement over time and thus no acceleration is occurring.

Evaluation of the proposed method for steady-state solutions in coupled computations

For the iteratively staggered, coupled analysis of steady-state situations, a special coupling
approach was described in section 4.5.2. Here, this approach is evaluated on the example
of the steady-state response of the ARIES structure for wind from the front with a reference
wind speed of 25 m/s.

With the suggested approach for iteratively staggered, steady-state computations, the
effects of inertia in the structural computation are neglected. Thereby, the structural problem
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can be solved in a static, geometrically non-linear computation. For the solution of the fluid
field, a large time step is chosen.

For comparison, an iteratively staggered, fully transient coupled simulation was carried
out for the same constant inflow velocity. The transient simulation models the declining
oscillation of the structure until it reaches the steady-state condition.

In fig. 4.13 the time-displacement curve of the transient simulation and the result of the
steady-state modeling strategy are compared using two points A and B located on the ARIES
membrane surface (see fig. 4.14). Both approaches result in the same deformation state of
the structure. For a comparison of the computational effort, the number of inter-field oper-
ations, which are necessary to reach a state of convergence in the inter-field iteration loop,
are considered. This number provides a good estimation of the computational effort, as for
every inter-field iteration step, the solution of one structural simulation and one fluid sim-
ulation needs to be performed. For the transient analysis, a total of 192 inter-field iteration
steps were necessary. In contrast, the steady-state approach required only 66 inter-field it-
erations. Thus, for this application, the computational effort can be reduced by a factor of
about 3, if the presented iteratively staggered steady-state approach is applied.
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Figure 4.13: Comparison of results from transient and steady-state coupling schemes.

Results of the steady-state computation

In the following, the coupled simulations are performed using the iteratively staggered,
steady-state approach. Wind from the front and the back side of the structure are modeled.
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CHAPTER 4 COUPLING FLUID AND STRUCTURAL ANALYSIS

The definition of the wind directions is identical to those used throughout section 3.5 and
indicated in fig. 4.14. Both directions were analyzed for wind speeds of 15 m/s and 25 m/s.

The results are visualized for a reference wind speed of 25 m/s by showing the absolute
deformation of the ARIES structure in fig. 4.15 for wind from the back side and in fig. 4.17
for wind from the front side.

For a more quantitative analysis, the displacements at two points on the ARIES structure
shall be considered. Point A is located at the top part of the membrane, behind the cone
shape, in the membrane’s symmetry axis. Point B is located at the back of the membrane.
Both locations are presented in fig. 4.14.

A

B

back side

of the Aries

canopy

structure

front side of the

Aries canopy structure

Figure 4.14: Location of points A and B on the ARIES membrane.

In fig. 4.16 and fig. 4.18, the vertical displacements of node A and the horizontal dis-
placements of node B are plotted over the number of inter-field iterations.

Again, the number of necessary inter-field iterations can be used to evaluate the coupled
computations. Comparing fig. 4.16 and fig. 4.18, it can be observed, that the situation for
wind from the front side is the more difficult to simulate in coupled simulation, as more
inter-field iteration steps are needed to reach convergence for both reference wind speeds
considered.

Steady-state effects for wind from the back side

For wind from the back side, the reaction of the membrane structure is observed as being
uncritical for a constant wind speed up to 25 m/s. The membrane in the back of the struc-
ture, close to the mounting points of the cantilever beams at the ground, is pushed inwards
to some degree, which increases its curvature. The only critical effect which could arise, is
a possible contact of membrane and tribune. However, since the stiffness of the membrane
increases as it is pushed inwards, this effect is not expected.
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4.6 Example: Wind Effects on ARIES Membrane Structure in Coupled Computation

At the top part of the ARIES construction, behind the cone shape, the suction caused by
the flow separation of the wind flow moves the membrane upwards. This could lead to a
possible contact between the membrane and the strut cables, which are crossed in between
the two lattice beams. However, the vertical displacements are sufficiently small, so that this
effect is unlikely to occur for moderately high wind speeds. Nevertheless, by the upward
deformation, the prestress in the membrane is reduced, which makes the membrane more
susceptible to oscillations.

Steady-state effects for wind from the front side

For wind from the front side, the membrane shows deformations according to a general
uplifting effect. In the front, at the cone-shape part of the membrane, the membrane’s inner
stresses and the tension in the tie-down cable are increased. Same as for wind from the back
side, the membrane at the top of the canopy structure moves upwards. Compared to the
setup with wind from back side, the upwards deformations are larger. In the back part of
the structure, the membrane is deformed outwards by the pressure acting on its inside. This
results in a backwards movement of the membrane towards the strut cables between the
lattice beams.

Compared to the setup with wind from the back side, the observed deformations are
generally larger. Both deformations at the back and the top of the membrane show critical
tendencies towards possible contact between the membrane and the strut cables spanning
between the lattice beams. Furthermore, the prestress of the membrane is greatly reduced
in these parts, which makes the membrane susceptible to further deformations and oscilla-
tions. Concluding, the setup with wind from the front side is the decisive case of these two
setups.

Above a certain wind speed, a snap-through tendency of the membrane can be expected
at the top and the back side of the construction. In case of a snap-through, the membrane
will change its curvature from inwards to outwards the construction. Thereby, the mem-
brane will hit the strut cables, which has to be absolutely avoided. Possible consequences
would be a damage in the membrane and a great change to the load carrying behavior of
the construction. Additionally, a dynamic contact of the membrane and the strut cables can
lead to noise and vibrations in the whole structure.

4.6.3 Transient Computation

In the results from the steady-state coupled analysis, the wind flow situation with wind
from the front side was identified as critical. In the following, this setup is used in a tran-
sient simulation with the aim to obtain a first assessment of the dynamic wind-membrane
structure interaction.

For the transient fluid simulation, an URANS turbulence model is used, which is based
on the k-ω SST turbulence model described in section 3.2.3.1. Therefore, the requirements
towards spatial and time-wise resolution of the wind fluctuations, which are necessary to
accurately describe the neutrally stratified ABL flow in a dynamic simulation, are not ful-
filled. Thus, this simulation is not applicable for the computation of design wind loads,
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Figure 4.15: Deformation of the ARIES structure, wind from the back side, ure f = 25 m/s.
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Figure 4.16: Plot of deformations of points A and B, wind from the back side.
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Figure 4.17: Deformation of the ARIES structure, wind from the front side, ure f = 25 m/s.
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Figure 4.18: Plot of deformations of points A and B, wind from the front side.
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as discussed in section 3.4.2. However, in the context of this work it is used to give a first
assessment of the dynamic wind effects on the ARIES structure.

As time integration schemes, the generalized-α scheme was used in the structural do-
main and a second order Euler Backwards scheme in the fluid domain. The time-step was
chosen to be 0.1 s and the total simulated time interval was 7.0 s. All effects of inertia were
respected in the structural and fluid simulation. The results of the steady-state coupled
analysis presented above have been used as initial conditions, for the structural and the
fluid solution.

The simulation was carried out by using the general, iteratively staggered coupling
scheme presented in algorithm 3 in section 4.3.3.1 with its specific implementation in Ansys
CFX according to fig. 4.10. Adaptive under-relaxation was applied on the interface loads to
stabilize the simulation and increase the overall efficiency.

In order to imitate a gust-like effect, the reference wind speed is varied between 15 m/s
and 35 m/s. Fig. 4.19 shows the variation of the reference wind speed over the simulation
time. The wind speed distribution and the distribution of the turbulent quantities are related
to the reference wind speed through eq. 3.118 - eq. 3.120.

Results

The deformations of points A and B, as specified in fig. 4.14, are plotted in fig. 4.19 for the
simulated time interval. Comparing the variation of the wind speed and the deformation of
the structure in fig. 4.19, it can be observed, that the structural deformation follows the vari-
ation of the wind speed without significant delay. This can be explained by the membrane’s
pre-stress, its small mass, and the small mass of the lattice cantilever beams, which result in
little inertia effects for the whole construction.
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Figure 4.19: Plot of ure f and deformations of points A and B, wind from the front side.
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4.7 Summary

Fig. 4.20 presents a series of pictures, which depict the structural deformation at spec-
ified points in time during the coupled simulation. The left side of the figure shows the
absolute displacement of the structure. On the right side of the figure, a side view of only
the membrane is given. For comparison, the membrane edge at the beginning of the tran-
sient computation, so for a reference velocity of 25 m/s, is shown as a thin black line on the
right side.

The danger of a snap-trough behavior of the membrane at the top and in the back part
of the structure and, thereby, its contact with the strut cables, was already discussed in the
scope of steady-state analysis. The transient analysis shows this effect at time t = 1.9 s
and t = 5.5 s, which can be observed in fig. 4.20. 1 Resulting from this computation, a
recommendation to the designers can be given that care has to be taken to avoid contact
between the membrane and the cables by either constructive means or by increasing the
membrane prestress.

Concluding, the transient, URANS-based results of fluid-structure interaction provides
a first assessment of the structure’s behavior under wind loading, both with respect to the
magnitude of the deformation and the involved frequencies of the structural response.

4.7 Summary

Within this chapter, the classification of wind-membrane interaction as a surface coupled,
multi-physics problem was discussed. For the solution of multi-physics problems, differ-
ent approaches were presented. A partitioned approach was chosen to solve the coupled
problem, since it provides the potential to include all necessary features for the simulation
of wind-structure interaction and the possibility to reuse existing solvers.

The basic requirements for coupled partitioned simulations with respect to conserva-
tion of mass, momentum, and energy were formulated. Simple and iteratively staggered
coupling schemes have been introduced. Selected aspects for the coupled simulation in par-
titioned approaches have been discussed and an overview of the appropriate methods was
provided.

For the implementation of the simulation of wind-membrane interaction, a flexible soft-
ware environment was suggested. The necessary modifications to include the single-field
solvers CARAT and Ansys CFX into this environment were presented. Special effort was
made to implement these modifications into the commercial blackbox fluid solver Ansys
CFX. The concept, the features, and the implementation of the central coupling tool CoMA
were presented.

Finally, the software environment was used to combine the numerical models, which
have been derived in the two previous chapters, into a coupled computation.

1Since in the structural solution no contact algorithm was used to detect the contact between the membranes
and the cable, the membrane would penetrate the cables without resistance in this simulation.
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Figure 4.20: Deformations of the ARIES structure at specific points in time.
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Chapter 5

Summary and Conclusion

5.1 Summary

In this thesis, a framework for the numerical analysis of the interaction between wind and
membrane structures was developed. The need for an appropriate method to analyze these
light-weight, flexible structures was motivated by the complex characteristics of the struc-
tural behavior of membranes, which can lead to dynamic, wind induced effects. Moreover,
in case of large structural deformations, an interaction between membrane structures and
wind flow has to be considered. This membrane structure-wind interaction results in an
aeroelastic problem, which closes itself to accurate modeling in small-scale wind tunnel ex-
periments.

Considerations about the complexity and characteristics of the relevant physics inherent
to the complex aeroelastic coupled problem were presented. In the structural simulation of
membrane constructions, a focus has to lie on modeling the geometrically non-linear behav-
ior. Additionally, form finding methods have to be applied to derive the initial equilibrium
shape of the membrane. In the numerical simulation of wind flow, or more specifically, of
neutrally stratified Atmospheric Boundary Layer (ABL) flow, the emphasis has to be put on
an appropriate combination of turbulence modeling and boundary conditions to derive a
CFD model, which is able to represent and maintain the essential flow characteristics.

In order to account for all relevant physics in the numerical simulation of wind-
membrane interaction, a partitioned simulation approach was chosen. By applying a par-
titioned approach, the multi-physics problem can be separated into the involved physical
fields. In case of wind-membrane structure interaction, these are the structural simulation
of the membrane construction and the fluid simulation, which describes the air flow around
the construction.

The physical fields of structural and fluid mechanics have been discussed in detail.
Based on the fundamentals of each field, appropriate methods for the numerical simula-
tion of the single fields have been introduced. For the structural simulation, including the
form finding computations, the Finite Element Method was used and the in-house research
code CARAT was applied. The fluid simulations were conducted using the Finite Volume
Method and Ansys CFX 11 was used as simulation program. Special considerations about
numerical modeling strategies for neutrally stratified ABL flows were discussed.
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In order to represent the strong physical coupling between structure and fluid, require-
ments of and methods for partitioned coupled simulations have been introduced. For the
coupled solution of wind-membrane structure interaction, an iteratively staggered coupling
approach was chosen. Dynamic under-relaxation by the Aitken’s method has been used
to increase robustness and efficiency of the coupled computation. Selected aspects for the
numerical simulation of fluid-structure interaction problems were presented in detail.

The coupling methods were implemented in a flexible software environment, which is
open to a large variety of multi-physics simulations. As an essential part of the simulation
environment, the central coupling tool CoMA was developed, and its concept, advantages,
and features were presented. Within the coupled computation, communication and data
exchange on non-matching interface discretization are handled by CoMA. Thereby, the nec-
essary modifications in the single field solvers can be reduced. The remaining important
changes in the single field solvers for an application in coupled analysis, both with respect
to exchange of boundary conditions and to the solution schemes, were presented. For the
use of Ansys CFX 11 in fsi simulations as a black box fluid solver, functional as well as
efficient modification schemes were presented.

The computational environment was applied to simulate the wind-membrane interac-
tion for the mobile canopy structure ARIES. Firstly, a consistent structural model was de-
rived. The geometry of this structural model was used to setup a numerical model for the
simulation of neutrally stratified ABL wind flow. Results for the numerical fluid simulation
of the rigid structure were compared with those from wind tunnel experiments. Finally, by
using the software environment developed and implemented within this thesis, the inter-
action between the structural model of ARIES and the CFD model was established. This
enabled the assessment of the basic interaction effects between wind and the ARIES mem-
brane structure for wind directions from two sides. Steady-state and transient effects of
wind-membrane structure interaction have been analyzed and presented.

5.2 Relevance of the Presented Methods for Wind Engineering

This thesis strongly focuses on methodological and modeling aspects. With the developed
software environment in use, the question arises, how and to what extent, the methods
presented here can be applied in the field of wind engineering.

Consideration about the role of CFD in wind engineering

According to Simiu and Scanlan [SS96], the designer needs the following information to
design a structure for wind loading:

1. Information about the wind environment.

2. Information about the relation between that environment and the forces it induces on
the structure.

3. Information about the behavior of the structure due to these forces.
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The software environment developed within this work covers point 2, however, within
the limitations that CFD simulations face in modeling the wind flow. The strength of the tool
lies in the coverage of point 3, since the interaction between structure and air flow can be
modeled explicitly and, moreover, the effect of the structure’s behavior on the air flow can
be taken into account. However, due to the deterministic nature of the numerical methods
used, the prime application of the software environment is the analysis of wind flow around
structures for specific setups.

The open question remains, how to step beyond the mere analysis of wind induced ef-
fects into using these methods for the computation of design loads for light-weight and
flexible structures.

This discussion can be based on fig. 5.1, which has already been used in section 3.4.2 to
determine the target values of the CFD analysis of the ARIES structure.
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Spectral modal analysis
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Figure 5.1: Procedure for estimating wind loads on structural frames using CFD. [TNK08]

In fig. 5.1, for the computation of loading on the structural frame, two main approaches
can be distinguished:

� In an approach using averaged turbulence quantities, the mean wind loads can be
computed. This is done within this work in section 3.5. Here, the mean wind load on
the membrane structure was derived by the surface pressure using RANS methods.
Based on the surface pressure, a distribution of c p values over the membrane surface
was computed. However, in order to use c p values to compute design wind loads, the
cp values have to be derived in a way which is sufficient in the context of a building
code, such as EN 1991-1-4:2005 [CEN05] or DIN 1055-4:2005-3 [Nor05a]. This can be
achieved by using higher time and space resolution together with appropriate mod-
eling to derive statistically representative answers, similar to those suggested in the
next bullet point.

Then, the results from the fsi computation can be included in the framework of c p-
based wind load assessment by computing cp values, which depend on the maximum
wind speed. For an appropriate analysis of possible wind speeds, the worst case c p

value can be computed for each point of the structure. Thereby, effects due to the
quasi-static deformation of the structure are included in the design wind loads.
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� For the analysis of wind flow, which includes the correct description of the ABL flow
turbulence, transient CFD methods have to be used. This is possible with advanced
LES or VLES methods, which can simulate the necessary time scale inherent to tur-
bulent wind flow. With this approach, the use of numerical methods can be regarded
as imitating wind tunnel testing, thus creating a "numerical wind tunnel". However,
same as in wind tunnel experiments, special effort has to be made in order to cor-
rectly include the relevant scales of turbulence fluctuation into the "numerical wind
tunnel". Furthermore, in order to compute a statistically representative answer, same
as for wind tunnel experiments, certain time intervals have to be analyzed. Consid-
ering the small time-step size needed to resolve the necessary time scales, very high
computational effort is necessary to cover these considerably long time intervals.

Common to both approaches is the need to analyze wind loads for winds approaching
from different directions. Depending on symmetry properties of the building, several sim-
ulations for different wind directions are necessary.

Further consideration about numerical fsi simulation in wind engineering

In case of aeroelastic effects, the assumption that wind loads are related to the square of the
wind speed by a constant factor is not valid anymore. Here, depending on the magnitude
of the wind speed, the structure changes its shape, and therefore, the load distribution on its
surface changes. For deriving design loads based on computations of fluid-structure inter-
action, these dependencies require that not only different wind directions, but also different
wind speeds have to be analyzed. Depending on the problem, this leads to an increase by a
magnitude in the number of necessary computations.

Methods of fluid-structure interaction have been presented in fig. 5.1 as suitable to com-
pute the loading of the structural frame. However, no information is given about the pro-
cedure of deriving design-loads based on fsi computations. Based on the considerations
above, deriving design loads based on fsi computation leads to an extremely high compu-
tational effort. This effort results from the requirement to analyze multiple combinations
of possible wind speeds and wind directions, each computed for a sufficiently long time
interval.

A possible remedy to avoid an extensive number of computations with varying combi-
nations of parameters is to define one or more worst case combinations of parameters and
analyze those. This is a more general approach to the suggestion of deriving wind speed
dependent cp values and combining those to derive the worst case c p value for each point of
the surface.

However, if the choice of worst case situations with respect to wind loading should in-
clude transient effects, a deep understanding of all possible critical wind induced effects
is required. Such knowledge about possible effects can be taken from literature or experi-
ence. Only by knowing about possible effects, the approximations and simplifications in the
CFD simulation can be adjusted accordingly, so that these effects are included in the model.
A simple example is an appropriate choice of the time-step size for the analysis of higher
frequency oscillations: if the time-step is not small enough to resolve these oscillations, no
higher frequency oscillating behavior is present in the numerical simulation.
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Therefore, the author concludes that the deterministic nature of numerical simulations
requires either a large number of computations or detailed knowledge about the decisive
wind induced effects in order to derive design loads with fsi based numerical methods.
Currently, fsi based methods are regarded as an excellent tool for the analysis of expected
wind induced effects, e.g. the fluttering of a bridge cross section. For the design of complex
structures, for which not all dynamic wind induced effects are understood or analyzed, e.g.
for large scale umbrellas, fsi based methods should only be applied with utmost consid-
eration. Otherwise, critical wind induced effects are possibly not revealed in a numerical
simulation due to the simplifications and approximations of the numerical model and/or
the missing combinations of simulation parameters.

5.3 Conclusion and Outlook

The presented software environment is a valuable tool for a wind engineer, who has the
experience to decide, which problems of wind-structure interaction are crucial for the design
of a certain construction. Within the limits of the applied CFD model, the occurrence and the
magnitude of wind induced effects can be analyzed, fully taking into account the interaction.
Therefore, the method presented is a promising complement to and enhancement of existing
methods of analytical, semi-analytical, or experimental approaches in wind engineering.

For further application to wind-structure interaction, improved turbulence modeling by
LES and DES methods is available within Ansys CFX. The flexibility of the software envi-
ronment allows to include alternative single-field solvers, which already has been done for
the open-source CFD solver OpenFOAM.

Beyond the simulation of wind-membrane structure interaction, the flexibility of the par-
titioned coupling approach makes the developed software environment applicable for the
numerical simulation of various, surface coupled multi-field problems. Applications can be
found in biomechanics, e.g the simulation of blood in flexible veins, or in automotive and
aeronautic industries, e.g. the analysis of the flexible roof of convertibles or wind flutter on
aircrafts. For alternative applications and continuing enhancement of the software environ-
ment, the central coupling tool CoMA will be developed further at the Chair of Structural
Analysis at the Technische Universität München.
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