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Parameterization of Orthogonal Wavelet
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Abstract—In this paper, a method for parameterizing orthog-
onal wavelet transforms is presented. The parameter space is
given by the rotation angles of the orthogonal 2��� 2 rotations
used in the lattice filters realizing the stages of the wavelet
transform. Different properties of orthogonal wavelet transforms
can be expressed in this parameter space. Then, the parame-
ter space is restricted to the set of rotation angles given by
simple orthogonal ���-rotations, i.e., the set of rotation angles
�k = arctan 2

�k (k 2 f0; 1; � � � ; wg wherewww is the word length).
An orthogonal ���-rotation is essentially one recursion step of
the CORDIC algorithm. The wavelet transforms in the reduced
parameter space are amenable to a very simple implementation.
Only a small number of shift and add operations instead of fully
fledged multipliers is required.

I. INTRODUCTION

I N recent years, different systems of wavelet bases have
been introduced [3], [14] for a growing number of appli-

cations [1], [2], [4], [19]. Thereby, the degrees of freedom
existing in the design of wavelet bases have been exploited.
Also, methods have been presented to parameterize orthogonal
wavelet transforms, whereby the optimization with respect
to special properties is the primary intention of these pa-
rameterizations [6]. While most attention has been focused
on orthogonal, compactly supported wavelets with a maxi-
mal number of vanishing moments, smoother, more regular
wavelets were also designed [3]. Symmetry is an important
property in image coding applications. Therefore, the design
of least asymmetric, orthogonal wavelets is also an issue of
the parameterization, although exact symmetry is impossible.
In [6], [24], orthogonal wavelet transforms were optimized
with respect to their frequency resolution after parameterizing
the wavelet transforms of a certain compact support.

In this paper, a further property is added to the design
constraints, namely, the simple VLSI implementation of the
wavelet transforms. Orthogonal lattice filters [21] are of-
ten used to implement the stages of an orthogonal wavelet
transform within a filter-bank structure. These lattice filters
can be implemented by orthogonal 2 2 rotations. The
CORDIC algorithm [22], [23] offers one possibility to execute
orthogonal rotations, whereby a sequence of -
rotations ( being the word length) is used. These-rotations
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can be implemented by a few shift and add operations. Let an
orthogonal -rotation be defined as one scaled (normalized)
recursion step of the entire CORDIC sequence. We approx-
imate the full sequence of-rotations composing a rotation
angle by using only one or a few orthogonal-rotations
composing an approximate angle . These approximate
rotations were introduced in [7], [9] for efficiently computing
the eigenvalue decomposition. This approach was not only
extended to other iterative algorithms in signal processing [10],
but also to orthogonal signal transforms [13], [15].

In order to parameterize all orthogonal wavelet transforms
leading to a simple implementation, the following facts have
been incorporated in the proposed approach.

1) Orthogonality is structurally imposed by using lattice
filters consisting of orthogonal rotations only.

2) The sufficient condition for constructing a wavelet trans-
form, namely, one vanishing moment of the wavelet, is
guaranteed by assuring the sum of all rotation angles of
the filters to be exactly 45 [24].

3) The full parameter space (i.e., arbitrary rotation an-
gles) of all possible orthogonal wavelet transforms is
restricted to a reduced parameter space that only allows
rotation by the discrete angles (basis
angles of the CORDIC representation).

4) The constant sum of angles [see (2)] is never violated
by always using pairs of rotations with different signs
independent of the rotation angles. Thereby, the rota-
tions always appear twice, which also ensures a simple
implementation of the scaling factor.

This paper is organized as follows. In Section II, some
preliminaries are given. In Section III, the parameterization
of orthogonal wavelet transforms is discussed, and typical
properties of wavelet bases are reviewed and expressed in
the parameter space. Section IV defines orthogonal-rotations
that allow the efficient approximate implementation of elemen-
tary 2 2 rotations. In Section V, the restriction of the full
parameter space to the orthogonal-rotation angles is outlined,
resulting in wavelet transforms which are simple to implement.
Then, these wavelet transforms requiring only a few shift and
add operations (per parameter) are compared to the standard
wavelet transforms.

II. PRELIMINARIES

Using an orthogonal wavelet transform, a continuous signal
is analyzed by translated versions

of the scaling function at scale 0 and translated versions
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of the wavelet function at
different scales . For synthesis, the same bases are used such
that

(1)

In the frequency domain, the wavelet series can be written as
follows:

(2)

where the Fourier transformation of a function is defined
as

e

The functions and have to fulfill the dilation equations
that relate the continuous bases to the discrete coefficients
and :

With these coefficients , the transfer functions of the
discrete-time filters, which are used to implement the discrete
wavelet transform, can be formulated. These filters form one
stage of the filter-bank structure shown in Fig. 1, where the
transfer functions are given by

III. PARAMETERIZATION OF

ORTHONORMAL WAVELET TRANSFORMS

An efficient structure for the implementation of orthogonal
wavelet transforms (orthogonal, nonrecursive filters in general)
is the lattice filter. The orthogonal filters of
length can be implemented by a lattice filter using
orthogonal rotations. The rotation angles
are determined by the factorization either of
or into a shift product of orthogonal rotations
[5], [20]. Theoretically (infinite word length), both factoriza-
tions yield the same result, but is numerically
ill conditioned as compared to . Fig. 2 shows
a lattice filter implementation of one stage of Daubechies’
wavelet transform of length . Obviously, the basic
modules of the filter are orthogonal 2 2 rotations. By
using these orthogonal rotations, orthogonality of the whole
transform is structurally imposed [21], and therefore perfect
reconstruction is simply possible.

In order to perform an orthogonal wavelet transform, the lat-
tice filter must fullfill another property. This property ensures
that the wavelet function has zero mean, which is equivalent

Fig. 1. Filter-bank structure implementing a discrete wavelet transform.

to the wavelet having at least one vanishing moment and the
transfer functions and having at least one zero at

and , respectively. These conditions are fullfilled
if the sum of all rotation angles is exactly45 [24], i.e.,

Therefore, a lattice filter whose sum of all rotation angles is
45 performs an orthogonal wavelet transformindependent

of the angles of each rotation.
A lattice filter of length consists of orthogonal rota-

tions. Let be the rotation angles of these
orthogonal rotations. Then, by using the representation

for

(3)

all orthogonal wavelet transforms of lengthcan be param-
eterized by the rotation angles . Note that, except
for and , two rotations by the angles and

are always required to implement the respective rotation
angle . Furthermore, note that each angleappears twice
in this representation.

In the following, we will frequently use a wavelet transform
of length to illustrate the results. The parameterization
consists of orthogonal rotations where the angles
have the following representation:

(4)

Of course, not all pairs of lead to a suitable wavelet
transform. How the parameters are chosen depends
on the desired properties. These properties are discussed
subsequently.

Compact Support:The compact support is equivalent to the
finite length of the wavelet basis. While with and

wavelets with support can be constructed, by
setting , the length is reduced to . If ,
one obtains the Haar basis .

Vanishing Moments:The approximation properties of a
wavelet basis are defined by the number of vanishing moments.
In the continuous case, a wavelet withvanishing moments
can represent a polynomial function up to degree [3].
Therefore, wavelet systems are often designed in order to
maximize the number of vanishing moments. This number
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Fig. 2. Lattice filter implementing one stage of Daubechies’ wavelet transform of lengthn = 4.

is identical to the number of zeros of the transfer function
at . How many of the following equations are

fullfilled by the coefficients determines the number of
vanishing moments:

(5)

In Fig. 3(a), a Daubechies’ wavelet of length is shown.
It has vanishing moments, which requires the values of
the parameters to be and . Wavelet
transforms with a maximal number of vanishing moments and
length are called in this paper.

Regularity: The fact that wavelets with the maximal num-
ber of vanishing moments are not the only proper bases was
also in Daubechies’ mind when she designed most regular,
orthogonal wavelets [3]. Therefore, one task is to optimize the
regularity of the orthogonal bases.

To precisely evaluate the regularity, the Hölder coefficient
is widely used. A function, which is times continuously

differentiable, possesses a Hölder coefficient if its
th derivative is Hölder continuous with exponent, i.e.

Some methods to compute the Hölder coefficient numerically
were given in [16]. The analysis of the exact Hölder regularity
usually causes high computational costs. In this paper, a simple
method to compute an upper bound of the Hölder coefficient

is used, whereby the polynomial is analyzed.

implies that the wavelet system has exactlyvanishing
moments. A matrix defined by the coefficients of the poly-
nomial leads to an estimation of the Hölder coefficient.
With , the
matrix is given by

...
...

...

An upper bound for the Hölder coefficient is

(a) (b)

(c) (d)

Fig. 3. Wavelet functions(n = 6) with certain properties: versionOD
6

with
maximal vanishing moments (a), most regular versionOR

6
(b), wavelet with

best frequency behaviorOF
6

(c), and CoifletOS
6

(d).

where is the spectral radius of . The spectral radius
of is defined as , where denotes
the eigenvalues of .

In contrast to Daubechies’ wavelet with a maximal
number of vanishing moments having a Hölder coefficient

, the most regular solution (called ) for
shows an increased smoothness as [Fig. 3(a)].
This solution requires and . It was
shown in [3] that if the wavelet function of an orthogonal
wavelet basis is times continuously differentiable,
then the wavelet function possessesvanishing moments. The
converse, however, is not true since a wavelet function with
vanishing moments only exhibits a degree of smoothness that
asymptotically increases linearly by [3]. Recently,
this relationship (the gap) between the number of vanishing
moments and the actual degree of smoothness has caused
various approaches for the design of wavelet transformations,
where the condition of possessing a maximal number of
vanishing moments is waived. In [11], it was shown how one
can systematically sacrifice higher order vanishing moments
to achieve smoother wavelet (scaling) functions. Also, the
measure of smoothness for the design of wavelet basis in
the discrete case (when continuous derivatives do not really
exist) is discussed in [12], leading to a design of “smooth”
wavelets in the discrete domain (i.e., regularity up to a certain
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scale of the discrete wavelet transform). The condition of
vanishing moments will also be sacrificed in our approach
for achieving a simple implementation of orthogonal discrete
wavelet transforms.

Frequency Behavior:As each stage of the wavelet trans-
form is a pair of half-band filters, one optimization criterion
is to place the roots of the coefficients of the scaling function
such that an ideal low pass is approximated as well as possible.

An orthogonal wavelet transform divides a signal into the
different spaces spanned by the scaling function and the
wavelets . The reconstruction is based on the same bases
as is shown in (1). The wavelet series in the frequency domain
is given in (2).

For the optimal solution, the improvement of with
respect to its frequency behavior is not only necessary, but
sufficient to improve the whole orthogonal wavelet system.
Note that, because of the orthogonality of spaces, the wavelet

is directly related to . Therefore, improving the frequency
behavior of is equivalent to improving the frequency
behavior of the whole transform.

The scaling function can be determined from the dilation
equation (given the discrete coefficients). In the discrete
case, the discrete values of the scaling function are given by

. Using the vector representation
the DFT yields :

DFT (6)

The vector can be divided into a passband part and a
stopband part:

(7)

where the upper elements of belong to and
the remaining elements of belong to .
While the elements of the passband part should contain large
values, the elements of the stopband part should be small.
Therefore, the norm should be minimal. While
the Daubechies wavelet with a maximal number of vanishing
moments yields , the best frequency behavior
solution (called ) achieved for with
and leads to a stopband norm of . In
Fig. 4, the frequency characteristics of the respective scaling
functions are compared, and in Fig. 3(c), the wavelet function
with the best frequency behavior is plotted.

Symmetry:Symmetry is a preferred property in some ap-
plications (e.g., image coding), but exact symmetry and or-
thogonality are not simultaneously possible. Therefore, least
asymmetric wavelets were designed. In [3], Coiflets are dis-
cussed, which show an improved symmetry in comparison to
standard wavelets. These Coiflets can be designed by requiring
not only the wavelets to have vanishing moments, but also the
scaling functions. Additional to (5), the discrete coefficients
of these Coiflets fullfill the following equations:

(8)

Fig. 4. Frequency characteristics of the standard wavelet transform (OD
6

,
dotted line) and the version with best frequency behavior (OF

6
, solid line).

TABLE I
PARAMETERIZATION SCHEMES FORn = 6 WAVELET TRANSFORMS

The parameters of a Coiflet transform (called) for
and are and . The
resulting wavelet function is plotted in Fig. 3(d).

IV. EFFICIENT IMPLEMENTATION

OF ORTHONORMAL ROTATIONS

As shown in the previous section, all orthogonal wavelet
transforms can be implemented with a filter-bank structure
composed of lattice filters (see Figs. 1 and 2 as an example).
The lattice filters consist of orthogonal 2 2 rotations
which are defined as follows:

(9)

The discretization leads to the rotation angles
that are used by the CORDIC procedure [22], [23], which is a
common method to execute orthogonal rotations with respect
to a simple implementation. Any rotation is represented by a
sequence of -rotations ( being the word length):

(10)
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Fig. 5. Zero distribution ofH(z) in the reduced parameter space.

Fig. 6. Comparison of Daubechies’ standard scaling function of length
n = 4 (OD

4
, dotted line) and the version (~OD

4
, solid line) showing the

simple implementation.

with being the scaling factor that is independent of the
angle :

(11)

This corresponds to the representation of the rotation angle
in the basis with digits :

(12)

Now, instead of using the entire sequence of basis angles
to represent , we restrict the set of available rotations to
one specific recursion step of (10), i.e., the set of available

Fig. 7. More regular scaling functions of lengthn = 4 (OR
4

, dotted line
and ~OR

4
, solid line).

rotations is

(13)

is called an orthogonal -rotation, and can be inter-
preted as an approximation of the rotation if is chosen
such that it is the angle of the sequence
which is closest to the exact rotation angle[9], i.e.,

(14)

In [9], approximate rotations in the form of orthogonal double
-rotations consisting of two equal orthogonal-rotations (13)

were used:

(15)

The basis angles of the orthogonal double-rotations are
given by . The reason for using orthogonal double

-rotations is to avoid the square root of the scaling factor
of an orthogonal -rotation (13). The resulting scaling factor

can be factored such that the scaling can be executed
by shift and add operations. The factorization

(16)
leads to the following scaling procedure:

with

(17)

One orthogonal double-rotation with a specific shift value
chosen according to (14) is the basic element for approx-

imating any orthogonal rotation of our parameterization of
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Fig. 8. Comparison of Daubechies’ standard scaling function of lengthn = 6 (OD
6

, dotted line) and the version~OD
6

(solid line) showing a
simple implementation.

Fig. 9. More symmetric scaling functions of lengthn = 6 (OS
6

, dotted line and~OS
6

, solid line).

Section III. By using orthogonal double -rotations, an
approximate rotation can be composed that enables a simple
implementation and approximates any orthogonal rotation to
a certain accuracy.

V. RESTRICTION OF THEPARAMETER SPACE

For the parameterization of wavelet transforms, two items of
Section III are important. The orthogonality of the transforms
is structurally imposed by using lattice filters. By choosing
the rotations such that the sum of angles is constant45 ,
the lattice structure always performs a wavelet transform.
Therefore, the orthogonal-rotation always appears

once in the presented wavelet filters:

The scaling factor does not need to be implemented.
With each rotation appearing in the analysis part and in
the synthesis part, the scaling factor also appears twice. As

can be implemented with one shift
operation, the only price that must be paid is the loss of
normality by a factor in the transform domain.

By using only one (instead of ) -rotation per pa-
rameter of (3), the computational complexity is reduced
significantly. We elaborate this in detail in our example (4).

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:45 from IEEE Xplore.  Restrictions apply.



RIEDER et al.: PARAMETERIZATION OF ORTHOGONAL WAVELET TRANSFORMS 223

Fig. 10. Scaling functions with better frequency behavior (OF
6

, dotted line and~OF
6

, solid line).

Fig. 11. More regular scaling functions of lengthn = 6 (OR
6

, dotted line and~OR
6

, solid line).

The two free parameters and of (4) are approximated by

The corresponding orthogonal-rotations appear twice in
our parameterization schemes (3). Therefore, it is always
an orthogonal double -rotation which must be implemented
[note the different sign in contrast to (16) sinceand each
appear twice in (4), but with opposite signs]. This implies that
the simple realization of the scaling factor (16) can be applied.

The price one has to pay for the simplicity of the filters is
that the parameter space consisting of all possible rotation
angles is reduced to a discrete parameter space spanned
by the angles . But by using different

parameterization schemes, all having a constant sum of angles
, the grid of the reduced parameter space

becomes more dense. Some of these schemes are given in
Table I. The parameters and of the different schemes
are not equal, and one parameterization scheme might be better
suited than the other for an approximation by the available set
of -rotation angles.

Fig. 5 shows the zeros of the polynomial generated
in the reduced parameter space with the parameterization
schemes 1–4 of Table I. Plotted are only those zeros which are
interesting with respect to the properties of compact support,
vanishing moments, regularity, and frequency behavior. The
characteristic zeros are located close to ; therefore,
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the area around this point is shown in detail. Although the
parameter space is reduced to the domain of angles

, the zero distribution still allows the generation of
wavelet transforms, whose zeros are placed close to
or close to the unit circle.

Besides the use of different parameterization schemes, an-
other possibility for obtaining a denser grid is using other
classes of orthogonal-rotations [7]. Of course, one always
has the possibility to increase the accuracy of the rotation
approximation (equivalent to tightening the grid) by using
more than one -rotation per parameter.

The decisive question is whether or not the reduced pa-
rameter space leads to suitable alternatives to the optimal
wavelets of Section III. Wavelet transforms were parame-
terized in the reduced parameter space that show the best
performance with respect to the discussed properties (i.e.,
compact support, vanishing moments, regularity, frequency
behavior, and symmetry), whereby the parametersand
of a certain parameterization scheme with the best performance
are determined. In Figs. 6–11, the plots of the scaling functions
of the versions designed in the
reduced parameter space (solid line) and the scaling functions
belonging to the standard versions

(dotted line) are compared. Also, the zeros of of the
standard versions (upper right) and the approximate version
(lower right) are given. The resulting lattice structures of
the new versions showing the simple implementation (only
very few shift and add operations are necessary) are given
at the bottom of each figure. Table II compares all solutions
with respect to vanishing moments, regularity (upper bound),
frequency behavior, and rotation angles.

Obviously, the differences between the scaling functions
showing the efficient implementation and the standard versions
are very small. The comparison of the regularityand the
stopband norm of the approximate and standard versions
stresses the good performance of the wavelet transforms
parameterized in the reduced parameter space. Of course, this
is due to the small differences in the rotation angles, i.e.,

. Only in the case of the smaller Ḧolder coefficient
might be improved with an additional pair of-rotations.
Adding to and subtracting from increases the
upper bound of the regularity from to ,
whereby the regularity of the standard solution
is almost achieved.

Since only one of the zeros of is preserved exactly at
, the number of vanishing moments is reduced to one

by the approximation. Of course, this also affects the exact
regularity of the continuous bases. For many applications,
however, only the finite scale regularity of the (discrete)
wavelet transform is essential, i.e., the regularity is evaluated
only for a certain number of finite scales. This number is given
by the actual number of stages used for the discrete wavelet
transform. It is shown in [8] that the approximate versions
show a good finite scale regularity, although the number of
exactly vanishing moments is always (higher moments
only vanish approximately). In Fig. 12, the scaling function
and the first and second numerical derivatives of the original
Daubechies scaling function ( vanishing moments;

TABLE II
COMPARISON OF THEDIFFERENT VERSIONS

OF ORTHOGONAL WAVELET TRANSFORMS

(a)

(b)

Fig. 12. Scaling function and first and second discrete-time derivative (slope)
for Daubechies’ filterOD

6
(upper row) and for the approximate version~OD

6

(bottom row). Seven scales were used.
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Fig. 13. Difference between the exact scaling function(OD
6
) and the

approximate scaling functions usingz = 1 (dotted line; ~OD
6

), z = 2 (dashed
line), andz = 3 �-rotations per parameter of the exact realization.

plots in the upper row) and the approximate scaling function
( ; plots in the bottom
row) are shown for the finite scale .

Obviously, the regularity of the scaling function is hardly
degraded. This regularity can be analyzed explicitly using
the discrete-time definitions of regularity (slopes) in [17]. As
long as the function and the respectivefinite scale regularity
show a reasonable behavior, the approximate discrete wavelet
transform will be as well suited as the exact discrete wavelet
transform. Note that the continuous approximate scaling func-
tion (i.e., for ) is actually not differentiable. However,
the finite scale regularity (slopes) is defined.

If the approach with one -rotation does not guarantee the
suitability of the discrete transform, of course, one always has
the possibility of using more than one orthogonal-rotation
per parameter. Fig. 13 demonstrates the improvement of the
approximation by using more than one-rotation per param-
eter. The difference between the scaling function realized by
the exact rotations and the scaling function realized by using

-rotations per parameter is shown for .

VI. CONCLUSION

In this paper, a method was presented for parameterizing
orthogonal wavelet transforms with respect to certain prop-
erties. Besides the standard properties (i.e., compact support,
vanishing moments, regularity, frequency behavior, symme-
try), a simple implementation of the wavelet transforms is
also taken into consideration. Using only one simple or-
thogonal -rotation per parameter (rotation angle of the lat-
tice filter) guarantees the most simple implementation of the
transform. Different parameterization schemes, different types
of -rotations as well as more than only one-rotation
per parameter can be used to design wavelets which are
closer to the standard versions. The most simple version
(one -rotation per parameter), however, already leads to
wavelets which approximate the standard versions very well,

such that for many practical applications, these fast/simple
wavelet transforms perform as well as the standard versions.
Offering the possibility of a very simple implementation, the
presented approach has already been used for an efficient VLSI
realization of discrete, orthogonal wavelet transforms [18].
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