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Parameterization of Orthogonal Wavelet
Transforms and Their Implementation

Peter Rieder, iirgen Mtze, Josef A. Nosselkellow, IEEE, and C. Sidney Burrug,ife Fellow, IEEE

Abstract—In this paper, a method for parameterizing orthog- can be implemented by a few shift and add operations. Let an
onal wavelet transforms is presented. The parameter space is orthogonaly-rotation be defined as one scaled (normalized)
given by the rotation angles of the orthogonal 2x 2 rotations recursion step of the entire CORDIC sequence. We approx-

used in the lattice filters realizing the stages of the wavelet . te the full tati . tai
transform. Different properties of orthogonal wavelet transforms imate the full sequence gi-rotations composing a rotation

can be expressed in this parameter space. Then, the parame-angle ¢ by using only one or a few orthogonatrotations

ter space is restricted to the set of rotation angles given by composing an approximate angle~ . These approximate
simple orthogonal p-rotations, i.e., the set of rotation angles rotations were introduced in [7], [9] for efficiently computing
ap = arctan 275 (k € {0, 1, -+, w} wherew is the word length). e eigenvalue decomposition. This approach was not only

An orthogonal u-rotation is essentially one recursion step of . h . L .
the CORglc algorithm. The wavelet trgnsforms in the reduged extended to other iterative algorithms in signal processing [10],

parameter space are amenable to a very simple implementation. Put also to orthogonal signal transforms [13], [15].

Only a small number of shift and add operations instead of fully In order to parameterize all orthogonal wavelet transforms
fledged multipliers is required. leading to a simple implementation, the following facts have
been incorporated in the proposed approach.
|. INTRODUCTION 1) Orthogonality is structurally imposed by using lattice

N recent years, different systems of wavelet bases have filters consisting Of. grthogonal rotations only.

been introduced [3], [14] for a growing number of appli- 2) The sufficient condltlon' fo'r constructing a wavelet trans-
cations [1], [2], [4], [19]. Thereby, the degrees of freedom form, namely, one vgnlshlng moment of thg wavelet, is
existing in the design of wavelet bases have been exploited. guargnteed by assuring thi sum of all rotation angles of
Also, methods have been presented to parameterize orthogonaB the filters to be exactly-45 [.24]' . .
wavelet transforms, whereby the optimization with respect The full parame'ter space (i.e., arbitrary rotation an-
to special properties is the primary intention of these pa- gles) of all possible orthogonal wavelet transforms is
rameterizations [6]. While most attention has been focused restr!cted to a re(juced parameter space th?,t only ?"OWS
on orthogonal, compactly supported wavelets with a maxi- rotation by the discrete angles, = E}rCtan2 (basis
mal number of vanishing moments, smoother, more regular angles of the CORDIC representatlon)._ .
wavelets were also designed [3]. Symmetry is an important4) The constant.sum c_>f angles [;ee (2).] IS never waated
property in image coding applications. Therefore, the design .by always using pairs Of. rotations with different signs
of least asymmetric, orthogonal wavelets is also an issue of mdependent of the rotgtlon a.”g'es- Thereby, the .rota-
the parameterization, although exact symmetry is impossible. tions always_ appear t\Nlce’_Wh'Ch also ensures a simple
In [6], [24], orthogonal wavelet transforms were optimized implementation of the scaling factor.
with respect to their frequency resolution after parameterizing This paper is organized as follows. In Section II, some
the wavelet transforms of a certain compact support. preliminaries are given. In Section lll, the parameterization

In this paper, a further property is added to the desigﬁ orthogonal wavelet transforms is discussed, and typical
constraints, namely, the simple VLS| implementation of tharoperties of wavelet bases are reviewed and expressed in
wavelet transforms. Orthogonal lattice filters [21] are ofthe parameter space. Section IV defines orthogpratations
ten used to implement the stages of an orthogonal wavdiaat allow the efficient approximate implementation of elemen-
transform within a filter-bank structure. These lattice filter@y 2 x 2 rotations. In Section V, the restriction of the full
can be implemented by orthogonal 2 2 rotations. The Parameter space to the orthogopaiotation angles is outlined,
CORDIC algorithm [22], [23] offers one possibility to executdesulting in wavelet transforms which are simple to implgment.
orthogonal rotations, whereby a sequence (of + 1) - Then, these wavelet transforms requiring only a few shift and

rotations v being the word length) is used. Theseotations add operations (per parameter) are compared to the standard
wavelet transforms.
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W5 = 279/20(279¢ — k) of the wavelet function¥(¢) at
different scaleg. For synthesis, the same bases are used such
that
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Fig. 1. Filter-bank structure implementing a discrete wavelet transform.

In the frequency domain, the wavelet series can be written as

follows: . I
X X to the wavelet having at least one vanishing moment and the
(w) = Zﬁ(w)%,k(w)@é,k(w) transfer functionsd(z) and G(z) having at least one zero at
k z = 1landz = —1, respectively. These conditions are fullfilled
+ ZZ §(w)\ffj,k(w)\ff’} (W) 2) if the sum of all rotation angles is exactiy45° [24], i.e.,
ik > B = —45°.
where the Fourier transformation of a functieft) is defined k
as Therefore, a lattice filter whose sum of all rotation angles is
. teo et —45° performs an orthogonal wavelet transfomulependent
(w) = s(t)e It dt. -
e of the angles of each rotation.

he f ) 4v h culfill the dilat i A lattice filter of lengthn consists ofn/2 orthogonal rota-
The functions® and W have to fulfill the dilation equations g ) e, 4 =1, ..., n/2 be the rotation angles of these

tha(; relate the continuous bases to the discrete coefflclentsn/2 orthogonal rotations. Then, by using the representation
and g;:
fr=—45 —¢;

n—1 n—1
)= g2t —i),  VE)=> h®(2t—1). Bi =(=1)"(pim1 + 9i), fori=2---,n/2-1
:=0 :=0

Bujz = (=120 5 3)
With these coefficients;, ¢; € IR, the transfer functions of the
discrete-time filters, which are used to implement the discrqu qrthogonal wavelet trans_forms of lengthcan be param-
wavelet transform, can be formulated. These filters form o éenzed by the:/2 — 1 rotation anglesy;. Note that, except

stage of the filter-bank structure shown in Fig. 1, where th&' ¢ =1 andi = n/2, two rotations by the angles;_, and
transfer functions are given by @; are always required to implement the respective rotation

angle3;. Furthermore, note that each angle appears twice
= . = in this representation.
H(z) = Z hiz™", G(z) = Z giz In the following, we will frequently use a wavelet transform
=0 =0 of lengthn = 6 to illustrate the results. The parameterization
consists ofn/2 = 3 orthogonal rotations where the angles

Ill. PARAMETERIZATION OF . :
have the following representation:

ORTHONORMAL WAVELET TRANSFORMS

An efficient structure for the implementation of orthogonal pr=—45 —¢;
wavelet transforms (orthogonal, nonrecursive filters in general) By =1 + @0
is the lattice filter. The orthogonal filterd? (=), G(z)] of J; N— (4)
length n can be implemented by a lattice filter usimg'2
orthogonal rotations. The rotation anglgs(i = 1, ---, n/2) Of course, not all pairs ofp;, ¢2) lead to a suitable wavelet

are determined by the factorization either[6f(z) G(—z)]* transform. How the parametefs;, ¢») are chosen depends
or [G(z) H(z)]* into a shift product of orthogonal rotationson the desired properties. These properties are discussed
[5], [20]. Theoretically (infinite word length), both factoriza-subsequently.
tions yield the same result, b{(») H(z)]* is numerically =~ Compact Support:The compact support is equivalent to the
ill conditioned as compared {67(z) G(—=2)]*. Fig. 2 shows finite lengthn of the wavelet basis. While witkp; # 0 and
a lattice filter implementation of one stage of Daubechiegl; # 0 wavelets with support = 6 can be constructed, by
wavelet transform of lengtm = 4. Obviously, the basic settinggs = 0, the lengthis reducedto = 4. If ¢1 = @2 =0,
modules of the filter are orthogonal 2 2 rotations. By one obtains the Haar basja = 2).
using these orthogonal rotations, orthogonality of the whole Vanishing Moments:The approximation properties of a
transform is structurally imposed [21], and therefore perfeatavelet basis are defined by the number of vanishing moments.
reconstruction is simply possible. In the continuous case, a wavelet wjthvanishing moments

In order to perform an orthogonal wavelet transform, the latan represent a polynomial function up to degpee 1 [3].
tice filter must fullfill another property. This property ensure¥herefore, wavelet systems are often designed in order to
that the wavelet function has zero mean, which is equivalemaximize the number of vanishing moments. This humber
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Fig. 2. Lattice filter implementing one stage of Daubechies’ wavelet transform of length 4.

is identical to the number of zeros of the transfer function

H(z) at z = 1. How many of the following equations are ' 15
1

-

fullfiled by the coefficientsh; determines the number of g g
vanishing moments: j%, 0'2 ‘%, 0'2
. g—0.5//,\/ g—0.5
mj= #hi=0,  j=0,-,p=-1 (6 R
! % 1 2 3 4 % 1 2 3 4
In Fig. 3(a), a Daubechies’ wavelet of length= 6 is shown. compactsupport compectsupeart
It hasp = 3 vanishing moments, which requires the values of @ ®
the parameters to bg; = 22.60° and ¢, = 6.03°. Wavelet
transforms with a maximal number of vanishing moments and "> !
length» are calledO? in this paper. 8 0; g o
Regularity: The fact that wavelets with the maximal num-§g, 'O =S
ber of vanishing moments are not the only proper bases Wéf’s_o_5 e
also in Daubechies’ mind when she designed most regular, _, 2
orthogonal wavelets [3]. Therefore, one task is to optimize the_1s
. 0 1 2 3 4 0 1 2 3 4
regularity of the orthogonal bases. compact support compact support
To precisely evaluate the regularity, thélder coefficient © (d)

r is widely used. A function, which ig times continuously _. , , _ . Ch
differentiable, possesses @Mer coefficient — d 4 e if its Fig. 3. Wavelet function$n = 6) with certain properties: versiof;’ with
T p : . . . 7= ¢ . maximal vanishing moments (a), most regular verﬂlgﬁ (b), wavelet with
dth derivative f(%) is Hélder continuous with exponemt i.e.  best frequency behavigb/" (c), and CoifletOg (d).
D) — ) € . . .
|9 ) = S 9@+ 1) < O Va,t. wherep(F,) is the spectral radius dF,. The spectral radius

. . ) of I, is defined asp(F,) = max;(|\;|), where \; denotes
Some methods to compute thélder coefficient numerically the eigenvalues of"
.

were given in [16]. The analysis of the exadblHer regularity | -ontrast to Daubechies’ wavelet = 6) with a maximal
usually causes high computational costs. Iqthis paper,_asimmﬁﬂber of vanishing moments having alter coefficient
mgthod to compute an upper bqund qf théldier coefficient r = 1.0878, the most regular solution (called?) for n = 6
r is used, whereby the polynomiai(z) is analyzed. shows an increased smoothnessras 1.4176 [Fig. 3(a)].
This solution requiresp; = 26.06° and ¢, = 8.40°. It was
shown in [3] that if the wavelet functios(¢) of an orthogonal
wavelet basis is(p — 1) times continuously differentiable,
then the wavelet function possesgesnishing moments. The
converse, however, is not true since a wavelet function with
vanishing moments only exhibits a degree of smoothness that
asymptotically increases linearly by0.2075 - p [3]. Recently,
this relationship (the gap) between the number of vanishing
for oo O e 0 moments and the actual degr_ee of smoothness has c_aused
' ' various approaches for the design of wavelet transformations,

G(z) = (1 + 27V E(2)

implies that the wavelet system has exactlyvanishing
moments. A matrix”, defined by the coefficients of the poly-
nomial I',(z) leads to an estimation of thetttler coefficient.
With F,(2) = fpo + fpaz+ fp222 + -+ fpn_pz™ P, the
matrix F, is given by

fos Jo2 Jor . where the condition of possessing a maximal number of
Fp=\fps fra Jp3 : . vanishing moments is waived. In [11], it was shown how one
: can systematically sacrifice higher order vanishing moments
6 f to achieve smoother wavelet (scaling) functions. Also, the
pn—p—1 : L
measure of smoothness for the design of wavelet basis in
An upper bound- for the Holder coefficient is the discrete case (when continuous derivatives do not really
exist) is discussed in [12], leading to a design of “smooth”
r=p—1—logymax||fpol, | fpn—pl P(Fp)] wavelets in the discrete domain (i.e., regularity up to a certain
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scalej of the discrete wavelet transform). The condition of
vanishing moments will also be sacrificed in our approach
for achieving a simple implementation of orthogonal discrete
wavelet transforms.

Frequency Behavior:As each stage of the wavelet trans-
form is a pair of half-band filters, one optimization criterion
is to place the roots of the coefficients of the scaling function
such that an ideal low pass is approximated as well as possible.

An orthogonal wavelet transform divides a signal into the
different spaces spanned by the scaling functigr, and the
waveletsV; ;.. The reconstruction is based on the same bases
as is shown in (1). The wavelet series in the frequency domain
is given in (2).

For the optimal solution, the improvement @(w) with
respect to its frequency behavior is not only necessary, but ik ﬂ
sufficient to improve the whole orthogonal wavelet system. o 01 02
Note that, because of the orthogonality of spaces, the wavelet normalized frequency
W is directly related ta. Therefore, improving the frequencyrig. 4. Frequency characteristics of the standard wavelet transfodh (
behavior of ®(w) is equivalent to improving the frequencydotted line) and the version with best frequency behavigf ( solid line).
behavior of the whole transform.

magnitude in dB

05

The scaling functior® can be determined from the dilation TABLE |

equation (given the discrete coefficierits). In the discrete PARAMETERIZATION SCHEMES FORn = 6 WAVELET TRANSFORMS

case, the discrete values of the scaling function are given by =5 [ A1 | B | Bs

®(k). Using the vector representatidn= [®(1),---, ®(N)]¥ T a5°

the DFT yields® = [&(1), - - -, B(N)]T: S s —

> 2| —45° - pi + o ©1 —p2

. 3 —90° + ¢y | 45 — 1 + 3 — P2

¢ = DFT(®). (6) 4| —90°+ p1 + ¢ 45° — ¢ —p3

5 90° —p; | 45°+ pa + 1 | —180° — o

The vector® can be divided into a passband part and a

stopband part:
The parameters of a Coiflet transform (caltegl) for n = 6

& $p @ andp = 2 arep; = —122.85° and ¢, = —167.85°. The
T | @5 resulting wavelet function is plotted in Fig. 3(d).

where the upperV/2™ elements of& belong to®, and

the remainingV — N/2™ — 1 elements of® belong to®s. IV. EFFICIENT IMPLEMENTATION

While the elements of the passband part should contain large OF ORTHONORMAL ROTATIONS

values, the elements of the stopband part should be smallas shown in the previous section, all orthogonal wavelet
Therefore, the normt = |[®]|> should be minimal. While ansforms can be implemented with a filter-bank structure

the Daubechies wavelet with a maximal number of vanishir&)mposed of lattice filters (see Figs. 1 and 2 as an example).

moments yieldst = 0.2119, the best frequency behaviorthe |attice filters consist of orthogonal2 2 rotationsR(c)
solution (calledOZ) achieved forn = 6 with ¢1 = 19.08° \yhich are defined as follows:

and ¢, = 7.66° leads to a stopband norm éf= 0.1461. In

Fig. 4, the frequency characteristics of the respective scaling
functions are compared, and in Fig. 3(c), the wavelet functionf() = [
with the best frequency behavior is plotted.

cos —sino
sin o COS &

) : . 1 1 —tanc
Symmetry: Symmetry is a preferred property in some ap- = —{ }(|a| <90%). (9)
plications (e.g., image coding), but exact symmetry and or- V14 tan® o [tan @ 1

thogonality are not simultaneously possible. Therefore, least
asymmetric wavelets were designed. In [3], Coiflets are di$he discretizationtan o, = 27* leads to the rotation angles
cussed, which show an improved symmetry in comparison tleat are used by the CORDIC procedure [22], [23], which is a
standard wavelets. These Coiflets can be designed by requidegnmon method to execute orthogonal rotations with respect
not only the wavelets to have vanishing moments, but also tteea simple implementation. Any rotation is represented by a
scaling functions. Additional to (5), the discrete coefficientsequence ofw + 1) p-rotations ¢ being the word length):
of these Caoiflets fullfill the following equations:

> (n+1-1i)hi=0 j=0,---p—1 (8) R(a):in{ L o2 o € {£1} (10)

- ‘ ’ ’ ) Ky o o127k 1 ’
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Fig. 5. Zero distribution offf (z) in the reduced parameter space.

Fig. 7. More regular scaling functions of length = 4 (Of, dotted line
and OF, solid line).

rotations is
_ 1 1 —o27*
E R =5r g2t 1 |0 orEiED
g (13)

R(wy,) is called an orthogonak-rotation, and can be inter-
preted as an approximation of the rotatiB(x) if «;, is chosen
such that it is the angle of the sequenge(k = 0,1, -, w)
which is closest to the exact rotation angld9], i.e.,

min |k — a. (14)

In [9], approximate rotations in the form of orthogonal double
p-rotations consisting of two equal orthogopatotations (13)

were used:
R(an) = R )R(cw)
Flg 6. Comparison of Daubechies’ standard scaling function of length _ i 1 —o27k 1 —o27F (15)
n = 4 (OF, dotted line) and the versionO(’, solid line) showing the - K}% o2~k 1 o2~k 1 ’

simple implementation.
The basis angles of the orthogonal doupleotations are

given by & = 2«y. The reason for using orthogonal double
with 1/K,, being the scaling factor that is independent of the-rotations is to avoid the square root of the scaling factor
angle «: of an orthogonal-rotation (13). The resulting scaling factor

1/K} can be factored such that the scaling can be executed

1_“’[ 1) by shift and add operations. The factorization
V1§ 2-2F 2k 1 1 _on. Ak 8k
= 72 = Tram - -2 a2
This corresponds to the representation of the rotation amgle (16)
in the basisy, = arctan 2% with digits o}, € {£1}: leads to the following scaling procedure:
b
, , 1 +1 . w
w w == +272"%),  with b=log {—]
a= Z opoy = Z o arctan 2%, (12) K} 1;[ 52 | 9k
= = a7)

Now, instead of using the entire sequence of basis angles One orthogonal doublg-rotation with a specific shift value
to representa, we restrict the set of available rotations td: chosen according to (14) is the basic element for approx-
one specific recursion step of (10), i.e., the set of availaklaating any orthogonal rotation of our parameterization of
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Fig. 8. Comparison of Daubechies’ standard scaling function of length= 6 (O}, dotted line) and the versionﬁé’ (solid line) showing a
simple implementation.

Imag
-]
-]
]

imag

2 3
compact support real

90-a. , a, a, o -,

Fig. 9. More symmetric scaling functions of length= 6 (O, dotted line and03, solid line).

Section lll. By using < w orthogonal double:-rotations, an once in the presented wavelet filters:

approximate rotation can be composed that enables a simple 1 1 1

implementation and approximates any orthogonal rotation to R(—45°) = R(—ao) = 7z {_1 1}-

a certain accuracy.

The scaling factorl/\/i does not need to be implemented.

With each rotation appearing in the analysis part and in

the synthesis part, the scaling factor also appears twice. As
For the parameterization of wavelet transforms, two items ©f+/2 - 1/v/2 = 1/2 can be implemented with one shift

Section Il are important. The orthogonality of the transformsperation, the only price that must be paid is the loss of

is structurally imposed by using lattice filters. By choosingormality by a factorl/\/i in the transform domain.

the rotations such that the sum of angles is consta4®, By using only one (instead ofy + 1) p-rotation per pa-

the lattice structure always performs a wavelet transformametery, of (3), the computational complexity is reduced

Therefore, the orthogonal-rotation R(—45°) always appears significantly. We elaborate this in detail in our example (4).

V. RESTRICTION OF THEPARAMETER SPACE
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Fig. 10. Scaling functions with better frequency behavi@a{( dotted line andOg, solid line).
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Fig. 11. More regular scaling functions of length = 6 (O, dotted line andO¢, solid line).

The two free parameters; andy, of (4) are approximated by parameterization schemes, all having a constant sum of angles
2Pk = —45°, the grid of the reduced parameter space
becomes more dense. Some of these schemes are given in

The corresponding orthogonal-rotations appear twice in Table I. The parameterg; and ¢, of the different schemes

our parameterization schemes (3). Therefore, it is alwagke not equal, and one parameterization scheme might be better

an orthogonal doubl@-rotation which must be implementedsuited than the other for an approximation by the available set

[note the different sign in contrast to (16) singeandy, each Of p-rotation angles.

appear twice in (4), but with opposite signs]. This implies that Fig. 5 shows the zeros of the polynomi@yz) generated

the simple realization of the scaling factor (16) can be applied. the reduced parameter space with the parameterization
The price one has to pay for the simplicity of the filters ischemes 1-4 of Table I. Plotted are only those zeros which are

that the parameter space consisting of all possible rotatimeresting with respect to the properties of compact support,

angles is reduced to a discrete parameter space sparvestishing moments, regularity, and frequency behavior. The

by the anglesa;, = arctan2~%. But by using different characteristic zeros are located closezte= —1; therefore,

$1 = 04, arctan 27 ke P2 = 0, arctan 2 kes,
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the area around this point is shown in detail. Although the TABLE I
parameter space is reduced to the domain of angjes= COMPARISON OF THE DIFFERENT VERSIONS
—k . . . . . OF ORTHOGONAL WAVELET TRANSFORMS
arctan 27", the zero distribution still allows the generation of
wavelet transforms, whose zeros are placed close40—1  Version | p | 7] t ] B B2 Ba
or close to the unit circle. OF [ 27105500 [ 0.3517 | —60.00° | 15.00° 0
Besides the use of different parameterization schemes, an- 0P | 1 | 0.5025 | 0.3533 | —59.03° | 14.03° 0
other possibility for obtaining a denser grid is using other OF | 1 { 0.7367 | 0.3706 | -63.43° | 18.43° 0
classes of orthogonal-rotations [7]. Of course, one always OF |'1]0.7367 | 0.3706 | —63.44° | 18.44° 0
has the possibility to increase the accuracy of the rotation Og | 3 | 1.0878 | 0.2119 | —67.60° | 28.63° —6.03°
approximation (equivalent to tightening the grid) by using__ Og | 1| 1.0597 | 0.2109 | —68.75° | 30.97° —-7.12°
more than one:-rotation per parameter. Og [ 2]14177]0.2315 | ~71.06° | 34.46° | —8.40°
The decisive question is whether or not the reduced pa-_ Qs | 1| 1.0612 | 0.2109 | —71.56° | 33.68° | —7.12°
rameter space leads to suitable alternatives to the optimal Qs | 1| 0.8617 | 0.1461 | —64.08° | 26.74° | —7.66°
wavelets of Section Ill. Wavelet transforms were parame- O(g 11 0.8207 | 0.1480 | —64.44° | 26.56° ~7.12°
terized in the reduced parameter space that show the best Og | 2| 05424 | 0.3399 | 77.85° | 69.30° | —192.15°
performance with respect to the discussed properties (i.e, OF | 1]0.5341 | 0.3456 | 75.96° | 66.16° | —187.12°

compact support, vanishing moments, regularity, frequency

behavior, and symmetry), whereby the parametgrsandk..,

of a certain parameterization scheme with the best performance

are determined. In Figs. 6-11, the plots of the scaling functions dfocoxact si ofetdif(sfe, 1)
of the versionsOP, OF, OF, OF, O, OF designed in the 14 , 0015 —
reduced parameter space (solid line) and the scaling functions

belonging to the standard versiond’, O, 0P, OF, OF, bl ] 0_01W ! ool
0.005F

ste2=diff(sfe,2)

0.015

Og (dotted line) are compared. Also, the zerog#f) of the 1t
standard versions (upper right) and the approximate version
(lower right) are given. The resulting lattice structures of 08f
the new versions showing the simple implementation (only
very few shift and add operations are necessary) are given |
at the bottom of each figure. Table Il compares all solutions .}
with respect to vanishing moments, regularity (upper bound),
frequency behavior, and rotation angles. 0-2)
Obviously, the differences between the scaling functions |
showing the efficient implementation and the standard versions
are very small. The comparison of the regularityand the o2t
stopband normt of the approximate and standard versions
stresses the good performance of the wavelet transform§*% 2«  *% =2 4 9% 2 4
parameterized in the reduced parameter space. Of course, this (a)
is due to the small differences in the rotation angles, i.e.,
B = 3. Only in the case oég the smaller Hlder coefficient 14
might be improved with an additional pair gf-rotations.
Adding «g to 32 and subtractingys from f5 increases the 121
upper bound of the regularity from= 1.0612 to » = 1.3714,
whereby the regularity of the standard solution= 1.4176)
is almost achieved. 0.8t
Since only one of the zeros 6f(z) is preserved exactly at
z = —1, the number of vanishing moments is reduced to one®®f
by the approximation. Of course, this also affects the exact,,|
regularity of the continuous bases. For many applications,
however, only the finite scale regularity of the (discrete) oz
wavelet transform is essential, i.e., the regularity is evaluated
only for a certain number of finite scales. This number is given
by the actual number of stages used for the discrete wavelef,|
transform. It is shown in [8] that the approximate versions
show a good finite scale regularity, although the number of?4; > 40025, 5 4 o015, B 7
exactly vanishing moments is always= 1 (higher moments (b)
only Vam.Sh approximately). In Flg' 12'. th? scaling funqtlpgi . 12.  Scaling function and first and second discrete-time derivative (slope)
and the first and second numerical derivatives of the origingf paupechies' filter02 (upper row) and for the approximate versioi’
Daubechies scaling functio® (p = 3 vanishing moments; (bottom row). Seven scales were used.
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Fig. 13. Difference between the exact scaling fqncti@ﬁGD) and the
approximate scaling functions using= 1 (dotted Iine;()bD), z = 2 (dashed
line), and= = 3 pu-rotations per parameter of the exact realization.

(1]

(2]

(3]

(4]
(5]

(6l

(7]

plots in the upper row) and the approximate scaling function

(mo = 0, my = —0.0761, my = —0.9247; plots in the bottom
row) are shown for the finite scale= 7.

Obviously, the regularity of the scaling function is hardly

(8]

degraded. This regularity can be analyzed explicitly using - N N _
the discrete-time definitions of regularity (slopes) in [17]. Asl9 J. Gotze, S. Paul, and M. Sauer, “An efficient Jacobi-like algorithm

long as the function and the respectigite scale regularity
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such that for many practical applications, these fast/simple
wavelet transforms perform as well as the standard versions.
Offering the possibility of a very simple implementation, the
presented approach has already been used for an efficient VLSI
realization of discrete, orthogonal wavelet transforms [18].
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