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ABSTRACT

In this paper, we address the high SNR regime of the MIMO

broadcast channel under linear filtering. For systems where

the base station is equipped with more antennas than the user

terminals have in sum, we prove that block-diagonalization is

the asymptotically optimum transmission strategy for maxi-

mizing the sum rate. For this type of transmission strategy,

the asymptotically optimum transmit covariance matrix in the

broadcast channel is derived in closed form. In addition, we

present an expression for the asymptotic sum capacity for

an instantaneous channel realization which only depends on

this particular channel realization. No precoders or singular-

value-decompositions arise as they used to do in hitherto ex-

isting sum rate expressions in the multi-antenna terminal case.

All results are deduced from the dual multiple access channel

in which the optimum transmit covariancematrices can easily

be computed. Our recent rate duality for multi-antenna sys-

tems where the individual streams of a user are not treated

as self-interference allows us then to convert the solution of

the dual uplink back to the downlink and to find the optimum

transmit and receive filters in the broadcast channel.

1. INTRODUCTION

Block-diagonalization (BD) is a multi-user MIMO chan-

nel decomposition technique that orthogonalizes the overall

MIMO broadcast channel (BC) of the different users into par-

allel single-user MIMO channels without inter-user interfer-

ence. It can thus be thought of as the generalization of zero-

forcing channel inversion algorithms for the case when the

receivers have multiple antennas. Since capacity achieving

transmission strategies do not seem to exist for the multi-user

MIMO case under linear filtering, block-diagonalization was

introduced as a constraint which leads to closed-form expres-

sions for the resulting sum rate [1]. Depending on the number

of available antennas at the base station and the number of

antennas at the terminals, standard BD (e.g. [1–3]), BD with

user selection (e.g. [4]), or generalized BD where the receive

filters are taken into account (e.g. [5]), can be applied. While

the complete suppression of inter-user interference, that was

heuristically introduced to end up with closed form expres-

sions [1], fails to reach the sum capacity in general, we will

show that in the high SNR regime, block-diagonalization is

indeed the asymptotically optimum transmission strategy in

the multi-user MIMO BC with linear filtering. In order to

prove above statement, we utilize the recently introduced rate

duality [6] for multi-antenna users under linear filtering and

investigate the sum rate maximization problem in the dual

uplink multiple access channel (MAC) instead. Despite the

simpler structure of the dual MAC (aligned channel and pre-

coder indices), the simplest multi-user setup with single an-

tenna terminals already allows for the presumption that closed

form expressions for the sum capacity will remain infeasible

even in the multiple access channel irrespective of whether

linear or nonlinear filtering is considered. Fortunately, the

high signal-to-noise ratio regime is an exception to this de-

flating circumstance, since there, asymptotic results on the

sum capacity have been discovered for dirty paper coding and

partly for linear filtering. In [7,8] for example, the single user

point-to-pointMIMO case was decomposed into a supremum

capacity term, an instantaneous SNR effect term, and an in-

stantaneous capacity degradation term due to the eigenvalue

spread. Outage capacity and throughput of a fading point-to-

point MIMO system are analyzed in [9], whereas a lower and

an upper bound on the sum rate of block-diagonalization was

derived in [10]. Nonetheless, precoder-free expressions for

the asymptotic sum capacity of a point-to-multipoint broad-

cast channel for an instantaneous channel realization did not

exist so far for linear filtering in the multi-antenna terminals

case, only sum rate expressions still containing the precoders

have been derived yet when the individual users are equipped

with several antennas, see [11, Eq. (21)] and [12, Eq. (10)].

Instead, ergodic statements can be found in the literature, see

for example [11–13]. Therein, the affine approximation of

the sum capacity introduced in [14] and elaborately discussed

in [15] was applied.

Having derived the asymptotic sum capacity of the dual

MAC, we can immediately conclude by means of the dual-

ity in [6] that the broadcast channel features the same high

SNR sum capacity. Moreover, when we convert the simple

solution for the precoders in the dual MAC that asymptoti-

cally achieve the sum capacity back to the broadcast chan-

nel, it turns out that the resulting BC system features a block-

diagonal structure. Hence, we have a formal proof that block-



diagonalization is the asymptotically optimum transmission

strategy when linear filtering is considered what so far has

not been shown, but often been used and investigated, see

e.g. [11, 12]. Of course, the MAC to BC conversion also de-

livers the asymptotically optimum transmit and receive filters.

1.1. Contributions

The main contributions of this paper are summarized in the

following list:

1. We prove that block diagonalization is asymptotically

optimum for sum rate maximization in the broadcast

channel.

2. Optimum precoding and transmit covariance matri-

ces in the broadcast channel are derived by means

of our rate duality in [6]. In contrast to exist-

ing block-diagonalization algorithms, singular-value-

decompositions do not arise in our notation and there-

fore do not have to be computed.

3. We derive an analytic expression for the sum capac-

ity of the multi-user MIMO BC achievable with lin-

ear filtering in the high SNR regime which is the first

precoder-free closed form solution depending only on

the channel matrices and the antenna configuration.

4. A closed form solution of the covariancematrices in the

dual uplink asymptotically achieving this sum capacity.

1.2. Organization

In Section 2, the system model underlying the multi-user sce-

nario is described. The optimum signaling strategy for the

sum-rate maximization with linear filtering is derived in Sec-

tion 3 in the dual multiple access channel and afterwards con-

verted to the broadcast channel in Section 4. Section 5 con-

cludes this paper.

2. SYSTEM MODEL

We consider the communication between an N antenna base

station and K multi-antenna terminals, where user k multi-

plexes Bk data streams over his rk antennas. For a short

notation, we define r as the sum of all antennas at the ter-

minals, i.e., r =
∑K

k=1 rk, and b as the total number of trans-

mitted streams, i.e., b =
∑K

k=1 Bk. Recent results [6] on

the rate duality of the BC and the MAC under linear filter-

ing and a user-wise joint stream decoding allow us to investi-

gate the dual MAC (with its simpler structure) instead of the

BC. Afterwards, the obtained solutions can conveniently be

transformed back to the BC. In this MAC, user k applies a

precoding matrix Tk ∈ Crk×Bk generating his rk × rk trans-

mit covariance matrix Qk = TkT H
k . The precoded symbol

vector propagates over the channel described by the matrix

Hk ∈ CN×rk . At the receiver side, zero-mean noise η ∈ CN

with identity covariance matrix is added and the receive filter

for user k is denoted by Gk ∈ CBk×N . Due to the reversed

signal flow in the BC, we characterize the transmission from

the base station to terminal k by the Hermitian channel HH
k

in the BC, and the precoder dedicated to the Bk streams of

user k is denoted by Pk ∈ CN×Bk . Throughout this paper,

we assume that the base station has at least as many antennas

as the terminals have in sum, i.e., N ≥ r.

3. OPTIMUM SIGNALING IN THE DUAL MAC

Introducing the composite channel matrix H and the com-

posite block-diagonal precoder matrix T of all K users via

H = [H1, . . . , HK ] ∈ C
N×r,

T = blockdiag{Tk}
K
k=1 ∈ C

r×b,
(1)

the rate of user k seeing interference from all other users can

be expressed as (see [6])

Rk =log2

∣
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where the substitution X reads as

X = IN +

K
∑

ℓ=1

HℓQℓH
H
ℓ = IN +HTT HHH.

Note that (2) in general requires all streams of a single user to

be decoded jointly. Reformulating the rate expression (2), we

get

Rk = − log2
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where the transposed kth block unit matrix is defined via

ET
k = [0, . . . ,0, IBk

,0, . . . ,0] ∈ {0, 1}Bk×b

with the identity matrix at the kth block and the ith block with
i 6= k corresponds to the zero matrix of dimension Bk × Bi.

Due to the assumption that the base station has more antennas

than the terminals have in sum, all r streams can be activated

leading to square precoders Tk with Bk = rk ∀k. Raising

PTx, all r streams become active, T becomes full rank, and

all eigenvalues of T HHHHT become much larger than one.

In the asymptotic limit, we obtain
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(4)

since ET
k T−1 = T−1

k ET
k . The notation x ∼= y means that

the difference x − y vanishes when the sum power PTx goes



to infinity. Interestingly, the rate of user k depends only on

the determinant of his own transmit covariance matrix Qk,

and not on the covariance matrices of the other users! Con-

sequently, the eigenbases of all transmit covariance matrices

do not influence the rates of the users, only the powers of the

eigenmodes are relevant. Let the eigenvalue decomposition of

Qk read as Qk = VkΛkV H
k with unitary Vk and the diago-

nal nonnegative power allocation Λk. Due to the determinant

operator, Vk can be chosen arbitrarily and therefore, we set

Vk = Irk
∀k without loss of generality. Let the power alloca-

tion matrix be composed by the entries Λk = diag{λ
(i)
k }rk

i=1.

As only the traces of the covariance matrices are involved in

the sum power constraint
∑K

k=1 tr(Qk) ≤ PTx, the determi-

nant |Qk| = |Λk| is maximized by setting

λ
(1)
k = . . . = λ

(rk)
k := λk, (5)

i.e., by evenly distributing the power allocated to that user

onto his individual modes, so Qk = λkIrk
∀k. Inserting (5)

into the asymptotic rate equation of user k in (4) leads to the

asymptotic sum rate expression

K
∑

k=1

Rk
∼=

K
∑

k=1

(

rk log2λk−log2
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∣ET
k

(

HHH
)−1

Ek

∣

∣

)

. (6)

Subject to the sum power constraint
∑K

k=1 rkλk ≤ PTx, the

sum rate in (6) is maximized for

λk =
PTx

r
, (7)

so power is evenly allocated to the users (similar to the single-

antenna case proven in [11]), and every user evenly distributes

his fraction of power onto his modes. Finally, the asymptotic

sum rate at high SNR reads as

K
∑

k=1

Rk
∼=r log2 PTx−r log2 r−

K
∑

k=1

log2

∣

∣ET
k

(

HHH
)−1

Ek

∣

∣,

(8)

and is interestingly achieved with the transmit covariancema-

trices Qk = PTx/r · Irk
∀k. Using (8), we are able to quan-

tify the asymptotic sum rate that can be achieved by means

of linear filtering for every single channel realization and an-

tenna/user profile in terms of the transmit power PTx and the

channel itself as long as N ≥ r holds. Note that no precoders

arise in (8) in contrast to [12, Eq. (10)] and [11, Eq. (21)].

In principle, the ergodic rate can be obtained by averaging

corresponding to any distribution of the channel. In [12],

results on the ergodic rate were presented for the specific

case of Rayleigh fading only, where the channel entries of

H1, . . . , HK all have the same distribution. More compli-

cated fading models cannot be captured due to this restricting

assumption. Moreover, the instantaneous rate expression is

given by means of bases representing null spaces of shortened

channel matrices taken from [1] and not as a function of the

channel purely as we do in (8). Concerning the asymptotic

rate expression, we have created a smooth transition from the

r single-antenna-users system configuration in [13] where no

cooperation exists between the antenna elements at the ter-

minals, to the single-user point-to-point MIMO link where

all r antennas fully cooperate, see [16] for example. In be-

tween, we can now specify any antenna/user profile we want

and compute the feasible rate in the asymptotic limit under

linear filtering.

4. OPTIMUM SIGNALING IN THE BC

Using our recent rate duality in [6], we can convert the simple

solution for the covariance matrices Q1, . . . , QK in the dual

MAC to covariance matrices S1, . . . , SK in the BC, where

the Hermitian channels are applied. Since this duality explic-

itly uses the receive filters in the MAC as scaled transmit ma-

trices in the BC, we first compute the MMSE receivers in the

dual MAC, as they are optimum and generate sufficient statis-

tics. This MMSE receive filter Gk for user k in the dual MAC

reads as

Gk = ET
k T HHH

(

IN + HTT HHH
)−1

.

Using asymptotically optimum precoders Tk =
√

PTx/rIrk
,

above expression asymptotically converges to

Gk
∼=

√

r/PTx · ET
k

(

HHH
)−1

HH. (9)

Let Pk denote the precoder of user k in the BC, then the ith
column pk,i of Pk follows from the conjugate ith row g′T

k,i of

the matrix G′
k = W H

k Gk via (see [6])

pk,i = αk,ig
′∗
k,i =

αk,i
√

PTx/r
·H

(

HHH
)−1

EkWkei, (10)

where the scaling factor αk,i is obtained by the duality trans-

formation and Wk is a unitary decorrelation matrix. This ma-

trix Wk finally ensures that the individual streams of every

user can be decoded separately instead of jointly without hav-

ing to face the rate loss that usually has to be taken into ac-

count when streams are decoded separately rather than jointly,

see [6]. Since we convert only the asymptotically optimum

transmit precoders and receive filters, the duality transforma-

tion from the MAC to the BC in [6] drastically simplifies and

can even be computed in closed form. In particular, the matri-

ces Ma,b in [6, Eq. (23)] vanish for a 6= b yielding a diagonal
matrix M from which the scaling factors are derived. Those

scalars now compute to

αk,i =

√

PTx/r

‖g′
k,i‖2

. (11)

In combination with (10), the ith column of the precoder as-

sociated to user k reads as

pk,i =
√

PTx/r ·
H

(

HHH
)−1

EkWkei
∥

∥H
(

HHH
)−1

EkWkei

∥

∥

2

,



generating the precoder matrix

Pk =
√

PTx/r · H
(

HHH
)−1

EkWkD−1
k , (12)

where the ith diagonal element of the diagonal matrix Dk is

[Dk]i,i =

√

eT
i W H

k ET
k

(

HHH
)−1

EkWkei. (13)

We can immediately see, that the precoding filters in (12)

lead to a block diagonalization of the transmission, since

HH
ℓ Pk = 0 holds for k 6= ℓ. Next, the decorrelation ma-

trix Wk which enables the duality is usually chosen as the

eigenbasis of GkHkTk
∼= Irk

, which asymptotically coin-

cides with the identity matrix due to (9). Since all eigenval-

ues are identical to one, the decorrelation matrices Wk are

not given a priori, but can easily be computed such that the

BC features the same sum rate as the dual MAC. By means of

(12) and the block diagonalization property of the precoders,

we obtain for user k’s receive signal

yk = HH
k Pksk + ηk =

√

PTx/r · WkD−1
k sk + ηk, (14)

where ηk ∈ Crk is the noise and sk the symbol vector of

user k both having an identity covariance matrix. From (14),

the rate of user k achieved in the BC reads as

Rk = log2

∣

∣

∣
Irk

+ PTx/r · WkD−2
k W H

k

∣

∣

∣
, (15)

which asymptotically converges to

Rk
∼= rk log2 PTx − rk log2 r − log2 |D

2
k|. (16)

For the asymptotic result in (16), the identity matrix Irk
in

(15) was omitted, so the true rate Rk will always converge

to the right hand side from (16) from above. It remains to

minimize the determinant of D2
k by the choice of the unitary

decorrelation filter Wk, such that the asymptotic limit of Rk

is maximized, see (16). From the definition of Dk in (13),

Hadamard’s inequality [17] tells us that Wk has to be chosen

as the unitary eigenbasis ofET
k (HHH)−1Ek. ChoosingWk

this way, D2
k contains the eigenvalues of ET

k (HHH)−1Ek,

and therefore, the elements of D2
k are as different as possible

since the eigenvalues of any positive definite matrix majorize

its diagonal elements according to Schur’s theorem [18]:

ET
k (HHH)−1Ek = WkD2

kW H
k . (17)

The optimum transmit covariance matrix Sk = PkP H
k of

user k in the BC which asymptotically achieves the same sum

rate as the dual MAC counterpart reads by means of (12) and

(17) as

Sk =
PTx

r
· H+HEk

(

ET
k (HHH)−1Ek

)−1
ET

k H+. (18)

In (18), we make use of the channel pseudo-inverse H+

which is defined via H+ = (HHH)−1HH. Note that rk

eigenvalues of Sk are PTx/r whereas the remaining N − rk

ones are zero. Thus, Sk is a weighted orthogonal projec-

tor. Furthermore, tr(Sk) = PTx · rk/r ∀k, so the power

is uniformly allocated to the individual users in the broadcast

channel as well. Comparing (18) with the simple solution of

the transmit covariance matrix Qk = PTx/r · Irk
in the dual

MAC, it becomes obvious that the optimum covariancematri-

ces are much more difficult to find directly in the BC without

using the rate duality, than in the dual MAC. Plugging the op-

timum D2
k containing the eigenvalues of ET

k (HHH)−1Ek

into (16) finally yields

Rk
∼= rk log2 PTx − rk log2 r − log2

∣

∣ET
k (HHH)−1Ek

∣

∣.

Hence, the maximum sum rate (8) in the dual MAC is also

achieved in the BC. While the rate expression in (15) at first

glance seems to require the joint detection of all the streams

belonging to user k, the application of the simple matched

filter receiver

Bk = D−1
k W H

k

to the receive signal yk of every user k completely decorre-

lates the individual streams of user k. As a consequence, the
individual streams of every user can be detected separately

without any loss in rate, and the SINR of the ith stream be-

longing to user k reads as

SINRk,i =
PTx

r
·

1

[D2
k]i,i

entailing the rateRk,i = log2(1+SINRk,i). Summing up the

rates of all rk streams of user k, we obtain

Rk =

rk
∑

i=1

Rk,i = log2

rk
∏

i=1

(

1 +
PTx

r
·

1

[D2
k]i,i

)

in accordance to (15), and the rateRk of user k asymptotically

converges to

Rk
∼= rk log2 PTx − rk log2 r − log2 |D

2
k|

= rk log2 PTx − rk log2 r − log2

∣

∣ET
k (HHH)−1Ek

∣
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Therefore, stream-wise detection achieves the same user

rates for our special choice of the decorrelation matri-

cesW1, . . . , WK . While the transmission chain consisting of

the precoder and the channel leads to a block-diagonalization,

the inclusion of the matched filter receiver even leads to a total

diagonalization of the transmission chain. Therefore, a joint

diagonalization of the transmission chain by both the transmit

filter and the matched filter receiver with appropriately cho-

sen decorrelation matrices is asymptotically optimum in the

same way as the block-diagonalization of the channel by the

sender alone is.



5. CONCLUSION

We have shown that block-diagonalization is the asymptoti-

cally optimum transmission strategy in the broadcast channel

and derived the asymptotic sum capacity when linear filter-

ing is applied instead of dirty paper coding. Starting in the

dual multiple access channel, we have found a very simple

closed form solution for the optimum transmit covariancema-

trix which has then been converted back to the downlink by

our recent rate duality. To the best of our knowledge, we have

presented the first precoder-free asymptotic sum capacity ex-

pression of linear filtering which is only a function of the indi-

vidual users’ channel matrices, the available transmit power,

and the antenna profile of the users.
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