
Built-In Self Test Architectures for Multistage Interconnection Networks

E. Bernard,*
OEN TN ETD3

Siemens AG
81359 Munich

Abstract
A novel built-in self test architecture for locally control-

led cube-type N x N multistage interconnection networks
(MINs) is presented. First, a state-based pseudoexhaustive
test procedure for this class of MINs is outlined. Then, a
labelling algorithm on a binary n-cube is described which
generates the necessary inputs for the tests. From the depen-
dence graph of this algorithm a tree architecture is derived
which results in a hardware overhead of O(11 log N) .

1 INTRODUCTION
The still rapidly growing complexity of integrated cir-

cuits results in a steady increase of system performance.
However, these merits are drastically reduced due to the
susceptibility of these circuits to physical hardware defects
[11. In order to ensure reliable function testing is indispensa-
ble. Since failures also occur in field operation, the systems
have to be tested periodically during operation. But as it
is impossible in many casesto provide expensive automatic
test equipment, failures either have to be detected by on-line
error detection using the actual data, or the system has to
test itself, i.e., a built-in self test (BIST) is implemented with
additional hardware.

In the past years MINs have gained significant import-
ance in high performance communication systems [2, 31.
Multistage interconnection networks (MINs) are well sui-
ted for being tested efficiently due to their modularity and
regularity [4].

For locally controlled cube-type MINs a variety of test
procedures has been presented (e.g. [5 , 6, 71). However,
no method has been presented so far to generate the test
stimuli. Thus, the only alternative for the implementation of
BIST is to store the stimuli on the chip or in some additional
component; a quite hardware-intensive method.

In this paper, we first propose a state-based pseudoex-
haustive test procedure for locally controlled MINs capable
of detecting failures associated with pure transmission of
data [5] , but which also can detect functional faults of the
switching elements independently of the actual implementa-
tion. A graph labelling algorithm [7] for generating the test
stimuli automatically is outlined. Based on the dependence
graph of this procedure an efficient tree-like hardware ar-
chitecture is derived for generating the test stimuli on-chip.
If additionally the fault free test results are generated in the
same way, an efficient BIST architecture is obtained.

*The author has been with the Institute for Network Theory, TU Munich,
where this work has been performed.

S. Simon, and J. A. Nossek
Inst. Network Theory

TU Munich
80290 Munich

stage I stage I stage

Figure 1 : Topology of a MIN and index notation for N = 8.

2 Test Procedures For MINs
First, we will describe the architecture of the networks

considered in this paper. A MIN for interconnecting N
inputs with N outputs is composed of n = log, N stages
with N / 2 2 x 2 switching elements (SEs) each as depicted
in Fig. 1. The input links of the various stages are referred
to by an index i, 0 5 i < N . The stage index is s, with
0 5 s < n, and the index of the SEs within a stage is p ,
0 5 p < N/2. A superscript in angle brackets denotes the
stage s to which an input i(s) or an SE p(') belongs. This
index notation is also shown in Fig. 1. Since N is a power of
two, the indices can be expressed in a dyadic representation,
i.e., z = (~ ~ - 1 , . . . , il, io). The data dependencies between
the stages can be realized by shuffle permutations [8]. Thus,
the indices of the input and output links of an SE p(') differ
exactly in bit in - - 1.

We will restrict in this paper to ATM-like destination tag
routing, but other routing strategies can be handled with
our procedure as well [9, 71. A data packet comprises of
q bit-parallel data words with b bits each. The data words
either can be assigned to the pay load information or to the
routing header which specifies the address (i.e. index) of
the output link the packet is destined for. A specific bit of
the routing header is inspected by the SEs of a particular
stage and if this bit is 0 (1) the packet is routed to the upper
(lower) output of the SE. If two data packets are destined for
the same output of an SE one packet at the input has to be
blocked. Accordingly, a SE has to assume one of the eleven
states A0 - A I 0 depicted in Fig. 2 a). A line through the
SE denotes an interconnection and the "-I" symbol denotes a

. . .

176
1066-1409/96 $5.00 0 1996 IEEE

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:49 from IEEE Xplore. Restrictions apply.

blocked input. The state transition diagram in shown in Fig.
2 b). Transition arcs originating and terminating at the same
node are not depicted. Edges traversed in both directions are
denoted by double-headed arrows. The conditions for state
transitions are coded as follows: by a single letter (U or 1) if
a transmission ends at an upper or lower input. A beginning
transmission is represented by two letters, denoting the input
and output of an SE, e.g. uu: request from upper input to
upper output.

In order to test an SE it is sufficient to traverse all transi-
tion edges of the state diagram [lo]. For testing all SEs of
the network we propose the following procedure:

Test Procedure: In a first test phase all SEs traverse the
same state sequence A0 --$ A6 + A0 + A5 --+ Ao. In
order to bring all SEs to state A6, all routing headers have
to be identical to the index of the input link at the input of
the network. For bringing all SEs to state As, all routing
headers have to be the bit-wise complement of the input
index. In this phase, all bit lines for a data word can be
tested [6, 51. For this task the pay load information has
to contain the bit-wise complement of the routing header
(for detecting stuck-at faults), a data word with all bits 0
or 1 (depending on whether the input index has even or
odd parity [111) and [log, b] data words so that all pairs
of bit lines have at least once different values (for detecting
bridgingfaults). The total number of data words for a packet
is thus q = [log, b] + 3. If no fault can be detected, all bit-
lines are fault free and all SEs can assume the states A5
and As correctly. Otherwise the fault can be located [7], if
necessary.

In the second test phase all remaining transitions have to
be traversed. This can be done by the four cycles:

Transitions in brackets are used to return to the initial
state Ao.

With each of these transitions only one of the inputs of
an SE is affected by a particular action (beginning or end
of a packet). Thus, a specific state transition can only be
initiated for all SE of a single stage simultaneously, but not
for all SEs of the entire network. Accordingly, the number
of tests is of O(1og N) . All other SEs which are not in the
stage which is tested assume the states A6 or A0 which are
fault free as proved in the first test phase. This is shown by
the following lemma.

Lemma 1 If at all SEs p(') of a stage s data packets
enter and leave on the same input and output, respectively,
all other SEs p(") with s' # s are either in state A0 or As.

A0 A1 A2 A3 A4 f\F

Figure 2: a) Possible states for an SE and b) state transition
diagram.

Pro08 Without loss of generality it is assumed that only
those input links i(') are affected for which in-'-1 = 0
holds. Equivalently, = 0 is assumed to hold for
the output links i('+'). Since only N / 2 links are affected
for which = 0 holds, there are N/4 pairs of indices
which differ in exactly one bit in.-j-l, j # s, and the
corresponding packets are inputs of the same SE in stage
n - j - 1. Thus, the SEs in stage n - j - 1 either have two
inputs nor none. The same holds if other values are chosen
for the bit in-$- 1 of the input and output indices. 0

An example illustrates the tests for the second test phase
for N = 8 and the state sub-sequence A0 - A3 - A6 - A1 in
stage 1 , as depicted in Fig. 3. First, four packets represented
by their routing headers are applied resulting in the solid
paths and setting all SEs in stage 1 test to As. Then, while
holding the previous paths (denoted by *), a second set of
four packets is applied resulting in the dashed paths and state
A6 in stage 1. Finally, by dropping the solid paths (denoted
by 0) and holding the dashed ones, all SEs in stage 1 get
in state Al. Obviously, the SEs in stage s = 1 assume the
desired states and all other SEs either are in state A0 or Ag.

Since only the functionality of an SE is considered for
this test procedure it clearly is independent of the actual
hardware implementation.

3 Test Vector Generation
In this section, a labelling algorithm [12] for deriving

the input vectors for the tests for locally controlled MINs is
outlined. The algorithm can be described conveniently as a
node labelling procedure on a binary n-cube. The nodes of
the graph are indexed by w, 0 5 w < 2" = N , and represent
those input links of the MIN which have the same index
do) = 'U. Labels assigned to the nodes (lab(w)) represent
the data words and the routing headers of the packets applied

177

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:49 from IEEE Xplore. Restrictions apply.

0 * 0
O * l

" 2
* 3
0 * 4
0 * 5
" 6
" 7

stage
s= 1

Figure 3: Example for the second test phase on stage s = 1,
the state sequence Ao - AB - A6 - A1 and N = 8.

Figure 4: a) Example of labelling algorithm, and b) its
dependence graph.

to the corresponding input links. The edges of the graph are
incident to nodes the indices of which differ exactly by the
value 2 k , 0 5 k < n, and thus can be associated with the
SEs in network stages s = k. The value k is called the
dimension of the link.

The procedure starts at an initial node with an initial label
and visits every node exactly once. From an already visited
node wpre all nodes vu,,, not yet visited are visited, if wpre
and w,,, are incident to a common edge. The label of w,,, is
derived from wpre by a labelling function depending on the
dimension k, i.e., Zab(w,,,) = fk (lab (Wpre)) . An example
is given in Fig. 4 a) for N = 8 and the routing headers
for bringing all SEs to state Ag, i.e., the routing headers
are identical to the index of the respective input link. The
labelling function is defined by

l ~ b (~ , , c) f i c (l a b (v p r e)) = Z a b (~ p r e) ~ B 2 ~ , 0 5 k < 72-
The starting node is 0 with label N - 1. The arrows in Fig.
4 a) denote the labelling operations.

During the labelling procedure only a subset of all edges
is traversed. However, the labels of all other nodes which
are incident to a common edge have to be linked by the
labelling function. The necessary and sufficient condition
for this is given in the following lemma.

Lemma 2 The labels of all pairs of nodes incident to a
common edge are linked by the labelling function after the

labelling algorithm, iff all pairs of labelling function are
commutative, i.e.,

Proofi For proving the necessity of (2), first consider an
arbitrary node U with the distance two from the starting node
w. The label Zab(u) is obtained from lab(w) by lab(u) =
fj(fi(lub(w))). Both nodes U and w have a common edge
with node w, the label of which is obtained from lab(w) by
Iab(w) = fj(Zub(w)). Although the edge between w and
U is not traversed by the algorithm, the respective labels
have to be linked by the labelling function fi, i.e., Zab(u) =
f j (f i (l a b (w))) = f i (lab(w)) .= f a (f j (l ab (w))) . Since this
has to hold for all subcubes with distance two, the necessity
of (2) is shown.

The sufficiency can be shown by considering all pairs of
nodes U and w common to an edge e j of dimension j . The
labels of these nodes are obtained from lab(w) by two se-
quences of labelling functions, i.e., lab(u) = F,(lab(w)) =
f d (. . . (f k y b (w)) (. . and lab(w) = F,(lab(w)). Again,
F,(Zub(w) = fj F, lab(w))) has to hold. Since the set
of edge dimensions by which U and w are reached from w
are the same except for j, fj Fw. can be transformed into
F, by exchanging pairs of functions f k and fl. Thus, the
sufficiency of (2) is shown. 0

The dependence graph of the labelling algorithm with
its tree-like structure is shown in Fig. 4 b). Edges which
are not labelled represent the identity function. The next
section will show how this dependence graph can easily
implemented as hardware architecture.

4 BIST Architecture
In order to achieve a BIST, the dependence graph of Fig.

4 b) can be implemented as hardware architecture as shown
in Fig. 5 a). The basic component is a test generation module
(TGM) which receives one input and produces two outputs
one of which is identical to the input, the other is modified by
the labelling function. Since all TGMs of a particular level
of the tree architecture (corresponding to the dimension of
an edge of the n-cube) realize the same function fk, only
one set of signals is sufficient to control all TGMs of that
level. Thus, for controlling the entire tree architecture n sets
of storage elements are required. Additionally, one storage
element has to be provided for the initial label. In total, the
tree architecture comprises of N - 1 TGMs and n + 1 sets
of storage elements. In what follows, the tree architecture
is outlined for both cases of bit-serial and block-sequential
data format.
4.1 Bit-Serial Data Format

Bit-serial architectures are frequently used in order to
save routing costs [131 despite of the increased block pipe-
line period which has to be tolerated. A TGM for a one bit
signal is called test generation unit (TGU). For modifying
the data in a TGU, an EXOR-gate (see Fig. 5 b)) is used,
since this has a low transistor count and just one control
signal is required. For breaking up the long data paths a
buffer is required at each output of a TGU. For T tests with
b bits each Tb(n + 1) bits of storage capacity are required
in addition to the N - 1 TGUs of the tree architecture.

In order to compare the amount of hardware of the propo-
sed tree architecture (TA) with the method of simply storing
the T b N bits for the N inputs separately we consider the

178

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:49 from IEEE Xplore. Restrictions apply.

Figure 5: a) BIST architecture for N = 8 and b) structure
of TGU.

1 (#R
""f

0.8

-------- L

2 3 4 5 6 7 8 - "

Figure 7: Ratio R of the transistor count for b E {2,4,8},
T = 4,32 over n for a) q = 1 (solid lines) and b) q = 4
(dashed lines).

0000 0100 1 0 0 0 ~ 1 M[
1100 2 4 0011 0 2
1010 2 0101 3 2 0010 1101 A

01 10 1001
1110 * 0001

Figure 8: The two types of different data words.
Figure 6: Ratio R of the transistor count for b E {2,4,8},
T = 4,32 over n.

of the transistor count can be achieved.

ratio R of the number of transistors for both methods. For
realizing the storage elements read only memories (ROMs)
are suited best. The n + 1 ROM-elements comprise of T x b
arrays of one-transistor cells with appropriate row and co-
lumn selection implemented as shift register chains. Further
details are omitted due to lack of space. We do not take into
account the routing area which is higher for the TA than for
the storage method due to the global wires required. The
routing area is proportional to the areas of the TGUs. The
transistor count is dominated by the amount of hardware for
the control signal memory and thus the routing area will not
yield a significant contribution to the total area.

Fig. 6 shows the ratio R for different values of T and b
over n. It becomes apparent that even for small values of
the three parameters the TA is significantly more efficient
than the storage method. For growing parameter values
(especially T), as is usually the case, the advantage of the
tree architecture becomes even more significant.
4.2 Block-Sequential Data Format

In order to reduce the block pipeline period of an ar-
chitecture, a block-sequential data format is advantageous.
There, each of the T data packets comprises of q data words
which are b bits wide. In the most general case, each TGM
must be composed of b TGUs, one for each bit line. The
resulting transistor count ratio R is depicted in Figs. 7 a)
and b) for the parameters T = 4,64, b E {2,4,8,18} over
n for q = 1 and q = 4, respectively. It turns out, that in
this case the TA is just moderately efficient, because only
for relatively large values of T and n a significant reduction

However, the complexity of the network can be reduced
significantly, if the fault detection procedure presented in
Section 2 is considered. In the following we will show this
for the generation of the routing header and the additional
data words of the pay load information, which have been
described briefly in Section 2.

For generating the routing header only one TGU per TGM
is required since only one particular bit is affected in each
level of the tree architecture. This illustrates the commutati-
vity feature stated in Lemma 2. For generating the data word
which is the bit-wise complement of the routing header the
same TGU can be used since simply an appropriate initial
data word is required. The generation of the all zero or all
one data words and the data words for detecting bridging
faults more intricate considerations are necessary. Basi-
cally, two different sets of data words are required which
are shown in Fig. 8 for b = 8. Except for the complemen-
ted routing header the data words of the payload have to be
the bit-wise complement of each other. One type of these
data words has to be comprised in packets on input links the
dyadic index of which has even parity, the other set of data
words belongs to packets on the other inputs.

Each of the data words can again be generated by a tree-
like structure, since the bits have different values only if their
dyadic index differs in a particular bit. The most efficient
way to generate these data words is to embed the treelike
structure in the last [log, bl stages of the original TA which
is used for the routing headers, as shown in Fig. 9, where
only the uppermost TGMs of the last [log, b] = 3 stages are
depicted. According to their function there are two types of

179

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:49 from IEEE Xplore. Restrictions apply.

. . . *. -. .
Figure 9: Schematic representation of the TGMs in the last
[logz b] levels of the TA for block-sequential data format.

R
1

0.8

0.6

0.4

0.2
2 3 4 5 6 7 8 n

Figure 10: Transistor count ratio for" = 4,64, b E { 2,4,8}
and q = [log, 61 + 3.

TGUs. First, there are those TGUs which are required for
distributing the initial value in such a way that at the output
of the TA the two types of data words are assigned to the
inputs the indices of which have the respective parity. The
second type of TGUs has to generate the different values
within a data word. For this, two switches are needed to
overwrite an existing value on a bit line. Since in level
n - [log, bl - 1 only one TGU of the second types exists
an initial value has to be propagated in the preceding stages
only on one bit line by one TGU of the first type per TGM.

Furthermore, the amount of storage for the control signals
can be reduced significantly, since these data words are part
of all data packets, so that they can be produced periodically.
Without going into further details, Fig. 10 shows the ratio R
of the transistor count for the TA and the simple storage of
the test inputs for different parameter values. It becomes ap-
parent that also for the case of block-sequential data format
the TA is an efficient alternative to the storage architecture
for the proposed testing procedure. This is particularly true
for large values of T which usually occur since the number
of tests in of O(log N) with a quite large constant.

By implementing the same structure for generating the
network outputs in the fault free case and comparing these to
the actual network outputs a simple and efficient built-in seIf
test architecture is obtained. Certainly, the self test circuitry

can also be affected by hardware defects, but the probability
that the effects of the defects in the actual interconnection
network and the test circuitry compensate and make the
defects undetectable is practically zero.

5 CONCLUSION
In this paper a state-based test procedure for multistage

interconnection networks with packet-oriented data trans-
mission is presented. The entire functionality can be tested
independently of the actual hardware implementation. Ba-
sed on this procedure a tree-like hardware architecture is
proposed which is suited for the implementation of a built-
in self test due to its low hardware complexity compared to
the only known method for pseudoexhaustive test, which is
the storage of the test inputs.

References
T. E. Mangir. Source of failures and yield improvement
for VLSI and restructurable interconnects for RVLSI.
Proc. ZEEE, 72(6):690-708,1984.
F. A. Tobagi. Fast packet switch architectures for broad-
band integrated services digital networks. Proc. IEEE,

J. Hui. Switching integrated broadband services by sort-
banyan networks. Proc. IEEE, 79(2):145-154,1991.

D. P. Agrawal. Testing and fault-tolerance of multistage
interconnection networks. IEEE Computer, 15(4):4 1-
53, 1982.

N. Davis IV, W. Hsu, and H. Siegel. Fault location tech-
niques for distributed control interconnection networks.
IEEE Trans. Comp., C-34(10):902-910,1985.

A. Mourad, B. Ozden, and M. Malek. Comprehensive
testing of multistage interconnection networks. ZEEE
Trans. Comp., 40(8):935-951,1991.

E. G. Bernard. Efficient fault location for globally con-
trolled and comparison-based multistage interconnec-
tion networks. accepted for publication in IEEE Tran-
sactions on Computers, 1995.

M. C. Pease. The indirect binary n-cube microprocessor
array. IEEE Trans. Comp., C-26(5):458-473,1977.

E. G. Bernard, M. Sauer, and J. A. Nossek. Fault location
in bitonic merging networks. In Proc. ECCTD'95, pages

78(1):133-167, Jan. 1990.

929-932, August 1995.

[lo] S . Naito and M. Tsunoyama. Fault detection for se-
quential machines by transition-tours. In Proc. FTCS
81, pages 238-243,1981.

[l 11 T.-Y. Feng and C.-L. Wu. Fault-diagnosis for a class
of multistage interconnection networks. IEEE Transac-
tions on Computers, C-30(10):743-758,1981.

[121 E. G. Bernard, M. Sauer, and J. A. Nossek. Fault detec-
tion in bitonic merging networks. In Proc. ECCTD'93,
pages 665-670,1993.

[13] E A. Tobagi, T. Kwok, and F. M. Chiussi. Archite-
cture, performance, and implementation of the tandem
banyan fast packet switch. IEEE Jou. Sel. Areas Comm.,
9(8):1173-1193,1991.

180

Authorized licensed use limited to: T U MUENCHEN. Downloaded on January 28, 2009 at 04:49 from IEEE Xplore. Restrictions apply.

