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Abstract 
A novel built-in self test architecture for locally control- 

led cube-type N x N multistage interconnection networks 
(MINs) is presented. First, a state-based pseudoexhaustive 
test procedure for this class of MINs is outlined. Then, a 
labelling algorithm on a binary n-cube is described which 
generates the necessary inputs for  the tests. From the depen- 
dence graph of this algorithm a tree architecture is derived 
which results in a hardware overhead of O( 11 log N ) .  

1 INTRODUCTION 
The still rapidly growing complexity of integrated cir- 

cuits results in a steady increase of system performance. 
However, these merits are drastically reduced due to the 
susceptibility of these circuits to physical hardware defects 
[ 11. In order to ensure reliable function testing is indispensa- 
ble. Since failures also occur in field operation, the systems 
have to be tested periodically during operation. But as it 
is impossible in many casesto provide expensive automatic 
test equipment, failures either have to be detected by on-line 
error detection using the actual data, or the system has to 
test itself, i.e., a built-in self test (BIST) is implemented with 
additional hardware. 

In the past years MINs have gained significant import- 
ance in high performance communication systems [2, 31. 
Multistage interconnection networks (MINs) are well sui- 
ted for being tested efficiently due to their modularity and 
regularity [4]. 

For locally controlled cube-type MINs a variety of test 
procedures has been presented (e.g. [5 ,  6, 71). However, 
no method has been presented so far to generate the test 
stimuli. Thus, the only alternative for the implementation of 
BIST is to store the stimuli on the chip or in some additional 
component; a quite hardware-intensive method. 

In this paper, we first propose a state-based pseudoex- 
haustive test procedure for locally controlled MINs capable 
of detecting failures associated with pure transmission of 
data [5 ] ,  but which also can detect functional faults of the 
switching elements independently of the actual implementa- 
tion. A graph labelling algorithm [7] for generating the test 
stimuli automatically is outlined. Based on the dependence 
graph of this procedure an efficient tree-like hardware ar- 
chitecture is derived for generating the test stimuli on-chip. 
If additionally the fault free test results are generated in the 
same way, an efficient BIST architecture is obtained. 
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Figure 1 : Topology of a MIN and index notation for N = 8. 

2 Test Procedures For MINs 
First, we will describe the architecture of the networks 

considered in this paper. A MIN for interconnecting N 
inputs with N outputs is composed of n = log, N stages 
with N / 2  2 x 2 switching elements (SEs) each as depicted 
in Fig. 1. The input links of the various stages are referred 
to by an index i, 0 5 i < N .  The stage index is s, with 
0 5 s < n, and the index of the SEs within a stage is p ,  
0 5 p < N/2.  A superscript in angle brackets denotes the 
stage s to which an input i(s) or an SE p(')  belongs. This 
index notation is also shown in Fig. 1. Since N is a power of 
two, the indices can be expressed in a dyadic representation, 
i.e., z = ( ~ ~ - 1 ,  . . . , il, io). The data dependencies between 
the stages can be realized by shuffle permutations [8]. Thus, 
the indices of the input and output links of an SE p(')  differ 
exactly in bit in - - 1. 

We will restrict in this paper to ATM-like destination tag 
routing, but other routing strategies can be handled with 
our procedure as well [9, 71. A data packet comprises of 
q bit-parallel data words with b bits each. The data words 
either can be assigned to the pay load information or to the 
routing header which specifies the address (i.e. index) of 
the output link the packet is destined for. A specific bit of 
the routing header is inspected by the SEs of a particular 
stage and if this bit is 0 (1) the packet is routed to the upper 
(lower) output of the SE. If two data packets are destined for 
the same output of an SE one packet at the input has to be 
blocked. Accordingly, a SE has to assume one of the eleven 
states A0 - A I 0  depicted in Fig. 2 a). A line through the 
SE denotes an interconnection and the "-I" symbol denotes a 

. . .  
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blocked input. The state transition diagram in shown in Fig. 
2 b). Transition arcs originating and terminating at the same 
node are not depicted. Edges traversed in both directions are 
denoted by double-headed arrows. The conditions for state 
transitions are coded as follows: by a single letter (U or 1) if 
a transmission ends at an upper or lower input. A beginning 
transmission is represented by two letters, denoting the input 
and output of an SE, e.g. uu: request from upper input to 
upper output. 

In order to test an SE it is sufficient to traverse all transi- 
tion edges of the state diagram [lo]. For testing all SEs of 
the network we propose the following procedure: 

Test Procedure: In a first test phase all SEs traverse the 
same state sequence A0 --$ A6 + A0 + A5 --+ Ao. In 
order to bring all SEs to state A6, all routing headers have 
to be identical to the index of the input link at the input of 
the network. For bringing all SEs to state As, all routing 
headers have to be the bit-wise complement of the input 
index. In this phase, all bit lines for a data word can be 
tested [6, 51. For this task the pay load information has 
to contain the bit-wise complement of the routing header 
(for detecting stuck-at faults), a data word with all bits 0 
or 1 (depending on whether the input index has even or 
odd parity [ 111) and [log, b] data words so that all pairs 
of bit lines have at least once different values (for detecting 
bridgingfaults). The total number of data words for a packet 
is thus q = [log, b] + 3. If no fault can be detected, all bit- 
lines are fault free and all SEs can assume the states A5 
and As correctly. Otherwise the fault can be located [7], if 
necessary. 

In the second test phase all remaining transitions have to 
be traversed. This can be done by the four cycles: 

Transitions in brackets are used to return to the initial 
state Ao. 

With each of these transitions only one of the inputs of 
an SE is affected by a particular action (beginning or end 
of a packet). Thus, a specific state transition can only be 
initiated for all SE of a single stage simultaneously, but not 
for all SEs of the entire network. Accordingly, the number 
of tests is of O(1og N ) .  All other SEs which are not in the 
stage which is tested assume the states A6 or A0 which are 
fault free as proved in the first test phase. This is shown by 
the following lemma. 

Lemma 1 If at all SEs p(')  of a stage s data packets 
enter and leave on the same input and output, respectively, 
all other SEs p(") with s' # s are either in state A0 or As. 

##### 
A0 A1 A2 A3 A4 f\F 

Figure 2: a) Possible states for an SE and b) state transition 
diagram. 

Pro08 Without loss of generality it is assumed that only 
those input links i(') are affected for which in-'-1 = 0 
holds. Equivalently, = 0 is assumed to hold for 
the output links i('+'). Since only N / 2  links are affected 
for which = 0 holds, there are N/4 pairs of indices 
which differ in exactly one bit in.-j-l, j # s, and the 
corresponding packets are inputs of the same SE in stage 
n - j - 1. Thus, the SEs in stage n - j - 1 either have two 
inputs nor none. The same holds if other values are chosen 
for the bit in-$- 1 of the input and output indices. 0 

An example illustrates the tests for the second test phase 
for N = 8 and the state sub-sequence A0 - A3 - A6 - A1 in 
stage 1 ,  as depicted in Fig. 3. First, four packets represented 
by their routing headers are applied resulting in the solid 
paths and setting all SEs in stage 1 test to As. Then, while 
holding the previous paths (denoted by *), a second set of 
four packets is applied resulting in the dashed paths and state 
A6 in stage 1. Finally, by dropping the solid paths (denoted 
by 0 )  and holding the dashed ones, all SEs in stage 1 get 
in state Al. Obviously, the SEs in stage s = 1 assume the 
desired states and all other SEs either are in state A0 or Ag. 

Since only the functionality of an SE is considered for 
this test procedure it clearly is independent of the actual 
hardware implementation. 

3 Test Vector Generation 
In this section, a labelling algorithm [12] for deriving 

the input vectors for the tests for locally controlled MINs is 
outlined. The algorithm can be described conveniently as a 
node labelling procedure on a binary n-cube. The nodes of 
the graph are indexed by w, 0 5 w < 2" = N ,  and represent 
those input links of the MIN which have the same index 
do) = 'U. Labels assigned to the nodes (lab(w)) represent 
the data words and the routing headers of the packets applied 
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Figure 3: Example for the second test phase on stage s = 1, 
the state sequence Ao - AB - A6 - A1 and N = 8. 

Figure 4: a) Example of labelling algorithm, and b) its 
dependence graph. 

to the corresponding input links. The edges of the graph are 
incident to nodes the indices of which differ exactly by the 
value 2 k ,  0 5 k < n, and thus can be associated with the 
SEs in network stages s = k. The value k is called the 
dimension of the link. 

The procedure starts at an initial node with an initial label 
and visits every node exactly once. From an already visited 
node wpre all nodes vu,,, not yet visited are visited, if wpre 
and w,,, are incident to a common edge. The label of w,,, is 
derived from wpre by a labelling function depending on the 
dimension k, i.e., Zab(w,,,) = fk ( lab (Wpre ) ) .  An example 
is given in Fig. 4 a) for N = 8 and the routing headers 
for bringing all SEs to state Ag, i.e., the routing headers 
are identical to the index of the respective input link. The 
labelling function is defined by 

l ~ b ( ~ , , c )  f i c ( l a b ( v p r e ) )  = Z a b ( ~ p r e ) ~ B 2 ~ ,  0 5 k < 72- 
The starting node is 0 with label N - 1. The arrows in Fig. 
4 a) denote the labelling operations. 

During the labelling procedure only a subset of all edges 
is traversed. However, the labels of all other nodes which 
are incident to a common edge have to be linked by the 
labelling function. The necessary and sufficient condition 
for this is given in the following lemma. 

Lemma 2 The labels of all pairs of nodes incident to a 
common edge are linked by the labelling function after the 

labelling algorithm, iff all pairs of labelling function are 
commutative, i.e., 

Proofi For proving the necessity of (2), first consider an 
arbitrary node U with the distance two from the starting node 
w. The label Zab(u) is obtained from lab(w) by lab(u) = 
fj(fi(lub(w))). Both nodes U and w have a common edge 
with node w, the label of which is obtained from lab(w) by 
Iab(w) = fj(Zub(w)). Although the edge between w and 
U is not traversed by the algorithm, the respective labels 
have to be linked by the labelling function fi, i.e., Zab(u) = 
f j ( f i ( l a b ( w ) ) )  = f i ( lab(w))  .= f a ( f j ( l ab (w) ) ) .  Since this 
has to hold for all subcubes with distance two, the necessity 
of (2) is shown. 

The sufficiency can be shown by considering all pairs of 
nodes U and w common to an edge e j  of dimension j .  The 
labels of these nodes are obtained from lab(w) by two se- 
quences of labelling functions, i.e., lab(u) = F,(lab(w)) = 
f d ( .  . . ( f k y b ( w ) ) ( .  . and lab(w) = F,(lab(w)). Again, 
F,(Zub(w) = fj  F, lab(w))) has to hold. Since the set 
of edge dimensions by which U and w are reached from w 
are the same except for j, fj  Fw. can be transformed into 
F, by exchanging pairs of functions f k  and fl. Thus, the 
sufficiency of (2) is shown. 0 

The dependence graph of the labelling algorithm with 
its tree-like structure is shown in Fig. 4 b). Edges which 
are not labelled represent the identity function. The next 
section will show how this dependence graph can easily 
implemented as hardware architecture. 

4 BIST Architecture 
In order to achieve a BIST, the dependence graph of Fig. 

4 b) can be implemented as hardware architecture as shown 
in Fig. 5 a). The basic component is a test generation module 
(TGM) which receives one input and produces two outputs 
one of which is identical to the input, the other is modified by 
the labelling function. Since all TGMs of a particular level 
of the tree architecture (corresponding to the dimension of 
an edge of the n-cube) realize the same function fk, only 
one set of signals is sufficient to control all TGMs of that 
level. Thus, for controlling the entire tree architecture n sets 
of storage elements are required. Additionally, one storage 
element has to be provided for the initial label. In total, the 
tree architecture comprises of N - 1 TGMs and n + 1 sets 
of storage elements. In what follows, the tree architecture 
is outlined for both cases of bit-serial and block-sequential 
data format. 
4.1 Bit-Serial Data Format 

Bit-serial architectures are frequently used in order to 
save routing costs [ 131 despite of the increased block pipe- 
line period which has to be tolerated. A TGM for a one bit 
signal is called test generation unit (TGU). For modifying 
the data in a TGU, an EXOR-gate (see Fig. 5 b)) is used, 
since this has a low transistor count and just one control 
signal is required. For breaking up the long data paths a 
buffer is required at each output of a TGU. For T tests with 
b bits each Tb(n + 1) bits of storage capacity are required 
in addition to the N - 1 TGUs of the tree architecture. 

In order to compare the amount of hardware of the propo- 
sed tree architecture (TA) with the method of simply storing 
the T b N  bits for the N inputs separately we consider the 
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Figure 5:  a) BIST architecture for N = 8 and b) structure 
of TGU. 
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Figure 7: Ratio R of the transistor count for b E {2,4,8}, 
T = 4,32 over n for a) q = 1 (solid lines) and b) q = 4 
(dashed lines). 
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Figure 8: The two types of different data words. 
Figure 6: Ratio R of the transistor count for b E {2,4,8}, 
T = 4,32 over n. 

of the transistor count can be achieved. 

ratio R of the number of transistors for both methods. For 
realizing the storage elements read only memories (ROMs) 
are suited best. The n + 1 ROM-elements comprise of T x b 
arrays of one-transistor cells with appropriate row and co- 
lumn selection implemented as shift register chains. Further 
details are omitted due to lack of space. We do not take into 
account the routing area which is higher for the TA than for 
the storage method due to the global wires required. The 
routing area is proportional to the areas of the TGUs. The 
transistor count is dominated by the amount of hardware for 
the control signal memory and thus the routing area will not 
yield a significant contribution to the total area. 

Fig. 6 shows the ratio R for different values of T and b 
over n. It becomes apparent that even for small values of 
the three parameters the TA is significantly more efficient 
than the storage method. For growing parameter values 
(especially T), as is usually the case, the advantage of the 
tree architecture becomes even more significant. 
4.2 Block-Sequential Data Format 

In order to reduce the block pipeline period of an ar- 
chitecture, a block-sequential data format is advantageous. 
There, each of the T data packets comprises of q data words 
which are b bits wide. In the most general case, each TGM 
must be composed of b TGUs, one for each bit line. The 
resulting transistor count ratio R is depicted in Figs. 7 a) 
and b) for the parameters T = 4,64, b E {2,4,8,18} over 
n for q = 1 and q = 4, respectively. It turns out, that in 
this case the TA is just moderately efficient, because only 
for relatively large values of T and n a significant reduction 

However, the complexity of the network can be reduced 
significantly, if the fault detection procedure presented in 
Section 2 is considered. In the following we will show this 
for the generation of the routing header and the additional 
data words of the pay load information, which have been 
described briefly in Section 2. 

For generating the routing header only one TGU per TGM 
is required since only one particular bit is affected in each 
level of the tree architecture. This illustrates the commutati- 
vity feature stated in Lemma 2. For generating the data word 
which is the bit-wise complement of the routing header the 
same TGU can be used since simply an appropriate initial 
data word is required. The generation of the all zero or all 
one data words and the data words for detecting bridging 
faults more intricate considerations are necessary. Basi- 
cally, two different sets of data words are required which 
are shown in Fig. 8 for b = 8. Except for the complemen- 
ted routing header the data words of the payload have to be 
the bit-wise complement of each other. One type of these 
data words has to be comprised in packets on input links the 
dyadic index of which has even parity, the other set of data 
words belongs to packets on the other inputs. 

Each of the data words can again be generated by a tree- 
like structure, since the bits have different values only if their 
dyadic index differs in a particular bit. The most efficient 
way to generate these data words is to embed the treelike 
structure in the last [log, bl stages of the original TA which 
is used for the routing headers, as shown in Fig. 9, where 
only the uppermost TGMs of the last [log, b] = 3 stages are 
depicted. According to their function there are two types of 
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Figure 9: Schematic representation of the TGMs in the last 
[logz b] levels of the TA for block-sequential data format. 
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Figure 10: Transistor count ratio for" = 4,64, b E { 2,4,8} 
and q = [log, 61 + 3. 

TGUs. First, there are those TGUs which are required for 
distributing the initial value in such a way that at the output 
of the TA the two types of data words are assigned to the 
inputs the indices of which have the respective parity. The 
second type of TGUs has to generate the different values 
within a data word. For this, two switches are needed to 
overwrite an existing value on a bit line. Since in level 
n - [log, bl - 1 only one TGU of the second types exists 
an initial value has to be propagated in the preceding stages 
only on one bit line by one TGU of the first type per TGM. 

Furthermore, the amount of storage for the control signals 
can be reduced significantly, since these data words are part 
of all data packets, so that they can be produced periodically. 
Without going into further details, Fig. 10 shows the ratio R 
of the transistor count for the TA and the simple storage of 
the test inputs for different parameter values. It becomes ap- 
parent that also for the case of block-sequential data format 
the TA is an efficient alternative to the storage architecture 
for the proposed testing procedure. This is particularly true 
for large values of T which usually occur since the number 
of tests in of O(log N )  with a quite large constant. 

By implementing the same structure for generating the 
network outputs in the fault free case and comparing these to 
the actual network outputs a simple and efficient built-in seIf 
test architecture is obtained. Certainly, the self test circuitry 

can also be affected by hardware defects, but the probability 
that the effects of the defects in the actual interconnection 
network and the test circuitry compensate and make the 
defects undetectable is practically zero. 

5 CONCLUSION 
In this paper a state-based test procedure for multistage 

interconnection networks with packet-oriented data trans- 
mission is presented. The entire functionality can be tested 
independently of the actual hardware implementation. Ba- 
sed on this procedure a tree-like hardware architecture is 
proposed which is suited for the implementation of a built- 
in self test due to its low hardware complexity compared to 
the only known method for pseudoexhaustive test, which is 
the storage of the test inputs. 
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