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Zusammenfassung
Diese Arbeit untersucht das Ereignis der Erstüberschreitung einer konstanten Bar-
riere durch eine Summe von abhängigen Komponenten eines allgemeinen multivari-
aten Lévyprozeßes mittels eines Sprungs. Für d = 2 charakterisieren wir dieses
Ereignis mit der gemeinsamen Verteilung von fünf Größen: die Zeitspanne zwischen
Erstüberschreitung und dem letzten Maximum, die Zeit des letzten Maximums,
der Überschuß, der Unterschuß und der Unterschuß des letzten Maximums. Die Ab-
hängigkeit zwischen den Sprungkomponenten eines multivariaten Lévyprozeßes wird
dabei mit einem sogenannten Pareto-Lévymaß modelliert, das zum Erstenmal für all-
gemeine Lévyprozesse betrachtet wird. Die Beziehung zwischen einem Lévymaß und
seinem Pareto-Lévymaß wird dabei detailliert untersucht, wobei explizite Beispiele
mit graphischen Darstellungen gegeben werden. Desweiteren werden Bedingungen
an die eindimensionalen Rand-Lévymaße und das Pareto-Lévymaß formuliert, so daß
das multivariate Lévymaß regulär variierend ist. Schließlich werden die Resultate auf
einen spektral positiven Versicherungsrisikoprozeß angewendet.





Abstract
This thesis deals with the first upwards passage event of the sum of dependent
components of a general multivariate Lévy process when a constant barrier is passed
by a jump. For d = 2 we characterize this event by the joint distribution of five
quantities: the time relative to the time of the previous maximum, the time of
the previous maximum, the overshoot, the undershoot and the undershoot of the
previous maximum. The dependence between the jump components of a multivariate
Lévy process is modelled by a so-called Pareto Lévy measure which is considered
the first time for general Lévy process. The relationship between a Lévy measure
and its Pareto Lévy measure is investigated in detail where explicit examples with
graphical representations are given. Furthermore, we prove conditions on the one-
dimensional Lévy measures and the Pareto Lévy measure such that the multivariate
Lévy measure is regularly varying. Finally, the results are applied to a spectrally
positive insurance risk process.
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Introduction

First passage events

The analysis of first passage events deals with the probability that a stochastic
process excesses a given barrier and, in more detail, with the question how this
passage happens for the first time. This subject has applications in a variety of areas
as e. g. queuing theory, cf. [6], or option pricing, cf. [3]. In particular, risk theory
encourages the interest in this theory during the last years since the first passage
event of a risk process has the meaning of the ruin of an insurance company or bank
and ruin probability is often used as a risk measure. For a detailed representation
of the classical model of risk theory by Cramér and Lundberg and results we refer
to the excellent monographs [7, 25].

Historically, first passage events have been studied for random walks where a rich
mathematical theory exists. Considering a random walk Z with

Z0 := 0 and Zn :=
d∑
i=1

ξi, n ∈ N,

for independent and identically distributed (i. i. d) random variables (r. v. s) (ξi)i∈N,
the successive maxima of Z and the corresponding times form a bivariate renewal
process, the so-called ascending ladder process. Similarly, the descending ladder pro-
cess which is defined as the ascending ladder process of the dual random walk
−Z, corresponds with the successive minima of Z. Applying Wiener-Hopf tech-
niques to integral equations fundamental fluctuation identities for random walks
are proven which yield the so-called Wiener-Hopf factorization where we refer to
[12, 31, 53, 59, 60] and the excellent monographs [27, 61]. This result is the basis of
the ladder theory since it relates the distributions of the ascending and descending
ladder processes to that of the underlying random walk Z and it is the fundament
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2

of first passage results for random walks. The results for random walks can easily
be extended to compound Poisson processes (CPPes) by considering CPPes at their
jump times and exploiting the embedded random walk structure. Also first passage
results for more general Lévy processes are often based on results for random walks
since they are proven by approximation in means of a discrete-time skeleton, cf.
[28, 54]. Another more elegant approach for investigating first passage events for
general Lévy processes is given in [30] where the sample paths of the continuous-
time Lévy processes are emphasized by using Poisson point processes of excursions
from the maximum, cf. [39]. The main aspect hereby is that the fluctuations of a
Lévy process X are investigated by introducing an exponentially distributed ran-
dom time eq, independent of X. Then the path of X on [0, eq] can be split at the
maximum, i. e. the path of X can be decomposed on [0, eq] into two independent
parts, the path before and after the time when X reaches its maximum on [0, eq].
For a well-explained description of this fact in terms of excursions we refer to [49],
Sections 6.3 and 6.4. In this way the Wiener-Hopf factorization for general Lévy
processes can proven nicely. As for random walks this result relates the distributions
of the ladder processes to that of the underlying Lévy process. The ladder processes
for Lévy processes also correspond to the maxima and minima of the process as for
random walks, but their construction is a more complex task where we refer to the
monographs [13], Section IV, and [49], Section 6.2.

Applying such a decomposition method yields the so-called quintuple law [22], The-
orem 3, which describes the first passage of a general Lévy process. This results
characterizes the first upwards passage event over a constant barrier, caused by
a jump, detailed with the common distribution of five quantities: the time of first
passage relative to the time of the previous maximum, the time of the previous max-
imum, the overshoot, the undershoot and the undershoot of the previous maximum.
Employing the Wiener-Hopf factorization for Lévy processes, the path of the Lévy
process which causes the first passage is decomposed in three independent parts:
the path before the last maximum before the passage, the path between the last
maximum and the first passage and the jump which causes the passage. The first
two quantities are given in terms of the potential measure of the ladder processes of
the Lévy process and the third part is given by the jump measure.

In this thesis we especially investigate first passage events for Lévy processes which
are the sum of dependent components of a general multivariate Lévy process. There-
fore, we extend the classical quintuple law with regarding to dependence, cf. The-
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orem 3.2.4. This approach is motivated by recent insurance and operational risk
models where the total risk process of an insurance company or bank is the sum of
a multivariate risk portfolio where the dependence between different business lines
and risk types is crucial. As considering the sum of Lévy processes, additionally to
classical first passage events, the questions arise which components cause the first
passage and how dependence affects this event. Further, as in the classical risk the-
ory, we are interested in the asymptotic behaviour of the ruin probability which is
also affected by the dependence between the components, cf. [37, 47] and, for the
multivariate case, [17, 18, 38].

In the one-dimensional case we have two approaches to investigate first passage
events: approximation by a discrete-time skeleton or using the ladder theory for Lévy
processes. With regarding to dependence only the second approach is appropriate
as I shall briefly explain. Following the classical approach one reduces the sum of
CPPes to the sum of random walks and the dependence between the components
is modelled by means of a distributional copula coupling the distributions of the
single random walks, cf. [40, 52]. With regarding to dependence this is a rather
crude method since the dependence between the jump times of the components is
an important fact of the dependence structure of a Lévy process and by construction
the random walks of the components almost surely (a. s.) jump together. Further, as
the original time structure gets lost, modelling the dependence by a distributional
copula does not distinguish single and common jumps which adulterates the original
dependence structure of the jump sizes. In particular, applying this approach one
can not analyse which component caused the passage. More sophisticated, we can
model the sum of CPPes as the sum of random walks allowing that components
may have jumps of size zero to keep the time structure. Then we have to model
the dependence between the jump times, between the sizes of single and common
jumps, separately, and between the jump sizes and the jump times. We see that
this is a rather extensive method even for CPPes as we have to describe the whole
original dependence structure by means of a distributional which is hardly possible
for general Lévy processes. Consequently, in order to investigate the fluctuations of
the sum of general Lévy processes with regarding to dependence one has to apply
the theory of ladder processes.

Hence, for our analysis we proceed as in [22] using ascending and descending ladder
processes. Further, to identify the ruin causing components we employ a decom-
position of the sample paths of the Lévy process according to its jump behaviour
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which is not trivial as the Lévy process may have a. s. sample paths of unbounded
variation. In this way, we obtain our quintuple law Theorem 3.2.4 which extends the
quintuple law in [22] regarding dependence. Although it seems to be just a theoret-
ical result characterizing the first passage event in terms of the potential measures
of the ladder processes, we give two situation where these quantities can be deter-
mined concretely in Section 3.3. Moreover, we conclude from our quintuple law an
asymptotic result for the ruin event of a spectrally positive insurance risk process
in Section 3.5.

Modelling the dependence for Lévy processes

As already mentioned above, the dependence between the components of a d-dimens-
ional r. v. can be modelled by a so-called distributional copula CD : [0, 1]d → [0, 1]

due to Sklar’s Theorem, [52], Theorem 2.3.3. A distributional copula of a r. v.
(X1, . . . , Xd) defines a distribution whose one-dimensional margins are the uni-
form distributions on [0, 1]. If the components X i are continuous then a copula
is the distribution function (d. f.) of the r. v. (F1(X1), . . . , Fd(X

d)), corresponding
to a transformation to uniform margins. The interest in this modelling approach
increased rapidly during the last years since dependence can be modelled indepen-
dently from the marginal distributions and due to the uniform margins calculations
are quite handy, cf. [1, 2, 4, 45]. Nevertheless, in [51] copulas have been criticized
since a transformation to uniform margins is not reasonable in general, especially
for considering extremes. The copula approach was advanced in [48] to a Pareto
measure which is a distribution whose one-dimensional margins are standard Pareto
distributions. A Pareto measure is related to the distribution defined by a copula by
componentwise inversion and has due to the Pareto margins a better probabilistic
interpretation for limit theory and heavy-tail analysis.

For Lévy processes with finite Lévy measures distributional copulas can be applied
to model the dependence between the jumps sizes, between the jump times and
between the jump times and the jump sizes, cf. [2]. But as mentioned above, by
modelling just one of these dependence structures, information about the original
the dependence may get lost and modelling all dependence structures may be very
extensive. Moreover, this approach only works for finite Lévy measures.

The first concept to model the dependence structure of a general Lévy process
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is defined in [42] by the notion of a Lévy copula which was already considered for
particular Lévy processes in [62, 63, 20]. We shall briefly explain the advantage of this
approach. The distribution of a general d-dimensional Lévy process X = (X t)t≥0 is
uniquely determined by its characteristic triplet (γ, A,Π) and thus the dependence
structure of X is characterized by the dependence structure of the r. v. X t for some
fixed t > 0. So in principle, one can model the dependence between the components
of X by the distributional copula CD,t of the r. v. X t. As discussed in [42] this
approach has two critical points:

• For given infinitely divisible one-dimensional laws the choice of copulas which
yield an infinitely divisible d-dimensional law depends on the margins and can
not be clarified in general.

• The distributional copula CD,t of X t depends on t and for s 6= t the copula
CD,s ofXs can in general not be calculated only from CD,t since one needs also
the marginal distributions at time s and t. Further, if CD,s can be calculated
from CD,t then only with large numerical effort.

Consequently, it is more useful to model the dependence structure time-independently
using the characteristic triplet. According to the Lévy-Itô decomposition, see [58],
Theorem 19.2, the Gaussian and the jump part of X are independent processes
where the dependence structure of the Gaussian part is entirely determined by the
Gaussian covariance matrix A. Therefore, the dependence structure of the jump
part is uniquely determined by the Lévy measure. In order to formulate a version
of Sklar’s Theorem for Lévy measures, one has to pay attention to the fact that a
general Lévy measure may a singularity at the origin. Therefore, the analog notion
to a d. f. or a right tail of a d. f. for Lévy measures may consider the Lévy measure
only on sets that are always bounded away from zero. Thus, in [42] the notion of a
tail integral of a Lévy measure is defined on (R\{0})d. Analogously to distributional
copulas they define Lévy copulas Ĉ : (−∞,∞]d → (−∞,∞] as function that define
a measure with Lebesgue margins. Thereby, in [42], Theorem 3.6, they formulate a
version of Sklar’s Theorem for Lévy measures that describes the relation between a
Lévy measure, its margins and the Lévy copula in terms of the marginal tail inte-
grals. The big advantage of Lévy copulas is that by modelling the Lévy measure Π

the whole dependence structure of the jump part is modelled, contrary to the copula
approach above, cf. Remark 3.4.5. On the other hand, due to the Lebesgue margins
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the measure that models the dependence of Lévy measure is not a Lévy measure it-
self. In [9] they propose to apply a componentwise inversion to the measure of a Lévy
copula to obtain a Lévy measure whose margins are the Lévy measures of 1-stable
Lévy processes. This Lévy measure is also proposed in [48] and since it parallels
the notion a Pareto measure for Lévy measure they called it Pareto Lévy measure.
Both papers are restricted to spectrally positive Lévy measures. Thus in this thesis
Pareto Lévy measures are considered the first time for general Lévy processes and
so we shall explain and visualize them intensively in Chapter 1. In opposite to Lévy
copulas, modelling the dependence of a Lévy measure with a Lévy measure is a self-
contained approach. A further advantage, especially for higher dimensions, is that
calculation of the marginals a Pareto Lévy measure is easier then the calculation
of the corresponding Lévy copula margin. Moreover, since the margins of a Pareto
Lévy measure are the Lévy measures of an 1-stable Lévy process, Pareto Lévy mea-
sures can be better applied in the theory of multivariate regular variation considered
in Section 2 than Lévy copulas. For d = 2 one does not have to calculate margins
due to the standardized one-dimensional margins and Lévy copulas are notationally
easier than Pareto Lévy measures. Therefore, we formulate our results in Section 3.4
in terms of Lévy copulas.

Regular variation for Lévy processes

In a series of papers Hult and Lindskog [33, 34, 35, 36] define and investigate regular
variation of measures and additive processes which apply in particular to Lévy mea-
sures and Lévy processes. Their concept of regular variation of a stochastic process
with càdlàg sample paths is for a Lévy process X equivalent to regular variation
of the random vector X1 and its Lévy measure; cf. [36], Lemma 2.1. Since regular
variation of a random vector X1 is well understood, cf. [55, 56], it seems that all
such results can be translated to the corresponding Lévy measure. Of course, this is
in principle true, but we argue that a new sight of the dynamic of the Lévy process
X can be gained by investigating regular variation of the Lévy measure itself.

In this thesis we consider regular variation with regarding to dependence and inves-
tigate the relation between the regular variation of a Lévy measure and the regular
variation of its Pareto Lévy measure. Further, regularly varying Lévy measure are of
special interest in the context of risk theory since for heavy-tailed claims we have the
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so-called non-Cramér case where the ruin probability does not decay exponentially
fast to 0.

A general outline

This thesis is divided into three chapters which are based on the papers [24, 23].
Throughout we assume that all stochastic quantities in this thesis are defined on a
filtered probability space (Ω,F , (Ft)t≥0,P).

Each chapter starts with an introduction including an outline. In the following we
present an overview to the thesis, summarized from the introduction of each chapter.

Chapter 1.We present in the first chapter the notion of a Pareto Lévy measure and
the main theorem for modelling the dependence between the jumps of a multivariate
Lévy process. Since Pareto Lévy measures are strongly related to Lévy copulas
we give in Section 1.1 a detailed presentation of the notion of a Lévy copula and
of Sklar’s Theorem for general Lévy processes which we use in this thesis. Since
the relation between Pareto Lévy measures and Lévy copulas corresponds to the
relation between copulas and Pareto measures for random vectors and due to the
use of copulas in Section 3.1, we briefly summarize these approaches to model the
dependence between r. v. s in Section 1.1.1. In Section 1.1.2 we define the concept
of Pareto Lévy measures for general Lévy processes and prove the basic results
for dependence modelling. Furthermore, we describe two approaches for graphical
representation of the dependence structure in Section 1.2 and apply them to the
examples in Section 1.3.

Chapter 2. We investigate regular variation of multivariate Lévy processes with
respect to the dependence structure modelled by a Pareto Lévy measure. In Sec-
tion 2.1 we formulate conditions on the one-dimensional marginal Lévy measure and
the Pareto Lévy measure such that the multivariate Lévy measure is regularly vary-
ing and vice versa. In Section 2.2 we apply this result to the four examples given in
Section 1.3.

Chapter 3.We investigate the first upwards passage event for the sum of a bivariate
Lévy process and prove fluctuation identities under the aspect of dependence. For
motivation and better understanding of the decomposition for our quintuple law,
we first formulate the quintuple law for the sum of a bivariate random walk in
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Section 3.1. The general quintuple law for the sum of a bivariate Lévy process is
proven in Section 3.2. In Section 3.3 we consider two situations where all quantities
of the quintuple law can be identified concretely. We calculate explicit quantities in
Section 3.4 for different dependence structures which are modelled by a Lévy copula.
In Section 3.5 we apply our results to insurance risk theory and obtain a detailed
description of the ruin event regarding dependence.

Remarks on notation

The Borel-σ-algebra of a topological space T is denoted by B(T). For a set B ∈ B(T),
let B◦, B and ∂B = B \ B◦ be the interior, the closure and the boundary of B,
respectively.

For a, b ∈ R we write a ∨ b := max{a, b} and a ∧ b := min{a, b}. For vectors
a, b ∈ Rd, we mean by a ≤ b that the inequation holds componentwise and (a, b] :=

(a1, b1] × · · · × (ad, bd] denotes a left-open right-closed interval in Rd. Furthermore,
we set R := [−∞,∞], 0 := (0, . . . , 0) and ∞ := (∞, . . . ,∞).



Chapter 1

Dependence modelling for
multivariate Lévy processes

In this chapter we present the notion of a Pareto Lévy measure for modelling the
dependence structure between the components of a general multivariate Lévy pro-
cess. At first, we briefly summarize basic knowledge about Lévy processes and refer
to the excellent monographs [13, 49, 58].

We recall that a stochastic process X = (X t)t≥0 in Rd is called Lévy process if it
has the following properties:

(1) X0 = 0 almost surely (a. s.)

(2) X has independent increments, i. e. for all n ≥ 1 and 0 ≤ t0 < t1 · · · < tn the
random vectors (r. v. s) X t0 ,X t1 −X t0 , . . . ,X tn −X tn−1 are independent.

(3) X has stationary increments, i. e. the distribution of Xs+t − Xs does not
depend on s.

(4) X is stochastically continuous, i. e. for every t ≥ 0 and ε > 0,

lim
s→t

P(|Xs −X t| > ε) = 0.

(5) X is càdlàg, i. e. the sample paths ofX are a. s. right-continuous and have left
limits.

9



10 Chapter 1. Dependence modelling for multivariate Lévy processes

Stochastic processes satisfying properties (1)–(3) are also often called Lévy processes
but such processes are reducible to the Lévy processes defined above, see [13] and
[58], Notes of Chapter 2.

A Lévy process (X t)t≥0 is characterized by the Lévy-Khintchine representation of
the characteristic function

E
[
ei(z,Xt)

]
= e−tΨ(z), t ≥ 0, z ∈ Rd,

with

Ψ(z) = i(γ, z) +
1

2
z>Az +

∫
Rd

(
1− ei(z,x) + i(z,x)1{|x|≤1}

)
Π(dx), (1.0.1)

where (·, ·) denotes the inner product and | · | an arbitrary norm in Rd and 1B

represents the indicator function of the set B. The quantities (γ, A,Π) are called
the characteristic triplet, where γ ∈ Rd, the Gaussian covariance matrix A is a
symmetric non-negative definite d× d matrix, and the Lévy measure Π is a measure
on Rd satisfying

Π({0}) = 0 and
∫

Rd

(
|x|2 ∧ 1

)
Π(dx) <∞.

Important classes are the spectrally one-sided Lévy processes which have only posi-
tive or negative jumps, and specifically subordinators which are Lévy processes whose
components have a. s. non-decreasing paths.

Since the dependence structure of the Gaussian part of a Lévy process X is deter-
mined entirely by its covariance matrix A and the continuous part and the jump
part of X are independent, it remains to describe the dependence structure of the
jump part of X which is characterized by the Lévy measure Π. Therefore, we con-
sider in this thesis only the dependence structure of Lévy measures and model it by
a reference Lévy measure with standardized one-dimensional margins, the so-called
Pareto Lévy measure which is proposed in [48] for spectrally positive Lévy processes.

A particular role is played by α-stable Lévy processes (X t)t≥0 which are Lévy pro-
cesses such that X1 = (X1

1 , . . . , X
d
1 ) is a stable r. v. with index α ∈ (0, 2], i. e. for

every a > 0 there is α ∈ (0, 2] and c ∈ Rd such that

E
[
ei(z,X1)

]a
= E

[
ei(a

1/αz,X1)
]
ei(c,z), z ∈ Rd,

cf. [58], Definitions 13.1 and 13.2, Proposition 13.5, Theorem 13.11 and 13.15 and
Definition 13.16. The following result shows how α-stability for α ∈ (0, 2) is charac-
terized by the characteristic triplet.
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Theorem 1.0.1 ([58], Theorem 14.3)
Let X be Lévy process in Rd with characteristic triplet (γ, A,Π) and α ∈ (0, 2).
The following statements are equivalent:

(1) X1 is α-stable.

(2) A = 0 and Π is homogeneous of degree α or α-homogeneous, i. e. for all t > 0

it holds
t−αΠ(B) = Π(tB) for B ∈ B(Rd).

(3) A = 0 and there is a finite measure λS on the unit sphere S := {x ∈ Rd : |x| =
1} such that

Π(B) =

∫
S

∫ ∞
0

1B(rξ)r−α−1 dr λS(dξ) for B ∈ B(Rd).

The probability measure µS := λS/λS(S) we call the spectral measure of Π.

For d = 1 an α-stable Lévy process has an absolutely continuous Lévy measure

Π(dx) =

{
c1x
−α−1 dx on (0,∞),

c2|x|−α−1 dx on (−∞, 0),

with c1 ≥ 0, c2 ≥ 0 and c1 + c2 > 0; see [58], p. 80. For c1 = c2 = 1 we call the Lévy
process standard 1-stable and its Lévy measure standard 1-homogeneous.

Pareto Lévy measures are multivariate Lévy measures whose one-dimensional mar-
gins are standard 1-homogeneous. A version of Sklar’s Theorem for Lévy measures,
see Theorem 1.1.10, states that the dependence structure of a Lévy measure can be
modelled by a Pareto Lévy measure, independently of the marginal Lévy measures.
In [20, 42, 62, 64] the authors propose Sklar’s Theorem for Lévy measures in terms of
Lévy copulas which are strongly related to Pareto Lévy measures. They use slightly
different definitions of the fundamental notion of the tail integral and, consequently,
their formulations of Sklar’s Theorem for Lévy measures differ. Therefore, we give
in Section 1.1 a detailed presentation of the notion of a Lévy copula and of Sklar’s
Theorem for general Lévy processes which we use in this thesis. Since the relation
between Pareto Lévy measures and Lévy copulas corresponds to the relation be-
tween copulas and Pareto measures and due to the use of copulas in Section 3.1, we
briefly summarize these approaches to model the dependence between r. v. s in Sec-
tion 1.1.1. In Section 1.1.2 we define the concept of Pareto Lévy measures for general
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Lévy processes and prove the basic results for dependence modelling. Furthermore,
we describe two approaches for graphical representation of the dependence structure
in Section 1.2 and apply them to the examples in Section 1.3.

1.1 Lévy copulas and Pareto Lévy measures

In this section we state the basic notions and results for dependence modelling
used in this thesis. At first, we briefly summarize the essential facts of dependence
modelling for r. v. s.

1.1.1 Copulas and Pareto measures

Let X = (X1, . . . , Xd) be a d-dimensional r. v. with distribution function (d. f.) F ,
i. e.

F (x1, . . . , xd) := P(X1 ≤ x1, . . . , X
d ≤ xd)

and one-dimensional marginal d. f. s Fi(x) := P(X i ≤ x) for i = 1, . . . , d. The
classical approach to model the dependence between the components X i is by using
a (distributional) copula. The following definitions can be found in [52] where we
use the notation as in [42].

Definition 1.1.1 (F -volume, d-increasing, [42], Definitions 2.1 and 2.2)
Let F : S → R for some subset S ⊆ Rd. For a, b ∈ S with a ≤ b and (a, b] ⊂ S,
the F -volume of (a, b] is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad,bd}

(−1)N(u)F (u),

where N(u) := #{k : uk = ak}. F is called d-increasing if VF ((a, b]) ≥ 0 for all
(a, b] ∈ S with a ≤ b and (a, b] ⊂ S.

Thereby, the notion of a (distributional) copula is defined as follows.

Definition 1.1.2 (Copula, [52], Definitions 2.10.5 and 2.10.6)
A function CD : [0, 1]d → [0, 1] is called (distributional) copula if

(1) CD(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},
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(2) CD is d-increasing,

(3) CD(1, . . . , 1︸ ︷︷ ︸
i−1

, u, 1, . . . , 1) = u for every i ∈ {1, . . . , d}, u ∈ [0, 1].

The central result for dependence modelling by copulas is stated by Sklar’s Theorem.

Theorem 1.1.3 (Sklar’s Theorem, [52], Theorem 2.10.9)
Let F be a d-dimensional d. f. with margins F1, . . . , Fd. Then there exists a (distri-
butional) copula CD such that

F (x1, . . . , xd) = CD(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd
. (1.1.1)

If F1, . . . , Fd are all continuous, then CD is unique; otherwise, CD is uniquely deter-
mined on

∏d
i=1 Ran Fi.

Conversely, if CD is a (distributional) copula and F1, . . . , Fd are d. f. s, then the
function defined by (1.1.1) is a d-dimensional d. f. with margins F1, . . . , Fd.

Let X = (X1, . . . , Xd) be a r. v. with d. f. F and copula CD. Using the continuity
of copulas, see [52], Theorem 2.10.7, Equation (1.1.1) can be reformulated with a
copula ĈD of −X in terms of the right tails of X, given by

F (x1, . . . , xd) := P(X1 > x1, . . . , X
d > xd)

and F i(x) := P(X i > x) for i = 1, . . . , d, such that

F (x1, . . . , xd) = ĈD(F 1(x1), . . . , F d(xd)), (x1, . . . , xd) ∈ Rd
. (1.1.2)

ĈD is called the survival copula of the r. v. X or the d. f. F . If all Fi are con-
tinuous then the copula CD is the d. f. of the r. v.

(
F1(X1), . . . , Fd(X

d)
)
and the

survival copula ĈD is the d. f. of the r. v.
(
F 1(X1), . . . , F d(X

d)
)
, both corresponding

with a transformation of the distribution to have uniform one-dimensional margins.
Further, in [48] they propose for continuous margins Fi to consider the distribu-
tion of the r. v.

(
1/F 1(X1), . . . , 1/F d(X

d)
)
, the so-called Pareto measure, which is

a transformation to standard Pareto distributed r. v. s. The advantage of the Pareto
measure is the stronger probabilistic interpretation for limit theory and heavy-tail
analysis.

The idea of Pareto measures can be extended to general distributions as follows.
Since copulas are continuous in every variable, see [52], Theorem 2.10.7, ĈD de-
fines by its ĈD-volume VĈD a unique probability measure whose one-dimensional
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marginals are the uniform distribution on (0, 1). As proposed in [9] we define the
inversion map Q : Rd → Rd as

Q(x1, . . . , xd) =
(
x−1

1 , . . . , x−1
d

)
, (1.1.3)

where we set 1/0 := ∞, −1/0 := −∞, 1/∞ := 0 and 1/ − ∞ := 0. Q restricted
to [0, 1]d is bijective and the image of VĈD under Q, given by VĈD ◦ Q, defines a
d-dimensional distribution ΓD with standard Pareto margins. With the right tail ΓD

relation (1.1.2) becomes

F (x1, . . . , xd) = ΓD

(
1

F 1(x1)
, . . . ,

1

F d(xd)

)
, (x1, . . . , xd) ∈ Rd

. (1.1.4)

We call ΓD Pareto measure and its right tail ΓD is called Pareto copula.

1.1.2 Lévy copulas and Pareto Lévy measures: Definitions
and basic results

Now letX = (X t)t≥0 = (X1
t , . . . , X

d
t )t≥0 be a d-dimensional Lévy process with Lévy

measure Π. If Π is a finite measure we can model the dependence between the jump
sizes by a copula or a Pareto measure, but in general Lévy measures may have a
singularity at zero. Consequently, for a general approach to model the dependence
the analogue of a d. f. or a right tail for Lévy measures has to be bounded away from
zero and is defined as follows.

As in [42] we set for x ∈ R

I(x) :=

{
(x,∞), x ≥ 0,

(−∞, x], x < 0,
(1.1.5)

and
sgn(x) := 1{x≥0} − 1{x<0}.

Definition 1.1.4 (Tail integral of a Lévy measure)
Let X be a Lévy process in Rd with Lévy measure Π. The tail integral of X or Π

is the function Π : (R \ {0})d → R defined as

Π(x1, . . . , xd) :=
d∏
j=1

sgn(xj)Π

(
d∏
i=1

I(xi)

)
.



1.1. Lévy copulas and Pareto Lévy measures 15

In [42], Definition 3.3, the tail integral is defined on (R\{0})d. Since limxi→±∞Π(x1, . . .

, xd) = 0 for all i ∈ {1, . . . , d} and I(x) = ∅ for x ∈ {−∞,∞} our extension to
(R \ {0})d is continuous and corresponds to the extension of the one-dimensional
tail integral used in the proof of Theorem 3.6 in [42]. The main aspect in the def-
inition of the tail integral is that a Lévy measure Π is always considered on sets
bounded away from zero.

By definition (1.1.5) tail integrals are on (R \ {0})d right-continuous functions and
(−1)dΠ is d-increasing. However, the tail integral does not determine the Lévy mea-
sure uniquely because it does not specify its mass on Rd \ (R \ {0})d. Therefore,
we additionally need the marginal tail integrals. For a set I we define |I| as its
cardinality.

Definition 1.1.5 (Margins of a Lévy process/Lévy measure/tail integral)
Let X = (X1, . . . , Xd) = (X1

t , . . . , X
d
t )t≥0 be a Lévy process in Rd with Lévy mea-

sure Π and I ⊆ {1, . . . , d} a non-empty index set. We define the following quantities:

(1) The I-margin of X is the Lévy process XI := (X i)i∈I .

(2) ΠI denotes the Lévy measure of XI and is the I-marginal Lévy measure. It is
given by

ΠI(B) = Π
(
{x ∈ Rd : (xi)i∈I ∈ B}

)
, B ∈ B(R|I| \ {0}).

(3) The I-marginal tail integral of X is given by ΠI : (R \ {0})|I| → R with

ΠI((xi)i∈I) =
∏
i∈I

sgn(xi) ΠI

(∏
i∈I

I(xi)
)
.

To simplify notation, we denote one-dimensional margins by X i, Πi and Πi.

By [42], Lemma 3.5, the set of all marginal tail integrals {ΠI : I ⊆ {1, . . . , d}}
determines the Lévy measure Π uniquely and vice versa. Moreover, we shall need
for Lévy copulas the following definition of I-margins of a d-increasing function on
(−∞,∞]d.

Definition 1.1.6 ([42], Definition 2.4)
Let F : (−∞,∞]d → (−∞,∞] be a d-increasing function such that F (u1, . . . , ud) =

0 if ui = 0 for at least one i ∈ {1, . . . , d}. For every non-empty index set I ⊆
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{1, . . . , d}, the I-margin of F is the function FI : (−∞,∞]|I| → (−∞,∞], defined
by

FI ((ui)i∈I) := lim
a→∞

∑
(ui)i∈Ic∈{−a,∞}|I

c|

F (u1, . . . , ud)
∏
i∈Ic

sgn(ui),

where Ic := {1, . . . , d} \ I.

In analogy to (survival) copulas Kallsen and Tankov, [42], define Lévy copulas for
general Lévy processes as follows.

Definition 1.1.7 (Lévy copula, [42], Definition 3.1)
A function Ĉ : (−∞,∞]d → (−∞,∞] is called Lévy copula if

(1) Ĉ(u1, . . . , ud) 6=∞ for (u1, . . . , ud) 6= (∞, . . . ,∞),

(2) Ĉ(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},

(3) Ĉ is d-increasing,

(4) Ĉ{i}(u) = u for every i ∈ {1, . . . , d}, u ∈ R.

Since Lévy copulas are right-continuous in every variable separately, see [42], Lemma 3.2,
and d-increasing, according to [43], Section 4.5, there exists a unique measure µĈ
on (−∞,∞]d \ {∞} such that for the Ĉ-volume VĈ of a Lévy copula Ĉ and
a, b ∈ (−∞,∞]d \ {∞} with a ≤ b we have

µĈ((a, b]) = VĈ((a, b]).

Due to Definition 1.1.7 (4) the one-dimensional margins of µĈ are the Lebesgue mea-
sure and so µĈ is no Lévy measure. The inversion map Q given in (1.1.3) restricted
to (−∞,∞]d is bijective and applying Q to µĈ , the concatentation Γ := µĈ ◦Q−1 is a
measure on B((−∞,∞]d\{0}). Due to properties (1) and (2) in Definition 1.1.7, the
measure Γ is finite outside neighbourhoods of the origin and Γ((−∞,∞] \ Rd) = 0.
Since we have Γi(x) = x−1 for x 6= 0 for the one-dimensional margins, Γ is a Lévy
measure with one-dimensional 1-homogeneous margins. Analogously to the Pareto
measure for distributions, Γ is our reference Lévy measure which was proposed for
spectrally positive Lévy processes in [48].

Definition 1.1.8 (Pareto Lévy measure, Pareto Lévy copula)
A d-dimensional Lévy measure Γ is called Pareto Lévy measure (PLM) if it has
standard 1-homogeneous one-dimensional margins, i. e. Γi(dxi) = |xi|−2 dxi on R \
{0} for i = 1, . . . , d. The tail integral Γ is called Pareto Lévy copula (PLC).
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Note that a PLM is not in general a 1-homogeneous Lévy measure, although its
one-dimensional margins are 1-homogeneous Lévy measures.

Remark 1.1.9 (Relation between Lévy copula and Pareto Lévy measure)
Every Lévy copula Ĉ defines uniquely a PLM Γ given for x,y ∈ Rd with 0 /∈ [x,y)

as
Γ([x,y)) =

∑
u∈{1/y1,1/x1}×···×{1/yd,1/xd}

(−1)N(u)Ĉ(u), (1.1.6)

where u = (u1, . . . , ud) ∈ (−∞,∞]d and N(u) := #{k : uk = 1/yk}. Furthermore,
for the PLC Γ it holds

Γ(x1, . . . , xd) = Ĉ

(
1

x1

, . . . ,
1

xd

)
, (x1, . . . , xd) ∈ (R \ {0})d. (1.1.7)

Conversely, every PLM Γ defines uniquely a Lévy copula Ĉ defining Ĉ on Rd by
(1.1.7) and on (−∞,∞]d \ Rd we set for h ∈ {1, . . . , d} and xi <∞ for i > h

Ĉ(∞, . . . ,∞︸ ︷︷ ︸
h

, xh+1, . . . , xd) =
d∏

i=h+1

sgn(xi)Γ

(
[0,∞)× · · · × [0,∞)×

d∏
i=h+1

I
(

1

xi

))
.

Consequently, for a PLM Γ with corresponding Lévy copula Ĉ the following asser-
tions are equivalent:

(1) Γ is 1-homogeneous.

(2) Ĉ is homogeneous in the sense that for all t > 0 it holds

Ĉ(tu1, . . . , tud) = tĈ(u1, . . . , ud), (u1, . . . , ud) ∈ Rd.

The following result has been proven for Lévy copulas in [42], Theorem 3.6. Although
we already know the relation between Lévy copulas and Pareto Lévy measures, we
sketch the proof of the first part of Sklar’s Theorem again for PLMs since we shall
need the explicit construction of a PLM for a given Lévy measure in the sequel.

Theorem 1.1.10 (Sklar’s Theorem for Pareto Lévy measures)
(1) Let X be a Lévy process in Rd with Lévy measure Π. Then there exists a

PLM Γ such that

ΠI ((xi)i∈I) = ΓI

((
1

Πi(xi)

)
i∈I

)
, (xi)i∈I ∈ (R \ {0})|I|, (1.1.8)

for every non-empty index set I ⊆ {1, . . . , d}. The PLM Γ is unique on∏d
i=1 Ran (1/Πi) and we call Γ a PLM of X.
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(2) Let Γ be a d-dimensional PLM and Πi for i = 1, . . . , d one-dimensional tail
integrals of arbitrary Lévy processes. Then there exists a Lévy process X in
Rd whose components have tail integrals Π1, . . . ,Πd and whose marginal tail
integrals satisfy Equation (1.1.8) for every non-empty set I ⊆ {1, . . . , d} and
every (xi)i∈I ∈ (R \ {0})|I|. The Lévy measure Π of X is uniquely determined
by Γ and Π1, . . . ,Πd.

Proof.
(1) Recall the following tools from [42], Theorem 3.6, and our extended definition
of the tail integral. For x ∈ (−∞,∞] and i = 1, . . . , d we define

Π̇i(x) :=

{
Πi(x) for x 6= 0,

∞ for x = 0,

and

∆Πi(x) :=

{
limξ↑x Πi(ξ)− Πi(x) = Πi({x}) for x 6= 0,

0 for x = 0.

Since Πi may have atoms or may be finite we construct an atomless infinite measure
m on B(((−∞,∞]d\{0})×[0, 1]d×R). Denote by Π∗ the extension of Π to (−∞,∞]d\
{0} given by Π∗(B) := Π(B ∩ Rd), by λ the Lebesgue measure on R and by δx the
Dirac measure with mass on x. Then we set

m := Π∗ ⊗ λ|[0,1]d ⊗ δ0 (1.1.9)

+
d∑
i=1

δ(0,...,0︸︷︷︸
i−1

,∞,0,...,0) ⊗ δ(0,...,0︸︷︷︸
d

) ⊗ λ|(
(−∞,−Πi((−∞,0)))∪(Πi((0,∞)),∞)

).
For B ∈ B(Rd \ {0}) we define

Γ (B) :=m

({
(x1, . . . , xd, y1, . . . , yd, z) ∈ ((−∞,∞]d \ {0})× [0, 1]d × R :(

1

Π̇i(xi) + yi∆Πi(xi) + z

)
i=1,...,d

∈ B
})

. (1.1.10)

Note that we use 1/(Π̇i(xi)+yi∆Πi(xi)+z) in (1.1.10) instead of Π̇i(xi)+yi∆Πi(xi)+

z as in [42], Equation (3.5), corresponding to componentwise inversion: x 7→ 1/x.
As in the proof of Theorem 3.6, [42], one shows that Γi(x) = x−1 for x 6= 0 and the
assertion follows. �
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Note that Sklar’s Theorem in Equation (3.2) of [42] holds with our Definition 1.1.4
of tail integrals also for (xi)i∈I ∈ (R \ {0})|I| due to property (2) of Definition 1.1.7.
For the representation (1.1.8) in terms of tail integrals we need the extended notion
of a tail integral for vectors (xi)i∈I with ΠI((xi)i∈I) = 0.

Theorem 1.1.10 gives the relationship between a Lévy measure Π and its transformed
PLM Γ in terms of all marginal tail integrals. In the next results we formulate this
relationship for sets in the generating semi-algebra of rectangular sets in order to
get a representation of (1.1.8) in terms of Γ, Π and the one-dimensional margins Πi.
For one-dimensional tail integrals we define (recall the possible singularity in 0)

Πi(x+) := lim
β↓x

Πi(β) and Πi(x−) := lim
β↑x

Πi(β) for x ∈ R. (1.1.11)

Since PLCs are defined quadrantwise special care has to be taken for hyperplanes
through the coordinate axes. The following result presents the Lévy measure Π in
terms of the PLM Γ and the one-dimensional marginal tail integrals Πi, i = 1, . . . , d.
The proof is given in the Appendix.

Proposition 1.1.11
Let Π be the Lévy measure defined by (1.1.8) with PLM Γ and one-dimensional
Lévy measures Πi, i = 1, . . . , d. With Πi(0) := Πi(0+) the following assertions hold.

(1) For a, b ∈ Rd with 0 /∈
∏d

i=1(ai, bi] it holds

Π

(
d∏
i=1

(ai, bi]

)
= Γ

(
d∏
i=1

(
1

Πi(ai)
,

1

Πi(bi)

])
. (1.1.12)

(2) Let ∅ 6= K ⊂ {1, . . . , d}. Define

Ai :=



[
1

Πi(0−)
, 1

Πi(0+)

]
, if Πi(0−) < 0,Πi(0+) > 0,[

0, 1
Πi(0+)

]
, if Πi(0−) = 0,Πi(0+) > 0,[

1
Πi(0−)

, 0
]
, if Πi(0−) < 0,Πi(0+) = 0.

(1.1.13)

For a, b ∈ Rd with 0 /∈
∏

i∈K{0} ×
∏

i/∈K(ai, bi] it holds

Π

(∏
i∈K

{0} ×
∏
i/∈K

(ai, bi]

)
= Γ

(∏
i∈K

Ai ×
∏
i/∈K

(
1

Πi(ai)
,

1

Πi(bi)

])
. (1.1.14)
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The next result is a direct consequence of the constructions (1.1.9) and (1.1.10) and
presents the PLM Γ defined in (1.1.10) in terms of the Lévy measure Π and its
one-dimensional marginal tail integrals Πi for i = 1, . . . , d.

Proposition 1.1.12
Let Π be a Lévy measure with one-dimensional margins Πi for i = 1, . . . , d. For the
PLM Γ defined in (1.1.10) the following assertions hold.

(1) Define

Di := I
(

1

Πi(0−)

)
∪ I

(
1

Πi(0+)

)
∪ {0}. (1.1.15)

For a, b ∈ Rd with (a, b] ⊂
∏d

i=1Di it holds

Γ((a, b]) =Π⊗ λ|[0,1]d

({
(x,y) ∈ (Rd \ {0})× [0, 1]d : (1.1.16)

1

Π̇i(xi) + yi∆Πi(xi)
∈ (ai, bi] for i = 1, . . . , d

})
,

where Π̇i and ∆Πi are defined as in the proof of Sklar’s Theorem 1.1.10.

(2) For a, b ∈ Rd with (a, b] ⊂ Rd \
∏d

i=1Di it holds

Γ((a, b]) =
d∑
i=1

δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
i−1

⊗Γi ⊗ δ0 ⊗ · · · ⊗ δ0︸ ︷︷ ︸
d−i

((a, b]), (1.1.17)

where Γi(dx) = |x|−2dx for x ∈ R \ {0}.

With these propositions we receive the following results which extend [9], Proposi-
tion 1, for general Lévy processes. The first result was formulated for Lévy copulas
in Theorem 4.6 of [42].

Theorem 1.1.13
Let α ∈ (0, 2) and Π be a Lévy measure with one-dimensional margins Πi, i =

1, . . . , d and PLM Γ defined in (1.1.10).

(1) Π is α-homogeneous if and only if all Πi are α-homogeneous and Γ is 1-
homogeneous.
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(2) Let Πi be α-homogeneous for i = 1, . . . , d. Then Π is self-decomposable if and
only if Γ is self-decomposable.

Proof.
We treat only (2) since (1) is obvious. If Πi is α-homogeneous then it holds Πi(xi) =

sgn(xi)ki|xi|−α for xi 6= 0 and some ki > 0. By [58], Theorem 15.8, Π is self-
decomposable if and only if Π(t−1B) ≥ Π(B) for all B ∈ B(Rd) and t > 1. With
Proposition 1.1.11 and 1.1.12 the equivalence holds. �

The advantage of working with a PLM instead of a Lévy copula is that a PLM is a
Lévy measure and modelling dependence of a Lévy measure in terms of a PLM is
a self-contained approach. The Lévy process corresponding to a PLM extends the
class of stable processes in a natural way. Moreover, the I-margins of a PLM, given
in Definition 1.1.5, are easier to calculate than the I-margins of a Lévy copula, given
in Definition 1.1.6. Nevertheless, in the bivariate situation of Section 3.4 where we
explicitly calculate the tail integral of the sum process X1 + X2 we formulate our
results in terms of Lévy copulas since for d = 2 Lévy copulas are notationally easier
to deal with.

1.2 Graphical representation of the dependence struc-
ture

In this section we describe two approaches for visualizing the dependence structure
modelled by a PLM.

1.2.1 Spectral measure

For a stable r. v. the spectral measure characterizes the dependence between the
marginals, see [57], which remains true for multivariate regularly varying r. v. in
the limit, see Definition 4.1.3. Consequently, the spectral density has been a popular
graphical tool for stable and regularly varying distributions and processes, at least in
two dimensions. A 1-homogeneous PLM is the Lévy measure of a standard 1-stable
Lévy process and, therefore, we consider its spectral measure where we reduce the
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situation to d = 2 for presentation purposes.

By Theorem 1.0.1, the spectral measure µS of a 1-homogeneous PLM Γ is on B(S)

given by

µS(·) =
Γ({x ∈ R2 : |x| > 1,x/|x| ∈ ·})

Γ({x ∈ R2 : |x| > 1})
. (1.2.1)

Moreover, let X be a Lévy process with Lévy measure Γ. By Lemma 4.1.4 the
r. v. X1 is regularly varying and has the same spectral measure as Γ. Therefore,
Equation (1.2.1) also means

µS(·) = lim
t→∞

P(X1/|X1| ∈ · | |X1| > t) .

We see that µS measures the dependence between extreme values and that it depends
on the chosen norm | · |. For the Euclidean 2-norm | · |2 with unit circle S2 := {x ∈
R2 : |x1|2 + |x2|2 = 1} we get

µS2(·) = lim
t→∞

P
(
X1/|X1|2 ∈ ·

∣∣ √|X1
1 |2 + |X2

1 |2 > t

)
and µS2 describes the dependence between the components given their sum is ex-
treme. Considering the 1-norm | · |1 with unit circle S1 := {x ∈ R2 : |x1|+ |x2| = 1}
yields a similar interpretation of µS1 . Applying the maximum-norm | · |∞ the unit
circle is given as S∞ := {x ∈ R2 : |x1| ∨ |x2| = 1} and the spectral measure becomes

µS∞(·) = lim
t→∞

P(X1/|X1|∞ ∈ · | |X1
1 | ∨ |X2

1 | > t).

Thus, µS∞ measures the dependence between the components under the condition
that at least one of them is extreme, see [50], Section 5.2.

As uniform parametrization of the unit circle of all three norms we use polar co-
ordinates, i. e. we apply the transformation T : [0,∞) × [0, 2π) → R2 defined by
T (r, φ) = (r cos(φ), r sin(φ)). Further, we define the arcs of the unit circles S2

ρ1,ρ2
:=

{(cos(φ), sin(φ)) : φ ∈ [ρ1, ρ2]}, S1
ρ1,ρ2

:= {(cos(φ), sin(φ))/|(cos(φ), sin(φ))|1 : φ ∈
[ρ1, ρ2]} and S∞ρ1,ρ2 := {(cos(φ), sin(φ))/|(cos(φ), sin(φ))|∞ : φ ∈ [ρ1, ρ2]}. Transfor-
mation of a 1-homogeneous PLM Γ leads to a decomposition into a radial and an
angular part given for (r, φ) ∈ [0,∞)× [0, 2π) as

Γ ◦ T (dr, dφ) = r−2dr Γφ(dφ) (1.2.2)
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and the spectral measures result as

µS2([ρ1, ρ2]) =
Γ({(r cos(φ), r sin(φ)) : r > 1, (cos(φ), sin(φ)) ∈ S2

ρ1,ρ2
})

Γ({(r cos(φ), r sin(φ)) : r > 1})

=

∫
φ∈[ρ1,ρ2]

Γφ(dφ)∫
φ∈[0,2π)

Γφ(dφ)
, (1.2.3)

µS1([ρ1, ρ2]) =

∫
φ∈[ρ1,ρ2]

|(cos(φ), sin(φ))|1 Γφ(dφ)∫
φ∈[0,2π)

|(cos(φ), sin(φ))|1 Γφ(dφ)
(1.2.4)

and

µS∞([ρ1, ρ2]) =

∫
φ∈[ρ1,ρ2]

|(cos(φ), sin(φ))|∞ Γφ(dφ)∫
φ∈[0,2π)

|(cos(φ), sin(φ))|∞ Γφ(dφ)
. (1.2.5)

We present the spectral measures in two ways. At first, we plot the density µS·(dφ)/dφ
on [0, 2π). Secondly, we take an idea from [10] and visualize µS· as graph such that
the included area between two angles ρ1, ρ2 and a solid curve (s(ρ) for ρ ∈ [ρ1, ρ2])

represents the probability µS·([ρ1, ρ2]). This representation shows the directions in
which the mass of Γ is distributed and we shall call these graphs Basrak graphs.

For a regularly varying PLM we consider the spectral measure of its 1-homogeneous
limit measure, see Definition 2.0.1 which represents the dependence structure be-
tween extremes.

1.2.2 Pareto Lévy copula

Whereas a spectral measure describes a PLM on sets {x ∈ Rd : |x|· > 1,x/|x| ∈
S·ρ1ρ2}, a PLC describes a PLM on rectangle sets of (R \ {0})2. Note that for d = 2

a PLM is uniquely determined by its PLC since the one-dimensional margins are
standardized. Thus the PLC values on S2 ∩ (R \ {0})2 characterize a PLM outside
the unit circle S2 as the spectral measure µS2 due to

|Γ(x1, x2)| = Γ(I(x1)× I(x2)) for (x1, x2) ∈ S2 ∩ (R \ {0})2.

Further, for an 1-homogeneous or regularly varying PLM the PLC describes the
dependence structure of joint extremes as a spectral measure, see Section 2.1. This
gives a new possibility of visualizing the dependence structure. We represent a PLM
by weighting the points of S2 ∩ (R \ {0})2 by its absolute PLC value such that the
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Euclidean distance of a point (x1, x2) to the origin corresponds to Γ(I(x1)×I(x2)).
Although we look at different sets as in Section 1.2.1, we see where the mass of Γ is
distributed outside the unit circle. Contrary to spectral measures, PLCs always exist
and, consequently, this graphical approach can also be applied for non-homogeneous
and non-regularly varying PLMs.

1.3 Examples

In this section we give examples for dependence structures which are considered
throughout this thesis and visualize them in the ways described in Section 1.2.

1.3.1 Independence Pareto Lévy measure

By [58], Exercise 12.10, the components of a Lévy process X = (X1, . . . , Xd) with
characteristic triplet (γ, A,Π) are independent, i. e. X1

t , . . . , X
d
t are independent for

all t > 0, if and only if A is diagonal and Π is supported by the union of the
coordinate axes {xei : x ∈ R, i = 1, . . . , d} where ei denote the unit vectors in Rd.
This motivates the following definition.

Definition 1.3.1 (Independence of jumps of a Lévy process)
Let X be a Lévy process in Rd with Lévy measure Π. Its jumps are said to be
independent if Π is supported by the union of the coordinate axes.

From (1.1.14) we directly conclude that a Lévy process X has independent jumps
if and only if the independence PLM

Γ⊥(dx1, . . . , dxd) :=
d∑
i=1

Γi(dxi)
∏
j 6=i

δ0(dxj), x ∈ Rd \ {0}, (1.3.1)

is a PLM of X where Γi denotes the Lévy measure of a one-dimensional standard
1-stable Lévy process. The set of all marginal tail integrals {Γ⊥,I : I ⊆ {1, . . . , d}}
is given for (x1 . . . , x|I|) ∈ (R \ {0})|I| by

Γ⊥,I(x1, . . . , x|I|) =

 0, if |I| > 1,
1

x
, if |I| = 1.
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Figure 1.1: Spectral density of the independence PLM; left: atoms of the spec-
tral measure µS of the independence PLM in [0, 2π) with uniform weights 0.25 on
0, 1

2
π, π, 3

2
π; right: the same density as Basrak graph

By (1.1.7) the corresponding independence Lévy copula is given by

Ĉ⊥(u1, . . . , ud) =
d∑
i=1

ui
∏
i 6=i

1{∞}(uj), u ∈ (−∞,∞]d, (1.3.2)

which was proven in [42], Proposition 4.1. Obviously, Γ⊥ is 1-homogeneous and since
Γ⊥ has mass only on the coordinate axes, its spectral measure for d = 2 is for all
three norms given by

µS(dφ) =
1

4
δ0(dφ) +

1

4
δ 1

2
π(dφ) +

1

4
δπ(dφ) +

1

4
δ 3

2
π(dφ), φ ∈ [0, 2π).

Figure 1.1 shows the four atoms of the spectral measure µS and in Figure 1.7 the
representation of Γ⊥ reduces to the point (0, 0) as the PLC Γ⊥ on S2 ∩ (R \ {0})2 is
equal to zero.

1.3.2 Complete dependence Pareto Lévy measure

For the notion of complete dependence we recall the definition of ordered and strictly
ordered sets.

Definition 1.3.2 (Strictly ordered set)
A subset S ⊂ Rd is called ordered, if for every two vectors x,y ∈ S, either xk ≤ yk

for all k = 1, . . . , d or xk ≥ yk for all k = 1, . . . , d. S is called strictly ordered, if for
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every two different vectors x,y ∈ S, either xk < yk for all k = 1, . . . , d or xk > yk

for all k = 1, . . . , d.

Random variables X1, . . . , Xd are called comonotonic if their common distribution
is supported by an ordered set. Then their copula and their survival copula are given
by CD,‖(u1, . . . , ud) := u1 ∧ · · · ∧ ud for u ∈ [0, 1]. Additionally, if X1, . . . , Xd are
continuous and comonotonic, their common distribution is supported by a strictly
ordered set. In this case every r. v. X i is a. s. a strictly increasing function of ev-
ery other, see [52], Theorem 2.10.14, and we call X1, . . . , Xd completely dependent.
Complete dependence between jumps of a Lévy process means that the jumps of all
components are a. s. determined by the jumps of every single component. Therefore,
all components a. s. jump together and complete dependence is defined as below.

Definition 1.3.3 (Complete (positive) dependence, [42], Definition 4.2)
Let X be a Lévy process in Rd. Set

K := {x ∈ Rd : sgn(x1) = · · · = sgn(xd)} = [0,∞)d ∪ (−∞, 0)d. (1.3.3)

Its jumps are said to be completely (positive) dependent if one of the following
equivalent statements holds.

(1) There is a strictly ordered set S ⊂ K such that for almost all sample paths
∆X t := X t −X t− ∈ S for t > 0.

(2) There is a strictly ordered set S ⊂
(
(0,∞)d ∪ (−∞, 0)d

)
such that Π(Rd\S) =

0.

Note that in Definition 1.3.3 (2) the condition S ⊂
(
(0,∞)d ∪ (−∞, 0)d

)
can not

be replaced by S ⊂ K. This can easily be seen by the example Π(dx1, dx2) =

δ(0,1)(dx1, dx2) + δ(1,2)(dx1, dx2) where the jumps of X2 determine the jumps of X1

but not vice versa.

Since the margins of a PLM are standardized the only PLM which is supported by
a strictly ordered set S ⊂

(
(0,∞)d ∪ (−∞, 0)d

)
is the complete dependence PLM Γ‖

given by
Γ‖(dx1, . . . , dxd) = |x1|−2 dx11{x1=···=xd}, x ∈ Rd \ {0}. (1.3.4)
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Γ‖ is concentrated on (R \ {0})d and so Γ‖ is characterized by the corresponding
PLC Γ‖, given for (x1 . . . , xd) ∈ (R \ {0})d as

Γ||(x1, . . . , xd) =
1

|x1| ∨ · · · ∨ |xd|
1K((x1, . . . , xd))

d∏
j=1

sgn(xj). (1.3.5)

By Relation (1.1.7) the corresponding complete dependence Lévy copula is given by

Ĉ‖(u1, . . . , ud) = |u1|∧· · ·∧|ud|1K((u1, . . . , ud))
d∏
i=1

sgn(ui), u ∈ (−∞,∞]d, (1.3.6)

see [42], Equation (4.3), and we reformulate Theorem 4.4 of [42] for PLMs.

Theorem 1.3.4
Let X be a Lévy process in Rd whose Lévy measure is supported by an ordered set
S ⊂ K where K is defined in (1.3.3). Then the complete dependence PLM Γ‖, given
in (1.3.4), is a PLM of X.
Conversely, if Γ‖ is a PLM of X, then the Lévy measure of X is supported by
an ordered subset of K. If, in addition, all marginal Lévy measures are infinite
measures and have no atoms, then Γ‖ is the unique PLM of X and the jumps of X
are completely dependent.

For finite margins without atoms we obtain the following result.

Proposition 1.3.5
Let X be a Lévy process in Rd with absolutely continuous and finite Lévy measure
Π and PLM Γ‖. We set λ+ := Π([0,∞)d), λ− := Π((−∞, 0]d), λ−i := Πi((−∞, 0))

and λ+
i := Πi((0,∞)) for all i = 1, . . . , d. Then the following statements hold.

(1) The jumps ofX are completely dependent if and only if λ+
i = λ+ and λ−i = λ−

for all i = 1, . . . , d, the positive jump sizes are completely dependent, the
negative jump size are completely dependent and the distribution of the jump
sizes is concentrated on K, given in (1.3.3).

(2) If there is an index i ∈ {1, . . . , d} with λ+
i > maxj 6=i λ

+
j (or λ−i > maxj 6=i λ

−
j ),

then X i has single positive jumps smaller than Π
−1

i

(
maxj 6=i λ

+
j

)
(or single

negative jumps bigger than Π
−1

i (−maxj 6=i λ
−
j )).
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Proof.
(1) We denote the jump sizes by ∆X i. Due to symmetry, we just consider positive
jumps. If Π is supported by a strictly ordered set then

λ+
i = lim

x↓0
Πi(x) = lim

x↓0
Π(x, . . . , x) = λ+.

With

λ+P
(
∆X1 > x1, . . . ,∆X

d > xd
)

= Π(x1, . . . , xd) for (x1, . . . , xd) ∈ (0,∞)d,

and Theorem 1.3.4 the assertion holds.
(2) Let λ+

i > maxj 6=i λ
+
j . From Equation (1.1.14) we obtain for 0 < ai ≤ bi <

Π
−1

i

(
maxj 6=i λ

+
j

)
that

Π

(∏
k<i

{0} × (ai, bi]×
∏
k>i

{0}

)
= Γ‖

(∏
k<i

Ak ×
(

1

Πi(ai)
,

1

Πi(bi)

]
×
∏
k>i

Ak

)
> 0

where the sets Ak are defined in (1.1.13). �

Example 1.3.6
LetX = (X1, X2) be a spectrally positive CPP with jump size d. f. F1(x) = F2(x) =

expo(1) and PLM Γ‖. Figure 1.2 shows simulated sample paths of X for the two
situations of Proposition 1.3.5. For λ1 = λ2 the sample paths are equal since X1 and
X2 jump at the same time by the same size. For λ1 = 50 and λ2 = 10 the component
X1 has additional single jumps smaller than F−1

1 (λ2/λ1) = − ln(0.2).

For d = 2 the 1-homogeneous PLM Γ‖ has mass only on {x ∈ (R \ {0})2 : x1 = x2}
and for all three norms the spectral measure is given by

µS(dφ) =
1

2
δ 1

4
π(dφ) +

1

2
δ 5

4
π(dφ), φ ∈ [0, 2π).

Figure 1.3 shows the two atoms of the spectral measure µS and in Figure 1.7 the
PLC Γ‖ is visualized on S2 ∩ (R \ {0})2.

1.3.3 Archimedean Pareto Lévy measures

In [42], Section 6, they proved that parametric families of Lévy copulas can be
constructed by a generator analogously to Archimedean copulas, cf. [52], Section 4.



1.3. Examples 29

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

t

X
1 , X

2

CPP with F
1
=expo(1), F

2
= expo(1), λ

1
=10, λ

2
=10

0 0.2 0.4 0.6 0.8 1
0

1

2

3

t

∆ 
X

1

Jumps

0 0.2 0.4 0.6 0.8 1
0

1

2

3

t

∆ 
X

2

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

t

X
1 , X

2

CPP with F
1
=expo(1), F

2
= expo(1), λ

1
=50, λ

2
=10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

t

∆ 
X

1

Jumps

0 0.2 0.4 0.6 0.8 1
0

0.5

1

t

∆ 
X

2

Figure 1.2: CPP (X1, X2) of Example 1.3.6; left: sample paths; right: jump times
and jump sizes. For λ1 = λ2 the jumps are completely dependent. For λ1 > λ2 the
component X1 has single jumps smaller than − ln(0.2) ≈ 1.6.
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We briefly summarize the construction of these so-called Archimedean Lévy copulas
below.

Let ϕ : [−1, 1]→ [−∞,∞] be a strictly increasing continuous function with ϕ(1) =

∞, ϕ(0) = 0 and ϕ(−1) = −∞, having derivatives of order up to d on (−1, 0) and
(0, 1), satisfying for all k = 1, . . . , d,

∂kϕ(u)

∂uk
≥ 0, u ∈ (0, 1), and (−1)k

∂kϕ(u)

∂uk
≤ 0, u ∈ (−1, 0).

Set ϕ̃(u) := 2d−2 (ϕ(u)− ϕ(−u)) for u ∈ [−1, 1]. Then

Ĉ(u1, . . . , ud) = ϕ

(
d∏
i=1

ϕ̃−1

(
1

ui

))
, (u1 . . . , ud) ∈ (−∞,∞]d,

defines a Lévy copula, see [42], Theorem 6.1, which by (1.1.6) defines an Archimedean
Pareto Lévy measure. For an Archimedean PLM Γ it holds Γ(Rd \ (R \ {0})d) = 0

since Archimedean Lévy copulas are left-continuous in ∞. Thus an Archimedean
PLM is uniquely defined by its PLC Γ. Note that with Equation (1.1.14) a Lévy
measure Π with an Archimedean PLM may have mass on Rd \ (R \ {0})d.

Example 1.3.7 (Clayton PLM)
Setting

ϕ(x) = (− log |x|)−1/θ
(
η1{x>0} − (1− η)1{x<0}

)
, x ∈ [−1, 1], θ > 0, η ∈ (0, 1),

yields the Clayton Lévy copula family given for θ > 0 and η ∈ [0, 1] by

Ĉη,θ(u1, . . . , ud) =22−d

(
d∑
i=1

|ui|−θ
)−1/θ

(
η1{u1···ud≥0} − (1− η)1{u1···ud<0}

)
, u ∈ (−∞,∞]d,

see [42], Example 6.2. For η = 1 the two components always jump in the same
direction, for η = 0 in opposite direction. The parameter θ models the degree of
dependence: for η = 1 and θ ↑ ∞ we obtain the complete dependence model and
for η = 1 and θ ↓ 0 the independence model. For d = 2 the Clayton Lévy copula
becomes

Ĉη,θ(u1, u2) =
(
|u1|−θ + |u2|−θ

)−1/θ (
η1{u1u2≥0} − (1− η)1{u1u2<0}

)
(1.3.7)

which was frequently used, e. g. in [17, 18, 20, 26].
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The corresponding Clayton Pareto Lévy copula is for θ > 0 and η ∈ [0, 1] given as

Γη,θ(x1, . . . , xd) =22−d

(
d∑
i=1

|xi|θ
)−1/θ

(
η1{x1···xd>0} − (1− η)1{x1···xd<0}

)
, x ∈ (R \ {0})d, (1.3.8)

and so Clayton PLMs are obviously 1-homogeneous. For d = 2 the density of a
Clayton PLM Γη,θ is given by

Γη,θ(dx1, dx2) =(1 + θ)
(
|x1|θ + |x2|θ

)−1/θ−2 |x1|θ−1|x2|θ−1(
η1{x1x2>0} + (1− η)1{x1x2<0}

)
dx1 dx2, (x1, x2) ∈ R2.

By polar coordinate transformation as in Equation (1.2.2) we get

Γφη,θ(dφ)

dφ
=(1 + θ)

(
| cos(φ)|θ + | sin(φ)|θ

)−1/θ−2 | cos(φ)|θ−1| sin(φ)|θ−1(
η1{cos(φ) sin(φ)>0} + (1− η)1{cos(φ) sin(φ)<0}

)
, φ ∈ [0, 2π), (1.3.9)

and with Equation (1.2.3) the spectral density with respect to the 2-norm results as

µS2(dφ)

dφ
=

1∫ 2π

0
Γφη,θ(dφ)

Γφη,θ(dφ)

dφ
(1.3.10)

which is visualized in Figure 1.4. For the 1-norm the spectral density becomes with
Equation (1.2.5)

µS1(dφ)

dφ
=

1∫ 2π

0
|(cos(φ), sin(φ))|1 Γφη,θ(dφ)

|(cos(φ), sin(φ))|1 Γφη,θ(dφ)

dφ
(1.3.11)

plotted in Figure 1.5. The spectral density with respect to the maximum-norm is
according to Equation (1.2.5) given as

µS∞(dφ)

dφ
=

1∫ 2π

0
|(cos(φ), sin(φ))|∞ Γφη,θ(dφ)

|(cos(φ), sin(φ))|∞ Γφη,θ(dφ)

dφ
, (1.3.12)

visualized in Figure 1.6.

Comparing the different spectral measures we see that µS2 and µS1 are similar, but for
the same θ-values µS2 has more mass near the axes than µS1 . The spectral measure
µS∞ is the most concentrated near the axes and, in particular, its density is not
differentiable on φ = π/4 and φ = 5π/4.
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Figure 1.4: Spectral density of Clayton PLM with respect to | · |2 given in (1.3.10) for
different parameter values for θ > 0 and η ∈ [0, 1]; left: spectral density µS2(dφ)/dφ
on [0, 2π); right: the same spectral density as Basrak graph
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different parameter values for θ > 0 and η ∈ [0, 1]; left: spectral density µS1(dφ)/dφ
on [0, 2π); right: the same spectral density as Basrak graph
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Figure 1.6: Spectral density of Clayton PLM with respect to |·|∞ given in (1.3.12) for
different parameter values for θ > 0 and η ∈ [0, 1]; left: spectral density µS∞(dφ)/dφ
on [0, 2π); right: the same spectral density as Basrak graph



1.3. Examples 35

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

PLC of independence and complete dependence

 

 
Complete dependence
Independence

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Clayton PLC, η=1

 

 
θ=1
θ=1.5
θ=2
θ=3
θ=5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Clayton PLC, θ=0.5

 

 
η=0
η=0.25
η=0.5
η=0.75
η=1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Clayton PLC, θ=10

 

 
η=0
η=0.25
η=0.5
η=0.75
η=1

Figure 1.7: Independence PLC Γ⊥, complete dependence Γ‖ and Clayton PLC Γη,θ

for different parameter values for θ and η ∈ [0, 1]; For η = 1 and increasing θ the
Clayton PLM becomes the complete dependence PLM and for η = 1 and decreasing
θ the independence PLM.

Furthermore, we visualize the Clayton PLC Γη,θ given in (1.3.8) for d = 2 in Fig-
ure 1.7. For η = 1 comparing the upper pictures shows that increasing θ yields
complete dependence since the mass near π/4 and 5π/4 increase as shown in Fig-
ures 1.4, 1.5 and 1.6. For decreasing θ the PLC is attracted to the origin since the
mass of Γη,θ moves to the axes and the PLM becomes the independence model. Dif-
ferent parameter values for η show how the mass of Γη,θ is distributed over the four
quadrants.
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Example 1.3.8 (A non-homogeneous Archimedean PLM)
Setting

ϕ(x) = ζ
|x|

1− |x|
(
η1{x>0} − (1− η)1{x<0}

)
, x ∈ [−1, 1], ζ > 0, η ∈ (0, 1),

yields the Archimedean Lévy copula given for ζ > 0 and η ∈ [0, 1] as

Ĉη,ζ(u1, . . . , ud) =
ζ
∏d

i=1 |ui|∏d
i=1(|ui|+ ζ)−

∏d
i=1 |ui|

(1.3.13)(
η1{u1···ud≥0} − (1− η)1{u1···ud<0}

)
, u ∈ (−∞,∞]d,

which becomes for d = 2

Ĉη,ζ(u1, u2) =
|u1u2|

|u1|+ |u2|+ ζ

(
η1{u1u2≥0} − (1− η)1{u1u2<0}

)
. (1.3.14)

The corresponding Archimedean PLC is given for ζ > 0 and η ∈ [0, 1] as

Γη,ζ(x1, . . . , xd) =
ζ∏d

i=1(1 + ζ|xi|)− 1(
η1{x1···xd>0} − (1− η)1{x1···xd<0}

)
, x ∈ (R \ {0})d

and becomes for d = 2

Γη,ζ(x1, x2) =
1

|x1|+ |x2|+ ζ|x1x2|
(
η1{x1x2>0} − (1− η)1{x1x2<0}

)
.

For η = 1 we obtain with ζ ↓ 0 the Clayton PLM given in Example 1.3.7 with
Parameter θ = 1 and with ζ ↑ ∞ independence. Obviously, this PLM is not 1-
homogeneous, although it has 1-homogeneous one-dimensional margins. Addition-
ally, in Example 2.2.4 we shall show that Γη,ζ is not regularly varying and, therefore,
a spectral measure does not even exist in the limit.

For d = 2 the non-homogeneous PLM Γη,ζ has the density

Γη,ζ(dx1, dx2) =
2 + ζ|x1|+ ζ|x2|+ ζ2|x1x2|

(|x1|+ |x2|+ ζ|x1x2|)3(
η1{x1x2>0} + (1− η)1{x1x2<0}

)
dx1dx2, (x1, x2) ∈ R2,

and transformation to polar coordinates yields

Γη,ζ ◦ T (dr, dφ) = r−2 dr Γr,φη,ζ(r, dφ) r ∈ [0,∞), φ ∈ [0, 2π),
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Figure 1.8: left: Logarithmized density Γr,φη,ζ(r, dφ)/dφ given in (1.3.15) for η = 1

and ζ = 0.001; For increasing radius r the density decreases near π/4 and increases
near 0 and π/2. right: Comparison of logarithmized densities of the Clayton PLM
for η = 1 and θ = 1 and the non-homogeneous PLM for η = 1 and ζ = 0.001; For
small r the densities are almost identical. For increasing r the non-homogeneous
density decreases rapidly near π/4 and more slowly near 0 and π/2, whereas the
homogeneous density decreases uniformly for all angles.

where

Γr,φη,ζ(dφ)

dφ
=

2 + ζr| cos(φ)|+ ζr| sin(φ)|+ ζ2r2| cos(φ) sin(φ)|
(| cos(φ)|+ | sin(φ)|+ ζr| cos(φ) sin(φ)|)3(

η1{cos(φ) sin(φ)>0} + (1− η)1{cos(φ) sin(φ)<0}
)
. (1.3.15)

Contrary to Equation (1.3.9), the density Γr,φη,ζ(dφ)/dφ depends on the radius r.
Consequently, for increasing r the density Γr,φη,ζ(dφ)/dφ increases for angles near
φ ∈ {0, π/2, π, 3π/2} and decreases for angles near φ ∈ {π/4, 3π/4, 5π/4, 7π/4} as
shown in the left picture of Figure 1.8. So for increasing radius the density of the non-
homogeneous PLM decreases strongly for angles near φ ∈ {π/4, 3π/4, 5π/4, 7π/4}
and weakly for angles near φ ∈ {0, π/2, π, 3π/2}, whereas the density of the homo-
geneous Clayton PLM decreases uniformly for all angles. For η = 1 both densities
are compared in the right picture of Figure 1.8. For a small radius r both densities
are almost identical, but for increasing r the non-homogeneous density decreases
rapidly near π/4 and more slowly near 0 and π/2, whereas the homogeneous density
decreases uniformly for all angles. Therefore, the non-homogeneous PLM Γη,ζ has,
for extreme values, more mass near the axes than the 1-homogeneous Clayton PLM.
This effect we shall see again in Section 3.4.2.
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Since there is no spectral measure we visualize the non-homogeneous PLM by its
PLC Γη,ζ in Figure 1.9. Comparing with Figure 1.7 we see that for small values of
ζ the PLM Γη,ζ is similar to the Clayton PLM Γη,θ for θ = 1. On the other side, we
see that for decreasing parameter ζ the PLC values become smaller and the PLM
converges to independence.
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Figure 1.9: Independence PLC Γ⊥, complete dependence PLC Γ‖ and the non-
homogeneous PLC Γη,ζ for different parameter values for ζ > 0 and η ∈ [0, 1];
For η = 1 and for η = 1 and increasing ζ the non-homogeneous PLM becomes the
independence PLM and for decreasing ζ the Clayton PLM with parameter θ = 1.

1.3.4 Further construction of Pareto Lévy measures

Obviously, every convex linear combination of PLMs Γi, i. e.
n∑
i=1

αiΓ
i with

n∑
i=1

αi = 1,
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defines a PLM. This parallels the result of copulas, cf. [52], Exercise 2.3. for Lévy
measures. Figure 1.10 shows for η = 1 the PLC of the PLMs defined by 1

2
Γ‖+ 1

2
Γ1,θ

(complete dependence + Clayton) and 1
2
Γ‖ + 1

2
Γ1,ζ (complete dependence + non-

homogeneous), respectively.
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Figure 1.10: PLC of mixed PLMs; left: 1
2
Γ‖+

1
2
Γ1,θ (complete dependence + Clayton);

right: 1
2
Γ‖ + 1

2
Γ1,ζ (complete dependence + non-homogeneous)





Chapter 2

Multivariate regular variation of
Lévy measures

In this chapter we investigate the dependence between the jumps of a multivariate
regularly varying Lévy process modelled by a PLM. Regular variation of a Lévy
processX is equivalent to regular variation of the r. v.X1 and its Lévy measure; cf.
Lemma 4.1.4. The notion of multivariate regular variation of r. v. s has been in the
focus of multivariate extreme value theory for years; cf. [55, 56]. Classical definitions
and concepts of regular variation are postponed to the Appendix as not to disturb
the flow of arguments. As in the case of r. v. s regular variation of Lévy measures
is formulated in terms of vague convergence of Radon measures on the one-point
uncompactification E := Rd \ {0}, equipped with the usual topology such that

B(E) ∩ (Rd \ {0}) = B(Rd) ∩ (Rd \ {0})

and the Borel sets of Rd bounded away from 0 are relatively compact in E. Therefore,
we consider in this section Lévy measures w. l. o. g. on E by setting

Π(B) := Π(B ∩ Rd) for B ∈ B(E). (2.0.1)

Regular variation in all generality has been investigated in [35] and for the notion
of one-point uncompactification we refer to [56].

Definition 2.0.1 ([35], Section 3)
A Lévy measure Π on E is called regularly varying if one of the following equivalent
definitions (1) or (2) holds.

41
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(1) There exists a norming sequence {cn}n∈N of positive numbers with cn ↑ ∞ as
n → ∞ and a non-zero Radon measure µ on B(E) with µ(Rd \ Rd) = 0 such
that

nΠ(cn·)
v→ µ(·) as n→∞ (2.0.2)

where v→ denotes vague convergence on B(E). Then the limit measure µ is
necessarily homogeneous of some degree α > 0. If Π is regularly varying with
index α, norming sequence {cn}n∈N and limit measure µ then we write Π ∈
RV(α, cn, µ).

(2) There exists a finite non-zero measure µS on B(S) such that for all u > 0

Π({x ∈ E : |x| > tu,x/|x| ∈ ·})
Π({x ∈ E : |x| > t})

w→ u−αµS(·) as t→∞ , (2.0.3)

where w→ denotes weak convergence on B(S). We call µS the spectral measure
of Π.

We did not specify the norm | · | since regular variation does not depend on the
choice of the norm. This can be seen by the relation between regular variation for
Lévy measures and r. v. s, given by Lemma 4.1.4, and the fact that the chosen norm
does not affect the regular variation of r. v. s.

The next lemma is well-known, but in order to keep this thesis self-contained we
give its proof in the Appendix.

Lemma 2.0.2
Let Π be a d-dimensional Lévy measure. If Π ∈ RV(α, cn, µ) then for x > 0 and for
all i = 1, . . . , d, it holds

nΠi(cnx)→ µi(1)x−α and nΠi(−cnx)→ µi(−1)x−α as n→∞, (2.0.4)

where µi(B) := µ({x ∈ E : xi ∈ B}) for B ∈ B(R\{0}) and µi(1), |µi(−1)| ∈ [0,∞).
Furthermore, there exists an index i∗ ∈ {1, . . . , d} such that µi∗(1) − µi∗(−1) > 0

and Πi∗ ∈ RV(α, cn, µi∗).

By Lemma 2.0.2 multivariate regular variation of a Lévy measure Π implies regular
variation of at least one of the one-dimensional marginal Lévy measures Πi. In
Section 2.1 we shall extend this result with respect to the PLM of the regularly
varying Lévy measure. Further, we prove the converse result and give conditions
on the margins and the PLM such that the Lévy measure is regularly varying. In
Section 2.2 we apply this result to the four examples of Section 1.3.



2.1. Multivariate regular variation and Pareto Lévy measures 43

2.1 Multivariate regular variation and Pareto Lévy
measures

To prove the converse of Lemma 2.0.2 we assume w. l. o. g. that Π1 ∈ RV(α, cn, µ1).
We also assume that the following tail balance conditions hold for x > 0 and for all
i = 1, . . . , d:

nΠi(cnx)→ p+
i x
−α and − nΠi(−cnx)→ p−i x

−α as n→∞, (2.1.1)

where p+
i , p

−
i ∈ [0,∞). For x ∈ R we define

p
sgn(x)
i :=

{
p+
i , if x ≥ 0,

p−i , if x < 0.

The result below corresponds to [48], Theorem 3.1, and extends [9], Theorem 1, for
general Lévy measures.

Theorem 2.1.1
Let Π be the d-dimensional Lévy measure defined in (1.1.8) with PLM Γ and one-
dimensional Lévy measures Πi, i = 1, . . . , d. Suppose that Π1 ∈ RV(α, cn, µ1) and
that the tail balance conditions (2.1.1) for the margins hold. Furthermore, suppose
that Γ ∈ RV(1, n, ν). Then Π ∈ RV(α, cn, µ) where for a, b ∈ Rd and for i = 1, . . . , d

ãi :=



0, if ai = 0,
sgn(ai)

p
sgn(ai)
i

|ai|α, if ai 6= 0, p
sgn(ai)
i > 0,

∞, if ai > 0, p+
i = 0,

−∞, if ai < 0, p−i = 0,

(2.1.2)

and b̃i is defined analogously, we have

µ((a, b]) = ν

(
d∏
i=1

(ãi, b̃i]

)
. (2.1.3)

Furthermore,

lim
t→∞

Π(t, . . . , t)

Π1(t)
=

µ(1, . . . , 1)

µ1(1)
=

1

p+
1

ν

(
1

p+
1

, . . . ,
1

p+
d

)
, (2.1.4)

lim
t→−∞

Π(t, . . . , t)

Π1(t)
=

µ(−1, . . . ,−1)

µ1(−1)
=
−1

p−1
ν

(
−1

p−1
, . . . ,

−1

p−d

)
. (2.1.5)
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Proof.
First we show that {nΠ(cn·)}n∈N is relatively compact in the vague topology. Since
Π is a Lévy measure for the ball B0,r = {x ∈ Rd : |x− 0| < r} we get

sup
n∈N

nΠ
(
cn(Rd \B0,r)

)
<∞ for all r > 0

and by [41], Theorem 15.7.5, the sequence {nΠ(cn·)}n∈N is relatively compact. So
there are subsequential vague limits and by [35], Theorem 2.8, we have to show
convergence for sets in a determining class. The sets {(a, b] : a, b ∈ E,a ≤ b} are
an ∩-stable generator of B(E), but by extension (2.0.1) it is enough to investigate
convergence on the sets {(a, b] : a, b ∈ Rd \ {0},a ≤ b}. Consequently, we have to
show that nΠ(cn(a, b])→ µ((a, b]) as n→∞ for all sets (a, b] with a, b ∈ Rd \{0},
0 /∈ (a, b] and

µ(∂(a, b]) = µ

(
d⋃

k=1

∏
i<k

[ai, bi]× {ak, bk} ×
∏
i>k

[ai, bi]

)
= 0

where µ is a non-zero Radon measure with µ(Rd \ Rd) = 0 and homogeneous of
degree α. For a, b ∈ E and the weights pi given in (2.1.1) we define the index sets

K1 := {i : aibi 6= 0, p
sgn(ai)
i p

sgn(bi)
i > 0},

K2 := {i : aibi 6= 0, p
sgn(ai)
i > 0, p

sgn(bi)
i = 0},

K3 := {i : aibi 6= 0, p
sgn(ai)
i = 0, p

sgn(bi)
i > 0},

K4 := {i : aibi > 0, p
sgn(ai)
i = p

sgn(bi)
i = 0},

K5 := {i : ai < 0 < bi, p
sgn(ai)
i = p

sgn(bi)
i = 0},

K6 := {i : ai = 0, p
sgn(bi)
i > 0},

K7 := {i : ai = 0, p
sgn(bi)
i = 0},

K8 := {i : bi = 0, p
sgn(ai)
i > 0},

K9 := {i : bi = 0, p
sgn(ai)
i = 0}.

(2.1.6)

Moreover, we set for a, b ∈ E with 0 /∈ (a, b]

µ((a, b]) (2.1.7)

:= ν

( ∏
i∈K1

(
sgn(ai)

p
sgn(ai)
i

|ai|α,
sgn(bi)

p
sgn(bi)
i

|bi|α
]
×
∏
i∈K2

(
sgn(ai)

p
sgn(ai)
i

|ai|α,∞

)

×
∏
i∈K3

(
−∞, sgn(bi)

p
sgn(bi)
i

|bi|α
]
×
∏
i∈K4

∅ ×
∏
i∈K5

(−∞,∞)×
∏
i∈K6

(
0,

sgn(bi)

p
sgn(bi)
i

|bi|α
]

×
∏
i∈K7

(0,∞)×
∏
i∈K8

(
sgn(ai)

p
sgn(ai)
i

|ai|α, 0

]
×
∏
i∈K9

(−∞, 0]

)
.
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Consider sets (a, b] with a, b ∈ Rd \ {0}, 0 /∈ (a, b] and µ(∂(a, b]) = 0. From
relation (1.1.12) we obtain

nΠ(cn(a, b]) (2.1.8)

= nΓ

(
n

∏
i∈K1,K2,K3,K4,K5

(
1

nΠi(cnai)
,

1

nΠi(cnbi)

]

×
∏

i∈K6,K7

(
1

nΠi(0+)
,

1

nΠi(cnbi)

]
×

∏
i∈K8,K9

(
1

nΠi(cnai)
,

1

nΠi(0+)

])
.

From the definition of the pi in (2.1.1) we conclude for n→∞ that(
1

nΠi(cnai)
, 1
nΠi(cnbi)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|α, sgn(bi)

p
sgn(bi)
i

|bi|α
]

=: B1 for i ∈ K1,(
1

nΠi(cnai)
, 1
nΠi(cnbi)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|α,∞
)

:= B2 for i ∈ K2,(
1

nΠi(cnai)
, 1
nΠi(cnbi)

]
→

(
−∞, sgn(bi)

p
sgn(bi)
i

|bi|α
]

=: B3 for i ∈ K3,(
1

nΠi(cnai)
, 1
nΠi(cnbi)

]
→ ∅ =: B4 for i ∈ K4,(

1
nΠi(cnai)

, 1
nΠi(cnbi)

]
→ (−∞,∞) =: B5 for i ∈ K5,(

1
nΠi(0+)

, 1
nΠi(cnbi)

]
→

(
0, sgn(bi)

p
sgn(bi)
i

|bi|α
]

=: B6 for i ∈ K6,(
1

nΠi(0+)
, 1
nΠi(cnbi)

]
→ (0,∞) =: B7 for i ∈ K7,(

1
nΠi(cnai)

, 1
nΠi(0+)

]
→

(
sgn(ai)

p
sgn(ai)
i

|ai|α, 0
]

=: B8 for i ∈ K8,(
1

nΠi(cnai)
, 1
nΠi(0+)

]
→ (−∞, 0] =: B9 for i ∈ K9.

Furthermore,

0 /∈ (a, b] ⇒ 0 /∈
d∏
i=1

(
1

nΠi(cnai)
,

1

nΠi(cnbi)

]
⇒ 0 /∈

9∏
i=1

Bi

and

µ(∂(a, b]) = 0 ⇒ ν

(
∂

9∏
i=1

Bi

)
= 0 ⇒ ν

(
∂

d∏
i=1

(
1

nΠi(cnai)
,

1

Πi(cnbi)

])
= 0 .

Since nΓ(n·) v→ ν(·) as n→∞ and ν has no atoms on the considered sets applying
Propositions 4.2.1 and 4.2.2 yields that expression (2.1.8) converges to µ defined in
(2.1.7). Consequently, relation (2.1.3) holds.
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The properties of µ can easily be seen. µ is an α-homogeneous Radon measure on
B(E) with µ(Rd \Rd) = 0 since ν is a 1-homogeneous Lévy measure. Moreover, µ is
a non-zero measure because the one-dimensional margin µ1 is a non-zero measure.
Since Π ∈ RV(α, cn, µ) and Π1 ∈ RV(α, cn, µ1) it holds with (2.1.3)

lim
t→∞

Π(t, . . . , t)

Π1(t)
= lim

n→∞

Π(cn, . . . , cn)

Π1(cn)
=
µ(1, . . . , 1)

µ1(1)
=

1

p+
1

ν

(
1

p+
1

, . . . ,
1

p+
d

)
and Equation (2.1.5) follows analogously. �

In the situation of Theorem 2.1.1 we obtain with Lemma 4.1.4 for the corresponding
Lévy process (X t)t≥0 that (X1

1 , . . . , X
d
1 ) is regularly varying. Moreover, with [11],

Theorem 1.1, we get for linear combinations of X1 the following result.

Corollary 2.1.2
Suppose that the situation of Theorem 2.1.1 holds. Let (X t)t≥0 = (X1

t , . . . , X
d
t )t≥0

be a Lévy process with Lévy measure Π ∈ RV(α, cn, µ). Then for all s ∈ Rd the
limit

lim
n→∞

nP((s,X1) > cn) = w(s) exists

and there exists one s∗ 6= 0 with w(s∗) > 0. If, additionally, X is spectrally positive
then all linear combinations (s,X), s ∈ Rd, are regularly varying with index α.

Note that the r. h. s. in (2.1.4) and (2.1.5) is independent of the index α, i. e. the limits
are defined by the dependence structure given by the PLM and the weights of the
marginal Lévy measures given in (2.1.1). Further, note that (2.1.4) and (2.1.5) define
a notion of tail dependence, well-known from extreme value theory for multivariate
regularly varying random vectors; see [40].

Definition 2.1.3 (Tail integral dependence coefficient)
Let Π be a Lévy measure with PLM Γ. We define the upper tail integral dependence
coefficient as

ΛU := lim
t→∞

tΓ(t, . . . , t)

and lower tail integral dependence coefficient as

ΛL := lim
t→−∞

|tΓ(t, . . . , t)|.

If ΛU > 0 we call Γ upper tail integral dependent. Similarly, if ΛL > 0 the PLM Γ

is called lower tail integral dependent. If Γ is upper (lower) tail integral dependent
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and the conditions (2.1.1) hold with p+
i > 0 (p−i > 0) for all i = 1, . . . , d then we

call Π upper (lower) tail integral dependent.

Note that ΛU and ΛL always exists since due to the standardized one-dimensional
margins we have

|tΓ(t, . . . , t)| ≤ 1 for t 6= 0.

Furthermore, note that regular variation does not imply tail integral dependence and
that tail integral dependence does not imply regular variation since a tail integral
defines a PLM only on (R \ {0})d.

[42], Theorem 5.1, gives the relation how a Lévy copula of a Lévy process X is
determined by the distributional copulas of the r. v. s (X1

t , . . . , X
d
t ) which yields the

following interpretation of the tail integral dependence coefficients.

Proposition 2.1.4
LetX = (X1

t , . . . , X
d
t ) be a Lévy process in Rd with infinite and absolutely continu-

ous one-dimensional Lévy measures and PLM Γ. Denote by Ĉ(σ1,...,σd)
D,t : [0, 1]d → [0, 1]

the survival copula of (σ1X
1
t , . . . , σX

d
t ) for t > 0 and σ = (σ1, . . . , σd) ∈ {−1, 1}d.

Then the following relations holds:

ΛU = lim
t→∞

lim
s→0

t

s
Ĉ

(σ1,...,σd)
D,s

(s
t
, . . . ,

s

t

)
and

ΛL = lim
t→−∞

lim
s→0

t

s
Ĉ

(σ1,...,σd)
D,s

(s
t
, . . . ,

s

t

)
.

Proof.
Denote by Ĉ the Lévy copula corresponding to the PLM Γ. According to [42],
Theorem 5.1, we obtain with Relation (1.1.7) for (x1, . . . , xd) ∈ (R \ {0})d and t > 0

that

Γ(tx1, . . . , txd) = Ĉ

(
1

tx1

, . . . ,
1

txd

)
= lim

s→0

1

s
Ĉ

(σ1,...,σd)
D,s

(
s

t|x1|
, . . . ,

s

t|xd|

) d∏
i=1

sgn(xi)

and the assertion follows. �

Note that Ĉ(σ1,...,σd)
D,s depends on s and so the limit for s→ 0 is not a tail copula, cf.

[45].

The following result is a converse of Theorem 2.1.1 and extends Lemma 2.0.2.
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Theorem 2.1.5
Let Π be a d-dimensional Lévy measure with one-dimensional margins Πi, i =

1, . . . , d and Γ the PLM given in (1.1.10). Suppose that Π ∈ RV(α, cn, µ). Then
the tail balance conditions (2.1.1) hold, there exists an index i∗ ∈ {1, . . . , d} such
that Πi∗ ∈ RV(α, cn, µi∗) and Γ ∈ RV(1, n, ν). For a, b ∈ Rd with (a, b] ⊂

∏d
i=1Di,

with Di defined in (1.1.15), the relation between µ and ν is given as

ν((a, b]) = µ

(
d∏
i=1

(âi, b̂i]

)
, (2.1.9)

where for i = 1, . . . , d

âi :=


0, if ai = 0,

sgn(ai)
(
p

sgn(ai)
i ai

)1/α

, if ai 6= 0, p
sgn(ai)
i > 0,

∞, if ai > 0, p+
i = 0,

−∞, if ai < 0, p−i = 0.

(2.1.10)

For a, b ∈ Rd with (a, b] ⊂ Rd \
∏d

i=1Di it holds ν = Γ.

Proof.
By Lemma 2.0.2, the tail balance conditions (2.1.1) hold with p+

i := µi(1) and p−i :=

−µi(−1) and there exists at least one index i∗ such that p+
i∗+p

−
i∗ > 0. Analogously to

the proof of Theorem 2.1.1 we have to show that nΓ(n(a, b])→ ν((a, b]) as n→∞
for all sets (a, b] with a, b ∈ Rd \ {0}, 0 /∈ (a, b] and ν(∂(a, b]) = 0, where ν is a
non-zero 1-homogeneous Radon measure with ν(Rd \ Rd) = 0. Recall the definition
of the sets Di in (1.1.15). By relation (1.1.17) we have that Γ is 1-homogeneous on
Rd \

∏d
i=1Di and so we define ν((a, b]) := Γ((a, b]) for sets (a, b] ⊂ (Rd \

∏d
i=1Di).

Further, we define ν on B(E) by

ν((a, b]) := µ({(x1, . . . , xd) ∈ Rd \ {0} : x̃i ∈ (ai, bi] for i = 1, . . . , d})

for (a, b] ⊂
∏d

i=1Di where x̃i is defined as in (2.1.2), and by ν(Rd \Rd) := 0. ν is a
non-zero 1-homogeneous Radon measure since µ is an α-homogeneous Lévy measure
and Γ is 1-homogeneous on Rd \

∏d
i=1Di. Moreover, ν is a non-zero measure because

µi∗ is a non-zero measure and p+
i∗ + p−i∗ > 0.

Suppose that a, b ∈ Rd \ {0} with 0 /∈ (a, b] and ν(∂(a, b]) = 0. With rela-
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tion (1.1.16) we obtain for (a, b] ⊂
∏d

i=1Di that

nΓ(n(a, b]) (2.1.11)

= nΠ⊗ λ|[0,1]d

({
(cnx1, . . . , cnxd, y1, . . . , yd) ∈ (Rd \ {0})× [0, 1]d :

1

nΠ̇i(cnxi) + nyi∆Πi(cnxi)
∈ (ai, bi] for i = 1, . . . , d

})
.

With
lim
n→∞

n∆Πi(cnxi) = lim
n→∞

n

(
lim
ξ↑cnxi

Πi(ξ)− Πi(cnxi)

)
= 0

it holds

lim
n→∞

1

nΠ̇i(cnxi) + yi∆Πi(cnxi)
=


0, if xi = 0
sgn(xi)

p
sgn(xi)
i

|xi|α, if xi 6= 0, p
sgn(xi)
i > 0,

∞, if xi > 0, p+
i = 0,

−∞, if xi < 0, p−i = 0.

We see that ν(∂(a, b]) = 0 holds if and only if µ(∂(â, b̂]) = 0, and 0 /∈ (a, b] implies
0 /∈ (â, b̂]. Hence, with Propositions 4.2.1 and 4.2.3 we obtain the convergence of
(2.1.11) as n→∞

nΓ(n(a, b])→ µ
({

(x1, . . . , xd) ∈ Rd \ {0} : x̃i ∈ (ai, bi] for all i
})

λ[0,1]d([0, 1]d)

= ν((a, b]),

and relation (2.1.9) follows. �

2.2 Examples

To simplify notation we consider the case d = 2. Moreover, we assume that we are in
the framework of Theorem 2.1.1 with Π1 ∈ RV(α, cn, µ1), p+

1 , p
−
1 > 0 and 0 ≤ p+

2 , p
−
2 ,

i.e. µi(x) = sgn(x)p
sgn(x)
i |x|−α for x 6= 0.

Example 2.2.1 (Independence PLM, continuation of Section 1.3.1)
Since Γ⊥ is 1-homogeneous we get Π ∈ RV(α, cn, µ). Further, with

Γ⊥(dx1, dx2) = δ0(dx1) |x2|−2 dx2 + |x1|−2 dx1 δ0(dx2), (x1, x2) ∈ R2 \ {0},
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the limit measure µ is supported on the axes. For x1 ∈ R\{0} we get µ(I(x1)×{0}) =

µ1(I(x1)) = p
sgn(x1)
1 |x1|−α, and for x2 ∈ R \ {0} we achieve

µ({0} × I(x2)) =

{
sgn(x2)p

sgn(x2)
2 |x2|−α, p

sgn(x2)
2 > 0,

0, p
sgn(x2)
2 = 0.

Therefore, the limit measure µ of Π results in

µ(dx1, dx2) =p
sgn(x1)
1

α

|x1|α+1
dx1δ0(dx2)

+ δ0(dx1) p
sgn(x2)
2

α

|x2|α+1
dx2, (x1, x2) ∈ R2 \ {0}

and the limits in (2.1.4) and (2.1.5) are equal to 0.

Example 2.2.2 (Complete dependence PLM, continuation of Section 1.3.2)
With Definition (1.3.5) and relation (2.1.3) we have

µ(I(x1)×I(x2)) =
(
p

sgn(x1)
1 |x1|−α ∧ psgn(x2)

2 |x2|−α
)

1K((x1, x2)), (x1, x2) ∈ (R\{0})2.

For x1 ∈ R \ {0} we get

µ(I(x1)× {0}) = µ1(I(x1))− lim
x2↑0

µ(I(x1)× I(x2))− lim
x2↓0

µ(I(x1)× I(x2))

=

{
p

sgn(x1)
1 |x1|−α, if psgn(x1)

2 = 0,

0, if psgn(x1)
2 > 0.

We see that µ can have mass on the coordinate axes, although Γ‖ has not. Analo-
gously for x2 ∈ R \ {0} with p+

1 , p
−
1 > 0 it holds µ({0} × I(x2)) = 0. Since Γ‖ has

support on {(x1, x2) ∈ (R\{0})2 : x1 = x2}, µ has support on {(x1, x2) ∈ (R\{0})2 :

x2 = (p
sgn(x2)
2 /p

sgn(x1)
1 )1/αx1}. Finally, the limit measure µ becomes

µ(dx1, dx2) = p
sgn(x1)
1

α

|x1|α+1
1{

x2=
(
p
sgn(x2)
2 /p

sgn(x1)
1

)1/α
x1

}dx1, x1 ∈ R \ {0}.

The limits in (2.1.4) and (2.1.5) are given as

lim
t→∞

Π(t, t)

Π1(t)
=
µ(1, 1)

µ1(1)
=
p+

1 ∧ p+
2

p+
1

and lim
t→−∞

Π(t, t)

Π1(t)
=
µ(−1,−1)

µ1(−1)
= −p

−
1 ∧ p−2
p−1

.
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Example 2.2.3 (Clayton PLM, continuation of Example 1.3.7)
For the Clayton PLM defined in (1.3.8) we have Γη,θ(R2 \ (R \ {0})2) = 0. Conse-
quently, we receive for x1 ∈ R \ {0}

µ(I(x1)× {0}) = lim
ε↑0

µ(I(x1)× (ε, 0]) (2.2.1)

=


Γη,θ

(
I
(

sgn(x1)

p
sgn(x1)
1

|x1|α
)
× {0}

)
, if p−2 > 0,

Γη,θ

(
I
(

sgn(x1)

p
sgn(x1)
1

|x1|α
)
× (−∞, 0]

)
, if p−2 = 0,

=

 0, if p−2 > 0,

limε↑0 Γη,θ

(
I
(

sgn(x1)

p
sgn(x1)
1

|x1|α
)
× I(ε)

)
, if p−2 = 0,

=

{
0, if p−2 > 0,

p
sgn(x1)
1 |x1|−α

(
η1{x1<0} + (1− η)1{x1>0}

)
, if p−2 = 0,

and for x2 ∈ R \ {0} we have

µ({0} × I(x2)) = lim
ε↑0

µ((ε, 0]× I(x2)) = lim
ε↑0

Γ

((
−1

p−1
|ε|α, 0

]
× I (x̃2)

)
= Γη,θ ({0} × I(x̃2)) = 0.

Let x1, x2 ∈ R \ {0}. Then for psgn(x2)
2 > 0 it follows

µ(I(x1)× I(x2)) =

(
(p

sgn(x1)
1 )−θ|x1|αθ +

(
p

sgn(x2)
2

)−θ
|x2|αθ

)−1/θ

(
η1{x1x2>0} + (1− η)1{x1x2<0}

)
,

and for psgn(x2)
i = 0 we get µ(I(x1)× I(x2)) = 0. Moreover, the density of the limit

measure is given as

µ(dx1, dx2) = α2(1 + θ)
(

(p
sgn(x1)
1 )−θ|x1|αθ + (p

sgn(x2)
2 )−θ|x2|αθ

)−1/θ−2

(p
sgn(x1)
1 )−θ(p

sgn(x2)
2 )−θ|x1|αθ−1|x2|αθ−11{psgn(x2)

2 >0}(
η1{x1x2>0} + (1− η)1{x1x2<0}

)
dx1 dx2

+ αp
sgn(x1)
1 |x1|−α−1 dx1 1{p−2 =0} δ0(dx2), (x1, x2) ∈ R2 \ {0}.

The limits in (2.1.4) and (2.1.5) result in

lim
t→∞

Π(t, t)

Π1(t)
=
µ(1, 1)

µ(1)
=


η
(
(p+

1 )−θ + (p+
2 )−θ

)−1/θ

p+
1

, if p+
2 > 0,

0 , if p+
2 = 0,
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and

lim
t→−∞

Π(t, t)

Π1(t)
=
µ(−1,−1)

µ(−1)
=


−η
(
(p−1 )−θ + (p−2 )−θ

)−1/θ

p−1
, if p−2 > 0,

0, if p−2 = 0.

So if η > 0 and p+
2 > 0 (p−2 > 0), then we always have upper (lower) tail dependence.

Example 2.2.4 (Non-homogeneous PLM, continuation of Example 1.3.8)
The non-homogeneous PLM Γη,ζ has standard 1-homogeneous margins and so for
every norming sequence cn such that Γi ∈ RV(1, cn, νi) it holds limn→∞ n/cn =

limn→∞ nΓi(cn) = νi((1,∞)) < ∞. Let cn be a norming sequence such that Γi ∈
RV(1, cn, νi). Then by (1.3.13) we get for x1, x2 6= 0 that

nΓη,ζ(cnI(x1), cnI(x2)) =
1

cn
n
|x1|+ cn

n
|x2|+ cn

cn
n
ζ|x1x2|

→ 0 as n→∞.

Consequently, the only possible limit measure for Γη,ζ is the independence PLM
Γ⊥. But for x1 ∈ R \ {0} the set B := I(x1) × {0} is relatively compact with
Γ⊥(∂B) = 0 and we obtain, on the one hand, nΓη,ζ(cnB) = 0 and, on the other
hand, Γ⊥(B) = |x1|−1 6= 0. Thus Γη,ζ is not only non-homogeneous, but also non-
regularly varying. By Theorem 2.1.5 a Lévy measure Π with PLM Γη,ζ can not be
regularly varying.



Chapter 3

First upwards passage event for sums
of dependent Lévy processes

In this chapter we derive new fluctuation identities for sums of Lévy processes and
study, in particular, the influence of jump dependence. We shall need the following
definitions, and we shall consider them for a sum X = X1 +X2 of the components
of a bivariate Lévy process (X1, X2).

We define the running suprema and running infima of X for t > 0

X t := sup
u≤t

Xu and X t := inf
u≤t

Xu , (3.0.1)

and the first upwards passage time over and the first downwards passage time under
a fixed barrier x ∈ R by

τ+
x := inf{t > 0 : Xt > x} and τ−x := inf{t > 0 : Xt < x}. (3.0.2)

Further, we define the time of the previous maximum of X and the time of the
previous minimum of X before time t > 0

Gt := sup{s < t : Xs = Xs} and Gt := sup{s < t : Xs = Xs}. (3.0.3)

More precisely, we investigate the following quantities for a sum X = X1 +X2 of a
bivariate Lévy process (X1, X2), which characterize first upwards passage of X over
a fixed barrier, when it jumps over it:

(1) τ+
x −Gτ+

x − the time of first passage relative to the time of the previous maxi-
mum,

53
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(2) Gτ+
x − the time of the previous maximum,

(3) Xτ+
x
− x the overshoot,

(4) x−Xτ+
x − the undershoot, and

(5) x−Xτ+
x − the undershoot of the previous maximum.

The common distribution of these five quantities is called the quintuple law.

Results for arbitrary Lévy processes can be found in the monographs [13], Chap-
ter VI, and [49], Chapters 6 and 7. For an illustration see Figure 7.1 of [49].

To see which jump of (X1, X2) causes the first passage of the sum X = X1 + X2

and where the dependence affects this event, we decompose the jumps of (X1, X2)

in single, common, positive and negative jumps. For motivation and better under-
standing of the decomposition for our quintuple law, we first formulate the quintuple
law for the sum of a bivariate random walk in Section 3.1. The general quintuple
law for the sum of a bivariate dependent Lévy process is proven in Section 3.2.
In Section 3.3 we consider two situations where all quantities of the quintuple law
can be identified concretely. We calculate explicit quantities in Section 3.4 where
the dependence is modelled by a Lévy copula, and give four examples for different
dependence structures. In Section 3.5 we apply our results to insurance risk theory
and obtain a detailed description of the ruin event.

3.1 The quintuple law for the sum of a bivariate
random walk

Consider a bivariate random walk (Z1
n, Z

2
n)n∈N0 starting in (Z1

0 , Z
2
0) = 0 and

Z1
n =

n∑
i=1

ξ1
i and Z2

n =
n∑
i=1

ξ2
i , n ∈ N ,

where (ξ1
n, ξ

2
n)n∈N are independent and identically distributed (i. i. d.) with bivariate

d. f. F and margins F1 and F2, respectively. We are interested in first upwards
passage across x ≥ 0 of their sum

Z0 = 0 and Zn =
n∑
i=1

(ξ1
i + ξ2

i ) , n ∈ N , (3.1.1)
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where (ξ1
n + ξ2

n)n∈N are i. i. d. with d. f. F+. For i = 1, 2 we allow Fi to have an atom
at zero with the consequence that the random walks can have jumps of size 0 and
so one marginal random walk can jump without the other. We separate the jumps
of Z according to their origin and their sign and decompose Z for each n ∈ N into
components as follows:

Zn = P 1
n + P 2

n + P 3
n + P 4

n + P 5
n (3.1.2)

+
n∑
i=1

ξ1
i 1{ξ1i<0,ξ2i=0} +

n∑
j=1

ξ2
j 1{ξ1j=0,ξ2j<0} +

n∑
k=1

(ξ1
k + ξ2

k)1{ξ1k<0,ξ2k<0} ,

where P 1, . . . , P 5 are those components, where upwards passage can happen; more
precisely,

P 1
n =

n∑
i=1

ξ1
i 1{ξ1i>0,ξ2i=0} , P 2

n =
n∑
i=1

ξ2
i 1{ξ1i=0,ξ2i>0} ,

P 3
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1i>0,ξ2i>0} , P 4
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1i>0,ξ2i<0} ,

P 5
n =

n∑
i=1

(ξ1
i + ξ2

i )1{ξ1i<0,ξ2i>0} ,

and the increments ∆P k have d. f. s FPk for k = 1, . . . , 5. Further, we define the
analogous quantities to (3.0.1)–(3.0.3): the running maxima of Z by

Zn := max
k≤n

Zk , n ∈ N0 ,

the first strictly upwards passage time of Z over a fixed barrier x ∈ R

T +
x := min{n ∈ N : Zn > x}

and the time of the previous maximum of Z before time n ∈ N

G
n

:= max{k ≤ n : Zk = Zn} . (3.1.3)

The quantities (1)–(5) from the introduction of this chapter are given for the random
walk Z by

(1) T +
x − 1 − GT

+
x −1 the number of time points between the previous maximum

and the first passage,

(2) GT
+
x −1 the time of the previous maximum,
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(3) ZT +
x
− x the overshoot,

(4) x− ZT +
x −1 the undershoot, and

(5) x− ZT +
x −1 the undershoot of the previous maximum.

To describe the fluctuations of Z, we use its ladder processes, which are defined as
follows.

Definition 3.1.1 (Ladder processes of a random walk)
Let (Zn)n∈N0 be random walk in R. Let (Ln)n∈N0 denote the number of times a
maximum is reached after n steps, given by

L0 := 0 and Ln := #{i ≤ n : Zi ≥ Zi−1}, n ∈ N.

The bivariate weakly ascending ladder process (L−1
n , Hn)n∈N0 of Z is defined by

L−1
0 := 0, L−1

n := inf{k ≥ 1 : Lk = n} and H0 := 0, Hn := ZL−1
n
, n ∈ N,

where we set inf ∅ := +∞. Let (L̂∗n)n∈N0 denote the number of times a new minimum
is reached after n steps, given by

L̂∗0 := 0 and L̂∗n := #{i ≤ n : −Zi > −Zi−1}, n ∈ N.

The bivariate strictly descending ladder process (L̂−1∗
n , Ĥ∗n)n∈N0 of Z is defined by

L̂−1∗
0 := 0, L̂−1∗

n := inf{k ≥ 1 : L̂∗k = n} and Ĥ∗0 := 0, Ĥ∗n := −ZL̂−1∗
n
, n ∈ N.

The weakly ascending time L−1
n is the number of steps that Z requires to achieve n

maxima, where the same maximum can be reached again, and the weakly ascending
ladder height Hn is the n-th maximum of Z. The strictly descending ladder time
L̂−1∗
n describes the number of steps that Z requires to reach n new minima and Ĥn

is the values of the n-th new minima of Z. Since (L−1
n , Hn)n∈N0 and (L̂−1,∗

n , Ĥ∗n)n∈N0

are (possibly killed) renewal processes, their associated potential measures are given
as

U(j, dx) =
∞∑
n=0

P(L−1
n = j,Hn ∈ dx), (3.1.4)

Û∗(i, dx) =
∞∑
n=0

P(L̂−1∗
n = i, Ĥ∗n ∈ dx).

Thereby, the quintuple law can be formulated for the random walk situation.
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Theorem 3.1.2 (Quintuple law for the sum of a bivariate random walk)
Let Z be a random walk as in (3.1.1) and let x > 0 be a constant barrier. For u > 0,
y ∈ [0, x], v ≥ y and i, j ∈ N0 we have

P
(
T +
x − 1−GT

+
x −1

= i, G
T +
x −1

= j, ZT +
x
− x ∈ du,

x− ZT +
x −1 ∈ dv, x− ZT +

x −1 ∈ dy,∆ZT +
x

= ∆P k
T +
x

)
(3.1.5)

= FPk(v + du) Û∗(i, dv − y)U(j, x− dy), k = 1, . . . , 5,

where FPk are the d. f. s of the increments of P k defined in (3.1.2).

Proof.
The decomposition (3.1.2) in combination with the proof of Theorem 4 of [22] yields
the following. The left-hand side (l. h. s.) of (3.1.5) is equal to

P
(
Zn ≤ x− y, 0 ≤ n < j, Zj ∈ x− dy, Zj+m < x− y, 1 ≤ m < i,

Zj+i ∈ x− dv, Zj+i+1 ∈ x+ du,∆ZT +
x

= ∆P k
T +
x

)
= P (Zn ≤ x− y, 0 ≤ n < j, Zj ∈ x− dy)

× P (Zm < 0, 1 ≤ m < i, Zi ∈ y − dv) P
(
Z1 ∈ v + du, Z1 = P k

1

)
.

By duality, we have

P (Zm < 0, 1 ≤ m < i, Zi ∈ y − dv) = Û∗(i, dv − y),

and with P
(
Z1 ∈ v + du, Z1 = P k

1

)
= FPk(v + du), the right-hand side (r. h. s.) of

(3.1.5) results. �

For the barrier x = 0 we have ZT +
0 −1 = 0 a. s. and analogously to Theorem 3.1.2 we

get the following result.

Corollary 3.1.3
Let Z be a random walk as in (3.1.1) and let x = 0 be a constant barrier. For u > 0,
v ≥ 0 and i, j ∈ N0 we have

P
(
T +

0 − 1−GT
+
0 −1

= i, G
T +
0 −1

= j, ZT +
0
∈ du,−ZT +

0 −1 ∈ dv,∆ZT +
0

= ∆P k
T +
0

)
= FPk(v + du) Û∗(i, dv)U(j, {0}), k = 1, . . . , 5,

where FPk are the d. f. s of the increments of P k defined in (3.1.2).
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Remark 3.1.4
Instead of Gn given in (3.1.3) we can also consider G∗n := min{k ≥ n : Zk = Zn}.
Then Theorem 3.1.2 and Corollary 3.1.3 analogously hold for the strictly (instead of
weakly) ascending and the weakly (instead of strictly) descending ladder processes.

To study the influence of different dependence structures, we specify the dependence
structure between the random walks Z1 and Z2 by a copula C on the increments ξ1

and ξ2 as described in Section 1.1.1. Then we find expressions for FPk and also for
the d. f. F+ of the sum ξ1 + ξ2, which makes the quintuple law of Theorem 3.1.2 and
Corollary 3.1.3 precise in reference of the chosen copula. In the following result we
only consider the situation where both random walks always jump together. If F1,
F2 have atoms in 0, then we can decompose the random walks as in (3.1.2) and the
result applies by observing that the absolutely continuous parts of F1 and F2 may
have total mass smaller than 1.

Theorem 3.1.5
Let Z be a random walk as in (3.1.1). Suppose that Fi for i = 1, 2 are absolutely
continuous and the dependence between Z1 and Z2 is modelled by a twice contin-
uously differentiable copula C. Then P 1 = P 2 = 0 a. s. and FPk for k = 3, 4, 5 of
Theorem 3.1.2 are given for z > 0 by

FP 3(z) =

∫ z

0

[
∂C(u, v)

∂u

∣∣∣
u=F1(x1)

]F2(z−x1)

F2(0)

F1(dx1),

FP 4(z) =

∫ 0

−∞

[
∂C(u, v)

∂v

∣∣∣
v=F2(x2)

]F1(z−x2)

F1(0)

F2(dx2),

FP 5(z) =

∫ 0

−∞

[
∂C(u, v)

∂u

∣∣∣
u=F1(x1)

]F2(z−x1)

F2(0)

F1(dx1).

Proof.
Since F1, F2 are absolutely continuous, all increments of Z1 and Z2 are non-zero and
P 1 = P 2 = 0 a. s.. From (1.1.1) we obtain for x1, x2 ∈ R

F (dx1, dx2) =
∂2C(u, v)

∂u∂v

∣∣∣∣
u=F1(x1),v=F2(x2)

F1(dx1)F2(dx2).

Furthermore, for z > 0

FP 3(z) =

∫ z

0

∫ z−x1

0

F (dx1, dx2)
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and the expressions for FP 4 and FP 5 follow analogously. �

The potential measures U and Û∗ in Theorem 3.1.2 can be identified only in special
cases as, for example, when Z has only positive jumps.

Recall the n-fold convolution F n∗
i (dx) of a probability measure Fi(dx), where F 0∗

i (dx) =

δ0(dx) is the Dirac-measure in 0 and F 1∗ = F .

Theorem 3.1.6
Let Z be a random walk as in (3.1.1). Suppose that Fi for i = 1, 2 are absolutely
continuous with F1(0) = F2(0) = 0. Further, let the dependence between ξ1 and ξ2

be modelled by a twice continuously differentiable copula C. Then Û∗({0}, {0}) = 1

and, for j ∈ N0 and x ≥ 0,
U(j, dx) = F j∗

P 3(dx) ,

where FP 3 is given in Theorem 3.1.5.

Proof.
Z reaches a new maximum with every jump. So in (3.1.4) we have P(Tn = j,Hn ∈
dx) = 1{n=j}P(Hj ∈ dx) and Hj is the sum of j independent jumps with d. f. FP 3 .
�

3.2 The quintuple law for the sum of a bivariate
Lévy process

For an arbitrary bivariate Lévy process (X1, X2) with characteristic triplet (γ, A,Π)

we consider the sum process X = X1 + X2 which is again a Lévy process; see [58],
Proposition 11.10. The proofs of our results rely on the Lévy-Itô decomposition of
(X1, X2) into two independent parts, corresponding to (1.0.1),(

X1
t

X2
t

)
=

(
W 1
t

W 2
t

)
+

(
S1
t

S2
t

)
, t ≥ 0,

where (W 1,W 2) is the Gaussian part of (X1, X2) with characteristic triplet (γ, A, 0).
The Lévy process (S1, S2) is the jump part of (X1, X2) with Lévy measure Π and
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is represented by

(
S1
t

S2
t

)
=

∫
(0,t]

∫
|x|>1

x J(dx, ds) (3.2.1)

+ lim
ε↓0

∫
(0,t]

∫
ε<|x|≤1

(x J(dx, ds)− xΠ(dx) ds) , t ≥ 0,

see [58], Theorem 19.2. The convergence in the second term on the r. h. s. is a. s. and
uniform on compacts for t ∈ [0,∞). The measure J is a Poisson random measure
with intensity measure Π(dx) ds on R2 × (0,∞). We investigate the first upwards
passage either by a jump of the sum process X or equivalently by a jump of the sum
process S = S1 + S2.

Analogously to the random walk in Section 3.1 we want to decompose the paths of
(S1, S2) according to their jump behaviour in single, common, positive and negative
jumps. This causes no problems, if (S1, S2) a. s. has sample paths of bounded varia-
tion; see [49], Exercise 2.8. But (S1, S2) may a. s. have sample paths of unbounded
variation, so that – according to [15], relation (31.32) – a pathwise decomposition is
not possible. In this case we truncate for arbitrary 0 < ε < 1 all jumps smaller than
ε and consider first the truncated process for t ≥ 0

(
S1,ε
t

S2,ε
t

)
=

∫
(0,t]

∫
|x|>1

x J(dx, ds) (3.2.2)

+

∫
(0,t]

∫
ε<|x|≤1

(x J(dx, ds)− xΠ(dx) ds)

which is a CPP with drift (DS1,ε , DS2,ε) = −
∫
ε<|x|≤1

xΠ(dx) and Lévy measure
Π 1{|x|>ε}. For ε ↓ 0 the process (S1,ε

t , S2,ε
t )t≥0 a. s. converges to (S1

t , S
2
t )t≥0 and the

convergence is locally uniform in t ∈ [0,∞); see Lemma 20.7 of [58]. As (S1,ε, S2,ε)

a. s. has sample paths of bounded variation, we can decompose (S1,ε, S2,ε) in inde-
pendent components. We denote by S1,ε,+ the process of single positive jumps of
S1,ε; i. e. for t > 0

S1,ε,+
t =

∫
(0,t]

∫
x1>1

x1 J((dx1, {0}), ds)

+

∫
(0,t]

∫
ε<x1≤1

(x1 J((dx1, {0}), ds)− x1 Π(dx1, {0}) ds)
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and by S1,ε,− the single negative jumps of S1,ε, i. e. for t > 0

S1,ε,−
t =

∫
(0,t]

∫
x1<−1

x1 J((dx1, {0}), ds)

+

∫
(0,t]

∫
−1≤x1<−ε

(x1 J((dx1, {0}), ds)− x1 Π(dx1, {0}) ds) .

S2,ε,+ and S2,ε,− are defined analogously for S2,ε.

The processes S1,ε,ij and S2,ε,ij for i, j ∈ {+,−} are the dependent jump parts
of (S1,ε, S2,ε), where e. g. S1,ε,++ denotes the positive jumps of S1,ε which happen
together with positive jumps of S2,ε; i. e. for t > 0

S1,ε,++
t =

∫
(0,t]

∫
x1>1

x1 J((dx1, (0,∞)), ds)

+

∫
(0,t]

∫
ε<x1≤1

(x1 J((dx1, (0,∞)), ds)− x1 Π(dx1, (0,∞)) ds) .

Analogously, S2,ε,++ denotes the positive jumps of S2,ε which happen together with
positive jumps of S1,ε. The notations S1,ε,+−, S2,ε,+− and S1,ε,−−, S2,ε,−− should be
clear now.

The Lévy measures of these processes are for B ∈ B((0,∞)) given by

Π1,ε,+(B) = Π((B ∩ (ε,∞))× {0}) and Π2,ε,+(B) = Π({0} × (B ∩ (ε,∞))) (3.2.3)

with analogous definitions for Π1,ε,− and Π2,ε,−. For i, j ∈ {+,−} and B ∈ B(R2) we
define

B1 := {x ∈ R : (x, 0) ∈ B} and B2 := {y ∈ R : (0, y) ∈ B}.

Then the Lévy measure of the joint jumps is given by

Π1,ε,ij,2,ε,ij(B) = Π(B ∩ {|x| > ε})− Π((B1 ∩ {|x1| > ε})× {0})
−Π({0} × (B2 ∩ {|x2| > ε})). (3.2.4)

This implies the following Lévy-Itô decomposition for the components(
X1

X2

)
=

(
W 1 + limε↓0 S

1,ε

W 2 + limε↓0 S
2,ε

)

=

(
W 1 + limε↓0 (S1,ε,+ + S1,ε,− + S1,ε,++ + S1,ε,+− + S1,ε,−+ + S1,ε,−−)

W 2 + limε↓0 (S2,ε,+ + S2,ε,− + S2,ε,++ + S2,ε,+− + S2,ε,−+ + S2,ε,−−)

)
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and for the sum process

X = X1 +X2 = W 1 +W 2 + S1 + S2

= W 1 +W 2

+ lim
ε↓0

(
P 1,ε + P 2,ε + P 3,ε + P 4,ε + P 5,ε + S1,ε,− + S2,ε,− + Sε,−−

)
, (3.2.5)

where W 1 +W 2 denotes the Gaussian part of X which is independent of the jump
component, and in (3.2.5) we have set Sε,−− := S1,ε,−−+S2,ε,−−. Then we summarize,
using analogous notation to (3.1.2):

P 1,ε := S1,ε,+, P 2,ε := S2,ε,+, P 3,ε := S1,ε,++ + S2,ε,++,

P 4,ε := S1,ε,+− + S2,ε,+−, P 5,ε := S1,ε,−+ + S2,ε,−+,

which are all independent Lévy processes since they a. s. never jump together; see
[58], Exercise 12.10. Since all processes in (3.2.5) are independent we can let ε ↓ 0

componentwise. According to [58], Lemma 20.7, we have

lim
ε↓0

P k,ε =: P k a. s. (3.2.6)

where the convergence is uniform on compacts for t ∈ [0,∞) for k = 1, . . . , 5. The
Lévy measures ΠPk,ε converge to ΠPk in the sense that

lim
ε↓0

∫
R
f(x) ΠPk,ε(dx) =

∫
R
f(x) ΠPk(dx) (3.2.7)

for all bounded continuous functions f : R→ R vanishing on a neighbourhood of 0;
see [58], Theorem 8.7.

Further, the quintuple law is derived as a consequence of the Wiener-Hopf factoriza-
tion where we refer to the monograph of [49]. Therefore, we need the ladder processes
of X which are based on the notion of local time at the maximum and the regularity
of zero.

Definition 3.2.1 (Regularity of zero, [49], Definition 6.4)
For a Lévy process X, the point 0 is said to be regular (resp. irregular) for an open
or closed set B if

P (inf{t > 0 : Xt ∈ B} = 0) = 1 (resp. 0).

According to [49], Definition 6.1 and Theorem 6.7(ii), the notion of local time at the
maximum is defined as follows.
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Definition 3.2.2 (Local time at the maximum and minimum)
Let X be a Lévy process in R.

(1) If 0 is regular for [0,∞) then the local time at the maximum L = (Lt)t≥0

is a continuous, non-decreasing, [0,∞)-valued, F -adapted process with the
following properties:

(i) The support of the Stieltjes measure dLt is the closure of the random set
times {t ≥ 0 : X t = Xt} and is finite for every t ≥ 0.

(ii) For every F -stopping time T with XT = XT a. s. on {T <∞}, the shifted
process (

XT+t −XT , XT+t −XT+t, LT+t − LT
)
t≥0

is independent of FT under P(·|T <∞) and has the same law as
(
X,X −X,L

)
under P.

(2) If 0 is irregular for [0,∞)then we define the local time at the maximum as

Lt :=
nt∑
i=0

eiλ, (3.2.8)

where {eiλ}i∈N0 are independent and exponentially distributed r. v. s with pa-
rameter λ and

nt := #{0 < s ≤ t : Xs = Xs}.

The local time at the maximum for the dual process −X we call local time at the
minimum.

In the regular case (1) there is always a local time at the maximum unique up to a
multiplicative constant, by [49], Theorem 6.7(i). Further, the right-continuous, non-
adapted process given in (3.2.8) satisfies the properties (i) and (ii) of Definition 3.2.2;
see [49], Theorem 6.7(ii). According to [49], p. 147, we choose for spectrally negative
processes the local time at the maximum as X.

Finally, the ladder processes of a Lévy process are given by the following definition.

Definition 3.2.3 (Ladder process of a Lévy process, [49], p. 147)
Let X be a Lévy process in R and L a local time at the maximum with L∞ :=

limt→∞ Lt. The inverse local time process

L−1
t :=

{
inf{s > 0 : Ls > t}, t < L∞,

∞, else,
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is called the ascending ladder time process of X and

Ht :=

{
XL−1

t
, t < L∞,

∞, else,

is called the ascending ladder height process of X. The bivariate process (L−1
t , Ht)t≥0

is the ascending ladder process. The ascending ladder process (L̂−1
t , Ĥt)t≥0 of −X is

called the descending ladder process of X.

The range of the ascending ladder time L−1 corresponds to the time at which X

reaches maxima and so the range of the ascending ladder height H corresponds to
the set of maxima of X. Recall from [13], Proposition VI.4, and [49], p. 158, that
with the exception of a CPP all local extrema of X are distinct, i. e. its maxima
are obtained at unique times. This means that we only need to distinguish between
weak and strict ladder processes for CPPes, for all other processes weak and strict
ladder processes coincide. Thus, we exclude CPPes in the following and treat them
separately in Remark 3.2.7. The following situation holds for every Lévy process X
which is not a CPP.

(L−1
t , Ht)t≥0 and (L̂−1

t , Ĥt)t≥0 are (possibly killed) bivariate subordinators and their
joint Laplace exponents κ and κ̂ are for α, β ≥ 0 defined by the identities

e−κ(α,β) = E
[
e−αL

−1
1 −βH11{1<L∞}

]
and e−κ̂(α,β) = E

[
e−αL̂

−1
1 −βĤ11{1<L̂∞}

]
.

If L∞ <∞ a. s., then L∞ is exponentially distributed with killing rate q > 0, where
q > 0 if and only if limt→∞Xt = −∞ a. s.. By Equations (6.15) and (6.16) of [49]
we can also write for β ∈ [0,∞) + iR

κ(0, β) = q + ξ(β) = q +DHβ +

∫
(0,∞)

(1− e−βx) ΠH(dx), (3.2.9)

where DH = −γH −
∫
|x|≤1

xΠH(dx)) ≥ 0 is the drift of H and ΠH its Lévy measure.
Note that the function ξ(·) is the Laplace exponent of an unkilled subordinator.
Similar notation is used for κ̂(0, β) by replacing q, ξ, DH and ΠH by q̂, ξ̂, DĤ and
ΠĤ . We also recall that whenever q > 0 we have q̂ = 0.

Associated with the ascending and descending ladder processes are the bivariate
potential measures on [0,∞)2

U(ds, dx) =

∫ ∞
0

P(L−1
t ∈ ds,Ht ∈ dx) dt, (3.2.10)

Û(ds, dx) =

∫ ∞
0

P(L̂−1
t ∈ ds, Ĥt ∈ dx) dt. (3.2.11)
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Since a local time at the maximum is defined only up to a multiplicative constant, see
Definition 3.2.2, the exponent κ can only be defined up to a multiplicative constant,
which is then also inherited by U .

Now we are ready to state the general quintuple law for the sum of a bivariate Lévy
process.

Theorem 3.2.4 (Quintuple law for the sum of Lévy processes)
LetX be a Lévy process as in (3.2.5). Suppose thatX is not a CPP and Π1((0,∞)) >

0, Π2((0,∞)) > 0. Consider the first upwards passage of X over a constant barrier
x > 0. Then there exists a normalization of local time at the maximum, given by
the identity

q = κ(q, 0)κ̂(q, 0) for q > 0, (3.2.12)

such that for u > 0, y ∈ [0, x], v ≥ y, s ≥ 0, t ≥ 0,

P
(
τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

x−Xτ+
x − ∈ dv, x−Xτ+

x − ∈ dy,∆Xτ+
x

= ∆P k
τ+
x

)
(3.2.13)

= ΠPk(du+ v) Û(dt, dv − y)U(ds, x− dy), k = 1, . . . , 5,

where P k is defined in (3.2.6).

Proof.
Case 1: S1 + S2 is of bounded variation.
Letm, k, f, g and h be positive continuous functions with compact support satisfying
f(0) = g(0) = h(0) = 0. The condition f(0) = g(0) = h(0) = 0 is to exclude from
calculation the case of first passage by creeping, i. e. the event {Xτ+

x
= x} because

we consider only the case, when the overshoot Xτ+
x
−x is a. s. positive. Since S1 +S2

is of bounded variation we decompose it as in (3.2.5) into

S1 + S2 = P 1 + P 2 + P 3 + P 4 + P 5 + S1,− + S2,− + S−−.

Let J1+2 denote the Poisson random measure associated with the jumps of S1 +S2.
It holds

J1+2 = JP 1 + JP 2 + JP 3 + JP 4 + JP 5 + JS1,− + JS2,− + JS−− ,

where JPk denotes the Poisson random measure associated with the jumps of P k

given in (3.2.5). As P 1, P 2, P 3, P 4, P 5, S1,−, S2,− and S−− are independent, JP 1 ,
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JP 2 , JP 3 , JP 4 , JP 5 , JS1,− , JS2,− and JS−− have disjoint support with probability one.
JPk has intensity measure ΠPk(dx) dt and analogously to Step 1 of the proof of
Theorem 3 in [22] we obtain with the compensation formula, [49], Theorem 4.4, for
k = 1, . . . , 5

E

[
m(τ+

x −Gτ+
x −)k(Gτ+

x −)f(Xτ+
x
− x)g(x−Xτ+

x −)h(x−Xτ+
x −)1{

∆X
τ+x

=∆Pk
τ+x

}
]

= Êx

[∫ τ−0

0

m(t−Gt)k(Gt)wk(Xt)h(X t) dt

]
, (3.2.14)

where wk(z) = g(z)
∫

(z,∞)
f(u − z) ΠPk(du) and Ê refers to the dual process −X.

Using identity (7) in [22], which is based on the Wiener-Hopf factorization and the
normalization (3.2.12), the expectation in (3.2.14) is equal to∫

φ∈[0,∞)

∫
t∈[0,∞)

∫
ξ∈[0,x]

∫
s∈[0,∞)

m(t)k(s)h(x− ξ)wk(x+ φ− ξ)U(ds, dξ) Û(dt, dφ).

This results in the following first identity and, proceeding by substitution of vari-
ables, we obtain∫

u>0,y∈[0,x],v≥y,s≥0,t≥0

m(t)k(s)f(u)g(v)h(y)

P
(
τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du,

x−Xτ+
x − ∈ dv, x−Xτ+

x − ∈ dy,∆Xτ+
x

= ∆P k
τ+
x

)
=

∫
φ∈[0,∞)

∫
t∈[0,∞)

∫
ξ∈[0,x]

∫
s∈[0,∞)

m(t)k(s)h(x− ξ)wk(x+ φ− ξ)U(ds, dξ) Û(dt, dφ)

=

∫
φ∈[0,∞)

∫
t∈[0,∞)

∫
y∈[0,x]

∫
s∈[0,∞)

m(t)k(s)h(y)wk(y + φ)U(ds, x− dy) Û(dt, dφ)

=

∫
y∈[0,x]

∫
s∈[0,∞)

∫
v∈(y,∞)

∫
t∈[0,∞)

m(t)k(s)h(y)wk(v) Û(dt, dv − y)U(ds, x− dy)

=

∫
y∈[0,x]

∫
s∈[0,∞)

∫
v∈[y,∞)

∫
t∈[0,∞)

m(t)k(s)h(y)g(v)

∫
(v,∞)

f(η − v) ΠPk(dη)

Û(dt, dv − y)U(ds, x− dy)

=

∫
y∈[0,x]

∫
s∈[0,∞)

∫
v∈[y,∞)

∫
t∈[0,∞)

m(t)k(s)h(y)g(v)

∫
(0,∞)

f(u) ΠPk(du+ v)

Û(dt, dv − y)U(ds, x− dy).
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Case 2: S1 + S2 is of unbounded variation.
We start with the truncated process (S1,ε, S2,ε) for ε > 0 as given in (3.2.2). Then
S1,ε+S2,ε is of bounded variation and we can decompose its sample paths according
to its jump behaviour like in (3.2.5). The unbounded variation of X implies that 0

is regular for (0,∞) and (−∞, 0); see [49], Theorem 6.5(i). Therefore, U({0}, {0}) =

Û({0}, {0}) = 0. We apply the result of Case 1 above dropping the point 0 from
integration, which yields∫

u>0,y∈[0,x],v≥y,u+v>ε,s≥0,t≥0

m(t)k(s)f(u)g(v)h(y)

P
(
τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv,

x−Xτ+
x − ∈ dy,∆Xτ+

x
= ∆P k,ε

τ+
x

)
=

∫
φ∈(0,∞)

∫
t∈(0,∞)

∫
ξ∈(0,x]

∫
s∈(0,∞)

m(t)k(s)h(x− ξ)g(x+ φ− ξ)∫
(x+φ−ξ,∞)

f(η − (x+ φ− ξ)) ΠPk,ε(dη)U(ds, dξ) Û(dt, dφ)

=

∫
y∈[0,x)

∫
s∈(0,∞)

∫
v∈(y,∞)

∫
t∈(0,∞)

m(t)k(s)h(y)g(v)

∫
(v,∞)

f(η − v) ΠPk,ε(dη)

Û(dt, dv − y)U(ds, x− dy).

For ε ↓ 0 the processes P k,ε converge a. s. to P k and, hence, they also converge in
distribution. Moreover, their Lévy measures converge in the sense of (3.2.7) and for
all v > 0 the function f̃(η) := f(η−v)1{η>v} is bounded and continuous and vanishes
on [0, v]. So for all v > 0

lim
ε↓0

∫
(v,∞)

f(η − v) ΠPk,ε(dη) = lim
ε↓0

∫
(0,∞)

f̃(η) ΠPk,ε(dη) =

∫
(0,∞)

f̃(η) ΠPk(dη)

=

∫
(v,∞)

f(η − v) ΠPk(dη) =

∫
(0,∞)

f(u) ΠPk(du+ v)

and (3.2.13) follows. �

For the barrier x = 0 the situation simplifies by considering the two possible situa-
tions:

(R) 0 is regular for (0,∞); i. e. τ+
0 = 0 a.s., or

(I) 0 is irregular for (0,∞); i. e. τ+
0 > 0 a. s..
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Let X be a Lévy process with characteristic triplet (γ+, a,Π+). Since we still exclude
that X is CPP, (R) holds if and only if (see [49], Theorem 6.5)

• S1 + S2 is of unbounded variation, or

• S1 + S2 is of bounded variation and

– X has a Gaussian component (i. e. a > 0), or

– X has no Gaussian component (i. e. a = 0), but

∗ X has drift DX = −γ+ −
∫
|x|≤1

xΠ+(dx) > 0, or

∗ X has drift DX = 0 and
∫ 1

0

x∫ x
0

Π+((−∞,−y))dy
Π+(dx) =∞.

(I) holds if and only if S1+S2 is of bounded variation,X has no Gaussian component
and either

• DX < 0, or

• DX = 0 and
∫ 1

0

x∫ x
0

Π+((−∞,−y)) dy
Π+(dx) <∞.

Corollary 3.2.5
LetX be a Lévy process as in (3.2.5). Suppose thatX is not a CPP and Π1((0,∞)) >

0, Π2((0,∞)) > 0. Consider the first passage of X over the barrier x = 0. Then
−Xτ+

0 −
= 0 a. s. and Gτ+

0 −
= 0 a. s..

(1) If (R) holds, then all quantities of the quintuple law are a. s. equal to zero, i. e.

−Xτ+
0 −

= Gτ+
0 −

= τ+
0 = Xτ+

0
= −Xτ+

0 −
= 0 a. s..

(2) If (I) holds, then there exists a normalization of local time at the maximum,
given by (3.2.12), such that for u > 0, t ≥ 0, v ≥ 0,

P
(
τ+

0 ∈ dt,Xτ+
0
∈ du,−Xτ+

0 −
∈ dv,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du+ v) Û(dt, dv)U({0}, {0}), k = 1, . . . , 5, (3.2.15)

where P k is defined in (3.2.6).

Proof.
Since X is not a CPP, its maxima are obtained at unique times, so Gτ+

0 −
= sup{s <
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τ+
0 : Xs = 0} = 0 a. s.. The proof for case (I) is analogous to Case 1 of the proof of
Theorem 3.2.4. �

Remark 3.2.6 (First passage by creeping)
In Theorem 3.2.4 and Corollary 3.2.5 we investigated the first passage of X caused
by a jump in one or both components X1 and X2. However, X may also creep over
the barrier x ∈ R, in which case

P(Xτ+
x

= x) > 0

holds. According to [13], Theorem VI.19, this is equivalent to

DH = lim
β↑∞

κ(0, β)

β
> 0 .

If X is of bounded variation, then X creeps upwards if and only if DX > 0, see
[21], Section 6.4, and [49], Theorem 7.11. The linear drift DX is deterministic and
so dependence between the jumps does not affect the creeping of X. If X has a
Gaussian component, then from A = 2DHDĤ (see [21], Corollary 4.4(i)) DH > 0

follows. So dependence between the jumps does not affect that X can creep. If X is
of unbounded variation, but has no Gaussian component, then X creeps upwards if
and only if for its Lévy measure Π+ holds∫ 1

0

xΠ+([x,∞))∫ 0

−x

(∫ u
−1

Π+((−∞, z])dz
)
du

dx

=

∫ 1

0

x (ΠP 1 + ΠP 2 + ΠP 3 + ΠP 4 + ΠP 5) ([x,∞)∫ 0

−x

(
−
∫ u
−1

ΠS1,−(z) + ΠS2,−(z) + Π
−
P 4(z) + Π

−
P 5(z) + ΠS−−(z) dz

)
du

dx <∞,

where P k is defined in (3.2.6). So only in this case the dependence between the
jumps can influence the possibility of creeping.

Remark 3.2.7 (Quintuple law for CPPes)
Only if X is a CPP, then X can visit the same maxima at distinct times, see
[13], Proposition VI.4, and [49], p. 158. When we work with the weakly ascending
ladder process (L−1, H) and the strictly descending ladder process (L̂−1∗, Ĥ∗) as in
Section 3.1, we consider the last time of the previous maximum of X before time t
defined by G in (3.0.3) and the first time of the previous minimum of X before time
t; i. e.

G∗t := inf{s < t : Xs = X t}, (3.2.16)
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see [22], Theorem 4, Remark 5, p. 98, and [49], pp. 167–168 and p. 194. If X is
not a CPP, then the definition of G∗ coincides with the definition of G in (3.0.3).
The quintuple law of Theorem 3.2.4 holds also for CPPes with Û replaced by Û∗ to
indicate that this is the potential measure of the strictly descending ladder process
as in Section 3.1. The result of Corollary 3.2.5 changes, since Gτ+

0 −
> 0 a. s., and we

obtain for u > 0, t ≥ 0, s > 0, v ≥ 0,

P
(
τ+

0 −Gτ+
0 −
∈ dt, Gτ+

0 −
∈ ds,Xτ+

0
∈ du,−Xτ+

0 −
∈ dv,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du+ v) Û∗(dt, dv)U(ds, {0}), k = 1, . . . , 5,

where P k is defined in (3.2.6). The proof of the quintuple law for CPPes is analogous
to Case 1 of the proof of Theorem 3.2.4. The only subtlety is in the Wiener-Hopf fac-
torization, where we have to assign the mass given by the probabilities P(Xt = 0) for
t ≥ 0 to one or the other of the integrals, which define κ and κ̂; see Equations (6.19)
and (6.20) in [49]. With the definition of G∗ in (3.2.16) we assign the mass to κ;
cf. [49], pp. 167–168.

3.3 Two explicit situations

Whereas it is comparably easy to understand the influence of the last jump of
the Lévy process since it is independent of the past, it is a rather complex task
to trace the influence of the dependence within the potential measures U and Û
given in (3.2.10) and (3.2.11). They can be identified explicitly only for special Lévy
processes. The ladder processes depend on the chosen local times at the maxima
and minima, respectively, which in general can not be written as functionals of
the path of X. In this section we present two situations of the quintuple law of
Theorem 3.2.4 and Corollary 3.2.5 where we can calculate the potential measures
explicitly. We investigate them further in Section 3.4 with regarding to the effect of
the dependence between the jumps. We consider only cases where 0 is irregular for
(0,∞) and X is spectrally positive. These two conditions are satisfied only in two
situations which we discuss in Sections 3.3.1 and 3.3.2, respectively.
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3.3.1 Spectrally positive compound Poisson process

Let (S1, S2) be a spectrally positive CPP and X be given as

Xt = S1
t + S2

t , t ≥ 0, (3.3.1)

and let λ+ > 0 denote the jump intensity of X and F+ the d. f. of the i. i. d. jump
sizes of X; note that both are determined by the marginal frequencies, marginal
jump sizes and the dependence structure. Due to Xt = X t a. s. and Gt = sup{s <
t : Xs = Xs} = t a. s. for all t ≥ 0, for all x ≥ 0 we have x − Xτ+

x − = x − Xτ+
x −

a. s. and Gτ+
x − = τ+

x a. s. and the quintuple law reduces to a triple law. Recall the
definition of the convolution F n∗

+ before Theorem 3.1.6.

Theorem 3.3.1
Suppose X is given as in (3.3.1). Consider the first passage of X over a constant
barrier x > 0. Then for u > 0, y ∈ [0, x], s > 0 it holds for k = 1, 2, 3,

P
(
τ+
x ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dy,∆Xτ+
x

= ∆P k
τ+
x

)
= ΠPk(du+ y)

∞∑
n=0

(λ+s)
n

n!
e−λ+s ds F n∗

+ (x− dy). (3.3.2)

By construction of P k as being independent, the d. f. F+ has representation

F+ =
1

λ+

3∑
k=1

λPkFPk , (3.3.3)

where the λPk denote the jump intensities of P k defined in (3.2.6).

Proof.
According to Theorem 3.2.4 and Remark 3.2.7, the l. h. s of of (3.3.2) is given by

ΠPk(du+ y) Û∗({0}, {0})U(ds, x− dy)

where Û∗ denotes the potential measure of the strictly descending ladder process
(L̂−1∗, Ĥ∗). Since X is of bounded variation and the point 0 is regular for [0,∞)

and irregular for (−∞, 0), with [49], Theorem 6.8, we choose the local time at the
maximum as Lt =

∫ t
0

1{Xs=Xs} ds = t and the weakly ascending ladder process
results as (L−1

t , Ht)t≥0 = (t,Xt)t≥0 with potential measure

U(ds, x− dy) = P (Xs ∈ x− dy) ds =
∞∑
n=0

(λ+s)
n

n!
e−λ+s ds F n∗

+ (x− dy).
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Since X is a.s. increasing, the strictly descending ladder process is killed, i. e. L̂−1∗
∞

d
=

expo(q̂) for some q̂ > 0, see [49], Theorem 6.10(ii), and we obtain

(L̂−1∗
t , Ĥ∗t ) =

{
(0, 0), t < L̂−1∗

∞ ,

(∞,∞), t ≥ L̂−1∗
∞ ,

and Û∗({0}, {0}) = q̂−1. The normalization condition (3.2.12) yields q̂ = 1 and
Equation (3.3.2) results. �

For the barrier x = 0 the result is reduced even further.

Corollary 3.3.2
Suppose X is given as in (3.3.1). Consider the first passage of X over the barrier
x = 0. Then −Xτ+

0 −
= 0 a. s. and for u > 0, s > 0 it holds

P
(
τ+

0 ∈ ds,Xτ+
0
∈ du,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du) e−λs ds.

3.3.2 Subordinator with negative drift and finite mean

Let (S1, S2) be a driftless subordinator and X be given as

Xt = St − ct = S1
t + S2

t − ct, t ≥ 0, (3.3.4)

with negative drift DX = −c < 0. We denote its Lévy measure as Π+ and recall the
characteristic exponent of X from (1.0.1) which is given by

ΨX(θ) = ΨS(θ) + icθ =

∫ ∞
0

(
1− eiθx

)
Π+(dx) + icθ, θ ∈ R. (3.3.5)

Further, we suppose

0 < E[S1] = µS =

∫ ∞
0

xΠ+(dx) < c <∞, (3.3.6)

such that limt→∞Xt = −∞ a. s..

Under these conditions the ascending ladder process (L−1, H) of X is a killed bivari-
ate CPP, and we denote its jump size distribution by FL−1H(ds, dx). We denote by
F n∗
L−1H the n-fold bivariate convolution of FL−1H, where F 0∗

L−1H(ds, dz) = δ(0,0)(ds, dz)

is the Dirac-measure in (0, 0) and F 1∗
L−1H = FL−1H. Since L−1 and H always jump

together the convolution is taken componentwise; i. e. F n∗
L−1H is the distribution of n

independent jumps with bivariate d. f. FL−1H.
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Theorem 3.3.3
Suppose X is given as in (3.3.4), and that (3.3.6) holds. Consider the first passage
of X over a constant barrier x > 0. Then for u > 0, y ∈ [0, x], v ≥ y, s ≥ 0, t ≥ 0 it
holds for k = 1, 2, 3

P
(
τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv,

x−Xτ+
x − ∈ dy,∆Xτ+

x
= ∆P k

τ+
x

)
(3.3.7)

= ΠPk(du+ v) P
(
τ−−(v−y) ∈ dt

)
dv

1

c

∞∑
n=0

(µS
c

)n
F n∗
L−1H(ds, x− dy)

where the bivariate jump size d. f. FL−1H is given by

FL−1H(dt, dh) =
1

µS

∫ ∞
0

Π+(dh+ θ) P(τ−−θ ∈ dt) dθ. (3.3.8)

Proof.
To calculate U and Û in Theorem 3.2.4 explicitly, we have to specify the local time
at maximum and at minimum such that the normalization condition (3.2.12) is
satisfied. Since X is spectrally positive we choose the local time at the minimum as

L̂t = −X t = c

∫ t

0

1{Xs=Xs} ds

where X is defined in (3.0.1). The unkilled descending ladder process is for t ≥ 0

given by (
L̂−1
t , Ĥt

)
=
(

inf {s > 0 : Xs < −t} , X̂L̂−1
t

)
=
(
τ−−t, t

)
. (3.3.9)

Thus, by (3.2.11) we obtain

Û(ds, dx) =

∫ ∞
0

P(L̂−1
t ∈ ds, Ĥt ∈ dx) dt = P(L̂−1

x ∈ ds) dx

= P(τ−−x ∈ ds) dx, (3.3.10)

Û([0,∞), dx) = dx and κ̂(0, β) = β, see (3.2.9). When the normalization condition
(3.2.12) is satisfied, by Vigon [66], Proposition 3.3, it follows for z > 0

ΠH(z) =

∫ ∞
z

Π+(x) Û([0,∞), dx) =

∫ ∞
z

Π+(x) dx. (3.3.11)

Due to the irregularity of 0 for [0,∞) and following Definition 3.2.2 (2), we choose
the local time at the maximum as

Lt =
nt∑
k=0

e
(k)
ζ with nt = #{0 < s ≤ t : Xs = Xs},
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for an arbitrary parameter ζ > 0 and i. i. d. e(k)
ζ

d
= expo(ζ). Further, due to con-

dition (3.3.6) the ascending ladder process is killed, i. e. there is a bivariate CPP
(L−1,H) with jump intensity ζ and q > 0 such that

{(L−1
t , Ht) : t < L∞}

d
= {(L−1

t ,Ht) : t < eq}

and (L−1
t , Ht) = (∞,∞) for t ≥ L∞

d
= eq. H is a CPP with intensity ζ and with

(3.3.11) the normalization condition (3.2.12) is satisfied if and only if ζ = ΠH(R) =

µS. From (3.2.9) we obtain

κ(0,−iθ) = q +

∫ ∞
0

(
1− eiθx

)
ΠH(dx)

and with (3.3.5) and the Wiener-Hopf factorization, see [49], Equation (6.21), it
results

κ(0,−iθ) = k′
ΨX(θ)

κ̂(0, iθ)
=
k′

iθ

(
icθ +

∫ ∞
0

(
1− eiθx

)
Π+(dx)

)
.

Since H is of bounded variation and limx↓0 xΠ+(x) = 0 by (3.3.11), partial integra-
tion results in

κ(0,−iθ) = k′
(

(c− µS) +

∫ ∞
0

(
1− eiθx

)
Π+(x) dx

)
.

From (3.3.11) we conclude k′ = 1 and q = c−µS. Since eq
d
= expo(q) with q = c−µS

is independent of (L−1,H) and Nt = #{0 < s ≤ t : ∆Ht 6= 0} is a Poisson process
with intensity ζ = µS, we get with FL−1H = 1

µS
ΠL−1H for s ≥ 0, x ≥ 0 that

U(ds, dx) =

∫ ∞
0

P(t < eq,L−1
t ∈ ds,Ht ∈ dx) dt

=

∫ ∞
0

e−qt
∞∑
n=0

P(L−1
t ∈ ds,Ht ∈ dx| Nt = n)P(Nt = n) dt

=

∫ ∞
0

e−qt
∞∑
n=0

F n∗
L−1H(ds, dx)

(tµS)n

n!
e−tµS dt

=
1

c

∞∑
n=0

(µS
c

)n
F n∗
L−1H(ds, dx) (3.3.12)

where the last equation results from the evaluation of the exponential integral; see
e. g. [29], p. 362. Finally, from the quintuple law (3.2.13) with (3.3.10) and (3.3.12)
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we obtain for u > 0, y ∈ [0, x], v ≥ y, s ≥ 0, t ≥ 0 and for k = 1, 2, 3

P
(
τ+
x −Gτ+

x − ∈ dt, Gτ+
x − ∈ ds,Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv,

x−Xτ+
x − ∈ dy,∆Xτ+

x
= ∆P k

τ+
x

)
= ΠPk(du+ v) Û(dt, dv − y)U(ds, x− dy)

= ΠPk(du+ v) P
(
τ−−(v−y) ∈ dt

)
1{v−y≥0} dv

1

c

∞∑
n=0

(µS
c

)n
F n∗
L−1H(ds, x− dy).

According to [22], Corollary 6, we have

ΠL−1H(dt, dh) =

∫
[0,∞)

Π+(dh+ θ) Û(dt, dθ)

and with (3.3.10) and the normalization condition Expression (3.3.8) holds. �

If we are only interested in the space variables, we can integrate out the time quan-
tities in the above quintuple law and obtain the following.

Corollary 3.3.4
In the situation of Theorem 3.3.3, for u > 0, y ∈ [0, x], v ≥ y it holds for k = 1, 2, 3

P
(
Xτ+

x
− x ∈ du, x−Xτ+

x − ∈ dv, x−Xτ+
x − ∈ dy,∆Xτ+

x
= ∆P k

τ+
x

)
= ΠPk(du+ v) dv

1

c

∞∑
n=0

(µS
c

)n
F n∗
H (x− dy), (3.3.13)

and

P(∆Xτ+
x

= ∆P k
τ+
x

) =
1

c

∫ x

0

∫ ∞
y

ΠPk(v) dv
∞∑
n=0

(µS
c

)n
F n∗
H (x− dy), (3.3.14)

P(τ+
x <∞) =

(
1− µS

c

) ∞∑
n=1

(µS
c

)n
F n∗
H (x). (3.3.15)

The d. f. FH is for z > 0 defined as

FH(dz) =
1

µS
Π+(z) dz =

1

µS

(
ΠP 1 + ΠP 2 + ΠP 3

)
(z) dz. (3.3.16)

Here F 0∗
H (dz) = δ0(dz) and for n ∈ N

F n∗
H (dz) =

1

µnS
Π
n⊗
+ (z) dz

with Π
1⊗
+ = Π+ and Π

2⊗
+ (z) :=

∫ z
0

Π+(z − y)Π+(y) dy.
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Proof.
Integrating out time in Equation (3.3.7) yields (3.3.13). The relation (3.3.16) follows
from (3.3.11) with the normalization condition and the decomposition (3.2.5). The
identity (3.3.14) results from (3.3.13) by integrating out u, v and y. By integrating
out s, t and v in the quintuple law in [22], Theorem 3, it holds

P
(
Xτ+

x
− x ∈ du, x−Xτ+

x
∈ dy

)
= U(x− dy) ΠH(du+ y)

and with (3.3.12) we obtain

P(τ+
x <∞) =

∫ x

0

ΠH(y)U(x− dy)

=
∞∑
n=0

(µS
c

)n+1
∫ x

0

FH(y)F n∗
H (x− dy)

=
∞∑
n=0

(µS
c

)n+1 (
F n∗
H (x)− F (n+1)∗

H (x)
)

=
(

1− µS
c

) ∞∑
n=1

(µS
c

)n
F n∗
H (x).

�

Remark 3.3.5
When the jump part S in (3.3.4) is a CPP with jump size d. f. F+ and E[∆S] = µ∆S

then, under the conditions of Theorem 3.3.3, for x > 0

FH(x) =
1

µ∆S

∫ x

0

F+(z) dz

and (3.3.15) is the well-known Pollaczek-Khintchine formula.

Corollary 3.3.6
Suppose X is given as in (3.3.4) and (3.3.6) holds. Consider the first passage of X
over the barrier x = 0. Then for u > 0, v ≥ 0 and t > 0

P
(
τ+

0 ∈ dt,Xτ+
0
∈ du,−Xτ+

0 −
∈ dv,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du+ v) P(τ−−v ∈ dt)

1

c
dv, k = 1, 2, 3. (3.3.17)

Further,

P
(
Xτ+

0
∈ du,−Xτ+

0 −
∈ dv,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du+ v)

1

c
dv (3.3.18)

P
(

∆Xτ+
0

= ∆P k
τ+
0

)
=

µPk

c
(3.3.19)

P(τ+
0 <∞) =

µS
c
. (3.3.20)
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Proof.
For the barrier x = 0 we obtain under the normalization condition (3.2.12) with
(3.2.15) and (3.3.12) that

P
(
τ+

0 ∈ dt,Xτ+
0
∈ du,−Xτ+

0 −
∈ dv,∆Xτ+

0
= ∆P k

τ+
0

)
= ΠPk(du+ v) Û(dt, dv)U({0}, {0})

= ΠPk(du+ v) P(τ−−v ∈ dt) dv
1

c
.

The identities (3.3.18) and (3.3.19) follow from (3.3.17) by integrating out t, u and
v. (3.3.20) results by summing up (3.3.19) for k = 1, 2, 3. �

The identities (3.3.18) and (3.3.19) are generalizations of Theorem 2.2(i) in [38]
where only independence is treated. Comparing (3.3.15) and (3.3.20), we see that
the first upwards passage for the barrier x = 0 is not affected by the dependence
contrary to barriers x > 0.

3.4 Dependence modelled by a Lévy copula

Our main interest is studying the effect of dependence between the jumps of X1 and
X2 for the quintuple law. This dependence affects the bivariate potential measures
U , Û and also the factors ΠPk . In this section we calculate these three quantities for
the situations in Section 3.3 when the dependence is modelled by a Lévy copula as
defined in Section 1.1. Finally, we apply our results to the four dependence structures
discussed in Section 1.3.

3.4.1 Calculating the quantities in the quintuple law

Analogously to Definition 1.1.4 we define the tail integrals ΠPk for k = 1, . . . , 5 of the
single and joint jump components. For better differentiation between the positive
and the negative tail integral we denote for spectrally both-sided Lévy measures
Πi the positive tail integral by Π

+

i and the negative by Π
−
i . The following result

shows the influence of a specific Lévy copula on the tail integrals, where we set
Π

+

2 (0) := Π2((0,∞)) in (3.4.3).
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Theorem 3.4.1
Suppose that the jump parts S1 and S2, given in (3.2.1), have absolutely continuous
Lévy measures Πi and the dependence between their jumps is modelled by a twice
continuously differentiable Lévy copula Ĉ. Then the tail integrals in Theorem 3.2.4
and Corollary 3.2.5, respectively, are given for z > 0

ΠP 1(z) = Π
+

1 (z)− lim
y↓0

Ĉ
(

Π
+

1 (z),Π
+

2 (y)
)

+ lim
y↑0

Ĉ
(

Π
+

1 (z),Π
−
2 (y)

)
(3.4.1)

ΠP 2(z) = Π
+

2 (z)− lim
x↓0

Ĉ
(

Π
+

1 (x),Π
+

2 (z)
)

+ lim
x↑0

Ĉ
(

Π
−
1 (x),Π

+

2 (z)
)

(3.4.2)

ΠP 3(z) =

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣
u=Π

+
1 (x),v=Π

+
2 ((z−x)∨0)

Π1(dx) (3.4.3)

Π
+

P 4(z) =

∫ ∞
z

[
∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π

+
1 (x)

]Π
−
2 (z−x)

lima↑0 Π
−
2 (a)

Π1(dx)

Π
+

P 5(z) =

∫ ∞
z

[
∂Ĉ(u, v)

∂v

∣∣∣∣
v=Π

+
2 (y)

]Π
−
1 (z−y)

lima↑0 Π
−
1 (a)

Π2(dy).

If Ĉ is left-continuous in the second coordinate in∞ and Π2((0,∞)) = Π2((−∞, 0)) =

∞, then (3.4.1) reduces to ΠP 1 = 0. If Ĉ is left-continuous in the first coordinate in
∞ and Π1((0,∞)) = Π1((−∞, 0)) =∞, then (3.4.2) reduces to ΠP 2 = 0.

Proof.
By Theorem 1.1.10 and (1.1.7) the tail integral of (S1, S2) for i, j ∈ {+,−} is given
by

Π(x1, x2) = Ĉ
(

Π
i

1(x1),Π
j

2(x2)
)
, x1, x2 ∈ R \ {0}.

So we get for z > 0, using (3.2.3),

ΠP 1(z) = lim
ε↓0

ΠP 1,ε((z,∞)) = lim
ε↓0

Π((z,∞)× {0})1{z>ε} = Π((z,∞)× {0})

= Π((z,∞)× R)− lim
y↓0

Π((z,∞)× (y,∞))− lim
y↑0

Π((z,∞)× (−∞, y))

= Π1((z,∞))− lim
y↓0

Π(z, y) + lim
y↑0

Π(z, y)

= Π
+

1 (z)− lim
y↓0

Ĉ
(

Π
+

1 (z),Π
+

2 (y)
)

+ lim
y↑0

Ĉ
(

Π
+

1 (z),Π
−
2 (y)

)
.
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Analogous calculations give ΠP 2 .
For the common jump measures we obtain by (3.2.4) for z > 0

ΠP 3(z) = Π ({(x, y) ∈ (0,∞)× (0,∞) : x+ y > z}) (3.4.4)

Π
+

P 4(z) = Π ({(x, y) ∈ (0,∞)× (−∞, 0) : x+ y > z}) (3.4.5)

Π
+

P 5(z) = Π ({(x, y) ∈ (−∞, 0)× (0,∞) : x+ y > z}) . (3.4.6)

Since Ĉ can be continuously differentiated twice, we obtain by relation (1.1.7) and
Equation (1.1.8) on (R \ {0})2 the density (cf. [20], Proposition 5.8)

Π(dx, dy) =
∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π1(x),v=Π2(y)

Π1(dx) Π2(dy). (3.4.7)

So the r. h. s. of (3.4.4) is given by∫ ∞
0

∫ ∞
(z−x)∨0

Π(dx, dy) =

∫ ∞
0

∫ ∞
(z−x)∨0

∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π

+
1 (x),v=Π

+
2 (y)

Π2(dy) Π1(dx)

=

∫ ∞
0

∫ Π
+
2 ((z−x)∨0)

0

∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π

+
1 (x),v=s

dsΠ1(dx)

=

∫ ∞
0

[
∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π

+
1 (x)

]Π
+
2 ((z−x)∨0)

0

Π1(dx)

=

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π

+
1 (x),v=Π

+
2 ((z−x)∨0)

Π1(dx),

since Ĉ(u, 0) = 0 for all u ∈ (−∞,∞]. The r. h. s. of (3.4.5) is given by∫ ∞
z

∫ 0

z−x
Π(dx, dy) =

∫ ∞
z

∫ 0

z−x

∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π

+
1 (x),v=Π

−
2 (y)

Π2(dy) Π1(dx)

=

∫ ∞
z

∫ Π
−
2 (z−x)

lima↑0 Π
−
2 (a)

∂Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π

+
1 (x),v=s

dsΠ1(dx)

=

∫ ∞
z

[
∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π

+
1 (x)

]Π
−
2 (z−x)

lima↑0 Π
−
2 (a)

Π1(dx).

The r. h. s. of (3.4.6) is given by∫ ∞
z

∫ 0

z−y
Π(dx, dy) =

∫ ∞
z

∫ 0

z−y

∂2Ĉ(u, v)

∂u∂v

∣∣∣∣
u=Π

−
1 (x),v=Π

+
2 (y)

Π1(dx) Π2(dy).

�
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The following result is a simple consequence of Theorem 3.4.1.

Corollary 3.4.2 ([18], Proposition 2.16)
Assume that the conditions of Theorem 3.4.1 hold and that S1 and S2 are spectrally
positive. Then the tails (3.4.1), (3.4.2) and (3.4.3) reduce to

ΠP 1(z) = Π1(z)− lim
y↓0

Ĉ
(
Π1(z),Π2(y)

)
,

ΠP 2(z) = Π2(z)− lim
x↓0

Ĉ
(
Π1(x),Π2(z)

)
,

ΠP 3(z) =

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π1(x),v=Π2((z−x)∨0)

Π1(dx).

If Ĉ is left-continuous in the second coordinate in ∞ and Π2((0,∞)) = ∞, then
ΠP 1 = 0. If Ĉ is left-continuous in the first coordinate in ∞ and Π1((0,∞)) = ∞,
then ΠP 2 = 0.

The following lemma shows that for a left-continuous and homogeneous Lévy copula
Ĉ positive single jumps always have a lighter tail than the corresponding component.

Lemma 3.4.3
Assume that the conditions of Corollary 3.4.2 hold. If Ĉ is left-continuous in the
j-th coordinate in ∞ and homogeneous, then for i = 1, 2, such that i 6= j,

ΠP i(z) = o(Πi(z)), z →∞. (3.4.8)

Proof.
With Corollary 3.4.2 we get by homogeneity,

ΠP 1(z)

Π1(z)
= 1− lim

y↓0
Ĉ

(
1,

Π2(y)

Π1(z)

)
, z ≥ 0,

which is equal to 1 for all z ≥ 0 in the case of independence. Otherwise, by left-
continuity in ∞,

lim
z→∞

ΠP 1(z)

Π1(z)
= 1− lim

z→∞
lim
y↓0

Ĉ

(
1,

Π2(y)

Π1(z)

)
= 1− Ĉ(1,∞) = 0.

The proof for P 2 is analogous. �

Now we apply our results to the situations of Section 3.3.



3.4. Dependence modelled by a Lévy copula 81

Theorem 3.4.4
Suppose that the jump parts S1 and S2, given in (3.2.1), have absolutely continuous
Lévy measures Πi and the dependence between their jumps is modelled by a twice
continuously differentiable Lévy copula Ĉ.

(1) In the situation of Section 3.3.1, when S1 and S2 are spectrally positive CPPes
with jump intensities λ1, λ2 and jump size d. f. s F1, F2, Theorem 3.3.1 and
Corollary 3.3.2 hold with

λ+ = λ1 + λ2 − Ĉ(λ1, λ2), (3.4.9)

and for z > 0

F+(z) =
1

λ+

(
λ1F 1(z)− Ĉ

(
λ1F 1(z), λ2

)
+ λ2F 2(z)− Ĉ

(
λ1, λ2F 2(z)

)
+ λ1

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=λ1F 1(x),v=λ2F 2((z−x)∨0)

F1(dx)

)
. (3.4.10)

(2) In the situation of Section 3.3.2, when S = S1 + S2 is a subordinator, Corol-
lary 3.3.4 holds for FH(z) given for z > 0 by

FH(dz) =
1

µS

(
Π1(z)− lim

y↓0
Ĉ
(
Π1(z),Π2(y)

)
(3.4.11)

+ Π2(z)− lim
x↓0

Ĉ
(
Π1(x),Π2(z)

)
+

∫ ∞
0

∂Ĉ(u, v)

∂u

∣∣∣∣
u=Π1(x),v=Π2((z−x)∨0)

Π1(dx)

)
dz.

Proof.
(1) Equation (3.4.9) holds by

λ+ = Π+((0,∞)) = Π([0,∞)2)

= Π1((0,∞)) + Π2((0,∞))− Π((0,∞)2) = λ1 + λ2 − lim
x↓0

Π(x, x)

and Equation (3.4.10) results from (3.3.3) with Corollary 3.4.2.
(2) Equation (3.3.16) and Corollary 3.4.2 yield relation (3.4.11). �

Remark 3.4.5 (Comparison of random walk and Lévy process modelling)
Let (X1, X2) be a spectrally positive CPP (without drift) with marginal intensi-
ties λ1, λ2 and absolutely continuous marginal jump size d. f. s F1, F2. Denote by
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(W i
n)n∈N0 the arrival times of the jumps of X i. We use the embedded random walk

structure for defining Zi
n := X i

W i
n
. Then the d. f. of the increments of Zi is equal to Fi

and Z1 and Z2 always jump together, since Fi has no atom at zero. If we model the
dependence between the jumps by a distributional copula CD as suggested in Sec-
tion 1.1.1, then with Theorem 3.1.5 the tail of the jump size d. f. FZ of Z = Z1 +Z2

is given by

FZ(z) =

∫ ∞
0

∫ ∞
(z−x)∨0

∂2CD(u, v)

∂u∂v

∣∣∣∣
u=F1(x),v=F2(y)

F2(dy)F1(dx)

=

∫ ∞
0

(
1− ∂CD(u, v)

∂u

∣∣∣∣
u=F1(x),v=F2((z−x)∨0)

)
F1(dx).

Rewriting this expression in terms of the distributional survival copula ĈD(u, v) :=

u+ v − 1 + CD(1− u, 1− v), see [52], Equation (2.6.2), yields

FZ(z) =

∫ ∞
0

∂ĈD(u, v)

∂u

∣∣∣∣
u=F 1(x),v=F 2((z−x)∨0)

F1(dx). (3.4.12)

When we consider, however, the Lévy process (X1, X2) and use a Lévy copula Ĉ,
then the tail P(∆X1 + ∆X2 > z) is given by (3.4.10). Comparing (3.4.12) and
(3.4.10), the most apparent differences are the first four summands in (3.4.10).
These summands represent the possibility of single jumps of X i. They are miss-
ing in (3.4.12) since the random walks Z1 and Z2 always jump together by con-
struction. But also the last integrals in (3.4.10) and (3.4.12) differ which represent
the common jumps of X1 and X2. Furthermore, a distributional survival copula
ĈD : [0, 1]2 → [0, 1] and a Lévy copula Ĉ : (−∞,∞]2 → (−∞,∞] which both
respectively describe the same dependence structure, are in general not identical.
E. g. with the independence distributional survival copula ĈD(u, v) = uv Equa-
tion (3.4.12) becomes for z > 0

FZ(z) =

∫ z

0

F 2(z − x)F1(dx) + F 1(z).

On the other hand, the independence Lévy copula Ĉ⊥ given in (1.3.2) yields in
Equation (3.4.10) that

F+(z) =
λ1F 1(z) + λ2F 2(z)

λ1 + λ2

.

Consequently, a Lévy copula approach and a (survival) copula approach produce
even for a bivariate CPP (without drift) different results. Furthermore, for a CPP
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with a linear drift the increments of the corresponding random walk are the sum
of the original jump size and an independent exponentially distributed r. v. (inter
jump times times drift). Thus, the dependence induced by a (survival )copula differs
from the dependence given by a Lévy copula. The advantage of a Lévy copula is
that a Lévy copula describes the dependence not only between the jump sizes, but
also between the jump times. Moreover, by applying a copula to increments of the
random walk model, single and common jumps of the CPP are treated equally which
alienates the originally dependence structure between the jump sizes.

3.4.2 Examples for different dependence structures

We present four examples for different dependence structures, modelled by a Lévy
copula Ĉ, and characterize completely all quantities in the quintuple law of Theo-
rem 3.3.1 and Corollary 3.3.4.

Independence

If S1 and S2 are independent, then S1 and S2 a. s. never jump together and Ĉ⊥, given
in (1.3.2), is a Lévy copula of (S1, S2). Therefore, P 1 = S1,+ = S1, P 2 = S2,+ = S2

and P 3 = S1,++ + S2,++ = 0 and we obtain

Π+(dz) = (Π1 + Π2)(dz) = (ΠP 1 + ΠP 2)(dz).

In the situation of Section 3.3.1, when the jump parts S1 and S2 are spectrally
positive CPPes with intensities λ1 and λ2 and absolutely continuous jump size d. f. s
F1 and F2, we get in Theorem 3.3.1 and in Corollary 3.3.2 the identities λ+ = λ1 +λ2

and

F+(dz) =
1

λ
Π+(dz) =

(
λ1

λ1 + λ2

F1 +
λ2

λ1 + λ2

F2

)
(dz).

In the situation of Section 3.3.2, when X is a subordinator with negative drift,
Corollary 3.3.4 holds with

FH(dz) =
1

µS

(
Π1(z) + Π2(z)

)
dz.

For this dependence structure Equations (3.3.18) and (3.3.19) are the results of [38],
Theorem 2.2(i), for d = 2.
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Complete dependence

If the jumps of (S1, S2) are completely dependent, then S1 and S2 a. s. jump together
and Ĉ‖, given in (1.3.6), is a Lévy copula of (S1, S2). Thus, P 1 = P 2 = 0 and P 3 =

S1 + S2 = S and in Section 3.3.1 we receive in Theorem 3.3.1 and Corollary 3.3.2
the identities λ+ = λ1 = λ2 and

F+(dz) = P(∆S1 + ∆S2 ∈ dz),

where the jump sizes ∆S1 and ∆S2 are completely dependent by Proposition 1.3.5.
In Corollary 3.3.4, we get FH(dz) = 1/µS ΠP 3(z)dz. An easy example for complete
dependence is S1 ≡ S2, then F (dz) = F1(dz/2) and

FH(dz) =
1

µS
Π1(z/2) dz.

Clayton Lévy copula

Suppose that the dependence between the jump parts S1 and S2 is given by a Clayton
Lévy copula defined in (1.3.7) for θ > 0 and η ∈ [0, 1], which is left-continuous in∞.
For i = 1, 2 let the Lévy measures Πi be absolutely continuous. Further, we define
for i = 1, 2

Πi((0,∞)) = λ+
i ≤ ∞ and Πi((−∞, 0)) = λ−i ≤ ∞ (3.4.13)

and distinguish the following cases, where i, j ∈ {1, 2} and i 6= j:

(a) λ+
j <∞ and λ−j <∞,

(b) λ+
j <∞, λ−j =∞ and η 6= 0,

(c) λ−j <∞, λ+
j =∞ and η 6= 1,

(d) λ+
j =∞ and λ−j =∞.
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Then the quintuple laws of Theorem 3.2.4 and Corollary 3.2.5 hold, where for z > 0

ΠP i(z) =

Π
+

i (z)− η
(

Π
+

i (z)−θ + (λ+
j )−θ

)−1/θ

− (1− η)
(

Π
+

i (z)−θ + (λ−j )−θ
)−1/θ

,

η

(
Π

+

i (z)−
(

Π
+

i (z)−θ + (λ+
j )−θ

)−1/θ
)
,

(1− η)

(
Π

+

i (z)−
(

Π
+

i (z)−θ + (λ−j )−θ
)−1/θ

)
,

0,

and each line corresponds to the cases (a)-(d), respectively. Moreover,

ΠP 3(z) =η

∫ ∞
0

(
Π

+

1 (x)−θ + Π
+

2 ((z − x) ∨ 0)−θ
)−1/θ−1

Π
+

1 (x)−θ−1Π1(dx)

Π
+

P 4(z) =(1− η)

∫ ∞
z

((
Π

+

1 (x)−θ + (λ−2 )−θ
)−1/θ−1

−
(

Π
+

1 (x)−θ +
∣∣Π−2 (z − x)−θ

∣∣)−1/θ−1
)

Π
+

1 (x)−θ−1Π1(dx)

Π
+

P 5(z) =(1− η)

∫ ∞
z

((
(λ−1 )−θ + Π

+

2 (y)−θ
)−1/θ−1

−
(∣∣Π−1 (z − y)

∣∣−θ + Π
+

2 (y)−θ
)−1/θ−1

)
Π

+

2 (y)−θ−1Π2(dy).

In both situations of Section 3.3 the jump part S has only positive jumps and we
must have η = 1 in (1.3.7). Then the tail integral of X is for z > 0 given by

Π+(z) = ΠP 1(z) + ΠP 2(z) + ΠP 3(z)

= Π1(z)−
(
Π1(z)−θ + λ−θ2

)−1/θ
+ Π2(z)−

(
Π2(z)−θ + λ−θ1

)−1/θ (3.4.14)

+

∫ ∞
0

(
Π1(x)−θ + Π2((z − x) ∨ 0)−θ

)−1/θ−1
Π1(x)−θ−1 Π1(dx).

If λ1 =∞, then we see at (3.4.14) that ΠP 2 = 0 holds, i. e. S2 has no single jumps. So
if ΠS1 and ΠS2 are infinite measures, then there are infinitely many common jumps
and no single jumps. If λ1 =∞ and λ2 <∞, then the intensity rate of the common
jumps reduce to Π((0,∞) × (0,∞)) = lima→∞ Ĉθ(a, λ2) = λ2. If (S1, S2) is a CPP,
then we get the result of [18], Proposition 3.1. In Section 3.3.1, Theorem 3.3.1 holds
with

λ+ = λ1 + λ2 −
(
λ−θ1 + λ−θ2

)−1/θ and F+(z) =
1

λ+

Π+(z), z > 0,
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and in Section 3.3.2, Corollary 3.3.4 holds with FH(dz) = 1/µS Π+(dz). Since for all
u, v > 0,

∂Ĉθ
∂θ

(u, v) = θ−2
(
u−θ + vθ

)−1/θ−1
(
u−θ

(
ln(u−θ + v−θ) + θ ln(u)

)
+v−θ

(
ln(u−θ + v−θ + θ ln(v))

) )
≥ 0

and ΠP 1(z) = Π1(z)− Ĉθ(Π1(z), λ2), increasing the dependence parameter θ yields
that the tail integrals of the single jump components and the intensity λ+, i. e. the
expected number of jumps of X per unit time, decrease as shown in Figure 3.1. This
effect of increasing θ corresponds with the results in Example 1.3.7 for the Clayton
PLM where the representation of the spectral density and of the PLC showed that
increasing θ causes that the mass of Γ1,θ moves to the diagonal.

According to Lemma 3.4.3, using a Clayton Lévy copula the single jumps P 1 and
P 2 are always lighter-tailed than S1 and S2, respectively. For equal marginal Lévy
measures this implies that asymptotically for large z the joint jumps P 3 dominate.

This can be seen in the special case of two CPPes with the same marginal Lévy
measures, which are exponential, i. e. Π1(dx) = Π2(dx) = ae−axdx for some a > 0

and θ = 1. For z > 0 we get an explicit expression for the Lévy measure of the sum
(cf. [18], Example 3.11) as

Π+(z) =
3 + 2eaz + e−az

(eaz + 1)(e−az + 1)
+

1

2
e−1/2az

(
arctan e1/2az − arctan e−1/2az

)
∼ e−az

(
1 +

π

2
e−

1
2
az
)

as z →∞.

Non-homogeneous Archimedean Lévy copula

Now we consider the positive Archimedean Lévy copula given in (1.3.7). As in
(3.4.13) we define λ+

i , λ
−
i and distinguish the same four situations. Then the quin-

tuple law of Theorem 3.2.4 and Corollary 3.2.5 hold, where for z > 0 and i 6= j

ΠP i(z) =



Π
+

i (z)− η Π
+
i (z)λ+

j

Π
+
i (z)+λ+

j +ζ
− (1− η)

Π
+
i (z)λ−j

Π
+
i (z)+λ−j +ζ

,

ηΠ
+

i (z) Π
+
i (z)+ζ

Π
+
i (z)+λ+

j +ζ
,

(1− η)Π
+

i (z) Π
+
i (z)+ζ

Π
+
i (z)+λ−j +ζ

,

0,
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CPP with expo(1)−jumps, Clayton Lévy copula (θ =0.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

t

∆ 
X

1

Jumps (θ=0.3)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

t

∆ 
X

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

t

X
1 , X

2

CPP with expo(1)−jumps, Clayton Lévy copula (θ =2)
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CPP with expo(1)−jumps, Clayton Lévy copula (θ =10)
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Figure 3.1: Spectrally positive CPP (X1, X2) with expo(1)-distributed jump sizes
and dependence modelled by a Clayton Lévy copula for θ = 0.3, θ = 2 and θ = 10;
left: sample paths; right: jump times and jump sizes. When θ increases, then the
number of single jumps ∆P 1,∆P 2, cf. (3.2.6), decreases and the number of common
jumps ∆P 3 increases. Further, for increasing θ, the dependence between jump sizes
of X1 and X2 increases.
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and each line corresponds to the cases (a)-(d), respectively. Moreover,

ΠP 3(z) =η

∫ ∞
0

Π
+

2 (0 ∨ (z − x))2 + ζΠ
+

2 (0 ∨ (z − x))(
Π

+

1 (x) + Π
+

2 (0 ∨ (z − x)) + ζ
)2 Π1(dx)

Π
+

P 4(z) =(1− η)

∫ ∞
z

 (λ−2 )2 + ζλ−2(
Π

+

1 (x) + λ−2 + ζ
)2 −

∣∣Π−2 (z − x)
∣∣2 + ζ

∣∣Π−2 (z − x)
∣∣(

Π
+

1 (x) +
∣∣Π−2 (z − x)

∣∣+ ζ
)2

 Π1(dx)

Π
+

P 5(z) =(1− η)

∫ ∞
z

 (λ−1 )2 + ζλ−1(
λ−1 + Π

+

2 (y) + ζ
)2 −

∣∣Π−1 (z − y)
∣∣2 + ζ

∣∣Π−1 (z − y)
∣∣(∣∣Π−1 (z − y)

∣∣+ Π
+

2 (y) + ζ
)2

 Π2(dy)

In the spectrally positive situations of Section 3.3 we must have again η = 1 and it
follows for z > 0

Π+(z) = Π1(z)

(
1− λ2

Π1(z) + λ2 + ζ

)
+ Π2(z)

(
1− λ1

Π2(z) + λ1 + ζ

)
+

∫ ∞
0

Π2(0 ∨ (z − x))2 + ζΠ2(0 ∨ (z − x))(
Π1(x) + Π2(0 ∨ (z − x)) + ζ

)2 Π1(dx). (3.4.15)

In Section 3.3.1, Theorem 3.3.1 and Corollary 3.3.2 hold with

λ+ = λ1 + λ2 −
λ1λ2

λ1 + λ2 + ζ
and F+(z) =

1

λ
Π+(z), z > 0,

and in Section 3.3.2 Corollary 3.3.4 holds with FH(dz) = 1/µSΠ+(z) dz. Contrary
to the Clayton Lévy copula, increasing the dependence parameter ζ yields that the
tail integrals of the single jumps increase and the tail integrals of the common jumps
decreases. Further, the jump intensity λ+ increases due to more single jumps which
can be seen in Figure 3.2. This result corresponds with the investigation of the non-
homogeneous PLM in Example 1.3.8 where the PLC representation illustrated how
the mass of Γ1,ζ for increasing ζ moves to the coordinate axes.

Since Lemma 3.4.3 does not cover the asymptotic of the single jumps for this non-
homogeneous Lévy copula for finite measures, we calculate the following fraction
explicitly.

ΠP 1(z)

Π1(z)
= 1− lim

y↓0

Π2(y)

Π1(z) + Π2(y) + ζ

= 1− λ2

Π1(z) + λ2 + ζ
→ ζ

λ2 + ζ
, z →∞.
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CPP with expo(1)−jumps, Non−homogeneous Lévy copula (ζ =10)
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CPP with expo(1)−jumps, Non−homogeneous Lévy copula (ζ =100)
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Figure 3.2: Spectrally positive CPP (X1, X2) with expo(1)-distributed jump sizes
and dependence modelled by the non-homogeneous Lévy copula for ζ = 0.001,
ζ = 10 and ζ = 100; left: sample paths; right: jump times and jump sizes. When ζ
increases, then the number of single jumps ∆P 1,∆P 2, cf. (3.2.6), increases and the
number of common jumps ∆P 3 decreases. Further, for increasing ζ, the dependence
between jump sizes of X1 and X2 decreases.
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Contrary to the homogeneous Lévy copulas the single jump Lévy measures are tail-
equivalent to the Lévy measures of the components. Consequently, the Lévy measure
of the sum process can be dominated by the common jumps, but it does not have
to, as shown in following three examples for marginal Lévy measures.

Proposition 3.4.6
Suppose that (X1, X2) is a spectrally positive Lévy process with the non-homogeneous
Lévy copula Ĉ1,ζ , ζ > 2, given in (1.3.14). Further, suppose that the marginal Lévy
measures are exponential distributions, i. e. Π1(x) = Π2(x) = e−ax for some a > 0

and x > 0. Then for z > 0 we get

ΠP 1(z) = ΠP 2(z) = e−az
e−az + ζ

e−az + 1 + ζ
∼ ζ

1 + ζ
e−az, z →∞,

and

ΠP 3(z)

=
1

1 + eaz(1 + ζ)
+

e−azζ(1− e−az)
(4e−az − ζ2)(1 + ζ + e−az)

+
e−az(2e−az − ζ2)

(4e−az − ζ2)
√
ζ2 − 4e−az

ln

(
(2 + ζ −

√
ζ2 − 4e−az)(2e−az + ζ +

√
ζ2 − 4e−az)

(2 + ζ +
√
ζ2 − 4e−az)(2e−az + ζ −

√
ζ2 − 4e−az)

)
∼ az

ζ
e−az as z →∞.

Consequently, for exponential marginals and ζ > 2 the common jumps dominate
the tail integral Π+(z) asymptotically for large z as in the situation for the Clayton
Lévy copula with exponential marginals and parameter θ = 1.

As heavy-tailed example we consider standard Pareto margins.

Proposition 3.4.7
Suppose that (X1, X2) is a spectrally positive Lévy process with the non-homogeneous
Lévy copula Ĉ1,ζ , ζ > 0, given in (1.3.14). Further, suppose that the marginal Lévy
measures are standard Pareto distributions, i. e. Π1(x) = Π2(x) = x−1 for x ≥ 1.
Then we get for z > 1

ΠP 1(z) = ΠP 2(z) =
ζ + z−1

1 + z(1 + ζ)
∼ ζ

1 + ζ
z−1 as z →∞,
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and for z > 2

ΠP 3(z) =
2z2ζ + 6z − 2zζ − 4

(4 + zζ)(−ζ + zζ + z)z

+
2(2 + zζ)

(4 + zζ)z
√
zζ(4 + zζ)

ln

(∣∣∣∣∣zζ − 2ζ +
√
zζ(4 + zζ)

zζ − 2ζ −
√
zζ(4 + zζ)

∣∣∣∣∣
)

∼ 2

1 + ζ
z−1 as z →∞.

Contrary to the light-tailed example in Proposition 3.4.6, the common jumps do
not dominate the tail integral Π+(z) for large z. This result can be reasoned by the
corresponding PLM. In Example 1.3.8 we saw that for increasing values the mass
of the non-homogeneous PLM Γ1,ζ decreases inside the quadrant stronger than near
the axes. By relation (1.1.14) we obtain for a Lévy measure Π with PLM Γ1,ζ and
heavy-tailed margins that the mass of Π on the axes may decrease more slowly than
inside the quadrant. Thus, the single jumps of Π can also be heavy-tailed.

Finally, we consider the tail behaviour of Π+ for infinite marginal Lévy measures.

Proposition 3.4.8
Suppose that (X1, X2) is a spectrally positive Lévy process with the non-homogeneous
Lévy copula Ĉ1,ζ , ζ > 2, given in (1.3.7). Further, suppose that the marginal Lévy
measures are standard 1-homogeneous, i. e. Π1(x) = Π2(x) = x−1 for x > 0. Then
we have P 1 = P 2 = 0 a. s. and for z > 0

ΠP 3(z) =
6 + 2zζ

z(4 + zζ)

+
4 + 2zζ

z(4 + zζ)
√
zζ(4 + zζ)

ln

(∣∣∣∣∣zζ +
√
zζ(4 + zζ)

zζ −
√
zζ(4 + zζ)

∣∣∣∣∣
)

∼ 2z−1 as z →∞.

Let (X1, X2) be a Lévy process, whose Lévy measure is given by the non-homogeneous
PLM Γ1,ζ . By Example 2.2.4, (X1, X2) can not be regularly varying. Although,
Proposition 3.4.8 shows that X1 +X2 is regularly varying. Note that this does not
contradict [11], Theorem 1.1, where it was proven that a r. v. X is regularly varying
if and only if every linear combination (t,X), t ∈ Rd, is regularly varying.
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3.5 Applications in insurance risk theory

In this section we apply our results to insurance risk theory where we refer to the
monographs [7, 25].

In the classical Cramér-Lundberg insurance risk model the claims arriving within the
interval (0, t], t > 0, are modelled as a spectrally positive CPP and with a premium
rate c > 0 the risk process is given as

Xt = St − ct, t ≥ 0,

describing the net balance of the insurance company. Starting with an initial capital
x ≥ 0 ruin of the company occurs if the first hitting time τ+

x given in (3.0.2) is finite.
Supposing throughout this section that the net profit condition

lim
t→∞

Xt = −∞ a. s. (3.5.1)

holds, the probability of first upwards passage over the barrier x decreases to 0 as
x → ∞ which can be considered as risk measure. For the Cramér case we refer to
[25], Section 1.2. and for the non-Cramér case to [25], Section 1.4. Further, the way
ruin happens is of interest and was investigated in [5, 8].

In [18] this model was extended to a d-dimensional risk portfolio of an insurance
company where the risk processes X i of the business lines may be dependent. For
d = 2 and dependence modelled by a Clayton Lévy copula they investigate the
company’s total risk process X = X1 + X2 and prove the asymptotic behaviour
of the ruin probability for Pareto and exponentially distributed jump sizes of X i.
More generally, our results from Section 3.3.2 and 3.4 give a very precise description
of the ruin event for every barrier x ≥ 0 when the jump process S is the sum of
subordinators and the dependence structure is modelled by one the four Lévy copula
examples.

Further, the one-dimensional risk model has been generalized in [46, 47] by investi-
gating the ruin event for general spectrally positive Lévy processes when x → ∞.
Invoking our quintuple law 3.2.4 we obtain asymptotic results on the ruin event
with regarding to dependence when X = X1 + X2 is the sum of general spectrally
positive Lévy processes that may contain a Gaussian part.

Since X is spectrally positive we can choose as in Section 3.3.2 the descending
ladder process (L̂−1, Ĥ) such that under the normalization condition (3.2.12) we
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obtain Relation (3.3.11), i. e.

ΠH(u) =

∫ ∞
u

Π+(z) dz, u > 0. (3.5.2)

This implies that the integral in (3.5.2) and so E[X1] is finite.

We will first answer the question which business line is most likely to cause ruin.
Recall the definition of the P k in (3.2.6) and the representation of their tail integrals
in Corollary 3.4.2.

For this result we require ΠH to be subexponential. We say that ΠH is subexponential
if ΠH is tail-equivalent to an infinitely divisible distribution F ∈ S on [0,∞), i. e.
F (x) > 0 for every x ≥ 0 and

lim
x→∞

F 2∗(x)

F (x)
= 2.

Then we write ΠH ∈ S. If Π+ is a finite measure with
∫∞

0
Π+(x) dx <∞ and infinite

support, this is implied by the d. f. of the increments of S = S1 + S2 belonging to
the class S∗ as introduced in [44].

We recall that subexponential distributions or d. f. s in S∗ can belong to the max-
imum domain of attraction of the Fréchet distribution, MDA(Φα) for some α > 0,
or of the Gumbel distribution, MDA(Λ). The first class covers the regular variation
case, the second class contains subexponentials with lighter tails like lognormal or
heavy-tailed Weibull distributions. For details see [25], Chapter 3.

In the multivariate regularly varying setting, considered in Chapter 2, we know
from Corollary 2.1.2 that S = S1 + S2 is regularly varying, provided that at least
one of the marginals is regularly varying in combination with a Lévy copula whose
corresponding PLM is regularly varying with index 1.

We say that Π+ is in the maximum domain of attraction of the Gumbel distribution
if Π+ is tail-equivalent to a infinitely divisible distribution F ∈ MDA(Λ) and write
Π+ ∈ MDA(Λ). Recall that a distribution is in the maximum domain of attraction
of the Gumbel distribution if and only is there is a function a satisfying a′(x) → 0

such that

lim
x→∞

F (x+ a(x)u)

F (x)
= e−u for all u > 0.
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Theorem 3.5.1
Suppose that (X1, X2) is a spectrally positive Lévy process such that X = X1 +X2

satisfies the net profit condition (3.5.1). Assume for the Lévy measure Π+ of X that
either
(i) Π+ ∈ RV(α, cn, µ+) for α > 1 or
(ii) Π+ ∈ MDA(Λ) ∩ S and ΠH ∈ S.
Then the ruin probability is subexponential, i. e. P(τ+

· <∞) ∈ S.
In case (i), P(τ+

· <∞) is regularly varying with index α− 1.
Let a(x) ∼

∫∞
x

Π+(z)dz/Π+(x) as x→∞ and suppose that the Lévy copula satisfies
(3.4.8). Then for k = 1, 2 and u, v > 0 we have

lim
x→∞

P
(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,∆Xτ+

x
= ∆P k

τ+
x

∣∣∣ τ+
x <∞

)
= 0 (3.5.3)

lim
x→∞

P(∆Xτ+
x

= ∆P k
τ+
x

∣∣ τ+
x <∞) = 0 (3.5.4)

and

lim
x→∞

P
(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,∆Xτ+

x
= ∆P 3

τ+
x

∣∣∣ τ+
x <∞

)
= GPD(u+ v)

lim
x→∞

P(∆Xτ+
x

= ∆P 3
τ+
x

∣∣ τ+
x <∞) = 1. (3.5.5)

In case (i), GPD(u+ v) =
(
1 + u+v

α

)−α and a(x) ∼ x/α; in case (ii), GPD(u+ v) =

e−(u+v).

Proof.
From [47], Lemma 3.5, we have for ΠH ∈ S the relation

lim
x→∞

P(τ+
x <∞)

ΠH(x)
= U([0,∞)) =

1

|E[X1]|
. (3.5.6)

In case (i) the assumption Π+ ∈ RV(α, cn, µ+) and applying Karamata’s Theorem
(cf. [16], Theorem 1.5.11(ii)) to (3.5.2) yields that ΠH is regularly varying with index
α− 1 and so ΠH ∈ S. So the first assertion results.

From Theorem 3.2.4 it follows for u∗, v∗ > 0

P
(
Xτ+

x
− x > u∗, x−Xτ+

x − > v∗,∆Xτ+
x

= ∆P 1
τ+
x

)
=

∫
y∈[0,x]

∫
v∈[v∗∨y,∞)

∫
u∈[u∗,∞)

ΠP 1(du+ v) dv U(x− dy)

=

∫
y∈[0,x]

∫
v∈[v∗∨y,∞)

ΠP 1(u∗ + v) dv U(x− dy)

=

∫
y∈[0,x]

µ1(u∗ + (v∗ ∨ y))U(x− dy),
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where µ1(z) :=
∫∞
z

ΠP 1(s) ds. For u, v > 0, defining u∗ := a(x)u, v∗ := x+ a(x)v we
have,

P
(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,∆Xτ+

x
= ∆P 1

τ+
x

)
= U([0, x))µ1(x+ a(x)(u+ v)).

With (3.5.6) we obtain

lim
x→∞

P
(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v,∆Xτ+

x
= ∆P 1

τ+
x

∣∣∣ τ+
x <∞

)
= lim

x→∞

U([0, x))µ1 (x+ a(x)(u+ v))

U([0,∞)) ΠH(x)
≤ lim

x→∞

U([0, x))µ1 (x)

U([0,∞)) ΠH(x)
. (3.5.7)

Now recall that
µ1 (x)

ΠH(x)
=

∫∞
x

ΠP 1(s) ds∫∞
x

Π+(s) ds
. (3.5.8)

Since with (3.4.8) we receive that

ΠP 1(x)

Π+(x)
≤ ΠP 1(x)

Π1(x)
→ 0 as x→∞,

the r. h. s of (3.5.8) tends to 0 as x → ∞ by l’Hospital’s Lemma and, hence, the
right hand bound of (3.5.7) is 0. The analogous result holds for P 2. This implies the
assertions (3.5.3) and (3.5.4). By [46], Theorem 1 and 2, it holds for u, v > 0

lim
x→∞

P
(
Xτ+

x
− x

a(x)
> u,

−Xτ+
x −

a(x)
> v
∣∣∣τ+
x <∞

)
= GPD(u+ v)

and the last two equations result. �

Remark 3.5.2
(i) Theorem 3.5.1 generalizes the CPP situation in [18], Corollary 3.6, where the
ruin probability was calculated for Pareto distributed jump sizes and a Clayton Lévy
copula.
(ii) By [47], Remark 4.3(iii), ruin can asymptotically occur for subexponential ΠH

only by a jump. In the situation of Theorem 3.5.1, Relation (3.5.5) means that ruin
occurs asymptotically only by a common jump, i. e. a claim that applies to both
business lines at the same time.

Finally, we investigate the ruin event for the barrier x = 0.
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Corollary 3.5.3
Suppose that (X1, X2) is a spectrally positive Lévy process such that 0 is irregular
for (0,∞) with respect to X = X1 +X2.

(1) If the dependence is modelled by a Clayton Lévy copula Ĉ1,θ defined in (1.3.7)
then

lim
θ→∞

P
(

∆Xτ+
0

= ∆P k
τ+
0

∣∣ τ+
0 <∞

)
=

{
0, for k = 1, 2,

1, for k = 3.

(2) If the dependence is modelled by the non-homogeneous Archimedean Lévy
copula Ĉ1,ζ defined in (1.3.14) then

lim
ζ→∞

P
(

∆Xτ+
0

= ∆P k
τ+
0

∣∣ τ+
0 <∞

)
=


∫∞

0
Πk(z) dz
µS

, for k = 1, 2,

0, for k = 3.

Proof.
If 0 is irregular for (0,∞), we get with Corollary 3.2.5

P
(

∆Xτ+
0

= ∆P k
τ+
0

)
=

∫ ∞
0

ΠPk(z) dz U({0})

and P(τ+
0 <∞) = µS U({0}) where S denotes the jump part of X and µS = E[S1].

Note that U({0}) > 0, if 0 is irregular for (0,∞). So

P
(

∆Xτ+
0

= ∆P k
τ+
0

∣∣∣∣τ+
0 <∞

)
=
µPk

µS

where µPk =
∫∞

0
ΠPk(z) dz. From Section 3.4.2 we know that increasing the depen-

dence parameter θ of the Clayton Lévy copula lowers the tail integral of the single
jump components, i. e. limθ→∞ΠPk(z) = 0 for k = 1, 2. Furthermore, increasing
the dependence parameter ζ of the non-homogeneous Lévy copula lowers the tail
integral of the common jump, i. e. limζ→∞ΠP 3(z) = 0 and limζ→∞ΠPk(z) = Πk for
k = 1, 2. �
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Appendix

4.1 Basic definitions and results of regular variation

In this Appendix we summarize some definitions and concepts of regular variation
used in this thesis.

Theorem 4.1.1 (Portmanteau theorem, [14], p. 11)
Let P, (Pn)n∈N be probability measures. The following are equivalent:

(1) Pn
w→ P as n→∞.

(2) limn→∞ P(B) = P(B) for all sets B with P(∂B) = 0.

For a Radon measure µ on E, i. e. µ(K) < ∞ for all compact sets K ∈ B(E), one
considers vague convergence.

Theorem 4.1.2 ([35], Theorem 2.4)
Let µ, (µn)n∈N non-negative Radon measure on E. The following are equivalent:

(1) µn
v→ µ as n→∞.

(2) µn(B)→ µ(B) for all relatively compact sets B, i. e. 0 /∈ B, and µ(∂B) = 0.

Definition 4.1.3 (Multivariate regular variation for r. v. s)
A d-dimensional r. v. X = (X1, . . . , Xd) in Rd and its distribution are regularly
varying if one of the following equivalent definitions (1) or (2) holds.
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(1) There exists a sequence (cn)n∈N of positive numbers with cn ↑ ∞ as n → ∞
and a non-zero Radon measure µ on B(E) with µ(Rd \ Rd) = 0 such that

nP
(
c−1
n X ∈ ·

) v→ µ(·),

where v→ denotes vague convergence on B(E). Then the limit measure µ is
necessarily homogeneous of degree α > 0.

(2) There exists a r. v. Θ with values in S such that for all t > 0

P(|X| > tu,X/|X| ∈ ·)
P(|X| > u)

w→ t−α P(Θ ∈ ·) as u→∞,

where v→ denotes vague convergence on B(S). The distribution of Θ is called
the spectral measure of X.

We did not specify the norm | · |, since the regular variation does not depend on the
choice of the norm, see [32], Lemma 2.1.

The relation between regular variation of Lévy process and regular variation of their
Lévy measures is given by the following result.

Theorem 4.1.4 ([36], Lemma 2.1)
LetX be a Lévy process with Lévy measure Π. The following statements are equiv-
alent:

(1) X1 ∈ RV(α, cn, µ).

(2) Π ∈ RV(α, cn, µ).

(3) X ∈ RV(α, cn,m) with mt = tµ for every t ∈ [0, 1].

4.2 Auxiliary results and technical proofs

In this Appendix we give auxiliary results and proofs used in this thesis.

4.2.1 Chapter 1

In this Section we give the technical proof of Proposition 1.1.11.
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Proof of Proposition 1.1.11
(1) Let a, b ∈ Rd. Assume that aibi ≤ 0 for at most k ∈ {0, . . . , d} indices. We prove
(1.1.12) by induction on k = 0, . . . , d.
Let k = 0, i. e. aibi > 0 for all i = 1, . . . , d. Then with Definition 1.1.4 and (1.1.8)
we obtain

Π

(
d∏
i=1

(ai, bi]

)
= V(−1)dΠ

(
d∏
i=1

(ai, bi]

)
= V(−1)dΓ

(
d∏
i=1

(
1

Πi(ai)
,

1

Πi(bi)

])

= Γ

(
d∏
i=1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

Suppose (1.1.12) holds for a, b ∈ Rd with aibi ≤ 0 for at most k indices. W. l. o. g. we
assume that aibi ≤ 0 for i = 1, . . . , k+ 1. If ak+1 = 0, then the induction hypothesis
results in

Π

(
d∏
i=1

(ai, bi]

)

= lim
ε↓0

Π

( ∏
i<k+1

(ai, bi]× (ε, bk+1]×
∏
i>k+1

(ai, bi]

)

= lim
ε↓0

Γ

( ∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×
(

1

Πi(ε)
,

1

Πi(bi)

]
×
∏
i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

= Γ

( ∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×
(

1

Πi(0+)
,

1

Πi(bi)

]
×
∏
i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

If ak+1 6= 0, i. e. ak+1 < 0 and bk+1 ≥ 0, then with induction hypothesis we get

Π

(
d∏
i=1

(ai, bi]

)

= Π{1,...,d}\{k+1}

( ∏
i 6=k+1

(ai, bi]

)
− lim

β↓bk+1

Π

( ∏
i<k+1

(ai, bi]× (β,∞)×
∏
i>k+1

(ai, bi]

)

− Π

( ∏
i<k+1

(ai, bi]× (−∞, ak]×
∏

i∈I,i>k+1

(ai, bi]

)
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= Γ{1,...,d}\{k+1}

( ∏
i 6=k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

− lim
β↓bk+1

Γ

( ∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×
(

1

Πk+1(β)
,∞
)
×
∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

− Γ

( ∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×
(
−∞, 1

Πk+1(ak+1)

]
×
∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

])

= Γ

( ∏
i<k+1

(
1

Πi(ai)
,

1

Πi(bi)

]
×
(

1

Πk+1(ak+1)
,

1

Πk+1(bk+1+)

]

×
∏
i>k+1

(
1

Πi(ai)
,

1

Πi(bi)

])
.

Recall that for bk+1 > 0 we have by right-continuity of the tail integral Πk+1(bk+1+) =

Πk+1(bk+1). If bk+1 = 0, then Πk+1(bk+1+) = Πk+1(0+).
(2) We prove (1.1.14) analogously by induction on |K| = 1, . . . , d − 1. For |K| = 1

we assume w. l. o. g. that K = {1}. Sklar’s Theorem 1.1.10 implies

Π

(
{0} ×

d∏
i=2

I(xi)

)

= Π{2,...,d}

(
d∏
i=2

I(xi)

)
− lim

ε↓0
Π

(
I(ε)×

d∏
i=2

I(xi)

)
− lim

ε↑0
Π

(
I(ε)×

d∏
i=2

I(xi)

)

= Γ{2,...,d}

(
d∏
i=2

I
(

1

Πi(xi)

))
− Γ

(
I
(

1

Π1(0+)

)
×

d∏
i=2

I
(

1

Πi(xi)

))

− Γ

((
−∞, 1

Π1(0−)

)
×

d∏
i=2

I
(

1

Πi(xi)

))

= Γ

([
1

Π1(0−)
,

1

Π1(0+)

]
×

d∏
i=2

I
(

1

Πi(xi)

))
.

With induction on |K| Equations (1.1.13) and (1.1.14) result. �

4.2.2 Chapter 2

In this section we prove Lemma 2.0.2 and give auxiliary results for the proofs of
Theorem 2.1.1 and 2.1.5.
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Proof of Lemma 2.0.2
Suppose i ∈ {1, . . . , d} and A ∈ B(R \ {0}) with 0 /∈ A and µi(∂A) = µ({x ∈ E :

xi ∈ ∂A}) = 0. Note that 0 /∈ {x ∈ Rd : xi ∈ A} since 0 /∈ A, and that

µ(∂{x ∈ E : xi ∈ A}) = µ({x ∈ E : xi ∈ ∂A}) = 0 .

Consequently,

nΠi(cnA) =nΠ(cn{x ∈ E : xi ∈ A})
→µ({x ∈ E : xi ∈ A}) = µi(A) <∞.

Setting A = (x,∞) and A = (−∞,−x] for x > 0, the homogeneity of µ yields
(2.0.4). Since µ is a non-zero measure, there is at least one index i∗ such that µi∗ is
a non-zero measure, i. e. µi∗(1)− µi∗(−1) > 0 and Πi∗ ∈ RV(α, cn, µi∗). �

The following propositions are auxiliary results for the proofs of Theorem 2.1.1
and 2.1.5. They parallel the equivalence of weak convergence and convergence with
respect to the Lévy distance, see [65], on the level of Lévy measures and vague
convergence. We prove this results to keep this thesis self-contained.

Proposition 4.2.1

Let M and (Mn)n∈N be measures on B(E) and a, b, (an)n∈N, (bn)n∈N ∈ E with 0 /∈
(a, b] and 0 /∈ (an, bn] for all n. Suppose

(1) an → a and bn → b as n→∞,

(2) M(∂(a, b]) = 0,

(3) supa,b∈E,0/∈(a,b],M(∂(a,b])=0 |Mn((a, b])−M((a, b])| → 0 as n→∞ .

Then Mn((an, bn])→M((a, b]) as n→∞.

Proof.
For n→∞ we have

|Mn((an, bn])−M((a, b])|
≤ |Mn((an, bn])−M((an, bn])|+ |M((an, bn])−M((a, b])|
≤ sup

a,b∈E,0/∈(a,b],M(∂(a,b])=0

|Mn((a, b])−M((a, b])|︸ ︷︷ ︸
(3)→0

+ |M((an, bn])−M((a, b])|︸ ︷︷ ︸
(1)+(2)→0

→ 0.
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�

Proposition 4.2.2

Suppose the situation of Theorem 2.1.1. Then the following holds

sup
a,b∈E,0/∈(a,b], ν(∂(a,b])=0

|nΓ(n(a, b])− ν((a, b])| → 0 as n→∞.

Proof.
For a, b ∈ E with 0 /∈ (a, b] and ν(∂(a, b]) = 0 define gn(a, b) := |nΓ(n(a, b]) −
ν((a, b])|. gn is continuous on E2, since Γ and ν have no atoms. So for ε > 0 the
sequence Sn := {x,y ∈ E : gn(x,y) < ε} are open sets. gn is decreasing for n→∞
and converges pointwise to 0. Therefore, Sn is ascending and (Sn)n∈N is an open
cover of E2. Since E2 is compact in the here used topology, see one-point uncom-
pactification [56], p.171, there exists an N ∈ N such that SN = E2. So for every
n > N and every (x,y) ∈ E2 we get |nΓ(n(x,y])− ν((x,y])| = gn(x,y) < ε, where
N does not depend on (x,y). �

Proposition 4.2.3

Suppose the situation of Theorem 2.1.5. Then the following holds

sup
a,b∈E,0/∈(a,b], µ(∂(a,b])=0

|nΠ(cn(a, b])− µ((a, b])| → 0 as n→∞.

The proof is analogous to the proof of Proposition 4.2.2.

4.2.3 Chapter 3

Proof of Proposition 3.4.6
The first expression holds with Corollary 3.4.2 obviously. It remains to calculate
ΠP 3 :

ΠP 3(z) =a

∫ z

0

e−2a(z−x) + ζe−a(z−x)

(e−ax + e−a(z−x) + ζ)2
e−axdx

+ a

∫ ∞
z

1 + ζ

(e−ax + 1 + ζ)2
e−axdx =: I(z) + II(z).
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We substitute y = eax and calculate both integrals for ζ > 2 separately with [19],
Tabelle 1.1.3.3.45 and 1.1.2.2.48.

II(z) =

∫ ∞
eaz

1 + ζ

(1 + y(1 + ζ))2
dy =

1

1 + eaz(1 + ζ)
∼ 1

1 + ζ
e−az , z →∞,

and

I(z) =

∫ eaz

1

e−2azy2 + ζe−azy

(1 + e−azy2 + ζy)2
dy

=
e−azζ(1− e−az)

(4e−az − ζ2)(1 + ζ + e−az)

+
e−az(2e−az − ζ2)

(4e−az − ζ2)
√
ζ2 − 4e−az

ln

(
(2 + ζ −

√
ζ2 − 4e−az)(2e−az + ζ +

√
ζ2 − 4e−az)

(2 + ζ +
√
ζ2 − 4e−az)(2e−az + ζ −

√
ζ2 − 4e−az)

)
.

With

(2e−az + ζ +
√
ζ2 − 4e−az)

(2e−az + ζ −
√
ζ2 − 4e−az)

∼ eaz
ζ2

1 + ζ
as z →∞

and l’Hospital’s Lemma it holds

ln

(
(2e−az + ζ +

√
ζ2 − 4e−az)

(2e−az + ζ −
√
ζ2 − 4e−az)

)
∼ ln

(
eaz

ζ2

1 + ζ

)
= az + ln

(
ζ2

1 + ζ

)
as z →∞.

This yields the asymptotic result for ΠP 3 . �

Proof of Proposition 3.4.7
As in Proposition 3.4.6 the first expression results easily from Corollary 3.4.2 and it
remains again to calculate ΠP 3(z). For z > 2 we receive

ΠP 3(z) =

∫ ∞
0

ΠS2(0 ∨ (z − x))2 + ζΠS2(0 ∨ (z − x))(
ΠS1(x) + ΠS2(0 ∨ (z − x)) + ζ

)2 ΠS1(dx)

=

∫ z−1

1

(z − x)−2 + ζ(z − x)−1

(x−1 + (z − x)−1 + ζ)2 x
−2 dx+

∫ ∞
z−1

1 + ζ

(x−1 + 1 + ζ)2x
−2 dx
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and with [19], Tabelle 1.1.3.3.41 and 1.1.2.2.45 straight calculations yield∫ z−1

1

(z − x)−2 + ζ(z − x)−1

(x−1 + (z − x)−1 + ζ)2 x
−2 dx

=

∫ z−1

1

1 + ζz − ζx
(−ζx2 + zζx+ z)2

dx

=
2z − 4 + z2ζ − 2zζ

(4 + zζ)(−ζ + zζ + z)z

+
2(2 + zζ)

(4 + zζ)z
√
zζ(4 + zζ)

ln

(∣∣∣∣∣zζ − 2ζ +
√
zζ(4 + zζ)

zζ − 2ζ −
√
zζ(4 + zζ)

∣∣∣∣∣
)

and ∫ ∞
z−1

1 + ζ

(x−1 + 1 + ζ)2x
−2 dx =

1

−ζ + zζ + z
.

Since∣∣∣∣∣zζ − 2ζ +
√
zζ(4 + zζ)

zζ − 2ζ −
√
zζ(4 + zζ)

∣∣∣∣∣ = z
z

|4zζ − 4ζ2 + 4zζ2|

(
ζ − 2ζ

z
+

√
ζ

(
4

z
+ ζ

))2

∼ z
ζ

1 + ζ
as z →∞,

we get with l’Hospital’s Lemma that

ln

(∣∣∣∣∣zζ − 2ζ +
√
zζ(4 + zζ)

zζ − 2ζ −
√
zζ(4 + zζ)

∣∣∣∣∣
)
∼ ln

(
z

ζ

1 + ζ

)
as z →∞

and the asymptotic of ΠP 3 follows. �

Proof of Proposition 3.4.8
Since Ĉ1,ζ is left-continuous in both coordinates in∞ and Π1((0,∞)) = Π2((0,∞)) =

∞, with Corollary 3.4.2 it results ΠP 1(z) = ΠP 2(z) = 0 for all z > 0. Furthermore,
for z > 0 we achieve

ΠP 3(z) =

∫ ∞
0

Π2(0 ∨ (z − x))2 + ζΠ2(0 ∨ (z − x))(
Π1(x) + Π2(0 ∨ (z − x)) + ζ

)2 Π1(dx)

=

∫ z

0

(z − x)−2 + ζ(z − x)−1

(x−1 + (z − x)−1 + ζ)2 x2
dx+

∫ ∞
z

1

x2
dx

=(1 + ζz)

∫ z

0

1

(−ζx2 + zζx+ z)2
dx− ζ

∫ z

0

x

(−ζx2 + zζx+ z)2
dx+ z−1
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and with [19], Tabelle 1.1.3.3.41 and 1.1.2.2.45, it results

ΠP 3(z) =
6 + 2zζ

z(4 + zζ)

+
4 + 2zζ

z(4 + zζ)
√
zζ(4 + zζ)

ln

(∣∣∣∣∣zζ +
√
zζ(4 + zζ)

zζ +
√
zζ(4 + zζ)

∣∣∣∣∣
)

The asymptotic behaviour of ΠP 3 follows as in Proposition 3.4.7. �
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α-homogenous Lévy measure, 11
α-stable Lévy process, 10
d-increasing, 12
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characteristic triplet, 10
comonotonic, 26
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creeping, 69

Lévy copula
Archimedean, 30
Clayton, 30
complete dependence, 27
definition, 16
independence, 25
non-homogeneous, 36

Lévy process, 9
Lévy-Khintchine representation, 10
ladder process

of a Lévy process, 63
of a random walk, 56

local time at the maximum, 63

margins of a Lévy measure/process, 15

Pareto Lévy copula, 16
Pareto Lévy measure

Archimedean, 30

Clayton, 31
complete dependence, 26
definition, 16
independence, 24
non-homogeneous, 36

quintuple law
for the sum of Lévy processes, 65
for the sum of random walks, 57

regular variation
for Lévy measures, 41
for random vectors, 97

regularity of zero, 62

Sklar’s Theorem
for copulas, 13
for Pareto Lévy measures, 17

spectral measure
of a homogeneous Lévy measure, 11
of a reg. varying Lévy measure, 42

strictly ordered set, 25
subordinator, 10

tail integral, 14
tail integral dependence coefficient, 46

vague convergence, 97

weak convergence, 97
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List of Abbreviations and Symbols

a ∨ b, a ∧ b max{a, b}, min{a, b}
a. s. almost sure(ly)
B(·) Borel-σ-algebra
B, B◦, ∂B closure, interior and boundary of the set B
| · |, # cardinality of a set
CD, ĈD (distributional) copula, survival copula
Ĉ Lévy copula
ĈI I-margin of Lévy copula
Ĉ⊥, Ĉ‖ independence/complete dependence Lévy copula
Ĉη,θ, Ĉη,ζ Clayton/non-homogeneous Lévy copula
CPP compound Poisson process
Di I(1/Πi(0−)) ∪ I(1/Πi(0+)) ∪ {0}
δx Dirac measure with mass on x ∈ Rd

d. f. distribution function
E [−∞,∞]d \ {0}
E[·] expectation operator
expo(q) exponential distribution with parameter q
F , Fi, F+ d-dimensional d. f., one-dimensional d. f., one-dimensional

d. f. of the sum
F n∗ n-fold convolution
F , F i, F+ right tail of the d. f. F , Fi, F+

G = (Gt)t≥0, G = (Gt)t≥0 time of the previous maximum/minimum of X
(γ, A,Π) characteristic triplet
ΓD Pareto measure
ΓD Pareto copula = right tail of Pareto measure
Γ Pareto Lévy measure
Γ Pareto Lévy copula = tail integral of PLM
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Γ⊥, Γ‖ independence/complete dependence PLM
Γη,θ, Γη,ζ Clayton/non-homogeneous PLM
I(x) (−∞, x] for x < 0 and (x,∞) for x ≥ 0

i. i. d. independent and identically distributed
1B indicator function of the set B
∞ (∞, . . . ,∞)

(·, ·) inner product
J Poisson randommeasure of Lévy processX = (X1, X2)

κ, κ̂ Laplace exponent of the ascending/descending ladder
process

K {x ∈ Rd : sgn(x1) = · · · = sgn(xd)}
(L̂−1, Ĥ) = (L̂−1

t , Ĥt)t≥0 descending ladder process of X
(L−1, H) = (L−1

t , Ht)t≥0 ascending ladder process of X
λ+
i , λ

−
i Πi(0+), Πi(0−)

ΛU , ΛL upper/lower tail integral dependence coefficient
L = (Lt)t≥0 local time at the maximum of X
l. h. s. left-hand side
MDA(Φα), MDA(Λ) maximum domain of attraction of the Fréchet distribu-

tion/Gumbel distribution
µS· spectral measure on unit sphere S· of a 1-homogeneous

or regularly varying PLM
µĈ measure defined by a Lévy copula
| · |· 1, 2-or ∞-norm
P probability measure
P 1 = (P 1

t )t≥0, P 2 = (P 2
t )t≥0 process of the single positive jumps of X1/X2

P 3 = (P 3
t )t≥0 process whose jumps are the sum of common positive

jumps of X1 and X2

P 4 = (P 4
t )t≥0 process whose jumps are the sum of the positive jumps

of X1 and the negative jumps of X2 which happen at
the same time

P 5 = (P 5
t )t≥0 process whose jumps are the sum of the negative jumps

of X2 and the positive jumps of X2 which happen at
the same time

Π, Πi, Π+ Lévy measure of Lévy processX = (X1, . . . , Xd)/X i/X :=∑d
i=1X

i

ΠI I-margin of Lévy measure Π
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ΠP i Lévy measure of the jump process P i

Π tail integral of the Lévy measure Π

PLC Pareto Lévy copula
PLM Pareto Lévy measure
Q inversion map
R [−∞,∞]

Ran range
r. v. random vector/variable
RV(α, cn, µ) regular variation with index α, norming sequence cn

and limit measure µ
r. h. s. right-hand side
(S1, S2) = (S1

t , S
2
t )t≥0 jump part of Lévy process (X1, X2)

(S1,ε, S2,ε) = (S1,ε
t , S2,ε

t )t≥0 truncated jump part of (X1, X2) with jumps ≥ ε

S unit sphere in Rd

S subexponential distributions
sgn(x) 1{x≥0} − 1{x<0}

S = (S1
t + S2

t )t≥0 jump part of X = X1 +X2

S·ρ1,ρ2 arc {(cos(φ), sin(φ))/|(cos(φ), sin(φ))|· : φ ∈ [ρ1, ρ2]} of
the unit circle S·

τ+
x , τ−x first upwards/downwards passage time of X
U , Û potential measure of the ascending/descending ladder

process
v→ vague convergence
VF F -volume
(W 1,W 2) = (W 1

t ,W
2
t )t≥0 Gaussian part of Lévy process (X1, X2)

w→ weak convergence
w. l. o. g. without loss of generality
X = (X1

t , . . . , X
d
t )t≥0 d-dimensional Lévy process

X i = (X i
t)t≥0 one-dimensional Lévy process

X = (X t)t≥0, X = (X t)t≥0 running suprema/infima of X
X = (

∑d
i=1 X

i
t)t≥0 sum of d Lévy processes

0 (0, . . . , 0) ∈ Rd


