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Abstract

Precision calculations are required for the verification of the standard model (SM) and serve
as a useful tool for probing and disentangling new physics beyond the SM. In this thesis we
concentrate on the extension of the SM with supersymmetry, i.e. the minimal supersymmetric
extension of the standard model (MSSM) and investigate the decay processes of Higgs bosons
within this model. At tree-level, the light CP-even MSSM Higgs boson, h0, becomes SM-like
when the other Higgs bosons get heavy. Thus it is of particular interest to investigate the
impact of higher order corrections. We present the complete one-loop electroweak radiative
corrections to the decay of h0 to four fermions via gauge boson pair, the results are further
improved by currently available two-loop corrections to the Higgs boson self energies. The
gauge boson in the photonic one-loop diagrams can become resonant and lead to singularities
that have to be regularized by its finite width. To incorporation the gauge boson width,
the one-loop integrals that involve such singularities are evaluated analytically. While the
one-loop electroweak corrections yield visible effects for a relatively light MSSM Higgs sector,
they only give rise to negligible effects when the Higgs bosons other than h0 become heavy,
even if the genuine supersymmetric particle spectrum is relatively light. Consequently it is
rather difficult to distinguish the light CP-even MSSM Higgs boson from the SM one if all
other MSSM Higgs bosons are heavy, even though the one-loop corrections are included. We
also consider the decay of the heavy CP-even MSSM Higgs boson, H0, to off-/on-shell gauge
boson pair. The one-loop corrections turn out to be significant as the tree-level coupling of
H0 to gauge bosons is usually suppressed.
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Chapter 1

Introduction

The main goal of theoretical physics is to provide an explanation for as many phenomena in
nature as possible in an as simple as possible manner, or in other words, with as few physical
principles as possible. Currently our best description of nature is given by the standard
model of elementary particles [1, 2], in which the conceptual ideas of quantum mechanics
and special relativity, the two cornerstones of the twentieth-century physics, are successfully
combined. The standard model incorporates all elementary particles observed so far, and
can describe their electromagnetic, weak and strong interactions. Its predictions have been
tested by a large variety of experiments to an unprecedented accuracy. The only ingredient
of the standard model that is still missing is the Higgs boson, a hypothetical fundamental
scalar particle that generates the masses of fermions and gauge bosons in an acceptable way.
The electroweak precision data accumulated at LEP, SLC and Tevatron in the last decade
strongly favors a light Higgs boson, which is widely hoped to be discovered soon with the
startup of the Large Hadron Collider (LHC) at CERN this year.

The existence of a fundamental scalar particle in the standard model is somewhat puzzling.
Understanding this fact points to new physics beyond the standard model, which is supposed
to come into play at the TeV energy scale that will be probed by the LHC. Among the
proposals for new physics, supersymmetry is one of the most promising candidates. It is the
only possible non-trivial extension of the Poincaré symmetry and relates particles of different
spins. Besides that supersymmetry can provide solutions for a number of phenomenological
problems, as we will see in the next chapters. It even has the potential to incorporate the
other fundamental interaction, the gravitational interaction.

In contrast to the standard model, which contains only one Higgs boson, its supersymmetric
extensions usually introduce more Higgs boson, with one of them is relatively light. At the
LHC, the neutral supersymmetric Higgs bosons are mainly produced in the same way as
the standard model Higgs boson, i.e. via gluon fusion, vector boson fusion etc. A detailed
analysis of their subsequent decay processes is then required for the kinematic reconstruction
of them. The extensions of the standard model in general resemble the standard model at
the electroweak scale. Therefore to disentangle between them, precise predictions of both the
standard model and its extensions are required.
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2 CHAPTER 1. INTRODUCTION

In this thesis we consider the decay processes of the Higgs bosons in the minimal super-
symmetric extension of the standard model [3,4]. The one-loop corrections to these processes
are presented, improved by the two-loop corrections implemented in the program package
FeynHiggs [5].

The outline of this thesis is as follows. In chapter 2 a brief review of the standard model is
given, where we present all essential ingredients of the standard model, and put special em-
phasis on the Higgs mechanism. Also some deficiencies of the standard model are mentioned
at the end of this chapter, which motivate the physics beyond the standard model.

In chapter 3 we concentrate on supersymmetry. After presenting the necessary ingredi-
ents for the construction of supersymmetric Lagrangians, we briefly discuss the elegant non-
renormalization theorem, as well as the drawback of theories with extended supersymmetries
for the construction of phenomenologically viable models.

Chapter 4 is devoted to the minimal supersymmetric extension of the standard model
(MSSM). The MSSM Lagrangian with soft supersymmetry breaking terms is given. Then a
counting of independent parameters involved in the Lagrangian is sketched. When introduc-
ing the particle content of the model, we put special emphasis on the Higgs sector, which is
the most relevant sector for the computation in this thesis. We also describe the basic strate-
gies of the regularization and renormalization procedure and discuss different regularization
and renormalization schemes. Finally we present in detail the renormalization of the MSSM
Higgs sector.

In chapter 5 the relative O(α) electroweak corrections to the decay of the lightest CP-
even Higgs boson in the MSSM to four fermions via gauge boson pair are presented. The
mass of the lightest MSSM Higgs boson has an upper bound of about 135GeV, including
radiative corrections up to two-loop order. The dominant decay channel of such a light
Higgs boson will be the decay into bottom and anti-bottom quark pair. This channel is not
very promising for the discovery of Higgs boson at hadron colliders due to the large QCD
background [6]. Therefore it is necessary to investigate other more rare decay modes. In
the case that only one light Higgs boson is observable at the LHC, the detailed investigation
of the decay properties of the lightest MSSM Higgs boson can help to distinguish it from a
standard model Higgs boson. For the process under consideration, the intermediate gauge
boson can become resonant, a proper treatment of its width effects is thus required in order
to avoid the occurrence of singularities. At the one-loop level, we compute analytically the
integrals that become singular when the gauge boson approaches on-shell and insert the gauge
boson width afterwards. Two different methods are used to compute the real Bremsstrahlung
corrections. We then evaluate the partial decay width as well as the distributions, and make
a comparison of our results with the standard model predictions.

Chapter 6 deals with the decay of the heavy MSSM CP-even Higgs boson to gauge boson
pair. In contrast to the discovery of a light Higgs boson, which may be compatible with
both the standard model and the MSSM, the discovery of such a heavy Higgs boson is a
clear signature for physics beyond the standard model. Although the tree-level coupling
of this heavy CP-even Higgs boson to gauge bosons is usually suppressed compared to the
corresponding standard model coupling, the one-loop corrections, especially those from the
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fermionic and sfermionic sector, can play a significant role, since they involve potentially large
Yukawa couplings. We give the analytical results for the fermionic and sfermionic corrections,
which can be applied to more complicated processes involving the coupling of the heavy CP-
even Higgs boson to gauge bosons. For comparison purposes, we also present the complete
one-loop corrections.

In Appendix A we briefly summarize the properties of spinors, starting from their defining
algebra in arbitrary space-time dimensions.

Appendix B defines the one-loop integrals used throughout this thesis. The basic strategies
of the reduction of tensor integrals into scalar integrals are also given there. At the end
of this Appendix we collect the analytical results of the integrals that are revelant for the
computation in chapter 5.

A short discussion on unstable particles is given in Appendix C, where we also discuss the
gauge invariant definition of the mass of unstable particles.
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Chapter 2

The Standard Model

2.1 Structure of the standard model

The standard model of elementary particles [1,2] provides a spectacularly successful descrip-
tion of the non-gravitational physical phenomena at energies currently accessible at accelera-
tors. It is a non-abelian gauge theory based on the gauge group SU(3)C × SU(2)L ×U(1)Y .
To each of the generators of the gauge groups, there corresponds a gauge vector boson, which
is the force mediator. The number of gauge vector bosons is 8 (gluons) for SU(3)C , 3 (W
bosons) and 1 (B boson) for SU(2)L and U(1)Y respectively, in accordance with the dimen-
sion of each gauge group. The gauge bosons transform in the adjoint representation of the
gauge group.

The fermionic matter content consists of three generations of quarks and leptons, whose
left- and right-handed components are assigned into different representations of the gauge
group (there are no right-handed neutrinos in the framework of the standard model), thereby
allowing for the chiral structure of weak interactions. Experimentally there exist gauge vector
bosons and fermions that are massive. However, introducing an explicit mass term for the
gauge boson or fermion into the Lagrangian is forbidden by gauge invariance, which is a
crucial symmetry for the renormalizability of the theory. In order to incorporate the non-
zero particle masses in a gauge invariant way, one needs another essential ingredient of the
standard model, i.e. the spontaneous electroweak symmetry breaking, which is realized by
the Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism [7] or the Higgs mechanism for
short. Through the Higgs mechanism the gauge group SU(3)C × SU(2)L × U(1)Y breaks
down to SU(3)C × U(1)Q, where the color and charge symmetry are still preserved. In this
way the weak gauge bosons acquire masses after the symmetry breaking, while the gluon
and photon still stay massless as required. It turns out that the fermion masses can also be
generated by the Higgs mechanism.

Before introducing the electroweak symmetry breaking, the standard model Lagrangian can
be expressed in terms of the left- and right-handed fermionic matter fields and the gauge fields.
The left and right fermionic fields are defined by fL,R = 1

2 (1∓ γ5)f , where PL, R = 1
2(1∓ γ5)

5



6 CHAPTER 2. THE STANDARD MODEL

are the projection operators. The left- and right-handed fermions reside in weak isodoublets
and isosinglets, respectively,

L1 =

(

νe

e−

)

L

, eR1
= e−R , Q1 =

(

u
d

)

L

, uR1
= uR , dR1

= dR

L2 =

(

νµ

µ−

)

L

, eR2
= µ−R , Q2 =

(

c
s

)

L

, uR2
= cR , dR2

= sR

L3 =

(

ντ

τ−

)

L

, eR3
= τ−R , Q3 =

(

t
b

)

L

, uR3
= tR , dR3

= bR

; (I3
f )L,R = ±1

2
, 0 . (2.1)

The fermionic hypercharge defined in terms of the third component of its weak isospin, I3
f ,

and electric charge, Qf , by Y = 2(Qf − I3
f ) leads to a vanishing sum of hypercharges in each

generation, which is important for the cancellation of chiral anomalies and thus crucial for
the renormalizability of the standard model. The gauge fields Ga

µ(a = 1...8), W i
µ(i = 1...3)

and Bµ correspond to the generators of the group SU(3)C , SU(2)L and U(1)Y . Their field
strengths are given by

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + g3f

abcGb
µG

c
ν ,

W i
µν = ∂µW

i
ν − ∂νW

i
µ + g2 ǫ

ijkW j
µW

k
ν ,

Bµν = ∂µBν − ∂νBµ , (2.2)

where fabc and ǫijk are the structure constants, and g3, g2 the coupling constants for the
gauge groups SU(3)C and SU(2)L, respectively. The interactions between matter and gauge
fields are introduced by requiring the invariance of the Lagrangian under local gauge trans-
formations. This gives rise to a minimal coupling through the covariant derivative

Dµ = ∂µ − ig3TaG
a
µ − ig2IiW

i
µ − ig1

Y

2
Bµ , (2.3)

where Ta, Ii and Y are the generators of the respective gauge group and g1 is the coupling
constant for the gauge group U(1)Y . The standard model Lagrangian can then be written in
terms of the gauge and matter fields and the covariant derivative

LSM = −1

4
Ga

µνG
µν
a − 1

4
W a

µνW
µν
a − 1

4
BµνB

µν + i L̄iDµγ
µLi + i ēRi

Dµγ
µeRi

+ i Q̄iDµγ
µQi + i ūRi

Dµγ
µuRi

+ i d̄Ri
Dµγ

µdRi
. (2.4)

Here a sum over the indices is implicitly understood. There are no mass terms for the
fermion and gauge fields in the above expression due to the requirement of gauge invariance.
As mentioned before, these masses can be generated through the Higgs mechanism. The
idea of the Higgs mechanism is to introduce new terms into the original Lagrangian in such
a way that the Lagrangian is still invariant under the gauge symmetry but the vacuum is
not. This is the so-called spontaneous breaking of symmetry. As a massless particle has two
degrees of freedom, while a massive one has three, at least three degrees of freedom have to
be introduced in order to generate masses for the weak gauge bosons W± and Z, which are
mixtures of W and B bosons introduced above. The simplest possibility is to introduce a
weak isospin doublet Φ of two complex scalar fields (so that Lorentz invariance is respected),
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which couple to the vector bosons in a gauge invariant way. In order to achieve a spontaneous
symmetry breaking that preserves the electric charge symmetry, only the electrically neutral
field can acquire a non-vanishing vacuum expectation value. To allow for such a neutral
component in the introduced doublet, the hypercharge of the doublet must be ±1. One can
choose either +1 or −1. We choose +1 here, so that

Φ =

(

φ+

φ0

)

. (2.5)

The contribution of the scalar field part to the Lagrangian is given by

LS = (DµΦ)†(DµΦ) − µ2Φ†Φ − λ(Φ†Φ)2 µ2 < 0, λ > 0 . (2.6)

The neutral component of the doublet develops a non-zero vacuum expectation value

〈Φ〉 =

(

0

v/
√

2

)

v =

√

−µ
2

λ
. (2.7)

Expanding the doublet field Φ around the vacuum, one has

Φ =

(

φ+

φ0

)

=

(

φ+

1√
2
(v +H + iθ)

)

, (2.8)

where the would-be Goldstone fields [8], φ+, φ− and θ are unphysical degrees of freedom,
and can be eliminated by a transition into the unitary gauge via a gauge transformation.
The three Goldstone bosons are absorbed by the gauge bosons W± and Z and form their
longitudinal components so that they become massive. The leftover degree of freedom H
is a physical field and gives rise to the physical Higgs boson. The Higgs boson is the only
ingredient of the standard model that has not been observed so far [9,10]. The present lower
limit on its mass from direct searches is 114.4GeV at 95% CL [10], which is consistent with
the electroweak precision data [11].

In the unitary gauge, one can easily extract the physical content by adding the contribution
of the scalar field part, Eq. (2.6), to the standard model Lagrangian, Eq. (2.4), and expanding
around the ground state. The physical gauge boson fields W±, A and Z are mixtures of the
W and B bosons,

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ) , Zµ =

g2W
3
µ − g1Bµ

√

g2
1 + g2

2

, Aµ =
g2W

3
µ + g1Bµ

√

g2
1 + g2

2

, (2.9)

where the mixing matrix for the neutral vector bosons defines the weak mixing angle θW with

sin θW =
g1

√

g2
1 + g2

2

, cos θW =
g2

√

g2
1 + g2

2

. (2.10)

The gauge boson masses arise from the terms bilinear in the physical gauge fields, yielding

MW =
1

2
g2 v , MZ =

1

2

√

g2
1 + g2

2 v , MA = 0 . (2.11)
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Note that the photon is still massless after the electroweak symmetry breaking as the charge
symmetry is preserved. The electromagnetic coupling is related to the coupling constants g1
and g2 by

e =
√

4πα =
g1g2

√

g2
1 + g2

2

= g1 cos θW = g2 sin θW . (2.12)

The vacuum expectation value can be fixed by the Fermi constant determined from the muon
decay

4Gµ√
2

=
e2

2 sin2 θWM2
W

=
2

v2
=⇒ v =

(

1√
2Gµ

) 1
2

≈ 246GeV. (2.13)

As previously mentioned, the explicit fermion mass terms in the Lagrangian are forbid-
den by gauge invariance, since such terms have the form of mf (f̄LfR + f̄RfL), which is
obviously not gauge invariant since the left- and right-handed fermions belong to different
representations of the gauge group (the former are weak isodoublets while the latter are
weak isosinglets). This problem can be circumvented by the Higgs mechanism. One can
generate fermion masses without disturbing gauge invariance through the Yukawa couplings
between fermion and scalar fields. For this purpose, both the field Φ and its charge-conjugate
Φc = iτ2Φ

∗ = (φ0∗,−φ−) are required, which generate masses for down-type and up-type
fermions, respectively. The Yukawa interactions are described by the following terms

LY = −
∑

i,j

(

L̄iY
l
ijeRj

Φ + Q̄iY
u
ijuRj

Φc + Q̄iY
d
ijdRj

Φ + h.c.
)

, (2.14)

where h.c. denotes the hermitian conjugate and Y f
ij the Yukawa coupling matrices. Inserting

Eq. (2.8) into these Yukawa interaction terms yields the following mass matrices for the
leptons, up- and down-type quarks, respectively,

M l
ij =

1√
2
Y l

ij v , Mu
ij =

1√
2
Y u

ij v , Md
ij =

1√
2
Y d

ij v . (2.15)

These mass matrices may not be diagonal, which implies that the interaction eigenstates may
be different from the mass eigenstates. In order to obtain the mass eigenstates, we apply a
unitray transformation to the left- and right-handed fermions

f ′i,L =
∑

j

Uf
ij,Lfj,L , f ′i,R =

∑

j

Uf
ij,Rfj,R . (2.16)

After these transformations the mass matrices become diagonal with the following entries

Mf,i =
1√
2

∑

j,k

Uf
ij,LY

f
jkU

f†
ki,R v . (2.17)

Summing over the three parts in Eq. (2.4), (2.6) and (2.14) yields the classical Lagrangian
for the standard model. An important feature of the standard model Higgs sector is that
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the coupling of the Higgs boson with itself or with fermions or gauge bosons are propor-
tional to their masses. The transformation matrices Uf

L and Uf
R drop out in the coupling

of fermions and neutral gauge bosons due to their unitarity. This has the important conse-
quence that the flavor-changing neutral current is absent at tree level. In the leptonic sector
these transformation matrices also drop out. This is because the neutrinos are assumed to
be massless in the standard model, its transformation is arbitrary and can be chosen to make
the mass and interaction eigenstates of leptons coincide with each other. The transforma-
tion matrices survive only in the coupling of quarks and W gauge boson, leading to the
Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [12,13]

V = Uu
L U

d†
L . (2.18)

If the up- or down-type quarks have degenerate masses, this mixing matrix can also be
eliminated.

So far we are only concerned with the classical Lagrangian of the standard model. There
are other issues that have to be addressed when one tries to quantize this classical Lagrangian
(detailed discussion can be found, e.g. in [14, 15]). Like the quantization of all non-abelian
gauge theories, it is necessary to specify a gauge by adding gauge-fixing terms into the original
Lagrangian of the standard model in order to avoid the integration over physically equivalent
configurations that are related by a gauge transformation. For practical calculations, it is
convenient to choose a renormalizable gauge in which the gauge boson propagators behave
convergently at large momentum. The ’t Hooft gauge [16] is a gauge of this kind. In this
gauge the mixing between the gauge bosons and the Goldstone bosons introduced by the
spontaneous symmetry breaking drops out, and the gauge-fixing terms are given by

LGF = − 1

2ξG
(CG)2 − 1

2ξA
(CA)2 − 1

2ξZ
(CZ)2 − 1

ξW
C+C− (2.19)

with the linear gauge-fixing operators

CG = ∂µGa
µ ,

CA = ∂µAµ ,

CZ = ∂µZµ −MZξZ θ ,

C± = ∂µW±
µ ∓ iMW ξWφ± . (2.20)

In this thesis we use ξα = 1, which corresponds to the ’t Hooft-Feynman gauge. Note that by
introducing the gauge-fixing terms into the original Lagrangian one includes the unphysical
degrees of freedom of gauge fields, the effects of which are cancelled by the ghost term

LFP = ūα δC
α

δθβ
uβ , (2.21)

where uα, ūα are the Faddeev-Popov ghosts [17], and δθβ is the infinitesimal gauge transfor-
mation parametrized by θβ. Adding these gauge-fixing and Faddeev-Popov ghost terms to
the classical Lagrangian one achieves a complete renormalizable Lagrangian of the standard
model, from which the computation of higher order corrections is possible.
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2.2 Deficiencies of the standard model

In spite of the remarkable success of the standard model, there are a number of reasons
that it can not be the ultimate theory. The standard model contains a number of free
parameters, at least 19, which include the three gauge couplings, six quark and three lepton
masses, three charged weak mixing angles and one CP-violating phase, the two parameters µ
and λ parametrizing the Higgs sector, and an additional parameter describing the potential
strong CP violation. Another compelling reason is that it does not incorporate gravity.
Although gravity does not play a role at the energies accessible at current accelerators, it
will come into play at the Planck scale Mpl = (GN/~c)

−1/2 ∼ 1.2× 1019 GeV with GN being
the gravitational constant. The standard model is expected to break down at this scale.
Even if gravity is ignored, the standard model is not asymptotically free, the electromagnetic
coupling, for instance, will become strong at some high energy scale. This also indicates
that the standard model is only a low energy effective theory of some more fundamental
theory. The existence of dark matter from cosmological observations, as it is not built out of
quarks and leptons, indicates clearly the incompleteness of the standard model. The baryon
anti-baryon asymmetry is, too, not explicable within the standard model. The neutrino
oscillation experiments imply massive neutrinos, which are beyond the scope of the standard
model although they can be incorporated naturally by introducing Dirac mass terms, apart
from the fact that the masses are unnaturally small. Of course, this procedure also introduces
more free parameters into the standard model. In addition, there are some other theoretical
and phenomenological issues that the standard model is not able to address, such as the
problem of gauge coupling unification, the quantization of electric charges, the replication of
fermion families and the hierarchical masses of them.

Besides all these, there is the hierarchy problem. Phenomenologically the mass of the
standard model Higgs boson should be around the electroweak scale. However, its squared
mass receives radiative corrections that are quadratically dependent on the ultraviolet cutoff
Λ, which is supposed to be the energy scale at which the standard model breaks down and
new physics enters. The natural value of the Higgs boson mass is thus of the order of the
cutoff rather than the electroweak scale. To keep the Higgs boson mass at the electroweak
scale, one needs a huge fine-tuning if the energy scale Λ is expected to be the grand unification
(GUT) scale or the Planck scale. In contrast, the fermion mass, e.g. the electron mass in
QED is not fine-tuned. The reason is that when the electron mass goes to zero, an additional
symmetry arises, i.e. the chiral symmetry. When the electron mass moves away from zero,
this chiral symmetry is broken, but the effects of this breaking comes only from the electron
mass. Therefore the loop corrections are proportional to this mass and only logarithmically
divergent. In this way massless fermions are protected from acquiring masses by the chiral
symmetry. Likewise, the photon stays massless due to the gauge symmetry. For the scalar
particle in the standard model, however, there is no such symmetry that can protect it from
acquiring large masses from radiative corrections, thus leading to a destabilization of the
mass hierarchy between the electroweak scale and GUT scale.

There have been proposals to solve at least some of these problems. Supersymmetry [18,19]
is one of such proposals that has been extensively studied in literature. It is a symmetry that
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relates fermions and bosons, and leads to a cancellation between the radiative corrections
to the Higgs boson mass from fermionic and bosonic loops, thus stabilizes the huge mass
hierarchy between the electroweak scale and the GUT scale. This can also be understood
as follows. By pairing the scalar boson with a fermion through supersymmetry, the chiral
symmetry that protects the fermion mass now serves as a protection mechanism for the
boson mass as well. Supersymmetry can also explain how the hierarchy arises, can provide a
natural dark matter candidate, and offers the possibility for the unification of gauge couplings.
Another proposal is the so-called Technicolor theory [20], in which the inclusion of elementary
scalar particles is avoided by proposing that the Higgs boson is a composite particle made of
fermions. Theories with extra dimensions are also widely discussed in literature. They have
the potential to provide solutions to the fermion family replication, to give explanations to
the breaking of supersymmetry, and even to form a consistent quantum theory of gravity. It
is clear that precise knowledge of both the standard model and its theoretical extensions is
required, in order to verify and disentangle all these extended models. We will concentrate
on the scenario with supersymmetry in this thesis. In the next chapter a brief description of
the basic characteristics of supersymmetry will be given.
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Chapter 3

Supersymmetry

3.1 Basics of supersymmetry

The attempts in the 1960’s to combine in a non-trivial manner the internal symmetries
with the space-time Poincaré symmetry turned out to fail. Indeed it was shown by Coleman
and Mandula [21] that this is not possible within the context of Lie groups. Their proof was
based on very general assumptions, such as the analyticity of the S-matrix, the existence of
scattering at almost all energies etc. Later on it was realized that there was a possibility
to evade this no-go theorem, namely by generalizing the notion of a Lie algebra in such a
way that its defining relations involve both anticommutators as well as commutators. These
are the graded Lie algebras. It was proven by Haag, Sohnius and Lopuszanski [22] that
supersymmetry algebra is the only graded Lie algebra of symmetries of the S-matrix that is
consistent with relativistic quantum field theory.

As mentioned at the end of the previous chapter, supersymmetry provides solutions to a
number of theoretical and phenomenological problems, for instance, it can solve the hierarchy
problem, and provide a nice cold dark matter candidate with the relic density of the right
order of magnitude. Owing to the pairing between fermions and bosons, supersymmetric
theories in general have better ultraviolet behavior compared to ordinary field theories. It
turns out that all supersymmetric theories are free of quadratic divergences, and indeed
any unrenormalized quantum field theory that has no quadratic divergences to all orders
in perturbation theory must be supersymmetric [23, 24]. Supersymmetry even yields field
theories that are completely finite to all orders in perturbation theory. For instance, the
N = 4 super Yang-Mills theory in four space-time dimensions (where N denotes the number
of supersymmetries) is finite to all orders [25–28]. Although supersymmetry can potentially
provide solutions to many phenomenological problems, it was not invented for these purposes.
Supersymmetry was first introduced in string theory in order to incorporate fermions in the
model [29]. It was realized that supersymmetry could possibly be the solution of these
phenomenological problems only after the construction of supersymmetric field theories in
four space-time dimensions.

13
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Since supersymmetry is a symmetry relating fermions and bosons, its generators must
transform a fermionic state into a bosonic one, and vice versa. Thus the supersymmetry
generators carry half-integer spin, and they are fermionic operators. The algebra of super-
symmetry including the Poincaré algebra can be collected as follows [3, 30–36],

{Qi
α, Q̄

j

β̇
} = 2σµ

αβ̇
Pµδ

ij ,

{Qi
α, Q

j
β} = ǫαβZ

ij , {Q̄i
α̇, Q̄

j

β̇
} = ǫα̇β̇(Zij)∗ ,

[Qi
α, Pµ] = [Q̄i

α̇, Pµ] = 0 ,

[Qi
α,Mµν ] = (σµν)βαQ

i
β, [Q̄i

α̇,Mµν ] = (σ̄µν)β̇α̇Q̄
i
β̇
,

[Mµν ,Mρσ ] = i(gνρMµσ − gµρMνσ − gνσMµρ + gµσMνρ) ,

[Mµν , Pρ] = i(gρνPµ − gρµPν) ,

[Pµ, Pν ] = 0 , (3.1)

where Pµ and Mµν are the generators of the Poincaré group, Qi
α and its conjugate Q̄i

α̇

are the spinorial generators of supersymmetry with the Weyl spinor indices α, α̇ = 1, 2 and
i, j = 1...N denoting some integral space. σµ consist of the identity matrix and Pauli matrices.
The operators Qi and Q̄i transform in the (1

2 , 0) and (0, 1
2 ) representations of the Poincaré

group respectively, hence the anticommutator of them must transform as (1
2 ,

1
2 ), i.e. as a

four-vector. From this consideration it is almost straightforward that the anticommutation
relation in the first row of Eq. (3.1) takes that form. The operators Zij = −Zji are the central
charges, they commute with any operator and belong to an abelian invariant subalgebra of
the internal symmetry group [30]. In the absence of the central charges, the supersymmetry
algebra is invariant under a U(N) transformation among the supersymmetry generators.
For the simple N = 1 supersymmetry, the central charge automatically vanishes due to its
anti-symmetry. The resulting U(1) symmetry is the so-called R symmetry.

As one can see from Eq. (3.1) that the algebra of supersymmetry contains the Poincaré
algebra as a subalgebra. From quantum field theory we know that particles correspond to
irreducible representations of the Poincaré algebra, now the supersymmetry transformations
will relate different particle representations. These particles form a supermultiplet and are
related to each other by the spinorial operators Qi and Q̄i, differing in spin by 1

2 . Within
a supermultiplet, all particles have the same mass since the operator P 2 is still a Casimir
operator, namely it commutes with all supersymmetry generators. Moreover, as one can
easily show, a supermultiplet contains an equal number of bosonic and fermionic degrees of
freedom.

In the following we will mainly concentrate on the N = 1 supersymmetry, since, for the
reason that will be given at the end of this chapter, only this simple supersymmetry allows
chiral fermions [3,30–34,37] and thus lays the foundation for the construction of phenomeno-
logically viable models1. Moreover, the supersymmetry is assumed to be a global symmetry.
The extended supersymmetry (N > 1) and local supersymmetry will be briefly described at
the end of this chapter.

1Although, in principle, extended supersymmetry can be introduced into the gauge sector of phenomeno-
logical models (see e.g. ref. [38]), we will not discuss this possibility in this thesis.
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For the N = 1 global supersymmetry, the simplest possible supermultiplets describing
massless fields are the chiral and the vector supermultiplets. The former contains an irre-
ducible representation formed by a single Weyl fermion with helicity 1

2 and a real scalar, as
well as its CPT-conjugate representation that consists of a Weyl fermion of helicity −1

2 and
another real scalar. This is necessary for the construction of a Lorentz invariant theory. The
chiral supermultiplet thus contains two fermionic and two bosonic degrees of freedom. The
vector supermultiplet contains a massless spin-1 gauge boson and a Weyl fermion, where the
fermion has to transform in the adjoint representation of the gauge group as the gauge boson
does.

With these supermultiplets one can write down the supersymmetry transformations and
construct invariants from the component fields belonging to the supermultiplets. However,
this turns out to be rather complicated. The supersymmetry algebra can only be realized
on-shell. In order to match the bosonic and fermionic degrees of freedom off-shell, one has
to introduce auxiliary fields, whose transformation properties are then determined by the
requirement that the algebra of supersymmetry can close off-shell. This can be greatly
simplified by enlarging the space-time to include as well anticommuting variables, i.e. defining
the superspace, and using the superfield formalism introduced by Salam and Strathdee [39,40],
in which the superfields also include the auxiliary fields as components.

3.2 Superspace and superfields

In superspace, one has two additional anticommuting Grassmann coordinates θα and θ̄α̇

(the properties of Grassmann variables will be briefly summarized in Appendix A), in addi-
tion to the ordinary coordinates xµ. The elements of superspace are thus labeled by the set
of coordinates (x, θ, θ̄). In contrast to an ordinary field, which is a function of the space-time
coordinates only, a superfield is a function of both the space-time and the anticommuting
Grassmann coordinates. The component fields of the supermultiplet then arise as the coef-
ficients in the expansion of the superfield in powers of the variables θ and θ̄. In particular,
the auxiliary fields also arise as components of superfields.

The anticommutators of supersymmetry algebra can now be written in terms of commuta-
tors

[ξQ, ξ̄Q̄] = 2ξσµξ̄Pµ , (3.2)

where ξ and ξ̄ are anticommuting parameters and ξQ = ξαQα, ξ̄Q̄ = ξ̄α̇Q̄
α̇.

As the momentum operator generates infinitesimal translations in space-time, we can think
of the supersymmetry generators as inducing infinitesimal translations in superspace with
Grassmann parameters. Hence a finite supersymmetry group transformation can be con-
structed by the following exponentiation (there are different possibilities to write the group
element, for which the supersymmetry generators Q, Q̄ and the covariant derivatives given
below will take different forms)

G(x, θ, θ̄) = ei(−xµPµ+θQ+θ̄ Q̄) . (3.3)
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A successive application of the group transformation leads to the following translation in
superspace

(xµ, θ, θ̄) −→ (xµ + aµ − iξσµθ̄ + iθσµξ̄, θ + ξ, θ̄ + ξ̄) . (3.4)

Thus the supersymmetry generators Q and Q̄ can be written as differential operators in
superspace

iQα =
∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ , iQ̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ . (3.5)

A general superfield can be expanded in powers of θ and θ̄. Due to their anticommuting
property, all powers of θ and θ̄ higher than two vanish in the expansion. Such superfields
form representations of supersymmetry, but they contain many component fields and usually
give reducible representations. In order to obtain irreducible ones, we have to impose certain
constraint on the superfields that is invariant under the supersymmetry algebra. One possi-
bility is to impose the reality condition, which can be used to construct the vector superfield,
the component fields of which constitute the vector supermultiplet. Another possibility is to
define a supersymmetric covariant derivative to eliminate extra component fields. This can
be used to construct the chiral superfield, whose components form the chiral supermultiplet.
Besides these, there are other possibilities to constrain a superfield and yield other types of
supermultiplets, e.g. the linear superfield [41–43]. However, the interactions of linear super-
fields are no more general than those of chiral and vector superfields, therefore we will not
discuss them further.

For the representation given by Eq. (3.3) the covariant derivatives are defined as

Dα =
∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ . (3.6)

They themselves satisfy the anticommutation relations

{Dα, D̄α̇} = 2iσµ
αα̇∂µ , {Dα,Dβ} = {Dα̇,Dβ̇} = 0 , (3.7)

and anticommute with the supersymmetry generators Q and Q̄. A (left-) chiral superfield
can be defined by the following condition, which is invariant under supersymmetry

D̄α̇Φ = 0 . (3.8)

The general form of a chiral superfield when expanding in powers of the Grassmann variables
θ and θ̄ reads

Φ(xµ, θ, θ̄) = ϕ(x) +
√

2 θψ(x) + θθF (x) + i∂µϕ(x) θ σµθ̄

− i√
2
θθ ∂µψ(x)σµθ̄ − 1

4
∂µ∂

µϕ(x)θθθ̄θ̄ , (3.9)

where ϕ and F are complex scalar fields and ψ is a Weyl spinor field. Note that the param-
eters θ and θ̄ have mass dimension −1

2 , thus the coefficient F is the field with highest mass
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dimension in this expansion. All coefficients associated with higher powers of θ and θ̄ are
space-time derivatives. It turns out that the component field F of a chiral superfield always
transform into a space-time derivative under supersymmetry transformations. This property
is crucial for the construction of supersymmetric invariant actions. In addition, there is no
kinetic term of the F field in Eq. (3.9), it thus represents a non-propagating degree of free-
dom. The conjugate field of Φ, Φ+, satisfies the constraint DαΦ+ = 0 and is a right-chiral
or anti-chiral superfield.

The product of left-chiral superfields is again a left-chiral superfield, since the operator D̄
is a linear differential operator. However, the product of a left-chiral superfield and a right-
chiral one is no longer a chiral superfield, but a general vector superfield, whose properties
will be described below.

Vector superfields form another irreducible representation of supersymmetry. They are
defined by imposing the reality condition

V = V † . (3.10)

This condition is preserved by the supersymmetry transformation. A vector superfield in
general contains four auxiliary scalar fields and an auxiliary fermion field. With the help of
gauge invariance one can eliminate all but one of them, the remaining field is the so-called D
field.

In terms of powers of θ and θ̄ one can expand a vector superfield as follows

V (xµ, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]

− i

2
θ̄θ̄[M(x) − iN(x)] + θσµθ̄Vµ(x)

+ iθθθ̄[λ̄(x) +
i

2
σ̄µ∂µχ(x)] − iθ̄θ̄θ[λ(x) +

i

2
σµ∂µχ̄(x)]

+
1

2
θθθ̄θ̄[D(x) − 1

2
∂µ∂

µC(x)] , (3.11)

where C,M,N,D are real scalar fields and Vµ is a real vector field, λ and χ are two Weyl
spinor fields.

It is possible to construct a vector superfield from a chiral superfield Λ and an anti-chiral
one Λ† by taking i(Λ − Λ†), which can be written in components as follows

i(Λ − Λ†) = i(ϕ− ϕ†) + i
√

2(θψ − θ̄ψ̄) + iθθF − iθ̄θ̄F †

− θσµθ̄∂µ(ϕ+ ϕ†) − 1√
2
θθθ̄σ̄µ∂µψ +

1√
2
θ̄θ̄θσµ∂µψ̄

− i

4
θθθ̄θ̄∂µ∂

µ(ϕ− ϕ†) . (3.12)

This suggests the following supersymmetric generalization of an abelian gauge transformation
as it gives the correct transformation for the vector field Vµ

V −→ V + i(Λ − Λ†) . (3.13)
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This gauge transformation reflects the fact that the fields C,M,N and χ are unphysical
degrees of freedom, since they can be eliminated from Eq. (3.11) by a proper adjustment of
the component fields in Eq. (3.12), i.e. by a particular choice of gauge. The gauge in which
these unphysical fields disappear is called Wess-Zumino gauge. Note that the Wess-Zumino
gauge does not completely fix the gauge, actually it fixes all the gauge freedom except for
the ordinary U(1) gauge transformation of the vector field Vµ. The manifest supersymmetry
is lost in this gauge. However, the expression of a vector superfield is greatly simplified to

VWZ(xµ, θ, θ̄) = θσµθ̄Vµ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x) , (3.14)

where the highest D component is the only leftover auxiliary field, and as the F term in the
chiral superfield, it transforms into a total derivative under supersymmetry transformations.
In addition, any power higher than two of V vanishes automatically.

For the non-abelian gauge group, the vector superfield transforms as follows

eV −→ e−iΛ†

eV eiΛ (3.15)

with V = 2gV ata, where ta represent the generators of the non-abelian gauge group.

In order to construct a supersymmetric gauge invariant theory, we need a field strength
superfield and a gauge invariant combination of the vector superfield and the chiral matter
superfield. For the abelian case, it turns out that the fields λ, λ̄ and D, together with the
field strength Vµν = ∂µVν − ∂νVµ form an irreducible representation of the supersymmetry
algebra. In this representation the lowest-dimensional field λ has mass dimension 3

2 , this
suggests that the field strength superfield that contains the field strength as component is a
spinor superfield. One can thus define the following left- and right-handed spinor superfields
by observing that λ and λ̄ are also the lowest-dimensional component fields of them

Wα = −1

4
D̄2DαV , W̄α̇ = −1

4
D2D̄α̇V . (3.16)

They are gauge invariant chiral superfields and contain the gauge invariant field strength
tensor as components, hence serve as the supersymmetric generalization of the field strength
tensor for an abelian group. Moreover, they satisfy an additional covariant constraint

DαWα = D̄α̇W̄
α̇ . (3.17)

The field strength superfields defined above can be generalized to the non-abelian case as

Wα = −1

4
D̄2e−VDαe

V , W̄α̇ = −1

4
D2e−V D̄α̇e

V , (3.18)

with Wα = W a
αt

a. From the gauge transformation Eq. (3.13) and (3.15) it follows that in
the non-abelian case, the gauge invariant coupling of the vector superfield V and the chiral
matter superfield Φ is

Φ†eV Φ , (3.19)

provided the superfield Φ transforms as Φ → e−iΛΦ.
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The last piece that one needs for the construction of supersymmetric Lagrangians is the
superpotential, which is an analytic function of chiral superfields only and determines the
possible interactions other than the gauge interaction of the theory.

Now we have all the ingredients to write down a supersymmetric Lagrangian. For this
purpose, the transformation properties of the F and D terms discussed above are crucial.

3.3 Construction of supersymmetric Lagrangians

A supersymmetric action can be constructed from the integral over superspace of the cor-
responding Lagrangian density. In order for the action to be invariant under supersymmetry
transformations, the space-time Lagrangian density can at most change as a total space-time
derivative under supersymmetry transformations. We have already seen in the previous sec-
tion that the highest components of the superfields, i.e. the F term in a chiral superfield and
the D term in a vector superfield, transform under supersymmetry transformations into total
derivatives. Hence they are suitable for the construction of supersymmetric Lagrangians. The
highest components can be projected out by integrating over the anticommuting parameters
θ and θ̄. First, we have the D term contribution, which involves an integration over the full
superspace

LD =

∫

d4θ
∑

i

Φ†
ie

V Φi . (3.20)

Second, we have the F term contributions, which can be extracted by an integration over
half of the superspace. One of these contributions arises from the gauge kinetic term

LF =

∫

d2θ
1

16g2
W a

αW
aα + h.c. , (3.21)

another contribution is the superpotential part

LW =

∫

d2θW (Φi) + h.c. . (3.22)

Note that the superpotential W (Φ) is an analytic function of the chiral superfields Φis. For
a renormalizable theory, apart from a possible tadpole term that is linear in the superfields
Φi, it has the following form

W =
1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk . (3.23)

Terms involving more than three superfields would have mass dimension higher than four
after the integration over the superspace and hence are forbidden by renormalizability.

The full Lagrangian is the sum of the three parts in Eqs. (3.20-3.22). As previously
discussed, the auxiliary F and D fields appear without derivatives, their equations of motion
are thus algebraic and can be easily derived from the constructed Lagrangian. It turns
out that the these auxiliary fields and their equations of motion fix completely the scalar
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potential. This is a striking feature of supersymmetric theories. In contrast, the scalar
potential in the standard model is arbitrary and can not be determined within the standard
model itself. When constructing phenomenologically viable supersymmetric models, this
feature has important implications, as we will see in the forthcoming chapter.

If we are not restricted to renormalizable theories, the most general globally supersymmetric
theory of chiral and vector superfields has the Lagrangian [3]

L =

∫

d4θK(Φ†eV ,Φ) +

[∫

d2θW (Φ) +

∫

d2θf(Φ)(W a
α)2 + h.c.

]

, (3.24)

where Φ and V denote the chiral and vector superfields, W (Φ) is the superpotential, which,
as well as the gauge kinetic function f(Φ), is an analytic function of the chiral superfields.
If one requires renormalizability, it turns out that the function f(Φ) must be constant and
K(Φ†eV ,Φ) has to be of the form of Φ†eV Φ, and the superpotential can only be a polynomial
involving powers up to three of the chiral fields. This indeed shows that the terms given in
Eq. (3.20), (3.21) and (3.22) define the most general renormalizable theory.

3.4 Non-renormalization theorem

One of the important features of supersymmetric theories is that they have better ultra-
violet behavior than ordinary field theories. In addition, in ordinary field theories any term
that is permitted by the symmetries of the theory tends to appear in the effective action,
while this is not the case for supersymmetric theories. Indeed, there exists a theorem for
the supersymmetric theories, i.e. the non-renormalization theorem [44,45], which states that
the superpotential is not renormalized in perturbation theory. Thus any fine-tuning of the
potential at tree-level will not receive any higher order loop contributions. This makes su-
persymmetry a potential solution to the hierarchy problem.

The original proof of this theorem based on detailed investigations of perturbation theory
and supergraph techniques led to the consequence that any radiative correction to the effec-
tive action will be of the form of an integral over the full superspace. The F term, hence the
superpotential, is not renormalized. Only the D term receives radiative corrections, which
yield the usual wave function renormalization constants for the superfields. All other param-
eters like mass and coupling constants are renormalized entirely due to the wave function
renormalization.

Seiberg proposed another fairly simple proof based on considerations of symmetry, analyt-
icity and the idea that the coupling constants can be viewed as chiral superfields with only
lowest components non-zero [46]. This is possible due to the fact that the supersymmetry
generators are differential operators on superspace, thus a superfield whose only non-zero
component is a constant lowest component will not spoil supersymmetry. Now since super-
potential is an analytic function of chiral superfields, it must be an analytic function of these
coupling constants as well. For the sake of illustration, consider a theory of one single chiral
superfield Φ with the tree-level superpotential

W = mΦ2 + λΦ3 . (3.25)
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This superpotential is invariant under a U(1) × U(1)R global symmetry. The charge assign-
ment of the field Φ is (1, 1) under such symmetry, while the charges of the couplings m and
λ are (−2, 0) and (−3,−1), respectively. Under the global U(1)R symmetry, the anticom-
muting parameter θ also has charge 1. The most general renormalized superpotential that is
invariant under this global U(1) × U(1)R symmetry has the following form

WR = mΦ2f

(

λΦ

m

)

, (3.26)

where f is an analytic function and can be expanded as

f =
∑

n

anm
1−nλnΦn+2 . (3.27)

The limit of λ → 0 corresponds to a free theory and should not yield any singularity, hence
no negative power of λ can appear in the expansion of the function f . One can also take
simultaneously the massless limit m/λ→ 0, requiring the absence of singularity in this limit
forbids terms with n ≥ 2. Therefore the renormalized superpotential must be

WR = mΦ2 + λΦ3 = W , (3.28)

i.e. the superpotential is not renormalized. This result can be generalized to theories with
arbitrary numbers of chiral and vector superfields.

Another important aspect of the non-renormalization theorem is the non-renormalization
of the factor eV [3]. It then follows that the gauge coupling renormalization is related to the
wave function renormalization constant of the vector superfield. This plays an important role
in the investigation of N = 4 super Yang-Mills theory, whose multiplicative renormalization
constants are not only related among each other, but are all equal to unity as a consequence
of symmetries. Hence this theory is completely finite.

3.5 Mechanisms of supersymmetry breaking

Obviously, if supersymmetry has anything to do with nature, it must be a broken symmetry,
either spontaneously or explicitly, since supersymmetry requires that each standard model
particle be degenerate in mass with its superpartner, a possibility that has been ruled out
by experiments. Supersymmetry can be explicitly broken by adding to the Lagrangian extra
terms that are not invariant under supersymmetry transformations. These non-invariant
terms introduce arbitrariness into the theory, since they have to be put in by hand, leading
to a number of free parameters lacking of theory explanation. This situation retains in the
construction of phenomenologically viable models. There, the extra terms are restricted by
the requirement of mass hierarchy stabilization, so that they can only break supersymmetry
softly, i.e. without reintroducing quadratic divergences. Trying to achieve a satisfactory
explanation for these somewhat arbitrary soft terms motivates an alternative possibility of
supersymmetry breaking, the spontaneous supersymmetry breaking, in which the Lagrangian
remains invariant under supersymmetry transformations while the vacuum does not. The
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spontaneous breaking of supersymmetry is also required if supersymmetry can be promoted
to a local symmetry. It turns out that high energy theories with spontaneous supersymmetry
breaking can yield low energy effective theories with explicit soft supersymmetry breaking
terms, and hence provide explanations for the presence of such terms.

The anticommutation relations of supersymmetry generators imply that the Hamiltonian
of N = 1 supersymmetric theory has the following form

H = P 0 =
1

4
(Q1Q̄1̇ + Q̄1̇Q1 +Q2Q̄2̇ + Q̄2̇Q2) . (3.29)

The spectrum of H is positive semi-definite and the supersymmetric vacuum state has zero
energy. Supersymmetry is unbroken as long as the vacuum state has vanishing energy. Its
spontaneous breaking can take place only if the potential is positive. As discussed previously,
the scalar potential is fixed by the auxiliary F and D fields and their equations of motion,
and it turns out to be quadratic in these fields. Hence to achieve supersymmetry breaking, we
must require that either 〈F 〉 6= 0 or 〈D〉 6= 0 or both. A straightforward approach to obtain
the soft terms in phenomenological models is to break supersymmetry spontaneously by
generating non-zero vacuum expectation values of the F and/or D fields at a low energy scale
relevant for phenomenology (e.g. the TeV scale). The O’Raifeartaigh mechanism [47] does
this job through non-zero F terms, while the Fayet-Iliopoulus mechanism [48] does through
non-zero D terms. Both can be achieved by introducing linear terms into the Lagrangian.
However, it turns out that this sort of tree-level spontaneous supersymmetry breaking leads
to phenomenologically unacceptable particle spectrum. For the tree-level masses of particles
with spin j, the following supertrace relation holds

∑

j

(−1)2j(2j + 1)m2
j = 0 , (3.30)

which yields constraints too strict for the boson masses, and contradicts the experimental
observations. Moreover, these breaking mechanisms may result in unacceptable symmetry
breaking in phenomenological models, such as breaking of color or electromagnetism. Conse-
quently it is rather difficult, if not impossible, to achieve explicit soft supersymmetry breaking
terms from directly generating F/D term vacuum expectation values at a low energy scale
in a renormalizable Lagrangian.

Owing to the difficulties of spontaneous supersymmetry breaking at low energy (or visible
sector supersymmetry breaking), one is strongly motivated to consider the possibility of su-
persymmetry breaking at a high energy scale. One most common such scenario is the hidden
sector scenario, in which supersymmetry is spontaneously broken in a hidden sector. The
supersymmetry breaking is communicated to the visible sector via suppressed interactions
that are shared by both sectors. The visible sector, in a phenomenological model such as
the minimal supersymmetric standard model contains the standard model particles and their
superpartners. There are no direct renormalizable couplings between the visible and hidden
sectors, the suppressed interactions can be induced by loop effects or non-renormalizable
operators. Consequently the soft supersymmetry breaking terms result in the low energy
effective theories. In this approach the supertrace relation Eq. (3.30) needs not hold for the
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visible sector fields, so that it is possible, in principle, to have a phenomenologically accept-
able particle spectrum. One of the leading candidates for the mediation of the hidden sector
supersymmetry breaking is the gravitational interaction, an interaction shared by all parti-
cles. This possibility can be naturally embedded in supergravity theory [49, 50], which is a
non-renormalizable supersymmetric effective theory of gravity resulting from gauging global
supersymmetry. In supergravity theory it is possible to compute the soft supersymmetry
breaking terms directly from the supergravity Lagrangian. The soft terms determined in this
way are values at the high energy scale, their values at the electroweak scale can then be ob-
tained through the renormalization group evolution. In the gravity-mediated supersymmetry
breaking scenario [3,34,51,52], the spin 3/2 superpartner of graviton, the gravitino, acquires
its mass by absorbing the Goldstino degree of freedom, which is the fermionic counterpart
of Goldstone boson in the presence of spontaneous supersymmetry breaking. The gravitino
mass then sets the scale of the soft terms in the visible sector. If one takes the simplest pos-
sibility to assume that the supergravity Kähler potential (a generalization of the Φ†Φ term
in the Lagrangian for one single chiral superfield Φ) takes a minimal canonical form

K(Φi, λi) =
∑

i

λ†iλi +
∑

i

Φ†
iΦi , (3.31)

where Φi represent the superfields of the visible sector and λi the superfields of the hidden
sector that are connected with supersymmetry breaking; and assumes furthermore a universal
gauge kinetic function f(Φ) (defined previously in Eq. (3.24)) for all gauge groups, one
achieves a universality of the soft terms at the high energy scale. This defines the minimal
supergravity model [34,52].

Another competing candidate for the mediation of supersymmetry breaking is the gauge
interaction. In the gauge-mediated supersymmetry breaking scenario there is another sector
consisting of the messenger fields, which couple to the fields of both the hidden sector and the
visible sector. The supersymmetry breaking is communicated between these two sectors via
radiative corrections to the visible sector field propagators through loop diagrams involving
the messenger fields. Of course, in this scenario there is still gravitational communication
between the visible and hidden sectors. It is, however, subdominant compared to the gauge
interaction. In this scenario, the gravitino mass is much smaller than the scale of soft terms
in the visible sector, as long as the characteristic mass of the messenger fields is much lower
than the Planck scale.

From a phenomenological perspective, we do not need to worry about how supersymmetry is
broken at the high energy scale, since the effects of supersymmetry breaking are parameterized
in phenomenological models by explicit soft supersymmetry breaking terms. Girardello and
Grisaru [53] have classified all such terms that are renormalizable as follows2

(a) scalar mass terms, mijϕiϕ
∗
j ,

(b) gaugino mass terms, 1
2mλλ

aλa ,
(c) trilinear scalar interactions, Aijkϕiϕjϕk + h.c. ,
(d) bilinear terms, Bijϕiϕj + h.c. ,
(e) linear terms, Ciϕi .

(3.32)

2terms like λijkϕ∗
i ϕjϕk +h.c. may be allowed, but they lead to practical difficulties in realistic models with

supersymmetry breaking and are usually omitted [52,54].
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All these terms have couplings with positive mass dimension. The gauginos transform non-
trivially under continuous R symmetries, hence their mass terms do not respect such sym-
metries. In realistic models this kind of symmetry is usually needed to suppress the baryon-
or lepton-violating terms in the effective Lagrangian. In order to allow the gaugino mass
terms, one defines a discrete symmetry rather than a continuous one, i.e. the R parity, which
is respected by the gaugino mass terms and sufficient to suppress those terms that violate
baryon or lepton number conservation. This will be described in the next chapter.

3.6 Extended and local supersymmetry

In this section we will say a few words about theories with extended (N > 1) supersymmetry
and local supersymmetry. Evidently one can introduce more than one set of supersymmetry
generators to enlarge the supersymmetry algebra, each of the generators Qi will change the
particle spin by 1

2 . If one wants to construct a renormalizable supersymmetric gauge theory, in
which the maximum value allowed for particle spin is 1, then the number of supersymmetries
will be restricted to N ≤ 4, since by applying the supersymmetry generators to a state with
helicity 1 one can at most end with a helicity -1 state. Analogously if one allows a spin 2
particle in the theory, e.g. the graviton, then the number of supersymmetries is restricted to
N ≤ 8.

The drawback of theories with extended supersymmetry for the construction of phenomeno-
logically viable models is clear. Suppose one has two sets of supersymmetry generators that
anticommute with each other, starting from a fermionic state with maximum helicity 1

2 , one
can obtain two scalar states by applying each generator once and one state with helicity −1

2
by applying both generators. Hence the left- and right-handed fermionic states are contained
in the same representation and they should have the same transformation property under
gauge groups [33]. This is a general feature of theories with extended supersymmetry and
is bad news for phenomenology. Therefore, as we mentioned at the beginning of this chap-
ter, only N = 1 supersymmetry needs to be taken seriously for low energy phenomenology.
This is the starting point of the construction of the minimal supersymmetric extension of the
standard model in the next chapter.

If supersymmetry is not merely an accident, it should be realized as a local symmetry. Local
supersymmetry naturally includes the general coordinate invariance as a subsymmetry, hence
is a theory of gravity, i.e. supergravity. At a low energy scale where the effects of gravity
is negligible, local supersymmetry can appear as a global symmetry. One can expect that
supergravity theory, as a more fundamental theory, might be able to solve some problems
of the low energy phenomenological theory. In previous sections we have already mentioned
some of these possibilities. Although adding more supersymmetries can improve on the
convergence behavior of the theory, it turns out that supergravity, even with the maximum
number of supersymmetries allowed (N = 8), is yet not finite or renormalizable. It seems
that a consistent quantum theory of gravity can only be formulated within the framework of
string theory, which is based on the idea that the fundamental objects are open/closed strings
rather than point particles [55–57]. The spectrum of closed strings includes a spin 2 massless
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state, which can be identified as the graviton. Hence gravity is naturally incorporated in
string theory. Another appealing feature of string theory is that it does not suffer from the
ultraviolet divergences that plague ordinary quantum field theories of point particles due to
the completely different topological structure.
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Chapter 4

The Minimal Supersymmetric
Standard Model

4.1 Definition of the model

As its name suggests, the minimal supersymmetric standard model (MSSM) [3,4,34,58] is
the most economic way to extend the standard model (SM) to include supersymmetry. It
has the same gauge group as the SM, i.e. the SU(3)C × SU(2)L × U(1)Y group. The SM
fields are cast into superfields. For each SM particle, there exists only one superpartner as
the consequence of minimal supersymmetry (N = 1). The gauge bosons and their spin 1

2
superpartners (spin 3

2 is not allowed for a renormalizable theory), called gauginos (8 gluinos,
3 winos and 1 bino corresponding to each gauge group) are in the vector supermultiplet. The
three generation spin 1

2 quarks and leptons and their spin 0 superpartners, the scalar quarks
and leptons, or squarks and sleptons for short, reside in the chiral supermultiplets, so that the
left-handed components of fermions are allowed to transform differently from the right-handed
components under gauge groups. As in the SM, there are no right-handed neutrinos in the
MSSM. The Higgs sector of the MSSM contains two Higgs chiral supermultiplets with opposite
hypercharges. In the SM there is one single Higgs doublet, which acquires a non-vanishing
vacuum expectation value so that the electroweak symmetry is spontaneously broken. The
fermion masses are then generated by Yukawa couplings with the Higgs doublet itself or
its conjugate. This is, however, not possible in the MSSM since the Yukawa interactions
arise from the superpotential, which has to be an analytic function of superfields only, not
of their conjugate fields. Hence one is forced to introduce two Higgs doublets in order to
generate masses for both up- and down-type fermions. In addition, to ensure that the model
is anomaly-free an even number of Higgs doublets with opposite hypercharges are required,
two Higgs doublets in the MSSM are the simplest possibility.

The supermultiplets of the MSSM and their particle content are listed in Table 4.1 accord-
ing to their transformation properties under the gauge groups. To determine their dynamic
properties and interactions one needs to specify the Lagrangian of the model. As discussed
in the previous chapter, supersymmetry has to be a broken symmetry at low energies. This

27
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Superfields Bosonic fields Fermionic partners SU(3)C SU(2)L U(1)Y

Gauge multiplets

Ĝa gluons, gluinos Ga G̃a 8 1 0

Ŵa W bosons, winos Wa W̃a 1 3 0

B̂ B boson, bino B B̃ 1 1 0

Matter multiplets

Q̂i (ũL, d̃L)i (uL, dL)i 3 2 1
3

Ûi squarks, quarks ũ∗Ri ūRi 3̄ 1 -4
3

D̂i d̃∗Ri d̄Ri 3̄ 1 2
3

L̂i (ν̃, ẽL)i (ν, eL)i 1 2 -1

Êi

sleptons, leptons
ẽ∗Ri ēRi 1 1 2

Ĥ1 (H0
1 ,H

−
1 ) (H̃0

1 , H̃
−
1 ) 1 2 -1

Ĥ2

Higgses, higgsinos
(H+

2 ,H
0
2 ) (H̃+

2 , H̃
0
2 ) 1 2 1

Table 4.1: Particle content of the MSSM.

implies that, in addition to the supersymmetry-conserving part in the MSSM Lagrangian,
there must exist a supersymmetry breaking part in the Lagrangian. In order that super-
symmetry remains to be a solution for the hierarchy problem, only superrenormalizable soft
terms are allowed. From the effective theory point of view, these terms are the most relevant
supersymmetry breaking operators at low energies. The most general such terms have been
classified in the previous chapter.

The supersymmetric Lagrangian consists of three parts, the gauge interacting part, the
gauge kinetic term and the superpotential, which can be written as follows

LSUSY =

∫

d4θ
{

L̂†
ie

VL+VY L̂i + Ê†
i e

VY Êi + Q̂†
ie

VC+VL+VY Q̂i

+ Û †
i e

VC+VY Ûi + D̂†
i e

VC+VY D̂i + Ĥ†
i e

VL+VY Ĥi

}

+

∫

d2θ
{ 1

16g2
2

W a
αW

aα +
1

16g2
1

WαW
α +

1

16g2
3

W as
α W asα + h.c.

}

+

∫

d2θ
{

ǫαβ

[

− (Yu)ijĤ
α
2 Q̂

β
i Ûj + (Yd)ijĤ

α
1 Q̂

β
i D̂j + (Ye)ijĤ

α
1 L̂

β
i Êj

− µĤα
1 Ĥ

β
2

]

+ h.c.
}

, (4.1)

where VC , VL, VY and g3, g2, g1 are the vector superfields and gauge couplings that correspond
to the gauge groups SU(3)C , SU(2)L and U(1)Y , respectively. α, β = 1, 2 are the SU(2)L
doublet indices, and ǫαβ is a totally anti-symmetric tensor with ǫ12 = −ǫ21 = 1. i, j are family
indices, (Yu,d,e)ij represent the Yukawa couplings. A summation over the indices is implied.
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The terms in the first curly bracket dictate the gauge interactions between matter and gauge
fields, those in the second are the kinetic terms for the gauge fields constructed from the field
strength superfields, the superpotential in the third bracket defines all other supersymmetric
interactions of the theory. The first three terms in the superpotential are the generalizations
of the SM Yukawa couplings, while the last term is the supersymmetric Higgs mass term.
The only dimensionful parameter in the supersymmetric Lagrangian is the parameter µ.
Given as a superpotential parameter, it is expected to be of the order of a high energy scale,
e.g. the GUT scale or the Planck scale. However, from the phenomenological perspective
it should be roughly of the order of the electroweak scale so that the hierarchy problem is
not restored. One can think of the µ parameter as, rather than a fundamental parameter,
only a parametrization of some more fundamental physics associated with supersymmetry
breaking at a high energy scale. It does not appear at tree-level and only arises as the
vacuum expectation value of some new field. In this way understanding the µ parameter is
intimately connected to understanding the breaking of supersymmetry, the parameter itself
can be treated on the same footing as the soft terms and is roughly of the same order as the
soft terms.

The soft supersymmetry breaking part of the MSSM Lagrangian is given by

Lsoft = −1

2

[

M1B̃B̃ +M2W̃
aW̃ a +M3G̃

aG̃a
]

+ ǫαβ

[

(Au)ijH
α
2 Q̃

β
i Ũj − (Ad)ijH

α
1 Q̃

β
i D̃j − (Ae)ijH

α
1 L̃

β
i Ẽj +BµHα

1 H
β
2 + h.c.

]

−
[

Q̃α
i mQ

2
ijQ̃

α∗
j + L̃α

i mL
2
ijL̃

α∗
j + Ũ∗

i mU
2
ijŨj + D̃∗

imD
2
ijD̃j + Ẽ∗

i mE
2
ijẼj

]

−
[

m2
H2
H†

2H2 +m2
H1
H†

1H1

]

, (4.2)

where M1, M2 and M3 represent the bino, wino and gluino masses respectively, (Au,d,e)ij
specify the trilinear couplings between sfermions and Higgs bosons, and B determines the
bilinear coupling of Higgs bosons. The last two lines are mass terms for sfermions and Higgs
bosons.

Here we stress that there is an additional assumption when writing down the supersymmetry-
preserving part of the MSSM Lagrangian. In the SM, baryon/lepton number (B/L) conserva-
tion are accidental symmetries of the model implied by gauge invariance, in the sense that if
one requires gauge invariance of all possible interactions of the SM, the renormalizable terms
with mass dimension four or less automatically preserve B/L. This is not the case in the
MSSM. The MSSM superpotential can have renormalizable terms which are invariant under
supersymmetry, Lorentz and gauge transformations but do not preserve B/L. These terms
are

WNR = λijkL̂iL̂jÊk + λ′ijkL̂iQ̂jD̂k + λ′′ijkÛiD̂jD̂k + λ′′′i L̂iĤ2 . (4.3)

They violate L or B by 1 unit, and can lead to undesirable phenomenological consequences
such as the proton decay, which is so far not observed experimentally. Hence such B/L
violating terms should be avoided. Instead of simply postulating the conservation of B/L in
the MSSM, one introduces a discrete symmetry, the matter parity [59], or equivalently, the
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R parity [60], so that these terms are not allowed in the MSSM superpotential. The matter
parity is defined as

PM = (−1)3(B−L) . (4.4)

The terms in Eq. (4.3) would be disallowed if one requires all terms of the superpotential to
have PM = 1. This discrete symmetry of the low energy effective theory should be expected
to arise from some new physics at a high energy scale, e.g. as the residual symmetry left over
after the breaking of some continuous symmetry of high energy theories.

The R parity is defined by

PR = (−1)3(B−L)+2S , (4.5)

where S is the spin of the particle. This is equivalent to the matter parity as long as angular
momentum is conserved. The standard model particles and Higgs bosons have even R parity
PR = +1, whereas their superpartners have odd R parity PR = −1. If R parity is exactly
conserved, no mixing between ordinary particles and their superpartners can occur. This has
important phenomenological implications, such as a superparticle must decay into an odd
number of superparticles, and they must be produced in pairs at colliders. In addition, the
lightest supersymmetric particle (LSP) must be absolutely stable since it cannot decay into
the SM particles. The LSP at the end of decay chains gives the characteristic signature for
supersymmetry at colliders. Moreover, the LSP can be neutral under the gauge groups, thus
inevitably very weakly interacting. Therefore it is a nice cold dark matter candidate.

Adding to the Lagrangian the gauge-fixing and the Faddeev-Popov ghost part completes
the construction of the MSSM Lagrangian. As one can clearly see, most of the free parameters
in the MSSM are introduced by the soft supersymmetry breaking part of the Lagrangian.
The mass spectrum of the model crucially depends on these soft parameters. In the next
section we sketch the counting of independent parameters of the MSSM following Haber [61].

4.2 The MSSM parameters

The MSSM contains a lot of new parameters, in addition to the 19 parameters that are
already present in the SM. As mentioned in the previous section, most of these new parameters
are contained in the soft supersymmetry breaking Lagrangian. The mass matrices of squarks
and sleptons are 3 × 3 Hermitian matrices. These lead to 6 × 5 = 30 real parameters and
3×5 = 15 imaginary parameters, where the imaginary parameters arise from the off-diagonal
entries. The trilinear coupling matrices in general are 3 × 3 complex matrices, which give
9×3 = 27 real parameters and 9×3 = 27 imaginary ones. The µ parameter is treated on the
same footing as the soft parameters, which, together with the bilinear coupling parameter
B, can be complex, thus contribute two real and two imaginary degrees of freedom. In
addition, the complex gaugino mass parameters M1, M2 and M3 contribute three real and
three imaginary degrees of freedom. The real soft Higgs mass parameters mH1

and mH2

contribute two real degrees of freedom, which are the same as the Higgs sector of the SM and
thus need not be counted into the number of new degrees of freedom. All these add up to 109
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parameters, but not all of them are physical. Certain symmetries arise if the superpotential
couplings and the soft terms are switched off. These symmetries allow a redefinition of the
global phase of the fields without changing the physics. In the SM, there exist the following
global symmetries if the Yukawa couplings are switched off [52,61]

U(3)Q × U(3)U × U(3)D × U(3)L × U(3)E , (4.6)

which correspond to three generations of the five multiplets: (uL, dL)i, ūRi, d̄Ri, (ν, eL)i, ēRi.
Each of them has 3(3 − 1)/2 = 3 real and 3(3 + 1)/2 = 6 imaginary parameters. When the
Yukawa couplings are reintroduced, they are broken down to four global U(1) symmetries,
namely the conservation of baryon number and the conservation of lepton numbers for each
family. Hence these symmetries can be used to eliminate 3 × 5 = 15 real and 6 × 5 − 4 = 26
imaginary parameters in the SM. In the MSSM, the situation is slightly different. There is
only one global lepton number conservation rather than three when the Yukawa couplings are
switched on. Hence with these symmetries one can eliminate two more degrees of freedom,
reducing the 109 newly introduced parameters to 107. Moreover, there are two additional
global U(1) symmetries in the absence of the µ term and the soft terms, the U(1)R ×U(1)PQ

symmetry [62], which can be used to further remove two degrees of freedom. Therefore one
has 105 new parameters in the MSSM.

From the point of view of phenomenological analyses, it is a formidable task to scan over
such a large parameter space with so many unknown parameters. In order to give predictions
one usually makes additional assumptions on the soft supersymmetry breaking parameters.
For example, a common assumption is that the soft parameters take a simple form at a
higher energy scale, e.g. the GUT scale, so that the scalar mass parameters, the gaugino
mass parameters and the trilinear couplings unify. Renormalization group equations can
then be used to run these parameters down to the electroweak scale.

4.3 Particle spectrum of the MSSM

4.3.1 Higgs bosons

As previously mentioned, the Higgs sector of the MSSM consists of two Higgs doublets
with opposite hypercharges. The tree-level scalar potential of the Higgs fields is given by the
sum of the contributions from the F -term, the D-term and the soft supersymmetry breaking
term [63]

VH = (|µ|2 +m2
H1

)|H1|2 + (|µ|2 +m2
H2

)|H2|2 +
1

8
(g2

1 + g2
2)(|H1|2 − |H2|2)2

+
g2
2

2
|H†

1H2|2 −Bµ(ǫαβH
α
1 H

β
2 + h.c.) . (4.7)

Specifically, the |µ|2 term arises from the F -term of the superpotential, the quartic terms are
the D-term contributions and all the other terms come from the soft supersymmetry breaking
part of the Lagrangian. Note that the quartic Higgs couplings are completely fixed in terms
of the gauge couplings as a consequence of supersymmetry.
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Spontaneous breaking of the electroweak symmetry takes place if the neutral components
of the Higgs doublets acquire non-zero vacuum expectation values. The SU(2)L symmetry
can always be used to set the vacuum expectation values of the charged components of the
Higgs doublets to zero. Hence the electric charge symmetry is preserved. The only possible
complex term Bµ can also be made real by a redefinition of the global phase of the Higgs
fields. Consequently the vacuum expectation values of both Higgs doublets can be chosen
to be real and thus the CP symmetry is preserved by the tree-level Higgs potential. The
Higgs mass eigenstates, therefore, have definite CP quantum numbers. After the electroweak
symmetry breaking, three of the eight degrees of freedom of the two Higgs doublets are
eaten by the weak gauge bosons and become their longitudinal components, resulting in five
physical Higgs bosons. Two of them, h0 and H0, are CP-even, one is CP-odd, denoted as
A0, and the other two, H±, are charged.

The requirements of electroweak symmetry breaking and that the potential should be
bounded from below impose the following conditions on the parameters of the Higgs po-
tential

(|µ|2 +m2
H1

)(|µ|2 +m2
H2

) < (Bµ)2 ,

2|µ|2 +m2
H1

+m2
H2

≤ 2|Bµ| ,
m2

H1
6= m2

H2
. (4.8)

The last relation indicates that the soft supersymmetry breaking Higgs masses must have non-
vanishing value, revealing the fact that supersymmetry must be broken in order to realize
the electroweak symmetry breaking.

The two Higgs doublets can be decomposed as

H1 =





v1 + 1√
2
(φ1 + iχ1)

H−
1



 =





v cos β + 1√
2
(φ1 + iχ1)

H−
1



 ,

H2 =





H+
2

v2 + 1√
2
(φ2 + iχ2)



 =





H+
2

v sin β + 1√
2
(φ2 + iχ2)



 , (4.9)

where v =
√

v2
1 + v2

2 = 174GeV and tan β = v2/v1 with 0 < β < π/2. The minimization
conditions for the potential can be written as

Bµ =
(m2

H1
−m2

H2
) tan 2β

2
+
M2

Z sin 2β

2
,

|µ|2 =
m2

H2
sin2 β −m2

H1
cos2 β

cos 2β
− M2

Z

2
. (4.10)

Thereby the parameters B and µ can be determined up to an unknown phase. Substituting
the decomposition Eq. (4.9) into the Higgs potential, Eq. (4.7), the terms bilinear in the
Higgs fields define their masses. In the interaction basis, their mass matrices are not diagonal.
These mass matrices can be diagonalized by unitary matrices. Applying these diagonalization
matrices to the interaction eigenstates yields the mass eigenstates. For the CP-even, CP-odd
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and charged Higgs bosons, the respective mass eigenstates are given by applying the following
rotations





H0

h0



 =





cosα sinα

− sinα cosα









φ1

φ2



 ,





G0

A0



 =





cos β sinβ

− sinβ cos β









χ1

χ2



 ,





G±

H±



 =





cos β sinβ

− sinβ cos β









H±
1

H±
2



 . (4.11)

The tree-level masses of the CP-even Higgs bosons are then given by

M2
h0,H0 =

1

2

[

M2
A0 +M2

Z ∓
√

(M2
A0 +M2

Z)2 − 4M2
A0M

2
Z cos2 2β

]

. (4.12)

The mass of the CP-odd Higgs boson is determined as

M2
A0 = Bµ(tanβ + cot β) =

2Bµ

sin 2β
. (4.13)

It is related to the charged Higgs boson mass via

M2
H± = M2

A0 +M2
W . (4.14)

One can freely choose either MA0 or MH± as an input parameter for phenomenological
analyses. Usually MA0 is used for analyses within real MSSM, while MH± is often chosen
for analyses within complex MSSM since in the complex MSSM the CP-odd Higgs boson A0

is no longer mass eigenstate beyond tree-level due to the CP-violating mixing effect [64]. In
this thesis we will essentially concentrate on real MSSM. The mixing angle α between the
two CP-even Higgs bosons H0 and h0 is determined as

α =
1

2
arctan

[

tan 2β
M2

A0 +M2
Z

M2
A0 −M2

Z

]

, −π
2
< α < 0 . (4.15)

From Eq. (4.12) one can see that the massMh0 has an upper boundMh0 ≤ |MZ cos 2β| ≤MZ ,
as a consequence of the fact that the Higgs self couplings are determined by the gauge
couplings in the MSSM. In contrast, the Higgs self coupling in the SM is a free parameter,
hence the Higgs mass is, too, a free parameter.

The couplings of Higgs bosons to vector bosons can be derived from the kinetic term of
Higgs fields. CP invariance forbids certain couplings at tree-level, such as the A0W+W− and
Zh0h0 vertices. The structure of the MSSM Higgs sector also implies constraints for those
couplings that are present at tree-level. For example, the couplings of the two CP-even Higgs
bosons and the W/Z gauge bosons

gh0V V =

√
2M2

V

v
sin(β − α) , gH0V V =

√
2M2

V

v
cos(β − α) (4.16)
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fulfill g2
h0V V

+ g2
H0V V

= (
√

2M2
V /v)

2 = g2
HV V , where V denotes W or Z, and gHV V is the

coupling of the SM Higgs boson and the W/Z gauge bosons. Consequently in the limit that
cos(β − α) → 0, the light CP-even Higgs boson h0 will behave like a SM Higgs boson, while
in the limit that sin(β − α) → 0, the heavy CP-even Higgs boson H0 will resemble the SM
Higgs boson. Note that the factor cos(β − α) can be written as

cos2(β − α) =
M2

h0(M
2
Z −M2

h0)

M2
A0(M

2
H0 −M2

h0)
. (4.17)

In the limit that MA0 is much larger than MZ , one obtains

cos2(β − α) ≈ M4
Z sin2 4β

4M4
A0

, (4.18)

hence the coupling gH0V V is negligibly small and gh0V V approaches the SM coupling. This is
the so-called decoupling limit.

The Yukawa couplings of Higgs bosons and fermions are defined in the superpotential.
As H1 couples exclusively to down-type fermions and H2 exclusively to up-type ones, the
following relations between the Yukawa couplings and the fermion masses are expected

λu =
mu

v2
=

mu

v sin β
, λd =

md

v1
=

md

v cos β
. (4.19)

In contrast to the Yukawa couplings in the SM, the MSSM Yukawa couplings involve an addi-
tional factor of 1/ sin β or 1/ cos β. Consequently the down-type couplings can be significantly
enhanced at large tan β.

As previously shown, the mass of the light CP-even MSSM Higgs boson has an upper bound
of MZ at tree-level. If this is not significantly altered by radiative corrections, the MSSM
would have been ruled out by the Higgs searches at LEP [65]. Fortunately, the higher order
corrections indeed induce a considerable shift in this mass bound. The loop contributions
have been computed with different methods, e.g. the effective potential approach [66–72] or
the diagrammatic method [64,73–82], which yield the complete results at one-loop level and
partial corrections that are presumably dominant at two-loop level. At one-loop level, the
dominant contribution arises from an incomplete cancellation between the top quark and top
squark loops, which turns out to be proportional to the fourth power of the top quark mass.
The fact that the top quark is heavy is crucial, since otherwise the radiative corrections might
not be able to yield a significant shift to the upper bound of the light CP-even Higgs boson
mass.

The relations between the Yukawa couplings and fermion masses will be modified by ra-
diative corrections as well. In the tree-level Lagrangian the down-type fermions couple to
the Higgs field H1 only, whereas the up-type fermions couple only to H2. Radiative correc-
tions can not only yield modifications to the tree-level couplings, but also induce couplings
of down-type fermions to the conjugate field of H2 or up-type fermions to the conjugate field
of H1. These induced couplings are closely related to the soft breaking parameters. The
effective Lagrangian that includes the induced couplings of Higgs bosons and fermions can
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be written as [83]

−LY = ǫαβ

[

(λu + δλu)ūRQ
α
LH

β
2 + (λd + δλd)d̄RH

α
1 Q

β
L

]

+ ∆λdd̄RQ
α
LH

α∗
2 + ∆λuūRQ

α
LH

α∗
1 + h.c. , (4.20)

which results in the following modification of the tree-level relations between the Yukawa
couplings and fermion masses [84]

λu =
mu

v2(1 + δλu

λu
+ ∆λu cot β

λu
)

=
mu

v sinβ(1 + ∆u)
,

λd =
md

v1(1 + δλd

λd
+ ∆λd tan β

λd
)

=
md

v cosβ(1 + ∆d)
. (4.21)

Note that ∆d contains corrections that are enhanced by tan β [84, 85]. From the effective
Lagrangian, Eq. (4.20), and these modified relations one can then derive straightforwardly
the effective Yukawa couplings in terms of the fermion masses mu,d and the ∆u,d factors.

4.3.2 Sfermions

After the electroweak symmetry breaking, all particles of the same spin with the same
SU(3)C ×U(1)Q quantum numbers can mix. This will lead to 6× 6 mixing matrices for up-
and down-type squarks and charged sleptons, and 3 × 3 mixing matrix for sneutrinos. As
phenomenological constraints on flavor changing neutral current processes require that the
intergeneration mixing be small, we will not consider the mixing between squarks of different
generations here. The mass matrix entries of squarks originate from the contribution of the
F -term, D-term and soft supersymmetry breaking terms to the scalar potential. The F -term
contributes both to the diagonal and off-diagonal entries, the D-term yields only diagonal
contributions, while the soft terms contribute to the diagonal entries through the scalar mass
terms and to the off-diagonal entries through the trilinear coupling terms when the Higgs
fields acquire non-zero vacuum expectation values. Hence to parametrize the sfermion mass
matrices, one needs µ, tanβ, the trilinear couplings and the corresponding left- and right-
handed soft masses. In the gauge eigenstate basis (f̃L, f̃R), the mass matrix can be written
as

Mf̃ =





M2
f̃L

+m2
f +M2

Z cos 2β(If
3 −Qfs

2
W ) mfXf

mfXf M2
f̃R

+m2
f +M2

Z cos 2β Qfs
2
W



 (4.22)

with mf the SM fermion mass, and

Xf = Af − µ{cot β, tan β} , (4.23)

where cot β, tan β applies to the up- and down-type sfermions, respectively. The mass eigen-
states can be obtained by applying a unitary transformation to the gauge eigenstates





f̃1

f̃2



 =





cos θf̃ sin θf̃

− sin θf̃ cos θf̃









f̃L

f̃R



 . (4.24)
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The mixing angle is determined by requiring that the mass matrix be diagonal in the rotated
basis. The mass eigenvalues are given by

m2
f̃1,f̃2

= m2
f +

1

2

[

M2
f̃

+M2
f̃R

+M2
Z cos 2βIf

3

∓
√

[M2
f̃
−M2

f̃R
+M2

Z cos 2β(If
3 − 2Qfs

2
W )]2 + 4m2

fX
2
f

]

. (4.25)

As one can see that the non-diagonal entries of the mass matrix in the gauge eigenstate
basis is proportional to the fermion mass, thus the mixing in the stop sector is particularly
important. Its contribution to the renormalization group equation decreases the stop masses
when running down to the low energy scale and can yield a mass of the lighter stop smaller
than any other squarks. Of course the stop mass can not run into negative values, since
the color or electric charge symmetry should not be broken. This requirement would yield
constraint on the corresponding trilinear coupling. In the sbottom sector, if tan β and µ are
large, the mixing can be strongly enhanced and also become important.

In terms of the physical masses and the mixing angles the original mass matrix Eq. (4.22)
can be written as

Mf̃ =





cos θ2
f̃
m2

f̃1
+ sin θ2

f̃
m2

f̃2
sin θf̃ cos θf̃ (m2

f̃1
−m2

f̃2
)

sin θf̃ cos θf̃ (m2
f̃1

−m2
f̃2

) sin θ2
f̃
m2

f̃1
+ cos θ2

f̃
m2

f̃2



 (4.26)

and

Af =
sin θf̃ cos θf̃ (m2

f̃1
−m2

f̃2
)

mf
+ µ{cot β, tan β} , (4.27)

i.e. the trilinear coupling and the mixing angle of squarks can be related to each other. If
one insists this relation beyond tree-level, the mixing angle of squarks usually needs be renor-
malized when renormalizing the squark sector [86,87], since its renormalization is equivalent
to the renormalization of the trilinear coupling.

4.3.3 Neutralinos and charginos

In this section we describe the mixing between neutral (charged) higgsinos and neutral
(charged) gauginos. The neutral higgsinos (H̃0

1 , H̃
0
2 ) and gauginos (B̃, W̃ 3) can mix to form

four mass eigenstates, the neutralinos, while the charged higgsinos (H̃−
1 , H̃

+
2 ) and gauginos

(W̃−, W̃+) can mix to yield charginos. The contribution to the neutralino and chargino
mass matrices results from the soft gaugino mass terms, the higgsino mass terms and the
couplings of Higgs fields to higgsino and gauginos when the Higgs fields acquire nonzero
vacuum expectation values. In the neutral gaugino and higgsino basis (B̃, W̃ 3, H̃0

1 , H̃
0
2 ) the
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mass matrix is given by

MN =















M1 0 −MZsW cos β MZsW sinβ

0 M2 MZcW cos β MZcW sin β

−MZsW cos β MZcW cos β 0 −µ
MZsW sin β MZcW sin β −µ 0















. (4.28)

The symmetry of this mass matrix allows its diagonalization with only one unitary matrix
N . Applying N to the gauge eigenstates yields the neutralino mass eigenstates















χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4















= N















B̃

W̃ 3

H̃0
1

H̃0
2















. (4.29)

The diagonalized neutralino mass matrix is given by

MD
N = N∗MNN

† . (4.30)

By appropriately choosing the diagonalization matrix N , MD
N can be settled to have non-

negative entries.

The mass term for the charginos in the Lagrangian can be written in the basis ψ+ =
(W̃+, H̃+

2 ), ψ− = (W̃−, H̃−
1 ) as

−1

2
(ψ+, ψ−)





0 MT
C

MC 0









ψ+

ψ−



+ h.c. (4.31)

with W̃± = 1√
2
(W̃ 1 ∓ iW̃ 2) and the matrix

MC =





M2

√
2 sin βMW

√
2 cos βMW µ



 . (4.32)

The mass eigenstates are then obtained by two unitary rotation matrices since there are two
independent mixings

χ+
i = Vijψ

+
j , χ−

i = Uijψ
−
j , i = 1, 2 , (4.33)

leading to the following four-component Dirac spinors

χ̃+
i =





χ+
i

χ̄−
i



 , i = 1, 2 . (4.34)
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The diagonalized mass matrix is obtained by

MD
C = U∗MCV

† . (4.35)

In the case that both M2 and µ are real, the rotation matrices can be written as

U = O−, V =







O+ if detMC > 0

σ3O+ if detMC < 0
, O± =





cosφ± sinφ±

− sinφ± cosφ±



 , (4.36)

where σ3 is the Pauli matrix that is inserted to make the chargino masses positive. The
angles φ± satisfy

tan 2φ+ =
2
√

2MW (M2 cos β + µ sin β)

M2
2 − µ2 − 2M2

W cos 2β
, tan 2φ− =

2
√

2MW (M2 sin β + µ cos β)

M2
2 − µ2 + 2M2

W cos 2β
.(4.37)

This yields the following chargino masses

M2
χ̃+

1,2

=
1

2

{

M2
2 + µ2 + 2M2

W

∓
[

(M2
2 + µ2 + 2M2

W )2 − 4(µM2 −M2
W sin 2β)2

] 1
2
}

. (4.38)

4.3.4 Gluinos

As the superpartner of gluons, gluino is a color octet fermion and can not mix with any
other particle in the MSSM. By SU(3)C invariance all gluinos have the same Majorana mass
M3, which is related to the bino and wino masses M1 and M2 in supersymmetric GUT
theories

M3 =
αS

α
sin2 θWM2 =

3

5

αS

α
cos2 θWM1 , (4.39)

where αS and α are the strong and electromagnetic coupling constants, respectively.

4.4 Renormalization of the MSSM

In this section we will describe the renormalization of the MSSM, essentially focusing on
the Higgs sector, which is most relevant for the computation that will be presented in the
forthcoming chapters. Before the detailed investigation, the basic strategy of regularization
and renormalization will be briefly illustrated.

4.4.1 Strategies of regularization and renormalization

The Lagrangian specifying a quantum field theory usually involves free parameters that have
to be determined by experiments. At tree-level these free parameters can be directly related to
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the experimentally measurable quantities. At perturbative higher orders these relations will,
in general, no longer hold. Moreover, this is plagued by ultraviolet divergences that appear in
the higher order loop diagrams. The appearance of these divergences is an indication that the
theory under consideration is just a low energy effective theory which will break down at a
higher energy scale where new physics enters. Nevertheless, for certain theories, it is possible
to achieve a consistent treatment of the divergences by means of the regularization and
renormalization procedure and thereby to make predictions that can be tested by experiments.
The previously described SM and MSSM are theories of this kind. The idea of regularization
is to render the unmanipulable divergent integrals finite by introducing a suitable convergence
device, such as a cut-off to the energy scale, or equivalently, to the integrated loop momenta.
In this way the original parameters in the Lagrangian (bare parameters) have no longer
physical meaning since their relations to physical quantities become cut-off dependent. By
means of renormalization the cut-off dependence can be absorbed into the bare parameters
so that the relations between measurable physical quantities do not depend on the cut-off.
After the renormalization procedure, one can express the observable quantities in terms of
the free parameters determined by experiments, which absorb our ignorance of physics at
high energy scales so that we are able to make predictions at a low energy scale.

Clearly the regularization procedure is purely mathematical and has no physical impacts.
Accordingly the choice of regularization prescription is not unique, we list some of the com-
monly used regularization schemes below.

Regularization schemes

1. Pauli-Villars regularization [88]
In the Pauli-Villars regularizaton scheme one introduces fictitious fields whose mass acts as
a cut-off on the momentum integrals. This regularization is the most intuitive choice. It
preserves the Poincaré symmetry but might spoil gauge invariance when applying to non-
abelian gauge theories, hence is not well-suited for the regularization of the SM.

2. Dimensional regularization [89,90]
This regularization scheme originates from the observation that the ultraviolet divergences
of momentum integrals can be removed if one goes to space-time dimension lower than four.
The space-time dimension D is then treated as a continuous variable and acts as a regulator
for the momentum integrals. The integrals are performed in D dimensions (D < 4), and then
analytically continuated to four dimensions. The original divergences will show up as poles
in D − 4. In this regularization scheme care has to be taken when generalizing the usual γ5

matrix in four dimensions to arbitrary dimensions. Also an arbitrary mass parameter µ needs
to be introduced to keep the dimension of the coupling constants correct. As the space-time
dimension is used as the regulator, this scheme preserves properties of the theory that are
independent of the space-time dimension, e.g. gauge invariance but not supersymmetry. Con-
sequently this scheme is not suitable for the regularization of supersymmetric gauge theories.
To obtain a suitable regularization scheme for supersymmetric gauge theories, one develops
a variant of the dimensional regularization scheme, i.e. the dimensional reduction scheme,
in which the continuation from four to D dimensions is carried out by compactification, or
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dimensional reduction.

3. Dimensional reduction [91,92]
The reason that the dimensional regularization scheme does not preserve supersymmetry is
the following: in D = 4 dimensions the condition 2D/2 = D is fulfilled, thus the fermionic
and bosonic degrees of freedom match in four dimensions. When moving away from four
dimensions, this match is broken, hence supersymmetry is broken as well. Practically, when
applying dimensional regularization to supersymmetric gauge theories, it is possible to restore
supersymmetry by adding suitable finite corrections to the counter terms, whose existence
is guaranteed by renormalizability of the theory [93–97]. This, however, will lead to compli-
cation since these finite terms do not originate from necessary renormalization. An elegant
alternative that preserves supersymmetry is the regularization by dimensional reduction, in
which only momenta are treated as D-dimensional, whereas fields and the Dirac algebra re-
main as 4-dimensional. Ambiguities related to the treatment of the γ5 matrix also occur in
this regularization scheme [98]. However, there has been proof that dimensional reduction
can be formulated in a mathematically consistent manner [99].

Renormalization

There are different approaches of renormalization. One possibility is to compute physical
quantities in terms of bare parameters and then express them in terms of finite renormalized
parameters. Another alternative that is widely used in literature is the counter term approach.
In the counter term approach, the original bare Lagrangian is separated into two pieces,
one piece by replacing the bare parameters with finite renormalized parameters, and the
other counter term piece that absorbs the unobservable infinite shifts between the bare and
renormalized parameters. Apart from the renormalization constants that define the counter
terms, these two pieces take the same form. In order to obtain finite S-matrix element as well
as finite propagators and vertex functions, one has to perform not only the renormalization
of the Lagrangian parameters, but also the field renormalization. The bare and renormalized
parameters and fields can be related by multiplicative factors

g0 = Zgg =

(

1 +
∞
∑

n=1

δZ(n)
g

)

g , (4.40)

Φ0 =
√
ZΦΦ =

(

1 +

∞
∑

n=1

δZ
(n)
Φ

) 1
2

Φ , (4.41)

where the subscript 0 denotes the bare quantities, and n the perturbative orders, δZ
(n)
i are

the respective renormalization constants. As mentioned above, the bare Lagrangian can be
written as the sum of the basic Lagrangian depending on the renormalized quantities and the
counter term Lagrangian

L0(g0,Φ0) = L(g,Φ) + LCT (g,Φ, δZg , δZΦ) . (4.42)

The renormalization constants or counter terms have to be determined by renormalization
conditions. These conditions are arbitrary, since the definition of divergent parts to be
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absorbed by the counter terms are arbitrary. One such definition can differ by finite parts from
others. The prescription specifying the finite parts defines a renormalization scheme, any two
such renormalization schemes are connected by a finite renormalization. As a consequence,
calculations at fixed order perturbation theory are renormalization scheme dependent, i.e.
they can differ from scheme to scheme by higher order contributions. Of course if one is
able to perform exact calculations that include contributions from all perturbative orders the
dependence on the renormalization schemes must drop out. In the following we list some of
the widely used renormalization schemes.

1. On-shell scheme
In the on-shell scheme the renormalization conditions that determine the counter terms are
formulated in such a way that the finite renormalized parameters are equal to physical pa-
rameters at all orders in perturbation theory. The renormalized masses of physical particles
are required to be the physical masses, which arise as the real parts of the poles of the cor-
responding propagators. Obviously the on-shell renormalization for quarks are meaningless,
since they are confined in hadrons and are not free particles. Thus the quark mass parameters
have to be replaced by some other experimental inputs. The on-shell renormalization of fields
are fixed by requiring that the renormalized fields are properly normalized, i.e. the residues
of the renormalized propagators are equal to one. The on-shell renormalization scheme has
been formulated for the SM [100,101] and generalized to the MSSM [102].

2. Minimal subtraction
The minimal subtraction (MS) scheme [103] is specific to dimensional regularization. In this
scheme the counter terms are defined so that only the pole terms 1/ε (2ε = 4−D) that arise
from dimensional regularization are eliminated. For calculations at fixed perturbative order,
the arbitrary mass scale µ in the dimensional regularization introduces a scale dependence,
namely the renormalization scale dependence. Of course if one performs an exact calcula-
tion, this dependence has to drop out. However, in practical perturbative calculations, the
parameter used for perturbative expansion is the coupling constant, the renormalization scale
dependence is not fully cancelled order by order in this expansion, consequently the results of
perturbative calculations depend on the renormalization scale. The MS scheme and its vari-
ant, the so-called modified minimal subtraction scheme or MS scheme [104], are commonly
used in QCD as the fundamental particle states, the quarks and gluons are not free particles
and an on-shell renormalization is meaningless. The MS scheme is defined by observing that
in dimensional regularization the pole terms are usually accompanied by constant terms. In
this scheme not only the pole terms but also the constant terms are subtracted, namely the
following term is subtracted

∆ =
1

ε
− γE + ln 4π , (4.43)

where γE is the Euler constant. The renormalization scale in the MS and MS scheme are
related by

lnµ2
MS − γE + ln 4π → lnµ2

MS
. (4.44)

Note that in contrast to the MS scheme, there is no renormalization scale dependence in
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the on-shell renormalization scheme as the masses of physical particles set natural scales at
which the parameters can be defined.

3. DR scheme
The DR scheme is the analog of the MS scheme for regularization by dimensional reduction.
The DR renormalization scale µDR is defined analogously. As in the MS or MS scheme, for
practical calculations, one usually sets this scale as the characteristic mass scale of processes
under consideration.

Now we turn to the renormalization of the MSSM. In the following we will concentrate on
the Higgs sector and describe its renormalization in detail.

4.4.2 Renormalization of the MSSM Higgs sector

As previously shown, in the MSSM two Higgs doublets with opposite hypercharges are
required for consistency. These two doublets can be decomposed as in Eq. (4.9). Substituting
this decomposition into the scalar potential (4.7) gives rise to linear (tadpole) and bilinear
terms of the decomposed fields. These terms can be rewritten in terms of mass eigenstates
as follows

VTB = −Th0h0 − TH0H0 +
1

2

(

h0 H0
)





M2
h0 M2

h0H0

M2
h0H0 M2

H0









h0

H0





+
1

2

(

A0 G0
)





M2
A0 M2

A0G0

M2
A0G0 M2

G0









A0

G0





+
(

H− G−
)





M2
H± M2

H−G+

M2
G−H+ M2

G±









H+

G+



 . (4.45)

Note that the tadpole terms for charged components do not appear in the above equation.
The tadpole coefficients and mass matrix entries are related to the original parameters in the
scalar potential. The CP-even, CP-odd and charged Higgs fields in Eq. (4.45) are given at the
moment by the rotations defined by the mixing angles α, β1 and β2 rather than those in Eq.
(4.11). The determination of these mixing angles will be given later. Due to the freedom of
choosing m2

H1
and m2

H2
, the scalar potential contains seven independent parameters, namely

m2
1 = |µ|2 + m2

H1
, m2

2 = |µ|2 + m2
H2

, m2
3 = Bµ, g1, g2, v1 and v2. They can be replaced

by an equivalent set of free parameters consisting of Th0, TH0 , e, MW , MZ , MA0 and tan β.
Note that for complex MSSM, there exists one more free parameter, that is the CP-violating
phase between the two Higgs doublets (at lowest order this phase can be eliminated, hence
the tree-level Higgs potential is CP-conserving). In this case, one can introduce TA0 into the
equivalent set of parameters and replace MA0 with MH± . In terms of the new parameters,
the non-diagonal entries of the mass matrices describing mixing between Higgs bosons are
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given by [64]

M2
h0H0 = −1

2
M2

Z sin 2(α + β) +
1

2
M2

A0 sin 2(α − β)/ cos2(β − β1)

+
e

2MZsW cW
TH0 sin(α− β) sin2(α− β1)/ cos2(β − β1)

− e

2MZsW cW
Th0 cos(α− β) cos2(α− β1)/ cos2(β − β1) ,

M2
A0G0 = −M2

A0 tan(β − β1) −
e

2MZsW cW
TH0 sin(α− β1)/ cos(β − β1)

− e

2MZsW cW
Th0 cos(α− β1)/ cos(β − β1) ,

M2
H−G+ = −M2

H± tan(β − β2) −
e

2MZsW cW
TH0 sin(α− β2)/cos(β − β2)

− e

2MZsW cW
Th0 cos(α− β2)/ cos(β − β2) , (4.46)

where sW and cW denote the sine and cosine of the weak mixing angle, respectively. The
condition that tadpoles and M2

A0G0 and M2
H−G+ vanish yields β1 = β2 = β, while M2

h0H0 = 0
fixes the mixing angle α as in Eq. (4.15). The expressions for diagonal entries lead to Eqs.
(4.12), (4.14) and MG± = MG0 = 0.

The computation of higher order corrections requires the renormalization of the Higgs
sector. One can choose to renormalize the following parameters (the gauge-fixing term is
kept invariant under renormalization)

Th0 → Th0 + δTh0 , TH0 → TH0 + δTH0 , tan β → tan β + δ tan β ,

M2
Z →M2

Z + δM2
Z , M2

W →M2
W + δM2

W , M2
ij →M2

ij + δM2
ij , (4.47)

where M2
ij represent the mass matrix entries in Eq. (4.45). Note that the mixing angles α

and β1,2 need not be renormalized, hence β1,2 = β can be applied only after renormalization.
The mass counter terms for M2

ij (except the counter term for M2
A0) follow straightforwardly

from their tree-level expressions. For example,

δM2
h0H0 = −1

2
δM2

Z sin 2(α+ β) +
1

2
δM2

A0 sin 2(α− β)

+
e

2MZsW cW
[δTH0 sin3(α− β) − δTh0 cos3(α− β)]

− δ tan β cos2 β[M2
Z cos 2(α + β) +M2

A0 cos 2(α − β)] (4.48)

is derived directly from the first equation in (4.46). Likewise, one finds

δM2
h0 = δM2

Z sin2(α+ β) + δM2
A0 cos2(α− β)

+
e

2MZsW cW
[δTH0 cos(α− β) sin2(α− β) + δTh0(1 + cos2(α− β))]

+ δ tan β cos2 β[M2
Z sin 2(α + β) +M2

A0 sin 2(α − β)] ,

δM2
H0 = δM2

Z cos2(α+ β) + δM2
A0 sin2(α− β)

− e

2MZsW cW
[δTH0 cos(α− β)(1 + sin2(α− β)) + δTh0 sin(α− β) cos2(α − β)]

− δ tan β cos2 β[M2
Z sin 2(α + β) +M2

A0 sin 2(α − β)] , (4.49)
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and

δM2
A0G0 = − e

2MZsW cW
[δTH0 sin(α− β) + δTh0 cos(α− β)] − δ tan β cos2 βM2

A0 ,

δM2
G0 = − e

2MZsW cW
[δTH0 cos(α− β) − δTh0 sin(α− β)] ,

δM2
H−G+ = − e

2MZsW cW
[δTH0 sin(α− β) + δTh0 cos(α− β)] − δ tan β cos2 βM2

H± ,

δM2
G± = − e

2MZsW cW
[δTH0 cos(α− β) − δTh0 sin(α− β)] . (4.50)

The counter term for M2
H± is given by

δM2
H± = δM2

A0 + δM2
W . (4.51)

If one uses MH± instead of MA0 as an input parameter, then the counter term δM2
A0 will be a

derived quantity. Note that the renormalization of the electric charge does not appear in the
mass counter terms at the one-loop level [64]. The counter terms on the right-hand side of
Eqs. (4.48-4.51) have to be determined by appropriately chosen renormalization conditions.
The mass counter terms δM2

Z , δM2
W and δM2

A0 can be fixed by on-shell renormalization
conditions

ReΣ̂T
Z(M2

Z) = 0 , ReΣ̂T
W (M2

W ) = 0 , ReΣ̂A0(M2
A0) = 0 , (4.52)

where Σ̂T
Z,W denote the renormalized transverse gauge boson self energies. The third renor-

malization condition should be replaced by

ReΣ̂H+H−(M2
H±) = 0 (4.53)

if M2
H± is used instead as an input. The tadpole counter terms are fixed by requiring that

the renormalized tadpoles vanish, which leads to

δTh0 = −Th0 , δTH0 = −TH0 . (4.54)

In order to have finite Green functions, the fields have to be renormalized as well. For
the renormalization of the Higgs fields, we can choose to renormalize either the unrotated
Higgs fields defined in Eq. (4.9) or the rotated ones given by Eq. (4.11). This is in analogy
to the renormalization of gauge boson fields in the SM, where one can renormalize either
W 3 and B bosons or alternatively their mixtures, the γ and Z bosons. In the SM the weak
mixing angle is defined by sin2 θW = 1−M2

W /M2
Z in the on-shell scheme [101]. This defining

relation is valid to all orders in perturbation theory. The weak mixing angle thus receives
renormalization due to the renormalization of MW and MZ . In the Higgs sector of the MSSM,
the relations between the mixing angles and input parameters hold only at tree-level. Hence
the mixing angles can be kept unrenormalized.

The renormalization of the Higgs fields can be carried out by the following transformations




h0

H0



→





1 + 1
2δZh0h0

1
2δZh0H0

1
2δZH0h0 1 + 1

2δZH0H0









h0

H0



 , (4.55)
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A0

G0



→





1 + 1
2δZA0A0

1
2δZA0G0

1
2δZG0A0 1 + 1

2δZG0G0









A0

G0



 ,





H+

G+



→





1 + 1
2δZH+H−

1
2δZH−G+

1
2δZG−H+ 1 + 1

2δZG+G−









H+

G+



 , (4.56)

where the renormalization constants can be fixed by, e.g. on-shell conditions. For the CP-
even Higgs bosons, the mass counter terms δM2

h0 , δM
2
H0 and δM2

h0H0 have been determined
by Eqs. (4.48) and (4.49). We can use the following on-shell conditions to fix the field
renormalization constants for the CP-even Higgs bosons [102]

ReΣ̂′
h0(M

2
h0) = 0, ReΣ̂′

H0(M
2
H0) = 0 .

ReΣ̂h0H0(M2
h0) = 0, ReΣ̂h0H0(M2

H0) = 0 . (4.57)

The field renormalization constants for the CP-odd and charged Higgs bosons can be deter-
mined analogously.

Alternatively one can choose to renormalize the Higgs fields by defining a renormalization
constant for each Higgs doublet

H1 → (1 +
1

2
δZH1

)H1, H2 → (1 +
1

2
δZH2

)H2 . (4.58)

Their vacuum expectation values then renormalize as follows

v1 → (1 +
1

2
δZH1

)(v1 − δv1) = v1(1 +
1

2
δZH1

− δv1
v1

) ,

v2 → (1 +
1

2
δZH2

)(v2 − δv2) = v2(1 +
1

2
δZH2

− δv2
v2

) . (4.59)

Note that the freedom of field renormalization allows to impose the condition δv1

v1
= δv2

v2
.

Keeping in mind that the mixing angles are not renormalized, the renormalization constants
in the mass eigenstate basis can be expressed in terms of δZH1

and δZH2
. For instance, for

the CP-even Higgs bosons, one has




1 + 1
2δZh0h0

1
2δZh0H0

1
2δZH0h0 1 + 1

2δZH0H0



 =





− sinα cosα

cosα sinα









1 + 1
2δZH1

0

0 1 + 1
2δZH2









− sinα cosα

cosα sinα



 , (4.60)

giving rise to

δZh0h0 = sin2 αδZH1
+ cos2 αδZH2

,

δZh0H0 = δZH0h0 = sinα cosα(δZH2
− δZH1

) ,

δZH0H0 = cos2 αδZH1
+ sin2 αδZH2

. (4.61)
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This implies that the renormalization transformation matrix can be set symmetrically. Like-
wise, one obtains the expressions of field renormalization constants for CP-odd and charged
Higgs bosons by replacing α with β in the above equations.

For convenience, usually the DR scheme is used for the field renormalization as in this
scheme possible occurrence of unphysical threshold effects can be avoided [64]. From Eq.
(4.61), it is straightforward to fix the field renormalization constants for the two Higgs dou-
blets in the DR scheme as follows

δZDR
H1

= −[ ReΣ′
H0(M

2
H0)|α=0 ]div ,

δZDR
H2

= −[ ReΣ′
h0(M

2
h0)|α=0 ]div . (4.62)

Now we turn to the renormalization of tanβ. The tan β renormalization follows from the
renormalization of the vacuum expectation values of the two Higgs doublets. From Eq. (4.59),
one obtains

δ tan β

tan β
=

1

2
(δZH2

− δZH1
) . (4.63)

In the DR scheme δ tan β is fixed by Eq. (4.62). Another choice that is commonly used for
the renormalization of tanβ is to impose the following renormalization condition [74,76]

ReΣ̂A0Z(M2
A0) = 0 , (4.64)

where the renormalized self energy is given by

Σ̂A0Z(k2) = ΣA0Z(k2) −MZ
sin 2β

tan β
δ tan β . (4.65)

Consequently the counter term δ tan β is fixed as

δ tan β

tan β
=

1

MZ sin 2β
ReΣA0Z(M2

A0) . (4.66)

Both schemes for the renormalization of tanβ lead to gauge dependence, since they do not
imply direct relations between tan β and physical observables. However, it has been shown
that at one-loop level the DR scheme of tan β renormalization yields gauge independent re-
sults within the class of Rξ gauges (the gauge dependence arises at two-loop level even within
Rξ gauges), while the other scheme does not [105]. Hence the DR scheme is a convenient
choice for the evaluation of one-loop corrections. Moreover, this scheme has stable numer-
ical behavior [105–107]. We will employ the field renormalization Eq. (4.58) and impose
the DR renormalization conditions Eqs. (4.62) and (4.63) for the Higgs fields and tanβ
renormalization.

The renormalized self energies can be written in terms of the unrenormalized ones, the field
renormalization constants and the mass counter terms. For the CP-even Higgs bosons, we
have

Σ̂h0(k2) = Σh0(k2) + δZh0h0(k2 −M2
h0) − δM2

h0 ,

Σ̂H0(k2) = ΣH0(k2) + δZH0H0(k2 −M2
H0) − δM2

H0 ,

Σ̂h0H0(k2) = Σh0H0(k2) + δZh0H0(k2 − 1

2
(M2

h0 +M2
H0)) − δM2

h0H0 . (4.67)
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The renormalized self energies for the CP-odd and charged Higgs bosons can be written down
analogously.

As mentioned previously, the light CP-even Higgs boson mass receives large radiative cor-
rections. The higher-order corrected CP-even Higgs boson masses can be computed by finding
the poles of the propagator matrix of (H0, h0) and then taking their real parts. The inverse
of the Higgs propagator matrix can be written as

∆−1 = −i





k2 −M2
H0 + Σ̂H0(k2) Σ̂h0H0(k2)

Σ̂h0H0(k2) k2 −M2
h0 + Σ̂h0(k2)



 . (4.68)

The propagator matrix is then given by

∆ = i





∆H0(k2) ∆h0H0(k2)

∆h0H0(k2) ∆h0(k2)



 (4.69)

with

∆H0(k2) =
1

k2 −M2
H0 + Σ̂H0(k2) − Σ̂2

h0H0
(k2)

k2−M2

h0+Σ̂
h0 (k2)

,

∆h0H0(k2) = − Σ̂h0H0(k2)

[k2 −M2
h0 + Σ̂h0(k2)][k2 −M2

H0 + Σ̂H0(k2)] − Σ̂2
h0H0(k2)

,

∆h0(k2) =
1

k2 −M2
h0 + Σ̂h0(k2) − Σ̂2

h0H0
(k2)

k2−M2

H0+Σ̂
H0(k2)

. (4.70)

The poles of the matrix ∆ can be determined by solving the following equation

[k2 −M2
H0 + Σ̂H0(k2)][k2 −M2

h0 + Σ̂h0(k2)] − [Σ̂h0H0(k2)]2 = 0 . (4.71)

Due to the complicated momentum dependence, this equation is rather difficult to solve.
Hence it is of particular interest to consider approximation methods. One such method is
to approximate the renormalized self energies by their values evaluated at zero momentum,
namely completely neglect their momentum dependence [108, 109]. This approximation is
useful for comparisons with calculations from effective potential approaches [64]. Replacing
Σ̂(k2) with Σ̂(0), one can easily find the pole positions from Eq. (4.71) as

k2
H0,h0 =

1

2
(M2

H0 − Σ̂H0(0) +M2
h0 − Σ̂h0(0)

±
√

(M2
H0 − Σ̂H0(0) −M2

h0 + Σ̂h0(0))2 + 4Σ̂2
h0H0(0) . (4.72)

Equivalently, the physical Higgs bosons masses within this approximation can be computed
directly by diagonalizing the corrected Higgs boson mass matrix in (H0, h0) basis. The
diagonalization matrix is given by

D(∆α) =





cos ∆α − sin∆α

sin∆α cos ∆α



 , (4.73)



48 CHAPTER 4. THE MINIMAL SUPERSYMMETRIC STANDARD MODEL

where the angle ∆α satisfies

tan ∆α =
ReΣ̂h0H0(0)

Re k2
h0 −M2

H0 + ReΣ̂H0(0)
. (4.74)

Note that the corrected Higgs mass matrix is transformed from (φ1, φ2) to (H0, h0) basis by
the rotation matrix

D(α) =





cosα − sinα

sinα cosα



 , (4.75)

one can define an effective mixing angle αeff = α + ∆α so that D(αeff ) diagonalizes the
corrected Higgs mass matrix in the unrotated basis. Thus this zero momentum approximation
is also known as the αeff approximation.



Chapter 5

Electroweak Corrections to
h0 → WW ∗/ZZ∗ → 4 fermions

Deciphering the mechanism that breaks the electroweak symmetry and generates the masses
of fundamental particles is one of the central tasks of current and future colliders. As discussed
in previous chapters, in the SM the electroweak symmetry breaking is realized through the
Higgs mechanism where the neutral component of an SU(2) complex scalar doublet acquires
a non-zero vacuum expectation value. While in the MSSM, two Higgs doublets are required,
resulting in five physical Higgs bosons. Two of them are CP-even, one CP-odd, and the other
two are charged. The mass of the lightest CP-even Higgs boson is bounded from above by
Mh0 . 135GeV, including radiative corrections up to two-loop order [78,81,82]. In this mass
range, the Higgs boson decays dominantly to bb̄ pair. However, this is not a promising channel
for the discovery of the Higgs boson at hadron colliders due to the large QCD background [6].
Detailed investigations of other decay modes of the Higgs boson are thus necessary. Such
investigations also have further implications. At the LHC at least one MSSM Higgs boson
can be discovered over all of the MSSM parameter space. In the region where tanβ and
MA0 take on moderate values and the region with large MA0 values, only the lightest Higgs
boson would be observable [110]. In this case, precision measurements of the Higgs decay
properties would indicate if the Higgs boson originates from the SM or from the MSSM and
for the latter case allow to derive indirect bounds on other MSSM parameters, e.g. on the
mass of the CP-odd Higgs boson [111]. Over a large fraction of the MSSM parameter space
more than one Higgs boson would be accessible. Then precision measurements of the lightest
Higgs boson at the linear collider can provide valuable information for distinguishing between
different soft SUSY-breaking scenarios [111].

For the decay of the SM Higgs boson to four fermions via a gauge boson pair, the complete
O(α) electroweak corrections for leptonic final states have been presented [112], for semi-
leptonic and hadronic final states also complete O(αs) QCD corrections are available [113];
where the results are improved by corrections beyond O(α) originating from heavy-Higgs
effects and final state radiation.

In this chapter we consider similar processes in the CP-conserving MSSM with real pa-

49
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rameters and compute the O(α) electroweak corrections to the decay h0 → WW ∗/ZZ∗ →
4 fermions. As discussed in the previous chapter, beyond the lowest order the propagator
matrix of the CP-even Higgs bosons receives large radiative corrections, yielding shifts to
their tree-level masses. These Higgs propagator corrections are numerically very important,
we define an effective amplitude to account for such corrections. In addition, in the presence
of the mixing between the two CP-even Higgs bosons, the coupling of the heavy CP-even
Higgs boson to gauge bosons should be taken into account as well. Although this coupling is
usually suppressed at tree-level, the radiative corrections to this coupling can be numerically
relevant due to the presence of the heavy fermions/sfermions in the loop and thus should
be taken into account. The numerical results are analyzed in the benchmark scenarios sug-
gested in [114]. We also evaluate the results in the decoupling limit and compared with the
corresponding SM results.

5.1 Amplitudes for on-shell Higgs bosons

For processes with external Higgs bosons, the radiative corrections to the Higgs propagators
lead to finite wave function normalization factors for these external Higgs bosons. In order
to ensure the correct normalization of S-matrix element, these wave function normalization
factors have to be taken into account. In the most general case, the decay amplitude of a
Higgs boson can be written as

M =
√

Zi(Mi + ZijMj) , (5.1)

where Zi and Zij represent the wave function normalization factors, i, j denote the species
of Higgs bosons and i 6= j. From the discussion in the previous chapter, the factors Zi and
Zij are given by

Zi =
1

1 + ReΣ̂′
i(k

2) − Re

(

Σ̂2
ij

(k2)

k2−M2
j +Σ̂j(k2)

)′

∣

∣

∣

k2=M ′
i
2
,

Zij = − Σ̂ij(M
′
i
2)

M ′
i
2 −M2

j + Σ̂j(M
′
i
2)
, (5.2)

with M ′
i being the physical mass of the corresponding Higgs boson. These finite wave function

normalization factors, as well as the physical masses of the Higgs bosons can be computed by
the program package FeynHiggs [5], in which also the dominant two-loop corrections to the
Higgs boson self energies are taken into account. For the processes considered in this chapter,
the wave function normalization factors arising from the mixing between the two CP-even
Higgs bosons are required.

5.2 Incorporation of gauge boson width

Due to the upper bound of the lightest Higgs boson mass, one of the intermediate gauge
bosons in our decay processes can become resonant. We need to implement the width for
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the resonant gauge boson in order to avoid the occurrence of singularities when it approaches
on-shell. In this section the strategies to implement gauge boson width are briefly illustrated.
A short summary of the properties of unstable particles is given in Appendix C, more detailed
discussions can be found, e.g. in [115,116].

5.2.1 Schemes for gauge boson width implementation

For the processes considered in this chapter, the unstable particle involved is the W or Z
gauge boson. There are different schemes to implement the width of gauge bosons.

The simplest approach is the so-called fixed-width scheme, in which one replaces the gauge
boson propagator 1/(p2 −M2

V ) by 1/(p2 −M2
V + iMV ΓV ), namely one adds a constant width

term to the propagator. In this scheme the U(1) gauge invariance is respected, while the
SU(2)L gauge invariance is violated [117]. Moreover, the replacement introduces a finite
width also to space-like momenta p2 < 0, which is unphysical since the imaginary part of the
inverse propagator of gauge boson arises from fermionic loop contribution to its self energy
and should vanish for space-like momenta [118,119]. Such an unphysical width for space-like
momenta can be avoided by multiplying the constant width term with a step function θ(p2),
or more accurately, by using 1/(p2−M2

V + ip2ΓV /MV θ(p
2)) [118], i.e. taking into account the

energy dependence of the self energy as well. The latter corresponds to the running-width
scheme. This running-width scheme, however, violates the U(1) as well as the SU(2)L gauge
invariance.

Another possibility is based on the observation that the violation of gauge invariance is
caused by self energy diagrams, thus one can include the minimal set of Feynman diagrams
that is necessary to compensate the gauge violation. For gauge bosons, the lowest order
widths arise from the imaginary part of fermionic one-loop contribution to their self energies,
therefore one should include all other possible fermionic one-loop corrections to restore gauge
invariance. This leads to the fermion-loop scheme [117–120]. The selected fermionic con-
tributions form a gauge-independent subset and obey all Ward-identities exactly, even with
resummed propagators. Note that in the leading order computation, near the resonance the
inverse propagator of gauge boson behaves like iMV ΓV , which is already a one-loop effect.
Therefore for the calculation at the next-to-leading order, it is necessary to take into account
the next-to-leading order corrections to the width, which are two-loop effects. As fermion
loops only yield the lowest order width, this scheme is not applicable to the computation of
radiative corrections.

Alternatively one can choose the so-called pole scheme [121–127], in which the scattering
amplitude is expanded according to its pole structure. This expansion corresponds to a
systematic separation of orders in ΓV . For processes involving a single resonance, the lowest
order amplitude can be expanded as

M0,pole =
W0(p

2)

p2 −M2
V

∞
∑

n=0

( −Σ(p2)

p2 −M2
V

)n

+N0(p
2) , (5.3)

whereW0(p
2) represents the contribution of production and decay of the unstable particle. Its
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dependence on other kinematic variables is omitted here. N0(p
2) summarizes the contribution

of non-resonant diagrams that are regular when the unstable particle approaches on-shell. In
the first term a resummation of the geometric series is needed to avoid the occurrence of
singularity. The contribution of the first term can be divided into resonant and non-resonant
parts by isolating its pole structure after resumming the geometrical series, which yields

W0(p
2)

p2 −M2
V + Σ(p2)

=
W0(M

2)

p2 −M2

1

1 + Σ′(M2)
+ rem. , (5.4)

where M2 = M2
V − iMV ΓV is the pole position and defined by M2 − M2

V + Σ(M2) = 0,
rem. denotes the remaining non-resonant contribution, which will be combined with the
contribution of non-resonant diagrams N0(p

2). As the pole position can be extracted from
experimental data, it is a gauge invariant physical quantity. Therefore the residue at the pole
and the non-resonant remnant are separately gauge invariant as well since gauge cancellation
can not occur between terms with different pole structure. The finite width can then be
incorporated into the pole term without disturbing gauge invariance. The residue at the
pole can be evaluated by performing an expansion around the real mass squared M2

V . The
pole scheme can also be used to consistently evaluate the radiative corrections of resonant
processes in the region that is far beyond the production threshold of the unstable particle.
At one-loop level, one can decompose the scattering amplitude as

M1,pole =
W1(p

2)

p2 −M2
V

∞
∑

n=0

( −Σ(p2)

p2 −M2
V

)n

+ C1(p
2) +N1(p

2) , (5.5)

where the first term is an analogue of the first term in Eq. (5.3). It arises from the so-called
factorizable diagrams, in which the production and subsequent decay process of the unstable
particle can be factorized. W1(p

2) describes the correction to the production or decay of
the unstable particle. The second term summarizes the contribution of the non-factorizable
diagrams, in which the production and decay processes are linked by a massless particle, such
as a photon or gluon. These non-factorizable diagrams are not present at the lowest order.
The third term comes from the non-resonant diagrams. The expansion of the first term is
analogous to that in the lowest order and can be carried out as before, while the treatment
of the second term that results from the non-factorizable diagrams is more complicated since
it involves the divergent logarithm log(p2 −M2

V ) (or on-shell singularity), as well as the pole
term 1/(p2 −M2

V ). The logarithm log(p2 −M2
V ) arises when the momentum of the photon

that links the production and decay process goes to zero and thus is an infrared singularity. A
characteristic feature of the non-factorizable diagrams is that in the case of a single resonance,
they develop a linear singularity when the resonant particle goes on-shell and the exchanged
photon becomes soft. In the final result the divergent logarithm log(p2 − M2

V ) should be
replaced by log(p2−M2). This replacement does not spoil gauge invariance, as a consequence
of the fact that these logarithms arise only from scalar loop integrals, which are linearly
independent and associated with gauge invariant coefficients [123]. After separating the
full scattering amplitude into resonant and non-resonant parts and incorporating the width
in the resonant contributions only, a gauge invariant implementation of width is achieved.
The drawback of this scheme is that it is not reliable in the threshold region. Below the
threshold no resummation should be performed and one encounters the original divergence
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when approaching the threshold from below. When the threshold is approached from above,
terms of the order of ΓV /(distance from threshold) may appear and make the expansion
around the threshold unreliable [123].

The gauge boson width may also be elegantly incorporated by the complex mass scheme
[128]. In this scheme the gauge boson masses are taken as complex quantities defined by
the poles of the propagators. Gauge invariance is preserved in this scheme if one introduces
the complex gauge boson masses everywhere in the Feynman rules, in particular, also in
the definition of the weak mixing angle. This scheme has been successfully applied to the
evaluation of radiative corrections within the SM. However, the implementation of this scheme
would require independent mass parameters, which is clearly not the case in the MSSM, since,
for example, the CP-even Higgs boson masses depend on the gauge boson masses. Thus
applying the complex mass scheme to the MSSM can be problematic.

Finally one can incorporate the width according to the factorization scheme [129–131]. In
this scheme, for a single resonance, the lowest order amplitude receives a rescaling

M0,fact =
p2 −M2

V

p2 −M2
V + iMV ΓV

M0 =
p2 −M2

V

p2 −M2
V + iMV ΓV

(

R0(p
2)

p2 −M2
V

+N0(p
2)

)

, (5.6)

where M0 is the lowest order amplitude before Dyson resummation, and N0(p
2) denotes

the contribution of non-resonant diagrams. Gauge invariance is preserved by this rescaling,
but the non-resonant terms are not correctly treated in this scheme since they are simply
put to zero on the resonance. The resulting error is, however, of the order of O(ΓV /MV ).
Away from the resonance the rescaling also introduces an error of the order of O(ΓV /MV ).
Thus this prescription leads to a correct result to the leading order both on the resonance
and away from it, as long as the non-resonant contributions are not enhanced. At one-loop
level, one has to avoid the double-counting from the inclusion of width in the lowest order
amplitude. This can be done by subtracting the width term from the self energy correction
of the unstable particle, which gives

M1,fact =
p2 −M2

V

p2 −M2
V + iMV ΓV

(

M1 +
iMV ΓV

p2 −M2
V

M0

)

, (5.7)

where M1 denotes the one-loop amplitude before Dyson resummation. The rescaled am-
plitude is gauge invariant since the two terms on the right-hand side are separately gauge
invariant. As in the lowest order, the non-resonant contributions are treated incorrectly on
the resonance, but the corresponding error is again of higher order.

5.3 Lowest order results

We consider the process

h0(k1) →WW ∗/ZZ∗ → f1(k2) + f2(k3) + f3(k4) + f4(k5) , (5.8)

where the momenta of the particles are given in the parentheses, while the helicity indices
are omitted. The masses of the external light fermions are neglected whenever possible, i.e.
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we keep them only as regulators for collinear singularities that arise from collinear photon
emission off final state fermions. As already mentioned, only one of the intermediate gauge
bosons can become resonant due to the upper bound on the lightest Higgs boson mass. We
implement the width of the gauge boson according to the factorization scheme, which yields
a simple rescaling at the lowest order

Mborn =
k2

V −M2
V

k2
V −M2

V + iMV ΓV
Mborn(ΓV = 0) , (5.9)

where kV is the four-momentum of the resonant gauge boson. Mborn(ΓV = 0) denotes the
decay amplitude before Dyson resummation. To account for the numerically important Higgs
propagator corrections, we use the following effective Born amplitude

Mborn(ΓV = 0) =
√

Zh0(M0
h0(ΓV = 0) + Zh0H0M0

H0(ΓV = 0))

=
√

Zh0M0
h0(ΓV = 0)(1 + cot(β − α)Zh0H0) , (5.10)

where M0
h0(ΓV = 0) and M0

H0(ΓV = 0) denote the respective tree-level decay amplitude
of h0 and H0 before Dyson resummation, and the Z factors are defined in Eq.(5.2). In the
second row we have written the decay amplitude M0

H0 in terms of M0
h0. The lowest order

Feynman diagram including Higgs propagator corrections is shown in Fig. 5.1.

We start from the leptonic decay processes

h0(k1) →WW ∗ → e−(k2) + ν̄e(k3) + µ+(k4) + νµ(k5) (5.11)

and

h0(k1) → ZZ∗ → e−(k2) + e+(k3) + µ+(k4) + µ−(k5) . (5.12)

For the first process, the tree-level amplitude reads

M0
h0(ΓW = 0) =

2πα eMW sin(β − α)

s3W

1

k2
+ −M2

W

× 1

k2
− −M2

W

[ūe−(k2)γρω−vν̄e(k3)][ūνµ(k5)γ
ρω−vµ+(k4)] , (5.13)

and for the second

M0
h0(ΓZ = 0) =

πα eMW sin(β − α)

c4W s3W

1

k2
+ −M2

Z

1

k2
− −M2

Z

× [(−1 + 2s2W )ūe−(k2)γρω−ve+(k3) + 2s2W ūe−(k2)γρω+ve+(k3)]

× [(−1 + 2s2W )ūµ−(k5)γ
ρω−vµ+(k4) + 2s2W ūµ−(k5)γ

ρω+vµ+(k4)] , (5.14)

where we have introduced the variables k± with k+ = k2+k3, k− = k4+k5 and ω± = 1
2(1±γ5).

These decay amplitudes differ from their SM counterparts only by a factor of sin(β − α).

The lowest order partial decay width is then given by

Γborn =
1

2M ′
h0

∫

∑

pol

|Mborn|2dΦ , (5.15)
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Figure 5.1: Lowest order diagram with Higgs propagator corrections indicated by the bubble.

with M ′
h0 denoting the physical mass of the lightest Higgs boson, the squared matrix element

is summed over the final state polarizations and the phase space factor is given by

dΦ =

(

5
∏

i=2

d3ki

(2π)3 2k0
i

)

(2π)4δ(4)(k1 −
5
∑

i=2

ki) . (5.16)

5.4 Virtual corrections

The evaluation of virtual corrections involves several additional issues. As in the lowest
order amplitude, we use an effective one-loop amplitude to account for the wave function
normalization factors for the external Higgs boson. In the presence of the mixing between
Higgs bosons, the corrections to the coupling of H0 to gauge bosons from loops involving
fermions and sfermions, especially from those involving the third generation fermions and
sfermions may yield sizeable contributions, since they involve potentially large Yukawa cou-
plings, Yt, Yb, Yτ , and the couplings to down-type fermions/sfermions can be enhanced at
large tan β values. In addition, the photonic one-loop diagrams may contain not only soft
and collinear singularities, but also on-shell singularities. The soft singularities originate from
the diagrams with a virtual photon exchanged between two external charged particles, while
collinear singularities arise if a massless external particle splits into two massless internal
particles. On-shell singularities are closely related to the presence of resonant gauge boson
propagator in the loop and have to be cured by including the finite width of gauge boson. For
this purpose, the loop integrals that contribute to these on-shell singularities are computed
analytically. As before, the final state fermion masses are neglected whenever possible in the
evaluation of loop integrals. If the contribution of real photon emission processes is taken
into account, the infrared singularities will drop out.

According to the factorization scheme, at one-loop level the gauge boson width can be
incorporated as follows

Mloop =
k2

V −M2
V

k2
V −M2

V + iMV ΓV
Mloop(ΓV = 0) +

i ImΣT
V (M2

V )

k2
V −M2

V

Mborn
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=
k2

V −M2
V

k2
V −M2

V + iMV ΓV
Mloop,no r.s.(ΓV = 0)

−
(

ΣT
V (k2

V ) − ΣT
V (M2

V )

k2
V −M2

V

+ δZV

)

Mborn , (5.17)

where ΣT
V denotes the transverse part of vector boson self energy and δZV the corresponding

field renormalization constant. The Mloop,no r.s. term in the second row represents the one-
loop corrections excluding the self energy corrections to the resonant gauge boson. The term
involving the imaginary part of the vector boson self energy in the first line is required to
avoid the double-counting from the inclusion of finite width in the lowest order amplitude, it
is absorbed into the self energy corrections, yielding the last term in the above equation.

The effective amplitude Mloop(ΓV = 0) can be written as

Mloop(ΓV = 0) =
√

Zh0

(

M1
h0(ΓV = 0) + Zh0H0M1

H03rd(ΓV = 0)
)

, (5.18)

where the superscript 1 indicates the one-loop amplitude, and we include as well the correc-
tions to the coupling of H0 to gauge bosons from the third generation fermions and sfermions
M1

H03rd
, since they can potentially yield sizeable contributions. Note that only M1

h0 term
involves gauge boson self energy corrections, thus we can replace Mborn in Eq. (5.17) by

M′
born = Mborn|M0

H0
=0 (5.19)

without introducing any double-counting. The squared matrix element can be written as

|M|2 ≃ |Mborn|2 + 2Re(M∗
bornMloop) + |

√

Zh0Zh0H0M1
H03rd|

2 , (5.20)

where we also keep the square of M1
H03rd

term. Note that we can not simply include the
square of the complete one-loop amplitude, since the one-loop photonic diagrams involve
infrared singularities. In this work the Feynman diagrams are generated by the program
package FeynArts [132]. FormCalc [133] and LoopTools [133, 134] are then used to alge-
braically simplify the amplitudes and evaluate the one-loop integrals that do not involve
on-shell singularities.

In the following we describe in detail the computation of virtual corrections to the decay
processes given in Eqs. (5.11) and (5.12).

5.4.1 Virtual corrections to h0 → WW ∗ → 4l

The virtual corrections arise from the photonic, SM-like, genuine SUSY and counter term
diagrams. The photonic diagrams are the same as in the SM, examples of these diagrams
are shown in Fig. 5.2. Such photonic diagrams might contain infrared as well as on-shell
singularities. Note that the diagrams with a photon exchanged between the two intermediate
W bosons do not contribute to the on-shell singularities, due to the fact that only one of
these W bosons can be at resonance. The on-shell singularities have to be rendered finite by
incorporating the gauge boson width. In the factorization scheme, power counting tells us that
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only scalar integrals resulting from the virtual photonic diagrams can contribute to the on-
shell singularities. We will evaluate these scalar integrals analytically. The SM-like diagrams
consist of diagrams involving other SM particles and the MSSM Higgs bosons in the loop.
Examples of these diagrams are depicted in Fig. 5.3. In the decoupling limit MA0 ≫ MZ ,
the lightest MSSM Higgs boson behaves like a SM Higgs boson and all other heavy Higgs
boson decouple, thus the contribution of these diagrams will approach the corresponding
SM contribution. This fact can be used as a useful check on our computation. The loop
diagrams involving all other SUSY particles constitute the genuine SUSY diagrams, some
representative of them are shown in Fig. 5.4. The counter term diagrams are depicted in
Fig. 5.5.

The structure of the counter term contribution in the first four diagrams of Fig. 5.5 is as in
the SM (see ref. [101]), while the last diagram yields (see e.g. [135])

MCT
h0 = M0

h0

[

δZe + δZW +
1

2

δM2
W

M2
W

+
δsW

sW
+

cos(β − α)

sin(β − α)

(

cos2 βδ tan β

+
1

2
δZH0h0

)

+
1

2
δZh0h0

]

,

MCT
H0 = M0

H0

[

δZe + δZW +
1

2

δM2
W

M2
W

+
δsW

sW
+

sin(β − α)

cos(β − α)

(

− cos2 βδ tan β

+
1

2
δZh0H0

)

+
1

2
δZH0H0

]

(5.21)

with

M0
h0,H0 =

k2
V −M2

V

k2
V −M2

V + iMV ΓV
M0

h0,H0(ΓV = 0) . (5.22)

The Higgs field renormalization constants δZh0h0 , δZh0H0 , δZH0h0 , δZH0H0 and the counter
term δ tan β have been given by Eqs. (4.61), (4.62) and (4.63) in the previous chapter, the
remaining counter terms are determined in the on-shell scheme as [101]

δZe =
1

2
Σ′

γ(0) − sW

cW

ΣT
γZ(0)

M2
Z

,

δZW = −ReΣ′T
W (M2

W ) ,

δM2
W = ReΣT

W (M2
W ) ,

δM2
Z = ReΣT

Z(M2
Z) ,

δsW

sW
=

1

2

c2W
s2W

(
δM2

Z

M2
Z

− δM2
W

M2
W

) , (5.23)

where the prime indicates the derivative and the superscript T the transverse part of the
corresponding self energy.

In the photonic diagrams the on-shell singularities can arise if the exchanged photon be-
comes soft. Now we turn to the extraction of these singularities from the virtual photonic
contributions.
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Figure 5.2: Examples of photonic diagrams for the process h0 →WW ∗ → 4l.

On-shell singular virtual contributions

As previously mentioned, in the factorization scheme only scalar integrals resulting from
the photonic diagrams can contribute to the on-shell singularities. In this section we calculate
the relevant scalar integrals and extract from them the on-shell singular virtual contributions.
The final state fermion masses are neglected unless they have to be kept as regulators for the
collinear singularities. The scalar loop integrals are computed for zero gauge boson width.
A finite width is inserted afterwards wherever a singularity arises when the resonant gauge
boson approaches on-shell.

For the notation of the one-loop integrals, we follow the convention of [136]. The virtual
3-, 4- and 5-point functions are defined as follows

C0(p1, p2,m0,m1,m2) =
1

iπ2

∫

d4q
1

N0N1N2
,

D0,µ(p1, p2, p3,m0,m1,m2,m3) =
1

iπ2

∫

d4q
1, qµ

N0N1N2N3
, (5.24)
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Figure 5.3: Examples of SM-like diagrams for the process h0 →WW ∗ → 4l.

and

E0,µ(p1, p2, p3, p4,m0,m1,m2,m3,m4) =
1

iπ2

∫

d4q
1, qµ

N0N1N2N3N4
, (5.25)

where the denominators are given by

N0 = q2 −m2
0 + iǫ, Ni = (q + pi)

2 −m2
i + iǫ, i = 1...4 (5.26)

with the infinitesimal imaginary part iǫ (ǫ > 0).

The vector integrals can be decomposed in terms of the momenta appearing in the denom-
inators and coefficient functions, for example

Eµ =

4
∑

i=1

piµEi . (5.27)
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Figure 5.4: Examples of genuine SUSY diagrams for the process h0 → WW ∗ → 4l.

Our evaluation of on-shell singular scalar integrals is based on the observation that only
one of the intermediate gauge bosons can be resonant due to the upper bound of the mass of
h0. Therefore it is possible to make a decomposition of these scalar integrals by separating
from them the non-resonant gauge boson propagator. This decomposition leaves the on-shell
singular parts of the integrals intact but simplifies the extraction of such singularities from
these integrals. We now illustrate this procedure by computing the on-shell singular scalar
5-point integral.

Assuming the gauge boson with four-momentum k− is at resonance (the case that the other
gauge boson is resonant can be obtained by simple substitution with the help of the explicit
results for the integrals in Appendix B), the scalar 5-point integral arising from the photonic
pentagon diagram in Fig. 5.2 can be decomposed by separating the non-resonant gauge boson
propagator as follows (for convenience, we still use MV to label the gauge boson mass in the
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Figure 5.5: Counter term diagrams for the process h0 →WW ∗ → 4l.

integrals. It should be replaced by MW in the final result)

E0(−k2,−k+, k−, k4, λ,me,MV ,MV ,mµ)

=
1

iπ2

∫

d4q
1

(q2 − λ2)((q − k2)2 −m2
e)((q + k4)2 −m2

µ)((q − k+)2 −M2
V )((q + k−)2 −M2

V )

=
1

iπ2

1

k2
+ −M2

V

∫

d4q
1

(q2 − λ2)((q − k2)2 −m2
e)((q + k4)2 −m2

µ)((q + k−)2 −M2
V )

+
1

iπ2

1

k2
+ −M2

V

∫

d4q
−q2 + 2q · k+

q2((q − k2)2 −m2
e)((q + k4)2 −m2

µ)((q − k+)2 −M2
V )((q + k−)2 −M2

V )

=
1

k2
+ −M2

V

{

D0(−k2, k−, k4, λ,me,MV ,mµ) −D0(k2 + k4,−k3, k2 + k−,me,mµ,MV ,MV )

− S23E1(−k2,−k+, k−, k4, 0,me,MV ,MV ,mµ)

+ (S24 + S34)E2(−k2,−k+, k−, k4, 0,me,MV ,MV ,mµ)

− 2S23E3(−k2,−k+, k−, k4, 0,me,MV ,MV ,mµ)

+ (S24 + S25 + S34 + S35)E4(−k2,−k+, k−, k4, 0,me,MV ,MV ,mµ)
}

, (5.28)

where Sij = (ki+kj)
2. In this decomposition we have introduced a fictitious photon mass λ to

regularize the soft singularity. This is allowed since Ward identities are still preserved in the
presence of the photon mass. While the second scalar 4-point function in the curly bracket is
finite, the first one contains both the singular logarithm ln(k2

− −M2
V + iǫ) and the resonant

factor 1/(k2
− −M2

V ), as well as the soft singularities, as we will see from Eq. (5.29) below.
The coefficient functions Ei do not contain soft singularity. They may contain the singular
logarithm ln(k2

− −M2
V + iǫ), but not the resonant factor 1/(k2

− −M2
V ). Therefore it follows

from Eqs. (5.17), (5.28) and (5.29) that when the gauge boson approaches on-shell, only the
first scalar 4-point integral in Eq. (5.28) gives rise to a singular logarithm ln(k2

− −M2
V + iǫ).
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Consequently, to incorporate the width of gauge boson we only need to calculate this 4-point
integral instead of the original 5-point integral. The analytical result of this scalar 4-point
integral is worked out with the help of ref. [137,138] and listed as follows

D0(−k2, k−, k4, λ,me,MV ,mµ) =
1

S24(k2
− −M2

V )

{

− Li2

(

−S25 + k2
− −M2

V

S24

)

+ 2 ln

(

− S24

memµ − iǫ

)

ln

(

M2
V − k2

−
λMV

− iǫ

)

− ln2

(

mµ

MV

)

− ln2

(

M2
V − k2

− − S24 − S25

meMV
− iǫ

)

− π2

3

}

, (5.29)

where Li2(x) is the usual dilogarithm

Li2(x) = −
∫ x

0

dt

t
ln(1 − t) . (5.30)

The singular logarithm ln(k2
−−M2

V + iǫ) has to be replaced by ln(k2
− −M2

V + iMV ΓV ) in the
final result, as will be done later on for other scalar integrals involving this singular logarithm.
This replacement, as argued in previous sections, does not disturb gauge invariance.

The photonic box diagrams in Fig. 5.2 involve scalar 4-point integrals that might contribute
to the on-shell singularities. These integrals can be decomposed analogously by separating
the non-resonant gauge boson propagator, yielding

D0(−k4, k+,−k−, 0,mµ,MV ,MV )

=
1

k2
+ −M2

V

{

C0(−k4,−k−, 0,mµ,MV ) − C0(−k5, k4 + k+,mµ,MV ,MV )

+ (S24 + S34)D1(−k4, k+,−k−, 0,mµ,MV ,MV )

+ (S24 + S34 + S25 + S35)D2(−k4, k+,−k−, 0,mµ,MV ,MV )

− 2S23D3(−k4, k+,−k−, 0,mµ,MV ,MV )
}

,

D0(−k2, k−,−k+, 0,me,MV ,MV )

=
1

k2
+ −M2

V

{

C0(−k2, k−, 0,me,MV ) −C0(−k3, k2 + k−,me,MV ,MV )

− S23D1(−k2, k−,−k+, 0,me,MV ,MV ) − 2S23D2(−k2, k−,−k+, 0,me,MV ,MV )

+ (S24 + S34 + S25 + S35)D3(−k2, k−,−k+, 0,me,MV ,MV )
}

. (5.31)

These integrals do not involve soft singularities. Note that in our case, only one of these two
4-point integrals can yield on-shell singular contributions. Here we do not give the analytical
expressions for the on-shell singular scalar 3-point functions in Eq. (5.31), they are collected
in Appendix B. For the evaluation of other loop integrals, the general strategies have been
described, e.g. in [101,136,139–141].
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With these decompositions, the on-shell singular virtual contributions can be extracted
straightforwardly. Note that in the contribution of photonic box and pentagon diagrams
only scalar integrals contain soft singularities. Therefore the analytical results of these scalar
integrals can also be used to extract the soft singularities from virtual contributions and
allow us to analytically check their cancellation when combining with real corrections. The
soft and on-shell singular terms arising from the photonic box and pentagon diagrams can
be written in terms of the lowest order amplitude and a correction factor that contains these
singularities

Mh0
sing
b,p = M0

h0δ
sing
b,p = M0

h0

{

− α

2π

((S24 + S34)(k
2
− −M2

V )

k2
+ −M2

V

C0(−k4,−k−, 0,mµ,MV )

+ (S24 + S25)C0(−k2, k−, 0,me,MV )

+ S24(k
2
− −M2

V )D0(−k2, k−, k4, λ,me,MV ,mµ)
)}

. (5.32)

The photonic vertex and self energy diagrams also contribute to the soft and on-shell singu-
larities. These contributions originate from the field renormalization constants of the external
charged fermions, the photonic corrections to the Wff ′ vertex and the W boson self energy.
The field renormalization constants of W boson give rise to soft singular contributions as
well. However, they only appear in intermediate stages and cancel out in the full matrix
element. Owing to the presence of one additional resonant propagator, the photonic self
energy insertion gives rise to a correction factor to the lowest order amplitude of the form
B0(k

2
−, 0,MV )/(k2

− −M2
V ). After the W boson mass renormalization the correction factor is

modified to be proportional to

B0(k
2
−, 0,MV ) −B0(M

2
V , 0,MV )

k2
− −M2

V

= − 1

k2
−

ln

(

1 − k2
−

M2
V

− iǫ

)

, (5.33)

which is clearly on-shell singular and has to be regularized by the width of W boson. The
photonic vertex correction gives rise to a correction factor involving the on-shell singular
scalar 3-point integral. Putting all these together, one finds the following correction factor
that contains the soft and on-shell singularities from the photonic vertex and self energy
diagrams

Mh0
sing
v,s = M0

h0δ
sing
v,s = M0

h0

{ α

2π

(

k2
+C0(−k2,−k+, 0,me,MV )

+ k2
−C0(−k4,−k−, 0,mµ,MV )

)

+
1

2
(δZL

e + δZL
µ )IR

− α

4π

5k2
− −M2

V

k2
−

ln

(

1 − k2
−

M2
V

− iǫ

)

}

, (5.34)

where the subscript IR denotes the infrared singular part of the field renormalization costants,
whose expression can be found, e.g. in [101]. As before, the width of W boson should be
included in the on-shell singular logarithms. The correction factors defined in Eq. (5.32)
and (5.34) include all the soft singularities from virtual one-loop diagrams. The collinear
singularities, however, are not fully contained in these correction factors, since the tensor
integrals that are not accounted for in these factors, contain collinear singularities as well.
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In the case that the other gauge boson becomes resonant, the correction factor resulting
from the box and pentagon diagrams becomes

Mh0
sing
b,p = M0

h0δ
sing
b,p = M0

h0

{

− α

2π

((S24 + S25)(k
2
+ −M2

V )

k2
− −M2

V

C0(−k2,−k+, 0,me,MV )

+ (S24 + S34)C0(−k4, k+, 0,mµ,MV )

+ S24(k
2
+ −M2

V )D0(−k2,−k+, k4, λ,me,MV ,mµ)
)}

. (5.35)

The correction factor from the self energy and vertex diagrams can be obtained from Eq.
(5.34) by replacing k2

− with k2
+ in the last term.

Now we are able to extract the on-shell singular virtual contributions from Eqs. (5.32),
(5.34) and the results of the scalar integrals in Appendix B. This gives rise to the following
correction factor after incorporating the width of the resonant gauge boson

Mh0on−shell,sing = M0
h0

α

2π

{

ln
( k2

−
M2

V

)

+ ln
(S24 + S25

S24

)2
− 5k2

− −M2
V

2k2
−

}

× ln
(

1 − k2
−

M2
V

− i
ΓV

MV

)

. (5.36)

In the case that the other gauge boson becomes resonant, the correction factor describing
on-shell singular virtual contributions can be obtained by making the following replacement
in the above equation

S25 → S34, k2
− → k2

+ . (5.37)

Soft and collinear singular virtual contributions

For the investigated process the photonic diagrams do not build a gauge invariant sub-
set by themselves and their contributions are UV divergent. However, one can extract the
infrared singularities and on-shell logarithms from them and combine with the real pho-
ton bremsstrahlung to build the QED-like corrections. The soft and collinear singular con-
tributions from the virtual corrections can be extracted by making use of the well-known
Kinoshita-Lee-Nauenberg (KLN) theorem [142], according to which the soft and collinear
singularities are canceled out between the real and virtual corrections for sufficiently inclu-
sive quantities. In the decay of h0 to leptons, there is no initial state radiation of photons.
The singular parts of the virtual corrections are exactly given by the singularities in the final
state photon bremsstrahlung, but with opposite sign, which can be computed, e.g. with the
dipole subtraction approach [143–146]. Following [146], the soft and collinear singular parts
of the virtual contributions can be defined as

dΓvirt,sing = dΓborn
α

2π

5
∑

i=2

5
∑

j=i+1

QiQj

(

L(Sij,m
2
i ) + L(Sij,m

2
j ) −

2π2

3
+ 3
)

, (5.38)
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where dΓborn is the lowest order decay width, Qi denote the charge of final state fermions,
and the function L(Sij ,m

2
i ) is given by

L(Sij,m
2
i ) = ln

(m2
i

Sij

)

ln
( λ2

Sij

)

+ ln
( λ2

Sij

)

− 1

2
ln2
(m2

i

Sij

)

+
1

2
ln
(m2

i

Sij

)

, (5.39)

Note that when computing these contributions, the soft and collinear singular parts that
arise from the virtual photonic corrections to the mixed tree-level amplitude, i.e. to the
second term in Eq. (5.10) should be excluded, since they are not included in Eq. (5.20). The
definition of the soft and collinear singular virtual contribution is, of course, not unique, since
finite terms can be redistributed between the singular and finite contributions. An alternative
definition has been used in [147]. It differs from the definition used here only by finite terms.

The IR singular and on-shell singular virtual contributions combined with the contribution
of real bremsstrahlung yield the QED-like correction. As previously mentioned, the soft
singularities from photonic virtual diagrams are included in the correction factors δsin

b,p and

δsin
v,s defined in Eqs. (5.32) and (5.34), subtracting from them the virtual singular factor in

Eq. (5.38) (note that one has to take twice of the real part of the correction factor in (5.32)
and (5.34)), the remnant must be free of soft singularities. This provides an analytic check
on the cancellation of soft singularities. The cancellation of collinear singularities is, however,
checked numerically since the collinear singularities appear not only in scalar integrals but
also in tensor ones. The contribution of the latter is not accounted for in these correction
factors.

5.4.2 Virtual corrections to h0 → ZZ∗ → 4l

The computation of virtual corrections to the decay of h0 to four leptons via a Z boson
pair can be carried out analogously. Consider the process

h0(k1) → ZZ∗ → e−(k2) + e+(k3) + µ+(k4) + µ−(k5) , (5.40)

where we define k+ = k2 + k3 and k− = k4 + k5 as before. The virtual one-loop diagrams can
be classified as for the process h0 →WW ∗ → 4l, and the h0ZZ/H0ZZ counter term contri-
butions can be easily obtained from Eq. (5.21) by simple replacements: δZW → δZZ ,

δsW

sW
→

δsW

sW

(

1 − 2
s2
W

c2
W

)

, while the structure of the other counter terms is as in the SM [101]. In

Fig. 5.6 we depict only the photonic diagrams that contribute to the on-shell singularities.
In this decay process, the intermediate gauge bosons are neutral, thus only pentagon dia-
grams with a photon exchanged between two external charged fermions can contribute to the
on-shell singularities. The scalar 5-point integrals can again be decomposed by separating
the non-resonant gauge boson propagator. Here we give explicitly the correction factor re-
sulting from the photonic pentagon diagrams that contains the soft and on-shell singularities
(assuming the gauge boson with four-momentum k− is at resonance)

δsing
p = − α

2π

{[

− Li2

(

− S25 + k2
− −M2

V

S24

)

+ 2 ln
(

− S24

memµ
− iǫ

)

ln
(M2

V − k2
−

λMV
− iǫ

)
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− ln2
(mµ

MV

)

− ln2
(M2

V − k2
− − S24 − S25

meMV
− iǫ

)

− π2

3

]

+ (2 ↔ 3, 4 ↔ 5) − (2 ↔ 3) − (4 ↔ 5)
}

, (5.41)

where the expressions in the parentheses are obtained from that in the squared bracket by
interchange of indices. In the case that the other gauge boson is resonant, the correction
factor reads

δsing
p = − α

2π

{[

− Li2

(

− S34 + k2
+ −M2

V

S24

)

+ 2 ln
(

− S24

memµ
− iǫ

)

ln
(M2

V − k2
+

λMV
− iǫ

)

− ln2
( me

MV

)

− ln2
(M2

V − k2
+ − S24 − S34

mµMV
− iǫ

)

− π2

3

]

+ (2 ↔ 3, 4 ↔ 5) − (2 ↔ 3) − (4 ↔ 5)
}

. (5.42)

As before, M2
V should be replaced byM2

V −iMV ΓV in the on-shell singular logarithm. The on-
shell singular virtual contributions can be easily extracted from these correction factors. The
photonic corrections to the Zff̄ vertex and the field renormalization constants of the external
charged fermions contribute to the soft singularities, but not to the on-shell singularities.
There is no contribution to these singularities from Z boson self energy corrections.

5.4.3 Application to semileptonic and hadronic final states

In the discussions above, we only consider the decay of h0 to leptonic final states. The
procedure used there can, in principle, be applied to semileptonic and hadronic final states as
well. For semileptonic and hadronic final states, the number of photonic diagrams involving
on-shell singularities may increase, but their evaluation can be carried out in complete analogy
to what we did for leptonic final state. With simple substitution of momenta and mass
parameters, the analytical results for the scalar integrals in Appendix B can still be used
to extract the on-shell singularities from the virtual contributions. The soft and collinear
singular virtual contributions are again given by Eq. (5.38). The only possible exception in
which the procedure used for our computation can not be straightforwardly applied is that the
final state involves heavy down-type fermions, e.g. b quarks. Note that in our computation
we keep the final state fermion masses only as regulators for collinear singularities and neglect
them elsewhere. If the final state involves b quarks, we can not neglect their masses, since
their coupling to Higgs bosons can be enhanced at large tanβ and give rise to numerically
important effects.

5.5 Real corrections

As can be seen from the computation of virtual corrections, the exchange of a virtual
photon between two external charged particles leads to IR divergences. In order to achieve
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Figure 5.6: Photonic diagrams that contribute to the on-shell singularities.

an IR finite physical result, the combination with real photon emission process is required,
as a consequence of the fact that the experimental resolution of soft photons is limited. The
KLN theorem guarantees that the IR singularities from virtual and real corrections cancel
with each other in physical observables.

We consider the following bremsstrahlung processes

h0(k1) → e−(k2) + ν̄e(k3) + µ+(k4) + νµ(k5) + γ(k6) (5.43)

and

h0(k1) → e−(k2) + e+(k3) + µ+(k4) + µ−(k5) + γ(k6) . (5.44)

In the evaluation of hard bremsstrahlung contribution a constant width is introduced in each
gauge boson propagator. As previously mentioned, not all intermediate gauge bosons are
resonant. For the propagator that is not resonant, the corresponding error is of higher order
and negligible.

The contribution of the real photon bremsstrahlung to the partial decay width can be
written as

Γγ =
1

2M ′
h0

∫

∑

pol

|Mγ |2 dΦγ (5.45)

with the squared matrix element |Mγ |2 summed over the final state polarizations and the
phase space factor

dΦγ =

(

6
∏

i=2

d3ki

(2π)3 2k0
i

)

(2π)4δ(4)(k1 −
6
∑

i=2

ki) . (5.46)
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As in the evaluation of virtual corrections, the masses of light fermions are consistently
neglected unless they have to be kept as regulators. Soft and collinear real photon emission
give rise to singularities, which are regularized by the photon mass λ and the fermion massmf ,
respectively. These soft and collinear singularities are treated within two different approaches,
which will be discussed below.

5.5.1 Treatment of soft and collinear photon emission

In this section we describe the methods used to treat the soft and collinear photon emission,
i.e. the phase space slicing and the dipole subtraction approach. In the former approach one
needs to impose cut-offs on the photon energy and the emission angle, while in the latter
no cut-off is needed. Another advantage of the subtraction method is that the integration
error within this method is much (typically one order of magnitude) smaller than that of the
slicing method.

Phase space slicing

For the real photon bremsstrahlung the phase space integral diverges in certain regions.
One can divide the phase space into singular and non-singular regions. In the non-singular
region the integral is finite and can be evaluated numerically without regulators. In the
singular region the integral has to be evaluated analytically with regulators. The singular
region consists of the soft region, where the photon energy is smaller than a given cutoff ∆E;
and the collinear region, in which the photon is emitted collinearly (but not soft) to a charged
fermion, namely the angle between the emitted photon and the charged fermion is smaller
than an angular cutoff ∆θ. The real correction can be decomposed as follows

dΓh0→4fγ = dΓsoft + dΓcoll + dΓh0→4fγ
finite . (5.47)

In the soft and collinear regions, the squared matrix element |Mh0→4lγ |2 factorizes into the
lowest order squared matrix element |Mh0→4l|2 and a universal soft or collinear factor. The
five particle phase space also factorizes into four particle phase space and a photon part,
so that the photon momentum can be integrated over analytically. In the soft region, the
soft photon approximation can be applied, in which the photon 4-momentum is omitted
everywhere except in the IR singular propagators. Then one obtains [101]

dΓsoft = dΓborn
α

4π2

5
∑

i=2

5
∑

j=i+1

QiQj

∫

Eγ<∆E

d3k

Eγ

(

qµ
i

kqi
−

qµ
j

kqj

)2

= dΓborn
α

2π

5
∑

i=2

5
∑

j=i+1

QiQj[Iii + Ijj − 2Iij ] , (5.48)

where the basic integrals are given by [101,139]

Iij =
1

2π

∫

Eγ<∆E

d2k

Eγ

qiqj
(kqi)(kqj)

. (5.49)
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As mentioned before, we keep the fermion masses only as regulators for the collinear singu-
larities. Consequently, the soft photon correction factor can be written as [146]

dΓsoft = dΓborn
α

π

5
∑

i=2

5
∑

j=i+1

QiQj

{

2 ln
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2∆E

λ

)[
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(

Sij

mimj

)]
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4k0
i k

0
j
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)

+ ln2

(

2k0
i
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)

+ ln2
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2k0
j
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)

+
π2

3
+ Li2

(

1 −
4k0

i k
0
j

Sij

)}

, (5.50)

where Sij are defined as before, k0
i and mi denote the energy and mass of the final state

fermions.

In the collinear region, the squared matrix element and the phase space also factorize as
in the soft region, and the collinear factor that describes the collinear final state radiation is
given by

dΓcoll = dΓborn
α

2π

5
∑

i=2

Q2
i

{

[

3

2
+ 2 ln

(

∆E

k0
i

)][

1 − 2 ln

(

∆θk0
i

mi

)]

+ 3 − 2π2

3

}

, (5.51)

where the cutoff parameters ∆E and ∆θ should be chosen sufficiently small so that the soft
photon and leading-pole approximations apply. On the other hand, they should not be too
small so that the instabilities of numerical integration can be avoided. Also note that this
result assumes that a photon emitted collinearly to a charged fermion is treated inclusively,
namely it is combined to the emitting charged fermion. As a result, all dependence on the
photon and fermion masses will drop out in the final result. If the collinearly emitted photon
is not treated inclusively, for example, in the evaluation of distributions of final state muons,
then in the collinear region one has

dΓcoll =

5
∑

i=2

α

2π
Q2

i dΓborn(k̃i)

∫ 1−∆E

k̃0
i

0
dzi

{

pff (zi)

[

2 ln

(

∆θk̃0
i

mi
zi

)

− 1

]

+ (1 − zi)

}

Θ(zi) (5.52)

with zi = k0
i /k̃

0
i and the splitting function

Pff (zi) =
1 + z2

i

1 − zi
. (5.53)

Here k̃0
i and k0

i denote the energy of the charged fermion before and after emitting the collinear
photon, the function Θ(zi) summarizes the phase space cuts. The integration over zi in Eq.
(5.52) is constrained by the phase space cuts Θ(zi) and cannot be performed analytically.
Consequently the fermion mass singularities are not fully canceled in the combination of
virtual and real corrections and thus become visible. If the photon is treated inclusively, the
integration over zi will not be constrained by any phase space cut, and thus can be performed
analytically, leading to Eq. (5.51).
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Dipole subtraction

In this approach [143–145] one constructs an auxiliary function which contains the same
singularities as the real bremsstrahlung integrand. Subtracting this auxiliary function from
the bremsstrahlung integrand thus cancels all soft and collinear singularities and the difference
can be integrated numerically, even in the singular region. In this numerical integration
no regulators are needed for the soft and collinear singularities. The auxiliary function
can then be integrated analytically (regulators are required) and readded to the original
integral. Within the subtraction method there is no singular contribution involved in the
numerical integration. Hence for computations within this method, the statistical uncertainty
is smaller than that of the slicing method, in which the singular contributions are present in
the numerical integration. The auxiliary function must possess the same asymptotic behavior
as the original integrand in the soft and collinear limit, and has to be simple enough to be
integrated over the singular regions analytically. In our case, soft and collinear singularities
occur only in the final state. As the masses of the final state light fermions can be consistently
neglected, the expression of the auxiliary function is fairly simple [144]

|Msub(Φ4fγ)|2 = −
5
∑

i,j=2

i6=j

QiQj g
sub
ij (ki, kj , k)|Mborn(Φ̃4f,ij)|2 , (5.54)

where ki and k denote the respective momenta of final state fermions and photon, and the
functions gsub

ij contain the soft and collinear singularities

gsub
ij (ki, kj , k) =

1

(kik)(1 − yij)

[ 2

1 − zij(1 − yij)
− 1 − zij

]

(5.55)

with the variables

yij =
kik

kikj + kik + kjk
, zij =

kikj

kikj + kjk
. (5.56)

The mapping between the phase space of the radiative and non-radiative process, Φ4fγ and
Φ̃4f , is defined as

k̃µ
i = kµ

i + kµ − yij

1 − yij
kµ

j , k̃µ
j =

1

1 − yij
kµ

j (5.57)

with all other momenta unchanged. The contribution of the auxiliary function should be
computed analytically. After integrating over the photon momentum the result reads

∫

dΦ4fγ |Msub(Φ4fγ)|2 = − α

2π

5
∑

i,j=2

i6=j

QiQj

∫

dΦ̃4f,ij G
sub
ij (Sij)|Mborn(Φ̃4f,ij)|2 (5.58)

with the function

Gsub
ij (Sij) = L(Sij ,m

2
i ) −

π2

3
+

3

2
, (5.59)

where L(Sij,m
2
i ) has been defined in Eq. (5.39).
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5.6 Higher order final state radiation

The emission of photons collinear to the charged fermions leads to corrections enhanced
by large logarithms involving the fermion masses. These logarithms will cancel out if the
collinearly emitted photon is treated inclusively, i.e. if it is combined with the emitting
charged fermion. If this is not the case, for instance, in the evaluation of distributions of
muons in the final state, this logarithm will survive and give rise to sizeable effects. Therefore
one should take into account the corresponding higher order corrections. This can be done by
the structure-function method [125,148] based on the mass factorization theorem, according
to which the decay width with leading logarithmic final state radiation can be written as

∫

dΓLL = Πi,Qi 6=0

∫ 1

0
dziΓ

LL

ii (zi, Q
2)

∫

dΓbornΘ(zi) , (5.60)

where zi is again the energy fraction of the charged fermion after and before the collinear
photon emission, and Q is the relevant energy scale in the process, which can be taken as
the physical mass of the lightest CP-even Higgs boson mass M ′

h0 in our case. The leading
logarithmic structure function including terms up to O(α3) is given by [125]
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, (5.61)

where γE and Γ(x) are the Euler constant and the Gamma function, the function βi is given
by

βi =
2α

π

[

ln

(

Q2

m2
i

)

− 1

]

. (5.62)

For practical calculations, one can expand the structure function ΓLL

ii in terms of βi and keep
terms up to O(α3). When adding the contribution in Eq. (5.60) to the one-loop result, the
lowest order and one-loop contributions dΓLL,1 should be subtracted, since they are already
contained in our results

∫

dΓLL,1 =

∫

dΓborn +
∑

i,Qi 6=0

∫ 1

0
dziΓ

LL,1
ii (zi, Q

2)

∫

dΓbornΘ(zi) , (5.63)
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where the one-loop contribution to the structure function ΓLL,1
ii reads

ΓLL,1
ii (zi, Q

2) =
βi

4

(

1 + z2
i

1 − zi

)

+

(5.64)

with the following +-prescription

∫ 1

0
dx f(x) g(x)+ =

∫ 1

0
dx (f(x) − f(1))g(x) , (5.65)

or equivalently

g(x)+ = lim
ǫ→0

[

θ(1 − x− ǫ)g(x) − δ(1 − x− ǫ)

∫ 1−ǫ

0
g(y)d(y)
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. (5.66)

This yields

ΓLL,1
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2
+ 2 ln ǫ

)

+ θ(1 − zi − ǫ)
1 + z2

i

1 − zi

]

, (5.67)

where ǫ is a regulator for the otherwise divergent numerical integration, the dependence on
which will drop out in the final result.

5.7 Numerical results

In this section we discuss the numerical results. Before that we briefly summarize the
strategies for the computation of electroweak radiative corrections to our decay processes. In
the evaluation of virtual corrections, the gauge boson width is incorporated via the factoriza-
tion scheme, in which we separate the gauge boson self energy diagrams from other virtual
diagrams and treat them differently in order to avoid the double counting from the inclusion
of gauge boson width in the lowest order matrix element. If the intermediate gauge boson
is charged, the contribution of photonic self energy diagrams diverges when the gauge boson
approaches on-shell. To render it finite, we have to include the gauge boson width. This is
done by computing analytically the scalar two-point integrals that contribute to these on-
shell singularities and replace afterwards the real gauge boson mass in the singular terms by a
complex one. Due to the upper bound of the lightest CP-even Higgs boson mass, only one of
the intermediate gauge bosons can be resonant. Power counting tells that in the factorization
scheme only scalar integrals potentially contribute to the on-shell singularities. The evalu-
ation of scalar 4- and 5-point integrals are simplified by extracting the non-resonant gauge
boson propagator from the integrals. In this way only analytical expressions for the resulting
singular scalar 3- and 4-point integrals are required. For the evaluation of real corrections, we
use two different approaches, i.e. the phase space slicing and the dipole subtraction approach.
With the help of these methods we are able to extract the soft singularities from the real
corrections and check analytically their cancellation with their counterparts in the virtual
corrections. The extraction of collinear singularities from the real corrections is straightfor-
ward. However, in the virtual corrections they occur not only in scalar loop integrals, but
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also in tensor ones, whose analytical evaluation is rather involved. Therefore we check the
cancellation of collinear singularities numerically by varying the masses of light fermions in
the final state, which act as regulators for collinear singularities. If the collinearly emitted
photons are not combined to the emitting fermions, the large logarithms involving final state
fermion masses can survive and become visible. In this case we also include the corrections
resulting from the higher order final state radiation.

For the numerical evaluation, the following inputs for the SM parameters are used [9,149]

Gµ = 1.16637 × 10−5GeV−2 , α = 1/137.03599968 ,

MW = 80.403GeV , ΓW = 2.141GeV ,

MZ = 91.1876GeV , ΓZ = 2.4952GeV ,

Mt = 172.7GeV , Mb = 4.2GeV .

The lowest order matrix element is parametrized in such a way that it absorbs the running
of the electromagnetic coupling and the leading universal corrections to the ρ parameter, i.e.
we use the effective coupling derived from the Fermi constant

αGµ =

√
2GµM

2
W s2W

π
(5.68)

for the Born amplitude. In the relative O(α) corrections, we use the coupling α = α(0), which
is an appropriate choice for the real photon emission. In order to avoid double-counting from
using αGµ in the lowest order amplitude, the charge renormalization constant in Eq. (5.23)
is modified to

δZ̃e = δZe −
1

2
∆r , (5.69)

where ∆r summarizes the radiative corrections to the muon decay. In the evaluation of
distributions, a real photon closer than 5 degrees to a charged fermion or with energy less
than 1GeV is combined with the charged fermion in the inclusive treatment.

As previously discussed, the Higgs field renormalization constants and the counter term
δ tan β are determined in the DR scheme. We choose the renormalization scale as µDR =
1.5MW , which is the scale of the physical mass of the lightest CP-even Higgs boson for
moderate values of tanβ and MA0.

From the discussions in the previous chapter, there are a large number of free parameters
in the MSSM, most of which arise from the soft supersymmetry breaking Lagrangian. The
complete scan over the MSSM parameter space is thus a formidable task. In our numerical
analysis we investigate the results in several suggested benchmark scenarios [114,150], which
are defined so that the two parameters that govern the tree-level Higgs sector, MA0 and
tan β, are varied while the other parameters that enter via radiative corrections are fixed.
In these scenarios a common soft supersymmetry breaking parameter MSUSY, as well as the
same trilinear coupling for the third generation slepton and squark, is chosen for simplicity.
The U(1) gaugino mass parameter is given by the GUT relation

M1 =
5

3

s2W
c2W

M2 . (5.70)
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The experimental mass exclusion limits from direct search of supersymmetric particles and
the upper bound on the SUSY corrections to the electroweak ρ parameter [9] have been
taken into account throughout the parameter scan. In the region that we are interested, the
bound derived from the BR(B → Xsγ) prediction has ruled out the gluophobic scenario [151],
therefore we will not discuss this scenario here. The investigated scenarios are listed below :

1. The mmax
h scenario

This scenario yields a maximal value of the lightest CP-even Higgs boson as a function of
tan β for fixed top quark mass and common soft supersymmetry breaking scale MSUSY. The
parameters are given by

mt = 172.7GeV , MSUSY = 1TeV , µ = 200GeV , M2 = 200GeV ,

Xt = 2MSUSY , Ab = At = Aτ , mg̃ = 0.8MSUSY . (5.71)

where Xt is the mixing parameter of the top squark sector and mg̃ is the gluino mass.

2. The no-mixing scenario
This scenario differs from the mmax

h scenario by the vanishing mixing in the scalar top sector
and a higher SUSY mass scale, which is chosen to avoid the exclusion bounds from the LEP
Higgs searches [10,152]. The parameters in this scenario read

mt = 172.7GeV , MSUSY = 2TeV , µ = 200GeV , M2 = 200GeV ,

Xt = 0 , Ab = At = Aτ , mg̃ = 0.8MSUSY . (5.72)

3. The small-αeff scenario
In this scenario the higher order MSSM corrections can lead to a significant suppression of
the h0bb̄ coupling and give rise to an enhancement of BR(h0 →WW ∗). The parameters are

mt = 172.7GeV , MSUSY = 800GeV , µ = 2.5MSUSY , M2 = 500GeV ,

Xt = −1100GeV , Ab = At = Aτ , mg̃ = 500GeV . (5.73)

For the decay process h0 → WW ∗ → e−ν̄eµ
+νµ, the contribution of photonic one-loop

diagrams are UV divergent. Extracting the infrared and on-shell singular contributions from
these diagrams and combining with the contribution of real photon emission yields the QED-
like correction to the partial decay width, which is both UV and IR finite. It is independent
of the cutoff parameters ∆E, ∆θ within the phase space slicing approach. This is illustrated
in Fig. 5.7, where we show the relative size of the QED-like corrections

δ =
Γcorr − Γborn

Γborn
(5.74)

for tan β = 25, MA0 = 500GeV in the mmax
h scenario. Γcorr denotes the partial decay width

corrected by the QED-like contributions. The results of phase space slicing method is correct
up to O(∆E/

√
S) or O(∆θ). For small cutoff parameters, terms of these orders are negligible

and the result is independent of the cutoffs. For large cutoff parameters, such terms become
relevant and their effects become visible.
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Figure 5.7: Cutoff dependence of the QED-like corrections to the decay h0 → e−ν̄eµ
+νµ for

the mmax
h scenario with tan β = 25, M0

A = 500GeV in the phase space slicing approach.
The left plot shows the dependence on the angular cutoff ∆θ (with ∆E/

√
S = 0.001), while

the dependence on the energy cutoff of soft photon is shown in the right plot (with ∆θ =
0.001 rad).

slicing
subtractionδ[%]

∆E/
√

S = 0.001

∆θ
0.10.010.0011e-04

1

0.5

0

−0.5

−1

−1.5

−2

slicing
subtractionδ[%]

∆θ = 0.001 rad

∆E/
√

S
0.10.010.0011e-04

1.5

1

0.5

0

−0.5

−1

−1.5

Figure 5.8: Comparison of the QED-like corrections to the decay h0 → e−ν̄eµ
+νµ for the

mmax
h scenario with tan β = 25, M0

A = 500GeV in the phase space slicing and dipole sub-
traction approach.



76CHAPTER 5. ELECTROWEAK CORRECTIONS TOH0 →WW ∗/ZZ∗ → 4FERMIONS

For comparison purpose, the results computed within the slicing and the subtraction ap-
proach are shown in Fig. 5.8. From the plots one can find an agreement between the results of
the two approaches, and that the subtraction approach yields smaller integration errors than
the slicing method. In addition, the integration error within the slicing approach increases
when the value of the cutoff parameter decreases, since the original IR singularity will appear
if the cutoff parameter goes to zero.

In our decay processes, only SM particles are involved in the final state. It is interesting
to compare the SM and the MSSM predictions for the partial decay widths. As discussed
previously, in the limit that the mass parameter MA0 is much larger than the electroweak
scale, all the heavy Higgs bosons will decouple and the contribution from loop diagrams
involving the SM particles and Higgs bosons will approach the SM prediction for a Higgs
boson with the same mass. In order to compare the partial decay width of h0 to four leptons
in this limiting case with the SM result, we also perform the computation with the SM
input parameters defined in [112], and choose the SUSY parameters MSUSY, µ and M2 to be
MSUSY = µ = M2 = MA0 , so that the supersymmetric particles decouple when MA0 becomes
large. The remaining parameters are chosen as in the mmax

h scenario. In Fig. 5.9 we show
the one-loop corrected partial decay width of h0 to four leptons excluding the contribution
of genuine SUSY diagrams as a function of MA0 . In the limiting case that MA0 gets large
(MA0 > 1.5TeV), the SM results for the partial decay width in [112] are reproduced. However,
in [112] the distributions are evaluated for a Higgs boson with mass beyond the upper mass
bound of h0, thus a comparison of distributions is not possible.

If the generic mass scale of SUSY particles MSUSY is not much larger than the electroweak
scale, these genuine SUSY particles do not decouple even in the limiting case thatMA0 ≫MZ .
To investigate their numerical effects, we compare the one-loop corrected partial decay width
of h0 including/excluding these genuine SUSY loop contributions. In Fig. 5.10 the lowest
order and corrected partial decay widths of h0 to four leptons are depicted for MSUSY = µ =
M2 = MA0 , with the remaining parameters chosen as in the mmax

h scenario. The numerically
most important one-loop corrections have been incorporated into the lowest order result by
using the effective amplitude and the Gµ scheme. For the decay h0 → e−ν̄eµ

+νµ, the relative
loop corrections vary between −2.5% and −2% for tan β = 5, while vary between −2% and
−1.5% for tan β = 29. For the process h0 → e−e+µ+µ−, the relative corrections change from
−3% to −2% and from −4% to −3% for tanβ = 5 and 29, respectively. As can be seen from
the plots, for both processes, at large MA0 the blue curve that includes the genuine SUSY
loop contributions and the red curve that does not are almost indistinguishable from each
other, which indicates that the effects of the genuine SUSY loop contributions are negligible
in the large MA0 limit. In Fig. 5.11 we choose a relatively small value 300GeV for MSUSY, all
other parameters are chosen as in the mmax

h scenario, so that the genuine SUSY spectrum is
not too heavy. The relative corrections vary from −2.5% to −1.5% and from −3% to −1%
for tanβ = 5 and 29, respectively. However, the genuine SUSY loop contributions again yield
negligible effects in the large MA0 limit (while for small value of MA0 , their contributions can
reach several percent). This implies that in our case the decoupling behavior is essentially
dominated by the mass parameter MA0 . Thus it is rather difficult to distinguish the lightest
MSSM Higgs boson from the SM Higgs boson in the limit thatMA0 gets large, even if one-loop
corrections are taken into account.
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Figure 5.9: Corrected partial decay width of h0 excluding the genuine SUSY one-loop con-
tribution as a function of MA0 , with MSUSY = µ = M2 = MA0 and tanβ = 6. All other
parameters are chosen as in the mmax

h scenario.
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Figure 5.10: Partial decay width of h0 as a function of MA0 , with MSUSY = µ = M2 = MA0

and tan β = 5, 29. All other parameters are chosen as in the mmax
h scenario. The dashed

line denotes the tree-level result. The blue line shows the width with full MSSM corrections,
including the genuine SUSY loop contributions, which are not included in the red line.
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Figure 5.11: Partial decay width of h0 as a function of MA0 , with MSUSY = 300GeV and
tan β = 5, 29. All other parameters are chosen as in the mmax

h scenario. The right plot shows
the effects of the genuine SUSY contributions.

A generic scan over the most relevant parameters of the Higgs sector, MA0 and tan β, has
also been performed. Fig. 5.12 shows the results for the one-loop corrected partial decay width
of h0 → e−ν̄eµ

+νµ including the full MSSM corrections in three different scenarios, where
the corrections to the H0WW vertex from loops involving the third generation fermions
and sfermions are not included. For MA0 > 500GeV, the results hardly vary with MA0

and therefore are not shown there. For small MA0 values (MA0 < 140GeV), the decay
width is rather small due to a cancellation between the two parts of the effective Born
amplitude Eq. (5.10). When MA0 and tan β increase, the Higgs boson mass and thus the
decay width increases rapidly in all three scenarios and reach a plateau after tanβ > 15
and MA0 > 220GeV. In the small-αeff scenario there is a slight decrease with MA0 for
moderate and large tanβ and MA0 > 220GeV. This is basically due to the slight decrease
of the light CP-even Higgs boson mass with MA0 in this region. The relative corrections
are typically of the order of −1.5% ∼ 1% and −3% ∼ −2% respectively in the mmax

h and
no-mixing scenarios; in the small-αeff scenario they do not exceed −4% unless for small MA0

values (MA0 < 140GeV), where the cancellation between the two parts of the effective Born
amplitude Eq. (5.10) can yield a very small lowest order result, and the size of the radiative
correction is comparable to the lowest order result. This is not shown in Fig. 5.12 so that the
generic size of the relative corrections can be clearly seen.

Owing to the mixing between the two CP-even Higgs bosons, the coupling of H0 to
gauge bosons needs to be taken into account as well. Although at tree-level this cou-
pling is usually suppressed, the one-loop correction can be numerically relevant, since the
fermionic and sfermionic loops involve potentially large Yukawa couplings and their contri-
bution can thus get enhanced. In Fig. 5.13 we show the correction to the partial decay width
of h0 → e−ν̄eµ

+νµ due to the third generation fermionic and sfermionic loop contribution
to the H0WW coupling. Such correction involves both the Yukawa couplings and the wave
function normalization factors resulting from the mixing between the two CP-even Higgs
bosons. While the latter can lead to a suppression/enhancement to the correction when
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MA0/ tan β increase, the former tend to enhance the correction when tanβ increases. The
combination of these effects may lead to local extremum in the MA0 − tan β plane. For
our scan, a maximum appears at tanβ = 9, MA0 = 140GeV in the mmax

h scenario and at
tan β = 19, MA0 = 120GeV in the no-mixing scenario. In the small-αeff scenario, there is
a maximum at tan β = 9, MA0 = 140GeV. The relative corrections are positive and stay
below 1.5% in the mmax

h and no-mixing scenarios, and vary from −0.5% to 1% in the small-
αeff scenario. In all three scenarios the contribution of these fermionic and sfermionic loops
decreases very rapidly when MA0 becomes large.

In Fig. 5.14 and 5.15 we show the same plots for h0 → e−e+µ+µ−, which exhibits similar
features as in Fig. 5.12 and 5.13. As shown in Fig. 5.14, the relative corrections are all negative
in the three scenarios. In themmax

h scenario the relative correction varies from −3% to −0.5%,
while it stays between −5.5% and −3% in the other two scenarios. In the small-αeff scenario
where the cancellation in the effective Born amplitude can occur, the relative correction can
reach 95%. One can find from Fig. 5.15 that there is a maximum at tan β = 11, MA0 =
140GeV in the mmax

h scenario. The maximum occurs at tan β = 23, MA0 = 120GeV in the
no-mixing scenario and at tanβ = 9, MA0 = 140GeV in the small-αeff scenario.

Fig. 5.16 shows the invariant mass distribution of the µ+νµ pair resulting from the decay
of the W boson in the process h0 → e−ν̄eµ

+νµ in the mmax
h scenario, where the parameters

are chosen to be tan β = 30, MA0 = 120GeV and 400GeV. As the mass of h0 stays below
the production threshold of the gauge boson pair, only one intermediate gauge boson can be
resonant. From the plots it can be seen that in addition to the peak around the W boson
mass, there is another broad peak at small invariant mass. This is the point where the
other W boson gets resonant. In the right plot the broad peak is closer to the W resonance
peak, as the Higgs boson mass is larger. In Fig. 5.17 we show the relative corrections to the
invariant mass distribution of the µ+νµ pair in the mmax

h scenario. From the plots one can
find an enhancement at low invariant mass due to the emission of photon off the final state
fermions. In the case that the collinear photon is not combined with the emitting fermions, the
logarithm involving the light fermion mass would survive and give rise to large corrections.
This is shown by the blue curves in Fig. 5.17, while the red curves show the results with
photon combinations, i.e. the collinear photon is combined with the emitting fermion. If the
fermion masses are consistently neglected, the invariant mass distribution of the e−ν̄e pair
with photon combination coincides with the red curves in the plots. In Fig. 5.18 we show the
relative contributions due to the higher order final state radiation discussed in section 5.6,
and the corrections of the third generation fermions and sfermions to the H0WW coupling,
where in the right plot the latter is not shown since it is strongly suppressed by the wave
function normalization factors and is completely negligible for large MA0 values. For both
MA0 values, the higher order final state radiation can lead to corrections less than 2%. The
corrections of the third generation fermions/sfermions to the H0WW coupling give rise to a
contribution less than 1% for MA0 = 120GeV. In Fig. 5.19 the invariant mass distributions
of the µ+νµ pair without photon combination in the no-mixing and small-αeff scenarios are
shown with tan β = 30 and MA0 = 400GeV. The relative corrections can reach ∼ 25% in
both scenarios.

Fig. 5.20 to 5.23 show the corresponding invariant mass distributions for the process h0 →
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e−e+µ+µ− in the three benchmark scenarios. In the left plot of Fig. 5.20 the broad peak at
low invariant mass is not clearly visible in the depicted region because of the larger mass of
Z boson compared to the W boson mass. As shown in Fig. 5.22, for both MA0 values, the
higher order final state radiation gives rise to larger corrections than in the previous process,
as the final state now involves two muons. While the contribution to the H0ZZ vertex leads
to a correction of 1% for MA0 = 120GeV in the mmax

h scenario, it is completely negligible for
MA0 = 400GeV. In Fig. 5.23 the invariant mass distributions in the no-mixing and small-αeff
scenarios are depicted with tanβ = 30 and MA0 = 400GeV (no photon combination). In
both scenarios, the relative corrections vary from −30% to 10%.
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Figure 5.12: Results for the partial decay width of h0 →WW ∗ → e−ν̄eµ
+νµ in three different

benchmark scenarios (the contribution due to the third generation fermion and sfermion loop
corrections to theH0WW coupling is not included. TB denotes tan β). The left column shows
the corrected partial decay width, while the right column shows the relative corrections.
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Figure 5.13: Contribution to the partial decay width of h0 →WW ∗ → e−ν̄eµ
+νµ due to the

correction to the H0WW coupling from the third generation fermions and sfermions in three
different benchmark scenarios (TB denotes tan β). The left column shows the corrections to
the partial decay width, while the right column shows their relative size.
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Figure 5.14: Results for the partial decay width of h0 → ZZ∗ → e−e+µ+µ− in three different
benchmark scenarios (the contribution due to the third generation fermion and sfermion loop
corrections to the H0ZZ coupling is not included. TB denotes tan β). The left column shows
the corrected partial decay width, while the right column shows the relative corrections.
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Figure 5.15: Contribution to the partial decay width of h0 → ZZ∗ → e−e+µ+µ− due to the
correction to the H0ZZ coupling from the third generation fermions and sfermions in three
different benchmark scenarios (TB denotes tan β). The left column shows the corrections to
the partial decay width, while the right column shows their relative size.
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Figure 5.16: Invariant mass distribution of µ+νµ in the decay h0 → e−ν̄eµ
+νµ (corrected, no

photon combination, the contribution from the H0WW vertex correction is not included) in
the mmax
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Figure 5.17: Relative correction to the invariant mass distribution of µ+νµ in the decay
h0 → e−ν̄eµ

+νµ (the contribution from the H0WW vertex correction is not included) in the
mmax

h scenario, with tan β = 30, MA0 = 120GeV (left) and tan β = 30, MA0 = 400GeV
(right). ”com.” and ”no-com.” indicate the results with and without photon combination,
respectively.



86CHAPTER 5. ELECTROWEAK CORRECTIONS TOH0 →WW ∗/ZZ∗ → 4FERMIONS

3rd generation only

higher order FSR

δ[%]

Mµνµ
/GeV

10090807060504030

6

4

2

0

−2

−4

−6

higher order FSR

δ[%]

Mµνµ
/GeV

10090807060504030

6

4

2

0

−2

−4

−6

Figure 5.18: Relative contribution to the invariant mass distribution of µ+νµ in the decay
h0 → e−ν̄eµ

+νµ from the higher order final state radiation (higher order FSR) and from
the H0WW vertex correction (3rd generation only) in the mmax

h scenario, with tanβ =
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Figure 5.19: Invariant mass distribution and relative correction to the invariant mass dis-
tribution of µ+νµ in the decay h0 → e−ν̄eµ

+νµ (no photon combination) in the no-mixing
scenario (upper) and the small-αeff scenario (lower), with tan β = 30, MA0 = 400GeV.
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Figure 5.20: Invariant mass distribution of µ+µ− in the decay h0 → e−e+µ+µ− (corrected,
no photon combination, the contribution from the H0ZZ vertex correction is not included) in
the mmax

h scenario, with tan β = 30, MA0 = 120GeV (left) and tanβ = 30, MA0 = 400GeV
(right).
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Figure 5.21: Relative correction to the invariant mass distribution of µ+µ− in the decay
h0 → e−e+µ+µ− (the contribution from the H0ZZ vertex correction is not included) in the
mmax

h scenario, with tan β = 30, MA0 = 120GeV (left) and tan β = 30, MA0 = 400GeV
(right). ”com.” and ”no-com.” indicate the results with and without photon combination,
respectively.
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Figure 5.22: Relative contribution to the invariant mass distribution of µ+µ− in the decay
h0 → e−e+µ+µ− from the higher order final state radiation (higher order FSR) and from the
H0ZZ vertex correction (3rd generation only) in the mmax

h scenario, with tan β = 30, MA0 =
120GeV (left) and tan β = 30, MA0 = 400GeV (right).
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Figure 5.23: Invariant mass distribution and relative correction to the invariant mass dis-
tribution of µ+µ− in the decay h0 → e−e+µ+µ− (no photon combination) in the no-mixing
scenario (upper) and the small-αeff scenario (lower), with tan β = 30, MA0 = 400GeV.



Chapter 6

EW Corrections to Decay of H0 to
off/on-shell WW/ZZ Pair

The Higgs mechanism, as a widely discussed candidate for the electroweak symmetry break-
ing, in its minimal implementation in the SM, results in one physical Higgs boson. In the
MSSM, two complex Higgs doublets are required for consistency. Moreover, two doublets are
needed to bring the gauge couplings unified at some high energy scale [41]. Consequently
five physical Higgs bosons result after the electroweak symmetry breaking. As discussed
in previous chapters, among these physical Higgs bosons the lightest one resembles the SM
Higgs boson in certain limits, hence it is possible that the discovery of only one light Higgs
boson is compatible with both the SM and the MSSM predictions and thus one can not
straightforwardly distinguish between them. However, the observation of additional heavy
Higgs bosons would be a clear signature for physics beyond the SM. Precision measurements
of the decay properties of such heavy Higgs bosons can then help to distinguish the MSSM
from other models describing physics beyond the SM.

In the MSSM, the tree-level coupling of the heavy CP-even Higgs boson, H0, to vector
boson pair is suppressed by a factor cos(β − α), compared to the coupling of the SM Higgs
boson to vector boson pair, where α is the angle that diagonalizes the CP-even Higgs sector
and tan β = v2/v1 represents the ratio of the vacuum expectation values of the two Higgs
doublets in the MSSM. Radiative corrections induce important modifications to this coupling.
One potential source of large corrections is the contribution of loops involving fermions and
sfermions, especially those involving the third generation fermions and sfermions, since they
contain potentially large Yukawa couplings. The mixing between Higgs bosons can give rise
to significant contributions as well. We will concentrate on CP-conserving MSSM with real
parameters, hence the heavy CP-even Higgs boson can only mix with the light CP-even one.
In certain parameter regions of the MSSM, the tree-level coupling is strongly suppressed.
Investigating the impact of radiative corrections in these regions is particularly interesting.

The electroweak O(α) radiative corrections to the decay of the SM Higgs boson to vector
boson pair have been available for a long time, see e.g. [153–155]. In these computations all
three external legs can be off-shell, hence the results there can be used for more complicated
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process that involves the coupling of the SM Higgs boson and vector boson pair. Here we
evaluate the O(α) electroweak corrections to the decay of H0 to vector boson pair in the
same way, and give the analytical expression for the one-loop contributions from diagrams
involving the third generation fermions and sfermions, so that our results can be straightfor-
wardly implemented into other processes that contain the process under consideration as a
subprocess.

In section 6.1 we discuss the one-loop corrections to the coupling H0WW/H0ZZ and work
out the analytical results for the contribution of fermionic and sfermionic loops, where all
three particles can be off-shell. Then we apply the results to on-shell particles and compute
the electroweak corrections to the decay of H0 to gauge boson pair in section 6.2. The
numerical results are discussed in section 6.3.

6.1 Corrections to the H0WW/H0ZZ vertices

6.1.1 Correction to the H0WW vertex

We start from the following process where all three particles are taken to be off-shell

H0(k1) →W−(k2, µ) +W+(k3, ν) . (6.1)

ki (i = 1 . . . 3) denote the momenta of the particles with k1 = k2 + k3 and µ, ν are Lorentz
indices for the two vector bosons. At tree-level, the H0WW coupling is given by

V µν
H0,0

=
eMW

sW
cos(β − α)gµν ≡ VH0 cos(β − α)gµν , (6.2)

which differs from the coupling of the SM Higgs boson to W bosons only by a factor of
cos(β−α). When the mass of the CP-odd Higgs boson MA0 gets large, the angle β−α→ π/2
and the factor cos(β−α) approaches 0 as O(M2

Z sin2 4β/(2M2
A0)), thus the tree-level coupling

Eq. (6.2) is strongly suppressed, this is known as the decoupling limit.

At one-loop level (ignore the mixing between Higgs bosons for the moment), the corrected
vertex H0WW possesses the following structure

V µν
H0 = V µν

H0,0
+ V µν

H0,1

= V µν
H0,0

+ VH0(Akµ
2 k

ν
2 +Bkµ

3k
ν
3 + Ckµ

2k
ν
3 +Dkµ

3 k
ν
2 + Egµν − iF ǫµνρσk2ρk3σ) , (6.3)

where ǫµνρσ is totally antisymmetric with ǫ0123 = 1. As in ref. [155], we concentrate on the
cases that the gauge bosons can either become on-shell or couple to conserved currents, thus
only the D, E and F terms can contribute as a consequence of transversality requirement or
current conservation. In particular, if the gauge bosons are on-shell, the contribution of the
F term would vanish due to the antisymmetry of the ǫ tensor. In the following we focus on
the one-loop vertex corrections arising from fermions and sfermions, in particular from the
third generation fermions and sfermions, which involve potentially large Yukawa couplings
and are expected to yield sizeable contribution. For instance, they give rise to contributions
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enhanced by m2
t . We give the analytical expressions for the one-loop vertex corrections due

to the third generation fermions and sfermions, the results can be extended straightforwardly
to include all fermions and sfermions. Fig. 6.1 shows the relevant Feynman diagrams.

Now we write down the analytical expressions for the contributions to the D, E and F
terms from loops involving the third generation squarks, sleptons, and leptons and quarks,
respectively. Note that the F term receives contribution only from the lepton and quark
loops. The contribution of stop and sbottom loops to the coefficient D is given by

Dq̃ =
α

2π sin 2βM2
W cW s2W

{

∑

i,j,k

(

− cos β(Ub̃)k1(U
∗
b̃
)k1(Ut̃)i1(U

∗
t̃
)j1((Ut̃)j1Ai + (Ut̃)j2Bi)

× (C1 + C11 + C12)[k
2
1 , k

2
3 , k

2
2 ,m

2
t̃i
,m2

t̃j
,m2

b̃k
] + sinβ(Ub̃)j1(U

∗
b̃
)i1(Ut̃)k1(U

∗
t̃
)k1

× ((Ub̃)i1Cj + (Ub̃)i2Dj)(C1 + C11 + C12)[k
2
1 , k

2
3 , k

2
2 ,m

2
b̃i
,m2

b̃j
,m2

t̃k
]
)

}

, (6.4)

where Ut̃ and Ub̃ denote the mixing matrices of the stop and sbottom sector that diagonalize
the corresponding squark mass matrices discussed in previous chapters, while At, Ab represent
the corresponding trilinear couplings, i, j, k = 1, 2. C1, C11 and C12 represent the vector and
tensor coefficient functions of the 3-point integrals. For brevity we put together all integrals
with the same arguments, and adopt the convention defined in [133, 134] in writing the
arguments of the integrals. The abbreviations read

Ai = (cos(α+ β) sin βMWMZ(−3 + 4s2W ) − 6cW sinαm2
t )(U

∗
t̃
)i1

+ 3cWmt(cosαµ− sinαA∗
t )(U

∗
t̃
)i2 ,

Bi = 3cWmt(− sinαAt + cosαµ∗)(U∗
t̃
)i1

− 2(2 cos(α+ β) sin βMWMZs
2
W + 3 sinαcWm2

t )(U
∗
t̃
)i2 ,

Ci = (cos(α+ β) cos βMWMZ(−3 + 2s2W ) + 6cW cosαm2
b)(U

∗
b̃
)i1

+ 3cWmb(− sinαµ+ cosαA∗
b)(U

∗
b̃
)i2 ,

Di = 3cWmb(cosαAb − sinαµ∗)(U∗
b̃
)i1

− 2(cos(α+ β) cos βMWMZs
2
W − 3 cosαcWm2

b)(U
∗
b̃
)i2 , (6.5)

where µ is the Higgsino mass parameter and the asterisk indicates the complex conjugate,
although it is irrelevant here since we assume real MSSM parameters. The contributions of
stop and sbottom loops to the coefficients E and F read

Eq̃ =
α

8π sin 2βM2
W cW s2W

{

∑

i,j

(

sinβ(Ub̃)i1(U
∗
b̃
)j1(−(Ub̃)j1Ci − (Ub̃)j2Di)

×B0[k
2
1 ,m

2
b̃i
,m2

b̃j
] + cos β(Ut̃)i1(U

∗
t̃
)j1((Ut̃)j1Ai + (Ut̃)j2Bi)B0[k

2
1 ,m

2
t̃i
,m2

t̃j
]
)

+
∑

i,j,k

4
(

cos β(Ub̃)k1(U
∗
b̃
)k1(Ut̃)i1(U

∗
t̃
)j1(−(Ut̃)j1Ai − (Ut̃)j2Bi)

× C00[k
2
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2
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2
2 ,m

2
t̃i
,m2

t̃j
,m2

b̃k
] + sinβ(Ub̃)j1(U

∗
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)i1(Ut̃)k1(U

∗
t̃
)k1

× ((Ub̃)i1Cj + (Ub̃)i2Dj)C00[k
2
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2
3 , k

2
2 ,m

2
b̃i
,m2

b̃j
,m2

t̃k
]
)

}

,

Fq̃ = 0 , (6.6)
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Figure 6.1: One-loop vertex diagrams and counter term diagram for H0WW .

where B0 denotes the scalar 2-point function, Ai, Bi, Ci and Di are defined in Eq. (6.5).

The slepton loop contribution can be written as

Dl̃ =
α

4πMW cW s2W

{

∑

i

cos(α+ β)MZ(C1 + C11 + C12)[k
2
1 , k

2
3 , k

2
2 ,m

2
ν̃τ
,m2

ν̃τ
,m2

τ̃i
]

× (Uτ̃ )i1(U
∗
τ̃ )i1 +

∑

i,j

1

cos βMW
(U∗

τ̃ )i1(Uτ̃ )j1((Uτ̃ )i1Ej + (Uτ̃ )i2Fj)

×C12[k
2
2 , k

2
1 , k

2
3 ,m

2
ν̃τ
,m2

τ̃i
,m2

τ̃j
]
}

, (6.7)

and

El̃ =
α

16π cos βM2
W cW s2W

{

− cos(α+ β) cos βMWMZB0[k
2
1 ,m

2
ν̃τ
,m2

ν̃τ
]

+
∑

i

4 cos(α + β) cos βMWMZ(Uτ̃ )i1(U
∗
τ̃ )i1C00[k

2
1 , k

2
3 , k

2
2 ,m

2
ν̃τ
,m2

ν̃τ
,m2

τ̃i
]

+
∑

i,j

−4C00[k
2
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2
1 , k

2
3 ,m

2
ν̃τ
,m2

τ̃i
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τ̃j
](Uτ̃ )j1(U
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τ̃ )i1((Uτ̃ )i1Ej + (Uτ̃ )i2Fj)

+B0[k
2
1 ,m

2
τ̃i
,m2

τ̃j
](Uτ̃ )i1(U

∗
τ̃ )j1((Uτ̃ )j1Ei + (Uτ̃ )j2Fi)

}

,

Fl̃ = 0 (6.8)

with the abbreviations

Ei = (cos(α+ β) cos βMWMZ(1 − 2s2W ) − 2 cosαcWM2
τ )(U∗

τ̃ )i1

+ cW (µ sinα− cosαA∗
τ )Mτ (U

∗
τ̃ )i2 ,

Fi = cW (− cosαAτ + sinαµ∗)mτ (U
∗
τ̃ )i1

+ 2(cos(α+ β) cos βMWMZs
2
W − cosαcWM2

τ )(U∗
τ̃ )i2 . (6.9)
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Note the factor 1/ cos β in these contributions, it leads to enhancement of the contribution
of down-type fermions and sfermions at large tanβ.

The lepton and quark loop contributions to the coefficients are given by

Dlq =
α

4π sin 2βM2
W s2W

{

− 3 sinα cosβm2
t

(

C0 + C2 + 4(C1 + C11

+C12)
)

[k2
1 , k

2
3 , k

2
2 ,m

2
t ,m

2
t ,m

2
b ] + cosα sin β

(

m2
τ (C1 + 4C12
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2
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2
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2
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2
τ ,m

2
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2
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2
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2
3 ,m

2
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2
b ,m

2
b ]
)

}

, (6.10)

and

Elq =
α

8π sin 2βM2
W s2W

{
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t

(

4B0[k
2
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2
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2
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(
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,

Flq = − α

4π sin 2βM2
W s2W
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. (6.11)

The vertex counter term contribution can be written as (see e.g. [135])

V µν
H0,CT

= V µν
H0,0

[

δZe + δZW +
1

2

δM2
W

M2
W

+
δsW

sW
+

sin(β − α)

cos(β − α)
(− cos2 βδ tan β +

1

2
δZh0H0)

+
1

2
δZH0H0

]

, (6.12)

where δZe is the charge renormalization constant, δZW is the field renormalization constant
for theW boson, and δM2

W the mass counter term of theW boson. δsW is the renormalization
constant for the weak mixing angle. δZh0H0 and δZH0H0 are the Higgs field renormalization
constants in the mass eigenstate basis, which, together with δZh0h0 and δZH0h0 , are given in
the DR scheme as (see the discussion of chapter 4)

δZh0h0 = −[ReΣ′
h0h0(M

2
h0)]

div ,

δZH0H0 = −[ReΣ′
H0H0(M

2
H0)]

div ,

δZh0H0 = δZH0h0 =
sinα cosα

cos 2α
(δZh0h0 − δZH0H0) (6.13)

with Mh0, MH0 denoting the tree-level masses of the two CP-even Higgs bosons. The counter
term for tan β is introduced, as in chapter 4, via tanβ → tan β + δ tan β, and is given by

δ tan β

tan β
=

(

δ tan β

tan β

)DR

=
1

2 cos 2α
[δZh0h0 − δZH0H0 ]div . (6.14)
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As the renormalization scale, we choose µDR = MA0 . The remaining counter terms in Eq.
(6.12) and (6.24) below are fixed by on-shell renormalization conditions as in the previous
chapter.

Due to the fact that the two CP-even Higgs bosons can mix beyond the tree-level, we need
to evaluate the loop corrections to the vertex h0WW as well. This can be done by simple
substitutions. The h0WW tree-level coupling is obtained by replacing cos(β−α) in Eq. (6.2)
with sin(β − α). The corresponding one-loop contributions can be obtained by making the
following replacements in Eqs. (6.4-6.11)

sinα→ cosα , cosα→ − sinα , cos(α+ β) → − sin(α+ β) , (6.15)

while the corresponding counter term contribution reads

V µν
h0,CT

= VH0 sin(β − α)gµν
[

δZe + δZW +
1

2

δM2
W

M2
W

+
δsW

sW
+

cos(β − α)

sin(β − α)
(cos2 βδ tan β

+
1

2
δZH0h0) +

1

2
δZh0h0

]

. (6.16)

6.1.2 Correction to the H0ZZ vertex

Now we turn to the process

H0(k1) → Z(k2, µ) + Z(k3, ν) . (6.17)

As before, all the three particles can be off-shell.

The tree-level H0ZZ coupling reads

V
′µν
H0,0

=
eMW

c2W sW
cos(β − α)gµν ≡ V ′

H0 cos(β − α)gµν , (6.18)

which, as the tree-level H0WW coupling, differs from the coupling of the SM Higgs boson
and Z bosons by a factor of cos(β − α) and gets strongly suppressed in the decoupling limit
MA0 ≫MZ .

The corrected vertex has the same structure as Eq. (6.3), with VH0 replaced by V ′
H0 . The

correction from loops involving the third generation fermions and sfermions to the H0ZZ
vertex can be computed analogously and the corresponding correction to the h0ZZ vertex
follows from the same replacement defined in Eq. (6.15). Due to charge conjugation invari-
ance, the coefficient F vanishes in this case. The contribution of the stop and sbottom loops
to the coefficients can be written as
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Eq̃ =
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where the abbreviations {A,B, C,D}i have been given in Eq. (6.5) and

Gij = (−3 + 2s2W )(Ub̃)i1(U
∗
b̃
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∗
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)j2 ,
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t̃ )j1 + 4s2W (Ut̃)i2(U

∗
t̃ )j2 . (6.20)

The contribution of slepton loops are given by
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with

Mij = (−1 + 2s2W )(Uτ̃ )i1(U
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∗
τ̃ )j2 , (6.22)

while the lepton and quark loop contributions read
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The corresponding counter term contribution is
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and analogously
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The analytical results presented here for the one-loop corrections to the H0WW/H0ZZ
coupling can be used as building blocks for more involved processes involving these couplings.
If the Gµ scheme described in the previous chapter is chosen for the numerical computation,
one can use in the counter term contribution the modified charge renormalization constant
δZ̃e

δZ̃e = δZe −
1

2
∆r , (6.26)

in which the ∆r contribution is incorporated that summarizes the radiative corrections to
the muon decay.

6.2 Decay to on-shell gauge bosons

In this section we consider the case that the particles involved in the previously discussed
processes are real and compute the corresponding radiative corrections. The decay amplitude
can be obtained from the coupling vertex in the previous section by putting all off-shell
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momenta on-shell and multiplying with the polarization vectors for the gauge bosons. As
discussed in chapter 5, the finite wave function normalization factors for the external Higgs
boson has to be taken into account in order to ensure the correct normalization of the S
matrix. We define the effective Born amplitude as in chapter 5, which absorbs the Higgs
propagator corrections

Mborn =
√

ZH0(M0
H0 + ZH0h0M0

h0)

=
√

ZH0M0
H0(1 + tan(β − α)ZH0h0) , (6.27)

where ZH0 and ZH0h0 are the finite wave function normalization factors that are determined
by the renormalized self energies of Higgs bosons given in previous chapters by

ZH0 =
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2)
(6.28)

with Mh0 and M ′
H0 the tree-level mass of h0 and the physical mass of H0, respectively. M0

H0

in Eq. (6.27) denotes the tree-level decay amplitude of H0. For the decay to W boson pair,
it is given by

M0
H0 = V µν

H0,0
ǫµǫν , (6.29)

where V µν
H0,0

is defined in Eq. (6.2) and ǫµ is the polarization vector of the external gauge

boson. The amplitude for the decay of H0 into Z bosons can be obtained by straightforward
substitutions.

At one-loop level, the decay amplitude can be written as

Mloop =
√

ZH0(M1
H0 + ZH0h0M1

h0) . (6.30)

For W boson final state, M1
H0 = V µν

H0,1
ǫµǫν with V µν

H0,1
defined in Eq. (6.3). M1

h0 follows

from M1
H0 by the replacements in Eq. (6.15).

When computing the corrected decay width, the square of the one-loop amplitude |Mloop|2
needs to be included as well, due to the fact that the tree-level coupling can be suppressed so
that the square of the one-loop amplitude becomes comparable to the tree-level result. For
the decay process H0 → WW , we compute the one-loop contribution from loops involving
all fermions and sfermions and from loops involving only the 3rd generation fermions and
sfermions. The full one-loop corrections are not presented, since the full one-loop amplitude is
not infrared finite, the numerically important contribution from the square of this amplitude
can not be included without a full exploration of the photonic corrections beyond one-loop.
However, for the decay H0 → ZZ, the full one-loop amplitude is infrared finite, hence we
also compute the full one-loop corrections for this process.
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6.3 Numerical discussions

For the numerical evaluation, we choose the same SM input parameters and SUSY scenarios
as in the previous chapter and use the Gµ scheme, i.e. we parametrize the lowest order
result with the Fermi constant. The experimental exclusion limits from direct search of
supersymmetric particles and the upper bound on the SUSY corrections to the electroweak
ρ parameter are taken into account throughout the scan over the SUSY parameter space.

To illustrate the numerical importance of the one-loop corrections, especially in the limit
where the CP-odd Higgs boson mass MA0 becomes large, we show in Fig. 6.2 and 6.3, as
an example, the dependence of the lowest order and the one-loop corrected partial decay
widths on MA0 in the mmax

h scenario for different values of tan β. From these figures one can
find that for large MA0 values (MA0 & 250GeV), the one-loop corrections are of significant
importance both for small and large tanβ values. The tree-level width for tanβ = 30 is
much smaller than that for tanβ = 5. This is because for relatively large MA0, the tree-level
coupling of H0 to vector boson pair is suppressed by tan β as well, as one can see from the
discussions below Eq. (6.2). In the fermionic and sfermionic sector, the leading contribution
is from the third generation fermions and sfermions. For tanβ = 30, due to a cancellation
between the two parts of the effective Born amplitude Eq. (6.27), the tree-level decay width
is extremely small at MA0 ∼ 420GeV. For the decay H0 → ZZ (see Fig. 6.3), the decay
width falls off rapidly when MA0 goes below ∼ 200GeV, this is because for such MA0 values,
the Higgs boson mass is just above the production threshold of Z boson pair, thus the result
is strongly suppressed by the allowed phase space. In Fig. 6.3 we also show the results
including the complete one-loop corrections as well as that including only the fermionic and
sfermionic corrections. The difference between them indicates that the contributions from
other sectors are comparable to the fermionic and sfermionic ones. Although the tree-level
decay width decreases quite rapidly with MA0, the one-loop corrected width for large MA0

turns out to be of comparable size as that for small MA0 values.

Fig. 6.4 and 6.5 show the lowest order and the one-loop corrected partial decay widths
as a function of tan β in the mmax

h scenario for different values of MA0 . For both small
and large MA0 values, the partial decay width decreases with tanβ. When MA0 is small,
the one-loop contribution yields relatively small corrections, while for large MA0 the one-loop
corrections are important and can exceed the lowest order result due to the strong suppression
of the tree-level coupling. As in previous plots, the leading contribution from the fermionic
and sfermionic sector is from the third generation fermions and sfermions. In Fig. 6.5 also
the results including the complete one-loop corrections are depicted. It turns out that the
contributions from other sectors are comparable to the fermionic and sfermionic ones for both
small and large MA0 values. Due to the identical particles in the final state, for large values
of MA0 the decay width of H0 → ZZ is roughly half of the decay width of H0 →WW .

In Fig. 6.6 we show the one-loop corrected partial decay width as well as the relative size
of the one-loop corrections for H0 →WW in the mmax

h scenario, where the results with the
contribution from all fermion and sfermion loops and the results with the contribution only
from the third generation fermions and sfermions are depicted. For the size of the width
and the relative corrections see the caption of the figure. As illustrated there, the width is
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Figure 6.2: The tree-level and one-loop corrected partial decay widths for H0 → WW as a
function ofMA0 in themmax

h scenario for tan β = 5, 30. The results including the contribution
from the third generation fermion and sfermion loops, and that including the contribution
from all fermion and sfermion loops are depicted.

complete
allf/f̃

3rdf/f̃
tree

H0 → ZZ

tanβ = 5

Γ[MeV]

MA0 [GeV]
500450400350300250200150

20

18

16

14

12

10

8

6

4

complete
allf/f̃

3rdf/f̃
tree

H0 → ZZ

tanβ = 30

Γ[MeV]

MA0 [GeV]
500450400350300250200

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 6.3: The tree-level and one-loop corrected partial decay widths for H0 → ZZ as a
function of MA0 in the mmax

h scenario for tan β = 5, 30. The results with the contribution
from the third generation fermion and sfermion loops, with the contribution from all fermion
and sfermion loops and with the complete one-loop corrections are depicted.
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Figure 6.4: The tree-level and one-loop corrected partial decay widths for H0 → WW as a
function of tan β in the mmax

h scenario for MA0 = 200, 500GeV.
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Figure 6.5: The tree-level and one-loop corrected partial decay widths for H0 → ZZ as a
function of tanβ in the mmax

h scenario for MA0 = 200, 500GeV, where the results including
the complete one-loop corrections are also shown.
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rather small for large tanβ and MA0 values. It becomes larger when tan β decreases, and the
relative size of the loop corrections increases rapidly withMA0 and exceeds the tree-level result
when MA0 > 300 ∼ 350GeV depending on the values of tan β. With the Higgs propagator
corrections absorbed into the lowest order result, the other genuine one-loop corrections are
negative for small MA0 values, while they are positive for large MA0 .

Fig. 6.7 shows the results in the no-mixing scenario. The region with small tanβ and MA0

values is excluded by the limits on the light CP-even Higgs boson mass. The corrected width
increases when tan β decreases, the fermionic and sfermionic contributions are negative over
a large fraction of the scanned parameter space. In Fig. 6.8 we show the results in the small-
αeff scenario. The corrected decay width increases when tan β decreases unless for very large
tan β values, where the partial decay width is significantly increased by the Higgs propagator
corrections. The relative correction is nearly always negative in the lower half MA0-tan β
plane. At large tan β values, the relative size of the loop corrections increases with tanβ and
exceeds 100% quite rapidly.

Fig. 6.9, 6.10, and 6.11 illustrate the results for H0 → ZZ in the three different scenarios,
where we show as well the corrected width including the complete one-loop corrections.
These results exhibit similar features to those shown in previous plots for H0 → WW ,
but the corresponding width is smaller due to the identical particles in the final state. As
illustrated in Fig. 6.9, in the mmax

h scenario, at small MA0 values the loop correction is
positive if the complete one-loop contribution is taken into account, while it is negative if
taking into account only the contribution from the (third generation) fermions and sfermions.
This indicates that the contribution from other sectors is positive and larger than that from
the fermionic and sfermionic sector for small MA0 . For large MA0 values, the contributions
from the fermionic/sfermionic sector and other sectors are both positive. For the no-mixing
scenario, in the regions where the loop contributions from the (third generation) fermions
and sfermions are negative, they are also compensated by the loop corrections from the other
sectors.
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Figure 6.6: Results for the decay width of H0 → WW in the mmax
h scenario. The upper

row (from left to right) shows the corrected decay width including the contribution from all
fermions and sfermions, and that including the contribution only from the third generation,
respectively. The purple region corresponds to ΓH0 < 1MeV, the blue region to 1MeV <
ΓH0 < 5MeV, the green region to 5MeV < ΓH0 < 10MeV, the yellow region to 10MeV <
ΓH0 < 50MeV, the orange region to 50MeV < ΓH0 < 100MeV and the black region to
ΓH0 > 100MeV. The lower row shows the corresponding relative correction δ. The purple
region corresponds to 0 < δ < 5%, the blue region to 5% < δ < 25%, the green region to
25% < δ < 50%, the yellow region to 50% < δ < 100%, and the orange region to δ > 100%,
the black region corresponds to negative relative correction.
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Figure 6.7: Results for the decay width of H0 →WW in the no-mixing scenario. The upper
row (from left to right) shows the corrected decay width including the contribution from all
fermions and sfermions, and that including the contribution only from the third generation,
respectively. The sliced region in the lower left corner of each plot is excluded. The lower
row shows the corresponding relative correction δ. As in the upper row, the sliced region in
the lower left corner of each plot is the excluded region. The color coding here is the same
as in Fig. 6.6.
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Figure 6.8: Results for the decay width of H0 →WW in the small-αeff scenario. The upper
row (from left to right) shows the corrected decay width including the contribution from all
fermions and sfermions, and that including the contribution only from the third generation,
respectively. The lower row shows the corresponding relative correction δ. The color coding
is the same as in Fig. 6.6.
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Figure 6.9: Results for the decay width of H0 → ZZ in the mmax
h scenario. The upper

row (from left to right) shows the corrected decay width including the complete one-loop
contributions, that including all fermion and sfermion contributions and that including only
the third generation fermion and sfermion contributions, respectively. The purple region
corresponds to ΓH0 < 0.5MeV, the blue region to 0.5MeV < ΓH0 < 2.5MeV, the green region
to 2.5MeV < ΓH0 < 5MeV, the yellow region to 5MeV < ΓH0 < 25MeV, and the orange
region to 25MeV < ΓH0 < 50MeV. The lower row shows the corresponding relative correction
δ. The purple region corresponds to 0 < δ < 5%, the blue region to 5% < δ < 25%, the green
region to 25% < δ < 50%, the yellow region to 50% < δ < 100%, and the orange region to
δ > 100%, the black region corresponds to negative relative correction.
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H0 → ZZ
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Figure 6.10: Results for the decay width of H0 → ZZ in the no-mixing scenario. The upper
row (from left to right) shows the corrected decay width including the complete one-loop
contributions, that including all fermion and sfermion contributions and that including only
the third generation fermion and sfermion contributions, respectively. The lower row shows
the corresponding relative correction δ. The color coding is the same as in Fig. 6.9.
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Figure 6.11: Results for the decay width of H0 → ZZ in the small-αeff scenario. The upper
row (from left to right) shows the corrected decay width including the complete one-loop
contributions, that including all fermion and sfermion contributions and that including only
the third generation fermion and sfermion contributions, respectively. The lower row shows
the corresponding relative correction δ. The color coding is the same as in Fig. 6.9.
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Chapter 7

Conclusions

In this thesis we investigated the decay processes of the light and heavy CP-even Higgs
bosons in the MSSM and computed the relative O(α) electroweak corrections, improved by
the two-loop corrections provided in the program package FeynHiggs.

The tree-level coupling of the light CP-even Higgs boson in the MSSM, h0, with the SM
fermions or gauge bosons approaches that of the SM Higgs boson with these particles in the
decoupling limit. Consequently the lowest order decay width for h0 or a SM Higgs boson of
the same mass to SM fermions will be indistinguishable from each other in this limit. It is
therefore of particular interest to investigate the effects of radiative corrections to such decay
processes. For the decay of h0, the virtual corrections arise not only from loops involving
the SM particles, but also from loops involving the non-SM particles, i.e. the additional
Higgs bosons from the two Higgs doublets of the MSSM and the superpartners of the SM
particles. In the decoupling limit, the corrections excluding the genuine SUSY contribution
should approach the SM prediction, as in this limit all heavy Higgs bosons decouple. We
computed such corrections to the partial decay width of h0 to fermions via gauge boson
pair in the decoupling limit and recovered the SM result. The decoupling of the genuine
SUSY particles is governed by their characteristic mass scale. If this mass scale is not much
larger than the electroweak scale, they may give rise to sizeable contributions, even in the
decoupling limit. However, our results show that they only yield negligible effects in the
decoupling limit, indicating that in our case the decoupling behavior is essentially dominated
by the mass of the CP-odd Higgs boson mass, even if the one-loop corrections are included.
As a consequence, it is rather difficult to distinguish between the light CP-even Higgs boson
and the SM one, if the mass of the CP-odd Higgs boson is large.

Care has been taken with the treatment of unstable particles in our process. The width of
unstable particles was incorporated according to the factorization scheme. This procedure,
however, does not fully eliminate all the singularities that arise when the unstable particle
goes on-shell. The scalar loop integrals arising from the photonic diagrams can still contain
on-shell singular logarithms. We computed these scalar integrals analytically and included
the width of resonant gauge boson afterwards in these singular logarithms. Owing to the
upper bound on the light CP-even Higgs boson mass, only one of the intermediate gauge
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bosons can become resonant. This allowed us to separate the propagator of the non-resonant
gauge boson from the scalar integrals and greatly simplified the analytical evaluation of these
integrals. As a byproduct, an analytical expression of the soft singular virtual contribution
was obtained, which allowed an explicit check on its cancellation when combining with the
real bremsstrahlung contribution. For the treatment of soft and collinear divergences in the
real correction, we used two different approaches, namely the phase space slicing and the
dipole subtraction approach.

The mixing between Higgs bosons beyond the lowest order can lead to numerically impor-
tant Higgs propagator corrections. We have absorbed these corrections into the tree-level
amplitude. In the presence of the Higgs boson mixing, the contribution due to corrections to
the coupling of the heavy CP-even Higgs boson to gauge bosons might play a role. We have
taken into account such contributions induced by fermionic and sfermionic loops, especially
by loops involving the third generation fermions and sfermions, as they contain potentially
large Yukawa couplings and are expected to yield sizeable contributions. It turns out that for
the SUSY scenarios investigated in this thesis, these contributions yield visible effects only
for small values of the CP-odd Higgs boson mass, and are completely negligible if the CP-odd
Higgs boson mass gets large.

We have evaluated invariant mass distributions of the reconstructed gauge boson for differ-
ent choice of SUSY parameters. If the collinearly emitted photon off the final state fermions
is treated inclusively, i.e. if it is combined with the emitting fermion, the relative correction
is usually of the order of several percent. If the collinear photon is not combined with the
emitting fermion, the relative correction can become much larger. In this case we took into
account as well the contribution of the higher order final state radiation. The size of such
contribution is usually at percent level.

In the last chapter of this thesis, we also studied the decay of the heavy CP-even Higgs
boson of the MSSM into gauge boson pair. The precise knowledge of the decay properties
of the heavy Higgs boson can help to distinguish MSSM from other frameworks describing
physics beyond the SM. Although the coupling of the heavy CP-even Higgs boson to gauge
bosons is usually suppressed at tree-level, it receives numerically important corrections at
the one-loop level. In order that our results can be used for more complicated process that
involves this coupling, we allowed all three external particles to be off-shell but assumed
that the gauge bosons couple to conserved currents. We computed analytically the one-loop
corrections to this coupling from fermionic and sfermionic sector, especially from the third
generation fermions and sfermions. Owing to the mixing between the Higgs bosons, we gave
explicitly the analytical results for the correction to the coupling of the light CP-even Higgs
boson to gauge bosons as well. These results were then applied to the decay of the heavy CP-
even Higgs boson to on-shell external gauge bosons. After including the Higgs propagator
corrections into the tree-level decay amplitude, the lowest order decay width can become
extremely small for some value of CP-odd Higgs boson mass and tan β. However, it turns out
that after including the one-loop radiative corrections, the decay width at small values of MA0

is comparable with that at large MA0 values for a given tanβ. To illustrate the numerical
importance of the loop contribution from different sectors, we showed a comparison of the
correction from the third generation fermions and sfermions, the correction from all fermions
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and sfermions and the complete one-loop correction. The correction of the third generation
fermions and sfermions turned out to be the dominant contribution in the fermionic and
sfermionic sector. The contribution from other sectors is comparable to the fermionic and
sfermionic contributions and become particularly important for large CP-odd Higgs boson
mass.
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Appendix A

Spinors

In this Appendix we briefly describe the properties of spinors, more details can be found,
e.g. in [156–160].

A.1 Clifford algebra

A Clifford algebra is defined as a set of matrices which satisfy the following anticommutation
relations

{γM , γN} = γMγN + γNγM = 2 ηMN , (A.1)

where M,N can take 0, 1, . . . ,D−1 for D space-time dimensions, and ηMN is the flat metric.
Here we assume that only one of the D dimensions is time dimension, since this is the case
of most interest. The corresponding metric is then given by ηMN = diag(+1,−1, . . . ,−1).

Under multiplication the matrices γM generate a finite group CL(D) consisting of the
following elements

CL(D) = {±1,±γM1
,±γM1M2 ...,±γM1...MD

} , (A.2)

where the indices M1,M2 . . . are all different and γM1M2 ... = γM1
γM2

. . . . The number of
elements (or the order) of the group is 2 × 2D = 2D+1. In the case that the space-time
dimensions D is even, this group has 2D + 1 conjugate classes 1

[±1], [γM1
], [γM1M2

], . . . , [γM1...MD
] . (A.3)

As the number of irreducible representations of a finite dimensional group equals the number
of its conjugate classes [161], the group CL(D) has 2D+1 irreducible representations. For any

1The conjugate class is formed by the elements of a group conjugate to one another, e.g. for an element a

of group G, its conjugate elements are given by g a g−1 for any g ∈ G, thus the conjugate class [a] is given by
[a] = {g a g−1, ∀g ∈ G}.
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two elements γA, γB , we have γAγB = ±γBγA, thus γAγBγ
−1
A γ−1

B = ±1, hence the commu-
tator subgroup of CL(D), denoted as [CL(D), CL(D)], which is generated by γAγBγ

−1
A γ−1

B ,
has two elements ±1. In other words, it has order 2. The number of one-dimensional ir-
reducible representations of CL(D) is given by the order of CL(D) divided by the order of
[CL(D), CL(D)], which yields 2D+1/2 = 2D. Consequently there is only one irreducible rep-
resentation of CL(D) that is not one-dimensional, its dimension is determined by Burnside’s
theorem [161] as

(2D+1 − 1 × 2D)
1
2 = 2D/2 . (A.4)

This representation is also the only irreducible representation of the Clifford algebra that has
dimension greater than one, and is known as the spinor representation. Given the irreducible
representation of the Clifford algebra γM , its transpose γT

M forms a representation of the
same algebra as well. Due to the fact that there is only one irreducible representation with
dimension greater than one, these two representations must be equivalent, thus there exists
a matrix C relating them as follows

γT
M = −CγMC

−1 . (A.5)

The matrix C is the so-called charge conjugation matrix.

In the case that the space-time dimensions D is odd, the matrix

γD = γ0γ1 . . . γD−1 (A.6)

commutes with all matrices γM (M = 0, 1, . . . ,D − 1) and their products. Thus in addition
to γD, −γD also forms a conjugate class by itself. The number of conjugate classes of CL(D)
in odd dimensions is one more than that in even dimensions. This implies that the group
CL(D) has 2D +2 irreducible representations. As in the even dimensions case, 2D of them are
one-dimensional, which means that in odd space-time dimensions the group CL(D) has two
irreducible representations that have dimension greater than one. The dimensions of these
two representations should divide 2D+1 [161], the order of the group CL(D), hence they can
be written as 2i and 2j respectively. Burnside’s theorem then yields

22i + 22j = 2D , (A.7)

thus i = j = D−1
2 . Actually, the fact that γD commutes with all γM matrices implies that

it must be a multiple of the identity matrix, therefore the matrix γD−1 can be expressed in
terms of the other D − 2 matrices with the help of the defining anticommutation relation of
the Clifford algebra as

γD−1 = a γ0γ1 . . . γD−2 , (A.8)

where a can take two different values depending on D [159, 160]. The two irreducible rep-
resentations are indeed generated by the unique irreducible representation for γM (M =
0, 1, . . . ,D − 1) with the two choices of a for the matrix γD−1, respectively. So both of

them should be of dimension 2
D−1

2 .
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A Dirac spinor ψ can be represented by a vector of 2D/2 or 2
D−1

2 components for even or
odd space-time dimensions D, respectively. Its infinitesimal transformation is generated by
γMN

δψ =
1

4
ωMNγMN ψ . (A.9)

The conjugate Dirac spinor is defined as

ψ̄ = ψ†γ0 , (A.10)

so that the combination ψ̄ψ is invariant under the transformation (A.9). Dirac spinors are
reducible spinors. There are two possibilities to obtain from it irreducible spinors. For even
space-time dimensions, one can construct the following matrix

γD+1 = ηγ0γ1 . . . γD−1 , (A.11)

which commutes with γMN , thus applying γD+1 to a spinor just yields another spinor.
This matrix can be used to construct projection operators. For this purpose, one requires
(γD+1)

2 = 1, which leads to

η2 = (−1)
D−2

2 . (A.12)

The projection operators can be defined as

P± =
1

2
(1 ± γD+1) , (A.13)

which clearly satisfy

P±P∓ = 0 , P 2
± = P± , P± + P∓ = 1 . (A.14)

The Dirac spinor can be decomposed into two inequivalent Weyl spinors by applying the
projection operators

ψ± = P±ψ . (A.15)

Note that the construction of γD+1 is possible only for even space-time dimensions, therefore
Weyl spinors exist only in even space-time dimensions.

Another possibility to obtain irreducible spinors is to impose the reality condition or Ma-
jorana condition

ψc = Cψ̄T = ψ , (A.16)

where ψc is the charge conjugate of ψ. This condition is equivalent to requiring the Majorana
conjugate ψ̄M of spinor ψ be equal to its Dirac conjugate ψ̄

ψ̄M = ψTC = ψ̄ = ψ†γ0 . (A.17)

This condition selects the allowed space-time dimensions for the existence of Majorana spinors
to be D = 2, 4, 10, 12 . . . [159,160], i.e. in odd space-time dimensions, there are no Majorana
spinors. In ordinary quantum field theories, we are mainly concerned with the case that the
space-time dimensions D = 4, in which both Weyl and Majorana spinors are allowed.
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A.2 Spinors in four dimensions

In four space-time dimensions, a Dirac spinor ψ is represented by a vector with four com-
ponents. The projection operators can be written as

P± =
1

2
(1 ± γ5) (A.18)

with the matrix

γ5 = γ5 = −iγ0γ1γ2γ3 . (A.19)

In the chiral or Weyl representation of the gamma matrices are given by

γµ =





0 σµ

σ̄µ 0





with

σµ = (I, σ) ,

σ̄µ = (I,−σ) = σµ , (A.20)

where I represents the two-dimensional identity matrix and σ the Pauli matrices, the matrix
γ5 takes a diagonal form

γ5 =





−I 0

0 I



 .

In this representation the projection operator 1
2(1−γ5) projects out the upper two components

of the Dirac spinor, which have left chirality, while 1
2(1 + γ5) projects out the lower two

components which have right chirality. A Dirac spinor can thus be decomposed as

ψ = ψL + ψR , (A.21)

where ψL and ψR are Weyl spinors with

ψL =





λα

0



 , ψR =





0

χ̄α̇



 ,

where different labels α, α̇ are used to indicate that these two Weyl spinors transform dif-
ferently under the Lorentz group and α, α̇ = 1, 2. The action of the Lorentz group on the
Weyl spinors can be represented by a matrix M of SL(2, C), which yields the following
transformation properties

λα →M β
α λβ , λα → (M−1) α

β λ
β ,

χ̄α̇ → (M∗) β̇
α̇ χ̄β̇ , χ̄α̇ → [(M∗)−1] α̇

β̇
χ̄β̇ , (A.22)
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where χ̄α̇ = (χα)∗, χ̄α̇ = (χα)∗ and the spinor indices are raised and lowered as follows

λα = ǫαβλα , λα = ǫαβλ
α ,

χ̄α̇ = ǫα̇β̇χ̄β̇ , χ̄α̇ = ǫα̇β̇χ̄
β̇ (A.23)

with

ǫαβ = ǫα̇β̇ =





0 1

−1 0



 , ǫαβ = ǫα̇β̇ =





0 −1

1 0



 .

As a consequence, the following identities hold

χαλα = −χαλ
α = λαχα ,

χ̄α̇λ̄
α̇ = −χ̄α̇λ̄α̇ = λ̄α̇χ̄

α̇ ,

χα(σµ)αα̇λ̄
α̇ = χα(σ̄µ)α̇αλ̄α̇ = −λ̄α̇(σ̄µ)α̇αχα . (A.24)

Given a two-component Weyl spinor λ, one can always construct a four-component Majorana
spinor

ψM =





λα

λ̄α̇



 ,

which clearly has the same number of degrees of freedom as a Weyl spinor. In the Majorana
representation of gamma matrices, which is a representation equivalent to the Weyl repre-
sentation with purely imaginary gamma matrices, the Majorana spinors can be realized as
real spinors.

In four dimensions, the following identities hold for the gamma matrices

γµγµ = 4 ,

γµγνγµ = −2γν ,

γµγνγργµ = 4gνρ ,

γµγνγργσγµ = −2γσγργν ,

γµγνγργσγλγµ = 2(γλγνγργσ + γσγργνγλ) , (A.25)

while the traces of the gamma matrices fulfill

Tr(γµ) = Tr(γ5) = 0 ,

Tr(γµγ5) = Tr(γµγνγ5) = 0 ,

Tr(γµ1γµ2 · · · γµn) = 0 for n odd ,

Tr(γµγν) = 4gµν ,

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr(γµγνγργσγ5) = −4iǫµνρσ . (A.26)
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A.3 Grassmann variables

In the discussion of superspace in chapter 3, anticommuting Grassmann variables have
been introduced. The basic feature of such variables is that they satisfy the anticommutation
relations

{θα, θβ} = {θα, θ̄β̇} = {θ̄α̇, θ̄β̇} = 0 , (A.27)

which clearly indicates that

θ2
α = θ̄2

α̇ = 0 . (A.28)

The derivatives of Grassmann variables also anticommute

{ ∂

∂θα
,
∂

∂θβ
} = { ∂

∂θα
,
∂

∂θ̄β̇

} = { ∂

∂θ̄α̇
,
∂

∂θ̄β̇

} = 0 . (A.29)

The integration over Grassmann variables is defined such that

∫

dθα =

∫

dθ̄α̇ = 0 , (A.30)

and
∫

dθα θα =

∫

dθ̄α̇ θ̄α̇ = 1 , (A.31)

where no summation over the indices is implied. The volume elements in superspace are
defined as

d4θ = d2θ d2θ̄ (A.32)

with

d2θ = −1

4
dθα dθα ,

d2θ̄ = −1

4
dθ̄α̇ dθ̄

α̇ . (A.33)

When integrating over the superspace, only the following integrals are non-zero

∫

d2θ θ2 = 1 ,

∫

d2θ̄ θ̄2 = 1 . (A.34)

Other useful identities concerning the Grassmann variables can be found, e.g. in ref. [30].



Appendix B

Loop Integrals

In this Appendix we discuss the one-loop integrals relevant for this thesis. As discussed in
previous chapters, the one-loop photonic diagrams can lead to infrared singularities and/or
on-shell singularities in the soft photon region. These singularities are contained in the scalar
integrals resulting from such diagrams. The analytical results of these scalar integrals are
listed at the end of this Appendix. For other loop integrals that do not involve the on-shell
singularities, we used LoopTools [133, 134], which is a program package based on FF [162],
to perform a numerical evaluation.

B.1 One-loop integrals

We closely follow the conventions and notation of refs. [136, 138]. The general one-loop
tensor N -point integrals can be written as

TN
µ1...µp

(p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)4−D

iπ2

∫

dDq
qµ1

· · · qµp

N0N1 · · ·NN−1
(B.1)

with the denominators given by

Ni = (q + pi)
2 −m2

i + iǫ , i = 0, . . . ,N − 1 , p0 = 0 , (B.2)

where the loop momentum q is integrated over D space-time dimensions. The momenta in
the parentheses of the above equation represent the momenta of the internal propagators,
and iǫ (ǫ > 0) is an infinitesimal imaginary part that gives rise to imaginary part of the
S-matrix element. The parameter µ has mass dimension and is introduced to keep the mass
dimension of the integral fixed when varying the space-time dimension D.

The one-loop tensor integrals can be decomposed into tensors constructed from the mo-
menta appearing in the denominators and the metric tensor with symmetric coefficient func-
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tions according to Lorentz covariance. For instance,

TN
µ1

=
N−1
∑

i=1

piµ1
TN

i ,

TN
µ1µ2

=

N−1
∑

i,j=1

piµ1
pjµ2

TN
ij + gµ1µ2

TN
00 , (B.3)

where the coefficient functions can be iteratively reduced to scalar integrals [140]. Note that
for N > 4, the term involving the metric tensor gµ1µ2

in the decomposition is redundant,
since the metric can be expressed in terms of four linearly dependent momentum vectors that
span the Minkowski space [136].

Within this thesis, up to five-point integrals are involved. We will denote the one- to five-
point integrals by A, B, C, D, E following [139]. The corresponding scalar integrals are
denoted by a subscript 0. The simplest scalar integral is the scalar one-point integral A0, the
explicit result of which is given by

A0(m) = m2(∆ − ln
m2

µ2
+ 1) + O(D − 4) , (B.4)

with

∆ =
2

4 −D
− γE + ln 4π , (B.5)

where Γ(x) is the Gamma function, and γE = 0.5772 . . . is the Euler constant. The UV
divergence is contained in ∆.

The result of the scalar two-point integral reads

B0(p1,m0,m1) = ∆ + 2 − ln
m0m1

µ2
+
m2

0 −m2
1

p2
1

ln
m1

m0

− m0m1

p2
1

(

1

r
− r

)

ln r + O(D − 4) , (B.6)

where the variable r satisfies

r +
1

r
=
m2

0 +m2
1 − p2

1 − iǫ

m0m1
. (B.7)

Note that the scalar two-point integral itself is IR finite, only its derivative with respect
to its momentum argument can be IR divergent. The expressions for the scalar three- and
four-point integrals are rather lengthy and can be found in ref. [101].

The tensor integrals can be reduced to scalar integrals by inverting their covariant decom-
positions. For example, the decomposition equation of the vector two-point integral

Bµ(p1,m0,m1) = p1µB1 (B.8)
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can be inverted as

B1 =
1

p2
1

pµ
1Bµ , (B.9)

where the right-hand side can be expanded as a linear combination of one- and two-point
scalar integrals, yielding

B1(p1,m0,m1) =
1

2p2
1

(

A0(m0) −A0(m1) − (p2
1 +m2

0 −m2
1)B0(p1,m0,m1)

)

. (B.10)

Analogously one obtains

B00 =
1

2(D − 1)

(

A0(m1) + 2m2
0B0(p1,m0,m1) + (p2

1 +m2
0 −m2

1)B1(p1,m0,m1)
)

,

B11 =
1

2(D − 1)p2
1

(

(D − 2)A0(m1) − 2m2
0B0(p1,m0,m1)

−D(p2
1 +m2

0 −m2
1)B1(p1,m0,m1)

)

. (B.11)

The results for the coefficient functions of the three- and four-point tensor integrals can be
found in ref. [136].

The drawback of this reduction procedure is that it involves the inverse of the Gram de-
terminant, which is a determinant constructed from the scalar products of the momenta
appearing in the tensor integral. At the boundary of phase space where the momenta be-
come linearly dependent, the Gram determinant becomes vanishing and leads to numerical
instability. For the N -point integrals with N ≤ 4 usually the Gram determinant vanishes
only at the boundary of phase space, while for N > 4, the Gram determinant can also vanish
within the phase space. In ref. [136] a reduction method of five-point integrals has been
developed in which the occurrence of the inverse Gram determinant can be avoided. This
reduction method has been implemented in LoopTools [133].

In the following we list the UV-divergent parts of the commonly used tensor integrals

A0(m0) = − 2m2
0

D − 4
,

B0(p1,m0,m1) = − 2

D − 4
,

B1(p1,m0,m1) =
1

D − 4
,

B00(p1,m0,m1) =
1

6(D − 4)
(p2

1 − 3m2
0 − 3m2

1) ,

B11(p1,m0,m1) = − 2

3(D − 4)
,

C00(p1, p2,m0,m1,m2) = − 1

2(D − 4)
,

C00i(p1, p2,m0,m1,m2) =
1

6(D − 4)
,

D0000(p1, p2, p3,m0,m1,m2,m3) = − 1

12(D − 4)
. (B.12)
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The momentum dependence of the UV-divergent part of the coefficient function B00 indicates
that its derivative is also UV-divergent, the derivation of its UV-divergent part is straight-
forward.

B.2 Analytical results for on-shell singular scalar integrals

In the following we give explicitly the analytical expressions of the scalar integrals that
involve the on-shell singularities discussed in chapter 5. The variables ki, Sij and the mass
parameters are also defined there. These integrals are computed for zero gauge boson width.
The real squared mass M2

V should be replaced by the complex squared mass M2
V − iMV ΓV

in the result, if singularities arise when k2
± approaches M2

V .

B0(k
2
−, 0,MV ) = ∆ + 2 + ln

(

µ2

M2
V

)

+

(

M2
V

k2
−

− 1

)

ln

(

1 − k2
−

M2
V

− iǫ

)

,

C0(−k4,−k−, 0,mµ,MV ) =
1

k2
−

{

ln
k2
−
m2

µ

ln
(

1 − k2
−

M2
V

− iǫ
)

+ Li2

(

1 − k2
−

M2
V

− iǫ
)

− π2

6

}

,

C0(−k2, k−, 0,me,MV ) =
1

S24 + S25

{[

ln
(

M2
Vm

2
e

)

− 2 ln
(

− S24 − S25 − iǫ
)]

× ln
(

M2
V − k2

− − iǫ
)

− ln
(

M2
V − k2

− − S24 − S25 − iǫ
)

×
[

ln
(
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(
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3

}

,

D0(−k2, k−, k4, λ,me,MV ,mµ) =
1

S24(k2
− −M2

V )

{

− Li2

(

− S25 + k2
− −M2

V

S24

)

+ 2 ln
(

− S24

memµ
− iǫ

)

ln
(M2

V − k2
−
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)
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(mµ
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)

− ln2
(M2

V − k2
− − S24 − S25

meMV
− iǫ

)
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3

}

,
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D0(−k2,−k+, k4, λ,me,MV ,mµ) =
1

S24(k2
+ −M2

V )

{

− Li2

(

− S34 + k2
+ −M2

V

S24

)

+ 2 ln
(

− S24

memµ
− iǫ

)

ln
(M2

V − k2
+

λMV
− iǫ

)

− ln2
( me

MV

)

− ln2
(M2

V − k2
+ − S24 − S34

mµMV
− iǫ

)

− π2

3

}

. (B.13)
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Appendix C

Properties of Unstable Particles

Most particles in the SM and beyond are unstable, experimentally these unstable particles
manifest themselves as resonances in scattering amplitudes. There exists no S-matrix element
for external unstable particles, since they can not be defined as asymptotic states. In per-
turbation theory unstable particles can be viewed as intermediate states and are associated
with poles in S-matrix with finite imaginary parts and lie below the real axis in the p2 plane.
The emergence of imaginary part can be understood as follows. Stable particles do not decay,
it follows from the optical theorem that the imaginary part of the sum of all one-particle-
irreducible (1PI) insertions to the propagator of the stable particle, hence the imaginary part
of the pole vanishes. Unstable particles do decay, optical theorem then implies a non-zero
imaginary part of the pole. A proper description of unstable particles in perturbation theory
requires a resummation of 1PI insertions to its propagator (Dyson resummation). It has
been shown that unitarity and causality are preserved in renormalizable theories involving
unstable particles [163].

For processes that involve an unstable particle as intermediate state, singularities can occur
in the lowest order calculations due to the presence of the propagator of the unstable particle.
These singularities can be avoided by including higher-order self energy corrections of the
unstable particle, the imaginary part of which, behaves as a regulator in the vicinity of the
resonance and produces the Breit-Wigner shape of resonance. The inclusion of higher-order
self energy corrections corresponds to the following resummation

D(p2) =
i

p2 −m2
0 + iǫ

(1 +
−Σ(p2)

p2 −m2
0 + iǫ

+ · · · )

=
i

p2 −m2
0 + Σ(p2)

, (C.1)

where m0 denotes the unrenormalized bare mass and Σ(p2) denotes the 1PI self energy.

From a practical point of view, the incorporation of the resummed propagator into the
amplitude of a resonant process is not trivial. If this is done naively, for example, simply
replacing the bare propagator in the tree-level amplitude by the dressed (resummed) one,
usually the fulfillment of basic field theoretical requirements, e.g. gauge invariance of the
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S-matrix element will be spoiled. This is not surprising, since this naive replacement only
takes into account higher-order corrections to part of the tree-level amplitude and thereby
mixes different perturbative orders, while gauge invariance is guaranteed order by order in
perturbation theory. There have been different proposals to implement the width of unstable
particles in a consistent manner, each of them has its own advantage and disadvantage and
may be suitable for different circumstances. We have described some of such proposals in
Chapter 5.

Another issue related to unstable particle is the definition of its mass and width. In the
usual field theoretic treatment, the inverse propagator of a stable particle has a real pole
position, which can be identified as the physical mass of the stable particle

D−1(m2
ph) = m2

ph −m2
0 + Σ(m2

ph) = 0 , (C.2)

thus

m2
ph = m2

0 − Σ(m2
ph) . (C.3)

When generalizing to unstable particles, the pole position becomes complex, one defines the
pole of the real part of the inverse propagator as the on-shell mass

ReD−1(m2
os) = m2

os −m2
0 + Re Σ(m2

os) = 0 , (C.4)

yielding

m2
os = m2

0 − Re Σ(m2
os) . (C.5)

From this definition the propagator can be expanded as

D(p2) =

(

1 + ReΣ′(m2
os)
)−1

p2 −m2
os + i ImΣ(p2)

1+ReΣ′(m2
os)

. (C.6)

It then follows that the on-shell width can be defined as

mosΓos =
Im Σ(m2

os)

1 + Re Σ′(m2
os)

. (C.7)

Sirlin [164] showed that the on-shell definition of the unstable particle mass is gauge-dependent
beyond the one-loop order. This gauge dependence can be erased by going to a more fun-
damental ”pole definition” that involves the position of the entire complex pole, which is an
intrinsic property of the S-matrix. According to the pole definition, the mass and width of
the unstable particle are defined by the following decomposition of the pole

m2 = m2
0 − Σ(m2) = m2

p − impΓp . (C.8)

Note that the width Γp is a higher-order effect, expanding the self energy in Γp/mp yields

m2
p = m2

0 − Re Σ(m2
p) − ImΣ(m2

p)Im Σ′(m2
p) + O(α3) ,

mpΓp = Im Σ(m2
p)[1 − Re Σ′(m2

p) + (Re Σ′(m2
p))

2 − 1

2
Im Σ(m2

p)Im Σ′′(m2
p) + O(α3)] . (C.9)
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From Eq. (C.5) and (C.9) one can see that these two definitions coincide at one-loop level
and differ only by two-loop contributions, thus the on-shell mass is, as the pole mass, gauge
invariant at one-loop order. The higher order contributions lead to a difference of the defi-
nition of unstable particle masses in these two schemes. For example, for the W boson the
mass difference is 27MeV, and for the Z boson it is 34MeV.
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