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Abstract

In this thesis we analyze cutting planes for general mixed integer linear programs from a
geometric point of view and discuss some related algorithms. It is the main goal to find
answers to the following two fundamental questions: First, how can the mixed integer
hull of an arbitrary polyhedron be generated by cutting planes? Secondly, how can a
classical cutting plane algorithm be designed which solves an arbitrary mixed integer
linear program exactly in finite time.

The crucial result for dealing with these two problems is a natural generalization of the
well known split cuts of Cook, Kannan, and Schrijver to cuts which are based on multi-
term disjunctions. We call them k-disjunctive cuts and analyze their properties in detail.
These cuts allow us to answer the first question. We also provide a way for constructing
k-disjunctive cuts and show how they can be combined with classical cutting planes to
obtain a finite cutting plane algorithm for rational mixed integer linear programs.

We complete our explanations with a geometric comparison of some well known cutting
planes, an analysis of their properties in generating the mixed integer hull of a poly-
hedron, as well as a consideration of their algorithmic performance. Moreover, we give
some examples and applications to illustrate our theoretical results.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Schnittebenen für allgemeine gemischt-ganz-
zahlige lineare Programme und zugehörigen Algorithmen. Dabei werden vor allem die
beiden folgenden Fragestellungen untersucht: Wie kann die gemischt-ganzzahlige Hülle
eines beliebigen Polyeders mit Hilfe von Schnittebenen bestimmt werden? Wie kann ein
klassischer Schnittebenenalgorithmus konstruiert werden, der ein beliebiges gemischt-
ganzzahliges lineares Programm stets in endlicher Zeit exakt löst? Grundlegend für die
Untersuchung der beiden Probleme ist dabei eine geometrische Vorgehensweise.

Der zentrale Ansatz zur Lösung der beiden Problemstellungen besteht in einer Verallge-
meinerung der bekannten Split Cuts von Cook, Kannan und Schrijver auf Schnittebenen,
die auf Multiterm Disjunktionen beruhen. Diese Klasse von Schnittebenen wird dabei
als k-disjunctive cuts bezeichnet und im Detail untersucht. Mit Hilfe dieser Schnitt-
ebenen ist es nun auf natürliche Weise möglich, eine Antwort auf die erste Frage zu
finden. Ebenso eröffnet ein konstruktives Verfahren zur Berechnung von k-disjunctive
cuts die Möglichkeit, einen endlichen Schnittebenenalgorithmus für rationale gemischt-
ganzzahlige Programme anzugeben.

Die Ausführungen in dieser Arbeit werden dabei ergänzt durch einen geometrischen
Vergleich einiger bekannter Schnittebenen sowie eine Untersuchung ihrer Eigenschaften
beim Bestimmen der gemischt-ganzzahligen Hülle eines Polyeders bzw. bei Verwendung
in einem Schnittebenenalgorithmus. Außerdem werden die theoretischen Ergebnisse
anhand einiger Beispiele und Anwendungen illustriert.
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1 Introduction

In this thesis we deal with cutting planes and related algorithms for general mixed integer
linear programs (MILP). MILP are linear optimization problems in which some of the
variables are restricted to be integral. They can be expressed in the form

max cx+ hy
Ax+Gy ≤ b
x ∈ Zp, y ∈ Rq,

which will also be the standard representation for our considerations. MILP form an
interesting and important class of problems, as for example many optimization problems
which arise in economic and industrial applications can be modeled as MILP.

Cutting planes are an important tool for solving MILP. Before we consider this technique
in more detail, we introduce the basic approaches for solving MILP. General MILP
contain several special classes of problems. In the case of c = 0 and A = 0 we obtain an
usual linear program (LP)

max{hy : Gy ≤ b, y ∈ Rq}.

LP are the foundation of linear optimization and can be solved efficiently. For this
purpose, the simplex algorithm or interior point methods are used in practice. In the
case of h = 0 and G = 0 the MILP becomes the integer linear program (ILP)

max{cx : Ax ≤ b , x ∈ Zp}.

Moreover, we obtain two more important special cases by restricting the integral vector
x to be binary. They are mixed binary linear programs and binary linear programs,
respectively.

The approaches for solving general MILP and ILP are quite similar, where solving a
MILP is typically more involved than solving an ILP. This is due to the simpler struc-
ture of an ILP, although integrality constraints are imposed on all variables. We can
distinguish between three basic solution strategies: An enumerative approach, a primal
approach which is based on finding augmentation vectors, and thirdly a dual cutting
plane approach. Besides, there are also hybrid approaches as for example branch-and-
cut algorithms which combine enumerative and dual techniques. We briefly explain the
ideas of the three approaches.
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1 Introduction

The solution set - or at least the subset of integral restricted components of the solution
set in the case of a MILP - is discrete. If the solution set is moreover bounded, there
are only finitely many possible solutions which can be evaluated. Thus selecting the
solution with the best objective function value solves the given problem. This is the
underlying idea of an enumerative approach. Since the number of possible solutions
usually becomes extremely large, one tries to evaluate most of the solutions implicitly.
A possibility is computing bounds of the objective function value for subsets of the
solution set which guarantee that the optimal solution cannot be contained in these
subsets. Representatives of an enumerative approach are the well known branch-and-
bound algorithm and dynamic programming. An overview of these two fundamental
methods can be found for example in the books of Schrijver [Sch86], Nemhauser and
Wolsey [NW88], or of Bertsimas and Weismantel [BR05].

In a primal approach, it is the basic idea to start with an arbitrary feasible solution
and to check whether this solution can be improved. So the following augmentation
problem has to be solved: Find a solution with a better objective function value or
decide that none such exists. An algorithm for solving an arbitrary (M)ILP is now
based on solving the augmentation problem repeatedly until a optimal solution has been
found. Therefore, it is a crucial point to solve the augmentation problem efficiently. In
this context, an important tool is given by the so called test sets. We refer to the survey
of Aardal, Weismantel, and Wolsey [AWW02] and to the thesis of Köppe [Köp02] for a
detailed introduction to primal approaches for ILP and MILP.

At last we discuss the dual cutting plane approach for solving MILP which is the foun-
dation for this thesis. It is again based on a simple idea. We start with solving the LP
relaxation of the MILP - which means that we ignore the integrality constraints on the
variables - using the simplex algorithm. If the related solution is also feasible for the
MILP and satisfies the integrality constraints, then an optimal solution of the MILP
has been found. Otherwise, we add a cutting plane to the LP relaxation which cuts
off the current optimal vertex of the relaxation but no feasible point of the MILP. Here
a cutting plane is an affine half-space which contains all feasible points of the MILP
and separates the infeasible vertex from the feasible points of the MILP. We repeat this
approach until either an optimal solution of the MILP has been found or infeasibility of
the problem is detected. The basic idea of this algorithm is also described in Figure 1.1
and an easy one step example for a two dimensional problem is given in Figure 1.2.

In solving a MILP by a cutting plane algorithm there are two important issues which
have to be considered. First, it is the question how to find a feasible cutting plane which
cuts off the current (mixed) integer infeasible LP solution. Secondly, as it is the aim of an
algorithm to solve a MILP in finite time, we have to consider if and how cutting planes
can be combined to find an optimal solution as efficiently and fast as possible. Many
approaches have been developed to deal with the first issue in general and for several
special cases. We give a short overview of the development of cutting planes at the end of

2



infeasible

x∗ integer

LP ← LP∗

Input: MILP

Solve LP relaxation

Solution: (x∗, y∗)

Find cut αx + γy ≤ γ
with αx∗ + γy∗ > γ

Add cut to LP
relaxation: LP∗

Stop:
MILP infeasible

Stop:
(x∗, y∗) optimal
solution

Figure 1.1: The basic principle of a cutting plane algorithm according to [Pad05]

x

y (x1, y1)

(a) Optimal LP solution (x1, y1)
with x1 6∈ Z

x

y (x1, y1)

(b) Cutting plane which cuts off
(x1, y1) but no feasible point

x

y

(x2, y2)

(c) Optimal LP solution (x2, y2)
with x2 ∈ Z which is also optimal
for the MILP

Figure 1.2: Example of one step of a cutting plane algorithm
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1 Introduction

this section and analyze some important representatives in detail in Chapter 2. However,
unlike the computation of valid cutting planes, the second issue is more involved. In fact
no finite cutting plane algorithm is known for solving a general MILP. Finite algorithms
are only known for the special cases of pure integer and mixed binary programs; see for
example [Cor08, MMWW02, Pad05]. This fact is supposed to be the starting point for
this thesis and is discussed extensively. It is the aim both to characterize cutting planes
which are required for a finite algorithm and to state an explicit finite cutting plane
algorithm for solving general MILP. Here we also deal with the equivalent question how
the mixed integer hull of an arbitrary polytope can be generated by cutting planes. An
overview of the content and the results of this thesis is given next in Section 1.1.

We conclude this introduction with a short overview of the development of cutting
planes for MILP, where we focus on more theoretical results and make no claim to be
complete. In this context we refer to [Grö04, Pad05] for some very detailed summaries.
We also want to refer again to the the papers [Cor08, MMWW02] and to the books
[BR05, NW88, Sch86] for extensive information about various issues concerning cutting
planes and algorithms.

Cutting planes for ILP and MILP have a 50-year history since the first approaches of
Dantzig, Fulkerson, and Johnson [DFJ54], Beale [Bea58] and the introduction of the
well known integer and mixed integer Gomory cuts [Gom58, Gom60, Gom63]. In the
1970ies, amongst others, some contributions were made by Young [You71], Garfinkel and
Nemhauser [GN72], Salkin [Sal75], Jeroslow [Jer79], and Balas concerning intersection
cuts and disjunctive programming [Bal71, Bal79, Bal07]. At the end of the 1980ies and
in the 1990ies, the well known split cuts and mixed integer rounding inequalities were in-
troduced by Cook, Kannan, and Schrijver [CKS90] and Nemhauser and Wolsey [NW90],
respectively. Besides, lift-and-project cuts for mixed binary linear programs were intro-
duced by Balas, Ceria, and Cornuéjols [BCC93] and Gomory cuts were revisited again
[BCCN96, Cor05]. From the 1990ies to the present, a strengthening of known mixed
integer cuts has been investigated by Andersen, Cornuéjols, and Li [ACL05a], Köppe
and Weismantel [KW04], and Günlük and Pochet [GP01]. New properties of split and
intersection cuts were found by Andersen, Cornuéjols, and Li [ACL05b]. Recently, a new
type of cutting planes was introduced by Andersen, Louveaux, Weismantel, and Wolsey
[ALWW07].

1.1 Overview and results

According to the motivation in the last section, the main purpose of this thesis is to
investigate the following two questions:
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1.1 Overview and results

• What type of cutting planes is necessary to generate the mixed integer hull of an
arbitrary polyhedron or how can those cutting planes be characterized?

• How can a classical cutting plane algorithm be designed which solves a general
MILP in finite time?

As it is the aim to find answers to these two more theoretical questions, practical con-
siderations and applications are only mentioned marginally. Moreover, we choose a
geometric approach for dealing with both problems.

We start with some definitions, the introduction of necessary notation, and some useful
results in the next section. We finish this first chapter with some acknowledgments.

In Chapter 2 we discuss some known cutting planes for integer and mixed integer linear
programs. We start with Chvátal-Gomory cuts for ILP in Section 2.1 and turn to cuts
for MILP in Section 2.2. We explain the basic principle for deriving cuts for MILP
and define split cuts as a very important class of cuts in Section 2.2.1. Afterwards, we
introduce intersection cuts in Section 2.2.2 as the main tool for computing cuts explicitly.
Next, we define the well known mixed integer Gomory cuts and mixed integer rounding
inequalities in Section 2.2.3 and Section 2.2.4 and show that they can be seen as a special
case of intersection cuts. We also state a variation of the basic mixed integer Gomory
algorithm for MILP. In Section 2.2.5 we explain two concepts for finding stronger cuts
than in the basic cutting plane algorithm, namely reduce-and-split cuts and cuts from a
mixed integer Farkas Lemma. Finally, we present in Section 2.2.6 the idea of the recently
developed cuts from two rows of the simplex tableau which do not belong to the class
of split cuts.

In Chapter 3 we come to one of the main contributions of this thesis and introduce
the so called k-disjunctive cuts as a natural generalization of split cuts. These cuts
allow us to solve the first question stated at the beginning of this section. As we will
see, the answer to this question depends on the geometric structure of the facets of the
mixed integer hull. We start in Section 3.1 with the definition of k-disjunctive cuts and
irrational k-disjunctive for rational and real polyhedra, respectively, and discuss some
basic properties. In Section 3.2 we repeat an approximation property of split cuts and
discuss some implications which is the basis for the later results. Next, we analyze in
Section 3.3 which k-disjunctive cuts are necessary to generate the mixed integer hull
of an arbitrary polyhedron. We distinguish between rational and real polytopes as the
situation can be more involved in the later case. In Section 3.4 we deal with the issue
of how deep feasible k-disjunctive cuts can be computed for a given rational polyhedron
and finally, in Section 3.5, we briefly refer to some recent work of Andersen, Louveaux,
and Weismantel which follows a similar approach to characterize the mixed integer hull
of a general polyhedron.

In Chapter 4 we consider explicit algorithms for solving MILP and deal with the second
main question of this thesis. We start in Section 4.1 with a short overview of some
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1 Introduction

problems which arise in solving MILP with a classical cutting plane algorithm. Next, we
discuss in Section 4.2 two approximation algorithms which find a nearly optimal feasible
solution of a real MILP. We repeat an algorithm of Owen and Mehrotra in Section 4.2.1
and introduce a simple cutting plane based algorithm in Section 4.2.2. Finally, we turn
to exact algorithms for MILP in Section 4.3 and introduce in Section 4.3.1 the basic
form of a new cutting plane algorithm which solves a rational MILP in finite time and is
based on k-disjunctive cuts. In Section 4.3.2 and Section 4.3.3 we discuss two important
issues of the exact cutting plane algorithm, namely the computation of extreme rays of
cones and the generation of irredundant representations of projections. We finish this
chapter with an improvement of the basic exact algorithm by a sequential alternative in
Section 4.3.5 and give some examples and applications in Section 4.3.5.

To conclude this thesis, we briefly summarize our results and give an outlook for possible
further research in Chapter 5.

We note that some of the results of Chapter 3 and Chapter 4 have appeared previously
in the preprint [Jör07].

1.2 General foundations

We introduce some notation and give some definitions and basic results which are re-
quired for this thesis. We presume that the reader is familiar with the foundations
of linear and combinatorial optimization as they can be found for example in [BT97],
[BR05], [NW88], or [Sch86].

For vectors x ∈ Rp, y ∈ Rq, we usually not distinguish between row and column vectors.
It will always become clear in the context which form is meant. We note that for p = q
the product xy of two vectors of equal size denotes the usual Euclidean scalar product.
Moreover, we denote by (x, y) the p+ q dimensional vector (x1, . . . , xp, y1, . . . , yq).

As most of the results in this thesis are derived by a geometric reasoning we focus on
mixed integer linear programs (MILP) in natural form which are defined by inequality
constraints. So we consider MILP

max cx+ hy
Ax+Gy ≤ b
x ∈ Zp,

(1.1)

with real input data given by the matrices A ∈ Rm×p and G ∈ Rm×q, and the vectors
b ∈ Rm, c ∈ Rp, h ∈ Rq. However, it is necessary to restrict to MILP with rational input
data for the derivation of some results and algorithms. We observe that by suitable
scaling all input data can also be assumed to be integral in this case. Moreover, if q = 0

6



1.2 General foundations

or p = 0 in (1.1) we obtain an integer linear program (ILP) or a linear program (LP),
respectively.

If we omit the integrality constraint on x in (1.1) we obtain the LP relaxation of the
(M)ILP. Its feasible domain is given by

P := {(x, y) ∈ Rp+q : Ax+Gy ≤ b}. (1.2)

We define the (mixed) integer hull PI of P as the convex hull of the feasible points of
the (M)ILP, so

PI := conv {(x, y) ∈ Zp × Rq : (x, y) ∈ P}. (1.3)

For a polyhedron P which is either rational or bounded, its (mixed) integer hull PI is
again a polyhedron. This was first proven by Meyer [Mey74].

Theorem 1.1 ([Mey74]). Let P = {(x, y) ∈ Rp+q : Ax + Gy ≤ b} be either rational or
bounded. Then PI is a polyhedron. �

Throughout this thesis, the sets P, PI always refer to the feasible domain of the LP
relaxation of a (M)ILP and its (mixed) integer hull.

The pure integer hull PI of an arbitrary polytope P is always rational. Moreover, there
exists a ’rational approximation’ of P .

Lemma 1.2. Let P ⊆ Rp be a polytope and PI its (pure) integer hull. Then there exists
a rational polytope Q such that P ⊆ Q and PI = QI .

Proof. As P is bounded, there exists an integer M such that

P ⊆ {x ∈ Rp : ||x||∞ ≤M} =: S.

Now for each integral vector z ∈ S \ P there exists a rational half-space αzx ≤ γz
containing P but not containing z. So we can take for Q the (finite) intersection of S
with all these half-spaces.

At some points it is more convenient to consider MILP which are given in standard form
by equations and non negativity constraints on x and y. So we have

max cx+ hy
Ax+Gy = b
x ≥ 0, y ≥ 0
x ∈ Zp,

(1.4)

where A ∈ Rm×p, G ∈ Rm×q and b ∈ Rm, c ∈ Rp, h ∈ Rq. Both representations of a
MILP in (1.1) and (1.4) are equivalent and can be transformed into each other.
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1 Introduction

A vertex (x∗, y∗) of the LP relaxation P of a MILP (1.1) and (1.4) can be assigned to
at least one basis B. Here, in the first case, a basis B is a subset of p + q rows of the
system Ax+Gy ≤ b such that ABx∗+GBy

∗ = bB and the submatrix (A G)B is regular.
In the second case, a basis B is a subset of m columns such that (x∗, y∗)i = 0 for i 6∈ B.
We denote by B the set of all bases B of a vertex (x∗, y∗).

To be able to sort several solutions of a (MI)LP, we define the lexicographic maximal
solution

(x∗, y∗) = arglexmax {cx+ hy : Ax+Gy ≤ b} (1.5)

of a (mixed integer) linear program. Here we say that a solution (x1, y1) is lexicographic
greater than a solution (x2, y2) if the first non zero entry of the difference vector

(cx1 + hy1, x1, y1)− (cx2 + hy2, x2, y2)

is greater than zero. To obtain a lexicographic maximal solution of a LP one can use for
example a lexicographic version of the simplex algorithm.

A cutting plane for a (M)ILP is an inequality αx + βy ≤ γ with α ∈ Rp, β ∈ Rq and
γ ∈ R which is valid for PI but not for P . Moreover, we define more general a cutting
plane αx+ βy ≤ γ for a closed convex set S ⊆ Rp+q as an inequality which is not valid
for S but which is valid for all (x, y) ∈ S with x ∈ Zp.

The projection of polyhedra P ⊆ Rp+q on the p-dimensional subspace Rp of integral
variables will be an important tool later in this thesis. Here the projection projX (P ) of
P on the x-space Rp is defined by

projX (P ) := {x ∈ Rp : ∃y ∈ Rq : (x, y) ∈ P}. (1.6)

The projection projX (P ) can be described by the following lemma. Here we say that
a set of vectors {v1, . . . , vr} is the set of extreme rays of a cone Q if Q is generated by
{v1, . . . , vr}.

Lemma 1.3. Let P = {(x, y) ∈ Rp+q : Ax+Gy ≤ b} be a polyhedron. Then

projX (P ) = {x ∈ Rp : vrAx ≤ vrb ∀vr ∈ R},

where R is the set of extreme rays of the cone Q := {v ∈ Rm : GTv = 0, v ≥ 0}.

Proof. The statement follows by applying the Farkas Lemma; see for example [NW88].

We add the following variants of Lemma 1.3. If y ≥ 0 in the definition of P , the
projection cone Q is given by Q = {v ∈ Rm : GTv ≥ 0, v ≥ 0}. If P is additionally
given by equality constraints Ax + Gy = b, we have Q = {v ∈ Rm : GTv ≥ 0}. It is

8



1.2 General foundations

crucial for the computation of the projection projX (P ) to enumerate the extreme rays
of the cone Q. We discusse this issue in Section 4.3.2. We note that another way for
computing the projection of a polyhedron is given by the Fourier-Motzkin elimination
procedure; see [Sch86].

We also consider sequences of convex compact nested sets. Therefore, we define more
general the convergence of a sequence of compact nested sets.

Definition 1.4. Let (Si)i∈N be a sequence of compact nested sets. We say that the
sequence Si converges to a set S if for any ε > 0 there exists a k0 ∈ N such that

min
x∈S
||xk − x|| < ε for all k ≥ k0 and any xk ∈ Sk.

In this case we also write limi→∞ S
i = S.

We note that the definition of convergence in Definition 1.4 is in line with the known
concept of the Hausdorff-distance δ(K,L) of two compact sets K,L ⊆ Rn which is given
by

δ(K,L) = min{λ ≥ 0 : K ⊆ L+ λBn, L ⊆ K + λBn},
where Bn denotes the n-dimensional unit ball. In detail, as S ⊆ Si ∀i ∈ N by assumption
of Definition 1.4 it is

δ(S, Si) = min{λ ≥ 0 : Si ⊆ S + λBn} = max
xi∈Si

min
x∈S
||xi − x||,

see [Sch93] for more details.

We state two useful criteria which deal with the convergence of a sequence Si to a
polytope P and with the convergence of a sequence of projections projX (Si).

Lemma 1.5. Let P = {x ∈ Rp : akx ≤ bk, k ∈ {1, . . . ,m}} be a polytope and let (Si)i∈N
be a sequence of compact nested sets. Then

lim
i→∞

Si = P ⇐⇒ lim
i→∞

max{akx : x ∈ Si} = bk for all k ∈ {1, . . . ,m}.

Proof. The statement follows directly by comparing the definitions of convergence for
the sequences Si and max{akx : x ∈ Si}.

Lemma 1.6. Let (Si)i∈N ⊆ Rp+q be a sequence of compact nested sets converging to a
set S ⊆ Rp+q. Then

lim
i→∞

projX (Si) = projX (S).

Proof. The statement follows directly by Definition 1.4 as for (xi, yi) ∈ Si, (x, y) ∈ S it
is ||(xi, yi)− (x, y)|| ≥ ||xi − x||.

9



1 Introduction

According to (1.1), we allow MILP with real input data. Here we note that we have to
use the real Random Access Model to be able to deal formally with computations with
real input data in algorithms. We refer to [PS85] or [Pap94] for a detailed introduction
into this concept.

Finally, we discuss two assumptions which we make during this thesis. The first one
deals with the objective function vector (c, h) of a MILP. We assume in the remainder
of this thesis that the objective function vector (c, h) of a MILP according to (1.1) and
(1.4) satisfies the property h 6= 0. Otherwise, the related MILP can be treated like the
pure integer program

max{cx : x ∈ Zp, x ∈ projX (P )}. (1.7)

In detail, the following lemma holds.

Lemma 1.7. Let a MILP according to (1.1) or (1.4) with h = 0 be given and let x∗
be an optimal solution of (1.7). Then there exists a y ∈ Rq such that (x∗, y) ∈ P , and
every (x∗, y) ∈ P is an optimal solution of the MILP.

Proof. The statement follows directly by the definition of the projection (1.6).

Moreover, we often restrict ourselves to (M)ILP in which the feasible domain P =
{(x, y) ∈ Rp+q : Ax + Gy ≤ b} of the LP relaxation is bounded. This assumption is
required for some results and algorithms to achieve finiteness and to guarantee that the
mixed integer hull of a real polyhedron is again a polyhedron. However, it does not
form a strong restriction in theory. If an optimal solution of a (M)ILP exists, than it is
always contained in a sufficiently large bounded subset of the LP relaxation P . We also
avoid the case that the objective function is unbounded over the LP relaxation P . In
this situation, the (M)ILP is either infeasible or the objective function is also unbounded
over the (mixed) integer hull PI ; see [Mey74].
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2 Cutting planes for MILP

In this chapter we discuss the foundations of cutting planes for MILP and introduce some
representatives and algorithms. According to the motivation of this thesis, we focus on
properties of cuts from a theoretical point of view and follow a geometric approach.
However, remarks on their practical application are given at some points. Moreover,
we only consider cuts which apply to general MILP. This means that cutting planes
for special problem classes such as for example lift-and-project cuts for mixed binary
programs or cover inequalities are not respected. As a supplement to the successive
sections, we refer again to [Cor08] and [MMWW02] for extensive review papers on
several aspects of cutting planes for MILP and to [CL01] for an overview of the relation
of various cutting planes.

We start with the special case of Chvátal-Gomory cuts for ILP in Section 2.1 and turn
to cuts for general MILP in Section 2.2. We explain the basic idea of deriving cuts for
MILP and discuss split cuts and different cuts which arise in computing split cuts such
as for example intersection cuts, mixed integer Gomory cuts, mixed integer rounding
inequalities, and some alternatives. We finish this section with the recently developed
so called cutting planes from two rows of the simplex tableau as an example which is no
split cut.

2.1 Chvátal-Gomory cuts

In this section we consider ILP which are given by

max cx
Ax ≤ b
x ∈ Zp

(2.1)

as a special case of MILP according to (1.1). Cutting planes for ILP can be easily
generated by the following rounding property.

Lemma 2.1. Let P ⊆ Rp be a polyhedron and PI its integer hull. If for α ∈ Zp and
γ ∈ R the inequality αx ≤ γ is valid for P then αx ≤ bγc is valid for PI .

Proof. Since for every integral point x ∈ PI the left hand side of αx ≤ γ is integral, the
right hand side can be rounded down to the next integer.

13



2 Cutting planes for MILP

(a) A polyhedron P in R2 (b) Two Chvátal-Gomory cuts
(solid) for P . The dashed line is
valid for PI but no Chvátal-Gomory
cut for P .

Figure 2.1: Examples of Chvátal-Gomory cuts

Cutting planes which are derived by this rounding property are known as Chvátal-
Gomory cuts . We note that their derivation does not depend on the structure of P or
PI . In detail, αx ≤ bγc is a valid inequality for the integer hull PI of every polyhedron
P for which αx ≤ γ is valid. We will see in the next section that the derivation of valid
cuts for MILP also requires information of the structure of its feasible domain.

Chvátal-Gomory cuts turn out to be sufficient for generating the integer hull PI of a
rational or bounded polyhedron. In the following we say that αx ≤ bγc is a Chvátal-
Gomory cut for a polyhedron P if it is a cutting plane and αx ≤ γ is valid for P . We
start with the case of rational polyhedra.

Definition 2.2. Let P ⊆ Rp be a rational polyhedron. Then the intersection of P and
all Chvátal-Gomory cuts for P is called the Chvátal-Gomory closure of P and denoted
by P (1). Accordingly, for i ∈ N the i-th Chvátal-Gomory closure P (i) of P is defined as
the Chvátal-Gomory closure of P (i−1).

The second part of the last definition is particularly well defined as the Chvátal-Gomory
closure of a rational polyhedron is again a polyhedron.

Theorem 2.3. Let P ⊆ Rp be a rational polyhedron. Then the Chvátal-Gomory closure
P (1) is again a polyhedron.

Proof. A proof of this theorem can be found in [Sch86].

The last theorem only refers to rational polyhedra. It is open if the Chvátal-Gomory
closure of a general polytope with real input data is again a polyhedron. It is only known

14



2.1 Chvátal-Gomory cuts

that Theorem 2.3 remains true if P is bounded and P (1) has an empty intersection with
the boundary of P ; see [Sch80]. Therefore, we expand the definition of a Chvátal-Gomory
cut and the related closure to closed convex sets.

Definition 2.4. Let S ⊆ Rp be a closed convex set. Then an inequality αx ≤ bγc
is a Chvátal-Gomory cut for S if it is a cutting plane and αx ≤ γ is valid for S. The
intersection of S and all Chvátal-Gomory cuts for S is called the Chvátal-Gomory closure
of S and denoted by S(1). Accordingly, for i ∈ N the i-th Chvátal-Gomory closure S(i)

of S is defined as the Chvátal-Gomory closure of S(i−1).

Now we can deal with the generation of the integer hull.

Theorem 2.5. Let P ⊆ Rp be a rational or bounded polyhedron. Then there exists a
k ∈ N with P (k) = PI . k is also called the Chvátal-Gomory rank of P .

Proof. A proof can again be found in [Sch86]. First, the statement is proven for rational
polyhedra. In a second step, the result can be transferred to general polytopes by
applying the result to a rational polytope Q with P ⊆ Q and PI = QI according to
Lemma 1.2. The result was shown first by Chvátal [Chv73] for rational polytopes and
by Schrijver [Sch80] for the general case.

Theorem 2.5 shows that Chvátal-Gomory cuts are sufficient to generate the integer hull
of an arbitrary rational or bounded polyhedron. Next, it is the question how to find
suitable cuts which cut off infeasible vertices of the LP relaxation P within a cutting
plane algorithm for ILP and guarantee finiteness of the procedure. An approach to deal
with these issues is given by the (pure) integer Gomory cut which only applies to rational
ILP. So we assume for the remainder of this section that all input data of the ILP (2.1)
is rational. This means that we can even assume by suitable scaling that the input data
is integral. We discuss a cutting plane algorithm for ILP with general input data at the
end of Section 2.2.3.

The set of all Chvátal-Gomory cuts for a polyhedron P = {x ∈ Rp : Ax ≤ b} can be
obtained by taking all supporting hyperplanes αx ≤ γ of P with α ∈ Z, γ 6∈ Z and
rounding down the right hand side. This set can be described by all inequalities

vAx ≤ bvbc, with v ≥ 0, vA ∈ Zp, vb 6∈ Z. (2.2)

So to cut off an infeasible vertex x∗ of P by a cutting plane, we need a hyperplane that
supports the polyhedron P in x∗ and satisfies the above conditions for α and γ. For
this purpose, we have to determine a suitable multiplier v in (2.2). This can be done by
the following definition of the Gomory cut for a vertex x∗ with related basis B and an
integral vector α with αx∗ 6∈ Z. We note that all input data is integral by assumption.
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2 Cutting planes for MILP

Definition 2.6. Let P = {x ∈ Rp : Ax ≤ b} with A ∈ Zm×p, b ∈ Zm be a polyhedron
and x∗ 6∈ Zp a vertex of P with related basis matrix AB and right hand side bB. Then
the Gomory cut to the vector α ∈ Zp with αx∗ 6∈ Z is defined by

vABx ≤ bvbBc, with v = αA−1
B − bαA−1

B c. (2.3)

By definition, (2.3) is a valid inequality for PI as v ≥ 0 and vAB ∈ Zp. Moreover, it is
vb 6∈ Z if and only if αx∗ 6∈ Z, as

vb = αA−1
B b− bαA−1

B cb = αx∗ − bαA−1
B cb,

and the second term is integral.

By Definition 2.6, we can determine a cutting plane that cuts off an infeasible vertex
x∗ of P if we find an arbitrary vector α ∈ Zp with αx∗ 6∈ Z. The easiest way to satisfy
this condition is to choose an unit vector ui for which the entry x∗i of the vertex x∗ is
not integral. Moreover, this choice for α is almost sufficient for a finite cutting plane
algorithm. We additionally have to respect cuts with α = c to the objective function
vector c of the ILP, only. Altogether, we obtain a finite algorithm using cuts according
to (2.3) with α ∈ {c, u1, . . . , up}. We do not give the details of the algorithm here, but
refer to Algorithm 1 and Theorem 2.20 as the algorithm and the proof of convergence are
identically to a special mixed integer case. Both the Gomory cut (2.3) and the related
algorithm were originally developed by Gomory for ILP given in standard form (1.4);
see [Gom58, Gom60, Gom63].

2.2 Cuts for general MILP

We now turn to cutting planes for MILP. As one can easily see, the rounding procedure
of Lemma 2.1 fails in generating valid inequalities for MILP. If αx + βy ≤ γ with
α ∈ Zp, β ∈ Zq and γ ∈ R is valid for a polyhedron P the inequality αx + βy ≤ bγc is
not valid for PI in general as βy has not to be integral. Therefore, an other approach
for deriving valid cuts is required. This one is based on the local properties of P at a
vertex (x∗, y∗) and is not constructive at first. We explain the basic idea.

Let P = {(x, y) ∈ Rp+q : Ax+Gy ≤ b} be a polyhedron and (x∗, y∗) a vertex of P with
x∗ 6∈ Zp. We are looking for an inequality αx+ βy ≤ γ that is valid for PI and cuts off
(x∗, y∗). We take a closed convex set S ⊆ Rp with

x∗ ∈ int (S) and x 6∈ int (S)∀x ∈ Zp, (2.4)

that means S contains x∗ in its interior but no integral vector x ∈ Zp. In this situation,
every inequality αx + βy ≤ γ which only cuts off points (x, y) ∈ P with x ∈ int (S) is
valid for PI by construction as no vectors (x, y) ∈ P with x ∈ Zp are cut off.
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2.2 Cuts for general MILP

S

(a) A polyhedron P ⊆ R1+1 and
a set S ⊆ R1

S

(b) A valid cut for P to S

Figure 2.2: Derivation of cutting planes for MILP

In this way the derivation of valid mixed integer cutting planes is based on two steps.
First, we choose a suitable set S according to (2.4) and then compute a cut in relation
to the set S in the second step. A two dimensional example of this approach is also
given in Figure 2.2.

We note that all valid inequalities for PI can be described as a cutting plane in relation
to a set S according to (2.4). We prove this statement later in Lemma 3.5 in a more
specific form. In the next subsections we discuss in detail how valid cuts can be computed
explicitly. We deal with the issues of how a suitable set S can be found and how a cut can
be computed given a fixed set S. Here it is especially the question how to determine deep
cutting planes. We note that the properties of the set S to which a cut is computed even
provide a way to characterize different cutting planes, for example S being polyhedral
or not.

In the following we only deal with the case that S is a polyhedron and use a slightly
different notation which is more convenient. Instead of taking a polyhedron S which
contains no integer point in its interior, we consider disjunctions D which are defined
as the closed complement of S. So a disjunction D contains every integral point x ∈ Zp

and does not contain points that are supposed to be cut off. We formally introduce
disjunctions in Section 2.2.1 in a special case and in Section 3.1 in general. The most
used type of a disjunction D for deriving valid cutting planes is a split disjunction which
is defined by two hyperplanes. After we have defined it in the next section, the remainder
of this chapter mainly deals with various approaches to compute split cuts. We introduce
intersection cuts in Section 2.2.2, mixed integer Gomory cuts in Section 2.2.3, mixed
integer rounding cuts in Section 2.2.4, and methods for strengthening mixed integer
Gomory cuts in Section 2.2.5. In Section 2.2.6 we briefly introduce the recent approach
of cutting planes from two rows of a simplex tableau as an example of a more general
disjunctive cut.
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2 Cutting planes for MILP

(a) Split disjunction
D(u2, 2)

(b) Split disjunction
D(2u1, 4)

(c) Split disjunction
D(u1 + u2, 3)

Figure 2.3: Examples of split disjunctions in R2

2.2.1 Split cuts

Split cuts were introduced by Cook, Kannan, and Schrijver in 1990 [CKS90]. They are
disjunctive cuts to special two term disjunctions and are not defined constructively. They
are easy to describe and include many special types of cutting planes. So results based
on the properties of split cuts have a wide importance. We start with the definition of
a split disjunction and the related split cut.

Definition 2.7. Let d ∈ Zp be an integral vector and δ ∈ Z an integer. Then the
inequalities

dx ≤ δ ∨ dx ≥ δ + 1

are called a split disjunction. We write D(d, δ) for the split disjunction defined by d, δ.

Definition 2.8. Let P ⊆ Rp+q be a polyhedron and αx + βy ≤ γ be a cutting plane.
Then αx + βy ≤ γ is called a split cut for P if there exists a split disjunction D(d, δ)
with

(x, y) ∈ P ∧ αx+ βy > γ =⇒ δ < dx < δ + 1.

Every split cut for P is a valid cutting plane for PI . This is easy to see as for every
feasible solution (x∗, y∗) ∈ P with x∗ ∈ Zp it is dx∗ ≤ δ ∨ dx∗ ≥ δ + 1 and so (x∗, y∗)
is contained in every possible split disjunction.

In line with the Chvátal-Gomory closure in Definition 2.2 and Definition 2.4 we define
the split closure of a polyhedron P and analyze some of its properties.

Definition 2.9. Let P ⊆ Rp+q be a rational polyhedron. Then the intersection of P and
all split cuts for P is called the split closure of P and denoted by P (1). Accordingly, for
i ∈ N the i-th split closure P (i) of P is defined as the split closure of P (i−1).
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2.2 Cuts for general MILP

The definition of the i-th split closure P (i) is again well defined as finite many cutting
planes are already sufficient to generate the split closure of a rational polyhedron. This
result is given next and was first proved by Cook, Kannan, and Schrijver.

Theorem 2.10 ([CKS90]). Let P ⊆ Rp+q be a rational polyhedron. Then the split
closure P (1) of P is a polyhedron. �

Other proofs of this property were given by Andersen, Cornuéjols, and Li [ACL05b],
Dash, Günlük, and Lodi [DGL07], and Vielma [Vie07]. We get back to this statement
and its proofs in Section 3.1. As in the case of the Chvátal-Gomory closure, it is not
known if the split closure of a real polytope is again a polytope. So we generalize the
definition of a split cut to closed convex sets.

Definition 2.11. Let S ⊆ Rp+q be a closed convex set and αx + βy ≤ γ be a cutting
plane. Then αx + βy ≤ γ is called a split cut for S if there exists a split disjunction
D(d, δ) with

(x, y) ∈ S ∧ αx+ βy > γ =⇒ δ < dx < δ + 1.

The intersection of S and all split cuts for S is called the split closure of S and denoted
by S(1). Accordingly, for i ∈ N the i-th split closure S(i) of S is defined as the split
closure of S(i−1).

We have used the same notation for the Chvátal-Gomory closure of a polyhedron P ⊆ Rp

in the integral case and for the split closure of a polyhedron P ⊆ Rp+q in the mixed
integer case. In this context we note that the Chvátal-Gomory closure of a polyhedron
is contained in its split closure. This is easy to see as every Chvátal-Gomory cut αx ≤ γ
for a polyhedron P ⊆ Rp according to Lemma 2.1 is a split cut to the disjunction D(α, γ)
by definition. Conversely, not every split cut for P has to be a Chvátal-Gomory cut.
This can be seen in the following

Example 2.12. Let P ⊆ R2 the polyhedron defined as the convex hull of the vertices

(0, 0), (0, 1),

(
1,

1

2

)
.

The (pure) integer hull is given by PI = conv {(0, 0), (0, 1)}. The cut x1 ≤ 0 is no
Chvátal-Gomory cut to P , as the inequality x1 ≤ 1 supports P . However, x1 ≤ 0 is a
split cut for P to the disjunction D(u2, 0), see Figure 2.4;

Due to the last considerations we could interpret split cuts as a straightforward general-
ization of the Chvátal-Gomory cuts for MILP. However, unlike the pure integer case split
cuts are not sufficient for generating the mixed integer hull of an arbitrary polyhedron
in general. This can be seen in the following ’classical’ example of Cook, Kannan, and
Schrijver [CKS90] which has also been discussed before in similar form in [Whi61], [Pad],
and [Sal75].
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2 Cutting planes for MILP

(a) x1 ≤ 0 is no
Chvátal-Gomory cut

(b) x1 ≤ 0 is a split cut
to the split disjunction
D(u2, 0)

Figure 2.4: To Example 2.12

Figure 2.5: The integer hull PI of Example 2.13 projected on the x1x2-space. It is not
possible to cover all vertices of PI with the boundary of an arbitrary split
disjunction.

Example 2.13 ([CKS90]). Let P ⊆ R2+1 the polyhedron defined as the convex hull of
the four vectors

(0, 0, 0), (2, 0, 0), (0, 2, 0),

(
1

2
,
1

2
,
1

2

)
.

Then the integer hull PI is the convex hull of the vectors

(0, 0, 0), (2, 0, 0), (0, 2, 0).

On the other hand, the valid inequality y ≤ 0 is no split cut for all polyhedra P (i), i ∈ N0.
A proof of this statement in a more general setting is given in Lemma 3.20.

The last example has also direct consequences for cutting plane algorithms. It is obvious
that an arbitrary algorithm which is based on split cuts does not solve a MILP in finite
time in general. We will get back later to this basic result.
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2.2 Cuts for general MILP

At last we want to note two positive results. Split cuts can be used to approximate the
mixed integer hull of an arbitrary polytope arbitrarily exact. This enables us to obtain
the mixed integer hull of a rational polytope by combining split cuts with certain round-
ing cuts based on the numerical properties of the input data. We deal with this property
more detailed in Section 3.2. Moreover, in the special case of mixed binary programs,
split cuts are sufficient for generating the mixed interger hull PI of a polyhedron P ; see
for example [Cor08].

2.2.2 Intersection cuts

Intersection cuts were introduced by Balas in 1971 [Bal71]. They provide a possibil-
ity to compute a valid cutting plane to a given disjunction D and are derived from a
basis solution (x∗, y∗) of the LP relaxation P . Moreover, they have an easy geometric
interpretation. Although intersection cuts can be applied to compute cuts to general
disjunctions, we only consider the case of split disjunctions in the following as this is the
most important case in applications. However, the principle can also be transferred to
more general disjunctions. We presume again a MILP (1.1) and describe the idea of the
derivation of the cut.

Let again P = {(x, y) ∈ Rp+q : Ax + Gy ≤ b} be a polyhedron and (x∗, y∗) a vertex
of P with x∗ 6∈ Zp and let D(d, δ) be a split disjunction which does not contain x∗, so
δ < dx∗ < δ + 1. Given a basis submatrix (A G)B of (A G) to the vertex (x∗, y∗), the
extreme rays (rj, sj) ∈ Rp+q of the related basis cone are given by the columns of the
matrix −(A G)−1

B . We take for all j ∈ {1, . . . , p + q} the intersection points zj ∈ Rp+q

of the rays
(x∗, y∗) + λj(rj, sj), λj ≥ 0

with the hyperplanes dx = δ and dx = δ + 1 of the split disjunction D(d, δ). If one of
the rays (rj, sj) intersects neither of the two hyperplanes, it is parallel to them and we
can choose an arbitrary point zj on this ray.

Now we consider the inequality αx+ βy ≤ γ which is defined by the p+ q points zj and
satisfies αx∗+βy∗ > γ. This inequality is valid for PI as it is a split cut by construction.
Moreover, this cut can also be computed by a closed formula.

Definition 2.14. Let (x∗, y∗) be a vertex of a polyhedron P ⊆ Rp+q, (A G)B a related
basis submatrix, (rj, sj) the columns of −(A G)−1

B , and D(d, δ) a split disjunction that
does not contain x∗. Let for j = 1, . . . , p+ q

λj :=





δ−dx∗
drj

, if drj < 0
δ−dx∗+1

drj
, if drj > 0

∞, if dr = 0.

(2.5)
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2 Cutting planes for MILP

and define the vector l ∈ Rp+q by lj := 1
λj

(with 0 =: 1
∞). Then the intersection cut to

the basis B and the disjunction D is given by αx+ βy ≤ γ with

(α, β) := l(A G)B and γ := lbB − 1. (2.6)

Lemma 2.15. αx + βy ≤ γ with α, β, γ according to (2.6) is a valid cutting plane for
PI .

Proof. We show that the intersection cut is a split cut to the split disjunction D(d, δ).
We suppose that there exists a vector (v, w) with ABv + GBw ≤ b and αv + βw > γ
which is contained in the disjunction D(d, δ). (v, w) has an unique representation as a
positive linear combination of the rays (rj, sj) of the basis cone of B, so

(v, w) = (x∗, y∗) +

p+q∑

j=1

µj(rj, sj), with µj ≥ 0, j ∈ {1, . . . , p+ q}.

If drj = 0 for a j ∈ {1, . . . , p+ q} we have

αrj + βsj = l(ABrj +GBsj) = − 1

λj
uj = 0,

so we can assume without loss of generality that µj = 0 in the representation of (v, w).

Define for j ∈ {1, . . . , p+ q} with drj 6= 0 the points

zj := (x∗, y∗) + λj(rj, sj)

with λj according to (2.5). It is easy to see that the points zj define the intersection of
the rays (rj, sj) with the disjunctive hyperplanes dx = δ and dx = δ+ 1. Moreover, it is

(α β)zj = l(ABx
∗ +GBy

∗) + lλj(ABrj +GBsj) = lb− 1 = γ.

Now we consider the set

S := {(x, y) ∈ Rp+q : (x, y) = (x∗, y∗) +

p+q∑

j=1,drj 6=0

νj(rj, sj), νj ≥ 0 ∧ αx+ βy > γ}

of vectors that is cut off by the intersection cut and can be represented by rays with
drj 6= 0. It follows that each vector (x, y) ∈ S is a convex combination of (x∗, y∗) and
the intersection points zj and satisfies δ < dx < δ + 1. So (v, w) 6∈ S in contradiction to
the assumption.
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2.2 Cuts for general MILP

a

b

c

(a) Intersection cut to the basis
a, b

a

b

c

(b) Intersection cut to the (infea-
sible) basis a, c

Figure 2.6: Examples of intersection cuts

A graphical example of an intersection cut is given in Figure 2.6. The derivation of the
intersection cut is based on the geometry of the basis cone, so it is independent of the
representation of the system ABx + GBy ≤ bB. However, the intersection cut depends
of course on the selection of the basis B and of the split disjunction D(d, δ) to which
the cut is computed. We will see in the remainder of this chapter that intersection cuts
play a vital role in computing valid cutting planes. Many cuts are actually equal to or
dominated by an intersection cut to a certain split disjunction.

By our construction, every intersection cut is a split cut. But also the converse direction
is true in this way that a finite set of intersection cuts is sufficient to generate the split
closure P (1) of a rational polyhedron P = {(x, y) ∈ Rp+q : Ax + Gy ≤ b}. Here also
intersection cuts to infeasible bases of the polyhedron P have to be respected. This means
that we also derive intersection cuts according to Definition 2.14 for vertices (x∗, y∗) with
basis B which are only valid for a subsystem of Ax+Gy ≤ b. The connection between
split cuts and intersection cuts was investigated in detail by Andersen, Cornuéjols, and
Li [ACL05b]. We state one result explicitly which deals with the computation of cuts to
a single split disjunction. We note that adding all cuts to a split disjunction D(d, δ) to
a polyhedron P leads to the new polyhedron

PD := conv {(x, y) ∈ P : dx ≤ δ ∨ dx ≥ δ + 1}. (2.7)

Theorem 2.16 ([ACL05b]). Let D(d, δ) be a split disjunction, P ⊆ Rp+q be a polyhedron
and PD according to (2.7). Moreover, let B the set of all (feasible and infeasible) bases
of P and let αBx + βBy ≤ γB be the intersection cut to the disjunction D and basis B.
Then

PD =
⋂

B∈B

(P ∩ {(x, y) : αBx+ βB ≤ γB}).

�

23



2 Cutting planes for MILP

The last theorem becomes very simple when P is a basis cone. In this case, every
split cut to the disjunction D is equal to or dominated by the only possible intersection
cut. Andersen, Cornuéjols, and Li also use the last result to give a further proof of the
polyhedrality of the split closure of a rational polyhedron (Theorem 2.10).

Finally, we get back to intersection cuts to general disjunctions. It is obvious that
Definition 2.14 can be simply modified and that Lemma 2.15 remains true accordingly
in the more general case. However, similar results for Theorem 2.16 cannot be stated in
general. This is considered in Example 3.4.

2.2.3 Mixed integer Gomory cuts

The mixed integer Gomory cut was one of the first cutting planes for MILP. It was
introduced by Gomory at the end of the 1950ies [Gom58, Gom60, Gom63]. The cut
applies to a rational mixed integer set that is defined by a single equation with non
negative variables. So let the set

S := {(x, y) ∈ Zp
+ × Rq

+ : ax+ gy = b}. (2.8)

with rational vectors a ∈ Qp, g ∈ Qq and a non integral right hand side b ∈ Q \ Z be
given.

Definition 2.17. Let S be defined according to (2.8) and let b = bbc+f0, aj = bajc+fj,
for j = 1, . . . , p. Then the mixed integer Gomory cut for S is defined by

∑

fj≤f0

fj
f0

xj +
∑

fj>f0

1− fj
1− f0

xj +
∑

gj>0

gj
f0

yj −
∑

gj<0

gj
1− f0

yj ≥ 1. (2.9)

Theorem 2.18. Inequality (2.9) is a valid cut for S.

Proof. We show that (2.9) is a split cut to the disjunction D(d, δ) with δ = bbc and

di =

{
baic, if fj ≤ f0

daie, else. (2.10)

First, let (x, y) be in the LP relaxation of S with dx ≤ δ. This inequality is by definition
equivalent to

∑

fj≤f0

(ajxj − fjxj) +
∑

fj>f0

(ajxj + (1− fj)xj) ≤ bbc ⇐⇒

ax−
∑

fj≤f0

fjxj +
∑

fj>f0

(1− fj)xj ≤ bbc.
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2.2 Cuts for general MILP

Multiplying the last inequality by −1 and inserting in gy = b− ax gives

gy ≥ b− bbc −
∑

fj≤f0

fjxj +
∑

fj>f0

(1− fj)xj ⇐⇒
∑

fj≤f0

fjxj −
∑

fj>f0

(1− fj)xj + gy ≥ f0 ⇐⇒

∑

fj≤f0

fj
f0

xj −
∑

fj>f0

1− fj
f0

xj +
∑

gj>0

gj
f0

yj +
∑

gj<0

gj
f0

yj ≥ 1.

Since the second and the last term of the left hand side of the last inequality are negative,
we can see that all (x, y) ∈ S with dx ≤ δ also satisfy (2.9) as x, y ≥ 0.

Now let (x, y) be in the LP relaxation of S with dx ≥ δ + 1. Repeating the above
approach we obtain finally the valid inequality

−
∑

fj≤f0

fj
1− f0

xj +
∑

fj>f0

1− fj
1− f0

xj −
∑

gj>0

gj
1− f0

yj −
∑

gj<0

gj
1− f0

yj ≥ 1.

As now the first and the third term of the left hand side of the last inequality are
negative, we can see that all (x, y) ∈ S with dx ≥ δ + 1 again satisfy (2.9).

Mixed integer Gomory cuts can be used easily in a cutting plane algorithm for solving
MILP. We assume for the moment that a MILP

max{cx+ hy : (x, y) ∈ Zp × Rq : Ax+Gy = b, x, y ≥ 0}

in standard form is given. We solve the LP relaxation of the MILP with the simplex
algorithm. If the optimal solution (x∗, y∗) of the relaxation does not satisfy the integrality
constraint x∗ ∈ Zp, we can apply the cut (2.9) to a row of the optimal simplex tableau
which corresponds to an integral restricted basis variable xi with x∗i 6∈ Z. Therewith, we
cut off the LP solution (x∗, y∗) and can iterate this approach with the new LP relaxation.
In this way we obtain an algorithm using Gomory cuts to integral rows of the simplex
tableau. We give more details later.

At first, we get back to MILP (1.1) in natural form. Let a basis solution (x∗, y∗), x∗ ∈ Zp

of the polyhedron P = {(x, y) ∈ Zp × Rq : Ax + Gy ≤ b} with basis B be given. To
apply the mixed integer Gomory cut to the polyhedron P , it has to be transformed to
standard form using slack variables and respecting the non negativity constraints. Here
it is enough to restrict to the system ABx + GBy ≤ bB of constraints which are part of
the basis B. We obtain the system

ABx
+ +GBy

+ − ABx− −GBy
− + t = bB, x

+, x−, y+, y−, t ≥ 0.
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2 Cutting planes for MILP

with basis solution ((x∗)+, (y∗)+, (x∗)−, (x∗)−, 0). Next, we can apply the mixed integer
Gomory cut to a row of the simplex tableau of the basis system. In the proof of The-
orem 2.18 we have shown that the Gomory cut is a split cut. In fact, we will see now
that the mixed integer Gomory cut to the ith-row of the simplex tableau is equivalent
to the intersection cut to the split disjunction D(ui, bx∗i c) and the basis B.

Theorem 2.19. Let (x∗, y∗) be a basis solution of the polyhedron P , (A G)B a related ba-
sis submatrix, and x∗i 6∈ Z. Then the intersection cut to the split disjunction D(ui, bx∗i c)
and the basis B is equal to the mixed integer Gomory cut to the i-th component.

Proof. Transforming the basis subsystem ABx+GBy ≤ bB of P to standard form yields
the system

ABx
+ +GBy

+ − ABx− −GBy
− + t = bB, x

+, x−, y+, y−, t ≥ 0 (2.11)

We assume at first that the original basis solution satisfies (x∗, y∗) ≥ 0. In this case,
we obtain as basis solution of the transformed system (x∗, y∗, 0, 0, 0). The matrix of the
related simplex tableau is given by (I − I (A G)−1

B ). We now apply the mixed integer
Gomory cut (2.9) to the i-th row of this tableau and obtain

∑

zj>0

zj
f0

tj −
∑

zj<0

zj
1− f0

tj ≥ 1, (2.12)

where
zj = (A G)−1

B,ij and f0 = ((A G)−1
B b)i − b((A G)−1

B b)ic = x∗i − bx∗i c.
Inserting t = bB − ABx−GBy in (2.12) gives

∑

zj>0

zj
f0

(A G)B,j −
∑

zj<0

zj
1− f0

(A G)B,j


 (x, y) ≤

∑

zj>0

zj
f0

bj −
∑

zj<0

zj
1− f0

bj − 1; (2.13)

Now comparing (2.13) with the definition of the intersection cut to the disjunction
D(ui, bx∗i c) in Definition 2.14 proves the statement as zj = −ui(rj, sj) = −drj.
For (x∗, y∗) 6≥ 0, the statement follows in the same way by a suitable permutation of the
columns of A+ and of A−, and of G+ and of G− in (2.11). Then the basis solution of
the transformed system has still the form (x∗, y∗, 0, 0, 0) and the related cut is equal to
(2.12).

The last theorem gives an easy geometric interpretation of the mixed integer Gomory
cut if we apply it to MILP in natural form. So it is appropriate to state a cutting plane
algorithm for MILP in natural form using intersection cuts directly. This approach
also provides the opportunity to deal with MILP with real input data. According to
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2.2 Cuts for general MILP

the basic algorithmic approach that we have briefly discussed after Theorem 2.18, we
use intersection cuts to split disjunctions D(d, δ), where d is defined by a unit vector
u1, . . . , up. To obtain uniqueness in the algorithm we use the following two rules. First,
we compute in every step of the algorithm the lexicographic maximal solution (x∗, y∗)
of the LP relaxation. Secondly, we add cuts by a least index rule. So an intersection
cut to the disjunction D(ui, bx∗i c) is added, where i = argmin {j ∈ {1, . . . , p} : x∗j 6∈ Z}.
Moreover, we do not add only one intersection cut but intersection cuts to all bases B of
(x∗, y∗) to the disjunction D(ui, bx∗i c). The formal algorithm is stated in Algorithm 1.

Algorithm 1 Cutting plane algorithm - basic form
1: procedure BasicAlgorithm
2: Input: MILP (1.1);
3: Output: "optimal solution (x∗, y∗)" or "problem infeasible" if no solution exists;
4:
5: P ← {(x, y) : Ax+Gy ≤ b};
6: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
7: B ← set of all bases B of (x∗, y∗);
8:
9: if P = ∅ then
10: "problem infeasible"; break
11: end if
12: if x∗ ∈ Zp then
13: "optimal solution (x∗, y∗)"; break
14: end if
15:
16: while x∗ 6∈ Zp do
17: i← argmin {j ∈ {1, . . . , p} : x∗j 6∈ Z};
18: Compute intersection cuts αBx+ βBy ≤ γB to P,D(ui, bx∗i c) and all B ∈ B.
19: P ← P ∩ {(x, y) : αBx+ βBy ≤ γB, B ∈ B};
20: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
21: B ← set of all bases B of (x∗, y∗);
22:
23: if P = ∅ then
24: "problem infeasible"; break
25: end if
26: if x∗ ∈ Zp then
27: "optimal solution (x∗, y∗)"; break
28: end if
29: end while
30: end procedure
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2 Cutting planes for MILP

Reviewing the results of Section 2.2.1 and of Example 2.13 especially, it is evident that
Algorithm 1 does not find an optimal solution of a MILP within a finite number of steps
in general. However, under certain assumptions a finite convergence of the algorithm
can be guaranteed.

Theorem 2.20. Let a MILP (1.1) be given, where the polyhedron P = {(x, y) : Ax +
Gy ≤ b} is bounded. Then Algorithm 1 finds an optimal solution of the MILP or detects
infeasibility after a finite number of steps under the following assumption:

It can be assumed that the optimal objective function value is integral. Whenever possible,
the inequality cx + hy ≤ bcx∗ + hy∗c to the objective function is added additionally in
Algorithm 1.

Proof. We first assume that the MILP has an optimal solution. By definition of Algo-
rithm 1, a sequence (xk, yk)k∈N of lexicographic decreasing vectors is computed. Since
P is bounded, the sequence (γk)k∈N := (cxk + hyk)k∈N of objective function values is
bounded and therewith convergent. As all possible inequalities cx + hy ≤ bcxk + hykc
are added additionally in Algorithm 1, it follows that there exists a k0 ∈ N such that γk
remains constant and integral for all k ≥ k0.

Next, we consider the sequence (xk1)k≥k0 of the first entry of (xk, yk). As P is bounded,
this sequence is again convergent with limit x̃1. So there is a k1 ≥ k0 such that

bx̃1c ≤ xk11 < bx̃1c+ 1.

If bx̃1c = xk11 , there is nothing to show. Otherwise, we add intersection cuts to all bases
B ∈ B of (xk1 , yk1) to the disjunction D(u1, bxk11 c). By the first part of the proof, the
sequence γk of objective function values remains constant and integral for k ≥ k1 > k0

and the inequality cx + hy ≤ γk0 has been added to the polyhedron P within the
algorithm. This means especially that there exists a basis B ∈ B of (xk1 , yk1) which
contains the inequality cx + hy ≤ γk0 . So it follows by Theorem 2.16 and the fact that
(xk1 , yk1) is lexicographic maximal that xk1 = bxk11 c for all k ≥ k1. This shows that xk1
remains constant and integral for k > k1. This argument can now be repeated for the
remainder of the integral restricted variables x2, . . . , xp. It follows inductively that an
optimal solution of the MILP is found after a finite number of steps.

Suppose now that no optimal solution of the MILP exists, so PI = ∅. As P is bounded,
there exists

γ := min{cx+ hy : Ax+Gy ≤ b}.
It follows by the above proof and the fact that all possible inequalities cx + hy ≤
bcxk + hykc are added within the algorithm that the sequence γk of objective function
values decreases to the value bγc − 1 in finite time. As P ∩ {(x, y) : cx+ hy ≤ bγc − 1}
is empty, the algorithm terminates finitely.
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2.2 Cuts for general MILP

Moreover, by construction no feasible point is cut off during the algorithm and the proof
is complete.

We note that the rule for adding cuts in line 18 of Algorithm 1 can be weakened. Actually,
we do not have to add intersection cuts to all bases B ∈ B of the current LP solution
(xk, yk) at once. Even a sequential addition of intersection cuts to different bases B ∈ B
until the next solution (xk+1, yk+1) is integral in the related component is sufficient for
convergence.

Moreover, Theorem 2.20 shows that we can check with Algorithm 1 in finite time if there
is a mixed integer feasible point in a polytope with a given objective function value. We
can consider the modified MILP

max{x1 : (x, y) ∈ Zp × Rq : Ax+Gy ≤ b, cx+ hy = γ}

for this purpose. Here we can assume that the optimal objective function value of the
modified MILP is integral. Additional rounding cuts to the objective function according
to the assumption of Theorem 2.20 are not necessary in this case, as cuts to disjunctions
D(u1, bx∗1c) are part of Algorithm 1.

Corollary 2.21. Let a MILP (1.1) with the additional constraint cx+ hy = γ be given,
where the polyhedron P = {(x, y) : Ax + Gy ≤ b} is bounded. Then Algorithm 1
terminates in finite time with a feasible solution of the MILP or detects infeasibility.

�

Finally, we add some remarks. The classic form of Algorithm 1 and Theorem 2.20 based
on MILP in standard form (1.4) and on mixed integer Gomory cuts (2.9) was stated by
Gomory in [Gom58]. So Algorithm 1 is a variation of the Gomory algorithm for MILP.

Mixed integer Gomory cuts or intersection cuts to split disjunctions, respectively, can of
course also be applied to ILP. As already discussed in Example 2.12, intersection cuts to
split disjunctions are in general stronger than pure integer Gomory cuts (2.2). However,
applying intersection cuts to ILP can have the disadvantage that the structure of the
ILP changes. Applying a pure integer Gomory cut according to Definition 2.6 to an
ILP with integral data gives a cutting plane with integral coefficients. So the related
modified ILP is again given by integral data. This is not true in general if we apply an
intersection cut to the ILP. Moreover, this means that adding an intersection cut αx ≤ γ
with α ∈ Rp, γ ∈ R to an ILP

max{cx : Ax = b, x ≥ 0x ∈ Zp}

in standard form can have the consequence that the modified program has to be treated
as MILP. This follows as the transformation of the cut αx ≤ γ to standard form gives
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2 Cutting planes for MILP

αx+ s = γ, s ≥ 0, where the slack variable s does not have to be integral if α and γ are
not integral.

On the other hand, intersection cuts to split disjunctions can be used to deal with ILP
with irrational input data. In this case, the derivation of pure integer Gomory cuts
according to Definition 2.6 is not possible as there exist no integral representation of the
polyhedron P = {x ∈ Rp : Ax ≤ b} in general. If the objective function vector c of the
ILP is rational, we can also assume by suitable scaling that c is integral. So the optimal
objective function value of the ILP max{cx : Ax ≤ b, x ∈ Zp} is integral. This means
that Algorithm 1 with the modification of Theorem 2.20 can be used to solve the ILP.

If the objective function vector c is irrational, the ILP cannot be solved directly by
Algorithm 1. We can compute a feasible approximative solution with Algorithm 1 by
considering a suitable rational approximation c̃ of the objective function vector c in this
case. Moreover, it is also possible to compute an exact optimal solution of the original
ILP by taking a sufficiently close rational approximation of the objective function vector
c. This follows as for an arbitrary bounded polyhedron P = {x ∈ Rp : Ax ≤ b}, its
(pure) integer hull PI is a rational polyhedron; see Lemma 1.2.

2.2.4 Mixed integer rounding inequalities

Mixed integer rounding (MIR) inequalities were introduced by Nemhauser and Wolsey
in 1990 [NW90]. The cut is derived from a rational mixed integer set that is defined by
a single inequality with non negative variables. So let the set

T := {(x, y) ∈ Zp
+ × Rq

+ : ax+ gy ≤ b} (2.14)

with a ∈ Qp, g ∈ Qq, and b ∈ Q be given.

Definition 2.22. Let T be defined according to (2.14), b = bbc+f0, aj = bajc+fj, and
(x)+ := max{0, x} for x ∈ R. Then the mixed integer rounding cut for T is defined by

n∑

j=1

(
bajc+

(fj − f0)+

1− f0

)
xj +

1

1− f0

∑

gj<0

gjyj ≤ bbc. (2.15)

Like the mixed integer Gomory cut, the MIR inequality is again a split cut to the split
disjunction D(d, bbc), where di = baic if fj ≤ f0 and di = daie if fj > 0 according to
(2.10). Moreover, even the following statement is true.

Theorem 2.23. The MIR inequality (2.15) for T is identical to the related mixed integer
Gomory cut (2.9).
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2.2 Cuts for general MILP

Proof. To be able to apply the mixed integer Gomory cut to the set T according to (2.14)
we transform the representation of T to standard form by introducing a non negative
slack variable s. This gives the equation ax+ gy + s = b. We obtain the mixed integer
Gomory cut

∑

fj≤f0

fj
f0

xj +
∑

fj>f0

1− fj
1− f0

xj +
∑

gj>0

gj
f0

yj −
∑

gj<0

gj
1− f0

yj +
1

f0

s ≥ 1⇐⇒

−
∑

fj≤f0

fjxj −
∑

fj>f0

f0
1− fj
1− f0

xj −
∑

gj>0

gjyj +
∑

gj<0

f0
gj

1− f0

yj − s ≤ −f0

We substitute s = b− ax− gy to return to a representation in the original space. This
gives

∑

fj≤f0

(ajxj − fjxj) +
∑

fj>f0

(
ajxj − f0

1− fj
1− f0

xj

)
+
∑

gj<0

(
f0

gj
1− f0

yj + gjyj

)
≤ bbc ⇐⇒

∑

fj≤f0

bajcxj +
∑

fj>f0

aj − ajf0 − f0 + f0fj
1− f0

xj +
1

1− f0

∑

gj<0

gjyj ≤ bbc ⇐⇒

∑

fj≤f0

bajcxj +
∑

fj>f0

(bajc − f0(aj − fj)
1− f0

+
fj − f0

1− f0

)
xj +

1

1− f0

∑

gj<0

gjyj ≤ bbc ⇐⇒

n∑

j=1

(
bajc+

(fj − f0)+

1− f0

)
xj +

1

1− f0

∑

gj<0

gjyj ≤ bbc.

As every MIR inequality is a mixed integer Gomory cut, we do not discuss more details
or algorithms concerning MIR cuts but add some remarks, only.

The definition of the MIR inequality in Definition 2.22 is not unique. There are some
slightly different cutting planes which are all known under the name of mixed integer
rounding inequalities. All of these modified cutting planes are also mixed integer Gomory
cuts. We note in this context that the converse direction of Theorem 2.23 is only true
using a stronger version of (2.15). So not every mixed integer Gomory cut can be
expressed as MIR cut given in (2.15). For details we refer to [NW88], [Wol98], and
[DGL07].

We have mentioned at the end of Section 2.2.1 that split cuts are sufficient for generating
the mixed integer hull of a polyhedron in the case of a mixed binary linear program.
Nemhauser and Wolsey have shown in [NW90] that MIR inequalities are already suf-
ficient for generating the mixed binary hull of a polyhedron. Moreover, many strong
practical cutting planes such as flow cover and integer cover inequalities are MIR in-
equalities; see for example [MW01]. A further approach to obtain valid inequalities
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consists in mixing MIR cuts. Günlük and Pochet [GP01] introduce a mixing procedure
and discuss how strong inequalities for several practical problems can be generated.

2.2.5 Strengthening of mixed integer cuts

In this section we introduce two approaches for obtaining deep split cuts for MILP
with rational input data. By solving MILP with Algorithm 1, we add in every step
intersection cuts to split disjunctions of the form D(ui, bx∗i c). This is the easiest way to
find a disjunction D(d, δ) with dx∗ > δ for x∗ 6∈ Zp. Cuts to these disjunctions, however,
do not have to be deep in general. Therefore, it is an interesting question how to find
disjunctions to which deep cuts can be derived.

The first idea to answer this question is known under the name of reduce-and-split
cuts and was introduced by Andersen, Cornuéjols, and Li [ACL05a]. It is based on
the representation of the mixed integer Gomory cut. So we consider again the set
S := {(x, y) ∈ Zp

+ × Rq
+ : ax + gy = b} with rational input data and the mixed integer

Gomory cut

∑

fj≤f0

fj
f0

xj +
∑

fj>f0

1− fj
1− f0

xj +
∑

gj>0

gj
f0

yj −
∑

gj<0

gj
1− f0

yj ≥ 1

according to (2.9). By the proof of Theorem 2.18, the cut is a split cut to the disjunction
D(d, δ) with δ = bbc and

di =

{
baic, if fj ≤ f0

daie, else.

This means that we can change the split disjunction to which we cut if we multiply the
equation defining S by an arbitrary factor k. Now to obtain a stronger cut, we observe
that the coefficients f0, fj in the formula of the mixed integer Gomory cut always remain
between 0 and 1, while the coefficients gj can take arbitrary values. Moreover, the cut
gets weaker as the norm of the coefficients gj increases. So it is the idea to multiply the
equation defining S by a suitable multiplier k such that the norm of g decreases. The
Gomory cut is then derived from the modified set in a second step.

This strategy can now also be applied within a cutting plane algorithm for MILP in
standard form (1.4). We take more generally integral combinations of non integral basis
rows of the simplex tableau to generate an equation with a reduced norm of the vector g.
This equation is then used for deriving the mixed integer Gomory cut. Here we do not
go into further details how this approach can be implemented. However, the procedure
is similar to Lovász’s basis reduction algorithm; see [LLL82]. Andersen, Cornuéjols, and
Li also tested their approach on the problems of the MIPLIB 3.0 [BCMS98] and showed
that the performance of cutting plane algorithms can often be improved by reduce-and-
split cuts; see [ACL05a].

32



2.2 Cuts for general MILP

The second idea for generating stronger cuts was developed independently by Köppe
and Weismantel [KW04]. The starting point is given by a mixed integer Farkas Lemma.

Theorem 2.24 ([KW04]). Let A ∈ Zm×p, G ∈ Zm×q, b ∈ Zm be given such that the rank
of (A G) is equal to m. Then either the system

Ax+Gy = b, x ∈ Zp, y ∈ Rq

has a solution, or the system

z(A G) ∈ Zp × {0}q, zb 6∈ Z, z ∈ Rm

has a solution. �

Theorem 2.24 can now be used to derive valid cutting planes for MILP (1.1) in natural
form. We define for a vertex (x∗, y∗) of the rational polyhedron P = {(x, y) ∈ Rp+q :
Ax+Gy ≤ b} with basis B the lattice

L∗ := {z ∈ Qm : z(A G) ∈ Zp × {0}q, zi = 0 ∀i 6∈ B}. (2.16)

Moreover, let x− := max{0,−x} for x ∈ R and denote for z ∈ Rp by z− the vector with
components z−i .

Theorem 2.25 ([KW04]). Let (x∗, y∗) be a vertex of the polyhedron
P = {(x, y) : Ax+Gy ≤ b} and B a related basis. Moreover, let z ∈ L∗ with zb 6∈ Z and
L∗ according to (2.16). Define z(A G) =: (α, 0) ∈ Zp×{0}q, γ := zb, and f0 := γ−bγc.
Then

αx+
1

1− f0

dz−e(Ax+Gy) ≤ bγc+
1

1− f0

dz−eb (2.17)

is a valid inequality for PI that cuts off (x∗, y∗). �

We note that the assumptions in Theorem 2.25 are well defined. Köppe and Weismantel
show that L∗ is indeed a lattice and that for any lattice base {z1, . . . , zk} of L∗ it is

zlb ∈ Z for all l ∈ {1, . . . , k} if and only if x∗ ∈ Zp.

So there always exists a z ∈ L∗ according to the assumptions in Theorem 2.25.

The derivation of the cutting plane (2.17) to a vector z ∈ L∗ is based on the MIR
procedure discussed in Section 2.2.4. Therefore, it is proximate that (2.17) is again a
split cut. We show this property in the next lemma. We also refer to [Vie07] for some
more details concerning results about cutting planes from lattices.

Lemma 2.26. Inequality (2.17) is a split cut for P to the disjunction D(α, bγc).
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2 Cutting planes for MILP

Proof. First let (x̃, ỹ) ∈ P with αx̃ ≤ bγc. By definition, it is 1− f0 > 0, dz−e ≥ 0, and
Ax̃+Gỹ ≤ b. So it is

1

1− f0

dz−e(Ax̃+Gỹ) ≤ 1

1− f0

dz−eb,

and it follows that (2.17) is valid for (x̃, ỹ).

Now let (x̃, ỹ) ∈ P with αx̃ ≥ bγc+ 1. (2.17) is equivalent to

αx− bγc − f0αx+ f0bγc ≤ dz−e(b− Ax−Gy); (2.18)

We define z̃ = z + dz−e, so z̃ ≥ 0 and dz−e = z̃ − z. By inserting the last equation in
(2.18), we obtain

αx− bγc − f0αx+ f0bγc ≤ z̃(b− Ax−Gy)− z(b− Ax−Gy)⇐⇒
αx− bγc − f0αx+ f0bγc ≤ z̃(b− Ax−Gy)− γ + αx⇐⇒

f0(bγc+ 1− αx) ≤ z̃(b− Ax−Gy)

By case assumption, the left hand side of the last inequality is non positive, so it follows
that (2.17) is valid for (x̃, ỹ) as Ax̃+Gỹ ≤ b.

Inequality (2.17) is a split cut to D(α, bγc), where (α, 0) = z(A G) for z ∈ L∗. Since
a split disjunction becomes larger if the norm of α becomes smaller, the selection of a
suitable lattice basis is crucial for deriving deep cutting planes. Köppe and Weismantel
suggest to compute a Lovász-reduced basis of L∗. It is the idea that such a basis may
also lead to short vectors α. At this point we can draw a parallel to the reduce-and-split
cuts which we have discussed before, as both approaches use the idea of basis reduction
to compute strong cuts.

2.2.6 Cuts from two rows of the simplex tableau

We conclude this chapter with a short reference to a recent approach of Andersen,
Louveaux, Weismantel, and Wolsey [ALWW07] for deriving valid cutting planes. In
contrast to the results of the last sections, these cutting planes are in general no split
cuts but derived from more general disjunctions. This has the advantage that deeper
cuts can be found. For example, the approach is sufficient for generating the mixed
integer hull of the polyhedron in Example 2.13.

Both the derivation of the mixed integer Gomory cut (2.9) and of the mixed integer
rounding inequality (2.15) was based on finding valid inequalities for mixed integer sets
which are defined by a single constraint. These sets were S := {(x, y) ∈ Zp

+ × Rq
+ :

ax + gy = b} in the first case and T := {(x, y) ∈ Zp
+ × Rq

+ : ax + gy ≤ b} in the second
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2.2 Cuts for general MILP

case. For the derivation of valid cuts for a MILP these basic cuts were now applied to
a suitable row of the simplex tableau. It can be seen as a proximate generalization of
the prior work to consider sets which are defined by two equations and to derive valid
inequalities for them. This is exactly the point of departure of the work of Andersen,
Louveaux, Weismantel, and Wolsey. The main contribution in [ALWW07] consists in
characterizing geometrically all facets of the mixed integer set

U := conv ({(x, s) ∈ Z2 × Rn
+ : x = f +

n∑

j=1

sjr
j}),

where f ∈ Q2 \ Z2 and rj ∈ Q2.

They show that every facet of the polyhedron U can be derived as intersection cut, see
Section 2.2.2, to certain two dimensional disjunctions. Moreover, they investigate the
various possibilities which can arise for the geometric structure of the facets of U and
distinguish three different cases. They prove that facets derived in two of the three cases
are never split cuts. Cutting planes which are derived from the set U can now also be
used in a cutting plane algorithm by applying them to sets defined by two rows of the
simplex tableau.

We will get back to these cuts in Section 3.5, where we relate them to k-disjunctive cuts
which we introduce in the next chapter.
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3 k-disjunctive cuts

We have seen in the last chapter that split cuts are in general not sufficient for generating
the mixed integer hull of a polyhedron. On the other hand, the cuts from two rows of
a simplex tableau in Section 2.2.6 show that more general disjunctions can be used
to compute deeper cuts. Therefore, we now consider cutting planes which are derived
from arbitrary polyhedral disjunctions and which are characterized by the number of
disjunctive inequalities.

In detail, we introduce the so called k-disjunctive cuts in Section 3.1 and discuss some
basic properties. In Section 3.2 we repeat the approximation property of split cuts.
Next, we analyze in Section 3.3 which type of cuts is required to generate the mixed
integer hull of a polyhedron. In Section 3.4 we turn to the problem of how deep cuts for
a rational polyhedron to a general disjunction can be computed. At last we give a short
overview of some related work in Section 3.5.

3.1 Basic definitions and properties

According to the definition of a split cut based on a split disjunction we now define a
k-disjunctive cut based on a k-disjunction which contains every integral vector.

Definition 3.1. Let k ≥ 2 be a natural number, d1, . . . , dk ∈ Zp integral vectors and
δ1, . . . , δk ∈ Z. Then we call the system of inequalities d1x ≤ δ1, . . . , dkx ≤ δk a k-
disjunction if for all x ∈ Zp there is an i ∈ {1, . . . , k} with dix ≤ δi. In this case we
write D(k, d, δ) with d = (d1, . . . , dk), δ = (δ1, . . . , δk) for the k-disjunction.

We note that we do not require the vectors di, δi to be different. So every l-disjunction is
also a k-disjunction for l < k. Especially, every split disjunction is also a k-disjunction.
Moreover, every k-disjunction is a cover of Zp by definition.

Definition 3.2. Let S ⊆ Rp+q be a closed convex set and αx + βy ≤ γ be a cutting
plane. Then αx+βy ≤ γ is called a k-disjunctive cut for S if there exists a k-disjunction
D(k, d, δ) with

(x, y) ∈ S : αx+ βy > γ =⇒ dix > δi ∀i ∈ {1, . . . , k}.
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3 k-disjunctive cuts

(a) a 3-disjunction (b) a 4-disjunction

Figure 3.1: Examples of k-disjunctions in R2

Every k-disjunctive cut for a polyhedron P is valid for PI by definition. We go on with
the definition of the k-disjunctive closure of a closed convex set S as a generalization of
the split closure introduced in Definition 2.8 and Definition 2.11.

Definition 3.3. Let S ⊆ Rp+q be a closed convex set. Then the intersection of S
and all k-disjunctive cuts for S is called the k-disjunctive closure of S and denoted by
S

(1)
k . Accordingly, for i ∈ N the i-th k-disjunctive closure S(i)

k of S is defined as the
k-disjunctive closure of S(i−1)

k . In the special case of k = 2 we also write S(i) instead of
S

(i)
2 as denoted in Definition 2.8 and Definition 2.11.

It is open if the k-disjunctive closure P (1)
k of a polyhedron P is again a polyhedron for

k ≥ 3, even if we restrict ourselves to rational polyhedra. The special case of this state-
ment for k = 2 and a rational polyhedron was stated in Theorem 2.10. Unfortunately,
the various proofs of the polyhedrality of the split closure P (1) of a rational polyhe-
dron by Andersen,Cornuéjols, and Li [ACL05b], Cook, Kannan, and Schrijver [CKS90],
Dash, Günlük, and Lodi [DGL07], and Vielma [Vie07] cannot be applied to the more
general case. Andersen, Cornuéjols, and Li use for their proof that each split cut can
be generated by intersection cuts to suitable basis solutions of the polyhedron. We will
see in Example 3.4 that this property is not satisfied by disjunctive cuts with k ≥ 3.
The proof of Cook, Kannan, and Schrijver is based on a geometric property of split
disjunctions that is not valid for general k-disjunctions. Dash, Günlük, and Lodi show
the property for the MIR closure and Vielma uses an algebraic characterization of split
cuts for his constructive approach. However, our results in the remainder of this chapter
are independent of the polyhedrality of P (1)

k . We note that we show in Theorem 3.8 that
P

(1)
2p = PI for a rational polyhedron P and so it follows that P (1)

k is again a polyhedron
for k ≥ 2p and a rational polyhedron.

A valid cut to a given k-disjunction D(k, d, δ) can be computed as intersection cut to
any basis solution (x, y) of the polyhedron P that is not contained in the disjunction;
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3.1 Basic definitions and properties

see Section 2.2.2. We have stated in Theorem 2.16 a result of Andersen, Cornuéjols, and
Li that intersection cuts are sufficient to describe all cuts to a given split disjunction.
However, the generalization of this result to general k-disjunctions with k > 2 is not
true. Not every valid k-disjunctive cut to a given disjunction is equal to or dominated
by a set of intersection cuts. This can be seen in the following

Example 3.4. We consider the polyhedral cone C ⊆ R2+1 with apex
(

1
2
, 1

2
, 1

2

)
that is

defined by the system
−x1 + y ≤ 0
−x2 + y ≤ 0
x1 + y ≤ 1
x2 + y ≤ 1.

(3.1)

The inequality y ≤ 0 is a 4-disjunctive cut for C to the 4-disjunction

D := {x1 + x2 ≥ 2, x1 − x2 ≥ 1,−x1 + x2 ≥ 1,−x1 − x2 ≥ 0};

see Figure 3.2. The set B of all bases of C is given by any three inequalities of (3.1).

We consider the intersection cut to D and the basis B which consists of the first three
inequalities of (3.1). The basis submatrix (A G)B is given by

(A G)B =



−1 0 1

0 −1 1
1 0 1


 with (A G)−1

B =



−1

2
0 1

2
1
2
−1 1

2
1
2

0 1
2


 .

So the extreme rays of the basis cone are generated by the three vectors

v1 =

(
1

2
,−1

2
,−1

2

)
, v2 = (0, 1, 0), v3 =

(
−1

2
,−1

2
,−1

2

)
.

The intersection of the half rays
(

1

2
,
1

2
,
1

2

)
+ λiv

i, λi ≥ 0 for i = 1, 2, 3

with the disjunction D is given by the three points

(1, 0, 0),

(
1

2
,
3

2
,
1

2

)
, (0, 0, 0).

This yields the intersection cut −x2 + 3y ≤ 0. It follows by symmetry that the point(
1
2
, 1

2
, 1

6

)
is valid for all four intersection cuts to all bases B ∈ B of C and so the

inequality y ≤ 0 dominates the intersection of all four intersection cuts.
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3 k-disjunctive cuts

(a) Projection of C ∩ {y ≥ 0}
on the x1x2-space (solid) and the
disjunction D (dashed).

(b) Projection of C on the x2y-
space (solid) and one intersection
cut (dashed) to a basis B (dot-
ted).

Figure 3.2: To Example 3.4

Although the properties of general k-disjunctive cuts are more involved than the prop-
erties of split cuts, we will see in the next sections that analyzing these cuts is useful.
At first we show that every cutting plane for a rational polyhedron P which is valid for
PI is a k-disjunctive cut for some k.

Lemma 3.5. Let P ⊆ Rp+q be a rational polyhedron and αx+βy ≤ γ be a valid rational
cutting plane for PI . Then αx+ βy ≤ γ is a k-disjunctive cut for some k ∈ N.

Proof. Let P be a rational polyhedron and αx+βy ≤ γ be a valid rational cutting plane
for PI . The set of points that is cut off by the cutting plane is given by

M := {(x, y) ∈ P : αx+ βy > γ}.
By Lemma 1.3, the projection of M on the x-space can be written in the form

projX (M) = {x ∈ Rp : Aex ≤ be, Alx < bl}. (3.2)

As M contains no point of PI , it is x 6∈ Zp for all x ∈ projX (M).

Since P is rational, also the projection projX (M) is rational. So we can choose without
loss of generality integral matrices Ae, Al in (3.2) for the representation of projX (M).
We enlarge the projection projX (M) by setting

b̃ei := bbeic+ 1,

b̃li := dblie.
It follows that αx+ βy ≤ γ is a k-disjunctive cut to the disjunction
D(k,−(Ae, Al),−(̃be, b̃l)), where k is equal to the sum of rows of the matrices Ae and
Al.
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3.1 Basic definitions and properties

Figure 3.3: The polyhedron P of Example 3.6 projected on the x1x2-space and a rational
3-disjunction (dotted).

Lemma 3.5 is in general not true for polyhedra with irrational input data. Not every
valid cutting plane for polyhedra with irrational input data is a k-disjunctive cut. This
can be seen in the following

Example 3.6. Let P ⊆ R2+1 be the irrational polyhedron defined as the convex hull of
the vertices

(
1

2
,
1

2
,
1

2

)
,

(
0,−
√

2

2
, 0

)
,

(
0, 1 +

√
2

2
, 0

)
,

(
1 +

√
2

2
,
1

2
, 0

)
.

It follows that PI = conv {0, (1, 0, 0), (1, 1, 0), (0, 1, 0)} and so y ≤ 0 is a valid cutting
plane for PI . However, as two facets of P are irrational and contain a relative interior
integral point, y ≤ 0 is no k-disjunctive cut for any k ∈ N as there does not exists a
k-disjunction D(k, d, δ) such that the interior int (projX (P )) of the projection projX (P )
of P on the x1x2-space is disjoint to D(k, d, δ). This can be seen in Figure 3.3.

To be able to deal with polytopes with real input data we generalize the definition of a
k-disjunctive cut. For the derivation of cuts we now also allow k-disjunctions D(k, d, δ)
with irrational inequalities dix ≤ δi. However, as we will see later in Section 3.3,
it is enough for the characterization of the mixed integer hull of an arbitrary bounded
polyhedron to take k-disjunctions D(k, d, δ) in which only one of the inequalities dix ≤ δi

is irrational.

Definition 3.7. Let k ≥ 2 be a natural number, d1, . . . , dk−1 ∈ Zp, dk ∈ Rp and
δ1, . . . , δk−1 ∈ Z, δk ∈ R. Then we call the system of inequalities d1x ≤ δ1, . . . , dkx ≤ δk

an irrational k-disjunction if for all x ∈ Zp there is an i ∈ {1, . . . , k} with dix ≤ δi. In
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3 k-disjunctive cuts

this case we write Dirr(k, d, δ) with d = (d1, . . . , dk), δ = (δ1, . . . , δk) for the irrational
k-disjunction.

We define an irrational k-disjunctive cut for a closed convex set S according to Defini-
tion 3.2 and define for i ∈ N the i-th irrational k-disjunctive closure S(i)

irr,k of a closed
convex set S according to Definition 3.3.

We note that by Definition 3.7 every k-disjunctive cut is also an irrational k-disjunctive
cut.

It is our goal to compute the mixed integer hull of a given polyhedron with k-disjunctive
cuts. This should be done as efficient as possible. That means that both the maximal
number k of disjunctive hyperplanes defining an (irrational) k-disjunctive cut and the
number of iterations in a cutting plane procedure should be small. At least the latter
property can be easily realized for a rational polyhedron.

Theorem 3.8. Let P ⊆ Rp+q be a rational polyhedron. Then PI = P
(1)
2p .

Proof. We show that every valid (rational) inequality αx + βy ≤ γ for PI is a 2p-
disjunctive cut for P . This is sufficient for the theorem. By Lemma 3.5, αx + βy ≤ γ
is a k-disjunctive cut to a disjunction D(k, d, δ). So the statement follows if k ≤ 2p.
Otherwise, the number k of inequalities of the disjunction D(k, d, δ) can be reduced to
2p. Since D(k, d, δ) is a k-disjunction we have

∀x ∈ Zp ∃i ∈ {1, . . . , k} : dix ≤ δi.

We consider successively the sets Si of all integral vectors x ∈ Zp with the property
dix = δi for a fixed i ∈ {1, . . . , k}. Now it exists either a vector x̄ ∈ Si with dix̄ = δi and
djx̄ > δj ∀j ∈ {1, . . . , k} \ {i}, or we can expand the disjunction by decreasing the right
hand side of the inequality to δi − 1 and repeating this consideration. This may also
lead to the case that the inequality dix ≤ δi can be left out, see Figure 3.4. Therewith
we can restrict ourselves without loss of generality to disjunctions D(k, d, δ) with the
additional condition

∀i ∈ {1, . . . , k} ∃xi ∈ Zp : dixi = δi ∧ djxi > δj ∀j ∈ {1, . . . , k} \ {i};
The set conv ({x1, . . . , xk}) contains except for its k vertices {x1, . . . , xk} no more in-
tegral vector y ∈ Zp by construction. Otherwise, y would be a convex combination of
some vertices xi, i ∈ I ⊆ {1, . . . , k} and it would follow that there exists a disjunctive
inequality djx ≤ δj with djy = djxi = δj ∀i ∈ I in contradiction to the properties of the
set {x1, . . . , xk}.
If now k > 2p then the set conv ({x1, . . . , xk}) contains two vertices v, w with the addi-
tional property that each component vi, wi, i ∈ {1, . . . , p} of both vectors is either even
or odd. So the sum vi +wi is even for all i ∈ {1, . . . , p}. This means that 1

2
(v+w) is an

integral vector which is contained in conv ({x1, . . . , xk}). This is a contradiction.
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3.1 Basic definitions and properties

(a) A k-disjunction in R2

given by the projection.
(b) Reduced k-disjunction
after expanding and drop-
ping

Figure 3.4: To the proof of Theorem 3.8

We consider an easy example to see that in general 2p-disjunctive cuts are required to
compute the mixed integer hull of a polyhedron in one step.

Example 3.9. Let C = [0; 1]p be the p-dimensional unit cube and define the polyhedron
Q by

Q = {x ∈ Rp : ax ≤ max
x∈C

ax, a ∈ {−1, 1}p};

see Figure 3.5. Next we embed Q in the Rp+1 and define the polyhedron

P =

{
(x, y) ∈ Rp+1 : (x, y) ∈ conv

{
(x, 0),

1

2
1, x ∈ Q

}}
.

It is PI = C and the only k-disjunction to derive the valid cut y ≤ 0 is defined by the 2p

facets of Q itself. This can be seen as each facet of Q contains a relative interior integral
point, namely a vertex of the unit cube.

As Theorem 3.8 shows, the mixed integer hull of a rational polyhedron can in theory be
generated in one step with 2p-disjunctive cuts. However, using cuts to k-disjunctions at
which k is exponential in the dimension p of the integral variables becomes extremely
costly in practical applications for increasing p. Moreover, we have not yet found a way
to generate the mixed integer hull of a general bounded polyhedron with real input data.
Therefore, we deal in the following with the problem which type of k-disjunctive cuts is
at least required in computing the mixed integer hull of a bounded polyhedron if cuts
can also be added successively.

Concluding, we transfer the results of the proof of Theorem 3.8 to irrational k-disjunctive
cuts.
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3 k-disjunctive cuts

Figure 3.5: To Example 3.9. The polytope Q for p = 2 with the projection of the apex
and the edges of P .

Corollary 3.10. Let P ⊆ Rp+q be a bounded polyhedron and αx+βy ≤ γ be an irrational
k-disjunctive cut. Then αx+ βy ≤ γ is an irrational k-disjunctive cut with k ≤ 2p.

Proof. Let αx+βy ≤ γ be an irrational k-disjunctive cut to the irrational k-disjunction
Dirr(k, d, δ) with irrational inequality dkx ≤ δk. We differ two cases and suppose at first
that there exists a x ∈ Zp with dkx = δk and djx > δj for all j ∈ {1, . . . , k − 1}. In this
case we can directly apply the proof of Theorem 3.8.

Now we suppose on the contrary that there does not exist a x ∈ Zp with dkx = δk

and djx > δj for all j ∈ {1, . . . , k − 1}. It follows in this case by Lemma 1.2 that we
can replace the irrational inequality dkx ≤ δk by some rational inequalities to obtain a
rational l-disjunction D(l, d̃, δ̃) to which αx+ βy ≤ γ is a l-disjunctive cut. Now we can
apply Theorem 3.8 to the rational disjunction D(l, d̃, δ̃).

3.2 Approximation property of split cuts

Before we further analyze which cuts we need to generate the mixed integer hull of an
arbitrary polyhedron, we deal with the approximation properties of k-disjunctive cuts.
Here we repeat that split cuts are already sufficient to approximate the mixed integer
hull PI of any polytope P arbitrarily exact as stated in Theorem 3.11. This was shown
by Owen and Mehrotra [OM01].

Theorem 3.11 ([OM01]). Let P ⊆ Rp+q be a bounded polyhedron, then

lim
i→∞

P (i) = PI .

�
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3.2 Approximation property of split cuts

The proof of this statement by Owen and Mehrotra is based on a repeated variable
disjunction, so only cuts to split disjunctions D(d, δ) with d = ui, i ∈ {1, . . . , p} are
used. In [OM01] they also present an algorithm for computing approximative solutions
of a general MILP. We take a closer look at this algorithm in Section 4.2.1. It also
provides a constructive proof of Theorem 3.11.

According to Lemma 1.5, we can state Theorem 3.11 also in a different form by consid-
ering the sequence (γ(i))i∈N of objective function values that is given by

γ(i) := max{cx+ hy : (x, y) ∈ P (i)} (3.3)

for an arbitrary vector (c, h) ∈ Rp+q.

Corollary 3.12. Let P ⊆ Rp+q be a bounded polyhedron,
γ∗ = max{cx+ hy : (x, y) ∈ PI} > −∞, and let γ(i) be according to (3.3). Then for all
ε > 0 there is an i0 ∈ N with

|γ(i) − γ∗| < ε for all i ≥ i0.

If PI = ∅ then there is an i0 ∈ N with P (i0) = ∅.

�

Since split cuts are sufficient for approximating the optimal objective function value
of any MILP arbitrarily exact, k-disjunctive cuts only become necessary for computing
exact solutions of a MILP or determining the exact mixed integer hull of a polytope.
Here we note that for rational polyhedra P the mixed integer hull PI can be generated
by combining split cuts with certain rounding cuts based on a discretization of the
continuous variable y; see [CKS90]. In detail, let the MILP

max{cx+ hy : Ax+Gy ≤ b}

be given, where A,G, b and c, h are integral and let (x∗, y∗) be an optimal solution
of the MILP. We denote by M ∈ Z the absolute value of the product of all regular
subdeterminants of G. As (x∗, y∗) is an optimal solution of the MILP, y∗ is an optimal
solution of the LP

max{hy : Gy ≤ b− Ax∗}.
It follows by Cramer’s rule that My∗ is integral, so the optimal objective function value
of max{Mcx + Mhy : Ax + Gy ≤ b} is integral. This means that for each inequality
cx+ hy ≤ γ that is valid for the MILP also the inequality

cx+ hy ≤ bMγc
M
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3 k-disjunctive cuts

is valid for the MILP.

However, although the above rounding cut approach provides an opportunity to obtain
the mixed integer hull of a rational polyhedron, we want to characterize the mixed integer
hull by ’classical’ cutting planes and find a related finite cutting plane algorithm. This
means that cuts are supposed to be derived directly by the representation of P and the
objective function without any prior numerical transformation of the problem. Moreover,
rounding cuts cannot be applied to MILP with irrational input data. Therefore, a further
consideration of k-disjunctive cuts is vital.

At last we want to note that in practical applications already optimizing over the first
split closure often gives a good approximation of the optimal objective function value.
This was investigated in detail by Balas and Saxena [BS08] for instances from the
MIPLIB 3.0 and several other classes of structured MILP.

3.3 Characterization of the mixed integer hull

We get back to the question which type of cuts is required to obtain the mixed integer
hull of an arbitrary polyhedron exactly. For this purpose, we analyze how the optimal
objective function value γ∗ of a general MILP with objective function max cx + hy can
be computed. According to the formulation of Corollary 3.12, we consider again the
sequence

γ(i) := max{cx+ hy : (x, y) ∈ P (i)
k } (3.4)

of objective function values. An important issue for solving MILP exactly is given by
the structure of the projection projX ({(x, y) ∈ PI : cx+ hy = γ∗}) of the set of optimal
solutions on the x-space of integral variables. For example, if the solution set of a rational
MILP consists of an unique vertex (x∗, y∗), the MILP can be solved by split cuts; see
Theorem 3.13. In general, however, the number k of disjunctive hyperplanes defining a
k-disjunctive cut has to be chosen exponential in the dimension p of the integral space
to determine exact optimal solutions of a MILP; see Theorem 3.21. Our approach also
provides a natural way to characterize the faces of the mixed integer hull PI of a polytope
P .

We start with the special case that the projection projX ({(x, y) ∈ PI : cx+hy = γ∗}) of
the solution set contains a relative interior integral point. Moreover, we restrict ourselves
in the remainder of this section to bounded polyhedra P with PI 6= ∅.
Theorem 3.13. Let P ⊆ Rp+q be a rational polytope, (c, h) ∈ Qp+q, and
γ∗ = max{cx+ hy : (x, y) ∈ PI}. If

relint (projX ({(x, y) ∈ PI : cx+ hy = γ∗})) ∩ Zp 6= ∅,
then there is an i ∈ N with max{cx+ hy : (x, y) ∈ P (i)} = γ∗.
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3.3 Characterization of the mixed integer hull

Proof. If max{cx+ hy : (x, y) ∈ P} = γ∗ there is nothing to show, so let
max{cx + hy : (x, y) ∈ P} > γ∗ and let M := {(x, y) ∈ PI : cx + hy = γ∗} denote the
solution set. Moreover, let x∗ ∈ relint (projX (M))∩Zp according to the assumption. By

M
(i)
> := {(x, y) ∈ P (i) : cx+ hy > γ∗} and

M
(i)
≥ := {(x, y) ∈ P (i) : cx+ hy ≥ γ∗}

we denote for i ∈ N0 and P (0) := P the set of all (x, y) ∈ P (i) which have to cut off and
its closure, respectively. To prove the claim, we have to show that cx + hy ≤ γ∗ is a
split cut for one of the sets P (i), i ∈ N. We divide the proof in three parts.

1) We show that dim(projX (M)) ≤ p− 1. By Lemma 1.3, we can write

projX (M
(i)
≥ ) =

{
x ∈ Rp : vr

(
A
−c

)
x ≤ vr

(
b
−γ∗

)
∀vr ∈ R

}
, (3.5)

where R is the set of extreme rays of the cone

Q =

{
v ∈ Rm+1 : v

(
G
−h

)
= 0, v ≥ 0

}
.

The right hand side in the representation of projX (M
(i)
≥ ) in (3.5) depends on the value

of γ∗, while the left hand side does not. Suppose now that dim(projX (M)) = p. In
this case it would be x∗ ∈ int (projX (M)) and so x∗ ∈ int (projX (M

(i)
≥ )). Now by (3.5)

it would exist a ε > 0 such that x∗ ∈ projX ({(x, y) ∈ P : cx + hy ≥ γ∗ + ε}) and the
inequality cx+hy ≤ γ∗ would be no valid cut for PI in contradiction to the assumption.

2) We construct a suitable split disjunction to derive the cut cx + hy ≤ γ∗ for a split
closure P (i), i ∈ N. It follows by definition and as x∗ ∈ relint (projX (M)) that

projX (M) ∩ projX (M
(i)
> ) = ∅ for all i ∈ N0.

Moreover, it is M (i+1)
≥ ⊆M

(i)
≥ for all i ∈ N0, so it follows further that

projX (M) ⊆ relbd (projX (M
(i)
≥ )) for all i ∈ N0. (3.6)

As P is rational, also M,M
(i)
> , M (i)

≥ and their projections on the x-space are rational.
Therewith, it follows altogether by part 1) and by (3.6) that there exists an inequality
dx ≤ δ with d ∈ Zp, δ ∈ Z which supports projX (M

(0)
≥ ) in x∗ and satisfies

dx = δ ∀x ∈ projX (M). (3.7)

According to (3.7) we define the split disjunction D(d, δ − 1).
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3 k-disjunctive cuts

(a) The set projX (M (0)
≥ ) and

the inequality dx ≤ δ
(b) The set projX (M (0)

≥ ) and
the split disjunction D(d, δ− 1)

(c) The set projX (M (i)
≥ )

for sufficiently large i.
projX (M (i)

> ) is now dis-
joint to the disjunction.

Figure 3.6: To the proof of Theorem 3.13

3) We show that cx + hy ≤ γ∗ is a split cut to the disjunction D(d, δ − 1) for a
split closure P (i), i ∈ N. It follows by Theorem 3.11 that limi→∞M

(i)
≥ = M , so it is

limi→∞ projX (M
(i)
≥ ) = projX (M) by Lemma 1.6. This means by Corollary 3.12 that

lim
i→∞

max{−dx : x ∈ projX (M
(i)
≥ )} = −δ. (3.8)

(3.8) shows that there exists a i0 ∈ N such that

δ − 1 < dx < δ for all x ∈M (i0)
> ,

so M (i0)
> is disjoint to the disjunction D(d, δ − 1). This proves the theorem.

Before we discuss some implications of Theorem 3.13, we turn to real polytopes. In
this case, the theorem is not to true in general. Here the crucial point in the proof
of Theorem 3.13 is in part 2). If P is not rational, also projX (M

(i)
≥ ) might not be

rational anymore. So it can be impossible to find a rational supporting hyperplane of
projX (M

(i)
≥ ) which satisfies condition (3.7) in the case that dim(projX (M)) ≤ p− 2. To

solve this problem we consider a suitable irrational (p+ 2)-disjunction instead of a split
disjunction for the derivation of the cut cx+ hy ≤ γ∗.

Theorem 3.14. Let P ⊆ Rp+q be a polytope, (c, h) ∈ Rp+q, and
γ∗ = max{cx+ hy : (x, y) ∈ PI}. If

relint (projX ({(x, y) ∈ PI : cx+ hy = γ∗})) ∩ Zp 6= ∅,

then there is an i ∈ N with max{cx+ hy : (x, y) ∈ P (i)
irr,p+2} = γ∗.

48



3.3 Characterization of the mixed integer hull

Proof. The proof is quite analog to the proof of Theorem 3.13, so we assume again that
max{cx + hy : (x, y) ∈ P} > γ∗ and let M := {(x, y) ∈ PI : cx + hy = γ∗} denote the
solution set. Moreover, let x∗ ∈ relint (projX (M)) ∩ Zp according to the assumption.
To prove the statement for real polytopes, we have to show that cx + hy ≤ γ∗ is an
irrational (p+ 2)-disjunctive cut for one of the sets P (i), i ∈ N.

1) The first part of the proof of Theorem 3.13 is independent of rational input data, so
we have again dim(projX (M)) < p.

2) We construct a suitable irrational p+ 2-disjunction Dirr(p+ 2, d, δ) to derive the cut
cx+ hy ≤ γ∗ for a split closure P (i), i ∈ N. The sets

M
(i)
> := {(x, y) ∈ P (i) : cx+ hy > γ∗} and

M
(i)
≥ := {(x, y) ∈ P (i) : cx+ hy ≥ γ∗}

and projX (M
(i)
> ), projX (M

(i)
≥ ) are in general not rational anymore, whereas projX (M)

is still rational. Except for these modifications, the consequences of the second part in
the proof of Theorem 3.13 remain correct, so there exists a possibly irrational inequality
zx ≤ ζ with z ∈ Rp, ζ ∈ R which supports projX (M

(0)
≥ ) in x∗ and satisfies

zx = ζ ∀x ∈ projX (M). (3.9)

We take a rational p-dimensional simplex S with vertices s1, . . . , sp+1 which satisfies the
properties

• M ⊆ int (S) and

• zs1 < ζ and zsi > ζi for i ∈ {2, . . . , p+ 1}.
As S is bounded, there are only finite many integral vectors x1, . . . , xr ∈ Zp such that
xi ∈ int (S) and zxi < ζ.

Next, we define the set A := conv (s1, x1, . . . , xr). A is rational by construction and
disjoint to projX (M). As projX (M) is also rational, there exists a rational affine half-
space wx ≤ ω such that wx > ω for all x ∈ A and wx < ω for all x ∈ projX (M).
Therewith we define the polyhedron

T := S ∩ {x ∈ Rp : zx ≤ ζ, wx ≤ ω}.

By construction, T is a polyhedron defined by p + 1 rational inequalities and the in-
equality zx ≤ ζ. So we can write

T = {x ∈ Rp : tx ≤ τ, zx ≤ ζ}

with t ∈ Z(p+1)×p, τ ∈ Zp+1. Now we define the irrational (p + 2)-disjunction Dirr(p +
2, d, δ) by

d = (−t,−z) and δ = (−τ,−ζ).
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3 k-disjunctive cuts

(a) The set projX (M (0)
≥ ), the

inequality zx ≤ ζ, and the sim-
plex S.

(b) The set projX (M (0)
≥ ) and

the polyhedron T
(c) The set projX (M (i)

≥ )
for sufficiently large i.
projX (M (i)

> ) is now disjoint to
the irrational (p+2)-disjunction
D.

Figure 3.7: To the proof of Theorem 3.14

3) According to the third part of the proof of Theorem 3.13 it follows that

lim
i→∞

max{tjx : x ∈ projX (M
(i)
≥ )} ≤ τ − 1.

So cx+ hy ≤ γ∗ is an irrational (p+ 2)-disjunctive cut for a split closure P (i).

An important special case of Theorem 3.13 and Theorem 3.14 is certainly given if the
projection projX (M) of the solution set M is 0-dimensional, so especially if M is a
vertex of PI . In this case, the optimal objective function value γ∗ and therewith by
Corollary 2.21 also an optimal solution (x∗, y∗) of a MILP can always be computed by
split cuts or by irrational (p + 2)-disjunctive cuts, respectively. Moreover, as the set of
optimal solutions always contains a vertex if the feasible domain PI 6= ∅ is given by a
polytope, we can in theory find an optimal solution of every MILP by split cuts or by
irrational (p + 2)-disjunctive cuts if we consider if necessary a MILP with a suitable,
sufficiently small perturbation of the objective function.

Corollary 3.15. Let a MILP (1.1) be given, where the feasible domain P of the LP
relaxation is bounded, and let γ∗ := max{cx + hy : (x, y) ∈ PI}. Then there exists an
objective function max c̃x+ h̃y and a (x∗, y∗) ∈ PI with the following properties:

1. (x∗, y∗) is the unique optimal solution of max{c̃x+ h̃y : (x, y) ∈ PI} with
γ̃ := c̃x∗ + h̃y∗.

2. It is cx∗ + hy∗ = γ∗.
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3.3 Characterization of the mixed integer hull

3. If P and (c, h) are rational there is a n ∈ N with max{c̃x+ h̃y : (x, y) ∈ P (n)} = γ̃.
Otherwise, there is a n ∈ N with max{c̃x+ h̃y : (x, y) ∈ P (n)

irr,p+2} = γ̃. �

As an easy application of Corollary 3.15, we consider a slight variation of Example 2.13.

Example 3.16. Let the polyhedron P ⊆ R2+1 be defined by the system

−x1 + y ≤ 0

−x2 + y ≤ 0

x1 + x2 + y ≤ 2,

and consider the MILP max{y : (x, y) ∈ P, x ∈ Z2}.
The optimal objective function value is given by y = 0 and the set of optimal solu-
tions of the MILP is the facet of PI which is given as the convex hull of the vectors
(0, 0, 0), (2, 0, 0), (0, 2, 0). Moreover, it is

max{y : (x, y) ∈ P (k)} > 0 ∀k ∈ N;

see Example 2.13. The vector (0, 0, 0) is an optimal solution of the MILP and the
perturbated objective function vector (−ε,−ε, 1−ε) with 0 < ε < 1

3
satisfies the conditions

of Corollary 3.15 with (x∗, y∗) = (0, 0, 0). So we can obtain an optimal solution of the
MILP within a finite number of split closures by considering the MILP

max{−εx1 − εx2 + (1− ε)y : (x, y) ∈ P, x ∈ Z2}.

We note that applying Corollary 3.15 practically yields some problems. First, it is not
obvious how a suitable perturbated objective function which satisfies the conditions of
the corollary can be found in general. Secondly, Corollary 3.15 is based on the split
closure of a polytope P . So it is open which split cuts or which irrational (p + 2)-
disjunctive cuts have to be added to obtain an optimal solution (x∗, y∗) of a MILP. For
the latter issue we especially remind that it is open if the split closure or the irrational
k-disjunctive closure is again a polytope for a given real polytope.

Theorem 3.13 shows that we can obtain all vertices of the mixed integer hull PI of a
polytope P by an repeated application of split cuts or irrational (p+ 2)-disjunctive cuts.
So we can see that these two types of cuts are sufficient to find a V-representation of PI .
We compare this property later with the characterization of a H-representation of PI .

After we have dealt with the characterization of special faces of PI , we turn to the
general situation. Here we have already seen in Theorem 3.8 that it is PI = P

(1)
2p for

rational polyhedra. The idea for finite convergence using k-disjunctive cuts is based
on the principle that there has to exist a k-disjunction D(k, d, δ) such that the relative
interior relint (projX (M)) of the projection of the solution set M is disjoint to the set of
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3 k-disjunctive cuts

all points satisfying the disjunction D. We will see that if no such k-disjunction exists
for all closures P (i)

k , then we cannot achieve a finite algorithm by k-disjunctive cuts with
k < 2p in general.

On the other hand, if this condition is satisfied for each face of the solution set, finite
convergence can be obtained.

Theorem 3.17. Let P ⊆ Rp+q be a rational polyhedron, (c, h) ∈ Qp+q,
γ∗ = max{cx + hy : (x, y) ∈ PI} and M0 := {(x, y) ∈ PI : cx + hy = γ∗}. Moreover,
denote by M1, . . . ,MF the faces of M0. If there exists for all sets Mi , i ∈ {0, . . . , F}
with relint (projX (Mi)) ∩ Zp = ∅ a k-disjunction Di(k, d0, δ0) with the property

x ∈ relint (projX (Mi)) =⇒ d0x > δ0,

then there exists a n ∈ N with max{cx+ hy : (x, y) ∈ P (n)
k } = γ∗.

Proof. We prove the theorem by induction on the dimension l := dim(M0) of the solution
set M0 = {(x, y) ∈ PI : cx + hy = γ∗}. For l = 0, the result is a special case of
Theorem 3.13 and k = 2, that means split cuts, can be chosen. The same is true if
relint (projX (M0)) ∩ Zp 6= ∅. So let the statement be true for l − 1, l ∈ N and let
relint (projX (M0)) ∩ Zp = ∅.

Now let dim(M0) = l and let for k ∈ N exist k-disjunctions Di(k, di, δi) for M0 and all
of its faces M1, . . . ,MF according to the assumption. We prove that cx + hy ≤ γ∗ is
a k-disjunctive cut to the disjunction D0 for a set P (n)

k , so we have to show that there
exists a n ∈ N such that d0x > δ0 for all x with {(x, y) ∈ P (n)

k : cx+ hy > γ∗}.

Given the disjunction D0, we define the polyhedron

Q := {(x, y) ∈ Rp+q : dMx ≥ δM ∧ cx+ hy = γ∗}

as the closure of all points (x, y) ∈ Rp+q which are not contained in the disjunction
D0 and satisfy cx + hy = γ∗. It follows by assumption for the disjunction D0 that
relint (M0) ⊆ relint (Q).

Now let (x̂, ŷ) ∈ Rp+q be a point with cx̂ + hŷ > γ∗ and dx̂ > δ. We define for each
facet f of Q the inequality cfx + hfy ≤ γf such that cfx + hfy = γf for all x ∈ f ,
cf x̂+ hf ŷ = γf , and cfx+ hfy ≤ γf for all x ∈ Q; see Figure 3.8.

As cx + hy = γ∗ is a supporting hyperplane of PI , the point (x̂, ŷ) can be chosen such
that each of the inequalities cfx+ hfy ≤ γf is valid for PI and supports M0 at most in
one of its faces M1, . . . ,MF . For the construction of (x̂, ŷ) we can take for example a
relative interior point (x̃, ỹ) of Q and set (x̂, ŷ) = (x̃, ỹ + εh) for a sufficiently small ε.
We note that h 6= 0 by assumption made at the end of Section 1.2.
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3.3 Characterization of the mixed integer hull

(a) A polyhedron P ⊆ R1+1 and
the disjunction DM (dotted)

Q

(x̂, ŷ)

f2f1

(b) The polyhedron Q, the point
(x̂, ŷ), and two inequalities cfx+
hjy ≤ γf

Figure 3.8: To the proof of Theorem 3.17.

It follows either by induction hypothesis or by Theorem 3.11 that the inequalities cfx+

hfy ≤ γf are valid for a closure P (n)
k . Therewith, the condition d0x > δ0 for all x with

{(x, y) ∈ P (n)
k : cx+ hy > γ∗} is satisfied.

For real polytopes we obtain the following analog statement.

Theorem 3.18. Let P ⊆ Rp+q be a polytope, (c, h) ∈ Rp+q,
γ∗ = max{cx + hy : (x, y) ∈ PI} and M0 := {(x, y) ∈ PI : cx + hy = γ∗}. Moreover,
denote by M1, . . . ,MF the faces of M0. If there exists for all sets Mi , i ∈ {0, . . . , F}
with relint (projX (Mi)) ∩ Zp = ∅ a k-disjunction Di(k, di, δi) with the property

x ∈ relint (projX (Mi)) =⇒ dix > δi,

then there exists a n ∈ N with max{cx+ hy : (x, y) ∈ P (n)
irr,j} = γ∗, where

j = max{k, p+ 2}.

Proof. The proof is quite analog to the proof of Theorem 3.17. For the base case of the
induction we now need irrational (p+2)-disjunctive cuts according to Theorem 3.14. For
the remainder of the proof rational k-disjunctions are actually sufficient as all projections
projX (Mi), i ∈ {0, . . . , F} are rational.

We note that it is actually necessary to involve not only the solution set M0 but also all
of its faces Mi, i ∈ {0, . . . , F} in the assumptions of Theorem 3.17 and Theorem 3.18.
This can be seen in the following example. We ’duplicate’ the mixed integer hull of
Example 2.13 and embed it in a higher dimensional space.
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3 k-disjunctive cuts

Figure 3.9: To Example 3.19. Projection of P on the x3y-space and the disjunction
D(u3, 0)

Example 3.19. We define the polyhedron P ⊆ R3+1 as the convex hull of the vertices

(0, 0, 0, 0), (2, 0, 0, 0), (0, 2, 0, 0),

(0, 0, 1, 0), (2, 0, 1, 0), (0, 2, 1, 0),(
2

3
,
2

3
, 0,

2

3

)
.

and consider the MILP max{y : (x, y) ∈ P, x ∈ Z3}. It is

PI = conv {(0, 0, 0, 0), (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 1, 0), (2, 0, 1, 0), (0, 2, 1, 0)},

so max{y : (x, y) ∈ PI} = 0. The relative interior relint (PI) is not contained in the
split disjunction D(u3, 0) = {x ∈ Z3 : x3 ≤ 0 ∨ x3 ≥ 1}. However, the inequality y ≤ 0
is no split cut to the disjunction D(u3, 0) as the vertex

(
2
3
, 2

3
, 0, 2

3

)
satisfies x3 = 0; see

Figure 3.9.

We go on and deal now with the question which cuts we need to solve a MILP in general.
We define special polytopes which can arise as solution sets of MILP. The idea is based
on a generalization of Example 2.13.

Lemma 3.20. Let P ⊆ Rp+q be a polytope,

γ∗ = max{cx+ hy : (x, y) ∈ PI} < max{cx+ hy : (x, y) ∈ P}

and let M := {(x, y) ∈ PI : cx + hy = γ∗}. If projX (M) is full dimensional and has
k ≤ 2p facets with each containing a relative interior integral point, then

max{cx+ hy : (x, y) ∈ P (i)
k−1} > γ∗ for all i ∈ N.
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3.3 Characterization of the mixed integer hull

Proof. Let projX (M) with at least k facets be given and let x1, . . . , xk ∈ Zp, where xi
is a relative interior point of facet i. Then it is

xij :=
1

2
(xi + xj) ∈ int (projX (M)) for all i, j, i 6= j

as dim(projX (M)) = p by assumption. Since max{cx + hy : (x, y) ∈ P} > γ∗ for all
xij there exists a yij ∈ Rq such that (xij, yij) ∈ P and cxij + hyij > γ∗.

For each (k − 1)-disjunction D(k − 1, d, δ) there exists an inequality dlx ≤ δl of the
disjunction D with dlxi ≤ δl and dlxj ≤ δl for two of the k relative interior integral
points x1, . . . , xk, as k integral points have to be covered by k − 1 inequalities. This
means that also the point xij is contained in the disjunction D, so dlxij ≤ δl. Therewith
each cut to the disjunction D is valid for the set

Qij := conv {(xij, yij), PI}.

As every (k − 1)-disjunctive cut is valid for one of the sets Qij, we obtain that

Q :=
⋂

i 6=j

Qij ⊆ P
(1)
k−1.

Moreover, we can see that Q also contains a point (x, y) ∈ P with cx + hy > γ∗. As
Q ⊆ P

(1)
k−1 satisfies again all presumptions of the lemma and the solution set M does not

change, the proof follows by induction.

We can now show that the generation of the mixed integer hull of a polytope in general
requires k-disjunctive cuts, where k is exponential in the dimension p. For this purpose,
we construct a suitable polytope that satisfies the assumption of Lemma 3.20.

Theorem 3.21. Let P ⊆ Rp+q be a polyhedron and γ∗ = max{cx + hy : (x, y) ∈ PI}.
Then in general

max{cx+ hy : (x, y) ∈ P (i)

2p−1+1} > γ∗ for all i ∈ N.

Proof. By Lemma 3.20, it is sufficient to give a full dimensional integral polytope Q ⊆ Rp

with at least 2p−1 + 2 facets and which contains no interior integral point but a relative
interior integral point in each facet. Then the polytope Q can be embedded in the Rp+1

and easily be completed to a polyhedron P which satisfies the assumption of Lemma 3.20
with M = Q.

For x ∈ Rp−1, xp ∈ R we define Q as the set of all (x, xp) ∈ Rp which satisfy the
inequalities

ax− π(a)xp ≤ 1, a ∈ {±1}p−1 and
0 ≤ xp ≤ 2,

(3.10)
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3 k-disjunctive cuts

where π(a) := |{i ∈ {1, . . . , p − 1} : ai = 1}| − 1. We prove that Q satisfies the
properties of Lemma 3.20. First, we show that Q can be described as the convex hull of
two (p− 1)-dimensional cross polytopes.

For xp = 0, the related polytope given by (3.10) is the (p−1)-dimensional cross polytope.
For xp = 2, the related polytope is the convex hull of the vertices 1 ± (p − 2)ui. This
follows from the fact that an inequality ax − π(a) · 0 ≤ 1 in (3.10) is satisfied with
equality for an unit vector ±ui ⊆ Rp−1 if and only if ax ≤ 1 + 2π(a) is satisfied with
equality for the vector 1± (p− 2)ui. In detail, it is

a(1± (p− 2)ui) =
= |{i ∈ {1, . . . , p− 1} : ai = 1}| − |{i ∈ {1, . . . , p− 1} : ai = −1}| ± (p− 2)aui =
= π(a) + 1− (p− 1− (π(a) + 1))± (p− 2)aui =
= 2π(a) + 3− p± (p− 2)aui =
= 2π(a) + 1, for ± aui = 1.

We just have shown by this calculation that an inequality ax ≤ 1 + xpπ(a) supports a
vertex (±ui, 0) if and only if it supports the vertex (1± (p− 2)ui, 2). So it follows that
Q has no more vertices and we have

Q = conv {(±ui, 0), (1± (p− 2)ui, 2), i ∈ {1, . . . , p− 1}},

and Q is integral.

Now let (z, 1) ∈ Zp be given. We take the inequality

ax ≤ 1 + 1 · π(a) with ai = 1⇐⇒ zi > 0, i ∈ {1, . . . , p− 1} (3.11)

and obtain

az =
∑

1≤i≤p−1

|zi| ≥
∑

zi>0

zi ≥ |{i ∈ {1, . . . , p− 1} : ai = 1}| = 1 + π(a). (3.12)

This shows that (z, 1) is no interior point of Q and so Q contains no integral interior
points.

Finally, we show that each facet of Q contains a relative interior integral point. First,
we can see that (0, 0) and (1, 2) are relative interior points of the facets xp = 0 and
xp = 2. Next, the point (z, 1) with z ∈ {0, 1}p−1 is a relative interior point of the facet
ax ≤ 1 + xpπ(a) according to (3.11). Here it follows by (3.12) that az = 1 + π(a) and it
is az < 1 + π(a) for the remaining inequalities by definition of z.

So Q satisfies all properties of Lemma 3.20 and Q has 2p−1 + 2 facets.
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3.4 Computing k-disjunctive cuts

0

(a) x3 = 0

0

(b) x3 = 1

0

(c) x3 = 2

Figure 3.10: The set Q according to Theorem 3.21 for p = 3, projected on the x3-space

We have proven that in general at least 2p−1 +2-disjunctive cuts are required to generate
the mixed integer hull of a polyhedron or to solve a MILP exactly. By Theorem 3.8, we
have an upper bound of k = 2p. Here it is open if the upper bound can be improved to
k = 2p−1 + 2. Theorem 3.21 moreover shows that not only general 2p−1 + 2-disjunctive
cuts but one special 2p−1 +2-disjunctive cut can be necessary to obtain the mixed integer
hull PI of a given polyhedron.

Altogether, we can see that an exact cutting plane algorithm becomes very costly in gen-
eral as a large number of disjunctive hyperplanes has to be determined for cut generation.
We also have not yet discussed how to determine a deep cut to a given k-disjunction.
As Example 3.4 has shown, intersection cuts to basic solutions of the polyhedron fail
here in general. Therefore, we deal with this issue in the next section, where we have to
restrict ourselves to rational polytopes.

On the other hand, we have seen that - depending on the geometric structure of the
projection of the solution set on the integral space - a wide class of problems can even
be solved by split cuts. In this context it is interesting to see that a repeated application
of cuts to small disjunctions cannot replace a single cut to a large disjunction in general.
This means that also facets of the mixed integer hull of a polyhedron can be only
obtained by k-disjunctive cuts with an exponential k in general. So determining a H-
representation of PI requires much more effort than a V-representation.

At last we note that due to our observations it also seems to be reasonable to use
information of projections for cut generation and related algorithms.

3.4 Computing k-disjunctive cuts

In this section we introduce an alternative for computing deep valid k-disjunctive cuts
for rational polyhedra. Therefore, we assume for the remainder of this section that all
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input data is rational.

Unlike the ’usual way’ of computing valid cuts for MILP, we need a vector (c, h) to which
we want to cut as additional input in our approach. We restrict ourselves at the moment
to polyhedral cones P = {(x, y) : Ax+Gy ≤ b} with apex (x∗, y∗), x∗ 6∈ Zp and assume
that cx+ hy attains its unique maximum at (x∗, y∗) with function value γ∗. Therewith,
we can describe (x∗, y∗) as polyhedron given by

Pγ∗ :=

{
(x, y) ∈ Rp+q :

(
A
−c

)
x+

(
G
−h

)
y ≤

(
b
−γ∗

)}
. (3.13)

By Lemma 1.3, the projection of this polytope on the x-space - which is equal to x∗ - is
given by

projX (Pγ∗) =

{
x ∈ Rp : vr

(
A
−c

)
x ≤ vr

(
b
−γ∗

)
∀vr ∈ R

}
, (3.14)

where R is the set of extreme rays of the cone

Q =

{
v ∈ Rm+1 : v

(
G
−h

)
= 0, v ≥ 0

}
. (3.15)

As the cone Q is rational we can assume that the extreme rays vr are elements of the
additive group

GPγ∗ :=

{
w ∈ Qm+1 : w

(
A
−c

)
∈ Zm+1

}
. (3.16)

We can now use the polyhedral description of projX (Pγ∗) to define a valid k-disjunction
for P which does not contain the apex (x∗, y∗). We do this by rounding up the right
hand sides of the inequalities which define projX (Pγ∗) in (3.14).

Lemma 3.22. Let P, (x∗, y∗), (c, h), γ∗, and projX (Pγ∗) be according to (3.13) - (3.16).
Moreover, define for vr ∈ R

dr := vr1,...,mA− vrm+1c

δr := bvr1,...,mb− vrm+1γ
∗c+ 1

with vr = (vr1,...,m, v
r
m+1). Then D(|R|,−d,−δ) is a valid |R|-disjunction that does not

contain (x∗, y∗).

Proof. By definition of P , it is max{cx + hy : (x, y) ∈ PI} < γ∗. So there is an ε > 0
such that cx + hy ≤ γ∗ − ε is valid but not optimal for PI . Moreover, projX (Pγ∗−ε) is
defined by the system

vr1,...,mAx− vrm+1cx ≤ vr1,...,mb− vrm+1γ
∗ + vrm+1ε ∀ vr ∈ R ⇐⇒

drx ≤ vr1,...,mb− vrm+1γ
∗ + vrm+1ε ∀ vr ∈ R
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3.4 Computing k-disjunctive cuts

The set projX (Pγ∗−ε) contains no integral points, so for all x ∈ Zp there is a vr ∈ R
with

drx > vr1,...,mb− vrm+1γ
∗.

It follows that the polyhedron {x ∈ Rp : dx ≤ δ} contains no integral point in its
interior. This is equivalent to the fact that D(|R|,−d,−δ) is a valid |R|-disjunction. As
the right hand side of each inequality which defines the projection projX (Pγ∗) has been
enlarged by the definition of the |R|-disjunction D, the vertex (x∗, y∗) is not contained
in the disjunction.

We note that the above approach is similar to the proof of Lemma 3.5.

We have constructed a k-disjunction which can be used to cut off the infeasible LP
solution (x∗, y∗). As we have mentioned at the beginning of this section, we want to cut
to the vector (c, h). We can do this now by using the values of the right hand sides δr
of the disjunction D(|R|,−d,−δ) which we have introduced in Lemma 3.22.

As for vrm+1 > 0 the value of δr depends on the objective function value, we can compute
the objective function value γr that corresponds to the value of δr. Here the inequalities
−drx ≤ −δr of the disjunction D at which the right hand side δr is independent of the
value of γ can be omitted. These are exactly those inequalities −drx ≤ −δr which are
related to an extreme ray vr ∈ R with vrm+1 = 0. In detail, we obtain for an extreme
ray vr ∈ R with vrm+1 > 0 the value γr from the equation

vr1,...,mb− vrm+1γ
r = bvr1,...,mb− vrm+1γ

∗c+ 1 = δr, (3.17)

this yields

γr =
δr − vr1,...,mb
−vrm+1

.

Taking the maximum γ̂ of the objective function values γr for all constraints
−drx ≤ −δr with vrm+1 > 0 gives us the inequality cx+hy ≤ γ̂ as valid cut to the vector
(c, h). Since the disjunction D(|R|,−d,−δ) does not contain x∗, we can ensure that the
infeasible vertex (x∗, y∗) is cut off. We summarize the result in the next

Theorem 3.23. Let P, (x∗, y∗), (c, h), γ∗, projX (Pγ∗), and D(|R|,−d,−δ) be according
to (3.13) - (3.16) and to Lemma 3.22. Define for vr ∈ R with vrm+1 > 0

γr :=
δr − vr1,...,mb
−vrm+1

and

γ̂ := max{γr : r ∈ R, vrm+1 > 0}.

Then cx+ hy ≤ γ̂ is a valid inequality for PI and cx∗ + hy∗ > γ̂.
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3 k-disjunctive cuts

Proof. The validity of the inequality cx + hy ≤ γ̂ follows directly by Lemma 3.22 and
(3.17), as it is a |R|-disjunctive cut to the disjunction D(|R|,−d,−δ) by definition.
Moreover, it is cx∗ + hy∗ > γ̂ as (x∗, y∗) is not contained in the disjunction D and so
γ̂ < γ∗.

We consider again Example 3.4 as an example for our approach.

Example 3.24. Let again the polyhedral cone C ∈ R2+1 defined by the system

−x1 + y ≤ 0

−x2 + y ≤ 0

x1 + y ≤ 1

x2 + y ≤ 1.

with apex
(

1
2
, 1

2
, 1

2

)
be given. Additionally, let (0, 0, 1) be the vector to which we cut. The

LP relaxation max{y : (x, y) ∈ C} attains its unique maximum at the apex of C with
value γ∗ = 1

2
. So the presumptions of Lemma 3.22 and Theorem 3.23 for applying the

|R|-disjunctive cut are satisfied. Next, we compute the extreme rays of the projection
cone

Q = {(1 1 1 1 − 1)v = 0, v ≥ 0}
according to (3.15). As result, which also satisfies condition (3.16), we obtain the four
vectors

(1, 0, 0, 0, 1), (0, 1, 0, 0, 1), (0, 0, 1, 0, 1), (0, 0, 0, 1, 1).

We can now apply Lemma 3.22 to determine the valid 4-disjunction D(4,−d,−δ) and
obtain for the inequalities drx ≤ δr

−x1 ≤ b0− 1

2
c+ 1 = 0

−x2 ≤ b0− 1

2
c+ 1 = 0

x1 ≤ b1− 1

2
c+ 1 = 1

x2 ≤ b1− 1

2
c+ 1 = 1.

Now we can compute a valid cut according to Theorem 3.23. It is

γ1 = γ2 =
0− 0

−1
= 0 and γ3 = γ4 =

1− 1

−1
= 0,

and so γ̂ = 0. Therefore, the inequality y ≤ 0 is valid for C; see also Figure 3.11.
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0

x∗

(a) For γ = 1
2

0

(b) For γ = 1
2 − ε

0

(c) For γ = 0

Figure 3.11: To Example 3.24. Projection of C ∩ {(x, y) : y ≥ γ} on the x1x2-space
depending on γ

We discuss some further properties of the cutting plane approach. The computation of a
cut according to Lemma 3.22 and Theorem 3.23 is not independent of the representation
of the polyhedron P and the extreme rays vr of the cone Q. For example, if we scale in
Example 3.24 each of the extreme rays of the cone Q by 4, we obtain the vectors

(4, 0, 0, 0, 4), (0, 4, 0, 0, 4), (0, 0, 4, 0, 4), (0, 0, 0, 4, 4).

This leads to the smaller 4-disjunction

−4x1 ≤ b0− 4
1

2
c+ 1 = −1⇐⇒ x1 ≥

1

4

−4x2 ≤ b0− 4
1

2
c+ 1 = −1⇐⇒ x2 ≥

1

4

4x1 ≤ b4− 4
1

2
c+ 1 = 3⇐⇒ x1 ≤

3

4

4x2 ≤ b4− 4
1

2
c+ 1 = 3⇐⇒ x2 ≤

3

4

and the weaker cut y ≤ 1
4
. The same effect can be observed if the extreme rays remain

unchanged but the inequalities defining the polyhedron C and the objective function
vector are scaled by the factor 4 in Example 3.24.

By using the projection projX (Pγ∗) according to (3.14) as k-disjunction, we solve the
problem of how to find a suitable k-disjunctionD(k, d, δ) for deriving cuts. This relates to
the selection of both the number k and the defining inequalities dx ≤ δ of the disjunction.
Moreover, we have seen in the last section that information on the projection of the
polyhedron P can be useful for deriving strong cuts. On the other hand, there are two
issues which have to be considered. First, the projection which defines the k-disjunction
depends on the predisposed cut vector (c, h). So the selection of a suitable k-disjunction
has been shifted to the selection of the cut vector. Here it is particularly not obvious
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3 k-disjunctive cuts

how to choose the cut vector (c, h) to obtain deep cuts in general. However, we will see
in Section 4.3 that this approach leads to a finite cutting plane algorithm for rational
MILP if we use the objective function vector of the MILP for cutting.

Secondly, the number k of disjunction hyperplanes is equal to the number of extreme

rays of the cone Q =

{
v ∈ Rm+1 : v

(
G
−h

)
= 0, v ≥ 0

}
according to (3.15). This

means that k is only determined by the properties of the (m + 1) × q matrix G and
is therewith independent of the number p of integral variables. So there is no direct
connection between the results concerning the properties of k-disjunctive cuts which are
required to solve a MILP in the last section and the way we choose the k-disjunction
D(k, d, δ) here. Moreover, it also follows that in general the number k of disjunctive
inequalities dix ≤ δi, i ∈ {1, . . . , k} is larger than necessary for the derivation of a deep
cut.

At last we note that we have not yet discussed the complexity of our approach nor any
further details which are vital for the approach as for example a procedure for computing
extreme rays of cones. We also deal with these issues in Section 4.3 in the context of
the finite cutting plane algorithm.

3.5 Related work

To conclude this chapter, we give a brief overview of a similar approach for general dis-
junctive cuts. It was developed independently from our work by Andersen, Louveaux,
and Weismantel [ALW07a], [ALW07b] and has an other starting point, namely a gener-
alization of the classical integer Farkas Lemma - Theorem 2.24 in the case of G = 0 - of
Kronecker [Kro84] to systems of equations and inequalities. In detail, it is their aim to
give certificates for rational systems of the form

Ax = b

Cx ≤ d

x ∈ Zp.

They start with a geometric interpretation of the integer Farkas Lemma and show that
there exists a connection to split disjunctions. To deal with equations and inequalities
in the Farkas Lemma, they generalize split disjunctions to certain polyhedra which are
lattice point free in their interior and call these polyhedra split bodies. Actually, split
bodies can be seen as an alternative to our way of denoting general disjunctions in
Definition 3.1. They are defined as follows.

Definition 3.25 ([ALW07b]). A set L ⊆ Rp is a split body if
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• dim(L) = p;

• int (L) ∩ Zp = ∅;
• each facet F of L contains an integral point and can be represented by an integral
vector (π, π0) ∈ Zp+1 as F = {x ∈ L : πx = π0}.

• L can be represented as the orthogonal Minkowski-sum of a polytope plus a linear
space, in especially, there exist affinely independent vectors v1, . . . , vs and linear
independent vectors w1, . . . , wd ∈ Zp such that wivj = 0 for all i = 1, . . . , d and
j = 1, . . . , s such that

L = {x ∈ Rp : x =
s∑

i=1

λiv
i +

d∑

j=1

µjw
j,

s∑

i=1

λi = 1, λi ≥ 0}.

The split dimension of L is defined to be p− d.

According to the definition, a split body L satisfies at first more conditions than a k-
disjunction according to Definition 3.1. It is required that L is full dimensional and that
each of its facets contains an integral point. Moreover, a split body is not characterized
by the number of facets but by its dimension given by p− d.
However, every split body can be seen as the closed complement of a k-disjunction as
it is a polyhedron which contains no integral point in its interior. Besides, each k-
disjunction which is used for the derivation of a cutting plane always satisfies the first
condition of Definition 3.25 due to Definition 3.2. Likewise, each k-disjunctive cut can
be derived from a disjunction which satisfies the third condition of the above definition.
This can be seen by expanding a given disjunction D(k, d, δ) by the rules of the proof
of Theorem 3.8. It follows that each k-disjunction can be linked to a related split body.
Andersen, Louveaux, and Weismantel also show that every lattice point free polyhedron
is contained in a split body of appropriate dimension.

Now by the concept of split bodies, they can state the following certificate for systems
of equations and inequalities. The underlying idea is that a system
{Ax = b, Cx ≤ d , x ∈ Zp} is infeasible if it is contained in a certain split body of
appropriate dimension.

Theorem 3.26 ([ALW07b]). Let A ∈ Zm×p, C ∈ Zn×p and let l = rank(C). For integral
vectors b and d, the primal system

Ax = b

Cx ≤ d

x ∈ Zp
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is empty if and only if there exist rational vectors y1, . . . , yt ∈ Qm ×Qn
+, and at most l

linearly independent integral vectors v1, . . . , vl ∈ Zp such that

yk
(
A
C

)
=

l∑

i=1

λki v
i ∈ Zp with λki ∈ Z for all i = 1, . . . , l, k = 1, . . . , t.

Introducing variables zi, i ∈ {1, . . . , l} (representing vix), the following system of t in-
equalities in l variables has no integral solution.

l∑

j=1

λkj zj ≤ yk

(
b
d

)
for all k = 1, . . . , t. (3.18)

�

The application of split bodies can now be generalized to consider mixed integer systems;
see [ALW07a]. This can be done as a polyhedron P contains mixed integer feasible points
if and only if its projection projX (P ) on the integral space contains integral points. This
also leads to a natural generalization of the mixed integer Farkas Lemma (Theorem 2.24)
to systems with equations and inequalities in line with the pure integer case given in
Theorem 3.26. Moreover, split bodies can now also be used to derive cutting planes
for MILP. Here, very recently Andersen, Louveaux, and Weismantel have also given a
characterization of the faces of the mixed integer hull of a polyhedron based on cuts to
split bodies; see [ALW07a].

Finally, we briefly get back to the cuts from two rows of the simplex tableau of Andersen,
Louveaux, Weismantel, and Wolsey which we have introduced in Section 2.2.6. The cuts
characterize the facets of the set

U := {(x, s) ∈ Z2 × Rn
+ : x = f +

n∑

j=1

sjr
j}

and are derived as intersection cuts from two dimensional split bodies. This means that
they can also be seen as 3- and 4-disjunctive cuts according to our definition. These cuts
can also be linked to Theorem 3.26 to obtain a full characterization of the certificate
(3.18) for l = rank(C) = 2. In this case, (3.18) always consists of 3 or 4 inequalities; see
again [ALW07a].
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In Chapter 3 we have analyzed in detail which cuts are required for a finite cutting plane
algorithm for solving a MILP. In this chapter we now want to apply these theoretical
results in the design of algorithms. We distinguish exact and approximation algorithms,
at which we understand by an approximation algorithm a procedure that computes a
feasible solution of a MILP with a ε-optimal objective function value.

First, we point out some problems which arise by solving a MILP with cutting planes
in Section 4.1. Next, we discuss in Section 4.2 some finite approximation algorithms
which are based on cuts to simple split disjunctions and give some extensions. Beside
these algorithms we present at last in Section 4.3 a new cutting plane algorithm which
also uses more general k-disjunctive cuts with k > 2 and always finds an exact optimal
solution of a rational MILP in finite time. We also discuss some theoretical and practical
issues which are linked with this algorithm and its application.

4.1 Basic algorithm and problems

To get a first picture of the difficulties which can arise by solving a MILP with a cutting
plane algorithm we start with a further analysis of Algorithm 1. We have already dis-
cussed in Section 2.2.3 that this algorithm does not solve a MILP in finite time in general.
However, as Theorem 3.11 shows, split cuts are sufficient for an arbitrary approximation
of the optimal objective function value. So we can ask if Algorithm 1 provides an imple-
mentation of this result. This is the first requirement for an approximation algorithm,
as otherwise it is not possible to check the quality of the objective function value of
any feasible solution. Unfortunately, Algorithm 1 fails in this point. This was shown by
Owen and Mehrotra [OM01] by an example which we discuss now.

We consider a slight modification of Algorithm 1 which effects that more cuts are added
in a step of the algorithm than in the original case. In detail, we add for an optimal
solution (xl, yl), xli 6∈ Z of the LP relaxation P l in step l not only intersection cuts to
all bases B of (xl, yl), but intersection cuts to all (feasible and infeasible) bases B of
the polyhedron P l to the disjunction D(ui, bxlic). It follows by Theorem 2.16 that the
feasible domain P l of the LP relaxation in step l of the algorithm is given by

P l = conv ({(x, y) ∈ P l−1 : xi ≤ bxl−1
i c ∨ xi ≥ bxl−1

i c+ 1}).
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Figure 4.1: The polyhedron P of Example 4.1. The dashed line gives the missing facet
of the integer hull PI .

Now we look at the following

Example 4.1 ([OM01]). Let the ILP

max x1 + x2

8x1 + 12x2 ≤ 27

8x1 + 3x2 ≤ 18

x1, x2 ≥ 0

x1, x2 ∈ Z

be given. The set of all feasible points of the LP relaxation is given by the polyhedron

P = {x ∈ R2 : 8x1 + 12x2 ≤ 27, 8x1 + 3x2 ≤ 18, x1, x2 ≥ 0},

and
(

15
8
, 1
)
is the unique optimal solution of max{x1 + x2 : x ∈ P}. The set of optimal

solutions of the ILP is given by (2, 0), (1, 1), and (0, 2) which satisfy the equation x1+x2 =
2; see Figure 4.1.

Now Owen and Mehrotra show that neither of the vertices
(

9
4
, 0
)
∈ P and

(
0, 9

4

)
∈ P is

cut off by Algorithm 1 or its above modification. This is due to the fact that the optimal
LP solution

(
xl1, x

l
2

)
in step l of the algorithm always satisfies one of the conditions

x1 ∈ {1, 2} ∧ x2 6∈ (2, 3) or x1 6∈ (2, 3) ∧ x2 ∈ {1, 2}.

As the points
(

9
4
, 0
)
and

(
0, 9

4

)
are not cut off, all LP solutions

(
xl1, x

l
2

)
satisfy the

inequality x1 + x2 ≥ 9
4
and the approximation of the optimal objective function value

γ∗ = 2 fails. We note that the sequence γl := xl1 + xl2 of objective function values tends
to the limit 9

4
.
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We analyze the reasons why Algorithm 1 and its modification do not approximate the
optimal objective function value even in the case of an ILP as in Example 4.1. We note
that it is P (1) = PI for the split closure P (1) of P and P (∞) = PI applying only simple
split cuts to disjunctions D(d, δ) with d = ui to the polytope P . As we have already
mentioned in Example 4.1, a crucial point for generating the integer hull PI is to cut
off the points

(
9
4
, 0
)
and

(
0, 9

4

)
. For this purpose, split cuts to the disjunctions D(u1, 2)

and D(u2, 2) are required but not added in the algorithm due to the disadvantageous
properties of the sequence

(
xl1, x

l
2

)
of optimal LP solutions. This means that a selection of

split cuts according to the local information of the optimum of the current LP relaxation
fails. For these reasons we need a criterion for the selection of cuts which is based on
more global information. We discuss two possibilities for this issue in the next section.

Moreover, it remains open if we can design an approximation algorithm that is still
based on the local information of the current LP optimum, but adds cuts to more
general split or k-disjunctions. We can see that we obtain an optimal solution of the
ILP in Example 4.1 if we compute a cut to the split disjunction D((1, 1), 2) given by
the objective function. Of course, for pure ILP as in this example, rounding cuts to
the objective function can always be used for cutting to obtain even an exact solution
in finite time in combination with cuts to unit vectors u1, . . . , up as we have already
discussed in Section 2.1. Additionally, it is open how an exact algorithm for solving
MILP based on k-disjunctive cuts can be designed.

4.2 Approximation algorithms

We discuss two algorithms which overcome the problems of Algorithm 1 and always find
an ε-optimal solution of a MILP. Both algorithms are again based on simple split cuts.
The first one is an algorithm of Owen and Mehrotra [OM01] and was - to the best of our
knowledge - the first cutting plane approximation algorithm for MILP. This algorithm
also provides a constructive proof of Theorem 3.11. As an alternative we introduce
in Section 4.2.2 a second algorithm which combines the results of Theorem 2.20 with
cuts that might not be valid for all feasible points of the MILP but for some ε-optimal
solutions, only. This approach will especially be the basis for an exact algorithm in
Section 4.3.

4.2.1 Algorithm of Owen and Mehrotra

As we have discussed in the last section, Algorithm 1 fails in approximating the optimal
objective function value in general as cuts are only added according to local information.
Therefore, Owen and Mehrotra suggest to add cuts not only to the optimal vertex of the
LP relaxation but also to all ’nearly optimal’ vertices. Here a vertex is nearly optimal
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if its objective function value does not differ more than a predefined amount from the
optimal objective function value of the LP relaxation. This strategy leads to a finite
approximation algorithm. We discuss the algorithm in more detail.

The input is given by a MILP (1.1), where the feasible domain P of the LP relaxation is
bounded, the optimality tolerance ε > 0, a parameter ν > 0 which defines nearly optimal
solutions, and a parameter ε̄ ∈ (0, 5] which is used for integer rounding within the
procedure. The algorithm starts as usual with solving the LP relaxation max{cx+ hy :
(x, y) ∈ P} of the MILP and computing the related objective function value γ∗.

We determine the set Ω of all nearly optimal vertices of P . These are all vertices with an
objective function value not less than γ∗ − ν. It is now searched for ε-optimal solutions
in the following way. The integral restricted components x̂i, i ∈ {1, . . . , p} of all vertices
(x̂, ŷ) ∈ Ω are first rounded to the next integer di = bx̂ic or di = dx̂ie. This is only done
if the distance between each component x̂i of the vertex and the nearest integer di is not
too large. Here the maximum feasible distance is defined by the parameter ε̄.

Next, we check for each vertex (x̂, ŷ) ∈ Ω if there exists a feasible point (d, y) ∈ P
with integral components di as computed in the rounding operation and an objective
function value greater or equal to γ∗ − ε. If there exists such a point (d, y) satisfying
both conditions, a ε-optimal solution of the MILP has been found. Otherwise, the set
of nearly optimal vertices is used to check if the MILP is infeasible. We test for each
vertex (x̂, ŷ) ∈ Ω and each component x̂i 6∈ Z if the set

P ∩ {(x, y) : xi ≤ bx̂ic ∨ xi ≥ bx̂ic+ 1}
is empty. If this should be the case for a vertex (x̂, ŷ) and a disjunction D(ui, bx̂ic)
the MILP is infeasible. Otherwise, we go on and add a cut to each possible disjunction
D(ui, bx̂ic) at each vertex (x̂, ŷ) ∈ Ω. After all cuts have been added, one step of the
algorithm is complete and we start over.

We note that Owen and Mehrotra do not use intersection cuts in their algorithm, but
cuts to split disjunctions D(ui, bx̂ic) which are given by a certain subgradient. In detail,
let (x̂, ŷ) be a vertex of P with x̂i 6∈ Z and let (x∗, y∗) be an optimal solution of the
separation problem

min {||(x, y)− (x̂, ŷ)|| : (x, y) ∈ P ∩ {(x, y) : xi ≤ bx̂ic ∨ xi ≥ bx̂ic+ 1}} .
Then the inequality

αx+ βy ≥ αx∗ + βy∗, (4.1)

where (α, β) is a subgradient of ||(x, y) − (x̂, ŷ)|| at (x∗, y∗), is a split cut for P to the
disjunction D(ui, bx̂ic). We refer to [OM01] for more details.

The formal algorithm is stated in Algorithm 2. It is slightly modified to our repre-
sentation as we consider maximization problems. Owen and Mehrotra prove that the
algorithm always finds an ε-optimal solution.
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Algorithm 2 Algorithm of Owen and Mehrotra
1: procedure AOM
2: Input: MILP (1.1), where P is bounded, ε, ε̄, ν;
3: Output: ε-optimal solution (x∗, y∗) or "problem infeasible" if no solution exists;
4:
5: P ← {(x, y) : Ax+Gy ≤ b}; i← 0; S0 ← P ;
6:
7: while Si 6= ∅ do
8: γi ← max{cx+ hy : (x, y) ∈ Si};
9: Ωi ← {(x, y) ∈ ext(Si) : γi − cx− hy ≤ ν};
10:
11: Ωε̄ ← {(x, y) ∈ Ωi : min{(xj − bxjc), (dxje − xj) < ε̄∀j ∈ {1, . . . , p}};
12: if Ωε̄ 6= ∅ then
13: for each (x, y) ∈ Ωε̄ do
14: for each j ∈ {1, . . . , p} do
15: if (xj − bxjc < ε) then dj ← bxjc;
16: else dj ← dxje;
17: end if
18: end for
19:
20: S̄ ← {x ∈ Si : xj = dj ∀j = 1, 2, . . . , p};
21: if S̄ 6= ∅ then
22: (x̄, ȳ)← argmax {cx+ hy : (x, y) ∈ S̄};
23: if γi − cx− hy < ε then
24: "ε-optimal solution (x̄, ȳ)"; break
25: end if
26: end if
27: end for
28: end if
29:
30: Si+1 ← Si;
31: for each (x̄, ȳ) ∈ Ωi and j ∈ {1, . . . , p} such that x̄j 6∈ Z do
32: if {(x, y) ∈ Si : xj ≤ bx̄jc} = {(x, y) ∈ Si : xj ≥ dx̄je} then
33: "problem infeasible"; break
34: end if
35:
36: Compute cutting plane αx+ βy ≤ γ to Si, D(uj, bx̄jc) according to (4.1);
37: Si+1 ← {(x, y) ∈ Si+1 : αx+ βy ≤ γ)};
38: end for
39: i← i+ 1;
40: end while
41: "problem infeasible"; break
42: end procedure
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Theorem 4.2 ([OM01]). Let a MILP (1.1) be given, where the feasible domain P of
the LP relaxation is bounded. Then Algorithm 2 either finds a ε-optimal solution of the
MILP or detects infeasibility in a finite number of steps. �

We refer to [OM01] for more details regarding Algorithm 2 such as the choice of the
parameter ν. Finally, we illustrate the procedure by considering again Example 4.1
which we have used for the motivation at the beginning of this chapter.

Example 4.3. Let again the ILP

max x1 + x2

8x1 + 12x2 ≤ 27

8x1 + 3x2 ≤ 18

x1, x2 ≥ 0

x1, x2 ∈ Z

be given. We have seen in Example 4.1 that the sequence (xl1, x
l
2) of LP optima satisfies

the condition x1 + x2 ≥ 9
4
, the sequences γl of objective function value tends to 9

4
, and

that it was crucial for the failure of Algorithm 1 that the vertices
(

9
4
, 0
)
and

(
0, 9

4

)
of the

LP relaxation P are not cut off.

Now as the the sequence γl of objective function values tends to 9
4
, each of the crucial

vertices of P becomes nearly optimal for an arbitrary choice of the parameter ν and for
ε < 1

4
in Algorithm 2. So both vertices are cut off in a step of Algorithm 2 by cuts to the

disjunctions D(u1, 2) and D(u2, 2), respectively. Moreover, one can see that Algorithm 2
even finds one of the exact optimal solutions which are given by (2, 0), (1, 1), and (0, 2),
as for ε < 1 each feasible solution is also optimal in this example.

4.2.2 Searching for feasible points

We present another approximation algorithm which is motivated by Theorem 2.20. By
this result, we can especially check if an arbitrary polytope contains a mixed integer
feasible point by solving a MILP with the integral objective function maxx1 ; see also
Corollary 2.21 for a similar result. As we have shown, Algorithm 1 can get stuck before
converging to the optimal objective function value. To avoid this problem we now addi-
tionally cut with the objective function in such a way that at most ε-optimal solutions
become infeasible. Afterwards, we check if a feasible point has been cut off. If this
should be the case, a ε-optimal solution has been found. Otherwise, we have added a
valid cutting plane and go on with the algorithm. The finiteness of this procedure follows
as we can guarantee that the sequence of objective function values always decreases by
a fixed ε within a finite number of steps.
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We describe the approach in more detail and start with the procedure feasible point,
see Algorithm 3, which checks if feasible points have been cut off. The input is given
by a polytope P and an objective function cx + hy with value γ, where all points of P
with a value greater than γ are cut off. The output is given either by a feasible point
(x, y) ∈ P with x ∈ Zp and cx+ hy ≥ γ or the information that none such point exists.
The procedure feasible point uses as subroutine the procedure BasisAlgorihtm
stated in Algorithm 1.

Algorithm 3 Search for feasible points
1: procedure feasible point
2: Input: Polytope P, cx+ hy, γ;
3: Output: feasible point (x∗, y∗) ∈ P with cx∗ + hy∗ ≥ γ or
4: "problem infeasible" if no solution exists;
5:
6: P ← P ∩ {(x, y) : cx+ hy ≥ γ};
7: Set MILP: max{x1 : (x, y) ∈ P, x ∈ Zp};
8: BasicAlgorithm(MILP);
9: end procedure

We can now state the whole algorithm in the procedure ε-approximation; see Algo-
rithm 4. The input is given by a MILP (1.1), where the feasible domain P of the LP
relaxation is bounded, and the parameter ε which defines the quality of the approxi-
mation. We obtain as output of Algorithm 4 either a ε-optimal solution (x∗, y∗) of the
MILP or the information that no feasible solution exists.

Theorem 4.4. Let a MILP (1.1) be given, where the feasible domain P of the LP
relaxation is bounded. Then Algorithm 4 either generates a ε-optimal solution of the
MILP (1.1) or detects infeasibility in a finite number of steps.

Proof. The procedure feasible point (Algorithm 3) always gives the correct output
within a finite number of steps by Theorem 2.20, as a MILP with an integral objective
function is solved over a polytope. Likewise, either a optimal solution (x∗, y∗) or a new
objective function value γ < γ∗ is computed in finite time in the inner while-loop (l.
18-31) of Algorithm 4 by Corollary 2.21.

If we do not obtain an improvement of the objective function value γ of at least ε, we
ensure this progress by the procedure feasible point (Algorithm 3) in the if-loop (l.
33-41) of Algorithm 4. So we can always guarantee an ε-improvement of the objective
function value γ∗ in finite time and the algorithm terminates in a finite number of steps.
Moreover, it follows by construction that Algorithm 4 always finds a ε-optimal solution
if one exists.
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Algorithm 4 Cutting plane algorithm - ε-approximation
1: procedure ε-approximation
2: Input: MILP (1.1), where P is bounded, ε;
3: Output: ε-optimal solution (x∗, y∗) or "problem infeasible" if no solution exists;
4:
5: P ← {(x, y) : Ax+Gy ≤ b}; (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
6: B ← set of all bases B of (x∗, y∗);
7:
8: if P = ∅ then
9: "problem infeasible"; break
10: end if
11: if x∗ ∈ Zp then
12: "optimal solution (x∗, y∗)"; break
13: end if
14:
15: while x∗ 6∈ Zp do
16: γ∗ ← cx∗ + hy∗; γ ← γ∗;
17:
18: while γ = γ∗ do
19: i← argmin {j ∈ {1, . . . , p} : x∗j 6∈ Z};
20: Compute intersection cuts αBx+ βBy ≤ ηB to P,D(ui, bx∗i c), all B ∈ B;
21: P ← P ∩ {(x, y) : αBx+ βBy ≤ ηB, B ∈ B};
22: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
23: B ← set of all bases B of (x∗, y∗);
24: if P = ∅ then
25: "problem infeasible"; break
26: end if
27: if x∗ ∈ Zp then
28: "optimal solution (x∗, y∗)"; break
29: end if
30: γ ← cx∗ + hy∗

31: end while
32:
33: if γ∗ − γ < ε then
34: feasible points(P, cx+ hy, γ − ε);
35: if Output: (x∗, y∗) then
36: "optimal solution (x∗, y∗)"; break
37: end if
38: P ← P ∩ {(x, y) : cx+ hy ≤ γ − ε};
39: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
40: B ← set of all bases B of (x∗, y∗);
41: end if
42: end while
43: end procedure
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We note that Algorithm 4 is no ’classical’ cutting plane algorithm, as we also add cuts
that might not be valid for the mixed integer hull PI . However, by checking if we have
cut off any feasible points in a second step, we implicitly connect the requirement of a
global approach for adding cuts with the search for feasible points.

According to the basic idea, Algorithm 4 can also be diversified. We apply the procedure
feasible point (l. 33-41) in Algorithm 4 if adding cuts to the whole polytope at the
optimal vertex (x∗, y∗) of the current LP relaxation does not provide an ε-improvement
of the objective function value γ∗. We could also change this approach and use the
procedure feasible point in Algorithm 4 exclusively. This would mean to discard the
inner while loop (l. 18-31) of Algorithm 4. However, the original way that we have
chosen has some advantages. The cuts which are computed in the inner while loop (l.
18-31) can be applied to the whole polytope and reduce the feasible domain of the MILP
in the remainder of the computation. By contrast, the cuts which are computed in the
procedure feasible point are only valid for the related subproblem and cannot be
used later. Moreover, the improvement of the objective function value is typically large
- relatively to ε - at the beginning of Algorithm 1. So it might save some effort in general
to start at first with the basic cutting plane approach.

We state two examples to illustrate the basic principle of Algorithm 4. We start again
with a short consideration of the ILP of Example 4.1 and Example 4.3.

Example 4.5. Let again the ILP of Example 4.1 be given. We show that Algorithm 4
cuts off again the crucial vertices

(
0, 9

4

)
,
(

9
4
, 0
)
of P .

Suppose that the sequence γi, i ∈ N of objective function values that is computed in
Algorithm 4 converges to 9

4
. Then the objective function value γi would satisfy γi < 9

4
+ε

and its progress would be less than ε in an iteration step of Algorithm 4. In this case,
the polytope

P i ∩ {x ∈ R2 : x1 + x2 ≥ γi − ε}

is searched for feasible points. Depending on the choice of ε, either one of the feasible
solutions (2, 0), (1, 1), (0, 2) is found, or the cut

x1 + x2 ≤ γi − ε

is added. So either the ILP is solved or the crucial vertices
(
0, 9

4

)
,
(

9
4
, 0
)
are cut off.

One can see that Algorithm 4 also finds an exact optimal solution in the latter case as
for ε < 1 each approximation solution is also an exact optimal solution.

Secondly, we take up again Example 2.13 and Example 3.16.
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Example 4.6. So let the MILP

max y

−x1 + y ≤ 0

−x2 + y ≤ 0

x1 + x2 + y ≤ 2

x1, x2 ∈ Z

with the optimal LP solution (2
3
, 2

3
, 2

3
) be given. Solving the MILP with Algorithm 1 yields

the optimal LP solution (xl, yl) after l iterations

xl1 = xl2 =
2l + 2

2l + 3
, yl =

2

2l + 3

and the related polyhedron

P l := {(x, y) : −x1 + (l + 1)y ≤ 0, −x2 + (l + 1)y ≤ 0, x1 + x2 + y ≤ 2};

see [Pad05]. The improvement of the objective function in step l is given by

yl−1 − yl =
4

(2l + 1)(2l + 3)
,

which decreases in each step and tends to 0. Applying Algorithm 4 to this example, we
search with Algorithm 3 for ε-optimal solutions in the set P l ∩ {(x, y) ∈ R2 : y ≥ yl − ε}
as soon as yl−1 − yl < ε. In this case it is

yl

ε
<

yl

yl−1 − yl = l +
1

2
.

This means that we need at most l calls of Algorithm 3 to solve the MILP in this example,
where l behaves like O

(√(
1
ε

))
.

Finally, we comment on solving MILP exactly. Both Algorithm 2 and Algorithm 4 can
also be used to solve a MILP with rational input data exactly. This follows from the
fact that for a sufficiently small ε, each ε-optimal solution (x∗, y∗) of a MILP is already
an exact solution. The reasoning is similar to the rounding cut approach for MILP at
the end of Section 3.2. We assume that the input data of the MILP is integral and let
M ∈ Z be an upper bound on the product of determinants of all regular submatrices
of G. Moreover, we only consider those solutions (x∗, y∗) of the MILP which cannot be
improved for fixed x∗, that means y∗ is an optimal solution of the LP

max{hy : Gy ≤ b− Ax∗}. (4.2)
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4.3 Exact algorithm

In this case, we can choose ε < 1
M

to find an exact optimal solution of the MILP with
both approximation algorithms. This follows by comparing all feasible solutions (x∗, y∗)
of the MILP which satisfy (4.2) and by Cramer’s rule.

We note that we can also obtain an exact algorithm for solving a rational MILP by
combining Algorithm 2 or Algorithm 4 with the well known method of binary search;
see for example [BR05] or [Sch86].

4.3 Exact algorithm

After we have discussed two approximation algorithms in the last section, we introduce
an exact cutting plane algorithm which generalizes Algorithm 4. This approach was
based on a combination of simple split cuts and cuts to the objective function which
did not have to be valid for the mixed integer hull of a polytope. By the results of
Section 3.4, we now design an algorithm which adds valid cuts to the objective function.
In detail, we state a basic form of the exact algorithm in Section 4.3.1. Afterwards, we
deal with the problem of computing extreme rays of cones in Section 4.3.2 and with
irredundant representations of projections in Section 4.3.3. In Section 4.3.4 we describe
a sequential form of the exact algorithm and consider some examples in Section 4.3.5.

4.3.1 Basic form

We present an algorithmic application of the results on general k-disjunctive cuts in
Section 3.3 and Section 3.4 and give a basic form of an exact cutting plane algorithm
which solves a rational MILP in finite time. It is based on a sequence of simple split cuts
which are supplemented with certain k-disjunctive cuts to the objective function. As
the assumptions which we have made in Section 3.4 for the derivation of k-disjunctive
cuts are not satisfied in general, we have to do some slight modifications. So we define
k-disjunctive cuts for general polytopes P and for an arbitrary cut vector (c, h).

The description of the projection projX (Pγ∗) in equations (3.13), (3.14), (3.15), (3.16)
in Section 3.4 also holds for a polytope P and an arbitrary value γ∗ of the objective
function. Even the derivation of a valid |R|-disjunction and a valid |R|-disjunctive cut
in Lemma 3.22 and Theorem 3.23, respectively, remains correct if the value γ∗ of the
objective function max cx + hy is not optimal for PI . However, for the application in
the algorithm we define a slightly weaker version of the |R|-disjunctive cut which does
not always cut off the current LP solution, but can be used more general.
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Theorem 4.7. Let P be a rational polytope and γ∗ such that cx + hy ≤ γ∗ is valid for
PI but not for P . Define the |R|-disjunction D(|R|,−d,−δ) by equations (3.13), (3.14),
(3.15), (3.16) with

dr := vr1,...,mA− vrm+1c

δr := dvr1,...,mb− vrm+1γ
∗e

and let γ̂ = max{γr : vr ∈ R, vrm+1 > 0} with

γr :=
δr − vr1,...,mb
−vrm+1

, for vrm+1 > 0

according to Theorem 3.23. Then cx+ hy ≤ γ̂ is a valid cutting plane for PI .

Proof. By assumption, projX (Pγ∗) does not contain an integral point x ∈ Zp in its
interior. Otherwise, the inequality cx + hy ≤ γ∗ was not valid for PI . As dr ∈ Zp by
(3.16), rounding up the right hand sides of the inequalities of the projection (3.14) to δr
gives the valid |R|-disjunction D(|R|,−d,−δ). Therefore, cx+ hy ≤ γ̂ is a valid cutting
plane in line with the proof of Theorem 3.23.

We explain the single steps of the algorithm. We start with Algorithm 1 as long as we
obtain either an optimal solution of the MILP or the objective function value of the LP
relaxation decreases. This happens in finite time by Corollary 2.21 as the feasible do-
main P of the LP relaxation is a polytope. Now we can compute a valid |R|-disjunctive
cut to the objective function according to Theorem 4.7. Next, we repeat the approach
and apply again Algorithm 1 to the modified program. In this way we obtain an algo-
rithm which terminates in finite time with an optimal solution of the MILP or detects
infeasibility. The formal algorithm is stated in Algorithm 5.

Theorem 4.8. Let a rational MILP (1.1) be given, where the feasible domain P of
the LP relaxation is bounded. Then Algorithm 5 either finds an optimal solution of the
MILP or detects infeasibility in a finite number of steps.

Proof. The proof follows immediately by the following two facts: The inner while loop
(l. 18 - 34) of Algorithm 5 always breaks after finite many iterations by Corollary 2.21
as P is a polytope by assumption. Similarly, the outer while loop (l. 15 - 40) breaks
after finite many iterations as the number of different values γ̂ is finite. This follows as
the set {γr : vr ∈ R, vm+1 > 0} of all possible objective function values is discrete and
P is bounded. Moreover, no feasible points of PI are cut off by construction.

We give two examples of Algorithm 5 and consider again the MILP of Example 2.13,
Example 3.16, and Example 4.6 and the ILP of Example 4.1, Example 4.3, and Exam-
ple 4.5.

76



4.3 Exact algorithm

Algorithm 5 Exact cutting plane algorithm
1: procedure ExactCutting
2: Input: rational MILP (1.1), where P is bounded;
3: Output: optimal solution (x∗, y∗) or "problem infeasible" if no solution exists;
4:
5: P ← {(x, y) : Ax+Gy ≤ b}, (x∗, y∗)← argmax {cx+ hy : (x, y) ∈ P};
6: B ← set of all bases B of (x∗, y∗), P 0 ← P ;
7:
8: if P = ∅ then
9: "problem infeasible"; break
10: end if
11: if x∗ ∈ Zp then
12: "optimal solution (x∗, y∗)"; break
13: end if
14:
15: while x∗ 6∈ Zp do
16: γ∗ ← cx∗ + hy∗, γ ← γ∗;
17:
18: while γ = γ∗ do
19: i← argmin {j ∈ {1, . . . , p} : x∗j 6∈ Z};
20: Compute intersection cuts αBx+ βBy ≤ ηB to P,D(ui, bx∗i c), all B ∈ B;
21: P ← P ∩ {(x, y) : αBx+ βBy ≤ ηB, B ∈ B};
22: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
23: B ← set of all bases B of (x∗, y∗);
24:
25: if P = ∅ then
26: "problem infeasible"; break
27: end if
28:
29: if x∗ ∈ Zp then
30: "optimal solution (x∗, y∗)"; break
31: end if
32:
33: γ ← cx∗ + hy∗;
34: end while
35:
36: Compute γ̂ = max{γr : r ∈ R, vrm+1 > 0} according to Theorem 4.7
37: for P 0, (c, h), γ∗;
38: γ∗ ← γ̂;
39:
40: end while
41: end procedure
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Example 4.9. Let again the MILP

max y

−x1 + y ≤ 0

−x2 + y ≤ 0

x1 + x2 + y ≤ 2

x1, x2 ∈ Z

with optimal LP solution
(

2
3
, 2

3
, 2

3

)
be given. We add the intersection cut to the vertex(

2
3
, 2

3
, 2

3

)
and the disjunction D(u1, 0). As the optimal objective function value γ of the

LP relaxation decreases, we can compute γ̂ according to Theorem 4.7. The extreme rays
of the projection cone

Q = {( 1 1 1 −1 )y = 0, y ≥ 0}

are the three vectors
(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1),

so the projection projX (Pγ) is defined by the system

−x1 ≤ 0− γ
−x2 ≤ 0− γ

x1 + x2 ≤ 2− γ.

We insert the current objective function value γ with 0 < γ < 2
3
. Rounding and comput-

ing the new objective function value γ̂ according to Theorem 4.7 gives

γ̂ = max
r=1,2,3

γr = max{0, 0, 0} = 0.

Adding the related cut y ≤ 0 and solving the modified LP relaxation gives the point
(2, 0, 0) and so the algorithm breaks with an optimal solution of the MILP after one step.

Example 4.10. Let the ILP

max x1 + x2

8x1 + 12x2 ≤ 27

8x1 + 3x2 ≤ 18

x1, x2 ≥ 0

x1, x2 ∈ Z

with optimal LP solution (15
8
, 1) be given. After adding the first cut to the disjunction

D(u1, 1), the value γ of the objective function decreases and we can go to the second
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step of Algorithm 5. As we have an ILP it is projX (Pγ) = Pγ, where Pγ is given by the
system

−x1 − x2 ≤ −γ
8x1 + 12x2 ≤ 27

8x1 + 3x2 ≤ 18

x1, x2 ≥ 0.

Inserting γ with 2 < γ < 3 and rounding yields

−x1 − x2 ≤ d−γe = −2 = −γ1 = −γ̂.

This gives the valid inequality x1 +x2 ≤ 2 which relates to the optimal objective function
value. So we obtain the optimal solution (2, 0) of the ILP in the next step of Algorithm 5.

The result of this example is typical for applying Algorithm 5 to ILP. In this case, we
have to presume that all input data is integral and the k-disjunctive cut to the objective
function reduces to the Chvátal-Gomory cut to the objective function vector according to
Lemma 2.1.

We have seen in the last example that for an ILP the k-disjunctive cut to the objective
function reduces to a Chvátal-Gomory cut to the objective function. So Algorithm 5
can be seen as a variant of the pure integer Gomory algorithm in this case. The crucial
fact for finite convergence of the integral algorithm is the possibility to add cuts both
to the objective function and to each integral variable. Using k-disjunctive cuts to the
objective function, we can now add cuts to the objective function to MILP as well. In
this way we obtain a convergent algorithm in analogy to the integral case.

The complex part of Algorithm 5 consists in computing the |R|-disjunctive cut as the
number |R| of extreme rays vr of the cone Q grows exponentially in the number q of
continuous variables and the number m of hyperplanes defining the polyhedron P . So
an efficient algorithm for computing the extreme rays of the related cone is required.
Moreover, we have to ensure that the computed rays satisfy the integrality constraints,
what means that they have to be contained in the group GPγ∗ according to (3.16). We
should assume in applications that the coefficients of the matrix A and the vector c are
integral. Then the integrality constraints are satisfied if all components of the extreme
rays vr are integral. We deal with the computation of extreme rays in the next subsection.
Furthermore, we also discuss two approaches to reduce the number of extreme rays of
the cone Q in Section 4.3.3 and Section 4.3.4. The first one deals with an irredundant
representation of the projection projX (Pγ∗), the second one is a sequential cutting plane
algorithm which derives k-disjunctive cuts based on basis relaxations of the polyhedron
P .
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At last we present another interpretation of Algorithm 5. We assume that the feasible
domain P of the relaxation is a full dimensional polytope. One can see that we can
always choose an optimal solution (x∗, y∗) of the MILP such that at least q inequalities
in the representation of P are active in this case. This follows by considering the LP

max{hy : Gy ≤ b− Ax∗}
for a given x∗ ∈ Zp. So the solution (x∗, y∗) is contained in a at most (p + q) − q = p-
dimensional face of the polytope P . This means that we can solve the MILP by solving
the set of all MILP which are given by the original objective function and a p-dimensional
face of P as feasible domain, and comparing the related optimal objective function
values.

Moreover, the set of feasible solutions in each p-dimensional face is discrete in general.
So solving a MILP over a p-dimensional face of P can be interpreted as solving an ILP
as we could apply a suitable affine transformation. In this way we can consider solving
a MILP as parallel solving of several ILP. Especially, every valid cutting plane for PI
is even valid for each of the discrete subproblems. Therefore, we need information of
the p-dimensional discrete subproblems if we want to generate strong valid cuts. As the
number of p-dimensional faces of P grows exponentially in m and q, this interpretation
also gives another reasoning for the need of k-disjunctive cuts with a large k to solve a
general MILP. Within Algorithm 5 we can assign the p-dimensional subproblems to the
facets of the polyhedron projX (Pγ∗), where the values of the right hand sides δi of the
disjunctive inequalities in the |R|-disjunction D(|R|, d, δ) can be related to the objective
function values of the subproblems.

4.3.2 Computing extreme rays of cones

Computing k-disjunctive cuts based on the projection projX (Pγ∗) according to (3.14) as
described in Section 3.4 and in Section 4.3.1 requires the computation of extreme rays
of the projection cone

Q = {v ∈ Rm : vG = 0, v ≥ 0}
according to (3.15). As this is a crucial point of our cutting plane approach, we deal with
this issue now. We start with a short overview of some algorithms and the complexity
of the problem and introduce secondly a well known algorithm for computing extreme
rays, namely the so called double description method of Motzkin, Raiffa, Thompson,
and Thrall [MRTT53].

Overview

The extreme ray enumeration problem for an arbitrary cone Q given in H-representation
has been studied by a multiplicity of people, see for example [Sch86] and [DBS97]. We
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also refer to the latter paper for a detailed overview and a comparison of different algo-
rithms, complexity results, and related issues. We note that the extreme ray enumeration
problem is closely related to the vertex enumeration problem for general polyhedra. In
detail, the second one is the non homogeneous version of the first problem and both
problems can be transformed into each other.

We can in principle distinguish two types of algorithms for computing vertices or ex-
treme rays, namely graph traversal or pivoting algorithms and incremental algorithms;
see [DBS97]. The first class of algorithms starts with an arbitrary vertex or extreme ray
and then attempts to identify other vertices or extreme rays by traversing their basis
representation. This idea corresponds to a pivot step in the simplex algorithm. Repre-
sentatives of this class are for example the gift wrapping algorithm of Chand and Kapur
[CK70], Seidel’s algorithm [Sei86], or the reverse search algorithm of Avis and Fukuda
[AF92]. The second class of algorithms computes the vertices or extreme rays, respec-
tively, by adding inequalities of the H-representation of P sequentially and updating the
vertices or extreme rays which have been obtained so far. An example of this class is the
double description method of Motzkin, Raiffa, Thompson, and Thrall [MRTT53] which
is also the basis of the beneath and beyond method of Seidel [Sei81], the randomized
algorithm of Clarkson and Shore [CS88], and the derandomized algorithm of Chazelle
[Cha93].

Given a polyhedron P := {x ∈ Rn : Ax ≤ b} with A ∈ Qm×n, an upper bound for the
number of vertices is given by

(
m− b (n+1)

2
c

bn
2
c

)
+

(
m− b (n+2)

2
c

b (n−1)
2
c

)
, (4.3)

see McMullen [McM70], where this bound is tight. It follows that also the number of
extreme rays of an arbitrary cone Q can be exponential in m and n. This fact has
to be considered by analyzing the performance of vertex or extreme ray enumeration
algorithms. In this context it is an outstanding problem if there exists an algorithm
that is polynomial in m and in the number of vertices or extreme rays. Moreover, the
exponential growth of the number of extreme rays may cause the problem that it is not
possible to compute all extreme rays of a given cone in applications.

Double description method

We introduce a basic form of the double description method which was introduced by
Motzkin, Raiffa, Thompson, and Thrall in 1953 [MRTT53]. We are mostly geared to
the representation of Fukuda and Prodon [FP95]. The algorithm applies to a cone C
given by inequality constraints, so let

C = {x ∈ Rp : Ax ≤ 0}, (4.4)
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where A ∈ Qm×p. We assume for simplicity that the cone C is pointed and that its
H-representation is irredundant. We are looking for the extreme rays {r1, . . . , rl} which
generate the cone C. Let now R denote the matrix with columns (r1, . . . , rl). So we
have to determine the matrix R for a matrix A giving the H-representation of the cone
C. The pair (A,R) is called a double description pair as it gives both a H- and a
V-representation of C.

We describe the details of the procedure. Let S be an arbitrary subset of {1, . . . ,m} and
let AS denote the submatrix of A consisting of these rows ai with i ∈ S. The algorithm
is incremental, so let for a set S ⊆ {1, . . . ,m} a double description pair (AS, RS) be
given. We add one row ai with i 6∈ S to AS and construct a double description pair
(AS+i, RS+i). Adding the row ai leads to a three partition of the space Rp and a related
partition of the set JS of column indices of the matrix RS. In detail, we obtain the
sets

H− := {x ∈ Rp : aix < 0}, J− := {j ∈ JS : rj ∈ H−}
H0 := {x ∈ Rp : aix = 0}, J0 := {j ∈ JS : rj ∈ H0}
H+ := {x ∈ Rp : aix > 0}, J+ := {j ∈ JS : rj ∈ H+}.

We have to replace the columns rk of the matrix RS with indices k ∈ J+ and define
|J−| × |J+| new rays rjj′ which are generated by appropriate positive combinations of
a ’negative’ ray rj, j ∈ J− and a ’positive’ ray rj′ , j

′ ∈ J+. The rays rjj′ have to be
contained in the ’cut’ hyperplane aix = 0 and generate the cone
{x ∈ Rp : ASx ≤ 0 , aix = 0}. We define

rjj′ = (airj′)rj − (airj)rj′ ∀(j, j′) ∈ J− × J+. (4.5)

The new rays rjj′ satisfy the condition AS+irjj′ ≤ 0, as rjj′ is a positive linear combina-
tion of the rays rj, rj′ and

airjj′ = (airj′)airj − (airj)airj′ = 0;

Moreover, we directly obtain a new double description pair (AS+i, RS+i) by this con-
struction.

Lemma 4.11. Let (AS, RS) be a double description pair, i 6∈ S, and JS+i := J+ ∪ J0 ∪
(J− × J+). Then (AS+i, RS+i) is a double description pair, where RS+i is the p× |JS+i|
matrix with column vectors rj, j ∈ J+ ∪ J0 and column vectors rjj′ according to (4.5).

Proof. A proof of this statement can be found in [FP95].

A repeated application of (4.5) and Lemma 4.11 yields an easy algorithm for computing
all extreme rays of the cone C. We start with an initial double description pair (AS, RS),
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Algorithm 6 Double description method - basic form
1: procedure DoubleDescription
2: Input: A ∈ Zm×p with C = {x ∈ Rp : Ax ≤ 0};
3: Output: Set R of extreme rays rj of C;
4:
5: Let (AS, RS) be an initial double description pair;
6: while S 6= {1, . . . ,m} do
7: Select an i ∈ {1, . . . ,m} \ S;
8: Construct (AS+i, RS+i) by Lemma 4.11;
9: S ← S ∪ {i};
10: end while
11: end procedure

for example with a basis cone of C with |S| = p, and apply Lemma 4.11 until S =
{1, . . . ,m}. The complete procedure is stated in Algorithm 6.

We add that Algorithm 6 is only a very basic form of the double description method. It
is not suitable for a practical implementation as for example many redundant rays are
computed by applying Lemma 4.11. One can show that this problem can be overcome
by computing rays rjj′ only for those indices (j, j′) ∈ J− × J+ for which the related
rays rj and rj′ are adjacent in the cone C. Here we say that two rays are adjacent in
a cone C if the minimal face of C containing both rays contains no other extreme rays.
Therewith we can replace (4.5) by

rjj′ = (airj)rj′ − (airj′)rj ∀(j, j′) ∈ J− × J+ and rj, rj′ are adjacent in C. (4.6)

Moreover, there are some more issues that have to be considered for a practical applica-
tion of the procedure. For example, the double description method is very sensitive to
the order in which the rows of the input matrix A are added. On the other hand, this
approach also provides the possibility to decompose problems into smaller subproblems.
This feature rises the chance to treat even large problem instances. We refer again to
[FP95] for a further discussion of these and other issues. An implementation of the dou-
ble description method is given by the cdd and cdd+ package of Fukuda [Fuk93]. We will
also use this code for some preliminary tests on computing extreme rays of projection
cones related to k-disjunctive cuts in Section 4.3.5.

At last, we comment on applying the double description method on computing k-
disjunctive cuts. We have to compute the extreme rays of the cone Q according to
(3.15) and satisfy the integrality constraint (3.16). The latter requirement does not
need to be satisfied by the output of the double description method, so one eventually
has to scale the rays of the matrix R additionally. Moreover, the representation of the
projection cone Q in (3.15) differs from the one of the cone C according to (4.4) which
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is used for the double description method. Therefore, a suitable transformation either
of the projection cone Q or of the underlying MILP has to be done first.

4.3.3 Irredundant representation of projections

We consider again the basic derivation of a k-disjunctive cut according to Section 3.4
and Section 4.3.1. We compute the projection projX (Pγ) by the extreme rays of the
related projection cone Q according to (3.15). Then each of the extreme rays of Q cor-
responds to one inequality in the representation of the projection projX (Pγ). However,
these inequalities do not correspond to the facets of projX (Pγ) in general. It is in fact
often the case that a large number of redundant inequalities is generated, even if the
representation of the original polyhedron P is irredundant. We have seen that enumer-
ating all extreme rays of a cone is often difficult due to the exponential growth of the
number of rays. So avoiding the computation of redundant extreme rays is an interesting
task for computing k-disjunctive cuts in applications. Moreover, even if all rays can be
enumerated, redundant inequalities in the representation of the projection projX (Pγ)
can cause a weaker k-disjunctive cut as more function values for the cut vector have to
be considered in Lemma 3.22, Theorem 3.23, and Theorem 4.7 respectively. We start
with an easy example for an illustration.

Example 4.12. Let the polyhedron P ⊆ R1+1 defined by the system

x+ y ≤ 1, x− y ≤ 1,

−x+ y ≤ 1, −x− y ≤ 1,

2x ≤ 1, −2x ≤ 1.

The projection projX (P ) of P on the x-space can be described by the two inequalities

2x ≤ 1, −2x ≤ 1;

see Figure 4.2. By computing the projection according to Lemma 1.3, we first have to
determine the extreme rays of the cone

Q = {v ∈ R6 : (1 − 1 1 − 1 0 0)v = 0, v ≥ 0}.
Since Q has six extreme rays, we obtain the following representation of the projection
projX (P ):

2x ≤ 1, −2x ≤ 1,

2x ≤ 2, −2x ≤ 2,

0x ≤ 2, 0x ≤ 2.

We see that the first two inequalities define projX (P ), while the second two inequalities
are redundant as well as the the last two inequalities which are always satisfied.
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x

Figure 4.2: The polyhedron P of Example 4.12 and its projection projX (P )

In the remainder of this section we show that it is possible to transform the representation
of an arbitrary polyhedron P such that each extreme ray of the projection cone Q
corresponds to a facet of the projection projX (P ). This approach was introduced by
Balas; see [Bal97]. Its key feature is determining a new representation of P in which the
coefficient matrix A of x is the identity matrix plus possibly some zero rows, while the
right hand side b is the unit vector with entry one in the last position.

Now let a polyhedron P := {(x, y) ∈ Rp+q : Ax+Gy ≤ b} be given. For a more compact
representation of the procedure, we restrict ourselves to the case that A ∈ Rm×p has full
column rank, so rank(A) = p andm ≥ p, and refer to [Bal97] for the general case. We set
A =

(
Ap

Am−p

)
and assume without loss of generality that Ap is nonsingular. The procedure

requires as input a quadratic matrix A with full rank. Therefore, we complement the
matrix A with columns and define the matrix

Ã :=

(
Ap 0
Am−p Im−p

)
∈ Rm×m,

where Im−p denotes the (m− p)-dimensional unit matrix. Ã is quadratic and invertible.
We consider the polyhedron P̃ defined by the system

Ã−1s+ Ã−1Gy − Ã−1byo +

(
Ip

0m−p

)
x = 0

y0 = 1
s ≥ 0,

(4.7)

where (s, y, yo, x) ∈ Rm × Rq × R× Rp and 0m−p denotes the (m− p)-dimensional zero
matrix. Multiplying the first equation of (4.7) by Ã yields

Ims+ ImGy − Imby0 + Ax = 0,

so the polyhedra P and P̃ are equal as s ≥ 0 and y0 = 1.
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We project P̃ on the x-space. According to the remark after Lemma 1.3, the projection
cone Q̃ is given by the system

(v, w)Ã−1 ≥ 0

(v, w)Ã−1G = 0

(v, w)Ã−1b+ v0 = 0,

(4.8)

where (v, w, v0) ∈ Rp × Rm−p × R. So the projection projX (P̃ ) is given by

projX (P̃ ) = projX (P ) = {x ∈ Rp : vrx ≤ vr0 for all (vr, wr, vr0) ∈ R̃}, (4.9)

where R̃ is the set of all extreme rays of the projection cone Q̃ according to (4.8).

Additionally, we consider the projection proj(v,v0) (Q̃) of the cone Q̃ on the (v, v0)-space
and obtain

Theorem 4.13 ([Bal97]). Let projX (P ) be full dimensional. Then an inequality

vrx ≤ vr0 in the system (4.9)

defines a facet of projX (P ) if and only if (vr, vr0) is an extreme ray of the cone proj(v,v0) (Q̃).

�

Therewith we have found a way to generate an irredundant representation of projX (P ).
However, there are some issues that have to be respected before applying this approach
practically.

The first one concerns the computation of the transformation. While the generation of
the sets P̃ and Q̃ is easy, the computation of proj(v,v0) (Q̃) is not. There is in general no
bijective correspondence between the rays of the cones Q̃ and the rays of proj(v,v0) (Q̃),
and it is non trivial to determine whether (vr, vr0) is an extreme ray of proj(v,v0) (Q̃) given
a ray (vr, wr, vr0) ∈ R̃ of Q̃. This can be seen in Example 4.14. The problem can be
avoided by generating proj(v,v0) (Q̃) explicitly; see [Bal97]. However, this approach also
requires some effort.

Secondly, we note that the transformation can destroy special structures of the input
matrices that make computation of extreme rays of the cone Q easy. So even if a large
number of irredundant rays is generated by the original representation, this might be
faster than applying the transformation. Nevertheless, the transformation might be
useful in applications if a direct computation of the projection fails.

At last we show how the approach applies to Example 4.12 from the beginning of this
section.
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Example 4.14. Let again the polyhedron P of Example 4.12 be given. Applying the
above transformation on P , we obtain at first the system defining P̃ according to (4.7)
by 



1 0 0 0 0 0
−1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
−2 0 0 0 1 0
2 0 0 0 0 1



s+




1
−2
2
0
−2
2



y +




−1
0
−2
−2
1
−3



y0 +




1
0
0
0
0
0



x = 0

and yo = 1, s ≥ 0.

This yields the cone Q̃ according to (4.8) given by

(v, w)




1 0 0 0 0 0
−1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
−2 0 0 0 1 0
2 0 0 0 0 1



≥ 0, (v, w)




1
−2
2
0
−2
2




= 0, (v, w)




−1
0
−2
−2
1
−3




+ v0 = 0;

The projection cone Q̃ has six extreme rays (vr, wr, vr0) ∈ R× R5 × R, namely

(2, 1, 0, 0, 0, 0, 2), (0, 0, 0, 1, 0, 0, 2), (−2, 0, 1, 1, 0, 0, 2),

(0, 1, 1, 0, 0, 0, 2), (2, 0, 0, 0, 1, 0, 1), (−2, 0, 0, 0, 0, 1, 1).

By projecting these rays on the (v, v0)-space, we obtain the generators of the cone proj(v,v0) (Q̃)

and see that proj(v,v0) (Q̃) is already generated by the two rays

(2, 1) and (−2, 1).

So projX (P ) is defined by the two inequalities

2x ≤ 1 ∧ −2x ≤ 1.

Moreover, we can see in this example how the extreme rays defining redundant inequali-
ties of the projection are dropped out in the last step of the procedure.

4.3.4 Sequential algorithm

We discuss another type of redundancy which can appear by applying Algorithm 5 and
can cause an arbitrarily large additional computational effort. It is based on the fact that
in solving a MILP many facets which describe the polyhedron P of the LP relaxation do
not have any influence on the optimal solution of the MILP and its objective function
value. This effect does not have to be linked to a redundancy of the representation of P
itself and can be seen in the next

87



4 Algorithms for MILP

Figure 4.3: The polyhedron of Example 4.15 with two additional ’redundant’
hyperplanes.

Example 4.15. Let the two dimensional MILP

max y

x+ y ≤ 4

−x+ y ≤ −1

x ∈ Z

with optimal LP solution (2.5, 1.5) be given. The MILP has the two optimal solutions
(2, 1) and (3, 1). We consider the half circle with center (2.5, 0) and radius 1.5 with neg-
ative y values. Now changing the feasible domain of the MILP by adding any supporting
hyperplane of the half circle to P = {(x, y) ∈ R1+1 : x + y ≤ 4,−x + y ≤ −1} does not
change the set of optimal solutions of the MILP and the representation of P remains
irredundant; see Figure 4.3. However, adding new inequalities to P leads of course to a
higher dimensional projection cone Q with new extreme rays associated with irredundant
inequalities of the projection projX (Pγ∗).

As the example shows, it is in general not advantageously to respect all facets of
P = {(x, y) ∈ Rp+q : Ax + Gy ≤ b} in computing a k-disjunctive cut according to
Theorem 4.7. Therefore, we now suggest a sequential algorithm that modifies the basic
procedure of Algorithm 5. It is based on the idea to respect only those inequalities in
the representation of the polytope P for the derivation of the k-disjunctive cut which
have already been active. So the k-disjunctive cuts are derived from a relaxation P̃ of
P which is updated during the algorithm.

In detail, we start with all inequalities defining P which support the optimal solution
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(x∗, y∗) of the initial LP relaxation. So we have

P̃ := {(x, y) : ajx+ gjy ≤ bj, j ∈ J},

where J := {j ∈ {1, . . . ,m} : ajx
∗+gjy

∗ = bj}. Every time a new inequality aix+giy ≤
bi gets active in the algorithm, this means it satisfies aix∗ + giy

∗ = bi for the current
LP optimum (x∗, y∗), we add it to P̃ and compute a new k-disjunctive cut according
to Theorem 4.7 based on the updated relaxation. This means that the present extreme
rays of the projection cone Q̃ have to be complemented with rays belonging to the new
columns of the updated projection cone.

Except for this modification, the algorithm is identical to Algorithm 5. We state the
procedure in Algorithm 7.

Theorem 4.16. Let a rational MILP (1.1) be given, where the feasible domain P of
the LP relaxation is bounded. Then Algorithm 7 either finds an optimal solution of the
MILP or detects infeasibility in a finite number of steps.

Proof. The proof is quite analog to the proof of Theorem 4.8 for Algorithm 5. The
modifications of Algorithm 5 neither change its properties nor are feasible points now
cut off. We note that every k-disjunctive cut for P̃ is also valid for P as P ⊆ P̃ .

Due to the updates of Q̃, extreme rays of the projection cone Q̃ have to be computed
several times in Algorithm 7. It is not obvious how this can be done efficiently given the
present rays. This issue can become important if many updates of P̃ and Q̃ are necessary
in the algorithm. In this case, the effort for a repeated computation of the extreme rays
should be compared with the singular effort which is necessary for determining the
rays of the whole projection cone Q in Algorithm 5. However, Algorithm 7 avoids the
redundancy which we have discussed in Example 4.15 and requires less information at
the beginning of the algorithm. Therefore, one could choose Algorithm 7 as the standard
alternative of both exact algorithms.

4.3.5 Examples and applications

At the end of this chapter we present some more examples and applications of the exact
cutting plane procedure. We consider two classes of problems for which k-disjunctive
cuts to the objective function can be easily computed. In detail, we investigate rational
MILP which either have only one continuous variable or which are defined by a single
knapsack constraint. Furthermore, we deal with the computation of k-disjunctive cuts
to the objective function for some small examples from the MIPLIB.
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Algorithm 7 Exact cutting plane algorithm - sequential form
1: procedure SequentialCutting
2: Input: rational MILP (1.1), where P is bounded;
3: Output: optimal solution (x∗, y∗) or "problem infeasible" if no solution exists;
4:
5: P ← {(x, y) : Ax+Gy ≤ b}, (x∗, y∗)← argmax {cx+ hy : (x, y) ∈ P};
6: B ← set of all bases B of (x∗, y∗), J := {j ∈ {1, . . . ,m} : ajx

∗ + gjy
∗ = bj};

7: P 0 := {(x, y) : ajx+ gjy ≤ bj, j ∈ J};
8:
9: if P = ∅ then
10: "problem infeasible"; break
11: end if
12: if x∗ ∈ Zp then
13: "optimal solution (x∗, y∗)"; break
14: end if
15:
16: while x∗ 6∈ Zp do
17: Set γ∗ ← cx∗ + hy∗, γ ← γ∗;
18:
19: while γ = γ∗ do
20: i← argmin {k ∈ {1, . . . , p} : x∗k 6∈ Z};
21: Compute intersection cuts αBx+ βBy ≤ ηB to P,D(ui, bx∗i c), all B ∈ B;
22: P ← P ∩ {(x, y) : αBx+ βBy ≤ ηB, B ∈ B};
23: (x∗, y∗)← arglexmax {cx+ hy : (x, y) ∈ P};
24: B ← set of all bases B of (x∗, y∗);
25: J ← J ∪ {j ∈ {1, . . . ,m} : ajx

∗ + gjy
∗ = bj};

26: P 0 ← {(x, y) : ajx+ gjy ≤ bj, j ∈ J};
27:
28: if P = ∅ then
29: "problem infeasible"; break
30: end if
31: if x∗ ∈ Zp then
32: "optimal solution (x∗, y∗)"; break
33: end if
34: γ ← cx∗ + hy∗

35: end while
36:
37: Compute γ̂ = max{γr : r ∈ R, vrm+1 > 0} according to Theorem 4.7
38: for P 0, (c, h), γ∗;
39: γ∗ ← γ̃;
40:
41: end while
42: end procedure
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MILP with one continuous variable

We consider rational MILP with one continuous variable and show how Algorithm 5
works for this class of problems. As the projection cone Q has only one row, the com-
putation of extreme rays becomes easy in this case. So let a MILP

max cx+ hy

Ax+ gy ≤ b

x ∈ Zp

with h ∈ Z \ {0}, g ∈ Zm be given. We assume for simplicity that also the remaining
input data is integral. For the computation of a k-disjunctive cut to the objective
function vector (c, h) we have to determine the extreme rays of the projection cone Q
according to (3.15). Here we have

Q = {v ∈ Rm+1 : (g − h)v = 0, v ≥ 0}. (4.10)

Without loss of generality, we can presume that each component of the vector g is
unequal to 0. Otherwise, the related row of the system Ax+ gy ≤ b does not have to be
considered in the derivation of the k-disjunctive cut. Moreover, we only have to respect
extreme rays vr of Q with the property vrm+1 > 0.

Now one can see that each relevant extreme ray of Q given in (4.10) has only two non-
zero components which correspond to two coefficients of the vector (g −h) with different
sign. Therefore, there are at most m extreme rays vr of Q which are relevant for the
derivation of the k-disjunctive cut and each extreme ray corresponds to an inequality of
the system Ax + gy ≤ b. In detail, the inequality aix + giy ≤ bi relates to an extreme
ray of Q if and only if sign(gi) = sign(h). In this case, we obtain the extreme ray vr,i
by

vr,ii = |h|, vr,im+1 = |gi| and vr,ij = 0 for j 6= i,m+ 1. (4.11)

By (4.11), the relevant inequalities of the projection projX (Pγ∗) according to (3.14) are
given by

|h|aix− |gi|cx ≤ |h|bi − |gi|γ∗, for vr,i 6= 0.

We apply Theorem 4.7 and obtain the valid objective function value γ̂ by

γ̂ = max{γr,i : vr,i 6= 0} with γr,i =
d|h|bi − |gi|γ∗e − |h|bi

−|gi|
. (4.12)

We illustrate the above approach and consider a generalization of Example 2.13, which
we have also considered several other times in this thesis, to arbitrary dimension. We
have seen in Example 4.9 that Algorithm 5 solves the 3-dimensional problem instance
in one step. This also remains true for higher dimensions.
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Example 4.17. Let the MILP

max y

−xi + y ≤ 0, i = 1, . . . , p
p∑

i=1

xi + y ≤ p

x ∈ Zp

for p ∈ N be given. The optimal solution of the LP relaxation is given by ( p
p+1

, . . . , p
p+1

).
The projection cone Q for the derivation of the k-disjunctive cut is given by

Q = {v ∈ Rp+2 : (1 1 · · · 1 − 1)v = 0, v ≥ 0}

with extreme rays
(1, 0, . . . , 0, 1), . . . , (0, . . . , 0, 1, 1).

So the projection projX (Pγ) of the polyhedron Pγ on the x-space is given by the system

−xi ≤ 0− γ, i = 1, . . . , p
p∑

i=1

xi ≤ p− γ.

As the optimal objective function value of the LP relaxation is given by γ∗ = p
p+1

< 1,
it is d0 − γ∗e − 0 = 0 and dp − γ∗e − p = 0. This yields the optimal objective function
value γ = 0 after one step of the algorithm.

MILP with a single knapsack constraint

As a further special case for the application of Algorithm 5 we consider the basic mixed
integer knapsack problem

max cx+ hy

ax+ gy ≤ b

x, y ≥ 0

x ∈ Zp,

with a ∈ Zp, g ∈ Zq, where we assume again that all input data is integral. For the com-
putation of the k-disjunctive cut to the objective function vector we have to determine
again the extreme rays of the cone Q according to (3.15). We transform the MILP to
the form (1.1) and write the non-negativity constraints in the form −x ≤ 0, −y ≤ 0.
Therewith we obtain the cone

Q = {v ∈ Rq+2 : (g − Iq − h)v = 0, v ≥ 0}. (4.13)
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We start with the classical knapsack problem, where all components of the vectors
c, h, a, g are positive. We can see that we have only one relevant extreme ray vr of Q
with vrq+2 > 0 in this case. We set

λ := max
i=1,...,q

hi
gi

(4.14)

and define the ray vr by

vr1 = λ, vrq+2 = 1, and vr1+i = λgi − hi, for i = 1, . . . , q. (4.15)

By (4.15), we obtain as only constraint for computing a valid objective function value
according to Theorem 4.7 the inequality

λax− vr2,...,q+1Ipx− cx ≤ λb− γ∗. (4.16)

If we assume that all vectors in (4.16) are integral, we finally obtain the valid cutting
plane cx+ hy ≤ γ̂ with

γ̂ =
dλb− γ∗e − λb

−1
= λb− dλb− γ∗e; (4.17)

However, to satisfy the integrality constraint (3.16) in (4.16), we eventually have to
scale the inequality λax − vr2,...,q+1Ipx − cx ≤ λb − γ∗ with the coefficient gi0 , where
i0 = argmax {hi

gi
: i = 1, . . . , q}. This yields the valid inequality cx+ hy ≤ γ̂ with

γ̂ =
dgi0λb− gi0γ∗e − gi0λb

−gi01
= λb− dgi0(λb− γ

∗)e
gi0

; (4.18)

As for x ∈ R and a ∈ N it is dxe ≥ daxe
a

, a necessary scaling of (4.16) gives a weaker cut
in general.

We shortly remark about the general case which arises by removing the positivity con-
straints from the vectors c, h, a, g and consider again the cone (4.13). In this case,
each relevant extreme ray vr of Q has to satisfy the constraint vr1g − vrq+2h ≥ 0 with
vr1, v

r
q+2 > 0. We can set vrq+2 = 1 without loss of generality and obtain the constraints

vr1gi ≥ hi, i = 1, . . . , q. (4.19)

Depending on the sign of the coefficient gi, we consider

vr1 ≥
hi
gi
, for gi > 0 and vr1 ≤

hi
gi
, for gi < 0

and set
λmax := max

i=1,...,q:gi>0

hi
gi

and λmin := min
i=1,...,q:gi<0

hi
gi
. (4.20)

If 0 ≤ λmax ≤ λmin the system (4.19) can be satisfied and relevant extreme rays exist.
Moreover, if λmax < λmin there exists in general more than one relevant ray. After the
value of the first coefficient vr1 has been determined, the remaining coefficients can be
computed analog to (4.15). We omit the details here.
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Small examples from MIPLIB

Finally, we want to give a short overview of the derivation of k-disjunctive cuts to
the objective function for some small instances from the MIPLIB 3.0 [BCMS98] and
the MIPLIB 2003 [AKM06]. In this way, we can get a first impression of a practical
application of the results which we have introduced from a theoretical point of view. As
this is the crucial point, we only consider the computation of the set of extreme rays of the
projection coneQ according to (3.15). After the extreme rays ofQ have been determined,
the computation of a valid cut is easily done by comparing the related objective function
values according to Theorem 4.7. Moreover, we follow the most general way of computing
k-disjunctive cuts as described at the beginning of Section 4.3.1 and do not respect any
possible variations as for example discussed in Section 4.3.4.

We compute the extreme rays with the cdd-package, version 061, a C-implementation
of Fukuda [Fuk93] of the double description method which we have introduced in Sec-
tion 4.3.2 in a basic form. We refer to the cdd documentation for details of the imple-
mentation. As we have introduced the procedure in Section 4.3.2, the double description
method applies to cones Q = {x ∈ Rp : Ax ≤ b}. This form differs from the one which
we have considered in (3.15) for the derivation of a k-disjunctive cut. Therefore, we
start with MILP given in standard form (1.4) instead of MILP in natural form. Ac-
cording to the remark after Lemma 1.3, the projection cone Q is then given in the form
Q = {x ∈ Rp : Ax ≤ b}. Of course, the remainder of our cutting plane approach remains
unaffected by this change.

We consider eleven instances from the MIPLIB; see Figure 4.4. The table shows the
number of rows and columns of the projection cone Q, the number of extreme rays vr,
and the number of relevant extreme rays vr with vrm+1 > 0 which have to be respected
for the derivation of the cut. We note that we have made some modifications of the
input data, such as deleting pure integer equations and fixed variables to avoid some
redundant computation.

The instances egout,qnet1,qnet1_o,flugpl,blend2 are only part of the MIPLIB 3.0,
whereas all other instances can be found in both databases. blend2, flugpl, qnet1,
qnet1_o are real mixed integer problems while the remaining problems are mixed binary,
and except for markshare1 and markshare2 all problems are easy to solve in relation
to the time needed to solve the problem with a commercial solver. The computation of
the rays was made within seconds for all instances.

We look at the results of the computation. We can see in Figure 4.4 that the number of
rays vr with vrm+1 > 0 which are relevant for the computation of the k-disjunctive cut is
small in general, especially compared to the total number of extreme rays. An exception
is given by the problem pk1, where all extreme rays are relevant for the derivation of
the cut. The instances mas74 and mas76 have only one continuous variable, and are
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4.3 Exact algorithm

Name Rows Columns Rays Relevant
markshare1 7 7 7 1
markshare2 8 8 8 1
mas74 15 14 26 13
mas76 14 13 24 12
pk1 62 46 61 61
egout 111 99 69 4
qnet1 125 126 127 1
fixnet6 1001 601 479 1
qnet1_o 125 126 127 1
flugpl 20 15 10 1
blend2 189 189 189 1

Figure 4.4: Computation of extreme rays of the projection cone for some examples from
the MIPLIB

defined by a system of 13 and 12 inequalities, respectively. So the number of extreme
rays corresponds with the theoretical results at the beginning of this section.

It is interesting to see that already in these small examples a large number of redundant
extreme rays is computed. We note that this redundancy does not necessarily have to be
related to one of the problems which we have discussed in Section 4.3.3 and Section 4.3.4,
as we do not consider the redundancy of the projection projX (Pγ) itself, but redundancy
in relation to extreme rays with vrm+1 which are required for the derivation of the k-
disjunctive cut. However, as the simple computations of Figure 4.4 show, it can also
become an important issue in applications to avoid this type of redundancy. We also
note that the computation of extreme rays of the projection cone for most instances
of the MIPLIB is not possible - at least not using the basic approach which we have
used here - due to the exponential growth of the number of extreme rays. Thus it
could be interesting to design an algorithm which computes only these extreme rays of
a projection cone which are relevant for the derivation of a k-disjunctive cut. A first
approach for this issue could be the use of a vertex enumeration algorithm which is
applied to the polyhedron

S := Q ∩ {x ∈ Rm+1 : xm+1 = 1}.

Each vertex of S except for the origin then corresponds in a natural way to a relevant
extreme ray of Q by taking the extreme rays defined by the origin and a vertex of S.
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5 Discussion

We have dealt with the problems of describing the mixed integer hull of an arbitrary
polytope and of designing a related finite cutting plane algorithm for rational MILP.
First, we have analyzed and compared the properties of several known cutting planes
in Chapter 2 and have shown why these approaches are not sufficient for solving both
issues. In Chapter 3 we have introduced general k-disjunctive cuts and have discussed
which type of these cuts is required for obtaining the mixed integer hull of a rational
and an arbitrary polytope. Moreover, we have also provided a method for construct-
ing k-disjunctive cuts for rational polyhedra and have used this approach to design a
finite cutting plane algorithm for rational MILP in Chapter 4. Finally, we now choose
three issues and discuss some ideas for possible further research. We consider our re-
sults concerning split cuts, the computation of k-disjunctive cuts, and their practical
application.

Split cuts and rational MILP

We have seen in Theorem 3.13 that split cuts are sufficient to obtain all vertices of the
mixed integer hull of a rational polytope. As mentioned in Corollary 3.15, this property
can also be used to solve a rational MILP by considering a suitable perturbated objective
function. It would be interesting to see if this theoretical statement can be applied
practically and if an exact cutting plane algorithm for rational MILP based on split cuts
can be designed.

For this purpose, we have to find a way to give a suitable perturbated objective function
according to Corollary 3.15 based on the original objective function of the MILP and the
facets of the polytope P of the LP relaxation. It could be a first approach to determine a
bundle of perturbated objective function vectors which includes a suitable vector in any
case. Moreover, it is open which split cuts would have to be added in a related algorithm.
To answer this question one could start with analyzing a cutting plane algorithm for a
MILP with a suitable objective function in which cutting planes are added according to
the approach of the approximation algorithm of Owen and Mehrotra; see Section 4.2.1.

Computation of k-disjunctive cuts

In Section 3.4 we have introduced a method for computing k-disjunctive cuts for rational
polyhedra based on projections and a given cut vector. This approach was also influ-
enced by the results of Section 3.3. However, as already mentioned, it is a fundamental
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problem of this approach that the computation of the related projection is very complex
in general. This effect can make it impossible to compute a certain cut in practical ap-
plications. Therefore, it would be interesting to investigate some easier alternatives for
deriving k-disjunctive cuts, even if finiteness of a related algorithm cannot be guaranteed
anymore. An example could be the introduction of some type of standard k-disjunctive
cut which is derived as intersection cut to a given standard k-disjunction such as a p-
dimensional simplex. The last approach would also provide an opportunity for deriving
k-disjunctive cuts for non rational polyhedra.

Beside a different approach for deriving k-disjunctive cuts, one should also deal with
the issue of how projections for deriving cuts according to our approach in Section 3.4
can be computed more efficiently. This concerns avoiding redundancies both in the
computation of the underlying k-disjunction, see Section 4.3.2 and Section 4.3.3, and in
the computation of inequalities of the projection which are required for the derivation of
the cut according to Theorem 3.23, see Section 4.3.4 and Section 4.3.5. Therewith even
larger problem instances could be handled.

Furthermore, it would also be interesting to analyze the depth of a k-disjunctive cut
depending on the given cut vector and the underlying polytope. So it could be more
efficient to choose a vector different from the objective function for cutting in applica-
tions.

Practical application and implementation

An implementation of the basic exact cutting plane algorithm as introduced in Sec-
tion 4.3.1 and its sequential alternative given in Section 4.3.4, respectively, and tests
on some elementary examples are the foundation for a further analysis on how useful
k-disjunctive cuts can be in practical applications. This could also include an implemen-
tation of some alternatives of k-disjunctive cuts which can be computed more easily as
discussed above.

We note that we have always presumed an exact arithmetic for the derivation of rational
k-disjunctive cuts and the exact cutting plane algorithm. This fact has also to be
respected in a practical implementation. Otherwise, one has to analyze which problems
could arise in each step of the computation of a k-disjunctive cut to ensure that only
valid cuts are computed.

The combination of cutting planes and an enumerative approach is in general more
powerful in solving a MILP than a pure cutting plane approach. Therefore, it would
also be interesting to analyze the gain of k-disjunctive cuts within a branch-and-cut
framework. Here k-disjunctive cuts based on the projection approach and derived from
standard disjunctions can be investigated again. We add that in theory the derivation of
deep cuts becomes the easier the more integral variables have been fixed in the branch-
and-bound tree. This follows from our results in Section 3.3.
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