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On Transmitter Design in Power Constrained LQG Control

Peter Breun and Wolfgang Utschick

Abstract— We consider a linear dynamic system to be con-
trolled using feedback information that has to be transmitted
over a power constrained channel with additive noise. We
propose a novel approach to the transmitter design in order to
minimize the cost function for the linear quadratic Gaussian
(LQG) control problem when the standard state estimator and
linear controller are used. We show that the well known lower
bound on transmit power is tight for our solution and derive
a transmission scheme that achieves this lower bound.

I. I NTRODUCTION

Over the last decade, there has been considerable interest
in the investigation of control problems that take into account
constraints on the communication links which are used for
information exchange. The recent survey papers [1], [2] and
the extensive lists of references therein are examples which
document this development. In this period, some fundamental
insights have been gained like the minimal data rate [3]–[5]
or minimal transmit power [6] necessary for the stabilization
of linear systems. Publications related to information theory
analyzed the information that can be transmitted using closed
control loops [7] or refined information theoretic quantities
describing the requirements of closed loop control [8]. Con-
cerning the communication channel, there exist mainly two
different viewpoints: restrictions of the transmission rate due
to noiseless but discrete channels (with finite quantization
levels) or real valued channels with additive noise. There
are only few results on discrete channels with errors [9]–[11]
which harder to handle. There have also been contributions to
distributed control systems with communication constraints
which inspired new algorithms based on the classical as-
sumption that quantization behaves like independent additive
noise [12], [13].

Some of the approaches in the field of control under
communication constraints have been developed in the LQG
context [12]–[17]. This paper also focuses on this framework,
with the communication link to be an additive white Gaus-
sian noise (AWGN) channel and the constraint of limited
transmit power which, in combination with the channel noise,
leads to a finite signal to noise ratio. There have already
been previous attempts to consider this type of problem.
In [18], the control signal is transmitted directly over the
AWGN channel and the controller is designed to generate a
control signal with constrained variance. The disadvantage
hereby is that no receiver is specified which, among other
details, results in the fact that available transmit power may
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not be fully exploited even if available. The authors of [19]
consider the introduction of a scaling factor at the transmitter
for scalar systems and include this factor in the LQG cost
function. This results in a bounded transmit power, but does
not allow for the specification of a hard power constraint
since the power actually used depends on the weighting
factor assigned to the transmit scaling.

We will follow a similar idea as in [19], which is based on
the optimization of the LQG cost using a scaling. However,
we consider a single-input single-output (SISO) system with
vector valued state implying the design of a transmit filter
vector instead of a scalar. The optimization is performed
under a hard transmit power constraint which is formulated
such that the validity of the solution of the standard LQG
problem, i. e., the optimal state estimator (Kalman filter)
and a linear controller, is guaranteed. Consequently, the
transmitter is designed to minimize the resulting cost after
the optimal estimator (which depends on the transmitter) and
controller (independent on the transmitter) are applied.

The paper is organized as follows. In Section II, we
introduce the system and the channel model as well as
the cost function to be optimized and the solution to the
standard LQG problem. Section III presents the definition
of the transmit power constraint and motivates the choice
for it. We propose a suboptimal solution to the resulting
optimization problem and give an interpretation. It is shown
that the well known lower bound for the transmit power is
tight for the solution. The last part of the section describes
how this bound can be achieved by transmit processing for
noiseless systems.

Notation: Vectors and matrices are denoted by lower and upper
case bold letters (e. g.,a and A), whereas scalars are lower case
letters (e. g.,a). The operatorsE [•], E [•|a], (•)T, andtr [•] are
expectation, expectation conditioned on the vectora, transpose
and trace of a matrix, respectively.ei is the ith column of the
N × N identity matrix IN . The all-zeros vector of dimensionN
is denoted by0N . N (µ, Ca) denotes the Gaussian distribution
of the real random vectora with meanµ and covariance matrix
Ca = E

ˆ

(a − µ)(a − µ)T
˜

.

II. PRELIMINARIES AND PROBLEM FORMULATION

The system under consideration is depicted in Fig. 1 and
its components will be presented in Section II-A and II-B.

A. System Model

We consider the following linear time invariant, discrete
time system in state space representation:

xk+1 = Axk + buk + wk, k ∈ {0, 1, 2, . . .}, (1)



where xk ∈ R
M is the system state at time indexk and

A ∈ R
M×M is the state transition matrix. The initial

statex0 ∼ N (0M , Cx0
) and the stationary process noise

wk ∼ N (0M , Cw) , k ∈ {0, 1, 2, . . .}, are assumed to be
mutually independent Gaussian random vectors. The system
has a scalar inputuk ∈ R, k ∈ {0, 1, 2, . . .}, andb ∈ R

M is
the system input vector.

Transmitter
Receiver/
Controller

xk

wk

uk

yk

vk

xk+1 = Axk + buk + wk

Fig. 1. Closed loop system.

B. Channel Model

A typical assumption is that the system state is not directly
observable. Instead, only the noisy observation

yk = cTxk + vk ∈ R, k ∈ {0, 1, 2, . . .}, (2)

is available. Here,c ∈ R
M is the system output vector and

vk ∼ N (0, cv) , k ∈ {0, 1, 2, . . .}, is the stationary observa-
tion noise which is assumed to be mutually independent and
independent to the process noise and initial state.

Eq. (2) allows for a second interpretation. A standard chan-
nel model in communication theory is the AWGN channel,
which can carry a real number and provides a noisy version
of it at the channel output. Assume now that we have access
to the system state, but are only able to transmit signals
to the controller over such an AWGN channel. Thus, we
have the degree of freedom to choose the vectorc (under
the assumption that(A, c) is observable) and treat the joint
communication and control problem in the LQG framework
which is referred to as transmitter design. The goal is to
determine the control sequenceuk, k ∈ {0, 1, 2, . . .}, and
the vectorc such that the cost function presented in Section
II-C is minimized.

In Section III-D, we will consider a more general transmit-
ter in order to achieve the minimum transmit power possible.
In this case, the observation equation has the form

yk = cT (xk − δk) + vk ∈ R, k ∈ {0, 1, 2, . . .}, (3)

whereδk has to be determined in addition toc.
Note that together with Eq. (2) or (3), respectively, the

system given in Eq. (1) describes a SISO system.

C. Cost Function

We consider the LQG control problem with infinite hori-
zon. In this case, the cost function which describes the
average cost per stage is given by [20]

J∞ = lim
N→∞

1

N
E

[

xT
NQxN +

N−1
∑

n=0

xT
nQxn + ru2

n

]

. (4)

whereQ ∈ R
M×M is a positive (semi)definite weight matrix

andr > 0 is the control weight.

D. Solution of the LQG Control Problem

A well know result is that the cost function (4) is mini-
mized by the control values

uk = lTx̂
(k|k)
k , (5)

where

x̂
(k|k)
k = E [xk| y0, . . . , yk, u0, . . . , uk−1] (6)

is the estimate ofxk given the information available at time
k. The linear controller is

lT = −
(

bTKb + r
)−1

bTKA, (7)

whereK is the positive semidefinite solution of the discrete
algebraic Riccati equation (DARE)

K = AT
(

K − Kb
(

bTKb + r
)−1

bTK
)

A + Q. (8)

The conditional mean estimate in Eq. (6) is computed using
the Kalman filter. Applying the control given in Eq. (5) to
the system (1), the optimal cost reads as

J∗
∞ = tr [PCx̃] + tr [KCw] , (9)

whereCx̃ is the stationary covariance matrix of the estima-
tion error x̃k = xk − x̂

(k|k)
k and

P = ATKb
(

bTKb + r
)−1

bTKA. (10)

The stationary error covariance is given by [20]

Cx̃ = CP
x̃ − CP

x̃c
(

cTCP
x̃c + cv

)−1
cTCP

x̃. (11)

The stationary error covariance matrix of the Kalman filter
in the “prediction” stepCP

x̃
is the solution of the DARE

CP
x̃

= A
(

CP
x̃
− CP

x̃
c
(

cTCP
x̃
c + cv

)−1
cTCP

x̃

)

AT + Cw.

(12)

III. T RANSMITTER DESIGN

Using the interpretation of the observation equation (2)
as the transmission ofcTxk over an AWGN channel, we
now aim at the transmit filter vectorc for the system state
such that the LQG cost is minimized and a constraint on the
transmit power is satisfied. The necessity of such a constraint
will be explained in Section III-A.

The cost function in Eq. (4) can be minimized w. r. t. the
control sequenceu = [u0, u1, . . .] first and then toc because

min
u,c

J∞ = min
c

(

min
u

J∞

)

, s. t. {u, c} ∈ G, (13)

with the restriction that the control signaluk at timek must
depend ony0, y1, . . . , yk, andu0, u1, . . . , uk−1 only. Here,
G describes the set of values the vectorc and the control
sequenceu are allowed to be chosen from. It will be used in
the following to limit the transmit power. IfG solely restricts
the choice ofc, e. g.,

G = {u, c|g(c) ≤ 0}, (14)

whereg(c) ∈ R is a function ofc only, the solution ofu will
be identical to Eq. (5) and (7), i. e., a linear controller with



an optimal state estimator. Thus, for this type of constraints,
the inner minimization of (13) results in the optimal value
given by Eq. (9). Since the second term of (9) containing
the process noise covariance matrix is independent onc,
only the first term can be further minimized w. r. t.c. Thus,
the objective is to minimize the trace of the weighted error
covariance matrix.

A. Transmit Power Constraint

If the cost functionJ∞ is minimized w. r. t.c without
a constraint, the result will have an infinite norm. This is
easy to verify using Eq. (11). Increasing the norm ofc is
equivalent to decreasing the variancecv of the observation
noise. In the limit for infinite norm, we have a noiseless
state estimation problem which clearly results in a smaller
estimation error than with observation noise, but the transmit
power used will be infinitely large. This shows that at least
the norm ofc must be restricted in order to ensure a finite
transmit power.

The actual transmit power used is given by the stationary
variance ofcTxk, which reads asE[(cTxk)2] = cTCxc,
with the stationary covariance matrixCx of the system
state. The restriction of this variance in order to keep the
transmit power finite has the major disadvantage thatCx

is a function of the control sequenceu. In this case, the
solution presented in Eq. (5) and (7) is not optimal anymore
since it is the result of an unconstrained optimization ofJ∞

w. r. t. u. Thus, instead of usingcTCxc, we consider the
following constraint:

cTCP
x̃c ≤ PTx, (15)

where PTx is the available transmit power. This choice is
motivated by the following reasons:

• The error covariance matrixCP
x̃

is independent on any
control signal [20]. Referring to Eq. (14), the constraint
setG is given by

G =
{

u, c
∣

∣cTCP
x̃c − PTx ≤ 0

}

, (16)

which restricts the choice ofc only. Thus, the control given
in (5) remains optimal.

• In [15] it has been shown that the optimal linear trans-
mitter at time indexk +1 that additionally has perfect
access to the observationsyℓ, ℓ ∈ {0, 1, . . . , k}, performs
an innovation coding which results in a covariance matrix
of the signal to be transmitted that is identical to the
error covariance matrixCP

x̃
. In Section III-D, we show

that for the case of a noiseless dynamic system (i. e.,
wk ≡ 0M , ∀k), this can be achieved without additional
feedback from the receiver to the transmitter and without
changing the solution obtained in Section III-B which does
not take into account the innovation coding.

B. Optimization Problem

Following the preceding discussion, the optimization prob-
lem for the determination of the transmit filter vectorc is

min
c

tr [PCx̃] s. t. cTCP
x̃c ≤ PTx, (17)

where the expressions forP , Cx̃ and CP
x̃

are given by
Eq. (10), (11) and (12), respectively. The problem is that
the error covariance matrixCx̃ does not only depend onc,
but also onCP

x̃
which is, as the solution of a DARE, an

implicit function of c.
In order to derive a suboptimum solution to the problem,

we assume in a first step thatCP
x̃

is not a function of c
and solve the optimization in (17) which is straight forward
using this assumption. Then,CP

x̃
is updated with this solution

according to (12) and, if necessary, (17) is solved again using
the updated error covariance matrix. This implies an iterative
procedure. Nevertheless, we will see that it is not necessary
to perform it this way.

Note that this approach can be interpreted in the context
of the suboptimal “forward” solution to the minimization of
the LQG cost function with a time variant transmit vector.
Considering the LQG problem with finite horizonN , the cost
function after the application of the optimal LQG controller
is a sum of traces of the weighted process noise covariance
matrix Cw and the weighted covariance matricesCx̃k

, k ∈
{0, 1, . . . , N−1}, of the state estimation error at time indexk
(see, e. g., [21]). The optimum strategy would be to determine
all transmit vectorsck, k ∈ {0, 1, . . . , N − 1}, jointly in
order to minimize the contribution of the estimation errors
to the final cost. This could be accomplished backwards in
time using a dynamic programming approach. In order to
simplify the solution, the suboptimal approach minimizes
the contribution of each estimation error separately starting
with k = 0. This determines the transmit vectorc0 and the
covariance matrixCP

x̃1
, which is necessary for the determi-

nation of c1 etc. Performing the transition to the average
cost infinite horizon problem, this gives an idea about the
suboptimality of the solution presented in the following with
the assumption thatCP

x̃
does not depend onc.

In order to keep things simple we rewrite the cost function
in (17) using the eigenvalue decomposition ofP ,

P = WΛW T = λwwT, (18)

where W is an orthonormal matrix andΛ is a diagonal
matrix. SinceP is positive semidefinite and has rank one
(cf. Eq. 10), only one eigenvalueλ is positive, all others are
zero. Thus, problem (17) reads as

min
c

λwTCx̃w s. t. cTCP
x̃
c ≤ PTx. (19)

The corresponding Lagrange function is

L(c, µ) = λwTCx̃w + µ
(

cTCP
x̃c − PTx

)

, (20)

with the Lagrange multiplierµ ≥ 0. Note that the error
covariance matrixCx̃ is given by Eq. (11). Taking the
derivative ofL(c, µ) w. r. t. c and setting it to zero, we get
the condition

λ
(

cTCP
x̃
c + cv

) (

wTCP
x̃
c
)

CP
x̃
w

=
(

λ
(

wTCP
x̃c
)2

+ µ
(

cTCP
x̃c + cv

)2
)

CP
x̃c, (21)



where we have to keep in mind thatCP
x̃

is a positive definite
matrix assumed to be independent onc. Thus, we find that

c = αw, (22)

whereα is a non-zero real scaling factor. Using this result,
the Lagrange multiplier can be expressed as

µ = λ
(

α2wTCP
x̃
w + cv

)−2
wTCP

x̃
wcv, (23)

which is positive under the assumptions made. Thus, the
transmit power constraint is active and we findα by inserting
c in (15) using equality:

α = ±

√

PTx

wTCP
x̃
w

. (24)

Finally, this results in

c =

√

PTx

wTCP
x̃
w

w, (25)

where the positive solution has been chosen since the sign of
α has no influence on the cost function. Note that only the
scaling of c depends on the error covariance matrixCP

x̃
.

Thus, the unscaled version of the transmit vector can be
computed independently of the error covariance matrix and
is given by the eigenvector ofP corresponding to the non-
zero eigenvalue. It remains to determine the error covariance
matrix CP

x̃
for the correct scaling. Inserting Eq. (25) in (12),

we get

CP
x̃ = A

(

CP
x̃ − CP

x̃w
(

wTCP
x̃w +

cv

α2

)−1

wTCP
x̃

)

AT + Cw

= A

(

CP
x̃ − CP

x̃w

(

wTCP
x̃w

PTx + cv

PTx

)−1

wTCP
x̃

)

AT+ Cw.

(26)

The solution in Eq. (25) has an interesting interpretation.
Sincew is the eigenvector belonging to the only non-zero
eigenvector ofP (cf. Eq. 10), it can be written as

w = ATKb
∥

∥ATKb
∥

∥

−1

2
, (27)

with the eigenvalueλ =
(

bTKb + r
)−1 ∥

∥ATKb
∥

∥

2

2
. Com-

paring this with Eq. (7), we see that the transmit vectorc is
just a scaled version of the optimal control vectorl. Thus,
the transmitter computes the optimal control and scales it in
order to meet the power constraint. The receiver reconstructs
the state vector from the received scalar signal and applies
the unscaled control vectorl (cf. Eq. 7).

C. Minimal Transmit Power

A well known result in the literature on control under
communication constraints is the lower bound on the transmit
power necessary for the stabilization of an unstable linear
plant. This bound is given by [6]

PTx,min =

(

∏

i

∣

∣

∣
λ(u)

i

∣

∣

∣

2

− 1

)

cv, (28)

whereλ(u)
i are eigenvalues ofA that lie outside the unit disc.

In the following, we will show that this bound is also tight for
the proposed transmission scheme. For the proof we utilize
the solution given in Eq. (25), which results in no loss of
transmit power and allows to achieve the lower bound.

Proposition 1. The lower bound on the transmit power
for the transmitter shown in Eq. (25) is given by PTx,min

(cf. Eq. 28) and can be approached arbitrarily close.

Proof. Considering Eq. (26), we find a DARE with the
parameter

t =
cv

α2
=

cv

PTx
wTCP

x̃
w, (29)

which depends on the given transmit power and the error
covariance matrixCP

x̃
. This matrix is a function ofPTx

and the unscaled transmit filter vectorw (cf. Eq. 26). For
PTx → ∞, the error covariance matrix will approach its
asymptotic value which is identical to a scenario without
observation noise. In this case,t will approach zero. On the
other hand, forPTx → PTx,min, the estimation error will grow
and, in the limit, approach infinity which results int → ∞.
Rewriting Eq. (29), the transmit power can be expressed as

PTx = wTCP
x̃wt−1cv = wTXwcv, (30)

where we used the abbreviationX = t−1CP
x̃

. Using this
notation and considering the caset → ∞, Eq. (26) can be
rewritten as

X = A
(

X − Xw
(

wTXw + 1
)−1

wTX
)

AT. (31)

This DARE corresponds to the deterministic expensive cost
linear quadratic regulator (LQR) problem with state feedback
which has the solution

min
uk

k=0,1,2,...

∞
∑

k=0

u2
k = xT

0 Xx0, (32)

subject to the state equationxk+1 = ATxk + wuk and
uk = lTxk. Here,x0 is the initial system state. In [6] and
[22] it is shown that

wTXw =
∏

i

∣

∣

∣
λ(u)

i

∣

∣

∣

2

− 1 (33)

Note that this result holds fort → ∞.1 Inserting Eq. (33) in
(30), we finally find the bound given in Eq. (28) which can
be approached arbitrarily close by increasing the value oft
to infinity with PTx → PTx,min.

Note that this result on the transmit power holds for
every vectorc which satisfies the transmit power constraint
and under the observability assumption. It does not depend
on the properties of the solution obtained in Section III-
B, Eq. (25). Thus, any appropriately scaled transmit vector
could be used. Nevertheless, the resulting costJ∗

∞ (cf. Eq. 9)
will be different due to the influence ofc on the estimation
error. The solution presented in Section III-B ensures that

1The result from [6] and [22] holds here since the eigenvaluesof A and
A

T are identical.



the minimal transmit power is achievable while keeping the
LQG cost small. Note that in [22] the result from Eq. (33)
is used to derive the coarsest quantizer for a noise free SISO
system. This indicates again the interconnection of minimal
transmit power in noisy systems and minimal information
rate in noise free, quantized systems.

D. Innovation Coding

In the previous subsections, we assumed that the transmit
signal is a linear function of the statexk with stationary
covariance matrixCx, whereas the transmit power constraint
implied that the covariance matrix of the signal to be
transmitted isCP

x̃
. Due to the stability of the closed loop

system, the transmit power is bounded, but the mismatch
in the transmit covariance matrices results in an increase of
this power ifcTxk is transmitted (cf. Eq. 2). The goal is to
introduce a coding scheme at the transmitter which generates
the desired covariance matrix, but ensures that the processing
at the receiver that uses the Kalman filter remains optimal.
To this end, we recall the Kalman filter equations for the
computation of the state estimate,

x̂
(k|k)
k = x̂

(k|k−1)
k + g

(

yk − cTx̂
(k|k−1)
k

)

, (34)

with x̂
(k|k)
k = E [xk| y0, . . . , yk, u0, . . . , uk−1],

x̂
(k|k−1)
k = Ax̂

(k−1|k−1)
k−1 + buk−1, (35)

and the stationary Kalman gain vector (using the transmit
power constraint)

g = CP
x̃c
(

cTCP
x̃c + cv

)−1
= CP

x̃c (PTx + cv)
−1

. (36)

In Eq. (34) we see that the first step in the Kalman filter
algorithm is the computation of the innovation

zk = yk − cTx̂
(k|k−1)
k

= cT
(

x − x̂
(k|k−1)
k

)

+ vk.
(37)

If the transmitter knows the state estimatex̂
(k|k−1)
k , it can

compute the estimation errorxk− x̂
(k|k−1)
k in advance and

transmit it using the same filter vectorc that has been
computed in Section III-B. Referring to Eq. (3), this cor-
responds toδk = x̂

(k|k−1)
k . The only modification necessary

at the receiver is to omit the computation of the innovation
(cf. Eq. 37) but to use directly the channel output which is
now identical tozk.

It remains to discuss how the transmitter gets knowledge
about x̂

(k|k−1)
k . In [15], the existence of a perfect link

between receiver and transmitter is assumed that feeds back
the channel output. Thus, the transmitter can also run the
Kalman filter and compute the state estimate. The drawback
of this assumption is that it can hardly be realized. But for
a noiseless dynamic system (i. e.,wk ≡ 0M , ∀k), such a
link is not needed since the state which can be observed at
the transmitter contains all necessary information. First, at
time indexk + 1, the controluk can be computed using the
observed state sequence by (cf. Eq. 1)

uk = b+ (xk+1 − Axk) , (38)

with b+ = bT/‖b‖2
2. Recall thatuk = lTx̂

(k|k)
k (cf. Eq. 5).

Sinceuk is known, we can solve with Eq. (34) foryk. With
the knowledge of the channel output, it is now possible to
determine the state estimate as

x̂
(k|k)
k = x̂

(k|k−1)
k +CP

x̃
c
(

lTCP
x̃
c
)−1
(

uk−lTx̂
(k|k−1)
k

)

. (39)

With Eq. (35), the estimation errorxk+1 − x̂
(k+1|k)
k+1 can be

computed and transmitted usingc. Note that this estimation
error has the desired covariance matrixCP

x̃
.

Putting all parts together, the resulting control loop that
transmits feedback information over a power constrained
AWGN channel can be depicted as in Fig. 2.

mod.
Kalman

xk−x̂
(k|k−1)
k

xk

lT

cT

uk

zk

vk

xk+1 = Axk + buk

Fig. 2. Proposed scheme with innovation coding and modified Kalman
filter for noiseless system (wk ≡ 0M ).

The drawback of this approach is that the state estimate
can be determined at the transmitter only theoretically. Since
the estimate is computed recursively using the control vari-
ableuk instead of the observationyk, any error like round-off
etc. will cause problems due to error propagation. Thus, the
state estimator at the transmitter and the receiver should be
synchronized from time to time.

IV. N UMERICAL EXAMPLE

In order to evaluate the suboptimality of the solution of
the transmitter design found in Section III-B, we applied itto
the stabilization problem of an inverted pendulum [13], [23].
The physical parameters of the system are given in Table I.

Mass of cart 0.5 kg
Mass of pendulum 0.2 kg

Friction of cart 0.1
N

m/s
Length to pendulum
center of mass 0.3 m

Inertia of pendulum 6·10
−3kg m2

u(t)
w(t)

θ(t)

x(t)

TABLE I

MODEL PARAMETERS OF THE PENDULUM STABILIZATION PROBLEM.

The state of the continuous dynamics is
[x(t), ẋ(t), θ(t), θ̇(t)]T. The system has been discretized
with a sampling period ofTs = 5ms using zero order hold.
The weight matrix for the state of the discrete time LQG
problem is chosen to beQ = e1e

T
1 + 106

e3e
T
3 in order

to keep the angleθ(t) small, andr = 1. The covariance
matrix of the process noise in the continuous time domain
is determined by the disturbance forcew(t) and is given
by Cw,cont. = 0.1e2e

T
2 .2 The discrete observation noise

2Due the the presence of process noise, we have to assume that the control
valuesuk are available to the transmitter (cf. Section III-D).



variance iscv = 0.1. Using the parameters given in Table I,
this results in an minimal transmit powerPTx,min ≈ 0.0057.

Transmit Power

L
Q

G
co

st

Suboptimal transmitter
Numerically optimized
PTx,min

0 0.01 0.02 0.03 0.04 0.05 0.06
140

160

180

200

220

Fig. 3. LQG cost for the inverted pendulum.

The solid line in Fig. 3 shows the resulting cost if the
solution given in Eq. (25) is applied. Using this as an initial
point, we applied a general purpose numerical optimizer to
the transmitter optimization problem. The dashed line shows
the resulting cost. As expected, we see that the numerically
optimized transmitter performs better, but the gap is small
for a transmit power larger than approx.2PTx,min.

V. CONCLUSION

In this paper, we considered the problem of joint trans-
mitter and controller design for a linear SISO system where
the control loop is closed over an AWGN channel with
transmit power constraint. Due to the quadratic cost function
and the restriction to linear transmitters, the problem could
be investigated in the LQG framework. In order to find a
solution based on known results, we modified the power
constraint not to include the covariance matrix of the system
state, but the covariance matrix of the estimation error.
Neglecting the impact of the error covariance matrix on
the transmit filter vector, we found the solution vector that
minimizes the LQG cost which turns out to be a scaled
version of the optimal control vector. We showed that the
known bound for the minimal transmit power is tight for
the proposed scheme and the minimal transmit power can be
achieved by innovation coding at the transmitter for noiseless
systems. Future work includes the extension of the presented
scheme to MIMO systems and to systems with process noise.
A further point is the evaluation of the proposed approach
taking into account the dependence of the estimation error
covariance matrix on the transmit filter.
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