On Transmitter Design in Power Constrained
LQG Control

Peter Breun and Wolfgang Utschick

American Control Conference
June 2008

(©2008 IEEE. Personal use of this material is permitted. However, per-
mission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

Technische Universitat Miinchen
m Associate Institute for Signal Processing W
http://www.msv.ei.tum.de



On Transmitter Design in Power Constrained LQG Control

Peter Breun and Wolfgang Utschick

Abstract— We consider a linear dynamic system to be con- not be fully exploited even if available. The authors of [19]
trolled using feedback information that has to be transmited  consider the introduction of a scaling factor at the tramtemi
over a power constrained channel with additive noise. We 5, scalar systems and include this factor in the LQG cost

propose a novel approach to the transmitter design in order @ . . . .
minimize the cost function for the linear quadratic Gaussia function. This results in a bounded transmit power, but does

(LQG) control problem when the standard state estimator and not allow for the specification of a hard power constraint
linear controller are used. We show that the well known lower since the power actually used depends on the weighting
bound on transmit power is tight for our solution and derive  factor assigned to the transmit scaling.

a transmission scheme that achieves this lower bound. We will follow a similar idea as in [19], which is based on

. INTRODUCTION the optimization of the LQG cost using a scaling. However,

Over the last decade, there has been considerable inter&§tconsider a single-input single-output (SISO) systenh wit
in the investigation of control problems that take into ageo  Vector valued state implying the design of a transmit filter
constraints on the communication links which are used fofector instead of a scalar. The optimization is performed
information exchange. The recent survey papers [1], [2] ari¢nder a hard transmit power constraint which is formulated
the extensive lists of references therein are exampleshwhiguch that the validity of the solution of the standard LQG
document this development. In this period, some fundament¥oblem, i.e., the optimal state estimator (Kalman filter)
insights have been gained like the minimal data rate [3]-[5}"d & linear controller, is guaranteed. Consequently, the
or minimal transmit power [6] necessary for the stabilizati transm!tter is QeS|gned t(_) minimize the resulting C(_)strafte
of linear systems. Publications related to informatiorotiye the optimal estimator (which depends on the transmitted) an
analyzed the information that can be transmitted usingedos controller (independent on the transmitter) are applied.
control loops [7] or refined information theoretic quamtiti The paper is organized as follows. In Section II, we
describing the requirements of closed loop control [8]. Corintroduce the system and the channel model as well as
cerning the communication channel, there exist mainly twi1€ cost function to be optimized and the solution to the
different viewpoints: restrictions of the transmissioterdue ~Standard LQG problem. Section III presents the definition
to noiseless but discrete channels (with finite quantipatig®f the transmit power constraint and motivates the choice
levels) or real valued channels with additive noise. Therfor it. We propose a suboptimal solution to the resulting
are only few results on discrete channels with errors [9}-[1 OPtimization problem and give an interpretation. _It is shovy
which harder to handle. There have also been contributions{at the well known lower bound for the transmit power is
distributed control systems with communication constgain tight for the solution. The last part of the section descibe
which inspired new algorithms based on the classical a§oW this bound can be achieved by transmit processing for

sumption that quantization behaves like independentiaddit N0iseless systems.
noise [12], [13]. Notation: Vectors and matrices are denoted by lower and upper

Some of the approaches in the field of control undefase bold letters (e.ga and A), whereas scalars are lower case
communication constraints have been developed in the LQEHers (e.g.a). The operatord: o], E[e| a], (s)", andtr [e] are
context [12]-[17]. This paper also focuses on this framdwor expectation, expectation conditioned on the veaigrtranspose
with the communication link to be an additive white Gausand trace of a matrix, respectively, is the ith column of the
sian noise (AWGN) channel and the constraint of limitedV x V identity matrixI. The all-zeros vector of dimensioN
transmit power which, in combination with the channel npises denoted byOn. A (u, Ca) denotes the Gaussian distribution
leads to a finite signal to noise ratio. There have already the real random vectorn with meany and covariance matrix
been previous attempts to consider this type of problerfe = E [(@ — p)(a —p)"].
In [18], the control signal is transmitted directly over the
AWGN channel and the controller is designed to generate a |- PRELIMINARIES AND PROBLEM FORMULATION
control signal with constrained variance. The disadvamtag The system under consideration is depicted in Fig. 1 and
hereby is that no receiver is specified which, among othéts components will be presented in Section II-A and 1I-B.
details, results in the fact that available transmit powaym

A. System Model

The authors are with the Associate Institute for Signal €ssmg, . . . . . . .

Technische Universitat Munchen, Arcisstr. 21, 80290 Mian Germany. We consider the foIIowmg linear time invariant, discrete
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(Cognition for Technical Systems). Tpi1 = Azxg + bup, +wi, ke {0,1,2,...}, (1)



where z;, € RM is the system state at time indéxand D. Solution of the LQG Control Problem

A e RM*M s the state transition matrix. The initial A well know result is that the cost function (4) is mini-
statexo ~ N (0, Ca,) and the stationary process noisemized by the control values

wy ~ N (0p,Cy), k € {0,1,2,...}, are assumed to be

mutually independent Gaussian random vectors. The system up = lTii;(flk)7 (5)
has a scalar inpui;, € R, k € {0,1,2,...}, andb € RM is

. where
the system input vector.
i(k‘k):E[iL‘Hyo e s Yk Uy - -, U 1] (6)
wy, k ) 9 ) ) 9 —
U . is the estimate of; given the information available at time
Uk Tyt = Az, + buy, + wy k. The linear controller is
"= (b"Kb+7r) b'KA, 7)
Receiver/| Y& . . .y o . )
VeTl D= Transmitte where K is the positive semidefinite solution of the discrete
Controller \r S R .
algebraic Riccati equation (DARE)
Vg
—1
Fig. 1. Closed loop system. K=A" (K - Kb (bTKb + T) bTK) A+Q. (8)
B. Channel Model The conditional mean estimate in Eq. (6) is computed using
A typical assumption is that the system state is not directijne Kalman filter. Applying the control given in Eg. (5) to
observable. Instead, only the noisy observation the system (1), the optimal cost reads as
yp=clx +v, €R, ke{0,1,2,...}, (2) JI =tr [PCgzl + tr [KCy, (9)

is available. Here¢ € RM is the system output vector and whereC; is the stationary covariance matrix of the estima-

v ~ N (0,¢), k € {0,1,2,...}, is the stationary observa- tion errorz, = x), — j;](f‘k) and

tion noise which is assumed to be mutually independent and .

independent to the process noise and initial state. P=A"Kb(b"Kb+r) b KA. (10)
Eq. (2) allows for a second interpretation. A standard chaq.-

nel model in communication theory is the AWGN channel,

which can carry a real number and provides a noisy version Cz = CE —CEc(c"Cle + 00)71 c'ct. @11

of it at the channel output. Assume now that we have access ) . . .
to the system state, but are only able to transmit signa-l@e stationary error covariance matrix of the Kalman filter

“ 1 - ” P . -
to the controller over such an AWGN channel. Thus, wd! the “prediction” stepC7 is the solution of the DARE
have the degree of freedom to choose the veetgunder CP? — A(CP — CPe (cTCP —1 7P\ 4T
; . . i = = — C3 =C+ ¢y CL) A +C,y.
the assumption thdtA, c¢) is observable) and treat the joint ( z a¢ (c z€TC ) ¢ ”c)

he stationary error covariance is given by [20]

@

communication and control problem in the LQG framework (12)
which is referred to as transmitter design. The goal is to I1l. TRANSMITTER DESIGN
determine the control sequenag, k € {0,1,2,...}, and Using the interpretation of the observation equation (2)

the vectore such that the cost function presented in Sectios the transmission of Tz, over an AWGN channel, we

II-C is minimized. now aim at the transmit filter vectar for the system state

In Section 111-D, we will consider a more general transmitg,ch, that the LQG cost is minimized and a constraint on the

ter in order to achieve the minimum transmit power possiblgransmit power is satisfied. The necessity of such a constrai
In this case, the observation equation has the form will be explained in Section I11-A.

yp=c' (xp— )+ €R, ke{0,1,2,...}, (3) The cost function in Eq. (4) can be minimized w.r.t. the

. . . control sequence = [ug, u1, . ..] first and then ta: because
whered;,. has to be determined in addition &0 g [0, ua ]

Note that together with Eq. (2) or (3), respectively, the  min.J,, = min (min Joo) , s.t. {u,c}eq, (13)

system given in Eq. (1) describes a SISO system.
C. Cost Function with the restriction that the control signa), at time k must
) o ~depend onyg, 1, - - -, Yk, andug,uy,...,ur_1 only. Here,
We consider the LQG control problem with infinite hOI’I-g describes the set of values the vectoand the control

zon. In this case, the cost function which describes tr‘§‘equencm are allowed to be chosen from. It will be used in

average cost per stage is given by [20] the following to limit the transmit power. i§ solely restricts
1 . N—1 . , the choice ofe, e.qg.,
Joo = lim —E |zyQxN + z,Qx, +ru,|. (4
S AP P @ G = {u, clg(e) <0}, 14)

where@ € RM>M js a positive (semi)definite weight matrix whereg(c) € R is a function ofc only, the solution ofu will
andr > 0 is the control weight. be identical to Eqg. (5) and (7), i.e., a linear controllertwit



an optimal state estimator. Thus, for this type of constsain where the expressions faP, C; and CY are given by
the inner minimization of (13) results in the optimal valueEq. (10), (11) and (12), respectively. The problem is that
given by Eq. (9). Since the second term of (9) containinthe error covariance matri€'; does not only depend om
the process noise covariance matrix is independent,on but also onCE which is, as the solution of a DARE, an
only the first term can be further minimized w.rct. Thus, implicit function of c.
the objective is to minimize the trace of the weighted error In order to derive a suboptimum solution to the problem,
covariance matrix. we assume in a first step théit is not a function of ¢
and solve the optimization in (17) which is straight forward
using this assumption. The@E is updated with this solution
If the cost fUnCtionJoo is minimized w.r.t. ¢ without according to (12) and' if necessary, (17) is solved aga'mgjsi
a Constraint, the result will have an infinite norm. This |&he updated error covariance matrix. This |mp||es an ibezat
easy to verify using Eq. (11). Increasing the normeols  procedure. Nevertheless, we will see that it is not necgssar
equivalent to decreasing the variangeof the observation to perform it this way.
noise. In the limit for infinite norm, we have a noiseless Note that this approach can be interpreted in the context
state estimation problem which clearly results in a smalle§f the suboptimal “forward” solution to the minimization of
estimation error than with observation noise, but the trahs pe LQG cost function with a time variant transmit vector.
power used will be infinitely large. This shows that at |eas€onsidering the LQG problem with finite horizd¥, the cost
the norm ofc must be restricted in order to ensure a finitgynction after the application of the optimal LQG controlle
transmit power. is a sum of traces of the weighted process noise covariance
The actual transmit power used is given by the stationapatrix C., and the weighted covariance matria@s, , k €
variance ofc”z;, which reads a€l[(c'z;)?] = ¢'Cqe, {0,1,..., N—1}, of the state estimation error at time index
with the stationary covariance matri’; of the system (see e.g., [21]). The optimum strategy would be to deteemin
state. The restriction of this variance in order to keep thg| transmit vectorse, k € {0,1,...,N — 1}, jointly in
transmit power finite has the major disadvantage 118t order to minimize the contribution of the estimation errors
is a function of the control sequenae In this case, the g the final cost. This could be accomplished backwards in
solution presented in Eq. (5) and (7) is not optimal anymorgme using a dynamic programming approach. In order to
since it is the result of an unconstrained optimization/qf simplify the solution, the suboptimal approach minimizes
W.r.t. u. Thus, instead of using” Czc, we consider the the contribution of each estimation error separately istgrt
following constraint: with & = 0. This determines the transmit vectey and the
cTCPe < Py, (15) cov_ariance matrbC¢ , Whi_ch is necessary for the determi-
nation of ¢; etc. Performing the transition to the average
where Pry is the available transmit power. This choice iscost infinite horizon problem, this gives an idea about the
motivated by the following reasons: suboptimality of the solution presented in the followinglwi
« The error covariance matriCt is independent on any the assumption thaf’ does not depend oa
control signal [20]. Referring to Eq. (14), the constraint In order to keep things simple we rewrite the cost function
setg is given by in (17) using the eigenvalue decompositionf

A. Transmit Power Constraint

G={u,clc"Clc—Pry,<0}, (16) P=wAW" = \ww?, (18)

which restricts the choice efonly. Thus, the control given where W is an orthonormal matrix andi is a diagonal

in (5) remains optimal. matrix. SinceP is positive semidefinite and has rank one

« In [15] it has been shown that the optimal linear transiet £4 10), only one eigenvalueis positive, all others are
mitter at time indexk +1 that additionally has perfect . Thus, problem (17) reads as

access to the observatiopg ¢ € {0,1,...,k}, performs

an innovation coding which results in a covariance matrix min \wTCzw  s.t. cTCgc < Pry. (19)
of the signal to be transmitted that is identical to the ¢

error covariance matrbxCE. In Section 11I-D, we show The corresponding Lagrange function is

that for the case of a noiseless dynamic system (i.e.,

wy, = 0y, Vk), this can be achieved without additional Lc,p) = w " Czw + p (c"Cle — Pry),  (20)
feedback from the receiver to the transmitter and without

changing the solution obtained in Section IlI-B which doeg\'ith t_he Lagrange mgltipli_erﬂ = 0. Note that th_e error
not take into account the innovation coding. covariance matrixCyz is given by Eqg. (11). Taking the
derivative of L(c, 1) w.r.t. ¢ and setting it to zero, we get

B. Optimization Problem the condition
Following the preceding discussion, the optimization prob P P o
lem for the determination of the transmit filter veciois A(e"Cze+ ) (w' Cge) Cow

2 2
mintr[PC3]  s.t. ¢TCRe< Pry,  (17) = (A\(WTCEe)* + i (" CRe+c.)*) Che, (22)



where we have to keep in mind th@t is a positive definite Where)\gu) are eigenvalues ol that lie outside the unit disc.
matrix assumed to be independentanThus, we find that In the following, we will show that this bound is also tightfo
the proposed transmission scheme. For the proof we utilize
¢ = oaw, (22)  the solution given in Eq. (25), which results in no loss of

wherea is a non-zero real scaling factor. Using this resultransmit power and allows to achieve the lower bound.

the Lagrange multiplier can be expressed as Proposition 1. The lower bound on the transmit power

- 2, T AP -2 TP for the transmitter shown in Eq. (25) is given by Prxmin
p=A(o"w Cow +e,) “w Cawey, (23) (cf. Eg. 28) and can be approached arbitrarily close.

which is positive under the assumptions made. Thus, trﬁoof Considering Eq. (26), we find a DARE with the
transmit power constraint is active and we fimdby inserting parar.neter ' ’

c in (15) using equality: p_ G _ O W' CPuw, (29)
2 a? Pry
a==+ 7”',. (24)  which depends on the given transmit power and the error
wTCPw . P . 7 .
z covariance matrixC;. This matrix is a function ofPry
Finally, this results in and the unscaled transmit filter vectar (cf. Eq. 26). For
Pry — oo, the error covariance matrix will approach its
c— Pry w (25) asymptotic value which is identical to a scenario without
N wTClw observation noise. In this casewill approach zero. On the

N ) ) _other hand, fotPry — Prx min, the estimation error will grow
where the positive solution has been chosen since the signgfq in the limit approach infinity which results in— co.

Q@ he}s no influence on the cost function. Note that only thﬁewriting Eq. (29), the transmit power can be expressed as
scaling of ¢ depends on the error covariance matéy.

Thus, the unscaled version of the transmit vector can be Pre=w"Chwt "¢, = w" Xwe,, (30)
pomputed mdepe_ndently of the error covariance matrix anv(\j/here we used the abbreviatio — +~1CP. Using this
is given by the eigenvector adP corresponding to the non- : S x

. . . .__notation and considering the case~ oo, Eq. (26) can be
zero eigenvalue. It remains to determine the error covesian o oo
matrix C® for the correct scaling. Inserting Eq. (25) in (12), )
we get X =A(X - Xw(@ Xw+1) w'X) AT (@D

cP = A(Cg ~ CPw (wTng i c_g)_,}UTCE> AT L, '!'his DARE cqrresponds to the determinis?ic expensive cost
Q linear quadratic regulator (LQR) problem with state feadba

Pry+c,\ which has the solution

= A C:EP — C:;:Pw (wTngT) 'wTC’g AT+ C,. oo
T .

* (26) min Z uj = x5 X, (32)

k=0,1,2,... k=0
The solution in Eq. (25) has an interesting interpretatiorgubject to the state equatioy
Sincew is the eigenvector belonging to the only non-zerq, :

eigenvector ofP (cf. Eq. 10), it can be written as

= ATz, + wuy, and
= 1", Here,x, is the initial system state. In [6] and
[22] it is shown that

-1
w=A"Kb||ATKb|, , (27) w"Xw = [

2
AW (33)

with the eigenvalue\ = (b" Kb + r)71 HATKsz. Com- :
paring this with Eq. (7), we see that the transmit veetdés  Note that this result holds far— oc.! Inserting Eq. (33) in
just a scaled version of the optimal control vectoiThus, (30), we finally find the bound given in Eq. (28) which can
the transmitter computes the optimal control and scales it be approached arbitrarily close by increasing the value of
order to meet the power constraint. The receiver recortstru¢o infinity with Pry — Prx min- O
the state vector from the received scalar signal and applies

the unscaled control vectdr(cf. Eq. 7). Note that this result on the transmit power holds for

every vectore which satisfies the transmit power constraint
C. Minimal Transmit Power and under the observability assumption. It does not depend

A well known result in the literature on control under®" the properties of the solution obtained in Section IlI-

L o , Eq. (25). Thus, any appropriately scaled transmit vector
communication constraints is the lower bound on the transnﬁ’ uld be used. Nevertheless, the resulting dgst(cf. Eq. 9)

El(;vx?rTnh?gebsjl?r?(; :‘:rg:\r/lgnsé?bfg]zanon of an unstable I|neé\;fv|‘i)" be different due to the influence af on the estimation

error. The solution presented in Section IlI-B ensures that
PTx,min - <H

K2

AW

2
— 1| ¢y, (28) 1The result from [6] and [22] holds here since the eigenvahfegl and
AT are identical.



the minimal transmit power is achievable while keeping theith b+ = b /||b||2. Recall thatu, = 1"2\"*) (cf. Eq. 5).
LQG cost small. Note that in [22] the result from Eq. (33)Sinceuy is known, we can solve with Eq. (34) fai.. With

is used to derive the coarsest quantizer for a noise free SISke knowledge of the channel output, it is now possible to
system. This indicates again the interconnection of mihimaletermine the state estimate as

trans_mit power in noisy_systems and minimal information :%;ck\k):i.](fwfl)_’_cgc (lTC'?c)fl(uk—lT:i,(flkfl)). (39)
rate in noise free, quantized systems. * *

D. Innovation Coding With Eqg. (35), the estimation erray; — :ﬁ,(c’fl”k) can be

In the previous subsections, we assumed that the transr‘ﬁ?tmpmed and transmitted usieg Note that this estimation

signal is a linear function of the state, with stationary errlgrt?as th”e deilretd C(i\r/]arlatnhce matﬁg' irol | that
covariance matriCy, whereas the transmit power constraintt u ".Ig ? gzr Sk qg? er,t_ € resuiling contro ootp na q
implied that the covariance matrix of the signal to pe' ansSMmits leedback information ‘over a power constraine

transmitted isCE. Due to the stability of the closed loop AWGN channel can be depicted as in Fig. 2.

system, the transmit power is bounded, but the mismatch g Ty
in the transmit covariance matrices results in an increése o > T = Axyj, + bu

[ k+1 k k —
this power ifcTx, is transmitted (cf. Eq. 2). The goal is to T HhD)
introduce a coding scheme at the transmitter which gererat¢ ! } T —Ty,
the deswed_covarlance matrix, but ensures that th_e priogess ,@ mod. % -
at the receiver that uses the Kalman filter remains optimal. Kalman kr‘ c
To this end, we recall the Kalman filter equations for the

Vg

computation of the state estimate,

R R - R - Fig. 2. Proposed scheme with innovation coding and modifietién
:B,(flk) = :B,(ck‘k b +g (yk — cngﬂk 1)) , (34) filter for noiseless systemufy, = 011).
with 20 _ g [zaly Yoot 1] The drawback of this approach is that the state estimate
k - k1 Y0y« --s Yky WOy - v oy WE—1]s

can be determined at the transmitter only theoreticallyc&i
D — AR gy (35) the estimate is computed recursively using the controkvari
atbleu,C instead of the observatiagn, any error like round-off
mi X .
etc. will cause problems due to error propagation. Thus, the
state estimator at the transmitter and the receiver shaaild b
g=CEtc(c"Cle+ Cv)*l = CPe(Pry+¢,)” . (36) synchronized from time to time.

IV. NUMERICAL EXAMPLE

and the stationary Kalman gain vector (using the trans
power constraint)

In Eg. (34) we see that the first step in the Kalman filter

algorithm is the computation of the innovation In order to evaluate the suboptimality of the solution of
T (klk—1) the transmitter design found in Section I11-B, we applietbit
fk =Yk — C Ty the stabilization problem of an inverted pendulum [13],][23

(37)

—cT (m — ;;;;f"“‘l)) + v The physical parameters of the system are given in Table I.

If the transmitter knows the state estimﬁ&'k’l), it can

Mass of cart 0.5 kg 6(t)

compute the estimation errork—cizgf‘k_l) in advance and Mass of pendulum || 0.2 kg :
transmit it using the same filter vecter that has been Friction of cart 01N |

. . . .  mis |
computed in Section 1lI-B. Referring to Eq. (3), this cor- | Tength to pendulum 03 m u(t)
responds tay, = #.** "), The only modification necessary | center of mass ' w(t) x(t)

. . . . . . Inertia of pendulum||[ 6-10—3kg m?
at the receiver is to omit the computation of the innovation —
(cf. Eq. 37) but to use directly the channel output which is TABLE |
now Ident_lcal tOZk i MODEL PARAMETERS OF THE PENDULUM STABILIZATION PROBLEM

It remains to discuss how the transmitter gets knowledge
~(k|k—1 : : . . .

about ccgC k=1 [15], the existence of a perfect link The state of the continuous dynamics is

between receiver and transmitter is assumed that feeds be[@&), i(t),0(t), g'(t)]T, The system has been discretized
the channel output. Thus, the transmitter can also run thgth a sampling period of’s = 5ms using zero order hold.
Kalman filter and compute the state estimate. The drawbagie weight matrix for the state of the discrete time LQG
of this assumption is that it can hardly be realized. But foproblem is chosen to b€ = ere] + 10%sged in order

a noiseless dynamic system (i.ev, = Oar,Vk), such a to keep the anglé(t) small, andr = 1. The covariance
link is not needed since the state which can be observed @htrix of the process noise in the continuous time domain

the transmitter contains all necessary information. Fast is determined by the disturbance foradt) and is given
time indexk + 1, the control, can be computed using the by C,, con. = 0.1ezej .2 The discrete observation noise

observed state sequence by (cf. Eq. 1)
2Due the the presence of process noise, we have to assumegticaritrol
up, = bt (xp1 — Azy), (38)  valuesu, are available to the transmitter (cf. Section I1I-D).



variance isc, = 0.1. Using the parameters given in Table I, [3]

this results in an minimal transmit poweéky min &~ 0.0057.

220 ! Subobtimal transmitted
i --8-- Numerically optimized
............ min
200
@
o
o
O
8 180
-
160 g
- - - i
140 : :
0 0.01 0.02 0.03 0.04 0.05 0.06

Transmit Power

Fig. 3. LQG cost for the inverted pendulum.

(4

(5]

(6]

(7]

(8]

El

[10]

The solid line in Fig. 3 shows the resulting cost if the

solution given in Eq. (25) is applied. Using this as an irhitia[11

point, we applied a general purpose numerical optimizer to
the transmitter optimization problem. The dashed line show
the resulting cost. As expected, we see that the numerically
optimized transmitter performs better, but the gap is smati2]

for a transmit power larger than appr@®ry min.

V. CONCLUSION

[13]

In this paper, we considered the problem of joint trans-
mitter and controller design for a linear SISO system wherﬁ4]
the control loop is closed over an AWGN channel with

transmit power constraint. Due to the quadratic cost famcti

and the restriction to linear transmitters, the problemlatou[15]
be investigated in the LQG framework. In order to find a
solution based on known results, we modified the powets]

constraint not to include the covariance matrix of the syste

state, but the covariance matrix of the estimation error.
Neglecting the impact of the error covariance matrix oml7]
the transmit filter vector, we found the solution vector that
minimizes the LQG cost which turns out to be a scalegg,
version of the optimal control vector. We showed that the

known bound for the minimal transmit power is tight for
the proposed scheme and the minimal transmit power can
achieved by innovation coding at the transmitter for n@isel

b2

systems. Future work includes the extension of the predente
scheme to MIMO systems and to systems with process noisgg)

A further point is the evaluation of the proposed approach
taking into account the dependence of the estimation err

covariance matrix on the transmit filter.
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