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Wir, Stäubchen auf der Fläche unseres Planeten, der selbst
kaum ein Sandkorn im unendlichen Raume des Weltalls zu
nennen ist, wir, das jüngste Geschlecht unter den Lebendigen
der Erde, nach geologischer Zeitrechnung kaum der Wiege
entstiegen, noch im Stadium des Lernens, kaum halb erzogen,
mündig gesprochen aus gegenseitiger Rücksicht, und doch
schon durch den kräftigeren Antrieb des Causalgesetzes über
alle unsere Mitgeschöpfe hinaus gewachsen und sie im Kampf
um das Dasein bezwingend, haben wahrlich Grund genug stolz
zu sein, dass es uns gegeben ist ,,die unbegreiflich hohen Werke“
in treuer Arbeit langsam verstehen zu lernen, und wir brauchen
uns nicht im Mindesten beschämt zu fühlen, wenn dies nicht
gleich im ersten Ansturm eines Icarusfluges gelingt.

Hermann von Helmholtz, Die Thatsachen
in der Wahrnehmung

Learned conversation is either the affectation of the ignorant
or the profession of the mentally unemployed.

Oscar Wilde, The Critic as Artist





Preface

The brain is an incredibly complex piece of machinery. Many billions of neurons are interconnected
by an even larger number of synapses. Most neurons receive their input predominantly from

other neurons. Nonetheless, nothing in the brain happens in the absence of any form of external
input. The brain can be seen as nothing more than a—very intricate—device that transforms
external inputs into muscle action. The behavior of the animal must be adapted to the environmental
circumstances in an optimal way. For this reason, it is very important that sensory input is detected
and processed as efficiently as possible.

In addition to the traditional human “five senses” (touch, vision, hearing, smell, and taste),
there are many sensory systems that deal exclusively with body-internal processes. Examples are
sensors monitoring the position of the limbs and the “touch-sensitive” neurons in the gut. Another
group of sensors monitors gravity, heat, cold, pain etc. Many more sensory systems have evolved in
other animals. Fish and amphibians use their lateral-line system to detect minute water movements,
snakes and some insects have specialized infra-red radiation detection systems, a multitude of
animals can detect the direction of polarization of light, birds find their way using a magnetic
compass, and so on.

The list of possibilities is endless. It seems that for each physical quantity, an animal can be
found that measures it and make use of the information so obtained. In spite of this perplexing
multitude of different sensory systems, several general principles of key importance in sensory
processing can be recognized. This thesis discusses three concrete realizations of such principles.

The first step in sensory processing is detection of a physical quantity by the sensory organ.
In chapter 2, the detection and localization of ground-borne vibrations by snakes is discussed.
Although snakes are generally believed to be deaf, they do have a functional inner ear. There is
some sensitivity to air-borne sound, but because of the special construction of the their middle
ear and lower jaw, snakes can also pick up substrate vibrations and literally hear prey moving
about. Ground-borne vibrations cannot merely be detected; a simple neuronal model suffices to
enable localization of the sound source as well. A mechanical description of the vibration detection
process is given and source localization is explored through numerical simulations.

After signal detection, the sensory information is generally not simply relayed to higher processing
centers “as is”. Feature extraction is first performed to distill essential characteristics from the
signal. In the visual system, for instance, the first processing layers identify the presence of edges,
movement, and similar attributes of the input signal.

Signal periodicity plays an important role in the processing of auditory and vibratory input. It
is perhaps the most important cue in object recognition and identification. The precise neuronal
mechanism by which periodicity detection and recognition is achieved is, however, still unclear.
Chapter 3 considers two neuronal models that can accomplish neuronal periodicity identification.
Periodicity detection is performed in many different neuronal systems. These systems do not
necessarily share a common neuronal architecture. Therefore, the models have been kept deliberately
simple. The focus lies on understanding the basic properties of neuronal periodicity detection
and not on the modeling of any specific system. To achieve such an understanding, mathematical
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analysis is combined with numerical simulations.

The third fundamental concept in neuronal information processing that is discussed in this
dissertation is multimodal integration. The combined use of several sensory systems radically
enhances the efficiency of signal detection and processing. Multimodal maps, representing a
unified spatial image of the external world, are indispensable in cognitive processing and motor
control. All unimodal input maps to the multimodal map must be aligned. Only then a specific
location in the outside world is represented at one unique location in the multimodal map. Two
neuronal mechanisms to achieve such alignment are discussed in chapter 4. Again, a combination of
mathematical analysis and numerical simulations is used to characterize the behavior of the models.

Organization of this thesis

Theoretical neuroscience is situated at the intersection of many disciplines: biology, physics,
mathematics. . . This dissertation has therefore been written with a broad class of possible readers
in mind. The first chapter gives an introduction to fundamental concepts in neuroscience that are
needed to understand the rest of the work. Although the introduction is necessarily short, the
references should enable every reader to find all essential information.

In chapter 2, vibration detection by snakes is discussed and chapter 3 discusses periodicity
detection and identification. Multimodal integration, finally, is studied in chapter 4.

A short guide to the notation used in this work is given in appendix A. Some widely used
neuron models are discussed in appendix B. The bibliography has been organized thematically.
Since a wide range of topics is covered in this thesis, this seemed to make more sense than simply
make one big list of references. Good reviews and other “must-read” material have been indicated
and historically interesting material has been marked.

Thank you

Many people have been of help during my time at the Physik Department. In the first place, I
thank Leo van Hemmen, my thesis supervisor. His enthusiasm for scientific research is unbounded,
and through many interesting and vivid discussions I have learned a great deal about neuroscience.

The biological input provided by Bruce Young has been indispensable for the work on the snake
auditory system. Without Bruce’s knowledge of snakes, I would have been quite at a loss.

Writing this thesis would not have been possible without the pleasant interaction and cooperation
with my colleagues at the “T35” chair. Moritz Bürck, Stefanie Bürck, Andreas Sichert, and Christine
Voßen have proofread parts of the thesis and gave valuable comments. In addition, Moritz Bürck
has shared an office with me for three years without getting insane. Many thanks!

I have had the opportunity to learn many things in Munich. In addition, I have made many
new friends. I am very grateful to all of them for making me feel welcome and at home.

Finally, I thank Karla, who has always been there for support.

Munich, May 2008
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Andreas Vesalius’ great work on human anatomy, De Humani Corporis Fabrica (On the Fabric
of the Human Body), was published in Basel as early as 1543 [22]. This illustration shows his
representation of the human nervous system.



. . . vielmehr ist die Erregung der Nervenfaser
durch Helmholtz in die Reihe messbarer Vorgänge
zurückgewiesen, und durch du Bois-Reymond mit
Hı̈lfe der Magnetnadel an sich erkennbar gemacht
worden. Jetzt wissen wir sogar, dass dieser Vor-
gang sich in Form einer Welle von bestimmter
Länge in der Nervenfaser fortpflantzt und unmit-
telbar auf electrischem Wege gemessen werden
kann.

Julius Bernstein,
Untersuchungen über den Erregungsvorgang

im Nerven- und Muskelsysteme
Heidelberg, 1871

1. Neurons, learning, and sensory input

This chapter provides an overview of the anatomy and function of the central nervous system
and its elementary building block, the neuron. Synaptic plasticity and some principles relating to
the processing of sensory input and organization in neuronal maps are discussed.

1.1 Anatomy of the nervous system

The human nervous system consists of approximately 1011 nerve cells, also called neurons. More
than 90% of these neurons are located within the brain.1 Neurons are able to generate pulses

of electrical current (called action potentials or spikes) in response to external input or signals
from other neurons. These pulses travel away from the neuron’s cell body through axons and are
transmitted to other neurons through synapses. Ultimately, action potentials drive the muscle
fibers and thereby control behavior.

Each neuron is on average connected to 1000 other neurons through axons and synapses
[16]. This means that there are dazzling 1014 synapses present in the human brain. The high
interconnectivity of the neurons combined with the high propagation velocity (50m/s) of the action
potentials makes the brain a highly efficient computing machine.

The nervous system can be separated into two parts: the peripheral nervous system and the
central nervous system. The peripheral system consists of nerves which carry information from the
body to the brain and vice versa. The peripheral nerves are connected to the spinal cord, which
functions as the main “transmission cable” connecting the brain with the rest of the body. The
spinal cord is usually not considered to be part of the peripheral nervous system.

The head region plays a special role. In addition to the peripheral nerves, there are twelve
cranial nerves.2 These nerves are responsible for the information transfer to and from the face and
head, and they connect directly to the brain, rather than to the spinal cord.

The central nervous system consists of spinal cord and brain. The brain can be subdivided
into three regions: the hindbrain, midbrain, and forebrain, see Fig. 1.1 [18]. The hindbrain is the
evolutionary oldest part of the brain. It can be regarded as the direct continuation of the spinal
cord into the brain. The brain stem, part of the hindbrain, controls functions that are absolutely

1 An accessible introduction to brain anatomy and function can be found in [21]. A good book focusing solely on
neuroanatomy is [2].

2 In humans, there are only twelve cranial nerves, but 26 different cranial nerves are presently recognized in
comparative neuroanatomy [8].
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1. Neurons, learning, and sensory input

Figure 1.1: Brain anatomy. This section through a human brain shows the hindbrain (brown),
midbrain (yellow), and forebrain (purple). The cerebellum and cerebral cortex can easily be
recognized by their wrinkled appearance. Image adapted from [19].

essential for survival, such as respiration, heart action, digestion, facial expression, feeding behavior,
and regulation of the sleep-wake cycle. The cerebellum, which is also part of the hindbrain, plays a
role in motor coordination and is involved in basic learning and memory tasks.

In the midbrain, input from multiple sensory systems converges. The sensory information is
relayed to the forebrain for further processing but motion control, especially relating to orientation
reflexes, is partly coordinated by neurons in the midbrain.

The forebrain, finally, is the newest part of the brain and controls all “higher” functions, such
as emotion, advanced sensory information processing, fine motor control, motivation, cognition,
and language. The most important structure of the forebrain is the cerebral cortex [16]. In all
mammals, it is the largest subdivision of the brain and in humans it even accounts for an estimated
80% of the total brain weight.

The cortex consists of a layer of densely packed neurons (gray matter). Under this layer lies a
complex network of axons (white matter) that connects neurons located in different locations within
the cortex. Although the cortex receives substantial input from other brain regions, about 85%
of the neuronal connections are intracortical. Cortical neurons like to “talk” with other cortical
neurons. Connectivity is very high and every cortical neuron may receive in the order of 104 inputs
from other cortical neurons. In addition, the connections between cortical neurons can change in
dependence upon neuronal activity patterns.

Schüz argues that cortical architecture is optimally suited to support associative processing of
information [16]. Although humans do not have the biggest brain of all animals, they do have a
relatively large brain-to-body weight ratio [15]. What really distinguishes humans from animals,
however, is the huge number of cortical neurons that we possess. Following Schüz, the enormous
increase in the number of cortical neurons arguably allowed humans to develop an unprecedented
capability for associative thought. In this view, our enormous cortex can therefore be considered as
a crucial ingredient that makes us who we are [18].

The basic layout of the cortex is identical in all mammals. The thickness of the combined
gray and white matter layers is a couple of mm for all species, but the surface area of the cortex
varies enormously between species [18]. Consequently, the cortical surface must be folded to make
room for all the neurons. Figure 1.2 compares the brains of several mammals. Animals that are
considered “intelligent” by intuitive standards often have brains that appear convoluted, implying
a large cortical surface area.
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Figure 1.2: Comparison of mammalian brains. Brain size is correlated with body size, but relative
brain size varies considerably between animals. Except for human and chimpanzee, all brains
displayed here belong to animals of different phylogenetic orders. Still, all these brains share the
same basic structure. The lateral division into two brain halves is obvious and the cerebellum
is clearly recognizable in all species as the globular structure lying directly upon the brain stem.
Although the fundamental architecture does not vary greatly, the differences in surface appearance
are striking. A highly convoluted appearance is associated with high intelligence. Images adapted
from [3].

1.2 Neurons and synapses

All computations in the brain are carried out by interconnected neurons. Apart from the odd
exception, all neurons can be functionally divided into three parts: dendrites, soma, and axon
(Fig. 1.3). In the dendrites, input from other neurons arrives. In the cell body (or soma) input
from all dendrites is integrated, and if the electric current arriving exceeds a threshold, an action
potential or spike is formed at the axon hillock. There, the axon leaves the neuron to propagate its
spikes to other neurons. It is helpful to think of dendrites as the input unit of the neuron. The
soma can in this picture be seen as the processing unit, and the axon can be thought of as output
unit of the neuron.

1.2.1 Membrane properties

The cell membrane of a neuron contains many ion channels, which are each permeable to specific
ion types [7]. These ion channels electrically connect the intracellular and extracellular fluid.
Most of the channels on the dendrites and the soma are passive: the permeability and thus the
electrical conductivity remain constant. Four ion types playing an especially important role in
neuron functioning are Na+, K+, Ca2+, and Cl−.

3



1. Neurons, learning, and sensory input

axon

soma

dendrites

Figure 1.3: Drawing of neurons from the pigeon cerebellum by the famous neuroanatomist Santiago
Ramón y Cajal. The basic design of a neuron is readily observed. Input reaches the neurons
through synapses located on the dendritic tree, in the top half of the figure. In the soma, the input
current from the dendrites is integrated and if a certain threshold is exceeded, an action potential is
generated. The action potential travels to other neurons along the axon.

On the axon hillock and the axon itself, many ion channels are active. The permeability of
active channels changes as a function of the voltage difference across the membrane. In addition,
ion pumps actively transport ions across the cell membrane. This rich electrical structure is the
primary feature that allows for rapid communication between neurons.

The ion pumps try to maintain a concentration gradient across the membrane. The concentration
gradient for an ion species x leads to an associated across-membrane reversal potential Ex given by
the Nernst equation [36, 40]

Ex =
RT

zxF
ln
(

[x]o
[x]i

)
. (1.1)

Here, R, F , and T are the gas constant, Faraday constant, and temperature. The valency of the
ion x is denoted by z and [x]o and [x]i denote the extracellular and intracellular concentration.

The reversal potential Ex is the membrane potential that would result if only the ion species
x were present. The total steady-state potential, or resting potential Vr, across the membrane
is given by the mean of the individual reversal potentials weighted by the conductance gx of the
membrane for each ion species

Vr = Vout − Vin =
∑
x gxEx∑
x gx

. (1.2)

In most neurons, the resting potential is dominated by the potassium reversal potential. The
potassium concentration is much higher within the cell than outside and the resting potential has
a negative value, typically about −75 mV. Any change of the membrane potential with respect
to this resting potential can propagate through the neuron and, if the deviation from the resting
potential is large enough, generate an action potential. In this thesis, the voltage scale will always
be chosen such that the resting potential is zero. The membrane potential will then simply be
taken as the difference between the true, physical, membrane potential and the resting potential.
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1. Neurons, learning, and sensory input

1.2.2 The action potential

Most of the active ion channels are closed at the resting potential. Therefore, the steady-state
analysis in the previous section could be applied. However, as soon as the membrane voltage
changes appreciably, the active channels may open. This means that the simple analysis from
the last section does not hold anymore since the channel conductances will not be constant. The
Hodgkin-Huxley equations [30] describe the nonlinear dynamics of ion flux through a membrane if
active channels are present (for details, see appendix B.1.2). In the classical case of the squid giant
axon—the original object of study of Hodgkin and Huxley—there are two active channels that play
a role in action potential generation, sodium and potassium channels. The dynamical interaction
of these two types of ion channels can lead to short (∼ ms) fluctuations of the membrane potential
with an amplitude of ∼ 100 mV. Such a fluctuation is called an action potential or spike.

If, due to an electrical current input, the membrane potential at the axon hillock becomes
significantly less negative (depolarization), the sodium channels open and sodium ions start crossing
the membrane. Since the sodium concentration is higher outside the neuron than inside, positive
charge starts flowing into the cell, further increasing the membrane potential. As the potential
keeps rising, the sodium channels close again, blocking the positive inward current. At the same
time potassium channels, which respond slower than the sodium channels, start to open. Since
there is more potassium in the cell than outside, potassium starts flowing outwards. As a result,
the membrane potential starts to sink, typically even somewhat undershooting the resting potential
(hyperpolarization). Finally, all active channels close and ion pumps bring the membrane potential
back to its resting value.

During the time that the potential is below its resting value, it is more difficult or even impossible
to induce a new action potential. This is because the potential is further away from threshold and
at the same time, many ion channels are still open, leading to efficient ion concentration balancing
inside and outside. The time span in which the neuron is less excitable is called the refractory
period.

It is clear that spiking is an all-or-none process. If the input is large enough, a spike results,
but if the input is too small, nothing happens. This property makes neurons very efficient “binary”
calculators. Already in 1943, McCulloch and Pitts tried to describe neurons using propositional
logic [38]. There are many models describing neuronal spiking dynamics. The model developed by
Hodgkin and Huxley is perhaps the most famous. However, the model is so detailed and complicated
that it cannot be used readily in numerical simulations. In appendix B, some widely-used neuron
models are discussed. Luckily, it turns out that very simple neuron models are often sufficient for
building realistic simulations of neural networks.

Action potential generation is not a strictly local process. If ion concentrations at one location
within the axon change, longitudinal ionic currents within the axon will occur that tend to equalize
the ion distribution in the axon. In this way, a change in ion concentration at a particular position
along the axon will lead to an induced concentration change in nearby axon parts. This leads in
turn to opening of nearby ion channels and the action potential propagates through the axon.

Spikes can propagate from the axon hillock to the synaptic terminal at the end of the axon, but
it is possible for an action potential to travel in the other direction as well. If a spike is induced
experimentally by a current injection in the middle of an axon, it spreads in both directions along
the axon. Under natural circumstances, synaptic input is integrated at the axon hillock and it
is only there that an action potential can first arise [11]. Therefore, action potentials are always
propagated away from the cell body. Reciprocal information flow from downstream neurons through
the axon is not possible.
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1. Neurons, learning, and sensory input

Figure 1.4: Neurons make contact at synapses (left, artist reconstruction using actual measurements
of synaptic structure). The presynaptic axon broadens into a synaptic terminal. The presynaptic
membrane often shows a small protrusion, called a dendritic spine. The vesicles containing
neurotransmitter are just visible here in green.
The right side shows transmitter release at the neuromuscular junction. The vesicle release by the
terminal in the top half of the picture triggers contraction of the muscle cells below.
Images taken from [262] (left) and [6] (right).

1.2.3 Synaptic input

The synapse connects an incoming neuronal axon to the dendritic tree of another neuron (Fig. 1.4).
The last part of the axon broadens to form a presynaptic terminal that is separated from the
postsynaptic membrane by a thin (∼ 20 nm) gap, called the synaptic cleft. The cell membrane of
the presynaptic terminal contains voltage-gated Ca2+ channels. As soon as a spike arrives, Ca2+

rushes into the terminal. Inside the terminal, vesicles containing neurotransmitter are continuously
produced. If Ca2+ enters the terminal, some of these vesicles fuse with the cell membrane bordering
the synaptic cleft. The neurotransmitter—often consisting of simple molecules derived from amino
acids—diffuses across the synaptic cleft to the postsynaptic membrane.

The postsynaptic membrane contains chemically-gated ion channels. These channels feature
molecular receptors that are sensitive to neurotransmitter. If neurotransmitter binds to the receptor,
the corresponding ion channel opens and an ion current results. Subsequently, the neurotransmitter
is taken up by the presynaptic cell for recycling, and eventually the ion channels close. Depending
on the type of ion channel, positive or negative charge may flow into or out of the postsynaptic cell.
The effect of synaptic input can therefore be excitatory (the postsynaptic membrane depolarizes
and the cell becomes more excitable) or inhibitory (the postsynaptic membrane hyperpolarizes and
the cell becomes less excitable).

Calculating the voltage change of the postsynaptic membrane in response to presynaptic activity
is a difficult task. Just as in the case of the action potential the permeability of the membrane is not
constant and the resulting nonlinear equations are difficult to solve. Fortunately, the excitatory or
inhibitory postsynaptic potential (epsp or ipsp) resulting from a single synaptic input is generally
small. It can be shown that for very small or short responses, the synaptic event can be accurately
modeled as a pure current pulse without conductance change [36].

Assuming a constant conductance, the change in membrane potential and the current are simply
related through Ohm’s law, which means that they are proportional. Typically, the current/potential
quickly rises and decays exponentially to the resting value. The profile of the postsynaptic response
(denoted by ε) to synaptic input at time t = t0 is often described by an α-function (see p. 82)

ε = J α(t− t0, τs) . (1.3)

The parameter τs is the synaptic time constant and J gives the strength of the response.
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1.2.4 Electrical conduction through dendrites

The change in membrane voltage at a synapse is transmitted along the dendritic tree. To a first
approximation, the dendritic tree can be described as a passive cable-like structure [29, 36]. This
cable is characterized by a longitudinal electrical resistivity per unit length (rl) and a membrane
capacitance (cm) and resistivity (rm), also per unit length. The longitudinal resistivity and the
membrane capacitance increase linearly with the length of the cable and have dimension Ω/m
and F/m, respectively. The longitudinal resistivity Rl of a piece of cable of length ∆x is found
by multiplication Rl = rl ∆x. The membrane resistivity, on the other hand, decreases with cable
length since a larger cable surface means lower across-membrane resistivity. Therefore, rm is given
in units Ωm and the membrane resistivity Rm of a short cable segment is given by rm = rm/∆x.

Introducing the electrotonic length scale λ =
√
rm/rl and the membrane time constant τm =

rmcm, the membrane voltage V along the length of the dendrite fulfills the cable equation (for
derivation see [29, 36], remember that the resting potential has been set to zero)

λ2 ∂
2V

∂x2
= τm

∂V

∂t
+ V − iinject . (1.4)

The input current per unit length is denoted with iinject.
Equation (1.4) is similar to the diffusion equation (or heat equation) and can easily be solved

for given input current and boundary conditions [257]. An important property of (1.4) is that no
traveling wave solutions are possible. This means that any displacement from equilibrium will lose
amplitude as it propagates through the dendrite. In addition, a voltage pulse will broaden as it
travels to the soma.

The passive electrical structure of a membrane therefore has a screening effect on synaptic
input. Signals from synapses that are located far away from the soma are generally relatively weak
and smeared out. Especially for very large dendritic trees, this can be a real problem. There are
many dendritic mechanisms that can locally enhance the transmission properties of dendrites. In
addition, many dendrites are structured in such a way as to optimally allow the neuron to perform
certain computations [13, 17].

1.3 Learning in neural networks

Learning in neuronal networks takes place by changing the connection strength between (groups
of) neurons. This insight has been formulated already in 1949 by Donald Hebb in his famous book
The Organization of Behavior [5, p. 62]

Let us assume then that the persistence or repetition of a reverberatory activity (or “trace”)
tends to induce lasting cellular changes that add to its stability. The assumption can be
precisely stated as follows: When an axon of cell A is near enough to excite cell B and
repeatedly or persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing B, is
increased.

Animal learning is basically the ability to predict patterns occurring in the outside world. In
the classical Pavlov conditioning experiment for instance, a dog repeatedly experiences the sound
of a bell followed shortly thereafter by the arrival of food. After a while the dog starts drooling
at the sound of the bell, even before the food is brought in. The dog has learned the correlation
between the sound of the bell and the arrival of food.

This is exactly what Hebb’s rule establishes on a neuronal level. If groups of neurons are
active shortly after one another, the connections between the neurons making up these groups are
strengthened. In other words, Hebb’s learning rule enables to learn correlations between neuronal
firing patterns and thus, ultimately, correlations between events in the outside world.

7



1. Neurons, learning, and sensory input

1.3.1 Spike-timing-dependent plasticity

In the last decade, much evidence for a Hebbian learning mechanism on the single cell level has
been found. It has been shown experimentally that the timing of presynaptic and postsynaptic
spikes plays a crucial role. If a presynaptic spike from cell A arrives at a synapse shortly3 before a
postsynaptic spike is generated by the target cell B, the weight of the synaptic connection A→B
is increased. On the other hand, if a presynaptic spike arrives after the postsynaptic spike is
generated, the synaptic weight is decreased. In this way, input connections that actively help to
bring the postsynaptic neuron across the firing threshold are strengthened and useless connections
are weakened. This process of synaptic weight changes triggered by the precise timing of pre- and
postsynaptic spikes has been dubbed spike-timing-dependent plasticity (stdp) [70].

The first experiments explicitly demonstrating stdp were carried out in the late nineties of
the twentieth century [47, 62, 74], but indications of the importance of spike timing for learning
have been found at least 15 years earlier [59] (see also the reviews [48, 51]). Only very recently
has the connection between stdp and learning been demonstrated explicitly in vivo [63]. Many
factors influencing stdp have been identified in the last years. Apart from spike timing, plasticity is
influenced by the presence or absence of spike bursts, the number of spikes that have been initiated
in the recent past, repetition rate of spike pairings, momentary weight of the synapse, location of the
synapse on the dendritic tree, neuron type, and perhaps many more variables [49, 53, 60, 67, 72].

In addition to the “classical” Hebbian learning rule, other temporal requirements for learning
have been discovered in several neuronal systems. Some synapses are strengthened whenever pre-
and postsynaptic spikes occur within a small time interval, regardless of their temporal order. Even
anti-Hebbian learning—where input connections are weakened if presynaptic input arrives after a
postsynaptic spike and the other way around (e.g. [45, 52])—has been found. A short overview of
some of these findings is given in [41, 65].

Although the molecular mechanisms underlying stdp have not been completely understood, it
is known that the postsynaptic Ca2+ concentration plays an important role, in combination with
the activity of a class of ion channels gated by so-called nmda receptors [46, 61, 65, 73]. Besides
the strengthening of individual synaptic weights generation, enlargement, and pruning of synaptic
spines also plays an important role in learning [68]. This means that synaptic connections can be
lost completely, but also that useful synaptic contacts can proliferate.

1.3.2 Modeling synaptic plasticity

Early attempts to model synaptic plasticity were based on correlations between the mean firing
rates of pre- and postsynaptic neurons. The weight change Jij of a synapse connecting presynaptic
neuron i with postsynaptic neuron j can be generally written as (see [29])

J̇ij = F (Jij , ν
pre
i , νpre

i ) (1.5)

where the arbitrary function F may depend on the value of Jij itself and on the firing rates νpre
i

and νpre
i .

It is possible to construct quite sophisticated models based on this principle (for instance the
famous bcm-model [50]) but all rate-based models suffer from a lack of biological plausibility.
Although some of the models may give biologically realistic results, it is hard to think of a
mechanistic justification for using firing rates. This does not imply that a rate-based model cannot
be correct as an effective description of learning processes (see e.g. [56]), but only that the use of
firing rates alone will probably not provide a complete theory.

The experimental findings discussed in the previous section strongly suggest a description of
plasticity relating weight changes to the timing of individual spikes. The state of a neuron, including

3 Typically, the time scale of learning is of the order of tens of ms, roughly comparable to the membrane time
constant.
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the firing of spikes, can be characterized by its time-dependent membrane potential V . Similarly
to Eq (1.5), a general expression for the weight change as a function of the pre- and postsynaptic
membrane potential at the synapse can be given [29]

J̇ij(t0) = F
[
Jij(t0), V

pre
i (t ≤ t0), V

post
j (t ≤ t0)

]
. (1.6)

The weight change can in principle depend on the complete (spiking) history of the membrane
potentials up to the time t = t0.

Expanding Eq. (1.6) using a Volterra series [263] around the equilibrium state V pre
i = V post

j =
Vr = 0 clarifies its meaning. The expansion is

J̇ij(t0) =
∞∑

m,n=0

∫ t0

−∞
· · ·
∫ t0

−∞
dr1 · · ·drmds1 · · ·dsn hmn(Jij , r1, . . . , rm, s1, . . . , sn)

× V pre
i (r1) · · ·V pre

i (rm)V post
j (s1) · · ·V post

j (sn)

(1.7)

where the integration kernels are given as functional derivatives of the functional F ,

hmn(Jij , r1, . . . , rm, s1, . . . , sn) =

1
m!n!

[
δm+nF [Jij , V

pre
i , V post

j ]

δV pre
i (r1) · · ·V pre

i (rm)δV post
j (s1) · · ·V post

j (sn)

]
V pre

i =V post
j =0

.
(1.8)

After some shuffling of terms and introduction of new kernels h̃ the first few terms of the expansion
are found as

J̇ij(t0) = h̃0 +
∫ ∞

0

dr h̃pre
1 (Jij , t− r) V pre

i (r) +
∫ ∞

0

ds h̃post
1 (Jij , t− s) V post

j (s)

+
∫ ∞

0

∫ ∞

0

dr1dr2 h̃
pre
2 (Jij , t− r1, t− r2) V

pre
i (r1)V

pre
i (r2)

+
∫ ∞

0

∫ ∞

0

ds1ds2 h̃
post
2 (Jij , t− s1, t− s2) V

post
j (s1)V

post
j (s2)

+
∫ ∞

0

∫ ∞

0

drds h̃corr
2 (Jij , t− r, t− s) V pre

i (r)V post
j (s)

+ · · ·

(1.9)

The first term of order 0 is just a constant growth or decay term. The terms of first order take
into account the occurrence of pre- or postsynaptic spikes by themselves. The second order term
takes into account pairs of spikes occurring at different times and so on. Every higher order term
introduces a learning term requiring the interaction of more spikes.

Two assumptions help to simplify this equation considerably.

1. Since action potentials have a very short duration (∼ 1 ms) compared to typical interspike
intervals and the membrane relaxation times (& 20 ms) the presynaptic membrane potential
can be written as a sum of delta functions

V pre
i =

∑
f

δ(t− tfi ) . (1.10)

The times tfi denote the arrival of the presynaptic spike at the synapse. The postsynaptic
membrane potential similarly becomes

V post
j =

∑
g

δ(t− tgj ) . (1.11)
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presynaptic spike train

postsynaptic spike train

synaptic weight Jij

learning window

t

Figure 1.5: Illustration of the learning process from Eq. (1.14). The top two rows show a hypothetical
pre- and postsynaptic spike train. At every presynaptic spike, the weight changes by an amount
wpre (green). All postsynaptic spikes induce a weight change wpost (orange). All pre-post pairs of
spikes introduce a weight change that depends on the learning window. If the temporal separation
between the spikes is too large, nothing happens (left part of diagram). If a presynaptic spike
closely precedes a postsynaptic spike (right part of diagram), the weight increases (blue) and the
opposite situation leads to a decrease of the weight (purple).

2. All terms that are of second order or higher in V pre
i or V post

j are neglected.

The resulting equation describing the synaptic weight change is (suppressing the Jij dependence of
the parameters in the notation)

J̇ij(t) = h̃0 +
∑
f

h̃pre
1 (t− tfi ) +

∑
g

h̃post
1 (t− tgj ) +

∑
f,g

h̃corr
2 (t− tfi , t− tgj ) . (1.12)

A last assumption now finalizes the simplifications:

3. All weight changes are instantaneous. That is, there is no smooth modification of the weight,
but rather an immediate change as soon as a spike occurs.

This idea is expressed by

h̃pre
1 (t− tfi ) → ηwpreδ(t− tfi ) (1.13a)

h̃post
1 (t− tfi ) → ηwpostδ(t− tgi ) (1.13b)

h̃corr
2 (t− tfi , t− tgj ) → ηW (tfi − tgj ) , (1.13c)

introducing the real constants wpre and wpost and the real function W , called the learning window.
The learning parameter η sets the magnitude of the weight change occurring at one spike and
consequently the learning speed. Further, let h̃0 → ηw0.

Putting everything together finally gives

J̇ij(t) = η

w0 +
∑
f

wpreδ(t− tfi ) +
∑
g

wpostδ(t− tgj ) +
∑
f,g

W (tfi − tgj )

 . (1.14)

Most models in the literature have used Eq. (1.14) or an equivalent formulation to describe stdp,
often with w0 = 0 (e.g. [54, 55, 57, 66, 69, 70]). The most interesting term in Eq. (1.14) is the
learning window W (tpre − tpost), illustrated in Fig. 1.5.

The figure shows that every time a pre- or postsynaptic spike is generated, the synaptic strength
changes by a fixed amount. In addition to this, pre/post spike pairs occurring in close temporal
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vicinity give rise to a weight change that is determined by the shape of the learning window.
The learning window is a function of the difference s between a pre- and postsynaptic spike:
s = tpre− tpost. Experiments suggest that W (s) should be positive for negative values for s, when a
presynaptic spike precedes a postsynaptic spike. A negative value for W (s) is found for values s > 0.
For very large interspike intervals common sense and experimental findings dictate that the learning
window should vanish. The learning window shown in Fig. 1.5 has these typical characteristics.

1.3.3 Modifications to the basic learning model

Learning models based on spike pair correlations do a good job explaining many plasticity ex-
periments. Be that as it may, including only pairs of spikes into the model does lead to some
complications. In experiments, a repetition protocol is used. A pair of pre- and postsynaptic spikes
with a specific time difference are induced using current injections. Since a single pairing usually
does not lead to any measurable weight change, the pairing is repeated a large number of times. As
the repetition frequency of the spike pairs is modified, the measured weight change differs. This has
to do with the fact that neighboring spike pairs influence each other if their temporal separation
becomes small.

Now imagine a series of pre-before-post pairs, leading to weight potentiation. If the frequency
of the pairings is increased, the first (presynaptic) spike starts to “feel” the last (postsynaptic)
spike of the preceding pair. This means that extra post-before-pre pairs are introduced and the
total weight increase should therefore become smaller if the pairing frequency rises. In spite of that,
experiments actually show a stronger potentiation effect at higher repetition rates (see discussion
in [64]).

This problem can be at least partially solved if higher order terms in (1.7) are taken into account.
Pfister and Gerstner [64] found that introducing spike triplet interactions into the learning rule
produces a better match between theory and experimental results. This improvement comes at the
cost of a slightly more complicated theory. In many cases it will suffice to use a simple pair-based
learning rule and in this dissertation triplet learning is never used.

Another extension to the basic learning algorithm is the inclusion of metaplasticity [42, 43, 44].
Metaplasticity means that the learning rule itself is changing over time. This may be caused by
a temporary depletion of certain molecules or ions, but structural changes are also possible. It
has recently been shown that nmda receptors can laterally diffuse through the cell membrane to
reach sites (synapses) of high activity [75]. Metaplasticity will not be further discussed in this
dissertation.

1.4 Sensory input

Ultimately, all activity in the brain derives from external input. Through the senses, events
occurring in the outside world are converted into spikes and sent to the brain. One of the key
questions in neuroscience, and also a question underlying much of the work in this thesis, is
how information is encoded into spike trains. A question closely related to this is how sensory
information is processed and transformed by the brain to construct a useful representation of the
environment. Depending on the context, a particular piece of information contained in a spike
train may or may not be important. In fact, the brain actively filters all input to enhance any
relevant information and suppress irrelevant information.

To describe the response of neurons in a sensory pathway, two characteristics are generally
useful: the receptive field of a neuron and the quality of its response.

The receptive field of a neuron consists of the space of all inputs to which a neuron responds.
In the visual system receptive fields have been characterized particularly well (see for example
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[23])4. All neurons in the visual pathway respond optimally to input coming from a single specified
spatial position. In addition, most neurons are inhibited if input from a slightly different position
is presented and no response is obtained for input from all other directions. There are neurons
that are selectively responsive to the presence of (moving) edges within their “best area”. This
sensitivity is often coupled to a responsiveness to one particular edge orientation.

In the auditory system, neurons are generally very precisely tuned to specific sound frequencies.
Although this strains the normal definition of the receptive field somewhat, auditory neurons can
be considered to have very narrow receptive fields in the frequency domain.

The second important feature characterizing the response of a sensory neuron is the quality,
or sharpness, of the response. For responses as a function of input signal position, a measure of
response quality is given by the vector strength, described below. The vector strength can also be
used to characterize the temporal accuracy of the neuronal response to a periodic input signal. A
high value of the vector strength implies that the neuron preferentially spikes at a particular phase
of the input signal. This phenomenon is called phase locking. Before the concept of vector strength
is explained, it is helpful to discuss vector coding.

Vector coding
The existence of vector coding was discovered by Georgopoulos et al. [4]. They found that in a
population of cortical motor neurons, each of the neurons “represented” a particular direction of
arm movement. Although the firing rates of the individual neurons were stochastic, the actual
direction of arm movement could be predicted if the activity of all the neurons was vectorially
summed up. If the preferred direction of cell p is given by êp and its activity (firing rate) by rp,
the sum-vector X can be defined as

X =
∑
p

rpêp . (1.15)

Georgopoulos et al. found that the direction of arm movement corresponded to the direction of X.
Direction is thus determined by the summed population activity of all participating neurons.

The idea of vector coding was soon confirmed (e.g. [12]), and it is now believed to play a role
in all motion coding. In some cases, only a couple of neurons suffice to reliably code movement
direction [14, 20][253].

Vector strength
It is straightforward to define the accuracy of the vector code. The vector strength vs is given by
the ratio of the length of the sum-vector X and the total neuronal activity

vs =
|X|∑
p rp

=

∣∣∣∣∣
∑
p rpêp∑
p rp

∣∣∣∣∣ . (1.16)

From this definition it is clear that vs always lies between 0 and 1. vs = 0 means that there is no
directional information whatsoever. A value vs = 1 means that all active neurons perfectly line up
into the same direction.

With a slight modification, the vector strength can also be used to characterize the temporal
accuracy of the response to a periodic signal. This was first done by Goldberg and Brown
[129]. Considering one neuron receiving periodic input, its spiking times can be related to the
instantaneous phase of the input signal. For each spike p, there is a corresponding phase (ϕp)mod 2π.
The sum-vector is defined as

X =
∑
p

eiϕp , (1.17)

4 Early important work on this topic has been done by Hubel and Wiesel [9, 10].
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where all spikes have unit weight.
If N is the total number of spikes, the vector strength, or phase locking strength, can be defined

as

vs =
|X|
N

=

∣∣∣∣∣
∑
p e

iϕp

N

∣∣∣∣∣ . (1.18)

The correspondence to Eq. (1.16) is evident if one realizes that eiϕp can be interpreted as a unit
vector in two-dimensional space.

As in the spatial case, the vector strength in (1.18) is a number between 0 and 1. The value of
vs does not depend on the preferred phase of the spike response, but only on the temporal accuracy
of the spikes around this phase. A high vector strength means high accuracy. If vs is near 1, all
spikes cluster around a single preferred (yet unknown) phase. A low value generally implies poor
phase locking.

Some caution is necessary here, since there are cases in which very high accuracy can result in
a low vector strength. If, for instance, a neuron always fires a high-precision spike at phase ϕ = ϕ̄
and another spike at ϕ = ϕ̄+ π, the spikes add up to give a very low vector strength in spite of
their high accuracy.

It is also possible to calculate the vector strength for a continuous function. It is well-known
that every periodic function can be expanded as a Fourier series according to

f(t) =
∞∑

n=−∞
cne

iωnt with cn =
ω

2π

∫ π/ω

−π/ω
dt f(t)e−iωnt . (1.19)

In case the function f(t) is not perfectly periodical, it is possible to integrate over a large number z
of “periods” to find cn. The value of cn must then be divided by z to obtain the correct result.

The vector strength can be defined as the ratio of the absolute value of the first Fourier coefficient
and the zeroth Fourier coefficient.

vs =
|c1|
c0

=

∣∣∫ dt f(t)e−iωt
∣∣∫

dt f(t)
. (1.20)

As a check, a spike train can be substituted into (1.20). The spike train is described by f(t) =∑
g δ(t− tg), where the spikes occur at times t = tp. Using this expression in (1.20) indeed gives

(1.18), as expected.

1.5 Neuronal maps

Sensory information is very often processed in neuronal maps. A neuronal map is an array of neurons
in which neighboring neurons respond to sensory stimuli that are similar. As an example, visual
input in the mammalian brain is processed through multiple cortical layers which are organized
according to the topography of the retinal input cells (retinotopic organization) [23]. In this way,
neighboring neurons respond to visual input from neighboring points in space. Such a map of space
has been discovered in many sensory systems, such as audition, somatosensory input, the lateral
line system of amphibians and fish, snake infrared vision, and whisker input in rodents.

Neuronal maps are not limited to spatial representations. A well-known example is the
organization of the auditory pathway in frequency-specific layers (tonotopy) [151, 128]. A neuronal
map representing modulation frequencies present in auditory input has been claimed as well [157],
but this has not been confirmed. Possibly the most striking example of a neuronal map is the
homunculus5, a complete representation of the human body surface in the cortex. Several copies of

5 A nice discussion on this topic can be found in [21].
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the homunculus can be found, some being related to somatosensory experience, others having a
function in motor controlling.

The obvious question to ask is: what is the function of a neuronal map? One possible solution,
more or less denying the question altogether, is that neuronal maps simply follow the sensory
surface from their input modality. In this view, the visual layers, e.g., are retinotopically organized
because they receive their input from the retina. It has been shown already in 1976 by Willshaw
and Von der Malsburg [105] that layers of neurons can self-organize into maps under the influence
of mutual interaction between the neurons making up the layers. Even if only a rudimentary
map-like organization is present, the correlations in neuronal firing will establish a high-quality, fully
developed map. In this way, the retina would impose its topography upon the visual processing
layers, and the tonotopic organization of the auditory pathway would likewise be just a result of
the frequency decomposition in the cochlea.

Still, the map-like organization of sensory information is more than just an epiphenomenon.
This becomes clear by looking at sound localization in mammals. Experiments have shown that
in early stages of the auditory pathway, sound source location is not encoded in a map (see
[111, 130, 132, 165]). If an auditory stimulus is presented at different locations, the activity of the
whole population of neurons increases or decreases. Instead of coding sound source location through
the position of the activity maximum in the population, source location is coded through the total
activity in the population. Nonetheless, multiple auditory maps are found in the mammalian brain
[101]. If the mammalian brain takes the effort to explicitly construct a spatial map of auditory
space, even though no map is initially given, some advantage can be assumed to arise from this.

There is indeed an advantage. The usefulness of a map-like organization of sensory input lies in
coding efficiency. Generally, one can assume that neurons coding for related events or properties
will be interconnected, either directly or indirectly. If neurons coding for similar locations in
sensory space are near to each other, wiring costs are minimized. A beautiful example of this is the
connection between sensory and motor maps. Motor neurons are often organized in maps, just like
sensory neurons. In the superior colliculus (sc) the connection between the two maps has been
studied in great detail.6 Here, motor maps lie directly on top of the sensory input maps and are
in spatial register. The sensory input is used to directly generate appropriate motor output, for
example in the form of a gaze shift or eye saccade [96, 100, 101].

Another advantage of maps is found in multimodal integration, in which several sensory input
modalities merge to form a unified map of multisensory space. This topic will be discussed in more
detail in chapter 4.

6 The sc is not the only brain region containing (spatial) maps, although it has been studied extremely well. Many
(aligned) sensory and motor maps are also found in the cortex. These cortical maps are very important, especially
in primates and “higher” mammals, and interest in cortical maps is increasing [86].
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Lüdicke’s magnificent review on snake biology was published in 1964 [205]. It counts 298 pages
and contains the Gargantuan number of 2421 references. Although the work is of course somewhat
outdated, it remains very worthwhile. Unfortunately, it was written in German, and no English
translation is available. This figure shows the general anatomy of snakes.



Now the serpent was more subtil than any beast
of the field which the LORD God had made.

Genesis 3:1

2. Auditory localization of ground-borne
vibrations in snakes

In this chapter, the detection and source localization of substrate vibrational waves by snakes is
studied. Although snakes are often taken to be deaf, they can hear air-borne and substrate-based
sound. Localization of the latter is possible because of the remarkable anatomy of the snake
auditory periphery.1

2.1 Introduction

Snakes constitute a group of animals with remarkable sensory capabilities. In addition to vision
and olfaction many snakes can detect infrared (ir) radiation. Snakes further possess specialized

touch receptors distributed on the head, mainly around the jaws. This chapter focuses on the
auditory system of snakes. In contrast to popular believe, snakes are not deaf. They can hear
air-borne sound and respond to it. As demonstrated below, snakes are also able to detect substrate
vibrations using their auditory system and even localize their source. It seems that the snake ear is
in fact particularly well equipped to detect vibrational waves propagating along the surface it rests
upon.

Before the snake auditory system will be discussed in section 2.2, a short overview of the
most important snake sensory modalities is presented. Section 2.3 presents an analytical model of
substrate-vibration reception and section 2.4 will discuss the localization of ground-borne vibrations.

2.1.1 Sensory systems of snakes

Vision
Many snakes depend heavily on visual information for orientation and feeding behavior [186, 188].
Especially in vipers, vision and infrared (ir) vision are important during striking. Evidence
shows that hunting performance significantly drops if both vision and ir detection are blocked
[191, 201, 202, 220]. Olfaction is important in alerting and post-strike behavior, but blocking of
the chemosensory pathway has not as large an impact as blocking of (ir) vision has.

Although vision is not always essential for survival2 visual input seems to be needed in young
snakes for optimal functioning of the other sensory modalities [190, 191].

1 The results presented in this chapter have been published together with Bruce A. Young and J. Leo van Hemmen
[189].

2 A much-cited article discusses an isolated population of tiger snakes [184]. These snakes are often rendered
blind from seagull attacks, but survive nonetheless. This is generally taken as evidence for the non-essential role
of vision, but—as the authors themselves showed later—the snakes can only survive because there is a large
abundance of immobile and easy-to-catch prey in their mini-habitat [183].
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The binocular overlap is typically 30o–40o [188]. This provides for reasonable depth estimation,
which is of course needed for a successful strike. The eyelids are transparent and fused, such that
the eye is always “closed”. Focusing is not achieved through deformation of the lens, but rather by
shifting it by increasing eye ball pressure [217].

Infrared vision
Perhaps the most spectacular sensory modality of snakes is ir vision. Two groups of snakes,
pit vipers and boids, possess specialized organs to detect heat [207]. Infrared vision is used for
thermoregulation [204] as well as for hunting [186, 187]. Recently, it was shown that squirrels use
ir signaling to chase away hunting rattle snakes [213], which shows that ir vision is also used for
interspecific communication.

The ir-radiation-detecting organs consist of grooves (in boids) or cavities (in pit vipers) on the
head of the animal. Within the pit a heat-sensitive membrane is suspended. The sensitivity is so
high that even temperature differences on the membrane in the order of mK can be detected [185].
To ensure a large enough influx of ir radiation, the aperture of the pit organ must be quite large.
This results in a very poor optical quality of the organ; the heat-image on the detection membrane
is strongly blurred.

There is an ir map in the snake optic tectum that is aligned with the visual map [197, 203, 208].
Experiments have shown that orientation to a heat source with an accuracy of about 5o is possible
[209]. Snakes are thus able to use ir vision accurately in spite of the low optical quality of the pit
organ. To achieve this, the snake must enhance the heat-image neuronally. It was recently shown
that such an enhancement is indeed possible, thus resolving the paradox [216].

Cephalic touch receptors
In 1969, Proske discovered a specialized mechanoreceptor, which is only found on the facial scales
of snakes [211, 212]. The receptors are especially sensitive to mechanical stimulation across the
skin [199, 200, 211, 212] and are distributed mainly around the mouth of the animal. The response
to a vibrating mechanical probe is strongly phase locked and responses are best for frequencies
around a couple of hundred Hz.

The function of these receptors is presently unknown. Although they could hypothetically play a
role in detection of substrate vibrations, this seems unlikely. The number of receptors varies greatly
between species and even shows large variation within species [198]. Cerastes cerastes, the only
snake for which behavioral responses to surface vibrations have been demonstrated explicitly, does
hardly possess any facial touch receptors (Bruce A. Young, personal communication). The most
likely role for these receptors is to assist the snakes in mechanosensory tasks such as positioning
the head with respect to prey just before eating it.

Olfaction
Snakes possess two separate chemosensory organs [192, 210]. Air-borne odors are picked up through
the nostrils. Less volatile agents can be detected through the vomeronasal organ. The tongue is
used to pick up non-volatile molecules during flicking. Following tongue retraction into the mouth,
the molecules are deposited onto two paths in the oral cavity. When the mouth is closed, the paths
deliver the molecules to the vomeronasal organ through a pair of openings in the roof of the mouth.

It has been proposed that the forked tongue enables snakes to smell “in stereo”, the right tip
picking up a different odor concentration than the left tip [215]. In this way, scent gradients could
be detected which would be especially helpful during trace following. However appealing this idea
might be, it is unfortunately wrong. The tongue tips often touch during retraction into the mouth
and this would eliminate any spatial chemosensory information.

Generally speaking, the sense of smell is very important in snakes. Especially before prey
capture (alertness, trace following) and after striking chemosensory information is used [186, 188].
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Figure 2.1: Localization experiments performed by Young and Morain [220]. Strike performance for
a number of strikes. The snakes lies with its head at the center and the dots indicate direction and
distance of successful strikes. A) Control group; B) strikes following denervation of the olfactory
and vomeronasal nerves; C) strikes following denervation and occlusion of both eyes.
From a comparison between B and C it is clear that vision is an important modality in guiding the
strike; the striking distance drops, which indicates less “confidence” on the snake’s part. Nonetheless,
vision is not absolutely necessary for strike guidance. In fact, no strikes occurred in which the prey
was missed altogether. This demonstrates that in absence of all but vibratory cues, Cerastes can
reliably detect and strike prey.

In contrary to the sense of ir or normal vision, it is not possible to directly derive spatial information
from chemosensory clues. This makes it very difficult for most snakes to hunt if ir and normal
vision are not available.

2.2 Snake auditory system

2.2.1 Experimental evidence of snake hearing

Although snakes are often considered to be deaf there is ample evidence that snakes can hear
(extensively reviewed in [219]). One of the main experimental difficulties is that snakes often do
not seem to respond to air-borne sound, which does by itself not necessarily imply deafness. This
difficulty can be coped with if physiological experiments are performed rather than behavioral
studies. Especially Wever [218] and Hartline [193, 194, 195, 196] have devoted many physiological
studies to snake hearing.

The results of these studies univocally show that snakes can hear. Wever measured cochlear
potentials in response to sound and vibration and Hartline has measured midbrain responses
to sound and vibration. Both authors found that snakes are reasonably sensitive to air-borne
sound. Furthermore, a very high sensitivity to vibration of the head or substrate vibration was
demonstrated.

2.2.2 Substrate hearing hypothesis

Although Hartline and Wever found a high auditory sensitivity to head vibrations, they both
dismissed the idea that this type of hearing is important. There is a clear anatomical route
connecting the snake’s lower jaw to the inner ear via the quadrate and columella bones, but
the possibility that the snake could pick up any relevant auditory clues from the substrate was
nonetheless set aside. Wever commented “. . . the critical question is to what extent are the more
important events in the environment represented in ground vibrations?”

The believe that substrate vibration is not important was proven false by Young and Morain
[220]. In their experiments, Young and Morain showed that the Saharan sand viper Cerastes
cerastes can localize its prey using ground-borne vibrations only (Fig. 2.1). Although vision plays
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2. Auditory localization of ground-borne vibrations in snakes

Figure 2.2: Hunting position of Cerastes cerastes. The animal lies slightly buried or just on top of
the substrate. Sand waves reach the lower jaw of the snake and are conducted into the inner ear.
Photograph taken by Richard Mastenbroek.

a dominant role during foraging, blocking of the visual and olfactory pathway3 did not prevent
the snake from striking and catching its prey. The experiments showed very clearly that vibration
was the dominant cue in this case and a strike was often launched directly after a vibratory event
caused by prey motion.

Since the lower jaw is linked to the cochlea through a chain of bones (section 2.2.4), substrate
vibrations can be directed into the inner ear of the snake. This pathway was already described in
the classical work on snake biology by Lüdicke [205]. Cerastes typically lies with its head slightly
buried in the sand during hunting (Fig. 2.2), maintaining firm contact with the substrate and
enabling maximal sensitivity to surface vibrations.

2.2.3 Auditory sensitivity

Wever and Hartline have independently measured the auditory sensitivity of snakes [193, 194, 195,
196, 218]. Both authors paid mainly attention to the reception of air-borne sound. Three key
findings can be distilled from their work.

1. Although there is no obvious mechanism for impedance matching (see section 2.2.5), snakes do
have a reasonable sensitivity to air-borne sound. The hearing threshold at best frequency is
about 20 dB higher compared to most mammals or birds at that frequency (Fig. 2.3).

2. The sensitivity range of the snake auditory system is very limited. A clear sensitivity maximum
is found around 300 Hz and sensitivity falls very sharply away from the minimum at about
20 dB/octave (Fig. 2.3). This means that for every frequency doubling or halving, starting at
the best frequency, the just-noticeable sound intensity increases hundredfold. Interestingly, the
threshold of snake hearing matches the transmission characteristics of sand (see section 2.3.2).

3. Both authors found a striking sensitivity to vibration of the head, lower jaw or quadrate bone. A
maximal vibration sensitivity of about 1 Å was obtained in the experiments. This sensitivity is
comparable to the sensitivity of a vibration detection specialist like the sand scorpion [227]. The
frequency dependence of the sensitivity follows a similar profile as the sensitivity to air-borne
sound. The maximal sensitivity is found around 300 Hz and the sensitivity decreases rapidly
away from this best frequency.

3 Cerastes does not have ir-detecting pit organs.
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Figure 2.3: Comparison of hearing threshold for man, barn owl and rattle snake (air-borne sound).
The hearing capabilities of mammals and birds are generally much better than those of reptiles. In
addition to the limited range of sensitivity, the absolute hearing threshold is much higher in snakes
than in the other groups. The pronounced sensitivity maximum around 200 Hz lies squarely in the
range of frequencies that are transmitted well in sand. Data taken from [124, barn owl], [168, man],
and [218, rattle snake].

2.2.4 Ear anatomy

The hearing apparatus of snakes is substantially different from that of mammals or even that of
many other reptiles. Snakes do not possess an external ear opening or tympanic membrane, or any
other superficial indications of a functional auditory organ [218].

Middle ear

The middle ear of snakes is considerably simpler than that of mammals. The mammalian middle
ear basically consists of a cavity in which the three hearing ossicles are suspended [125]. The
malleus (hammer) is connected to the inner side of the tympanic membrane and, on its other end,
to the incus (anvil). The incus is linked to the stapes (stirrup) which in turn connects to the oval
window, the entrance to the cochlea. In snakes the situation is quite different (Fig. 2.4). The
stapes (also called columella) connects to the cochlea at one end, but the other end is linked to
the relatively large quadrate bone. This bone forms itself the link between the skull of the animal
and the lower jaw. Though the osseous jaw-quadrate-stapes chain the inner ear can thus literally
hear movements of the lower jaw. In fact, the mammalian hearing ossicles are homologous to the
reptilian jaw complex bones, the reptilian quadrate corresponding to the mammalian incus [206].

To enable the snake to swallow large prey, the two halves of the lower jaw are not rigidly linked,
but connected only through flexible ligaments. During feeding, both halves of the lower jaw can be
dislocated. This implies that the right and left sides of the lower jaw can vibrate independently of
each other. In this way stereo hearing of surface vibrations is possible. This is very important, since
it enables the snake to locate incoming vibrational waves through the interaural time-of-arrival
difference (itd), as discussed in section 2.4.

A possible problem in detecting jaw vibrations is the fact that the stapes is coupled to the
quadrate through a soft-tissue ligament. How can vibration propagate from quadrate to stapes
without losing much of its energy? In fact, this problem is not unique to the snake hearing pathway.
In mammals, the incus is coupled to the stapes through a flexible ligament as well [125]. Hearing,
however, generally takes place at relatively high frequencies (& 100 Hz). At these frequencies the
connection between quadrate and stapes may well behave stiffly [261].
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Figure 2.4: Anatomy of the snake auditory system (here the skull of a red-lipped snake Crotaphopeltis
hotamboeia). Snakes lack a tympanic membrane and the stapes is coupled to the quadrate bone
instead. Through the quadrate, the stapes is coupled to the lower jaw. The inset shows that
the two halves of the lower jaw are not rigidly coupled, but can move independently. This is of
great importance since it enables the snake to hear substrate vibrations in stereo. Specimen from
Zoologische Staatssammlung München.
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Figure 2.5: The reentrant fluid circuit is illustrated by this top view of the snake cochlea. Movement
of the stapes (indicated by the double arrow) pushes the cochlear fluid through the circular path
connecting upper and lower side of the stapedial footplate. The basilar membrane, stretched across
the pathway, vibrates with the fluid such that the hair cells are activated. Image adapted from
[218].

Although there is no external ear present, limited sensitivity to air-borne sound is still present
in snakes. Much of the incoming sound intensity is simply reflected, but part of the energy can be
converted into motion of the quadrate, which in turn drives the stapes.

Inner ear
The inner ear of snakes is also quite remarkable [218]. The stapes enters the cochlea through the
oval window, but a round window functioning as a pressure outlet is lacking. There is no need for
such an outlet, since the stapedial footplate lies completely within the perilymphatic fluid. The
cochlear fluid in front of the footplate is connected by a circular path to the fluid at the back of the
footplate. Motion of the footplate does therefore not lead to a build-up of pressure. This reentrant
circuit is illustrated in Fig. 2.5.

The basilar membrane is suspended within the fluid and follows its motion. On the membrane,
there are only a couple of hundred hair cells generating the neuronal auditory response. The basilar
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membrane does not seem to have a strong frequency selectivity, as is the case in mammals.

2.2.5 The impedance matching problem

The (acoustical) impedance Z of a medium defines the relation between pressure and particle
velocity in that medium. For a plane monofrequent sound wave propagating in the positive
x-direction the pressure and the particle velocity both vary harmonically:

p = |p| ei(ωt−kx) (2.1a)

and
v = |v| ei(ωt−kx) . (2.1b)

The impedance is defined as
Z =

p

v
. (2.2)

In a medium with a low acoustical impedance, such as air, a small pressure leads to large particle
velocities. If the impedance is large, on the other hand, a high pressure must be applied to invoke
substantial particle movement.

On the boundary between two media with differing acoustical impedances part of the incoming
wave will be reflected. Imagine a sound wave traveling from a medium (1) with low impedance into
a medium (2) with a high impedance. At a given pressure p1, the particles in the first medium
will move with a velocity v1. Since the particle velocity must be continuous across the boundary
between the media, the relation v2 = v1 must hold. Since the impedance in the second medium
is higher, |p2| > |p1| is also satisfied. This leads to an inconsistency, since the pressure must be
continuous across the boundary as well as the velocity.

To solve this paradox, it is necessary to assume that part of the incoming wave is reflected.
This results in a higher pressure |p1| at the first side of the boundary and at the same time, the net
particle velocity |v1| is reduced. The continuity requirement for pressure and velocity leads to an
expression for the fraction of the incoming energy that is transmitted (αt) or reflected (αr) [163].

αt =
4Z1Z2

(Z1 + Z2)2
, αr =

(
Z1 − Z2

Z1 + Z2

)2

, αt + αr = 1 . (2.3)

For an infinite, homogeneous, and isotropic medium the acoustic impedance is given by the
product of medium density and the speed of sound Z = ρc. From this definition, it is clear that
water has a much larger acoustic impedance than air, since both propagation velocity and density
are significantly higher. Animal tissue consists for a large part of water and therefore, it is to be
expected that incoming aerial sound waves will be reflected to a large extend.

One of the key problems that any ear must solve is therefore how to direct as much incoming
sound energy into the cochlea. In reality, the cochlear impedance is not quite so high as that of
(salt) water, since finite-size and shape effects must be taken into account here. Still, the resulting
cochlear impedance, which can be calculated as well as measured, is approximately 360 times as
high as that of air (see discussion in [151, p. 16]). This implies that only ±1% of the incoming
sound energy would make it into the cochlea without some sort of impedance matching mechanism.

In mammalian ears, the impedance matching problem is solved by linking the tympanic
membrane to the cochlea through a chain of ossicles (see previous section). The last ossicle,
connected to the cochlear fluid, has a much smaller surface area than the tympanic membrane.
This mechanism increases the pressure of incoming sound waves to match the pressure needed to
effectively induce motion in the cochlear fluid [125, 126]. In addition, the ossicles introduce a small
leverage, which helps to increase cochlear fluid motion amplitude.

In snakes, there is no such mechanism. Although the lateral surface of the quadrate has a
much larger area than the footplate of the stapes, much of the incoming sound intensity will
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still be reflected by the outer tissue layer of the snake’s head. Surface-based hearing provides a
good opportunity to circumvent the impedance matching problem and the snake ear seems to be
optimally adjusted to exploit this option.

2.3 Detection of ground-borne vibrations

2.3.1 Use of surface vibration for communication

The use of surface vibration for communication occurs quite frequently in the animal kingdom
[235]. Especially insects often use substrate vibration [229]. The most frequently used transmission
channel is constituted by plant leaves [223, 242, 246].

As transmission channels, plant leaves are very efficient. In three dimensions, the intensity of
an isotropic signal decreases with the square of the distance to the source. In two dimensions, the
intensity decreases only with the first power of distance. On leaves, however, vibration propagation
is often effectively almost one-dimensional, since the vibration is mainly transmitted along the
length of the leaf. Geometrical intensity loss due to spreading is then minimal.

The water surface [171, 173] or the silk of spider webs [239, 245] form other substrates for
vivid intra- and interspecific communication. In desert or other sandy environments, the sand
itself is often used as a communication channel. Many cases of the use of sand-based vibrational
communication have been documented. Sand vibration is for example used by the sand-swimming
lizard Scincus scincus [233, 234], which plunges its head into the sand to “listen” for burying prey.
Further examples are provided by antlions [230], and scorpions [228, 253].

A particularly interesting case is the use of honeycomb vibration for interspecific communication
in bees. The special physical properties of the hexagonal cells of the honeycomb allow for long-range
communication inside the crowded hive [247, 251, 254].

Although most examples of communication through surface vibrations involve arthropods,
several studies demonstrated the use of vibrational communication by small mammals (see [243]
for a review, or [241] for a recent example). Kangaroo rats seem to use vibrations to scare away
snakes and warn each other of the danger [249, 250]. Frogs also seem to use seismic signaling [240]
and even elephants are thought to make use of vibratory signals [248].

In light of the discussion above, it must not come as a surprise that snakes are able to detect
and use surface vibrations as well. It is well-known that many snakes and other reptiles that live
on a sandy substrate can navigate through the surface layer of sand and catch hiding prey (see e.g.
[214]). The question than must be answered, however, is how they manage to do so.

2.3.2 Propagation of surface waves along a sandy substrate

Although many researchers have demonstrated the use of sand-surface vibration by desert animals,
there is surprisingly little known on the propagation of sand waves. Although there is a large
body of literature on wave-propagation in granular matter, this literature is mainly concerned with
relatively small systems, consisting of perhaps a few dozens of grains in every direction (see for
example [236, 237, 238]).

The typical diameter of a sand grain is about 250 µm and even for small distances in the order
of a few cm, there are hundreds or even thousands of grains involved in vibration propagation.
Experimental and theoretical results for “small” systems of granular matter suggest that the
precise configuration of the grains is very important for the propagation of vibrational waves.
Intuitively, one would expect that on length scales much larger than the typical grain size, a
continuum description of wave propagation should be applicable. Indeed, if the motion amplitude
of individual grains is much smaller than the length scale of interest (e.g. the wave length), a
continuum description can be used and the movement of individual grains can be ignored [222].
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There are two papers describing the propagation of vibrational waves in sand on a scale of several
tens of cm [221, 226]. The results presented in these papers imply that a continuum description
is indeed possible. If the sand surface is slightly disturbed, approximately 70% of the energy
propagates away from the source in the form of Rayleigh waves [231] running along the surface.
The remaining 30% is carried away by volume waves propagating into the sand.

Small-amplitude Rayleigh waves behave similarly to water surface waves [231], the sand particles
carrying out an elliptic motion that is attenuated exponentially with depth. The wave propagation
velocity vRay is low, about 45–50 m/s. Because of strong attenuation at high and low frequencies,
the frequency spectrum of Rayleigh waves peaks below 1000 Hz. Typically, maximum transmission
takes place around a few hundred Hz. Together, these results give a wavelength λ in the order
of 10 cm, which is indeed much larger that the typical sand grain size (∼ 250 µm) or the typical
motion amplitude (∼ 1 µm).

Prey-generated waves can thus be treated as disturbances propagating through a continuous
and homogeneous medium. Actually, since Rayleigh waves behave much the same as water waves it
is possible to use methods from naval engineering to calculate the response of the lower jaw resting
on the sand to incoming vibration.

2.3.3 Vibrational response of the lower jaw

The next step is now to estimate the lower jaw’s response to incoming surface waves. In so doing,
three assumptions are made.

1. The substrate is treated as a continuous medium, see the discussion in section 2.3.2 above.

2. The two sides of the lower jaw are modeled as two bodies (cylinders) resting on the surface and
moving independently of each other. Techniques from naval engineering [259] can then be used
to calculate the motion response to incoming surface waves.

3. The Rayleigh wave is not altered much by passing the snake head. This assumption is justified
since the wave length is much larger than the head size of the snake so that bending and
refraction effects can be ignored.

Figure 2.6 shows the geometry of the problem. Jaw motion can be decomposed into six
components. Vertical motion (heave and pitch) should be especially effective in eliciting auditory
responses (compare Fig. 2.4). The other four components will not contribute significantly to the
auditory input and will be ignored in the following.

The coupled equations of motion (eoms) describing heave u and pitch ψ are [259]

Mü =
∫

dx f(x, t, u, ψ)

M =
∫

dx m(x) ,
[heave] (2.4a)

Jψ̈ =
∫

dx (x− x̄)f(x, t, u, ψ)

J =
∫

dx (x− x̄)2m(x) .
[pitch] (2.4b)

The coordinate x runs along the length of the jaw and x̄ is the jaw center of mass (com). Since the
jaw is a slender body, an effective one-dimensional description can be used. M and J denote the
total jaw mass and moment of inertia, respectively, and m(x) designates the cross-sectional mass
density as a function of position x along the jaw.
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Figure 2.6: Motion of the lower jaw halves can be decomposed into six components: linear motion
along three orthogonal axes and rotation about these axes. Especially motion leading to vertical
displacement of the cylinder tip (heave and pitch) is effective in stimulating the cochlea through
the attached stapes.

The force f acting on the jaw is given as a function of the difference between sand surface
displacement hsand and jaw displacement hjaw,

f = mH(x)¨̃h+ n(x) ˙̃
h+ c(x)h̃ ,

h̃ = h̃(x, t) = hsand − hjaw .
(2.5)

The three terms in the expression for the force density f describe inertia, friction, and buoyancy,
respectively. The prefactor mH is called the hydrodynamic mass density, and is determined
geometrically from the cross-sectional shape and mass distribution of the floating body under
consideration. For a homogeneous cylinder the hydrodynamic mass density equals the ordinary
mass density (mH = m) and for a large variety of other cross-sectional shapes the approximation
mH ≈ m holds.

The surface wave elevation hsand along the jaw is

hsand = asand cos(k · x− ωt)
= asand cos(kx cosβ − ωt)

(2.6)

with k being the wave vector of the surface wave, k = 2π/λ the wave vector magnitude, β the wave
angle of incidence with respect to the jaw’s long axis, asand the amplitude, and ω the wave angular
frequency.

The jaw movement as a function of heave u and pitch ψ is given by

hjaw = u+ (x− x̄)ψ . (2.7)

To solve the system (2.4),(2.5) a harmonic ansatz for the heave and pitch response is taken,

u = au cos(εu − ωt) ,
ψ = aψ cos(εψ − ωt)

(2.8)

where the amplitude au/ψ and phase εu/ψ of the response are to be determined. Note that the
dimension of au is that of a length, while aψ is dimensionless.
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Substituting (2.6) and (2.7) into (2.5) shows that every time derivative introduces a factor ω
into (2.5). Since the frequency content of the incoming wave is peaked between 200 and 1000 Hz,
the force equation will be strongly dominated by the inertia term and one obtains f ≈ mH

¨̃
h. In

addition, friction and buoyancy terms must necessarily be small as compared to inertia. This is
because the amount of friction and buoyancy depend directly on the jaw motion amplitude. This
amplitude is much smaller than the total dimension of the jaw, which determines the inertia.

To make the estimate of the jaw-motion response explicit, a cylindrical shape for the two sides
of the lower jaw is assumed. This results in a constant cross-sectional mass density

mH = m

M = mL

J = mL3/12

(2.9)

with L as the length of the jaw. The com lies at the origin (x̄ = 0) so that the integrals in (2.4)
run from −L/2 to L/2. Furthermore, ξ := (kL cosβ)/2 is defined. Substituting everything into
(2.4) gives

au
asand

cos(εu − ωt) =
sin ξ
2ξ

cos(ωt) ,

aψ
asand

cos(εψ − ωt) =
3(sin ξ − ξ cos ξ)

Lξ2
sin(ωt) .

(2.10)

Since the above equations must hold for all times t the amplitudes and phases must obey

au
asand

=
sin ξ
2ξ

,
aψ
asand

=
3(sin ξ − ξ cos ξ)

Lξ2
,

εu = 0 , εψ = π/2 .
(2.11)

Using (2.7) and (2.8), the deflection of the jaw tip, where x = −L/2 is

hjaw = au cosωt− L

2
aψ sinωt . (2.12)

The relative amplitude of the deflection at the end of the jaw is then

ajaw

asand
=

√(
au
asand

)2

+
(
L

2
aψ
asand

)2

=

√
9ξ2 cos2 ξ + (9 + ξ2) sin2 ξ − 9ξ sin 2ξ

4ξ4

=
1
2

+
ξ2

6
+O

(
ξ4
)
.

(2.13)

Typical parameter values are given in table 2.1. For these values, |ξ| lies between 0 and 0.6,
depending on the input angle β, so that an expansion in terms of ξ is permitted. From (2.13) it
follows that the lower-jaw amplitude would be about half that of the incoming surface wave. Since
the auditory system is sensitive to jaw movement down to Å amplitudes, prey detection using the
jaw-quadrate-stapes pathway would be not only possible, but even reasonably efficient.

2.4 Neuronal processing of auditory information

2.4.1 Cochlear response to vibration

The next question that must be answered is what the cochlear response to the incoming vibrational
signal looks like. This information is needed to numerically simulate the localization process in
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2. Auditory localization of ground-borne vibrations in snakes

parameter value

physical parameters
Rayleigh wave speed vRay=45 m/s
wave length λ=15 cm
input angular frequency ω=2π · 300 Hz
jaw length L=3 cm
inter ear distance d=3 cm
maximal input itd itdmax=667 µs

simulation parameters
number of cochlea neurons Ncochlea=75
cochlear firing rate A=250 Hz
cochlear phase locking strength vs=0.9
number of map neurons Nmap=100
itd range of map neurons itdmap∈[−1.33, 1.33] ms
map neuron time constant τm=500 µs
map neuron capacitance Cm=1
map neuron resting potential Vr=0
map neuron reset potential Vreset = Vr=0
map neuron threshold Vθ=1

Table 2.1: Parameters used in both analytical calculations and computer simulations. The time
constants chosen here are typical for the auditory system [156]. The model is quite robust against
parameter variation (see also Fig. 2.8).

the snake’s brain. There are no experiments to clarify this matter, but a good model of the signal
can be built using two defining characteristics: spike timing and temporal accuracy. As soon as
the cochlear neurons fire, all details about the mechanical input are lost, except for these two
properties.

The intensity of the signal could be different at the right and left cochlea. However, measurements
have shown that damping of sand-surface waves is very small. Geometrical spreading does of course
diminish the amplitude of the surface waves, but if the source distance is more than a couple of cm,
the wave front is nearly planar and geometrical spreading can be neglected. Therefore, the signal
amplitude may be taken to be equal for the right and left ear.

Due to the interaural distance, the signal will arrive at the right and left cochlea at different
times. The resulting interaural time difference (itd) as a function of the input angle β is given by

itd(β) =
d sinβ
vRay

. (2.14)

Here, d is the interaural distance (or rather, the distance between the com of the right and left jaw
halves) and vRay is the Rayleigh wave speed as discussed above. The input angle β is the angle
between the wave vector of the incoming surface wave and the long axis of the head. The itd is
the only difference between the signals arriving at the right and left ear. Therefore, itd must be
used for binaural source localization.

The other important signal characteristic is the temporal accuracy, or phase locking strength.
Although it is unclear how the response of the cochlear neurons to the incoming vibration behaves,
it is bound to be periodical with a frequency corresponding to that of the surface wave. Neuron
firing is of course noisy, so every neuron will spike at a preferred phase of the input, but the precise
timing of the spike will vary and sometimes zero or multiple spikes may be fired within a single
cycle. The amount of jitter in the spiking times can be quantified by the vector strength (vs,
discussed in section 1.4).
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2. Auditory localization of ground-borne vibrations in snakes

Motivated by these considerations, the cochlear neurons are modeled as stochastically firing
Poisson neurons (see appendix B.2.1). The right and left cochlea contain Ncochlea = 75 neurons.
The time-dependent firing rate of the right population is given by

λR(t) =
A exp

[
−(φR)2/2σ2

]
√

2πσ erf(π/
√

2σ)
(2.15a)

and the left population fires at a rate

λL(t) =
A exp

[
−(φL)2/2σ2

]
√

2πσ erf(π/
√

2σ)
. (2.15b)

The error function (see p. 82) is denoted by “erf” and the normalization factor in the denominator
is chosen such that A is the firing rate of a cochlear neuron in spikes per second. The input phase
at right and left ear is given by (−π ≤ φR/L < π)

φR = (ωt)mod 2π , φL = [ω(t+ itd(β))]mod 2π . (2.16)

Equations (2.15) and (2.16) mean that, depending on the input phase, the firing probability peaks
during every cycle of the incoming wave. The phase difference φR − φL, determining the timing
difference between R and L ear, is given by the itd between R and L depending on the angle of
incidence β.

The parameter σ in (2.15) determines the phase locking of the cochlear neurons and can still
be varied. A large value of σ causes broad peaks and implies imprecise firing whereas for a small
value of σ the cochlear neurons respond very precisely to a periodic input signal. Using Eq. (1.20)
gives the exact value of vs for any given σ ∈ [0,∞). By tuning σ it is possible to give vs any value
between 0 and 1.

Typical values of the phase locking strength have not been measured in snakes, but for lizards
the value is known to be larger than 0.9 at low frequencies [146]. In barn owls, vs is even higher
[139]. A conservative value of vs = 0.9 is taken in the numerical simulations.

2.4.2 Modeling sound source localization

Once auditory information has been processed by the cochlear hair cells in left and right ear,
with a given itd determined by prey direction β, their phase-locked spikes are sent to the torus
semicircularis, where signals from left and right ear come together. A reasonable mechanism for
sound localization is constructing a neuronal map of auditory space based on itd cues, as suggested
by Jeffress [136].

This scheme is attractive because of its simplicity and experimental evidence provided by
multiple groups of terrestrial vertebrates, including other Diapsid reptiles and their evolutionary
descendants [116, 117, 138, 141, 145]. In the Jeffress scheme the auditory input from both cochleas
is relayed to a set of map neurons along axonal delay lines (Fig. 2.7).

The map neurons are topographically organized. If a stimulus itd at the ears is exactly
compensated by the axonal delay difference, the map neuron receives simultaneous input from both
ears and will fire at a maximal rate. If its delay does not match the input itd, the neuron does not
receive coincident input and its firing rate is low(er). Consequently every map neuron is tuned to a
specific itd and thus to a specific input direction. The bilateral pathways between ears and map
neurons have fixed axonal delays that can effectively be ignored.

In the original model, Jeffress proposed two delay lines coming from the ipsi- and contralateral
ear and running in opposite directions (see also the frontispiece to chapter 4 at p. 50). Here, a
pseudo-Jeffress model is used in which only the contralateral input is delayed and the ispsilateral
input arrives simultaneously at all map neurons. Both models have been found in birds [141], and
the difference between the models is immaterial for the results in this chapter.
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2. Auditory localization of ground-borne vibrations in snakes

Figure 2.7: (Pseudo-)Jeffress model of auditory localization. Neurons in the torus semicircularis
receive input with a fixed axonal delay from the ipsilateral ear and an axonal-distance-dependent
delay from the contralateral ear. The itd is determined by input direction. Through variable delays,
different neurons are tuned to different directions [136]. In each brain half, the neurons in the torus
semicircularis code for a range of directions from 0o (frontal) to ±90o (ipsilateral). Together, the
maps in both brain halves form a complete representation of auditory space.

The map neurons (Fig. 2.7) are modeled as leaky integrate-and-fire neurons (see appendix B.1.1).
The parameters used for the map neurons are given in table 2.1. The input current Iinject to the
map neurons consists of the sum of excitatory postsynaptic currents (epscs) from the cochlear
neurons; that is, from (2.15) and (2.16). Every input spike arriving at a synapse between a cochlear
neuron and a map neuron leads to an epsc (ε) in the form of an α-function with synaptic time
constant τs and weight J

ε = Jα(t, τs) . (2.17)

Simulation results are shown in Fig. 2.8. The number of output spikes of the map neurons in a
time interval of 250 ms is color coded. The firing rate is maximal if a map neuron’s itd corresponds
to the itd of the input signal but tuning is quite broad. Many map neurons encoding an itd
roughly matching that of the input respond with a fairly high firing rate.

To estimate the input itd from the firing rate of the map neurons the rate-weighted mean of the
map neuron itds is calculated. This is another example of vector coding, as discussed in section 1.4.
The estimate comes close to the actual value of the input itd. For several parameter values the
rms error (Erms) of the itd estimate varies from 19.5–38.4 µs, corresponding to 1.7o–3.3o in front
of the animal. All parameter values match typical values found in auditory systems and parameter
tuning is not necessary to achieve satisfying results.

It must be noted that because of the wide tuning curves, it is needed to extend the range of
itds coded for by the map neurons well beyond the limits of the maximally encountered itd, given
by itdmax = ±d/vRay. Only then is an accurate estimate possible for itds close to itdmax.

2.5 Discussion

The work discussed in this chapter has shown that detection of surface vibrations in snakes is
possible through the pathway of interconnected jaw and ear bones. Although the presence of this
pathway has been known to anatomists, no-one has ever tried to analyze the mechanics of this
pathway. Furthermore, the jaw-quadrate-stapes pathway has often been thought of as merely a
detection device, signifying the presence of a vibration source at the sand surface. It is now clear
that the pathway is much more. In addition to detection, precise vibration source localization is
possible.

The crucial property of snake anatomy that enables localization is the separation of the right
and left halve of the lower jaw. Because of this separation, input to the right and left ear is
independent. This is a necessary condition for sound localization. The separation of the lower jaw
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Figure 2.8: Localization results for several parameter sets. For each input itd and each map neuron,
the firing rate is color coded. The black dotted line gives the population mean value of the itd,
which corresponds to the neuronal estimate of itd. The white dashed lines denote the physical
boundaries to the input itd due to the head size of the snake. The rms error Erms of the estimate
is given in the lower right corner of the plots. In front of the animal, 11.6 µs corresponds to a 1o

localization error. The results indicate that a good estimate of itd is possible for several parameter
sets.
A) τs = 500 µs, τrefr = 1 ms, J = 0.021; B) τs = 500 µs, τrefr = 2 ms, J = 0.021; C) τs = 250 µs,
τrefr = 1 ms, J = 0.016; D) τs = 250 µs, τrefr = 2 ms, J = 0.016. Further parameters as in table 2.1.

halves is commonly thought to have evolved for reasons of feeding efficiency. Due to the flexibility
of the jaws, snakes can stretch their mouth and swallow very large prey items.

The results presented here suggest that the need for a high-quality vibration detection system
has been an extra selection criterion in the evolution of the snake skull anatomy. Unfortunately, the
generally very small hearing ossicles (or their homologous bones) do not fossilize well [125][255, 256].
This makes it very difficult to test such hypotheses.

An issue that can be experimentally clarified is the neurophysiology underlying auditory
localization in snakes. Although the general topography of the auditory pathway is roughly known
in snakes [219], there is no direct evidence of a Jeffress-like localization mechanism in reptiles. Such
evidence has been found in many birds (e.g. [116, 117, 141, 145]) and it should be possible to apply
similar techniques to the hearing pathway in snakes and other reptiles.

The principle finding of this chapter is that vibrational Rayleigh waves traveling over the
sand surface can provide accurate temporal information to the auditory pathway of snakes. This
information can be used for source localization. Since reptiles and birds are phylogenetically closely
related, the assumption that a Jeffress-like neuronal network is used for this localization task seems
plausible.

Snakes can thus hear vibrations. Experimental evidence is now needed to further unravel the
workings of this fascinating auditory system.
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Potter, Kopp, & Green from Bell Labs invented techniques to measure the frequency content of
a signal as a function of time. They used their spectrograms to gain insight in the process of
speech production. This figure showing example speech patterns comes from their book Visible
Speech, which appeared in 1947 [152]. The periodic amplitude modulations caused by the rhythmic
movement of the vocal chord are clearly visible as vertical bands.



. . .Hören ’S das? Kontra-E. Exact 41,2 Herz,
wenn er richtig gestimmt ist.

Patrick Süskind, Der Kontrabaß

3. Neuronal identification of signal periodicity

In this chapter, two neuronal models are discussed that can neuronally extract and identify
periodic features from an input signal. A mathematical analysis is presented as well as numerical
simulations.1

3.1 Periodicity in natural signals

Sound and vibration play a very important role in communication throughout the natural world.
Vertebrates possess a highly specialized vibration detector, the ear containing the cochlea,

which is used to detect and to decompose signals into their constituent frequencies.
Many naturally occurring vibrations carry information about their source in the form of frequency

content and temporal structure [142]. To be able to effectively use this information, it is important
that a perceiving animal has the ability to decode both spectral and temporal cues present in the
signal. Obviously animals without a mechanosensory frequency decomposer (a cochlea) at their
disposal need to extract this information by neuronal means. But even animals with a cochlea
can only extract spectral information using this organ. Temporal information, slow variations of
amplitude over time, still needs to be decoded neuronally.

Several examples of neural temporal information extraction are known. In the human auditory
system, these effects include speech recognition [159, 162], the identification of acoustic events (the
“cocktail party effect” [118]), subjective pitch perception [109, 137], and the “missing fundamental”
effect [109, 160]. A spectacular example of temporal information extraction is the nearly perfect
recognition of speech under conditions of greatly reduced spectral information. With only three
bands of noise modulated with the temporal envelopes of speech, the recognition rate of sentences
is still above 80% [159]. It has often been suggested that detection of signal periodicity is essential
in the recognition of auditory objects [112, 167].

Within the animal kingdom, echo-locating bats provide an interesting example of temporal
information extraction. Several species of bat discriminate different insect species by their char-
acteristic wing beat frequency which leads to a species-specific time-varying Doppler shift in the
echo [158]. It has been shown that the bullfrog can extract the periodicity of complex stimuli using
temporal cues [181]. Surface feeding fish can detect the frequency of vibration of the water surface
with an accuracy of about 10% [174] and they use the dispersion of surface waves to determine prey
distance [179]. However, the vibration-sensitive cupulae located on the skin of the animal [176]
have no frequency specificity apart from low-pass filtering the signal [178]. The clawed frog, too, is
able to detect small frequency differences in water surface wave trains [177]. All these examples

1 The results presented in this chapter have been published together with Moritz Bürck and J. Leo van Hemmen
[127].
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clearly show that a neural mechanism to detect temporal information is a common feature shared
by many animals.

This statement is supported by physiological findings. In spiders, frequency-specific neurons
have been found in the central nervous system [252], although the vibration-detecting slit sensilla,
located in the joints of their feet [224], do not exhibit frequency tuning. The sensilla rather
function as acceleration detectors with a frequency-independent threshold sensitivity [225]. In
the mammalian auditory system, neurons sensitive to specific modulation frequencies of auditory
signals have been identified. There is a very strong sensitivity to temporal modulation of input in
the Inferior Colliculus (ic) [137]. In the ic of the cat a topographical arrangement of amplitude
modulation-sensitive neurons has been reported [157], but this has not been confirmed.

In this chapter, two fundamental neuronal architectures for detecting signal periodicity will
be mathematically described. In the literature, several models of periodicity detection have been
discussed [110, 114, 115, 144, 148]. Most of these models have either been specifically developed
for the (human) auditory system and are complicated, involving many different neuron types and
connections.2

Here, a minimalistic implementation of periodicity detection and identification is discussed
without taking into account specific physiological details of the human auditory system. There are
two reasons for doing so. First, discussing simple models allows a detailed mathematical treatment
leading to comprehension of the abilities and limitations of the circuitry. Second, since periodicity
detection is a capability present in many animals, it is important to understand general mechanisms
rather than specific realizations in a certain group of animals.

The organization of this chapter is as follows. Section 3.2 gives a short introduction to the
characteristics of vibratory signals. Two different models of neuronal periodicity detection are
introduced in section 3.3. Mathematical properties of the models are discussed in section 3.4 and
section 3.5 is concerned with numerical simulations and in section 3.6, the results are discussed.

3.2 Characterization of vibratory signals

To arrive at a clear understanding of the models discussed in this chapter, it is necessary to briefly
describe some properties of vibratory signals. It is important to remember that vibratory signals
are not limited to air-borne sound but may propagate in a variety of substrates such as sand
[221, 226], the water surface [171, 173], spider webs [239, 245], or leaves [242]. All vibratory signals
consist of a time-dependent change in pressure or medium deflection. Fast periodical variations in
signal strength are normally designated as spectral content, or frequencies, and slow variations are
denoted as temporal content. In general the distinction between temporal and spectral content is a
matter of definition. Here, all periodic signal fluctuations which can be resolved neuronally are
considered temporal content. That is, signal variations with frequencies lower than approximately
500 Hz are temporal.

Natural signals are composed of a mixture of spectral and temporal components, leading to
complex wave forms (Fig. 3.1). The slowly varying amplitude of the signal is called the signal
envelope. Even if no explicit modulation is imposed on a signal, slow modulations of the signal
strength generally occur. This is because of interference effects between the frequency components
present in the signal, which lead to a “beating” effect. In vertebrates, the cochlea is responsible for
extracting spectral information; temporal clues need to be decoded neuronally. In animals lacking
a cochlea or similar structure, the concept of spectral information is useless. All timing information
must be extracted neuronally.

2 It is known that hair cells exhibit frequency tuning, without the need for a neuronal network architecture. This is
achieved through the interplay between slow and fast ion channels, causing oscillatory current dynamics. The
typical range of this frequency sensitivity is about 16–600 Hz (see discussion in [128]). Since this phenomenon is
only known to occur in cochlear hair cells, it will not be discussed further here.
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Figure 3.1: The left panel shows a complex wave signal, composed of three frequency components
(solid black) and the signal envelope, or instantaneous amplitude (dotted red). The interference of
the frequency components causes amplitude modulation on a slow scale. One of the modulation
frequencies (fm ∼ 100 Hz) has been indicated in the plot.
The right panel shows the Fourier transform of the signal (solid black) and the envelope (dotted
red). Although the signal consists of three frequencies in the 1500–2000 Hz range, the envelope
shows only slow variations, mainly below 500 Hz. Because the envelope has a nonzero mean value
the Fourier spectrum shows an additional peak at 0 Hz.

The simplest example of a modulated vibration is sinusoidal amplitude modulation (sam). An
sam signal s(t) is described by

s(t) = A cos(2πfct)[1 +m sin(2πfmt)] , (3.1)

with fm � fc. The amplitude of the signal is A, fc is the carrier frequency, fm is the modulation
frequency and m is the modulation depth of the signal. Of course, an sam signal is not a realistic
input. Natural signals typically consist of some superposition of frequencies that are comodulated
[149] by a characteristic profile instead of a simple sine wave. The fundamental period of this
profile is then called the modulation frequency.

On the surface of the water [170, 172, 180][223], in spider webs [244], and on plant leaves
[223, 232], discrimination of prey is achieved by using only the frequency content of the incoming
signals. In both cases prey-generated signals contain high frequencies (& 50 Hz). In contrast,
background noise such as abiotic signals and vibrations caused by the movement of the animal
itself is limited to low frequencies (. 15 Hz). To detect prey, the animal needs to know whether the
signal has predominantly high-frequency content or low-frequency content. Amplitude modulations
are believed to be of less importance in this case.

3.3 The models

The aim of the models presented here will be to identify slow fluctuations present in a specific
input signal. Mathematically, periodic features of a signal s(t) can be detected by calculating its
autocorrelation χ (see e.g. [147]), defined by

χ(∆) = lim
T→∞

1
2T

∫ T

−T
dt′ s(t′)s(∆ + t′) . (3.2)

The autocorrelation has maxima for correlation times ∆ corresponding to the frequencies present
in the signal, but also for the periods of the envelope fluctuations (Fig. 3.1). The above calculation
immediately suggests two neuronal mechanisms for detecting periodicity (Fig. 3.2).
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Figure 3.2: There are basically two possible ways to extract temporal information from a signal
using spiking neurons. The first method (upper panel) uses a recurrent loop with time delay ∆.
This is called the recurrent model. The neuron is driven by a continuous input function sin. If the
neuron emits a spike at time t = t0, the firing probability is enhanced at time t = t0 + ∆. Signal
periodicity with characteristic time ∆ then leads to a higher number of spikes in the output signal
sout.
The second method (lower panel) is based on the same idea, but uses a feedforward network, and is
called the feedforward model. The first neuron, again driven by sin, sends two spikes to the output
neuron with a delay differing by an amount ∆, e.g. using interneurons. Again, correlations in the
input signal with period ∆ lead to an augmented firing probability for the output neuron.

The first model consists of an array of neurons that receive an input signal sin(t). As one of the
neurons spikes, the output spike is fed into a pathway that ultimately projects onto the neuron itself
with a particular delay ∆, corresponding to the correlation time above. This pathway need not be a
direct connection from the axon onto the neuron’s own dendritic tree. One or more processing steps
may occur before the output from the neuron returns but a well-defined delay can be associated
with the pathway. This matter will be further discussed in section 3.6.1. Because of the delay loop,
the neuron detects correlations on a time scale ∆. An array of such neurons, all with different ∆,
can then function as a periodicity analyzer. This model is called the recurrent model.

The second model consists of an array of input-output neuron pairs. If one of the input neurons
fires, it’s spikes are fed into two pathways to the corresponding output neuron. The temporal delays
of these pathways differ by an amount ∆. The output neuron will have a high firing probability
if spikes arrive from the two different pathways at the same time. Again, the network reveals
correlations on time scale ∆. This model is called the feedforward model.

Both types of networks have been discussed before in the literature. The first author to propose
a network of delay lines to detect signal periodicity has been Licklider [144]. More recent work on
feedforward-like models has been done by Borst et al. [110] and Meddis and O’Mard [148]. Both
articles proposed a very detailed model, based on specific properties of neuronal circuitry found
in the mammalian auditory system. Although Borst et al. and Meddis and O’mard have used
neuronal oscillators instead of delay lines, the analysis discussed in this chapter can be applied to
their models as well.

Cariani [114, 115] discussed a recurrent-like model. He has used an overly simple model in
which formal neurons manipulating strings of 0s and 1s are used. None of these authors have
included a detailed mathematical analysis of their models. Before proceeding to mathematically
and numerically scrutinize the models the characteristics of both models will be discussed in more
detail.

3.3.1 Detailed description of the recurrent model

The recurrent model consists of Nout output neurons that all receive the same external continuous
input sin(t). All input neurons have a recurrent connection that feeds output spikes back into
the neuron itself. The recurrent spikes are characterized by a delay ∆ that is different for each
neuron and has strength J . The feedback current is described by a general function h (see also the
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section 3.4.1) for which an α-function will be taken in the simulations

h(t) = α(t− t0 −∆, τs) . (3.3)

The width of the α-function is given by τs, t0 is the spiking time of the neuron.
The neurons are simulated as leaky integrate-and-fire (lif) neurons; see appendix B.1.1. To

get the model at work the output neurons must fire a first spike to start with, since the feedback
loop needs input, which can only come from the neurons themselves. It is not possible to use
supra-threshold input since this would imply that all output neurons would fire in response to the
input, regardless the length of their delay loop. The solution is to use subthreshold input with
added internal neuronal noise, see section 3.5.1. Every now and then the neuron will fire. But only
if the delay loop length has the right value the neuron will be able to resonate in response to the
input. The mechanism described here is called stochastic resonance (extensively reviewed in [258]).

3.3.2 Detailed description of the feedforward model

The feedforward model consists of Nin input neurons, which are simulated as Poisson neurons; see
appendix B.2.1. This is convenient for a mathematical characterization but by no means necessary.
The input neurons are driven by an external input sin(t). If one of the input neurons fires its spike
is fed into an axon branching off to Nout different output neurons. One spike reaches the output
neurons directly and another spike resulting from the same event reaches the output neuron with
a delay ∆. A specific delay ∆ is associated with every output neuron. In this way, every output
neuron will turn out to encode a particular frequency f = 1/∆.

The output neurons are simulated as leaky integrate-and-fire (lif) neurons without noise; see
appendix B.1.1. If a spike is emitted at time t = t0 by any of the input neurons it leads to two
postsynaptic current injections arriving at the output neurons, again in the form of α-functions,

εdirect = Jα(t− t0, τs) (3.4)

and
εdelayed = Jα(t− t0 −∆, τs) . (3.5)

The former spike travels to the output neuron without delay and the latter arrives with a delay ∆.
The synaptic coupling strength is again given by the parameter J .

3.4 Mathematical discussion of the models

This section mathematically discusses the behavior of the two types of periodicity detector. Explicit
analysis of lif neurons is generally quite difficult (for an extensive review, see [24, 25]). Luckily,
no explicit analysis of lif neuron dynamics is needed to gain valuable insight into the dynamics
of both models. In fact, the key properties of the models are independent of the specific type of
neurons that are used.

3.4.1 Recurrent model

The problem of analytic calculations using integrate-and-fire neurons lies in the nonlinearity of
threshold crossing and spike-generation. In the case of the recurrent network discussed here, the
problem is even more difficult than usual since the feedback introduces an extra complication into
the system. The discussion is simplified by considering Poisson neurons; see appendix B.2.1.
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Figure 3.3: Stochastic fluctuations in the response of a Poisson neuron are smaller if the firing rate
is higher. The convolution of a signal s (inset) with the response kernel h in black is compared with
two explicit realizations of the firing process (normalized for comparison). The red dotted curve
was obtained using about 40 spikes, the blue dashed curve results from about 300 spikes. Clearly, a
high firing rate (or, mathematically equivalent, a large population of Poisson neurons) is needed for
Eq. (3.6) to apply.

The rate function λ of a single Poisson neuron projecting back to itself with a particular delay
time ∆ is given by the integral equation

λ(t) = sin(t) + J

∫ ∞

−∞
ds h(s,∆)λ(t− s)

= sin(t) + J(h ? λ)(t) .
(3.6)

The rate function consists of the sum of the external input sin and the delayed input from the
recurrent loop, “smeared out” by the kernel h. The feedback strength is given by J and h is chosen
to ensure causality (h(t) = 0 if t < 0) and to have unit weight∫ ∞

−∞
dt h(t) = 1 . (3.7)

Since h has a finite width the delay loop smears out the feedback.
In Eq. (3.6) the convolution integral of λ with the kernel h assumes that it is OK to use the

expectation value of the firing rate λ to describe the neuron output instead of a specific realization
of the output. Effectively, the “spiky” character of the neuron output is ignored. This approach is
only correct for high firing rates or, mathematically equivalent, a large number of Poisson neurons
with a low firing rate. The total amount of output spikes must be high enough so that the output
signal is reliably sampled by the output spikes. An example of such a smooth convolution of λ and
h is shown in figure 3.3.

To solve Eq. (3.6) for the output firing rate λ it is useful to take the Fourier transform (see
p. 81). The Fourier transform has the convenient property that, when transformed, a convolution
becomes an ordinary product. Denoting the Fourier transform of each input term by a capital
letter one obtains

Λ(ω) = Sin(ω) + JH(ω)Λ(ω) . (3.8)

The solution is given by

Λ =
Sin

1− JH
. (3.9)

and the solution as a function of time can then be found by taking the inverse Fourier transform

λ(t) = F−1 [Λ(ω)] (t) . (3.10)
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Given any input function sin and response function h(t) it is now possible to explicitly calculate
the firing probability of the neuron. In the simulations in this chapter an α-function with synaptic
time constant τs is used for h [see Eq. (3.3)]. The Fourier transform of this response function is
given by

H(ω) =
e−iω∆

(1 + iωτs)2
. (3.11)

Since the interesting part is identifying periodicity, it must be known which frequency f
corresponds to a certain delay time ∆. A näıve guess would be to simply set f = 1/∆, but since
the response function transforms the recurrent signal in a non-trivial way this relation cannot be
expected to hold exactly. Consider therefore the response of the system to an incoming pure sine
wave of frequency f . Finding the corresponding ∆ that maximizes the amplitude of the response
establishes an explicit connection between the delay ∆ and the signal frequency that is decoded
optimally through this delay.

For harmonic input given by

sin(t) = A cos(ωt) = A cos(2πft) (3.12)

the response is
λ(t) = L cos(ωt+ φ) , (3.13)

where φ is a phase that is not relevant for further calculations and L is an amplitude given by

L =
A(1 + ξ2)√

J2 + (1 + ξ2)2 − J [2(1− ξ2) cos(ω∆)− 4ξ sin(ω∆)]
, (3.14)

with the definition ξ := ωτs. The amplitude L of the response is maximal if the relation

dL
d∆

= −2(1− ξ2) sin(ω∆)− 4ξ cos(ω∆) = 0 (3.15)

holds. The delay must therefore satisfy

∆ = ω−1

[
arctan

(
2ξ

ξ2 − 1

)
+ nπ

]
, (3.16)

with n = 1 if ξ > 1 and n = 2 for ξ < 1. If the width of the kernel h approaches zero (ξ → 0, no
smearing out of the input) this relation indeed reduces to

∆ =
2π
ω

=
1
f
. (3.17)

A more complicated and realistic example is given by input of the form

sin(t) =
∫ ∞

0

dσ B(σ) cos [σt+ φ(σ)] . (3.18)

Instead of a single harmonic component a distribution of input frequencies with arbitrary amplitude
and phase is now taken. The Fourier transform of the input is given by

Sin(ω) =
∫ ∞

0

dσ B(σ)πeiφ(σ)ω/σ × [δ(σ − ω) + δ(σ + ω)] . (3.19)

Plugging this result into (3.9) and (3.10) gives the solution for the firing rate of the output neuron

λ(t) =
∫ ∞

0

dσ B(σ) R

[
ei(φ(σ)+σt)

1− Je−iσ∆/(1 + iστs)2

]
, (3.20)
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where R[x] denotes the real part of x. The signal function (3.18) need not be positive, although
a negative firing rate certainly does not make sense for a Poisson neuron. In the simulations in
chapter 3 half-wave rectified signals are always used (see p. 81). Unfortunately exact calculations
are not feasible in this case. In spite of this drawback Eq. (3.20) captures the essence of the network
response. If the solution (3.20) is plotted for various input spectra B(σ) the amplitude of λ is
largest if the length of the delay loop ∆ corresponds to a frequency that is present in the input
signal. Because of the complicated form of (3.20), it is of limited practical use. A better way to
gain insight into the model dynamics is to use numerical simulations, see section 3.5.

3.4.2 Feedforward model

For the analytic description of the feedforward model an input population of Poisson neurons is
used. They are, just as before, driven by an input sin(t) identical for each neuron. The output
neurons are taken as lif neurons. Every output neuron receives input from the Poisson neurons
via two distinct pathways: a direct connection and a connection with a delay ∆ which is different
for each output neuron.

Calculating the expectation value of the current that arrives at the output neurons results in a
sinusoidal function. The response of lif neurons to harmonic input is difficult to calculate but
several exact results have been presented by Burkitt [26] as will be discussed below.

Input given by

sin(t) =
A

2
[1 + cos(ωt)] (3.21)

is the starting point of the calculations. The input current that one output neuron with a particular
delay time ∆ receives from the set of Nin input neurons is given by [referring to (3.4) and (3.5)]

εtotal = εdirect + εdelayed . (3.22)

The expectation value of the current to the output neurons is given by (see appendix B.2.1)

〈I〉 =
∫ ∞

−∞
ds sin(s) εtotal(t− s) (3.23)

and the variance of the current is given by

varI =
∫ ∞

−∞
ds sin(s) ε2total(t− s) . (3.24)

Equations (3.23) and (3.24) can be evaluated exactly for the given input function (3.21). The
current is

〈I〉 = NinAJ

{
1 +

cos(ω∆/2)
(1 + ξ2)2

[
(1− ξ2) cos

(
ω(t−∆/2)

)
+ 2ξ sin

(
ω(t−∆/2)

)]}
(3.25)

with ξ = ωτs. The amplitude (current arriving at the output neuron) is thus maximal if cos(ω∆/2)
is maximal, implying integer

∆ · ω
2π

= ∆ · f ∈ N . (3.26)

That is, a maximal response of the output neurons is to be expected if the input frequency matches
the delay of the system. If the input signal contains a periodicity with frequency f̄ the neuron with
a delay time ∆̄ corresponding to this frequency will respond optimally. All neurons sensitive to a
subharmonic frequency (f̄/n, with n ∈ N) will also respond, as can be seen from (3.26). This is
because an input signal with a periodicity f̄ is automatically also periodic with frequency f̄/n.
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The variance of the current is given by

varI =
NinAJ

2

τs

{
1
4

+M +
2 cos(ω∆/2)

(4 + ξ2)3

×
[
(8− 6ξ2) cos

(
ω(t−∆/2)

)
+ ξ(12− ξ2) sin (ω(t−∆/2))

]} (3.27)

where M is

M =e−∆/τs

{
1−∆/τs

4
+

1
(4 + ξ2)3

×
[(

16− 8ξ2 +
∆

τs(16− ξ4)

)
cos
(
ω(t−∆)

)
+ 2ξ

(
12− ξ2 +

2∆
τs(4 + ξ2)

)
sin
(
ω(t−∆)

)]}
.

(3.28)

In order to allow correct periodicity detection, the time scale of the periodicity must clearly
exceed the time scale τs of the individual current response functions ε. Therefore, the system can be
expected to work best if the relation ∆ � τs holds, meaning that the time scale of the periodicity
is much larger than that of the post-synaptic response. In the auditory system this condition will
generally hold. M can then be neglected because of the exponential prefactor e−∆/τs in (3.28).
If low-frequency input is presented, the relation ω � 1/τs is valid and thus ξ = ωτs → 0 can be
assumed. The current and its variance are then given by

〈I〉 = NinAJ
[
1 + cos(ω∆/2) cos

(
ω(t−∆/2)

)]
(3.29)

and

varI =
4NinAJ

2

τs

[
1/16 + cos(ω∆/2) cos

(
ω(t−∆/2)

)]
. (3.30)

The relative variation of the current is proportional to

δI

I
=
√

varI
I

∝ 1√
NinAτs

, (3.31)

which also holds if the assumptions ∆ � τs and ξ → 0 are not made. As expected, the current is
less sensitive to random fluctuations if the number of input neurons or the input amplitude increases.
The fact that the current fluctuates more if τs gets smaller is because a very short synaptic time
scale tends to enhance the “spiky” character of the current. The system, however, does not become
less reliable since a short post-synaptic current enables better coincidence detection by the output
neurons [34, 35].

The expression (3.25) for the mean current, which is a good approximation if there are enough
input neurons, shows that all output neurons receive a harmonic (sinusoidal) current. The amplitude
of the current is largest if the delay matches the periodicity of the input signal. The response
of integrate-and-fire neurons to harmonic input is difficult to calculate but it has been done for
a slightly different system in [26]. The results show that the periodicity of the input current is
retained in the firing of the output neuron. This means that the output signal is phase locked to
the current. The vector strength vs (see section 1.4) measures the amount of synchronization or
phase locking. vs tends to be larger in the output neuron than in the current itself.

3.4.3 Summary of mathematical results

The most important mathematical property of the recurrent model is the relation between loop
delay ∆ and optimal coding frequency f . Näıfly, one would expect the relation ∆ = 1/f to hold.
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The recurrence loop does not, however, simply projects the output back to the neuron. The response
kernel h rather smears out the feedback, changing the exact timing of the recurrent input. The
exact relationship between delay and coding frequency is given by Eq. (3.16) for synaptic responses
in the form of an α-function.

In the feedforward model, the problem of finding the relation between ∆ and f does not arise.
Both the direct and the delayed pathway smear out the input spikes in the same manner and
therefore, the relative timing of the two signals arriving at the output neuron is fixed. The most
important result for the feedforward model is that the amount of phase locking (a measure for the
accuracy of spike timing) actually increases. The output neurons fire thus more accurately than
the input population does. This is in accordance with physiological findings in the mammalian
auditory pathway [137].

For a true understanding of the models, the mathematical description presented above does not
suffice. Since the nonlinear process of spike generation cannot be taken into account, numerical
simulations are needed to characterize the response of the models to realistic input. The next
section discusses such simulations.

3.5 Simulation results

In this section results obtained by numerical simulations are discussed. The neural networks as
described in section 3.3 have been implemented through the c++ programming language. To test
model performance three different kinds of input were used: amplitude-modulated (am) input, a
Gaussian distribution of frequency components, and input mimicking the “missing fundamental”
effect, as explained below. The response of the system was characterized by counting the number
of output spikes that occurred during one second of input presentation as a function of the coding
frequency of the output neuron. The coding frequency of the output neurons was calculated using
(3.16) for the recurrent network and (3.26) for the feedforward network. It will become clear that in
both networks the neurons encoding the periodicity present in the input signal respond maximally.
The networks are thus able to convert a periodicity code into a rate code.

Half-wave rectification of the signals (see p. 81) was always performed before presenting them
to the network. Hair cells, the basic receptor units of the ear and the lateral line system, depolarize
following one direction of displacement and hyperpolarize if displacement is in the other direction
[133]. Half-wave rectification is therefore automatically performed upon detection in many sensory
systems.

The input signal to the network was normalized to deliver the same time-integrated input power
in each case. Obviously, it is not realistic to expect external input to a vibration detection system
to be normalized but several mechanisms of neuronal gain adaptation have been demonstrated
experimentally; e.g., in the auditory pathway [121, 135, 161, 166]. Such mechanisms are thought
to keep neuronal firing rates within an optimal range [128]. The result of this normalization is
effectively a logarithmic dependance of the firing rate on the input amplitude. This compresses the
dynamical range and, in addition, relative differences between input amplitudes are coded by a
constant difference in firing rates, independent of the input strength.

In the models described in this chapter, power normalization is needed to keep the output firing
under control. If the input power is too low, the output neurons cannot fire at all. If, on the other
hand, the input power is too high all neurons will fire at a high rate and the discriminative capacity
of the system is lost.

3.5.1 Numerical implementation

Both neuronal models have been implemented using the c++ programming language. Below, all
model parameters are listed, as well as the internal noise mechanism adopted for the neurons in
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parameter value

number of output neurons Nout = 491
output frequency range 10–500 Hz
synaptic time constant τs = 1 ms
synaptic strength J = 2.5× 10−5

input normalization 1/T
∫ T
0

dt sin = 300

output neuron
membrane time τm = 1.25 ms
absolute refraction time τrefr = 1.0 ms
resting potential Vr = 0
reset potential Vreset = Vr = 0
threshold Vθ = 1
capacitance Cm = 1

Table 3.1: Simulation parameters for the recurrent model.

the recurrent model.

Recurrent model
For this model, lif neurons (appendix B.1.1) were used with the parameters from table 3.1 Internal
noise of the neurons has been implemented by adding a noise term Inoise to the input of each neuron
given by

Inoise =
50∑
n=1

Anoise cos(2πfnnoiset+ φnnoise) (3.32)

where the frequencies are chosen from a uniform distribution fnnoise ∈ [0–1000 Hz]. Phases are
uniformly distributed in φnnoise ∈ [0–2π] and the amplitude of every component is given by Anoise =
0.01/50. For each neuron, independent noise is assumed and the noise is added linearly to the input
for each neuron.

Feedforward model
For this model, Poisson neurons (appendix B.2.1) were used for the input population and lif
neurons (appendix B.1.1) for the output population. Parameters were taken as in table 3.2

In the following sections, the results of the simulations are presented.

3.5.2 Amplitude-modulated input

Two types of am input signals are discussed. The first signal is a modulated pure tone

sin(t) =
A

2
[1 + cos(2πfmt+ φ)] cos 2πfct (3.33)

with modulation frequency fm = 50 Hz or fm = 200 Hz and random modulation phase φ. The
carrier frequency is fc = 2000 Hz.

In the second case, a noisy input is constructed by composing a signal from 50 sinusoidal
components with frequencies fnrand chosen from a uniform distribution on [0–1000 Hz] and random
phases φnrand with uniform distribution on [0–2π] so as to obtain

snoise(t) =
50∑
n=1

cos(2πfnrandt+ φnrand) . (3.34)
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parameter value

number of input neurons Nin = 25
number of output neurons Nout = 491
output frequency range 10–500 Hz
input neuron mean rate 20 Hz
synaptic time constant τs = 1 ms
synaptic strength J = 3.5× 10−4

output neuron
membrane time τm = 1 ms
absolute refraction time τrefr = 0.25 ms
resting potential Vr = 0
reset potential Vreset = Vr = 0
threshold Vθ = 1
capacitance Cm = 1

Table 3.2: Simulation parameters for the feedforward model.

number of spikes

 150

 100

 50

 0

50 Hz
noise 50 Hz

200 Hz

 500 400 300 200 100 10
frequency [Hz]

number of spikes

 100

 50

 0

50 Hz
noise 50 Hz

200 Hz

 500 400 300 200 100 10
frequency [Hz]

Figure 3.4: Response to am input of an array of neurons, each with a different delay and corresponding
frequency (horizontal axis). The total number of spikes in one second is shown vertically. Left
panel: feedforward model; right panel: recurrent model. The peaks corresponding to the input
periodicity clearly appear in the graphs. Evidently, both networks correctly identify the signals.

This signal is than modulated with modulation frequency fm = 50 Hz:

sin(t) =
A

2
[1 + cos(2πfmt+ φ)]× snoise . (3.35)

In both cases the amplitude has been chosen in such a way that the rectified input signal is
normalized appropriately.

The results of these simulations are displayed in Fig. 3.4. Obviously both network types succeed
very well in detecting the periodicity of the input signal. Clear peaks in the response occur for
the correct frequencies. The response peaks for the subharmonic frequencies are also distinctly
recognizable. Although the response of the recurrent model is quite noisy, this drawback may be
overcome easily by combining input from several close-by channels.
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Figure 3.5: Response of an array of neurons to a distribution of frequencies. Input was presented to
an array with neurons, each with a different delay and specific frequency (horizontal axis). The
total number of spikes in one second is shown vertically. Left panel: feedforward model; right panel:
recurrent model. Similarly to figure 3.4 the signals are reliably identified.

3.5.3 Gaussian frequency distribution

The second test for the feedforward and recurrent models consists of taking a distribution of
frequencies as input. To mimic the real biological situation an input signal has been built from 30
different frequency components chosen randomly from a Gaussian probability distribution with
a center frequency µ and a width σ. The components were added together with random phases
and the resulting signal was half-wave rectified and presented to the network. This signal can for
instance be considered as a rough model for a trampling insect on the water surface or in a spider
web. The results of these simulations are displayed in Fig. 3.5. It is evident that both frequency
profiles with (µ, σ) = (30 Hz, 5 Hz) and (µ, σ) = (100 Hz, 20 Hz) are correctly identified by the two
networks.

3.5.4 Missing fundamental

If several pure tones with a common fundamental frequency are presented to a listener, the subject
often perceives a tone with a pitch corresponding to this fundamental frequency, even though the
fundamental frequency itself may not be present in the input signal. Nonetheless a clear neuronal
representation of this frequency is formed by the subject. Such an experiment is mimicked by
giving both models input consisting of three harmonics

sin(t) =
3∑

n=1

cos(2πfnt+ φn) , (3.36)

with f1 = 200 Hz, f2 = 300 Hz, f3 = 400 Hz and random phases. The response of the feedforward
model is shown in Fig. 3.6, together with the response to a pure tone of 100 Hz. Although the peak
is not as clear as with pure tone stimulation, a pitch of 100 Hz is still easily recognizable.

Because of the noisy response, the missing fundamental effect is not reproduced very well by
the recurrent model. A very good response can sometimes be obtained but this crucially depends
on the precise values of the phases φn, which is not realistic biologically. Results for the recurrent
network are therefore not shown here.
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Figure 3.6: Response of the feedforward network to “missing fundamental” input as in Eq. (3.36)
with three frequencies 200, 300 and 400 Hz compared to the response to a pure 100 Hz tone. The
peak at 100 Hz is clearly recognizable.
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Figure 3.7: Phase locking strength as a function of best frequency for the feedforward and the
recurrent model. 50 Hz modulated input as in Eq. (3.35). Vector strength of the input signal is 0.5,
as indicated by the horizontal line. Surprisingly, output phase locking is stronger than input phase
locking in the relevant frequency range.

3.5.5 Phase locking

A very important concept in auditory or vibratory processing is phase locking. Phase locking
describes the capability of neurons to spike preferentially at a specific phase of the input signal.
Phase locking is especially important to extract precise temporal clues from a signal; for instance, in
sound localization [131, 150]. The amount of phase locking is characterized by the vector strength
vs as discussed in section 1.4.

For am noise input, as in (3.35), the vector strength has been displayed in Fig. 3.7. Interestingly,
phase locking is quite good in the recurrent model although the output firing rate fluctuates a
lot. This behavior results from the subthreshold input dynamics of the recurrent model. Only the
presence of noise in the input assures that every now and then a spike occurs. The occurrence of a
spike is of course much more likely if the input amplitude is large and consequently the output
firing tends to be phase-locked to the input periodicity. For the feedforward model phase locking is
good if the decoding frequency of the output neurons matches the periodicity of the input. Again,
spike generation is most likely when the input amplitude is large and the delay time matches the
frequency of the input signal. Phase locking results. Remarkably, phase locking strength of the
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Figure 3.8: The selectivity as defined in (3.37) for the feedforward (left) and recurrent (right) model
for several input signal frequencies fin as a function of jitter. The selectivity Q is normalized with
respect to the value in the absence of jitter. As expected, increasing jitter leads to a decrease in
selectivity. For both the feedforward and the recurrent model a jitter of approximately 20% of the
input period leads to a 50% decrease in selectivity.

output is significantly larger than the vs of the input signal for both models.

3.5.6 Temporal jitter of delays

The ability to identify signal periodicity crucially depends on the timing of the delays ∆. It
is therefore important to investigate the effect of temporal jitter in the delays on identification
performance. To do so, four different pure tones with frequency fin were presented to both networks
and stochastic jitter was added to the delay time for every emitted spike. The jitter is Gaussian
distributed with mean 0 and a standard deviation from 0.2 ms to 20 ms. For each trial (a specific
combination of input frequency and jitter strength) the selectivity Q was calculated. Q is defined
by

Q =

∣∣∣∑j rje
2πi∆jfin

∣∣∣∑
j rj

. (3.37)

Here ∆j is the temporal delay corresponding to output neuron j and rj is its firing rate. This
definition has again the form of a vector strength. If the output firing rate peaks for neurons with
the correct delay (∆jfin integer) the value of the numerator in Eq. (3.37) will be large. If much
temporal jitter is present all output neurons will respond, even if their delay does not match the
input signal frequency. In this case the phases in the numerator of Eq. (3.37) will cancel out and Q
will have a low value.

In Fig. 3.8 the selectivity for different input frequencies and jitter magnitudes is plotted,
normalized to the selectivity without jitter. As could be expected, the selectivity deteriorates if
jitter is present in the delays. For high input frequencies the sensitivity to temporal jitter is largest.
For low frequencies, say . 25 Hz, both models are quite robust and can cope with temporal jitter
up to ∼ 10 ms. A jitter of about 20% of the input periodicity leads to roughly 50% decrease in
selectivity. The amount of jitter thus determines the fastest input periodicity that can still be
identified. For a temporal jitter of 1 ms this upper limit is approximately 200 Hz.
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3.6 Discussion

3.6.1 Performance limits

The capability to distinguish different frequencies hinges on the fact that the delay times ∆ are well
known and constant. Only then is it possible to reliably assign a particular frequency to the output
neurons. In reality the time it takes for the signal to complete the delay line may vary somewhat.

As shown in section 3.5.6 the system works best for relatively low frequencies up to about 200Hz.
Even if the delay were much more accurate than has been suggested here, it would not be possible
to detect very high frequencies reliably. The width of the post-synaptic current response presents a
fundamental limit to the delay time that can be detected. In the experimental literature it has been
found that am sensitivity reaches a frequency as high as 1000Hz but the vast majority of neurons is
sensitive to modulation frequencies in the range of 10–300 Hz, most of them lying in the even more
restricted range of 30–100 Hz. This finding is valid for various animals [140, 143, 153, 154, 155].
Relevant biological stimuli on the water surface and in spider webs also tend to contain most of
their information in the low frequency range . 250 Hz [173][239]. These findings agree very well
with the simulations and calculations presented here.

In section 3.3 it was made clear that the delay times ∆ need not necessarily arise from a direct
connection between two neurons but that they could be the result of a number of interneurons.
These interneurons then have to be driven by a very reliable synapse: every input spike should
trigger an output spike, and the delay between input and output spike should be fixed. A very
prominent example of such a reliable “one-to-one” synapse in the auditory pathway is the so-called
Calyx of Held at the end of the auditory nerve.

Although this specific type of reliable synapse is only found in the lower auditory pathway its
existence demonstrates that fast and reliable synapses are present in the auditory system, a neuronal
system of exceptional acuity. For example, in the mammalian auditory brain-stem nuclei neurons
can preserve the relative timing of action potentials passed through sequential synaptic levels
[164]. In the avian auditory system, too, single presynaptic stimuli can produce short (and thus
precise) suprathreshold spikes with a time constant of about 0.5 ms resulting in reliable information
transmission [169]. Another possibility to reliably transfer precisely-timed signals is the use of
synfire chains [27]. Depending on the input strength, synfire chains can relay information with a
temporal precision around 1 ms, accurate enough for use in long-delay feedback and feedforward
loops.

Thus, one can conclude that relatively long and well-defined delay times ∆ can be realized in
biological systems by means of interneurons, posing no fundamental problem to the models.

3.6.2 Conclusions

In this chapter, a quantitative analysis of two different models of periodicity detection has been
presented. It was shown that both a feedforward architecture and a recurrent loop architecture
can be used to extract periodic modulation from input signals. Furthermore, a mathematical
characterization has been provided. It has been shown that for both approaches the basic constraints
are the same.

As expected, neuronal time constants are a limiting factor for recognizing the periodicity of
the input modulation. The non-zero width of the response kernel theoretically limits modulation
recognition to about . 1000Hz. In real biological systems, however, the limiting factor will probably
be the accuracy of the delay ∆. Using an estimate δ∆ ≈ 0.5 ms cuts down the accessible detection
range to about 200 Hz. This value is reasonably close to the reported limitation of . 300 Hz in
biological systems.

Another limitation common to both feedforward and recurrent circuitries is that they detect
only the highest modulation frequency components in any signal. Since activity in high-frequency
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channels also excites low-frequency channels it is not possible to distinguish subharmonics of a
high-frequency signal from a direct low-frequency input. The known phenomenon of the missing
fundamental fits well into the behavior of such a simple network for periodicity extraction. Equivalent
to the above is the fact that every neuron responds not only to its own specific frequency but also
to all of its harmonics. Consequently the perceived similarity between tones one octave apart from
each other [122, 123, 134] and the interference of harmonic target-distractor combinations at low
frequencies [113] are a natural side-effect of the proposed architecture.

The two models differ in their behavior as far as their robustness is concerned. By design, the
recurrent network is much more susceptible to noise and, as a consequence, can be disturbed by
noise more easily than the feedforward model. This is a common problem of excitatory recurrent
networks in general since in such networks perturbations tend to amplify themselves.

It has been shown that without any specialized architectural features—a generic neuron model
and simple delay lines—the modulation frequency components of a signal can be resolved neuronally.
Considering the simplicity of the setup, the models already show remarkable properties that are in
good agreement with experimental data. It must be stressed that no parameter tuning was needed
to obtain these results.

A small number of input neurons suffices to sample the input signal with a high enough accuracy,
and neuronal parameters lie in the range of milliseconds, comparable to typical auditory time scales.
If a cochlea is present, signal processing is further facilitated by the prior frequency decomposition
but the presence of a cochlea is certainly no prerequisite for periodicity analysis. The output of the
networks could be enhanced by postprocessing mechanisms. For example, lateral inhibition can be
used to detect and sharpen the peaks in the output (consider Figs. 3.4, 3.5 and 3.6 in this regard).

At this point, it should be noted that extracting the slowly-varying envelope from an input signal
is easily accomplished biologically. Half-wave rectification of the signal and low-pass filtering suffice.
This can be done by a slow synapse filtering out all high frequency components, a mechanism that
has been demonstrated explicitely to work in the electric fish sensory pathway [182]. Even if the
slow envelope of the signal has been extracted, however, the frequency of the envelope oscillations
is still unknown. The models presented here, on the contrary, are able to identify the frequency of
the envelope oscillations. This is of great biological importance since recognition of sounds often
depends on the ability to quantitatively determine the periodicity of the input signal.

As an example, human speech consists of several frequency bands that are comodulated by
a guttural fundamental frequency called the voicing frequency or fundamental frequency [108].
A speaker can be distinguished by his own voicing frequency and this immediately suggests a
mechanism for the identification and separation of people speaking simultaneously. It is possible
to separate contributions from different speakers by focussing attention on specific periodicity
frequencies. The now isolated sound source can then be localized using standard mechanisms based
on interaural time differences (itd) recognition, since phase locking to the input remains intact
throughout the processing in both models. In such a setting, auditory object recognition would
therefore occur before the localization of the object. This agrees with previous experimental work
showing that spatial separation of sounds is indeed linked to comodulation of the signal amplitude
across several frequency channels [119, 120, 142].
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Jeffress was one of the first researchers to suggest an explicit mechanism to form a map-like
representation of spatial sensory information. The original illustration of his model of auditory
spatial localization (explained in section 2.4.2) is shown here. Diagram taken from [136].



Ideaal is natuurlÿk een voetgangersoversteek-
plaats met een stoplicht plus een ratelapparaat,
voor als er iemand voorbÿ komt die én blind én
doof is.

Herman Finkers

4. Multimodal integration and tuning of
sensory input

Multimodal maps play an important role in sensorimotor behavior. An important characteristic
of such maps is that all individual input sensory systems are aligned with each other. Since
the input sensory maps are not aligned at birth, this alignment must be learned. This chapter
discusses two models that can be used for tuning sensory maps. Through a mathematical analysis
and numerical simulations it is demonstrated that a learning mechanism based on inhibitory
teacher input performs superior to a mechanism using an excitatory teacher signal.1

4.1 Introduction

In section 1.5, representation of sensory input and motor commands in neuronal maps was discussed.
An especially interesting role is played by multimodal maps (reviews in [77, 101, 102]). In a

multimodal map, most neurons respond to more than one sensory modality. Such maps are
omnipresent in the brain [86], and it has even be questioned whether genuine monosensory maps
exist at all [102]. A multimodal neuron is defined by its responsiveness to sensory input from more
than one modality.

Several types of interaction are possible if multiple input modalities are stimulated simultaneously
[99, 102]. Very often, the presence of multiple input modalities leads to an increase in firing rate.
This means that the response to two or more simultaneous stimuli is larger than that to either
stimulus when presented alone. Alternatively, a response depression may be found. In this case,
the firing rate decreases if several modalities are activated concurrently. A neutral response is of
course also possible. Then a neuron does respond to several different modalities, but there is no
clear response enhancement or reduction.

A general feature of multimodal maps is that all sensory modalities are spatially aligned. This
means that the spatial response of the neuron is not primarily defined by the type of input that is
present, but rather by the spatial location of that input. Commonly, neural responses are enhanced
if multiple sensory inputs are present at the same location, depression is found if the inputs come
from slightly different spatial positions, and no depression or increase is found if the inputs are far
apart. However, all conceivable types of multimodal interaction are found. A nice example is the
interplay between visual and infrared input in the optic tectum (ot) of rattle snakes [197, 208].

A response enhancement may be super- or subadditive. In the former case, the neuron responds
stronger to the presence of several stimuli than to each stimulus alone, but the combined response is

1 The results presented in this chapter have been published together with J. Leo van Hemmen [79].
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still less than the sum of the individual responses. In the latter case, the summed response exceeds
even the sum of the individual responses. Such a superadditive response is in particular found for
low stimulus amplitude [99]. The response to a faint sound for instance is much more enhanced by
simultaneous visual input than the response to a loud sound, which is quite large already.2

There are a couple of advantages if neurons are sensitive to more than one modality. First, the
chance that any given neuron responds to any event occurring in the vicinity of the animal is larger
if this neuron receives input from several sensory systems.

Second, a multimodal response can be used to increase the saliency of multimodal stimuli,
especially if superadditive interaction is present. If one assumes that all neurons in a population
“compete for attention”, those neurons which fire at a high rate have better chances that their
output reaches higher layers in the brain for further processing. Many important events have a
multimodal fingerprint. A predator, for instance, will produce moving visual input, smell, and an
auditory input as well, compared to the static and quit sensory input caused by vegetation. The
neurons that code for the location of the predator will thus fire at a high rate, enabling attention
to be shifted quickly towards the hunter. In short: interesting input leads to a higher firing rate.

Third, multimodal interaction allows for rapid and precise information processing (e.g. object
identification) since several pieces of information (e.g. sound, appearance, smell) can be dealt with
simultaneously.

The fourth advantage of multimodal responses is higher robustness and reliability of the system.
If one or more modalities fail (e.g. because it is dark or the animal is in a noisy environment), this
can be compensated by the remaining modalities that are working properly.

For multimodal maps to be of any use, the input from all participating modalities must be
calibrated so that a stimulus at a specific spatial location is represented at an unambiguous location
on the multimodal map. Ultimately, all sensory modalities together are used to initiate motor
responses. Such responses must of course be unequivocal. This provides another argument why
sensory maps must be in proper register with each other. Such an alignment of sensory and motor
maps is not present at birth and must be learned through experience [89, 102].

In this chapter, the question how sensory maps can be aligned to form a calibrated representation
of multisensory space will be answered. There are two problems to be solved here. The first problem
is that of dynamic adaptation. Many animals can move their sensory organs (eyes, ears, whiskers,
etc.) independently of their body. This means that a continuous dynamical map alignment is needed.
The mechanism underlying this adaptation is not known, but it seems that retinotopic coordinate
systems play a key role [80]. Sensory information is often transferred into retinal coordinates using
an eye position signal (see discussion in [102]). In addition to this spatial adaptation, temporal
contiguity needs to be considered. Since some modalities (notably the auditory pathway) relay
their information much faster than others, inputs from different sensory systems cannot be assumed
to arrive at the same time in a given multimodal brain region. This problem is dealt with because
multimodal neurons can typically integrate inputs over time scales up to 100 ms. Dynamical
alignment problems will not be further discussed in this dissertation.

The second problem has to do with the development of multimodal alignment. Even if it is
clear how dynamic alignment can be achieved, the question remains how static alignment is to be
achieved in the first place. A possible answer to this question is given in this chapter, but first a
short overview of the relevant research on this topic is presented.

2 Superadditive enhancement can be understood from a probabilistic point of view. The firing rate can be taken to
code for the probability that something “noteworthy” presents itself in the spatial receptive field of the neuron.
If multiple sensory systems are active simultaneously, this increases the likelihood that something interesting is
happening within the receptive field of the neuron. This is encoded through a more than proportional increase in
the firing rate. The effect is strongest for small signals [76]
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4.1.1 Mechanisms in the development of multimodal integration

For many animals it has been shown that visual input is essential in guiding the development of
other sensory systems and multimodal integration. Early work was done on hamster and ferret.
Mooney et al. found that somatosensory spatial receptive fields in the superior colliculus (sc) of
hamsters are disorganized following destruction of visual input pathways [95]. King et al. have
shown that neonatal rotation or lateral deviation of the eye could lead to abnormal auditory spatial
maps in the sc [88].

Similar findings were obtained in the cat [103, 104], the clawed frog [175], and in snakes [191].
In psychophysical experiments using congenitally blind and normally sighted subjects, it was shown
that in humans multimodal integration also partially depends on visual input in early life for
accurate development [82, 97, 98]. Audio-visual integration in barn owls has been studied in great
detail (for example reviewed in [89]). This case will be discussed in much more detail below.

It has been shown recently that visual cortex long-term potentiation and depression in mice
develops sequentially [84]. Plasticity is gradually lost in development and layers that come later in
the processing pathway lose their plasticity later than earlier processing layers. Apparently, the
visual cortex layers only settle into their final state after earlier layers have stabilized. The work by
Jiang et al. [84] also seems to support the idea that neuronal map formation is often guided by
stabilized visual “teacher” input.

Much of the work on multimodal integration has been done in the superior colliculus (sc)
or its non-mammalian homologue the optic tectum (ot). Both are known to be a major site of
multimodal integration. Inputs from several sensory systems converge in the sc and are used to
initiate motor responses [96, 100, 101].

Audio-visual integration in barn owls
In the barn owl, the integration of visual and auditory information has been studied particularly
well. The barn owl is an interesting object of study since it is a highly specialized auditory hunter
and, in addition, its eyes have a fixed position in the head, preventing any problems related to
dynamical coordinate transformations. A variety of experiments, reviewed in [89], have shown
that in barn owls integration of auditory and visual input is not functioning optimally in young
hatchlings but needs to be learned during several weeks of training in an environment with both
visual and auditory stimulation.

Although it has been shown both theoretically and experimentally that an imprecise) map of
azimuthal sound source location can be learned in the absence of any visual input [87, 91], a map of
sound source elevation cannot be correctly learned without visual information during development.
Proper integration of the auditory and visual modality is of course also impossible without visual
input.

Input from the visual and auditory system in the barn owl converges in the ot. The last
processing stages of the auditory pathway just before the ot are the central nucleus of the inferior
colliculus (icc) and the external nucleus of the inferior colliculus (icx). Knudsen and his coworkers
fitted barn owls with prisms displacing the view field of the animals. This was seen to lead to a
change in the auditory input to the ot.

The synaptic connections between icc and icx changed in such a way that the auditory map
in the icx acquired the topography of the visual input (Fig. 4.1). The connections between icx
and ot did not change. That is, the multimodal map itself was not adapted, but rather the last
input stage before multimodal integration was gauged to ensure proper alignment of the visual and
auditory input to the multimodal map in the ot.

furthermore, it has been shown that visual input provides a topographic teaching input to guide
plasticity in the icc-icx pathway [83, 90]. This means that plasticity is not induced through a
global “error signal” telling the neurons what to do, but rather on a per-neuron basis. It is even
possible to induce differently-sized shifts in different parts of the map. Although the precise nature
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Figure 4.1: Audio-visual integration in barn owls. In the “normal” situation (left), auditory
positional information reaches the icc in frequency-specific channels. Information on sound source
localization is coded in the time-of-arrival difference ( itd) of the sound between the two ears. The
frequency-specific maps from the icc are integrated and relay to the icx. From there, information
is forwarded to the ot where it is integrated with visual input. There is a permanent feedback
signal from the ot to the icx (yellow).
If abnormal visual input is present (an azimuthal shift is introduced), the feedback signal is used to
reorganize the synaptic connections between icc and icx to re-establish a match between the map
in the icx and the ot.
Figure redrawn and adapted from [89].

of this teaching signal has not been clarified, inhibitory gain control, or gating, seems to play an
important role [81, 106].

It will be shown in this chapter that the presence of inhibitory teacher input is essential for
precise and quick tuning of input to multimodal maps.

4.1.2 Two possible models of map tuning

Some time ago Davison and Frégnac [78] presented a mechanism based on spike-timing-dependent
plasticity (stdp) that can account for map integration and coordinate transformation between
different (sensory) maps. In their model, an array of output neurons receives excitatory input from
an input modality and also from a set of teacher neurons. Because of the correlations between
the firing rates of the input and teacher neurons, stdp causes strengthening of the “correct”
input-to-output connections. In due time the output layer neurons learn to form a topographic
spatial representation, even if the teacher input is removed later on.

In this chapter two different methods based on supervised stdp used to gauge input from
different sensory modalities and ensure proper map alignment will be discussed. The first model
is very much like the one from [78] discussed above, using excitatory input and teacher neuron
populations. The second model uses inhibitory teaching input (details in section 4.2 below) instead
of excitatory teaching input.

A complete mathematical treatment of the learning process is possible, based on the methods
developed by Kempter et al. [57]. Such an analysis is presented in section 4.3. In addition, extensive
numerical simulations are used to demonstrate the behavior of both learning models (section 4.4).

It will become clear that both models are very robust with respect to parameter variation and
noise, but inhibition-mediated learning (il) is much faster and more robust still than excitation-
mediated learning (el). Furthermore, the quality of the resulting map is not limited by the quality
of the teacher signal but rather by the accuracy of the input from the other sensory modality.
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Figure 4.2: Network topology of the models. There are three layers of neurons. The input layer (I,
corresponding to icc) and the teacher layer (T , corresponding to ot) fire with a rate that depends
on the input position y. The output layer (O, corresponding to icx) is driven by spikes from the
input and teacher layer. The synaptic connections from input to output layer are subject to plastic
weight changes and the connections from the teacher layer to the output layer remain fixed. Every
output neuron receives spikes from one corresponding teacher neuron and from all input neurons.

4.2 Description of the models

4.2.1 Network topology

For both models a network consisting of three neuron populations is considered (Fig. 4.2). There is
an input population (I) and a teacher population (T ) that fire in response to an external sensory
stimulus. These two populations are connected to an output population (O). The teacher neurons
are topographically connected to the output neurons. Every teacher neuron connects to exactly
one corresponding output neuron. At the beginning of the learning process the input population is
connected to the output population through an all-to-all feedforward network of synapses. The
connections between the teacher population and the output population can be either excitatory
or inhibitory (see next section) and are considered as fixed. The synapses between the input
population and the output neurons are subject to learning through stdp (see section 4.2.3).

The teacher neurons exhibit a map-like response to an external sensory stimulus. That is, each
teacher neuron (labeled by index p) has a preferred stimulus position xTp , that varies smoothly
along the array of teacher neurons.3 Without loss of generality, all stimulus positions are taken to
lie between 0 and 1. The preferred stimulus position of a teacher neuron is then

xTp =
p− 1
NT − 1

, (4.1)

where p ∈ [1, NT ] is the teacher neuron index and NT denotes the number of teacher neurons.
The input neurons (labeled by index i) are also tuned to specific directions, denoted by xIi .

Although a topographical organization of the input neurons is mostly assumed here, this is certainly
not a necessary condition (see section 4.4.4).

Before learning starts the synaptic connections are not yet structured and the output neurons do
not have a directional preference. During learning an output neuron acquires a preferred stimulus
direction that is determined by the preferred direction of the teacher neuron connected to it. Since
teacher neurons and output neurons are connected one-to-one, the output neurons are labeled by
the same index (p) as the teacher neurons.

3 This chapter is restricted to one-dimensional maps. The approach can be generalized easily to include two-
dimensional maps, but the computational costs of simulating learning in such a two-dimensional system become
very large, due to the large number of synapses needed.
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4.2.2 Sensory input and response of the output population

In the numerical simulations all neurons are modeled as Poisson neurons (see appendix B.2.1).
Although this neuron model is very simple, it captures some very important aspect of neuron
firing. First, neuronal firing is to some degree stochastic and second, explicit time-dependence of
firing probabilities is taken into account. Because of the simplicity of this neuron model, an exact
mathematical understanding of the learning process is possible [57].

It is important to note that the Poisson neuron model used here is not simply equivalent to a
rate coding. Since spike generation is explicitly taken into account, the theory and simulations are
much richer than they would be with a pure rate-based modeling approach. In addition, the firing
rate functions can have an arbitrary time dependence.

If sensory input is present at position y ∈ [0, 1], the teacher and input neurons fire at a rate λ
that depends on the neuron’s preferred position

λIi = AIg(xIi , y) input population , (4.2a)

λTp = ATh(xTp , y) teacher population . (4.2b)

The constants AI and AT give the amplitude of the firing rate, and g and h are normalized to have
a maximal value of 1. The function g describes the receptive field properties of the input neurons.
Typically, g depends on the difference between the input position y and the neuron’s preferred
position xIi , with its maximum for xIi = y.

As stated above, the teacher-output connections can be either excitatory or inhibitory.

Excitatory teacher input
In the excitatory case (el) the function h behaves in the same way as described above for g, with a
dependence upon the difference between input position and preferred position and maximal value
for xTp = y (Fig. 4.3, left). For a given stimulus position y, the output neurons corresponding to the
teacher neurons with xTp ≈ y receive strong teacher input, and the other output neurons remain
silent. In addition, input from all input neurons will arrive at the output population. Since the
input neurons with xIi ≈ y fire at a high rate, stdp selectively strengthens the connections between
input neurons and output neurons that encode the same stimulus position y. After learning, a
map will have been built in the output population. This map then responds correctly to the input
population alone.

Inhibitory teacher input
In the case of inhibitory teacher input (il), h behaves differently. The firing rate will be close to
zero for teacher neurons with xTp ≈ y, and maximal for neurons that code for any wrong position
(Fig. 4.3, right). The output neurons are therefore strongly inhibited, except for a few neurons that
correspond to the teacher neurons that are minimally active. This mechanism is called selective
disinhibition. The output neurons that are not inhibited can fire freely and are now solely driven
by the input population. Again, stdp potentiates connections between input neurons and output
neurons that code the same position and weakens the wrong connections.

As will become clear below, both el and il allow for a topographical map to develop in the
output population. This map is aligned with the teacher map, and after learning the output neurons
respond correctly to the input neurons even if no teacher signal is present. Still, the learning process
in the two models differs in one important aspect. Because with il, the output population’s firing
is determined solely by the input population, the output neurons are trained to respond correctly
to the input population only. In the case of el, the output population learns to optimally react to
a combination of input from the input population and the teacher population. This has two major
consequences.
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Figure 4.3: Firing rates of input and teacher population. Both the input and the teacher population
are organized in a map. For an external stimulus at a certain location, the firing rate strongly
peaks at a well-defined location in the input and the teacher map. The input and teacher map can,
however, be misaligned. The output population receives spikes from the input and from the teacher
layer.
Left: In the el model, the output neurons receive excitatory input from both the input and the
teacher population. The output neurons corresponding to the teacher neurons with the highest rate
will fire most, and the connections from the active input neurons to this set of output neurons will
therefore be strengthened by stdp.
Right: In the il model the output neurons are all silenced by the inhibitory teacher input, except
for a small number of neurons receiving no inhibition. These neurons are driven by the input
population and—as for the el model—the connections between the active input neurons and the
active output neurons are strengthened.
Both models are able to form a high-quality map based on the input and the teacher signal. The
resulting map is automatically aligned with that in the teacher population.

1. With il, the firing rate of the output neurons is determined solely by the input population.
This holds during training, but also if no teaching input is present anymore. That is, after an
initial transient at the start of the learning process the output firing rate is always normalized
(see for instance [57, 58, 70]). For el, on the other hand, the output firing rate is determined
by the input population and the teacher population. This means that the output rate may vary
greatly, depending on whether teacher input is present or not.

2. If the temporal structure of the firing of the input neurons is nontrivial (viz., time coding
rather than rate coding) it is advantageous to retain this temporal structure also in the output
population. If the output neurons receive excitatory input from both the input and the teacher
population, the timing cues that are present in the input population spikes are “contaminated”
by the simultaneous input from the teacher neurons. In the il case, the teacher input does not
interfere with the input population signal. Any important temporal structure can therefore be
retained in the output neuron firing statistics.

Output population firing rate

The rate function λ for the input population and the teacher population is given by Eqs. (4.2a)
and (4.2b). The rate function of the output neurons depends on the firing of the input and teacher

57



4. Multimodal integration and tuning of sensory input

neurons. It is given by

λOp (t) =

NI∑
i=1

∑
f

Jip(t
f
i )ε

I(t− tfi ) + JT
∑
g

εT (t− tgp)

+

. (4.3)

The firing times of the input neurons are denoted by tfi , and those of the teacher neurons by tgp.
The strength of the synaptic connection from input neuron i to output neuron p is given by Jip(t),
which is a function of time, and the strength of the connections between the teacher neuron p
and the output neuron p is given by JT . The postsynaptic response of the output neuron to an
incoming spike from an input neuron is given by the kernel εI , and εT is the response kernel for
input from the teacher neurons. Since the teaching input may be negative (JT < 0), the total rate
function may become negative, which would not make sense for a probability density. To avoid
this, half-wave rectification is applied, as indicated by [· · ·]+ (see p. 81).

4.2.3 Learning protocol

Learning trials

To numerically simulate the behavior of the models, the neurons are trained through many learning
trials. In a single trial, an input position y is picked from a uniform distribution on [0, 1], and
the firing rates of the input and the teacher neurons in response to this input are calculated (see
section 4.2.4). The stochastic firing of the input and teacher population is then simulated during a
trial of duration T , and the spikes are sent to the output neuron population, which fires in response.
The connections between input and output neurons are dynamically adjusted according to the
stdp rules specified below.

At regular times during learning, the quality of the map and the amount by which the weights
have changed are measured as described in section 4.2.3.

Plasticity rules

Learning in the brain occurs through spike-timing-dependent plasticity (stdp) as discussed in
section 1.3.1. Under normal circumstances and for excitatory synapses, presynaptic spikes that
come before postsynaptic spikes lead to an increase in the synaptic weight (potentiation) and
presynaptic spikes that arrive after a postsynaptic spike has been triggered lead to a weight decrease
(depression). The learning window W describes the dependence of the weight change on the
difference between pre- and postsynaptic spike timing.

Many factors influence the precise result of any learning trial, but these influences do not
radically alter the basic results of stdp-based learning without bells and whistles attached. This
chapter is therefore mainly restricted to learning with independent additive weight changes in
dependence upon spike timing only. In section 4.4.5 simulations are briefly discussed that take into
account some of the parameters that influence learning in addition to spike timing.

The stdp rule used in this chapter consists of three parts,

1. If a presynaptic spike is emitted, the weight of the synaptic connection is changed by an amount
ηwpre.

2. If a postsynaptic spike is emitted, the weight of all synaptic input connections to this neuron
changes by an amount ηwpost.

3. For every pair of a pre- and postsynaptic spike, the synaptic efficacy changes by an amount
W (s) that depends on the difference s = tpre − tpost between the spiking times tpre and tpost.
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The shape of the learning window is given by

W (s) =


ηw+ |s|

(τ+)2
e−|s|/τ

+
s < 0

−ηw− s

(τ−)2
e−s/τ

−
s ≥ 0

. (4.4)

The overall learning speed is set by the variable η, which should be small. The parameters wpre,
wpost, w+ and w− are all of order 1.

The synapses connecting input and output population have a starting weight of JI0 and the
weights are capped to always stay between the values JImin and JImin. The synapses between teacher
and output population are not subject to learning.

Only nearest neighbor spike-pair interaction is considered. This seems biologically plausible,
since each back-propagating action potential may be thought to reset the voltage in the dendritic
spines. Moreover, only the first presynaptic spike after such a postsynaptic reset may be relevant
due to saturation effects; see also [56]. The mathematical theory as developed in [57] is only valid
for all-to-all spike pairings and for the sake of comparison, simulations are also carried out in which
all spike pairs are taken into account (cf. section 4.4.2).

Performance measures
To gain insight into the performance of the models, some measures are needed to assess the quality
of the map in the output population and the speed of learning.

Map quality
To measure how well the output map performs for a given weight distribution the expected output
firing rate without teaching input is calculated [see also Eq. (4.15)] for 100 input positions yl
ranging from 0 to 1 in equally-sized steps. The expectation of the output firing rate is

νOp (y) =
∑
i

Jipν
I
i (y) . (4.5)

In this equation, ν denotes a time-averaged firing rate over one learning trial of length T . For each
input position, the output neuron pmax with the highest firing rate is determined, and the difference
between its preferred position xpmax and the input position yl is obtained. The localization error
Erms of the map is then the root-mean-square (rms) value of this difference over all 100 input
positions

Erms =

√∑
l

(xpmax − yl)2

100
. (4.6)

A small value for Erms means that the map is of high quality.

Weight change and learning speed
The overall learning speed is set by the parameter η as described above. However, because the
two models that are studied here have different connectivity properties, it is not possible to simply
compare the performance of both networks for equal values of η. In the el model, only a small
number of teacher neurons are active simultaneously. In the il model, a majority of the teacher
neurons is always active; cf. Fig. 4.3. A measure of learning speed that is independent of this
difference is therefore needed.

To obtain such a measure, the rms distance drms is defined as follows

drms =

√√√√∑
i,p

[Jip(t)− Jip(t = 0)]2

N INT
. (4.7)
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drms measures the distance between the initial weight distribution and the weight distribution at
some later time t. During learning drms changes from 0 at t = 0 to some maximal value that is
almost identical for both models. Let T be the time it takes to reach a value drms = 0.01 (about
one tenth of its maximal value for the parameters used in this chapter). The learning speed vlearn
is now defined by

vlearn :=
0.01
T

. (4.8)

Through the learning speed vlearn the el and il model can be compared in and objective way.

4.2.4 Specification of the model variables

The firing rate of the input and the teacher populations are given by a Gaussian dependence upon
the difference between the input position y and the neuron’s preferred position xIi or xTp .

For the el model this means that the functions g and h in Eq. (4.2) are specified to be

λIi (y) = AIg(xIi , y) = AI exp
(
− (xIi − y)2

2 (σI)2

)
, (4.9a)

λTp (y) = ATh(xTp , y) = AT exp

(
−

(xTp − y)2

2 (σT )2

)
. (4.9b)

and for the il model

λIi (y) = AI exp
(
− (xIi − y)2

2 (σI)2

)
, (4.10a)

λTp (y) = AT

[
1− exp

(
−

(xTp − y)2

2 (σT )2

)]
. (4.10b)

The postsynaptic response of the output neurons to an incoming spike from the input population
is taken to be an α function (see p. 82)

εI(t) = α(t, τ I) (4.11a)

while the response kernel for spikes from the teacher neurons is

εI(t) = α(t, τT ) . (4.11b)

The preferred position of the teacher neurons is given by (4.1), viz.,

xTp =
p− 1
NT − 1

(4.12a)

and the preferred position of the input neurons is

xIi =
i− 1
N I − 1

. (4.12b)

The learning speed parameter η varies for different simulations and its value is indicated where
needed. In table 4.1, the values of all further parameters are listed. Where different parameter
values have been used, it is indicated in the text. It is important to realize that no parameter
tuning is needed. Both the el and il models are robust against parameter variations, and the
values in table 4.1 represent reasonable first guesses for the parameters.
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parameter value

network layout
number of input neurons N I=100
number of teacher neurons NT=100
number of output neurons NT=100
initial strength of input→output synapses JI0 =0.1
minimal strength of input→output synapses JImin=0.0
maximal strength of input→output synapses JImax=0.25
strength of teacher→output synapses JT (el)=+1
strength of teacher→output synapses JT (il)=−1
postsynaptic response time to input spike τ I=10 ms
postsynaptic response time to teacher spike τT=25 ms

learning parameters
learning trial length T =0.5 s
simulation time step ∆t=0.5 ms
weight change upon input spike wpre=1.5
weight change upon output spike wpost=−4.0
learning window potentiation amplitude w+=4.0
learning window depression amplitude w−=1.0
learning window potentiation time τ+=20 ms
learning window depression time τ−=40 ms
integral over learning window W̃=3η s
integral over learning window and response kernel W=29.6η

input and teacher signal
input tuning curve amplitude AI=50 s−1

teacher tuning curve amplitude AT=100 s−1

input tuning curve width σI=0.015
teacher tuning curve width σT=0.025

Table 4.1: Model parameters as used in the analytical calculations and numerical simulations. The
value of the learning parameter η varies for different simulations. It is always explicitly specified
where needed. The precise values of the parameters are not important. There is a wide range of
parameters that enable stable learning (see also the discussion in section 4.3).

4.3 Mathematical analysis of learning

An exact analytical description of the learning process can be given using the methods developed
in [57]. Such a description is quite technical. The problem is that the weight change of a single
synapse is determined by the activity of both pre- and postsynaptic neuron. The postsynaptic
activity is in turn determined by the activity of all presynaptic inputs and synaptic strengths
connecting to this neuron. This means that the weight change of a synapse is interconnected with
the weight changes of all other synapses contacting the same output neuron. Before discussing
specific results for the el and il model, the general form of the learning equation is derived.

4.3.1 The learning equation

The first step is to focus on a single stimulus that is applied at position y. The evolution of the
synaptic weights is given by the learning equation [57]. For the network architecture used here it
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reads

J̇ip(t) = wpreνIi (y) + wpostνOp (y) +
∫ ∞

−∞
ds W (s)Cip(s, t, y) , (4.13)

where the overdot denotes differentiation with respect to time. The learning parameters wpre, wpost

and the learning window W have been defined in section 4.2.3. The quantities νIi and νOp are the
time-averaged expectation values of the input rate and the output rate, respectively. Cip(s, t),
finally, is the time-averaged expectation value of the correlation between the spike trains of input
neuron i and output neuron p,

Cip(s, t) =
〈
SIi (t+ s)SOp (t)

〉
(4.14)

where the brackets denote the expectation value over stochastic realizations of the Poisson process
and the overbar denotes the time average over one learning trial of length T . Furthermore, SIi
denotes the spike train of the input neuron i, and STp is the spike train of the teacher neuron p.

The time-averaged mean input firing rate is just νIi (y) = AIg(xIi , y) from (4.2a). The time-
averaged mean output rate is

νOp (y) =

[∑
i

Jip(t)
∫ ∞

0

dt′ εI(t′)λIi (t− t′) + JT
∫ ∞

0

dt′ εT (t′)λTp (t− t′)

]+

=

[∑
i

Jip(t)νIi + JT νTp

]+

.

(4.15)

The second equality holds because the firing rate functions λI/T are constant in this case and∫∞
0

dt εI/T = 1.
The expectation of the correlation between input and output spike train is more difficult to

obtain. The definition results in

〈
SIi (t+ s)SOp (t)

〉
=

〈
SIi (t+ s)

[∑
j

JjpS
I
j (t) + JTSTp (t)

]+〉
. (4.16)

Depending on whether the teacher input is excitatory (JT > 0) or inhibitory (JT < 0), a different
result is obtained for the right-hand side of (4.16).

4.3.2 The learning equation for excitatory teacher input

Form of the learning equation
When the teaching input is excitatory (JT > 0), the rectification in (4.16) does nothing since the
argument is already positive. The correlation can then be calculated straightforwardly (for detailed
methods see [57]), giving

Cip(s, t) = νIi

JT νTp + Jip(t)εI(−s) +
∑
j

Jjp(t)νIj

 . (4.17)

The learning equation (4.13) then becomes

J̇ip =
∑
j

νIj

(
wpost + W̃νIi + δijW

)
︸ ︷︷ ︸

Aij

Jjp + wpreνIi + JT (wpost + W̃νIi )ν
T
p︸ ︷︷ ︸

Bip

(4.18)
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with the definitions

W̃ =
∫ ∞

−∞
ds W (s) , W =

∫ ∞

−∞
ds W (s)εI(−s) . (4.19)

It is very important to note that the precise form of the learning window has disappeared from the
equation. Only the two integrals over the W (s) defined above play a role.

For every output neuron p, Eq. (4.18) reduces to a matrix-vector equation describing the weight
evolution of its input connections:

J̇(p) = A · J(p) + B(p) . (4.20)

The vector J(p) contains all the input connections to the output neuron p, and the components of
the matrix A and the vector B(p) are taken from (4.18). The notation stresses that B(p) depends
on which output neuron p is considered. A is the same for all output neurons.

The matrix A and vector B(p) give the response of the system to sustained input at some
particular input position y. To find the average learning result over all positions, the expectation
value of (4.20) with respect to y is to be calculated. Such an expectation value, denoted by a hat,
is given by

ĥ =
∫ 1

0

dy ρ(y)h(y) , (4.21)

where ρ(y) specifies the probability distribution of the variable y. Taking this average is allowed if
learning proceeds slowly enough.

The assumption that all positions are equally likely (justified by the learning protocol, see
section 4.2.3) gives ρ(y) = 1 and for the components of A and B(p) this leads to

Â[ij] =
(
wpost + δijW

)
ξ1j + W̃ ξ2ij , (4.22a)

B̂(p)
[i] = wpreξ1i + wpostJT ξ3p + W̃JT ξ4ip (4.22b)

where δij is the Kronecker delta (δij = 1 if i = j and δij = 0 if i 6= j), and

ξ1i =
∫ 1

0

dy νIi (y) , (4.23a)

ξ2ij =
∫ 1

0

dy νIi (y)ν
I
j (y) , (4.23b)

ξ3p =
∫ 1

0

dy νTp (y) , (4.23c)

ξ4ip =
∫ 1

0

dy νIi (y)ν
T
p (y) . (4.23d)

The complete evolution of the weights for excitatory learning input is thus described by

J̇(p) = Â · J(p) + B̂(p) (4.24)

together with (4.22) and (4.23).

Interpretation of the learning equation
The complete equation (4.24) can be solved exactly using Duhamel’s formula,

J(p) = S · exp(Λt) · S−1 ·
(
J(p)
t=0 + Â−1 · B̂

)
− Â−1 · B̂ . (4.25)
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In this solution, S is the matrix containing as columns the eigenvectors of Â and Λ the matrix
containing the eigenvalues of Â on its diagonal. The matrix S diagonalizes Â and therefore
S−1ÂS = Λ.

Unfortunately, this solution is of limited use, since the maximal and minimal values of J(p) are
not taken into account. It therefore makes more sense to focus on the values of the ξ’s (4.23) to
understand how the learning equation (4.24) behaves. Because the input neurons and the teacher
neurons are tuned to specific positions, the averaged firing rates νIi (y) and νTp (y) are large if the
neuron’s preferred position matches y (xIi ≈ y or xTp ≈ y), and zero if the positions do not match.
If the width of the tuning curves is not too large, the integrals in Eq. (4.23) can be extended to
range from −∞ to ∞, since only a small domain lying completely within [0, 1] will give a significant
contribution anyway.

The value of ξ1i is then just a constant independent of i that is given by the total area under
the tuning curve of the input neurons. Similar reasoning applies to ξ3p. The value of ξ2ij sharply
peaks for xIi ≈ xIj (meaning that i ≈ j) and if the input neurons are organized topographically,
this implies that ξ2ij is a square matrix with large values around the main diagonal and values very
close to zero elsewhere. The same reasoning applies to ξ4ip. The matrix entries ξ4ip are large when
xIi ≈ xTp and very small if this is not the case. For the input and teacher firing rates defined in
Eq. (4.9) the following expressions are found,

ξ1i = AIσI
√

2π , (4.26a)

ξ2ij = (AI)2σI
√
π exp

(
−

(xIi − xIj )
2

4 (σI)2

)
, (4.26b)

ξ3p = ATσT
√

2π , (4.26c)

ξ4ip = AIAT
σIσT√

(σI)2 + (σT )2
√

2π exp

(
−

(xIi − xTp )2

2 [(σI)2 + (σT )2]

)
. (4.26d)

Parameter dependence of the learning equation
The entries in Â and B̂(p) can be directly calculated from the parameters in table 4.1. Apart
from the parameters AI/T , σI/T , and wpre/post, the entries are determined by W̃ and W . For the
parameter set used here, the entries of Â and B̂(p) are explicitly given by

Â[ij] =

[
−7.52 + 55.6 δij + 199 exp

(
−

(xIi − xIj )
2

2 (0.021)2

)]
× η , (4.27a)

B̂(p)
[i] =

[
−22.2 + 484 exp

(
−

(xIi − xTp )2

2 (0.029)2

)]
× η . (4.27b)

Note that all values are scaled by the learning parameter η. What, then, do Eqs. (4.24) and (4.27)
mean?

For a wide parameter range, the matrix Â has large positive values around the diagonal and
small negative values away from the diagonal. The vector B̂(p) has large positive values for xIi ≈ xTp
and small negative values otherwise. If learning starts, the weight distribution is still unstructured.
This implies that Â · J(p) ≈ αJ(p) for some number α that depends on the precise values of the
parameters. Â causes all weights to increase or decrease by a fixed amount. For the parameters
used here, α happens to be about zero and the initial weight evolution is dominated by B̂(p). Even
if weight evolution is not dominated by B̂(p), Â does not cause structure formation during the
initial stages of learning.

The vector B̂(p) causes the weights for which xIi ≈ xTp to increase and the others to decrease.
In this way a seed of structure is generated, and because of the diagonal form of Â this structure

64



4. Multimodal integration and tuning of sensory input

is further increased. At the end all weights connecting input and output neurons with xIi ≈ xTp
are maximal, and all other weights vanish. Thus, the el model indeed leads to correct structure
formation and the development of a map in the output neuron population.

As stated above, the “right” learning is obtained for a wide range of parameters. Correct
learning occurs because Â has a diagonal structure with negative entries away from the diagonal.
Similarly, B̂(p) > 0 for xIi ≈ xTp and B̂(p) < 0 otherwise. The conditions that must be satisfied by
the parameters to ensure this behavior are as follows:

• wpost < 0. This condition must always be satisfied for weight stabilization to occur [57].

• wpre > 0. This condition makes biological sense since synapses that receive much presynaptic
input tend to be strengthened.

• W > 0. This condition is always satisfied because of the definition (4.19).

• W̃ may be positive or negative. If it is negative, the absolute value may not be larger than
∣∣W ∣∣.

It needs, however, quite an extreme shape of the learning window for this to happen.

• σI/T � 1. This means that the input and teacher signal are localized sufficiently well. This
condition is just a mathematical statement of the fact that input and teacher signal are organized
in a map-like fashion.

These conditions are all rather weak. A very broad range of biologically realistic parameters can
be chosen that satisfy these conditions. The el model is therefore very robust with respect to
parameter variation.

4.3.3 The learning equation for inhibitory teacher input

Form of the learning equation
If JT < 0 the rectification in (4.16) leads to problems. Since rectification is a nonlinear operation,
it cannot simply be pulled out of the expectation value. This problem can be solved by taking
a slightly different form for the teacher signal. Instead of taking Eq. 4.10b, it is assumed that
inhibition is very large for inputs

∣∣y − xTp
∣∣ > σT so that the output neuron is perfectly silent. For∣∣y − xTp

∣∣ < σT the teacher signal vanishes completely and the output signal is only determined by
the positive contributions from the input neurons. This is called shunting inhibition. Then, the
correlation term becomes

〈
SIi (t+ s)SOp (t)

〉
=

〈
SIi (t+ s)

∑
j

JjpS
I
j (t)

〉
θ(σT −

∣∣xTp − y
∣∣) , (4.28)

with θ as Heaviside step function (p. 82). The temporally averaged mean is given by (using again
the methods outlined in [57])

Cip(s, t) = νIi

Jip(t)εI(−s) +
∑
j

Jjp(t)νIj

 θ(σT −
∣∣xTp − y

∣∣) . (4.29)

The learning equation (4.13) now becomes

J̇
(p)
i =

∑
j

νIj

(
wpost + W̃νIi + δijW

)
θ(σT −

∣∣xTp − y
∣∣)︸ ︷︷ ︸

Dijp

Jjp + wpreνIi︸ ︷︷ ︸
Ei

. (4.30)

65



4. Multimodal integration and tuning of sensory input

The position-averaged learning equation can be written

J̇(p) = D̂(p) · J(p) + Ê , (4.31)

and the expectation values over the input y are now

D̂
(p)
[ij] =

(
wpost + δijW

)
ζ1
jp + W̃ ζ2

ijp , (4.32a)

Ê[i] = wpreζ3
i (4.32b)

where

ζ1
jp =

∫ 1

0

dy νIj (y) θ(σ
T −

∣∣xTp − y
∣∣) , (4.33a)

ζ2
ijp =

∫ 1

0

dy νIi (y)ν
I
j (y) θ(σ

T −
∣∣xTp − y

∣∣) , (4.33b)

ζ3
i =

∫ 1

0

dy νIi (y) . (4.33c)

4.3.4 Interpretation of the learning equation

To understand the complete learning equation (4.31) in the case of inhibitory teacher input, a
closer look at the ζ’s as defined in (4.33) is needed. As in the case of excitatory teacher input, the
integrals in (4.33) are extended to run from −∞ to ∞. This leads to

ζ1
jp =

∫ xT
p +σT

xT
p −σT

dy νIj (y) , (4.34a)

ζ2
ijp =

∫ xT
p +σT

xT
p −σT

dy νIi (y)ν
I
j (y) , (4.34b)

ζ3
i =

∫ ∞

−∞
dy νIi (y) . (4.34c)

It can be seen that ζ1
jp peaks for xIj ≈ xTp and is very small elsewhere. Furthermore, ζ2

ijp has a
maximal value if xIi ≈ xIj ≈ xTp and is nearly zero otherwise. Finally, ζ3

i is constant.
Using the rates from Eq. (4.10) to explicitly calculate the ζ’s gives

ζ1
j = AIσI

√
π/2

×

[
erf

(
xTp − xIj + σT

√
2σI

)

− erf

(
xTp − xIj − σT

√
2σI

)]
, (4.35a)

ζ2
ijp = (AI)2σI

√
π/4 exp

(
−

(xIi − xIj )
2

4 (σI)2

)

×

[
erf

(
2xTp − (xIi + xIj ) + 2σT

2σI

)

− erf

(
2xTp − (xIi + xIj )− 2σT

2σI

)]
, (4.35b)

ζ3
i = AIσI

√
2π (4.35c)
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where “erf” denotes the error function defined on p. 82.

Parameter dependence of the learning equation

Just as for the el model above, the learning equation describing the evolution of the input weights
to a specific output neuron p reduces to a vector-matrix equation. The shape of the learning window
is again found to be irrelevant and only W̃ and W enter the equation. For the parameter values
from table 4.1 the matrix and vector components are

D̂
(p)
[ij] =

{
27.8 (δij − 0.135)

×
[
erf
(
47.1 (xTp − xIj ) + 1.18

)
− erf

(
47.1 (xTp − xIj )− 1.18

)]
+ 99.7 exp

(
−

(xIi − xIj )
2

2 (0.021)2

)
×
[
erf
(
33.3 (2xTp − xIj − xIi ) + 1.67

)
− erf

(
33.3 (2xTp − xIj − xIi )− 1.67

)]}
× η , (4.36a)

Ê[i] = 2.82× η . (4.36b)

In contrast to the el case the vector Ê, being constant, plays no role in structure formation. The
matrix D̂(p) allows for more interesting behavior.

Although D̂(p) looks impressive, its behavior is relatively simple. For a large absolute value of its
argument, the error function becomes either −1 or 1. This implies that the differences between the
error functions in D̂(p) vanish if the separation between xTp on the one hand and xIi/j on the other

hand is too large. If xIj ≈ xTp holds, the value of D̂(p) is positive if i ≈ j, and negative otherwise.

Calculating D̂(p) · J(p) shows that J(p)
[i] is increased if xIi ≈ xTp , and decreased otherwise.

It is still possible that Ê interferes with the weight evolution by increasing all weights. Since
Ê is directly proportional to the product of AI and σI this simply means that the input neurons
should not fire too strongly (AI and σI should not be too large). If they would, all weights would
evolve towards their maximal value because the input neurons are completely dominating the firing
of the output neurons in spite of the inhibition from the teacher map.

The remaining conditions under which the analysis presented here is valid are identical to those
discussed for the el model. If these conditions are fulfilled, a stable weight distribution evolves
with strong connection between input and output neurons if their preferred positions match, and
weak connections if the preferred positions do not match.

The above mathematical analysis shows that the synaptic weights converge to the correct
set, leading to an accurate spatial representation in the output neurons. However, this analysis
was limited to the case of all-to-all spike interactions, which need not be biologically realistic
(see section 4.2.3). Fortunately, numerical tests have shown that including or dropping all-to-
all interactions does not alter the results obtained in this chapter. Below, results of numerical
simulations are discussed. These results are then used to further analyze the performance of the el
and il model.
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Figure 4.4: Weight evolution for el with η = 3 · 10−7. The development of a map-like organization
is clearly visible as time progresses. The total learning time is in the order of days. The localization
error quickly drops to a small value and then slowly approaches a steady-state value, here about 2%.

4.4 Numerical simulations

In this section, results of numerical simulations are discussed. The learning procedure of section 4.2
has been programmed using the c++ programming language. In the first two subsections, the
results for el and il are compared with each other and with the analytical results from section 4.3.
The most important results will be that inhibition-mediated learning is faster and more accurate
than excitation-mediated learning.

The third subsection discusses coordinate transformations between the input and the output
map. In addition, map restructuring is analyzed. Although both excitation- and inhibition-mediated
learning are able to learn a coordinate transformation, only the il model is able to drastically
restructure existing maps. The inhibition-based model is therefores studied in more detail in the
last two subsections (sections 4.4.4 and 4.4.5).

4.4.1 Comparing excitatory and inhibitory teacher input

At the start of the discussion, it is useful to get a basic idea of the typical course of the learning
process. In Fig. 4.4 the weight distribution at various times during learning is displayed for el
with learning parameter η = 3 · 10−7.

Horizontally, the preferred position of the input neurons is shown, and vertically, the preferred
position of the output neuron as dictated by the learning population. The synaptic strength of
the input→output connections is gray-coded. At the lower right of the figure the evolution of the
localization error is shown (see section 4.2.3). Clearly visible in the figure is the strengthening of
the correct synaptic connections starting from a homogeneous synaptic strength distribution.

Typically, Erms first drops to a very low value as the weights on the central diagonal get
strengthened. As the diagonal band of strong weights broadens, the quality deteriorates to a certain
extend. In this case, the accuracy stabilizes at about 2%.

Figure 4.5 shows the rms deviation [Eq. (4.7)] of the weights from their starting value, and
the evolution of the localization error [Eq. (4.6)] for several values of η. Although the learning
parameter η varies by a factor of 100, all learning trials show the same behavior. After an initial
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Figure 4.5: The rms deviation of the weights [left, according to Eq. (4.7)] and the rms error [right,
according to Eq. (4.6)] for several values of the learning parameter η in the el case. The vertical
scale is logarithmic in both panels. For a large range of η values a steady increase in drms is observed.
The maximal value of drms is always approximately 0.1. The final value of Erms decreases with the
value of η, but even for relatively quick learning, the final error stays below 5%.

Figure 4.6: Weight evolution for il input with η = 3 · 10−6. As in the el case, map formation is
clearly visible. In contrast to Fig. 4.4, map evolution proceeds much faster than in the el case.
Only several hours of learning time are needed.

drop of the localization error the quality slowly climbs towards its final value. If smaller values of η
are used, the final map quality improves.

In Figs. 4.6 and 4.7 the same plots are shown for the case of inhibitory teacher input with
η = 3 · 10−6. The results are very similar, but there is an important difference. For inhibitory
teacher input, the localization error is much smaller than with excitatory teacher input, even if
the learning speed is much larger (compare the time scales and the development of the error in
Figs. 4.4 and 4.6).

As suggested by Figs. 4.4 to 4.7, the il scheme is quicker and more accurate than the el scheme.
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Figure 4.7: The rms deviation of the weights [left, according Eq. (4.7)] and the rms error [right,
according to Eq. (4.6)] for several values of η in the il case. Here too the vertical scales are
logarithmic. The same picture as in Fig. 4.5 arises. The weight deviation converges to 0.1 and the
localization error Erms decreases for smaller values of the learning speed. The final error (< 2%
even for fast learning) is decidedly smaller than in the el case.
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Figure 4.8: Localization error versus learning speed for excitatory and inhibitory learning input
[Eqs. (4.6) and (4.8)]. The speed of the learning process basically measures the time it takes for
the weight distribution to change significantly. Clearly, il outperforms el: at equal values of the
learning speed, the quality of the map learned with the il model is far better than the quality of the
map formed with the el model. This implies that the il model is more robust than the el model.

Figure 4.8 makes this difference explicit. If the final Erms is plotted against the learning speed as
calculated by means of Eq. (4.8), there is a large difference between el and il. For il, map quality
is very good even for high learning speeds. In practice, the final map quality is reached within a
couple of hours learning time. For el, much slower learning is needed (in the order of days) for the
model to remain stable and even then, the final map quality is poor as compared to the quality
achieved by il. Due to the finite number of neurons, the map quality cannot become arbitrarily
small, there is a plateau at an error of ≈ 0.5%. Decreasing the learning speed any further to obtain
a better map is impossible.
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Figure 4.9: Comparing analytical (solid black) and numerical (dotted red) results for el (left) and
il (right). All spike pairs are taken into account instead of just neighboring spike pairs (see also the
discussion in section 4.2.3). For el η = 3 · 10−7 and for il η = 3 · 10−6.
For both models, the analytical and numerical results fit very well. After the first synaptic strengths
reach a value JI

max, the capping of the weights introduces a nonlinearity into the model, and the
theoretical description breaks down. This explains the deviation of the theoretical and numerical
curves in these plots.

4.4.2 Comparison with analytical results

This section compares the analytical results from section 4.3 with numerical simulations. To arrive
at the analytical result, the deterministic Eqs. (4.24) and (4.31) were integrated, taking into account
that the weights must always stay within the range [JImin, J

I
max]. Figure 4.9 shows the comparison

between mathematical theory and numerical experiments for el and il.
The agreement between theory and numerical simulation is excellent, proving that the mathe-

matical framework developed in section 4.3 indeed provides a valid description.
Unfortunately, theory does not remain valid throughout the whole learning process. As soon

as some of the weights reach the value JImin or JImax, these weights are not allowed to decrease
(increase) any further. This cutoff introduces a nonlinearity into the description of the weight
change and the theory does not hold any more. The result is that the theoretical curve diverges
from the numerical simulation results from t ≈ 2500 s for el and t ≈ 400 s for il. Here, the seconds
are formal ones, depending on the timescale set by η.

4.4.3 Learning spatial transformations

Throughout this chapter, it has been tacitly assumed that the neuronal maps in the input and
teacher population are similar. That is, both maps are organized in such a way that the preferred
location increases smoothly from 0 to 1 from the leftmost to the rightmost neuron. In reality, this
need not be the case.

A good example of such a flexible transformation is provided by the experiments of Knudsen
and coworkers [92, 93]. If barn owls with normal visual and auditory capabilities are equipped
with prism glasses that shift their visual field, the auditory map in the icx changes to reflect this
deviation. Here, a rather drastic version of this experiment is simulated. After learning has been
completed and a stable map is formed, the teacher input is completely reversed (Knudsen et al. only
introduced a moderate shift in the visual input).

The weight distribution after learning (see Fig. 4.6) is now the starting point for the simulations,
but the teacher map will be inverted. That is, the teacher neurons now have a preferred position
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Figure 4.10: Weight evolution after inverting the teacher map for the il model. The weights change
to form a radically altered map in the output population within just a couple of hours learning
time. The quality of the newly developed map is nearly as good as the quality before restructuring.

running from 1 to 0 instead of a preferred position running from 0 to 1. Based on the new teacher
input, the output neurons must learn the correct transformation and the weights connecting input
and output population must radically change in order to completely reverse the output map.

The result of this simulation using the il model is displayed in Fig. 4.10. Clearly, dramatically
altering an existing map is unproblematic with inhibition-mediated teacher input. The quality of
the resulting inverted map is just as good as that of the original map.

For excitatory learning, the picture is quite different. Although the antidiagonal structure forms
correctly, the original diagonal band never vanishes. This is shown in Fig. 4.11. Although there is no
teacher input present to strengthen the old—now incorrect—connections, they stay in place solely
because of the excitatory input they receive from the input population. If an inhibitory teacher
signal is present, this ensureres that the incorrect connections are actively weakened. Reorganizing
the map is then unproblematic.

Another example of a spatial transformation has been discussed by Davison and Frégnac [78].
They analyzed the transformation between two cortical maps, one of these containing the angle
between upper and lower arm as measured by the proprioceptive system and another one encoding
the spatial position of the hand as perceived by the visual system. The coordinate transformation
between these two maps is effectively a sine function. Davison and Frégnac showed that such a
transformation can indeed be learned using their model, which is very much like the el model
discussed here. Below, it is demonstrated that such a transformation can also be achieved easily
through the il model.

In this test the preferred position of the teacher population is not given by Eq. (4.12a), but
instead by a sine function,

xTp =
1
2

[
1 + sin

(
2π

p− 1
NT − 1

)]
. (4.37)

The preferred position of the input population is still given by Eq. 4.12b. The result of the
corresponding simulation is shown in Fig. 4.12. As was to be expected, learning a sinusoidal
transformation is unproblematic in the il model.
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Figure 4.11: Weight evolution after inverting the teacher map for the el model. The weights change
to form a new antidiagonal structure. The old main diagonal remains in place, however, and this
leads to a useless map. Since there is no inhibition from the teacher map, the input population can
sustain strong connections from the situation before reorganization.
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Figure 4.12: Final weight distribution after a sine-transformation has been learned. Clearly, the
il model can be used to account for the learning of coordinate transformations between different
modalities.

4.4.4 Influence of noise

The above comparison of el and il suggests that inhibitory learning is quite robust; even at high
learning speed, stable learning occurs and radical alterations of the weight distribution are possible.
Here the robustness of the il model with respect to noise is tested in three separate test cases.

In the first test, noise is added to the firing rates of the input and teacher neurons as given
by Eqs. (4.9) and (4.10). For each learning trial, when a stimulus at one particular position y is
presented, the input firing rate of each input neuron is changed according to

λIi → λIi · (1 + χi) (4.38)

with χi a Gaussian distributed stochastic variable with mean 0 and standard deviation 0.25. The
teacher firing rate is changed in the same way.

In the second test, the initial weights are not all taken equal but instead the input weights Jip
are randomly chosen from a Gaussian distribution with mean JI0 and standard deviation 0.1JI0 .
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Figure 4.13: Final weight distribution for several learning runs including noise. Left: noise in input
and teacher rate; Middle: random initial synaptic weights; Right: random preferred positions. In
all cases the distribution of the synaptic strengths guarantees the presence of a neuronal map in the
output layer, although the map is less precise if the input population is not organized in a map.
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Figure 4.14: Localization error Erms if sources of noise are taken into account. Noise in the input
and teacher signals and random initial weights do not influence the final quality of the map. If the
input neurons are not organized in a map, but rather have random preferred positions, quality is
not so good. Still, a localization error below 10% is attained.

The third test assesses the influence of the absence of map-like organization in the input
population. All input neurons do have a preferred position in this setup, but there is no topographical
organization. Rather, the preferred direction of every input neuron is randomly taken from a
uniform distribution on [0, 1].

The results of these tests are shown in Figs. 4.13 and 4.14. From Fig. 4.13 it is clear that a
normal map is built if noise is added to the firing rates or if random input weights are used. This
is confirmed by the localization error in Fig. 4.14. In both cases, the output neurons are able to
form a high-quality map through stdp.

If the input neurons are not topographically organized the map quality may not become
extremely high. Although most output neurons are strongly connected to the correct input neurons,
some output neurons get input from the wrong neurons. This is due to the fact that some positions
will be “overrepresented” and others will be “underrepresented”. This may lead to a chain reaction
in which wrong connections from an overrepresented input position start dominating. In the case
shown here, the output positions xOp ≈ 0.03 and xOp ≈ 0.32 receive too much input from the wrong
input neurons. This causes the poor quality of the output map. In Fig. 4.14 (right) the chain
reaction can be recognized. At time t ≈ 18000 s the localization error suddenly increases. At this
time, a stable seed with strong incorrect connections has formed.
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If many more input neurons would be present, the change of some positions being under- or
overrepresented decreases and the map will have a much higher quality. If, in addition, learning is
very slow, the chance that an initial seed of incorrect connections is formed is also smaller.

4.4.5 Influence of model parameters

As discussed in section 4.2.3, linear and independent weight changes are generally used in this
chapter. This section further investigates the impact of the learning rules on the simulation results.
In addition, the effect of varying the width of the tuning curves of the input and teacher neurons
on the learning process is examined.

Multiplicative weight change
Instead of linearly adding weight changes, one might use a learning window in which the weight
changes depend on the actual strength of the weight itself. A regularly used learning rule consists
of taking a “multiplicative” learning window. This learning window has the following form:

W (s) =


w+ |s|

(τ+)2
e−|s|/τ

+ · (JImax − J) s < 0

−w− s

(τ−)2
e−s/τ

− · J s ≥ 0
. (4.39)

All parameters used here are identical to those given in table 4.1. The learning window above
ensures that the size of weight increases tends to zero as the weight approaches its maximum, and
that the amplitude of weight decreases becomes zero as the weight goes to zero. In this way a soft
bound on the synaptic weight is achieved.

Symmetric weight change
Another possibility is to take a learning window that does not behave in a strictly Hebbian way.
Instead of increasing the weight if presynaptic spikes precede postsynaptic spikes and decreasing
the weight if a postsynaptic spike precedes a presynaptic spike, a symmetric learning window is
taken

W (s) = w+ 1√
2πτ+

e−s
2/2(τ+)2 − w−

1√
2πτ−

e−s
2/2(τ−)2 . (4.40)

Again all parameters are as given in table 4.1. Through this window, the weight is increased if pre-
and postsynaptic spikes occur in close temporal distance and if the temporal distance is large the
weight is decreased. Although this learning rule cannot be used to learn precise temporal structure,
correlations between input and output signal can still be learned.

The results of simulations using these two alternative learning windows are shown in Fig. 4.15.
There is no influence of altering the learning rules on the quality of the resulting map. Although
the learning speed is different for the different rules, the final localization error approaches the
same value. In section 4.3 it is shown that indeed learning only depends on the integral over the
learning window and on the convolution of the learning window with the output neuron postsynaptic
response to input spikes. This simulation confirms that the precise shape of the learning window is
irrelevant.

Tuning curve width
As a final numerical experiment, the effect of the accuracy of the input and the teacher neurons
has been investigated. It would be expected that a wider tuning curve increases the learning speed
[see Eqs. (4.23) and (4.33)], and at the same time decreases the map quality. The behavior of the
il model has been tested for two cases.

75



4. Multimodal integration and tuning of sensory input

 0.01

 0.002

localization error Erms

40000 200000
time [s]

30000 10000

 0.005

 0.001

standard (η=3e-6)
symmetric learning window

multiplicative weight change

Figure 4.15: Localization error Erms for different learning rules. The final localization error does not
depend on the precise nature of the learning rule. This finding confirms the mathematical analysis,
which predicts that only integrals over the learning window are needed to describe the learning
process.
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Figure 4.16: Localization error Erms for different widths of the tuning curves. A two-fold increase of
the width of the teacher tuning curve leads to about the same increase in the localization error. If
the width of the input tuning curve is doubled, the error increases approximately five-fold. The
quality of the map in the output population thus depends more strongly on the quality of the input
map than on the quality of the teacher signal.

In the first case the width of the input tuning curve (σI) was doubled, leaving all other
parameters constant. In the second the teacher tuning curve width (σT ) was doubled. The results
are shown in Fig. 4.16.

The figure indicates a clear increase in the localization error if the tuning curve of the input or
teacher neurons is wider. If the tuning curve of the teacher neurons is made twice as large, Erms

increases by about the same factor. Changing the input tuning curve has a much larger effect. If
σI is doubled, the localization error of the output map increases approximately five-fold. Perhaps
surprisingly, the quality of the output map is therefore mainly determined by the accuracy of the
input neurons and not by the precision of the teacher signal.
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4.5 Discussion

4.5.1 Inhibitory or excitatory teacher input?

In this last chapter, two different possibilities to gauge neuronal maps using stdp were discussed.
Both models can account for map formation based on a topographic teacher template. The first
model that suggests itself, using excitatory learning input (el), is clearly not the most efficient
learning paradigm. If inhibitory teacher input (il) is used, the quality of the map and the learning
speed can be expected to be much better. This is because not only strengthening of the correct
synaptic connections between input and output layer occurs, but the incorrect connections are also
actively suppressed.

Regarding the el model, the results from this chapter confirm the work done by Davison &
Frégnac [78]. Robust map formation is possible and the learning of spatial transformations is no
problem. Restructuring of existing maps was not considered by Davison & Frégnac, but it has
been shown here that radically altering a completely developed map is not possible by means of an
excitatory teacher signal.

The il model is robust against noise (section 4.4.4) and learning is flexible with regard to
parameter variation (section 4.4.5). Spatial transformations can easily be learned and completely
developed maps can be radically restructured, as has also been demonstrated biologically (sec-
tion 4.4.3, compare [92, 93]). This property of the model matches the finding that neuronal maps
retain some degree of plasticity even after the developmental stage [85, 93, 94].

Although such an inhibition-mediated learning paradigm need of course not be realized in
the brain at every location where neuronal maps are learned, evidence from the barn owl brain
[81, 83, 90] strongly suggests that at least in this animal a topographic and inhibitory teacher signal
is used.

Especially if map changes must be radical and rapid, the learning algorithm must be very stable.
The il mechanism fulfills this requirement. A complete reorganization of the map such as shown
in Fig. 4.10 poses no problem for the il model but is not possible through the el scheme. With
excitatory teacher input it is of course possible to strengthen new synaptic connections, but since
the wrong connections are not actively weakened they will continue to exist alongside the newly
strengthened ones.

From the work in this chapter it can therefore be predicted that especially if the spatial accuracy
and the learning speed of neuronal maps need to be high, inhibition-mediated learning can be
expected to play a key role, whereas excitatory-based learning may still do a good job if demands
are not so high.

4.5.2 Influence of learning rules and neuron models

Although Hebbian-style plasticity can be implemented in several ways, stdp is the only local
mechanism that prevents runaway firing rates and at the same time is able to learn precise temporal
input correlations (review in [41]). This chapter has mainly focused on additive weight changes,
and a simple neuron model was used to facilitate a mathematical description. As argued above,
incorporating more complicated behavior into the learning rules is not expected to not change the
results (see sections. 4.2.3 and 4.4.5 and also [64, 71]).

Another question of interest is whether to use all-to-all spike pairings or just neighboring spike
pairs. It was argued above that using just neighboring spike pairs is biologically more plausible
(see also discussion in [56]). Taking, however, all-to-all spike pairings rather than a finite-range
interaction does not change the results of the simulations. Learning proceeds a bit faster if all
spike pairs are taken into account, but the map quality again stabilizes at the same level as in the
standard case (data not shown).
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The shape of the learning window does not strongly influence the learning process. The
mathematical analysis has shown that only the integral over the learning window and the convolution
of the learning window with the postsynaptic response of the output neurons to input spikes play a
role in the dynamics [Eq. (4.19)]. This has been confirmed by numerical simulations (Fig. 4.15).

The fact that the precise shape of the learning window is unimportant has to do with the lack
of temporal structure in the input and teacher signal. If for a given input position y the input and
teacher rate are constant—as chosen here—the output rate (4.15) will be constant as well. If the
firing rates have a richer temporal structure, the mathematical description from section 4.3 breaks
down. Preliminary simulations suggest, however, that the output population can learn a map based
on temporal features of the input signal. Obviously, this only works for inhibitory teacher input,
since excitatory teacher input would interfere with the signal from the input neurons, and the
temporal structure would be destroyed. Accordingly, the precise form of the learning window does
play an important role in learning.

The mathematical discussion explicitly shows the dependence of the learning process upon the
model parameters (section 4.3). Especially the width and the amplitude of the tuning curves of
the input and teacher neurons are important [as is clear from Eqs. (4.23) and (4.33)]. A wide and
high-amplitude tuning curve allows for quicker learning, but of course the resulting map quality is
worse, as is brought out by Fig. 4.16.

The effect of the tuning curve width on the accuracy of the resulting map is different for the
teacher and the input populations. The dominant influence in determining map accuracy is not
the tuning width of the teacher neurons, but rather the precision of the input neurons. It should
be possible to experimentally verify this prediction by designing experiments in which learning
takes place while the response of one of the input modalities is artificially blurred. For vision and
audition this could for example be achieved by equipping animals with distorting glasses or ear
plugs.

4.5.3 Origin of the teacher map

One of the questions that remains to be answered is why the visual system always seems to function
as a teacher for the other modality. An important property of the visual system is that a spatial
map is automatically induced through the input mapping upon the retina by a lens. The retina is
therefore intrinsically ordered in a map-like fashion. Activity waves spreading over the retina have
been found in the embryos of many species [107]. Such retinal waves, occurring regularly on a time
scale of seconds to minutes, provide coherent input to the visual system, aiding the development of
high-quality spatial maps. Even if the animal does not use its eyes, or opens them relatively late in
development (as many mammals do), a spatial template from the visual system would be present to
guide multimodal integration. In this way, the intrinsic topography from the retina might dictate
the organization and alignment of all multimodal maps in the brain.
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A. Notation

A.1 General issues

Differentiation An overdot means differentiation with respect to time: ḣ = dh/dt.

Fourier transform Fourier transformed functions are generally denoted with a capital letter,
whereas functions in the time domain are denoted with a lowercase symbol. The Fourier
transform F is defined as

H(ω) = F [h(t)](ω) :=
∫ ∞

−∞
dt e−iωth(t) . (A.1)

The inverse Fourier transform is then

h(t) = F−1[H(ω)](t) :=
1
2π

∫ ∞

−∞
dω eiωtH(ω) . (A.2)

Root Mean Square In this thesis, several data sets containing both positive and negative numbers
are encountered. To quantify the typical magnitude of elements from such a set, the mean
is of course not a practical choice. Instead, the root mean square (rms) value will be used.
Given a set x containing N values xi, the rms value of x is

xrms =

√∑
i x

2
i

N
. (A.3)

By definition, the rms value is always positive.

Half-wave rectification The operation of half-wave rectification simply reduces any function to
its positive part. It is denoted by [· · ·]+ and defined by

[h(x)]+ := h(x) →
{

0 h(x) < 0
h(x) h(x) ≥ 0 . (A.4)

A.2 Functions

δ function The δ function (“invented” by Dirac) is not really a function in the normal sense but
rather a generalized function or distribution. It can be defined by two properties

1. δ(x− x0) = 0 for x 6= x0 ; (A.5)

2.
∫ x0+ε

x0−ε
dx δ(x− x0) = 1 . (A.6)

The expression δ(x − x0) can be seen as a spike of infinite hight and infinitesimal width
located at x = x0 such that the surface under the spike equals unity. If the product of a δ
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function and an other function h is integrated, this has the effect of sampling the function h
at x0: ∫ ∞

−∞
dx δ(x− x0)h(x) = h(x0) . (A.7)

θ function Heaviside’s step function, denoted by θ, is defined as

θ (x) =
{

0 for x < 0
1 for x > 0 . (A.8)

The argument x may itself be a function of other variables. The value of θ(0) is mostly not
needed explicitly. For definiteness, however, one can take θ(0) = 1/2.

Alternatively to the definition above, the θ function can be regarded as the integral of
the δ function

θ(x) =
∫ x

−∞
dy δ(y) . (A.9)

α function The α function is often used as a model for postsynaptic responses. It has a quickly
rising profile, followed by an exponential decay towards zero. Its definition is

α(t, τ) = θ(t)
t

τ2
e−t/τ . (A.10)

The decay time of the function is set by τ . The normalization is such that
∫∞
−∞ dt α(t, τ) = 1.

Another common normalization is to give the maximum at t = τ a value of one, which leads
to α′(t, τ) = θ(t) t/τ exp(1− t/τ).

error function The error function is defined as

erf(z) =
2√
π

∫ z

0

dt e−t
2
. (A.11)

It pops up when normalization or integration of a Gaussian function is performed. The error
function is odd [erf(−z) = − erf(z)] and its value approaches ±1 for z → ±∞.

A.3 Important symbols and parameters

parameter description see

membrane voltage and action potentials
V membrane potential App. B.1.1, B.1.2, Eq. (1.4)
Ex reversal potential Eq. (1.1), (B.3)
Vr resting potential Eq. (1.2), App. B.1.1, B.1.2
τm membrane time constant App. B.1.1, Eq. (1.4)
τrefr refraction time App. B.1.1
τs synaptic time constant Eq. (1.3)
Cm membrane capacitance Sec. 1.2.4, App. B.1.1, B.1.2
R, g = R−1 membrane resistivity, conductivity Eq. (1.2), Sec. 1.2.4,

App. B.1.1, B.1.2
Iinject injected neuron current Sec. 1.2.4, App. B.1.1, B.1.2

response functions and firing rates
h general response kernel Eq. (1.7), Sec. 3.3.1, App. 3.4.1
ε postsynaptic response Eq. (1.3), (2.17), Sec. 3.3.2, 4.2.4
J synaptic strength Eq. (1.3), (4.3), Sec. 1.3.2, 4.3
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λ Poisson rate function App. B.2.1, Eq. (2.15), Sec. 4.2
ν mean firing rate Eq. (4.13), (4.15)
u heave response of snake jaw Sec. 2.3.3
ψ pitch response of snake jaw Sec. 2.3.3

learning variables
η learning parameter Eq. (1.13), Sec. 4.2.3
w0, wpre/post synaptic weight change Eq. (1.13), Sec. 4.2.3
W (s) learning window Eq. (1.13), Sec. 4.2.3

miscellaneous
vs vector strength Sec. 1.4, 2.4.1, 3.5.5
s acoustic input signal Sec. 3.2
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B. Short survey of neuron models

Building a computational model of a neural network requires a mathematical description of the
neurons that are the basic building blocks of the network. There is a huge number of models

that have varying degrees of complexity. This appendix discusses some widely-used models of
neuronal activity. A more elaborate account of these models (apart from the Izhikevich neuron
of section B.2.3) can be found in many textbooks, such as those by Tuckwell [40], Koch [36] or
Gerstner and Kistler [29].

The first section focuses on models that are directly rooted in known neuron physiology. The
second section discusses more abstract models. Although the latter models are not directly related
to neuron physiology, they are still able to capture important aspects of neuronal functioning. The
last section of this appendix reflects on the question which neuron model should be chosen from
the many possibilities.

B.1 Physiological models

B.1.1 Leaky integrate-and-fire neuron

Perhaps the simplest possible neuron model still directly based on electrophysiological findings is the
leaky integrate-and-fire (lif) neuron. The lif model is based on the fact that the membrane voltage
is determined by the flow of ions, and thus electrical current, through the membrane. Already in
1907, Lapicque recognized that it is possible to model the cell membrane as a simple electrical
circuit (translation of the original paper in [37]). In its modern form, the equation describing the
membrane potential V reads

V̇ = −V − Vr
τm

+
Iinject

Cm
. (B.1)

The voltage change is determined by the ratio between input current Iinject and the membrane
capacitance Cm. If no input current is present the potential relaxes to a resting value Vr with
characteristic membrane time constant τm = Cm/g, with g the membrane conductivity.

Equation (B.1) can be represented by the electrical circuit diagram shown in Fig. B.1. The cell
membrane of the neuron is reduced to a capacitor and resistance in parallel.

So far, the neuron described by (B.1) does not exhibit spiking behavior. Spiking is achieved
by introducing a threshold potential Vθ into (B.1). As soon as the potential crosses this threshold
value a spike is defined to occur and the potential is reset to a value Vreset. Refractoriness of the
neuron can be taken into account by disallowing the neuron to fire for a certain period τrefr after
spiking, by changing the threshold voltage temporarily to a higher value, or by temporarily ignoring
the input current (see also [29]).

As long as the potential stays below the firing threshold Vθ, the time dependence can be solved
exactly. Assuming that the neuron has emitted an action potential and that the potential has been
reset to V = Vreset at t = t0 the potential is given by

V (t) = Vr + e−(t−t0)/τm

[
Vreset − Vr +

1
Cm

∫ t

t0

dt′ e(t
′−t0)/τmIinject(t′)

]
. (B.2)
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Cm gm
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inside cell
Figure B.1: A leaky integrate-and-fire neuron can be represented by a simple electrical diagram.
The injected current charges a capacitor Cm in parallel with a leak resistance gm. As soon as the
voltage V crosses a threshold value Vθ, a spike is said to occur and the voltage is reset to a value
Vreset.

Cm gm gNagK

ENaEKVr

V
Iinject

outside cell

inside cell
Figure B.2: The hh model can be visualized by a simple circuit diagram. The parallel ion channels
are represented as (variable) resistances. The charge shielding effect of the cell membrane is modeled
as a capacitance and the whole system is driven by an external current Iinject.

As soon as spiking is included the analysis becomes very difficult, if not impossible. A review of
some analytical results can be found in [24, 25].

B.1.2 Hodgkin-Huxley type neuron

Of the neuron models that are described in this appendix, the Hodgkin-Huxley (hh) type neuron
models1 come closest to being a “true” representation of neuronal functioning. In hh type models,
all ion channel types that play a role in action potential generation are individually modeled. The
dynamics of one channel type are described by a differential equation giving the fraction of open
channels of this type as a function of the potential difference over this channel. Consequently,
the conductance contribution of this channel type is then known as a fraction of its maximal
conductance (when all channels are open).

The corresponding electrical circuit diagram is shown in Fig. B.2. Originally, the hh model
contained two voltage-dependent conductance terms representing the sodium and potassium channels
in the membrane. In addition to these two channels, a voltage-independent leak conductance gm,
the membrane capacitance Cm and an input current Iinject are taken into account. Below, the
slightly more general case with an unspecified number of different ion channels is treated.

The total current through the membrane is given by the sum over all ionic currents plus leak

1 The original model was developed by Hodgkin and Huxley in 1952 [30], but their approach has been used many
times—and continues to be used—by other researchers to construct realistic neuron models [1].

86



B. Short survey of neuron models

current and injected current. Denoting the channel type by x, the current satisfies

I =
∑
x

(V − Ex)gx + (V − Vr)gm + Iinject . (B.3)

The reversal potential Ex has been discussed in section 1.2.1, and the leak current is determined by
the membrane leak conductance gm and the resting potential Vr. This leak current occurs because
there is always a fraction of ion channels that are not voltage-dependent and which will be open all
the time, regardless of the value of the membrane potential. The membrane conductance is thus
always nonzero. The equation describing the membrane potential is now given by

CmV̇ = I =
∑
x

(V − Ex)gx + (V − Vr)gm + Iinject , (B.4)

where Cm is the membrane capacitance.
The interesting dynamics of this equation arise because the channel conductances gx are not

constant but rather a function of the membrane potential V . The conductance contribution gx for
the channel type x is

gx = ḡxµ
α
xλ

β
x , (B.5)

with ḡx the maximal conductivity. The parameters α and β are natural numbers and the variables
(µx, λx) ∈ [0, 1] are activating and incactivating gating variables, respectively. Both µx and λx
satisfy a voltage-dependent differential equation

τµx
µ̇x = µx,∞ − µx , (B.6a)

τλx
λ̇x = λx,∞ − λx , (B.6b)

where the variables τµx
, τλx

, µx,∞, and λx,∞ are functions of V . τµx
and τλx

determine the time
scale of the dynamics and µx,∞ and λx,∞ give the steady state values of µx and λx.

The functional dependence of the variables is chosen such that if the membrane voltage V
increases from its resting value, the activation variable µx grows from its small resting value (the
conductance increases) and the inactivation variable λx decreases from its resting value, reducing
the conductance. The numbers (α, β) ∈ N, which may be zero, determine the impact of the gating
variables on the total conductance.

All gating variables satisfy equations of the type (B.6a) and (B.6b). Because the steady state
variables (µx,∞, λx,∞) and the timing variables (τµx

, τλx
) are different for each ion channel, a

complex system of non-linear differential equations arises. This complexity notwithstanding, it is
quite easy to understand intuitively how an axion potential arises. If the membrane depolarizes due
to some input current, the channels with the shortest activation time constant will quickly open,
allowing positive charge (typically sodium ions) to flow in. This further increases the membrane
potential. After a short time, other ion channels open (potassium starts flowing out of the cell)
and the sodium inactivation variable becomes very small, both countering the effect of the charge
influx. This mechanism leads to a short peak in the membrane potential followed by a relatively
slow decay towards the resting potential.

In their original paper Hodgkin and Huxley used two ion channels determining the membrane
permeability for potassium and sodium ions. In modern hh type models, the number of different
ionic gates may be as large as a dozen and other ions may play a role in addition to sodium
and potassium. Consequentially, a plethora of models has been developed, tailored to match the
characteristics of special neuron types found in the brain [1].
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B.2 Phenomenological models

B.2.1 Poisson neuron

A Poisson neuron is a simple model neuron with stochastic firing dynamics. The neuron lacks
a threshold and may therefore be seen as biologically unrealistic. On the other hand, precisely
because of the lacking threshold, the model is linear and can be described very easily mathematically
[55, 57], also see [40].

The Poisson neuron model is defined by the following properties:

• The instantaneous firing rate (or rate function) of the neuron, which can be an arbitrary function
of time, is given by λ(t).

• The probability P that a spike occurs in the small time interval [t, t+ δt] is given by

Pspike in [t, t+ δt] = λ(t)δt . (B.7)

• The probability of getting more than one spike during an interval of length δt is of order o(δt),
that is,

Pmore than one spike

δt
→ 0 for δt→ 0 . (B.8)

• The probability of firing a spike does not depend on the previous spiking history of the neuron.

The expectation of the total number of spikes 〈N〉 that occurs in a given interval t = [t0, t1] can
be calculated by

〈N〉 =
∫ t1

t0

dt λ(t) . (B.9)

Although the spiking probability is independent of the previous spiking history, refractory behavior
can be implemented in numerical simulations by using the desired refractory period as step size δt.
This possibility should be treated with care, since the analytical expression (B.9) is then invalid.

Although the Poisson neuron model is very simple, it captures some very important aspects
of neuron firing. First, neuronal firing is to some degree stochastic, and second, explicit time-
dependence of firing probabilities is taken into account. Because of the linearity of Eq. (B.7), an
exact mathematical understanding of the learning process is possible [57].

It is to be stressed that the Poisson model is not simply equivalent to a rate coding. Since
spike generation is explicitly taken into account, the theory and simulations are much richer than
they would be with a pure rate-based modeling approach. In addition, the firing rate functions are
allowed to have an arbitrary time dependence. The firing rate can therefore vary on a very small
time scale, whereas a rate-based description always uses time-averaged firing rates.

The expectation value of the output from a Poisson neuron can be calculated analytically. If a
spike occurring at time t = t0 of the Poisson neuron gives rise to a response h(t−t0), a post-synaptic
current, the total response is given by [55]∫ t

−∞
ds h(t− s)λ(s) . (B.10)

If h is chosen so that causality is ensured, i.e., h(t) = 0 for t < 0, the expectation of the output is
given by ∫ ∞

−∞
ds h(t− s)λ(s) . (B.11)
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Figure B.3: Null-clines of the fn model (left) and response to a current pulse. Depending on the
size of the input pulse, the system can quickly relax to the fixed point, or take a large detour. The

“potential variable” v reaches a large value and a “spike” occurs. The transition between these two
responses as a function of the current step size is smooth, but occurs so quickly that it can be
interpreted as a real threshold.
Parameter values: φ = 0.1, a = 0.7, b = 0.8.

Since a Poisson neuron fires stochastically, two realizations of the firing dynamics governed by
some particular λ(t) will always differ. The variance of the output response can also be calculated
explicitly [55] and is given by ∫ ∞

−∞
ds h2(t− s)λ(s) . (B.12)

B.2.2 FitzHugh-Nagumo neuron

Action potential generation in the Hodgkin-Huxley model takes place as a result of the interplay
between fast and slow gating variables. If a large enough input is presented,the sodium activation
variable rises very rapidly, leading to a quick membrane depolarization. The sodium inactivation
variable and the potassium activation follow more slowly, eventually restoring the membrane
potential to its resting value.

In the FitzHugh-Nagumo (fn) model [28, 39] the number of dynamic variables is reduced to two.
A fast variable, v, that stands for the membrane potential, is coupled to a slowly changing variable,
w, that represents the inactivation dynamics of the neuron. The coupled differential equations for
v and w are

v̇ = v − v3/3− w + I

ẇ = φ (v + a− bw) .
(B.13)

a,b and φ are parameters. If φ is taken to be small, ẇ � v̇ most of the time unless v̇ happens to be
very close to zero itself.

This system can be understood using bifurcation theory [260]. In Fig. B.3 the phase diagram of
Eq. (B.13) is plotted. In the absence of any input current, the null-clines are given by

v̇ = 0 → w = v − v3/3 [green] (B.14a)

and

ẇ = 0 → w =
v + a

b
[red] . (B.14b)

The intersection of the null-clines defines a stable fixed point in the absence of input (Fig. B.3, left).
If a short current pulse is injected, the voltage suddenly jumps to a larger value. If the voltage

step is large enough, the voltage variable must increase further (the arrows in the phase diagram
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Figure B.4: Response of the fn model to sustained current input. Depending on the size of the
input, the system may quickly relax or settle into a limit cycle (regular spike train).

in Fig. B.3 point to the right), and the only way for the system to relax to the resting state is
through a detour involving large values for v and w. This can be interpreted as spiking behavior.
For small (sub-threshold) inputs the system directly relaxes to the ground state, and for large
(super-threshold) inputs a large voltage excursion (spike) occurs.

The effect of a current step is demonstrated in Fig. B.4. As soon as the current is switched on,
the null-cline for v shifts upward. For very small or very large values of the current step (under- or
over-stimulation), the new fixed point is stable and the system relaxes to a new stable fixed point.
For intermediate current step sizes, the fixed point is unstable. In this case, the system approaches
a limit cycle around the fixed point. This can be interpreted as an endless spike train in response
to a sustained current input.

Although the equations describing the neuron dynamics in the fn model are quite simple (the
only non-linearity is the third power of the potential variable v), interesting and plausible behavior
results. The fn model is the most simple neuron model that shows this kind of bifurcation dynamics.
For the case shown in Fig. B.4, the three regimes correspond to a fixed point to the left of the local
minimum of the v-null-cline (under-stimulation), a fixed point to the right of the local maximum
of the v-null-cline (over-stimulation), and a fixed point between the extrema (limit cycle). The
two changes in direction of the v-null-cline guarantee that the fixed point changes from stable to
unstable to stable if the w-null-cline is shifted upwards.

B.2.3 Izhikevich neuron

Although the fn model provides a very elegant way to understand the behavior of neurons, it is
quite limited. The types of responses that can be obtained with the model are quickly exhausted.
In many biological systems, highly nontrivial neuronal responses are found. Some neurons respond
to constant input, others only to changes in input amplitude. Bursting behavior is regularly found,
often with inter-spike and inter-burst intervals that change in time.

To make efficient modeling of such behavior possible, Izhikevich has developed a fn-like model
that can reproduce many of the experimentally found spiking responses [31, 32, 33]. Just as in the
fn case, there is one slow and one fast variable. The equations describing the system are

v̇ = 0.04v2 + 5v + 140− w + I

ẇ = φ (av − w) .
(B.15)

As soon as the voltage variable v reaches a threshold, a spike is said to occur and both v and w are
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reset according to

if v ≥ 30, then
{
v → b
u→ u+ c

. (B.16)

Depending on the choice for the variables a, b, c, and φ, it is possible to obtain a wide range of
behaviors.2 In combination with the threshold, a simple quadratic nonlinearity suffices to generate
a whole zoo of neuronal responses. A large advantage of this model is that the computational
implementation is very efficient, especially as compared with the hh model.

B.3 Which model to choose?

Depending on the problem at hand, a specific neuron model will be the most suitable choice. If
rigorous biological realism is an important criterion, the Hodgkin-Huxley model will often perform
well. The equations in the hh model are directly rooted in ion channel physiology and for any type
of neuron, an hh-type model can be devised that accurately reproduces this neuron’s behavior. The
price that must be paid is a very high degree of mathematical complexity. Analytical calculations
are generally not feasible. Therefore, hh-type models should only be used where biological realism
is of utmost importance.

The Izhikevich neuron is often a much better choice. If realistic spiking behavior is needed,
but the physiological details of spike generation are not important, this neuron model can be very
helpful. Although an analytical characterization of the spiking behavior is very difficult, the model
can be numerically simulated very efficiently. A disadvantage of this model is that extreme care
must be taken in specifying the model parameters. Since many qualitatively different neuronal
response types can be simulated, it must be known in advance what type of response is needed to
obtain biologically realistic results for the system under consideration.

If detailed biological data are lacking—as is often the case—the hh model and the Izhikevich
neuron are not very convenient. In this situation, it is better to stick to a simple neuron model.
Although some biological precision is lost, a simple neuron model will at least provide a reasonable
first approximation. The Fitzhugh-Nagumo neuron has been a very influential model since it allows
for an intuitive understanding of the dynamics underlying the much more complicated hh-type
models. The fn equations are still quite complicated, although only a relatively limited response
repertoire is possible.

A more efficient neuron model is the leaky-integrate-and-fire neuron. The equation describing
the membrane potential is exceptionally simple and an analytical characterization of the neuronal
response is possible in some cases. The biggest advantage, however, lies in the fact that an extremely
efficient numerical implementation of this model is possible. Despite this efficiency, the model
commonly does an adequate job. It incorporates (slow) integration of inputs, temporal decay in the
absence of input, and has a spiking threshold giving an all-or-none response. If needed noise can be
implemented by simply adding a noise term to the input current or by varying the threshold. These
properties are exactly the characteristic properties of any real neuron. Therefore, if no reliable
biological facts suggests that the lif neuron is not a good choice in a particular situation, the lif
neuron can always be used.

An extremely simplified model of neuronal behavior is given by the Poisson neuron. It lacks a
threshold, which makes it amendable to mathematical analysis. A fairly rich response behavior is,
however, possible by choosing a suitable expression for the rate function. An important feature of
the Poisson neuron is that it is inherently noisy. Neuronal responses are almost always stochastic
to some extent, but the Poisson neuron can display an unusually large noise level, depending on the
rate function. Still, the advantage of analytical tractability is so substantial, that Poisson neurons
are often used.

2 In [33], 20 different types of spiking response are distinguished, which can all be simulated using the Izhikevich
neuron model.
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Precise neuronal dynamics are not of great importance in this dissertation. The focus is instead
on the behavior of (large) neuronal networks. Therefore, all simulations and analytical calculations
have been performed using either lif neurons or Poisson neurons.
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