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Abstract

Auctions have been getting increasing attention in computer science and eco-

nomics, as they provide an efficient solution to resource allocation problems

with self-interested agents. E-Commerce and finance have emerged as some

of their largest application fields. The need for new auction mechanisms that

allow for complex bids such as bundle bids and multi-attribute bids has been

raised in many situations. In addition to strategic problems, the design of

these multidimensional auctions exhibits hard computational problems. For

example, the winner determination typically leads to NP-hard allocation prob-

lems in combinatorial auctions. More recently, researchers have focused on the

pricing and information feedback in combinatorial auctions.

Iterative combinatorial auctions (ICAs) are IT-based economic mechanisms

in which bidders submit bundle bids iteratively and the auctioneer computes

allocations and ask prices in each auction round. Several ICA designs have

been proposed in the literature, but very little was known about their behavior

in different settings. The multi-item and discrete nature of ICAs and complex

auction rules defy much of the traditional game theoretical analysis in this

field. The literature provides merely equilibrium analysis of ICAs with non-

linear personalized prices under strong assumptions on bidders’ strategies. In

contrast, ICAs based on linear prices have performed very well in the lab and

in the field.

Computational methods and laboratory experiments can be of great help in
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exploring potential auction designs and analyzing the virtues of various design

options. The goal of our research was to benchmark different existing ICA

designs and to propose new, improved auction rules. We focused on linear-

price auctions, but also included one ICA design with non-linear personalized

prices.

In the computational simulations we compared three selected linear price ICA

designs and the VCG auction based on the allocative efficiency, revenue distri-

bution, and speed of convergence using different bidding strategies and bidder

valuations. We found that ICA designs with linear prices performed very well

for different value models even in case of high synergies among the valuations.

There were, however, significant differences in the efficiency and revenue dis-

tribution of the three ICA designs. Even heuristic bidding strategies in which

bidders submit bids for only a few of the best bundles led to high levels of

efficiency. We have also identified a number of auction rules for the ask price

calculation, bidder activity, and auction termination that have shown to per-

form very well in the simulations.

In the laboratory experiments we compared the same auction designs and one

ICA design with non-linear personalized prices in respect to the same perfor-

mance measures. We were able to identify several similarities to the compu-

tational results, but also quite heterogeneous bidding behavior, which did not

correspond to the pure myopic best-response bidding strategy in any of the

auction designs. Nevertheless, we achieved high efficiency levels in all auction

designs. Furthermore, we identified significant differences in the auctioneer

revenue depending on the auction design, but not on the number of the auc-

tioned items (3, 6, and 9). We also observed a very low speed of convergence

of the ICA design with non-linear personalized prices, which makes it (at least

in its current form without using proxy agents) hardly suitable for practical

applications.



Zusammenfassung

Auktionen haben in den letzten Jahren zunehmende Aufmerksamkeit in In-

formatik und Wirtschaftswissenschaften gewonnen, da sie zur effizienten Al-

lokation von Ressourcen eingesetzt werden können. Zu ihren größten Ein-

satzgebieten gehören unter anderem die Finanzbranche und E-Commerce. In

vielen Fällen wurden dabei neue Auktionsmechanismen nachgefragt, die kom-

plexe Gebote auf mehrere Güter oder unterschiedliche Eigenschaften eines

Gutes ermöglichen. Abgesehen von der strategischen Komplexität, wird die

Konstruktion solcher Verfahren zusätzlich durch die Komplexität der dort

auftretenden Berechnungsprobleme erschwert. Zum Beispiel gehört das Al-

lokationsproblem bei kombinatorischen Auktionen zur Klasse der NP-schweren

Probleme. In jüngster Zeit haben sich Wissenschaftler vorwiegend auf der

Preissetzung und auf den Arten der als Feedback übermittelten Informationen

fokussiert.

Iterative kombinatorische Auktionen (ICAs) sind IT-basierte ökonomische

Mechanismen, in denen Bieter die Möglichkeit haben, Gebote auf untrennbare

Güterbündel in mehreren Runden iterativ abzugeben. Nach jeder Runde erhal-

ten die Bieter vom Auktionator Informationen zu aktuellen Preisen und/oder

der aktuellen Zwischenallokation. In der Literatur wurden mehrere Auk-

tionsverfahren vorgeschlagen, aber ihr Verhalten unter unterschiedlichen Rah-

menbedingungen wurde zu wenig untersucht. Wegen ihrer diskreter Struk-

tur und komplexer Bietregeln, wird die spieltheoretische Analyse von ICAs
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wesentlich erschwert. In der Literatur findet man lediglich Equilibrium-

Analysen von ICAs mit nichtlinearen personalisierten Preisen unter sehr stren-

gen Annahmen über die verfolgten Bietstrategien. Im Gegenteil, ICAs mit

linearen anonymen Preisen wurden erfolgreich in Feldstudien und im Labor

eingesetzt.

Rechensimulationen und Laborexperimente können bei der Analyse und Ver-

gleich von Auktionsformaten und bei der Untersuchung der Auswirkungen

von unterschiedlichen Konfigurationsparametern eine große Hilfe leisten. In

unseren Forschungsprojekten wollten wir diverse existierende Auktionsmech-

anismen vergleichen und neue, verbesserte, Auktionsregeln entwickeln. Dabei

haben wir uns auf Auktionen mit linearen anonymen Preisen konzentriert,

aber auch ein Auktionsformat mit nicht-linearen personalisierten Preisen un-

tersucht.

In den Rechensimulationen haben wir drei ausgewählte ICA Formate mit lin-

earen anonymen Preisen und die VCG-Auktion verglichen, indem die alloka-

tive Effizienz, die Gewinnverteilung und die Konvergenzgeschwindigkeit unter

Annahmen von unterschiedlichen Wertemodellen und Bietstrategien gemessen

wurden. Dabei haben die untersuchten ICAs mit linearen Preisen bei unter-

schiedlichen Wertemodellen und sogar mit hohen Synergien zwischen einzelnen

Gütern sehr gute Ergebnisse geliefert. Wir haben allerdings signifikante Un-

terschiede in der Effizienz und Gewinnverteilung zwischen den einzelnen Auk-

tionsformaten festgestellt. Auch bei heuristischen Bietstrategien, bei denen die

Bietagente nur auf eine zufällig ausgewählte Untermenge der momentan besten

Bündel Gebote abgeben, haben wir hohe Effizienzgrade beobachtet. Wir haben

auch mehrere neue Preisberechnungs-, Aktivitäts- und Abschlussregeln en-

twickelt, mit denen die Auktionsergebnisse deutlich verbessert werden kon-

nten.

In den Laborexperimenten haben wir dieselben Auktionsformate und ein ICA

mit nicht-linearen personalisierten Preisen im Bezug auf dieselben Kriterien
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verglichen. Wir haben viele ähnliche Phänomena wie bei unseren Simula-

tionsergebnissen identifiziert, aber auch ein sehr heterogenes Bietverhalten

beobachtet, wobei bei keinem der Auktionsformate eine Analogie zur “my-

opic best-response” Strategie ersichtlich war. Nichtsdestotrotz haben wir bei

allen Auktionsformaten hohe Effizienzgrade erzielt. Außerdem haben wir sig-

nifikante Unterschiede in der Gewinnverteilung beobachtet, die vom Auktions-

format, aber nicht von der Güterzahl (3, 9 und 9) beeinflusst wurden. Beim

untersuchten ICA mit nicht-linearen personalisierten Preisen war die Konver-

genzgeschwindigkeit sehr niedrig, was dieses Auktionsformat (zumindest in

der aktuellen Form ohne Proxy-Agenten) für praktische Anwendungen kaum

brauchbar macht.
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Maria Präßl at that time. Dr. Christian Kredler was also the one, who rec-

ommended me to Prof. Dr. Martin Bichler, and so predetermined my way.

Last but most important, I want to thank my whole family, especially my

wife, who fully supported my decision and tolerated my time consuming work

throughout all those years, to my three years old daughter, who made my work

a little bit longer but my life much more meaningful, and to my parents, who

enabled and encouraged me to go this way.

I dedicate this dissertation to Vita Pikovskaya, my grandmother, who died two

years ago and could not see me finishing this work. She was a great person,

a loved grandmother, my closest confidant and adviser for many years. She

always wanted the best for me, and, in particular, encouraged me for this work.

She was a professional journalist and a wise person, but, unfortunately, she

has written no book by herself. Though I can not fill this gap with my highly

technical dissertation, I dedicate it to her in sign of love and memory.



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures xv

List of Tables xix

1 Introduction 1

1.1 Combinatorial Auctions . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Goals and Methodology . . . . . . . . . . . . . . . . . 5

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 About this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Iterative Combinatorial Auctions 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Auction Design Space . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Bidding Languages . . . . . . . . . . . . . . . . . . . . . 24

2.3.2 Information Feedback and Pricing Schemes . . . . . . . . 28

2.3.3 Bidding Rules . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



x CONTENTS

2.3.4 Allocation Rules . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 Timing Issues . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.6 Proxy Agents . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Winner Determination Problem . . . . . . . . . . . . . . . . . . 35

2.5 Equilibrium Prices and the Core . . . . . . . . . . . . . . . . . . 41

2.5.1 Vickrey-Clarke-Groves Auction . . . . . . . . . . . . . . 43

2.5.2 Compatible Prices . . . . . . . . . . . . . . . . . . . . . 46

2.5.3 Competitive Equilibrium Prices . . . . . . . . . . . . . . 48

2.6 Price-Based Iterative Combinatorial Auctions . . . . . . . . . . 55

2.6.1 Primal-Dual Auction Designs . . . . . . . . . . . . . . . 56

2.6.2 Linear-Price Auctions Designs . . . . . . . . . . . . . . . 59

3 Selected Auction Designs 61

3.1 Combinatorial Clock (CC) Auction . . . . . . . . . . . . . . . . 61

3.2 Resource Allocation Design (RAD) . . . . . . . . . . . . . . . . 65

3.3 Approximate Linear PriceS (ALPS) . . . . . . . . . . . . . . . . 66

3.4 iBundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Computational Experiments 73

4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Value Models . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Bidding Agents . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Efficiency and Revenue Analysis . . . . . . . . . . . . . . . . . . 78

4.2.1 Efficiency of Different ICA Designs . . . . . . . . . . . . 78

4.2.2 Auctioneer Revenue in Different ICAs . . . . . . . . . . . 83

4.2.3 Price Monotonicity . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS xi

4.2.4 Inefficiencies in Linear-Price ICAs . . . . . . . . . . . . . 87

4.2.5 Linear Price Compatibility Distortions . . . . . . . . . . 89

4.3 Bidding Strategies Analysis . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Efficiency of Pure Strategies . . . . . . . . . . . . . . . . 91

4.3.2 Sensitivity Analysis wrt. the Bidder Type . . . . . . . . 93

5 Design of Laboratory Experiments 97

5.1 Economic Environment and Auction Mechanisms . . . . . . . . 97

5.1.1 Classification of Economic Experiments . . . . . . . . . . 97

5.1.2 Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.3 Validity and Realism of Experiments . . . . . . . . . . . 100

5.1.4 Reward Mechanisms . . . . . . . . . . . . . . . . . . . . 101

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Value Models . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.3 Nuisances . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.4 Reward Mechanism . . . . . . . . . . . . . . . . . . . . . 109

5.2.5 Conduction Scheme . . . . . . . . . . . . . . . . . . . . . 110

5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Hypotheses and Response Variables . . . . . . . . . . . . . . . . 112

5.3.1 Behavioral Assumptions and Bidding Strategies . . . . . 112

5.3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Results of Laboratory Experiments 117

6.1 Aggregate Performance Metrics . . . . . . . . . . . . . . . . . . 117

6.1.1 Pairwise Comparisons of Auction Designs . . . . . . . . . 121

6.1.2 Pairwise Comparisons of Value Models . . . . . . . . . . 123



xii CONTENTS

6.1.3 ANOVA Analysis . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Analysis of Bidding Behavior . . . . . . . . . . . . . . . . . . . 125

6.2.1 Bidding Behavior in the VCG Auction . . . . . . . . . . 126

6.2.2 Best-Response Bidding Behavior in Iterative CAs . . . . 128

6.2.3 Ordinal Choice Model . . . . . . . . . . . . . . . . . . . 135

7 Conclusions 139

7.1 A Brief Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A ALPS Auction Design Reference 145

A.1 ALPS Ask Prices . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 ALPS Surplus Eligibility . . . . . . . . . . . . . . . . . . . . . . 151

A.3 ALPS Termination Rules . . . . . . . . . . . . . . . . . . . . . . 153

B Value Models for Lab Experiments 157

B.1 Value Model VM1 . . . . . . . . . . . . . . . . . . . . . . . . . . 157

B.2 Value Model VM2 . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Value Model VM3 . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B.4 Value Model VM4 . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C Simulations for Lab Experiments 163

C.1 Best-response bidding strategy . . . . . . . . . . . . . . . . . . . 164

C.1.1 Value Model VM1 . . . . . . . . . . . . . . . . . . . . . 164

C.1.2 Value Model VM2 . . . . . . . . . . . . . . . . . . . . . 165

C.1.3 Value Model VM3 . . . . . . . . . . . . . . . . . . . . . 166

C.1.4 Value Model VM4 . . . . . . . . . . . . . . . . . . . . . 167

C.2 Heuristic 3of5 bidding strategy . . . . . . . . . . . . . . . . . . 168



CONTENTS xiii

C.2.1 Value Model VM1 . . . . . . . . . . . . . . . . . . . . . 168

C.2.2 Value Model VM2 . . . . . . . . . . . . . . . . . . . . . 168

C.2.3 Value Model VM3 . . . . . . . . . . . . . . . . . . . . . 169

C.2.4 Value Model VM4 . . . . . . . . . . . . . . . . . . . . . 170

C.3 Heuristic 3of10 bidding strategy . . . . . . . . . . . . . . . . . . 171

C.3.1 Value Model VM1 . . . . . . . . . . . . . . . . . . . . . 171

C.3.2 Value Model VM2 . . . . . . . . . . . . . . . . . . . . . 171

C.3.3 Value Model VM3 . . . . . . . . . . . . . . . . . . . . . 172

C.3.4 Value Model VM4 . . . . . . . . . . . . . . . . . . . . . 173

D Software Plattform Overview 175

D.1 Framework Architecture . . . . . . . . . . . . . . . . . . . . . . 176

D.2 Communication Interface and Data Model . . . . . . . . . . . . 178

D.3 Auction Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

D.4 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . 184

D.5 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

D.6 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

E List of Symbols 193

F List of Abbreviations 197

Bibliography 199

Index 211



xiv CONTENTS



List of Figures

2.1 Process of an iterative auction . . . . . . . . . . . . . . . . . . . 16

2.2 Classification of multi-item auctions . . . . . . . . . . . . . . . . 22

2.3 Combinatorial Allocation Problem (CAP) as ILP . . . . . . . . 38

2.4 Winner Determination Problem (WDP) . . . . . . . . . . . . . 39

2.5 Relation between competitive equilibrium, core outcome and
efficient allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Transportation and Real Estate value models . . . . . . . . . . 76

4.2 Best-chain bidder algorithm . . . . . . . . . . . . . . . . . . . . 77

4.3 Box plot of allocative efficiency for the Real Estate value models
with best-response bidders . . . . . . . . . . . . . . . . . . . . . 81

4.4 Box plot of allocative efficiency for the Transportation value
models with best-response bidders . . . . . . . . . . . . . . . . . 81

4.5 Box plot of allocative efficiency for the Matching and Pairwise
Synergy value models with best-response bidders . . . . . . . . . 82

4.6 Box plot of allocative efficiency for a Real Estate and Trans-
portation value model with power-set bidders . . . . . . . . . . 82

4.7 Revenue distribution of the Real Estate and Transportation
Model with best-response bidders . . . . . . . . . . . . . . . . . 84

4.8 Calculation of the item price non-monotonicity . . . . . . . . . . 85

4.9 Average price non-monotonicity µ in the Real Estate and Trans-
portation value models . . . . . . . . . . . . . . . . . . . . . . . 86

xv



xvi LIST OF FIGURES

4.10 Percentage of linear ask prices with price distortions in the Real
Estate and Transportation value models . . . . . . . . . . . . . 90

4.11 Changes in efficiency depending on synergy . . . . . . . . . . . . 91

4.12 Revenue Distribution with pure bidding strategies in the Real
Estate 4x4 value model . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Revenue distribution in different auction designs . . . . . . . . . 121

6.2 Number of auction rounds . . . . . . . . . . . . . . . . . . . . . 122

6.3 Revenue distribution in different value models . . . . . . . . . . 123

6.4 Scatter plots of bids in the VCG auction . . . . . . . . . . . . . 129

6.5 Distribution of bids in different value models . . . . . . . . . . . 131

6.6 Detailed distribution of bids in VM3 . . . . . . . . . . . . . . . 131

6.7 Detailed distribution of bids in VM4 . . . . . . . . . . . . . . . 132

6.8 Distribution of bids on individual level in ALPS and the CC auc-
tion in VM3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Distribution of bids on individual level in iBundle in VM3 . . . 135

6.10 Distribution of bids in ALPS and iBundle for bidders with the
same set of valuations (selected valuation sets, VM3) . . . . . . 136

D.1 Web usage view of the MarketDesigner framework . . . . . . . . 176

D.2 Simulation view of the MarketDesigner framework . . . . . . . . 177

D.3 MarketDesigner data model . . . . . . . . . . . . . . . . . . . . 179

D.4 MarketDesigner MarketManager interface . . . . . . . . . . . . . 180

D.5 MarketDesigner Trader interface . . . . . . . . . . . . . . . . . . 180

D.6 MarketDesigner Auction server architecture . . . . . . . . . . . 182

D.7 MarketDesigner auction processor and round clearer . . . . . . . 183

D.8 MarketDesigner simulation framework . . . . . . . . . . . . . . . 185

D.9 MarketDesigner web request processing example . . . . . . . . . 187

D.10 Screenshot - Creating a watched bundle . . . . . . . . . . . . . . 189



LIST OF FIGURES xvii

D.11 Screenshot - Submitting a bid . . . . . . . . . . . . . . . . . . . 189

D.12 Screenshot - Bids and watched bundles . . . . . . . . . . . . . . 190

D.13 Screenshot - Next round notification . . . . . . . . . . . . . . . 190

D.14 Screenshot - Improving a bid . . . . . . . . . . . . . . . . . . . . 191

D.15 Screenshot - Auction finished . . . . . . . . . . . . . . . . . . . 191

D.16 Screenshot - Bidding Information (different states) . . . . . . . . 192



xviii LIST OF FIGURES



List of Tables

2.1 Combinatorial auction example . . . . . . . . . . . . . . . . . . 14

2.2 VCG auction example . . . . . . . . . . . . . . . . . . . . . . . 44

2.3 Compatible prices example . . . . . . . . . . . . . . . . . . . . . 46

2.4 Linear CE prices example . . . . . . . . . . . . . . . . . . . . . 50

2.5 Non-linear anonymous CE prices example . . . . . . . . . . . . 51

3.1 CC auction inefficiencies example - Valuations . . . . . . . . . . 63

3.2 CC auction inefficiencies example - Progress . . . . . . . . . . . 63

3.3 Iterative combinatorial auctions overview . . . . . . . . . . . . . 71

4.1 Efficiency of different ICA designs with best-response bidders . . 79

4.2 Example for inefficiencies in ALPSm . . . . . . . . . . . . . . . 87

4.3 Example for inefficiencies in the CC auction . . . . . . . . . . . 88

4.4 Pure bidding strategies in ICAs . . . . . . . . . . . . . . . . . . 92

4.5 Sensitivity with respect to best-response bidders . . . . . . . . . 95

4.6 Sensitivity with respect to power-set bidders . . . . . . . . . . . 95
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Chapter 1

Introduction

Auctions have been found to be efficient economic mechanisms for resource

allocation in distributed environments with self-interested agents (Klemperer,

1999). They have found numerous applications in finance and e-commerce, and

provide a promising coordination technique for many computational environ-

ments such as agent-based systems. Whereas forward auctions are used for

selling, reverse auctions are used for procurement of goods or services.1 The

competitive process of auctions serves to aggregate the scattered information

about bidders’ valuations and to dynamically set prices of a trade.

A fundamental shortcoming of traditional auction mechanisms is their inabil-

ity to allow for complex bid structures which exploit complementarities and

economies of scale in valuation structures of bidders. As many organizations

have begun to realize the efficacy of auctions, interest has emerged to extend

basic auction types to support negotiations beyond the price and communicate

bids with a more complex set of preferences. For example, the procurement of

direct inputs is usually very large and requires the use of special price negoti-

ation schemes that incorporate appropriate business practices. Typically, bids

1There is also a third kind of auctions called exchanges with multiple sellers and multiple
buyers. This kind of auctions is out of the scope of this thesis.

1
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in these settings have the following properties:

• The transaction volume tends to be large and suppliers often provide

volume discounts.

• Bidders often provide all-or-nothing bids on a set of items with a special

discounted price.

• Items may have multiple, non-price attributes to be traded off against

price attributes.

Forward auctions often require similar bid structures as well, for example when

selling frequency licenses for multiple geographical areas, pieces of land or

starting and landing slots at an airport. Multi-unit auctions facilitate ne-

gotiations on large quantities of an item (Davenport and Kalagnanam, 2000),

combinatorial auctions (a.k.a. multi-item auctions) allow bids on bun-

dles of different items (Nisan and Segal, 2001; Rothkopf et al., 1998), whereas

multi-attribute auctions facilitate negotiations on multiple attributes of

an item (Bichler, 2000). These “multidimensional” auction formats have per-

formed well in the lab, but also in a number of real-world applications. In our

research we focused on combinatorial auctions.

1.1 Combinatorial Auctions

Multi-item auctions are common in industrial procurement and logistics, where

suppliers are able to satisfy the buyer’s demand for several items or lanes.

Often purchasing managers package these items into pre-defined bundles the

suppliers can bid on (Schoenherr and Mabert, 2006). Throughout the past few

years, the study of Combinatorial Auctions (CAs) has received much academic

attention (Anandalingam et al., 2005; Cramton et al., 2006a). CAs are multi-

item auctions in which the bidders can define their own combinations of items
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called ”packages” or ”bundles” and place bids on them, rather than just on

individual items or pre-defined bundles. This allows the bidders to better ex-

press their preferences and ultimately increases the economic efficiency in the

presence of superadditive and subadditive valuations (complementarities and

substitutabilities respectively). Allowing for package bids helps to overcome

the exposure problem, in which bidders can occasionally get an unwanted

combination of items with a negative payoff. CAs have already found appli-

cation in various domains ranging from transportation to industrial procure-

ment and allocation of spectrum licenses for wireless communication services

(Cramton et al., 2006a).

Combinatorial auction design is a difficult task. Besides of achieving main

design goals like economic efficiency, the auction design has to deal with com-

putational, communicational and cognitive complexity and overcome several

other problems like the exposure problem and threshold problem2 (Bichler

et al., 2005). There have been multiple proposals on design of efficient combi-

natorial auctions. The Vickrey-Clarke-Groves (VCG) auction is a single-round

design that, uniquely on a wide class, has a dominant-strategy property, leads

to efficient outcomes, and takes only a zero payment from the losing bidders

(Ausubel et al., 2006, p. 93). Though the VCG auction takes a central place

in the mechanism design literature, it can produce allocations outside of the

core if goods are not substitutes. In this case, the auctioneer revenue is often

uncompetitively low. This opens up non-monotonicity problems and possi-

bilities for collusion and shill-bidding (Ausubel and Milgrom, 2006b). There

are also many other reasons, why the VCG auction is hardly used in practical

applications (see Section 2.5.1 for details).

In comparison to single-round designs, multi-round or iterative CAs (ICAs)

have been selected in a number of industrial applications, since they help bid-

ders to express their preferences by providing feedback, such as provisional

2In threshold problem several small bidders do not manage to overbid one large bidder,
though the allocative efficiency would be higher if they would win (Bichler et al., 2005).
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pricing and allocation information, in each round (Bichler et al., 2006; Cram-

ton, 1998). “Experience in both the field and laboratory suggest that in com-

plex economic environments iterative auctions, which enhance the ability of the

participant to detect keen competition and learn when and how high to bid,

produce better results than sealed bid auctions” (Porter et al., 2003). ICA’s

have several advantages over sealed-bid auctions. First, bidders don’t have

to reveal their true preferences on all possible bundles in one round as would

be necessary in Vickrey-Clarke-Groves (VCG) mechanisms (Ausubel and Mil-

grom, 2006b). Second, prices and other feedback received by bidders in ICAs

help to reduce the amount of potentially interesting bundles. Third, Milgrom

and Weber (1982) have shown for single-item auctions that if there is affilia-

tion in the values of bidders, then sealed-bid auctions are less efficient than

iterative auctions. Even in cases where sealed-bid CAs have been used, people

have decided to run after-market negotiations to overcome the inefficiencies

(Elmaghraby and Keskinocak, 2002).

Much research on ICAs is based on so called primal-dual auction algorithms.

In their seminal paper, Bikhchandani and Ostroy (2002) use dual information

based on the results of a winner determination integer program as ask prices in

an ICA. The solution to the LP relaxation of the winner determination problem

(WDP) suggested in their paper is integral, and the dual ask prices lead to the

competitive equilibrium, maximizing the allocative efficiency. Unfortunately,

they need to introduce a variable for every feasible integer solution so that the

number of variables needed for the WDP is exponential in the number of bids.

The formulation then results in personalized non-linear ask prices and is not

a feasible approach for larger combinatorial auctions (see section Chapter 6).

Nevertheless, the paper provided very useful insights for practical auction de-

signs. There have been multiple proposals on how to design ICAs including

approximate linear, non-linear, and personalized non-linear prices (Ausubel

and Milgrom, 2002; Day, 2004; Drexl et al., 2005; Kelly and Steinberg, 2000;

Kwasnica et al., 2005; Kwon et al., 2005; Parkes and Ungar, 2000a; Porter
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et al., 2003; Wurman and Wellman, 2000). As of now, there is no general

consensus on a single ”best” design, and it seems that several auction designs

will prove useful for different applications and different valuation structures.

In our research we focused on ICA designs with linear ask prices in which

each item is assigned an individual ask price, and the price of a package of items

is simply the sum of the single-item prices. Although, it can be shown that

exact linear prices are only possible in restricted cases (Kelso and Crawford,

1982), several authors approximate these prices with so called pseudo-dual

linear prices (Kwasnica et al., 2005; Kwon et al., 2005; Rassenti et al., 1982).

Such prices are easy to understand for bidders in comparison to non-linear ask

prices, where the number of prices to communicate in each round is exponential

in the number of items (Xia et al., 2004). Linear prices give a good guidance to

the bid formation for the new entrants and losing bidders, who can use them

to compute the price of any bundle even if no bids were submitted for it so

far. Pseudo-dual prices have shown to perform surprisingly well in laboratory

experiments, and also the US Federal Communications Commission (FCC)

has examined their use within the Modified Package Bidding (MPB) auction

design (Goeree et al., 2007). Unfortunately, as of now, there is little theory

about the economic properties of ICAs using pseudo-dual linear ask prices, and

initial evidence is restricted to a few laboratory experiments testing selected

auction designs and treatment variables.

1.2 Research Goals and Methodology

In our research, we used computational and laboratory experiments as a tool

to compare the relative performance of selected ICA designs primarily based

on the allocative efficiency and revenue distribution, and several other charac-

teristics including the price monotonicity and speed of convergence. The main

goal was to evaluate selected ICA designs and elicit auction rules that work
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well with a wide range of bidder valuations and bidding strategies.

Traditionally, game theory and laboratory experiments have been used to an-

alyze bidding in single-item auctions. For combinatorial auctions, equilibrium

analysis has been only performed for so called primal-dual auctions with per-

sonalized non-linear prices under the best-response bidding strategy assump-

tion (see Section 2.6.1). Computing equilibria in combinatorial auctions is

hard, since the space of bidding strategies can be very large (Anandalingam

et al., 2005; Sureka and Wurman, 2005). Various ask price calculation schemes,

bidder decision support tools, and activity and price increment rules make it

extremely complex to admit much theoretical analysis at a greater level of

detail. On the other hand, laboratory experiments are costly, and typically

restricted to relatively few treatment variables. Computational experiments

can be of great help in exploring potential auction designs and analyzing the

virtues of various design options, whereas laboratory experiments are an excel-

lent method to observe human bidding behavior and an important complement

to theoretical and computational models.3

In the computational experiments, we focused on three promising linear-price

auction designs, namely the Combinatorial Clock (CC) auction, Resource Al-

location Design (RAD), and Approximate Linear PriceS (ALPS) with its mod-

ified version ALPSm and analyzed their performance in discrete event simu-

lations. In the first set of simulations, we did not try to emulate real-world

bidding behavior, but rather used myopic best-response and simple power-set

bidders (see section Section 4.1). This enabled us to compare different ICA

designs and estimate the efficiency losses that can be attributed to the auction

rules, but not to the bidding strategies. In the second set of simulations we

analyzed the impact of selected bidding strategies on the auction outcome.

This analysis is relevant, since real-world bidders typically do not follow one

specific bidding strategy, but use different types of bundling heuristics (see

3”Computer simulations are useful for creating and exploring theoretical models, while
experiments are useful for observing behavior” (Roth, 1988).
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Section 6.2). Our analysis was based on different value models, in order to

achieve more general results.

In the laboratory experiments we compared the same auction designs and one

ICA design with non-linear personalized prices (iBundle) in respect to the

same performance measures. We analyzed valuations that satisfy the buyer-

submodularity conditions, for which theory predicts straightforward bidding

and Vickrey payoffs in iBundle, and more general valuations, for which theory

has little to say as of yet for all of the above auction designs. We also analyzed

the bidding behavior on an aggregate as well as individual level.

1.3 Related Work

An et al. (2005) have also used computational experiments, which studied the

impact of bidding strategies on sealed-bid CAs to ICAs using linear ask prices.

Our Pairwise Synergy value model and best-chain bidder were built following

the INT agent described in their paper. Our results confirm the finding, that

bundling is a useful strategy for the bidders and auctioneer alike, and that

auctioneers should encourage their bidders to use bundle bids.

Recently, Dunford et al. (2007) have described a set of simulations comparing

various ICA designs, similar in spirit to ours. While the authors also used

simulations, the study was focused on the FCC setting without evaluating dif-

ferent value models or bidding strategies. The authors assumed best-response

bidders and compared different versions of RAD and some derivations thereof,

which have been developed for the FCC auctions, to the Ascending Proxy

Auction. On the contrary, we compared other auction designs and focused

on generic market structures with CATS value models and different bundling

strategies.

Dunford et al. (2007) introduce additional methods for price calculation based

on RAD. Smoothed Anchoring uses a quadratic program to reduce the non-
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monotonicity in RAD using an exponential smoothing formula in the objective

function. Some of the linear price designs described in the paper share ideas

with ALPS in sequentially minimizing the prices. The authors found that for

different types of valuations (with or without the BSC or BSM properties) all

the linear pricing schemes perform relatively well compared to the Ascending

Proxy Auction, implemented with non-linear personalized pricing. There is

a significant reduction in the average number of auction rounds by using lin-

ear pricing schemes as compared to the Ascending Proxy Auction. Among

the linear pricing schemes there was no clear cut winner, and the authors de-

mand further research in this field with larger test sets. The Ascending Proxy

Auction assumes “trusted” artificial proxy agents, with which bidders need

to submit all their valuations before the auction. The advantages of such an

iterative CA design over the VCG auction are less obvious. The performance

of the Ascending Proxy Auction with non-best-response bidders is unknown

as of yet.

A number of laboratory experiments have focused on combinatorial auctions

and their comparison to simultaneous or sequential auctions. Banks et al.

(1989) analyzed various mechanisms including the AUSM combinatorial auc-

tion mechanism and found CAs to exhibit higher efficiency than traditional

auctions in the presence of complementarities. In line with this research, Led-

yard et al. (1997) compared the Simultaneous Ascending Auction (SAA), se-

quential ascending auctions, and AUSM and found that in case of exposure

problems AUSM led to a significantly higher efficiency than the other two de-

signs. Banks et al. (2003) did another analysis on the SAA and ascending

auctions having package bidding and also found package bidding to achieve a

higher efficiency with complementarities.

Porter et al. (2003) compared the SAA against a design by Charles River and

Associates and the CC auction and found the CC auction to achieve the highest

efficiency, plus being simple for bidders. Kwasnica et al. (2005) defined the

RAD auction design and compared it to SAA. They found that in environments
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with complementarities RAD significantly increased the efficiency and had a

lower number of rounds. In additive environments without complementarities

package bidding rarely occurred, and no significant differences in the efficiency

and auctioneer revenue could be identified.

Kazumori (2005) analyzed the SAA, the VCG mechanism, and the Clock-

Proxy auction. He conducted experiments with students and professional

traders and confirmed the previous studies, namely that given significant com-

plementarities bundle bidding leads to a higher efficiency than SAA. He also

found, however, that in case of coordination problems package bidding may

be less powerful. The Clock-Proxy auction outperformed both the SAA and

the VCG auction, whereas the SAA outperformed the Clock-Proxy auction for

additive value structures. He also found professional traders to have higher

payoffs than students on average. In another recent study, Chen and Takeuchi

(2005) compared the VCG auction and iBEA in experiments in which humans

competed against artificial bidders. Here, the sealed-bid VCG auction gener-

ated a significantly higher efficiency and auctioneer revenue than iBEA. The

participants in the VCG auction either underbid or bid their true valuations.

1.4 About this Thesis

This thesis includes the results of my research during the years 2003-2007 at the

Chair of Internet-based Information Systems at the TU München, Germany.

The main contributions of the thesis are the results of the computational and

laboratory experiments that I and my colleagues conducted using our soft-

ware framework MarketDesigner (Chapter 4 and Chapter 6). Additionally,

we analyzed a lot of literature on combinatorial auctions and built a consis-

tent terminology, which was further extended and made more precise, as we

implemented the software and conducted experiments (Chapter 2).

Though the focus of my research was primarily on laboratory experiments, I
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have also included the computational results for the purpose of completeness.

As most results were achieved in a team, I usually use “we” to emphasize this

fact. The thesis contains several text modules from our joint publications:

Chapter 2 partially contains the results from Pikovsky and Bichler (2005),

Chapter 4 is based on Bichler et al. (2007), and Chapter 6 is based on Pikovsky

et al. (2007).

The remainder of this thesis is organized as follows:

Chapter 2 builds a consistent terminology to be used further throughout the

thesis, mentions most important theoretical findings and discusses their impact

on the auction mechanism design. The chapter is mainly based on our own

work and on the introduction to the theory of iterative combinatorial auctions

written by David Parkes in the book Combinatorial Auctions in 2006 (Parkes,

2006).

Chapter 3 briefly describes the ICA designs discussed in this thesis. Since

we focused on linear-price auctions, most considered auction designs are based

on linear prices. The Combinatorial Clock (CC ) auction, Resource Allocation

Design (RAD) and Approximate Linear PriceS (ALPS ) auction (developed

by us) are discussed. Additionally, one member of the primal-dual auctions

family, iBundle, is introduced. The description of the Vickrey-Clarke-Groves

auction can be found in Chapter 2.

Chapter 4 presents the setup and results of our computational experiments.

We compared the CC auction, RAD, ALPS and the Vickrey-Clarke-Groves

auction in different settings under various assumptions about value models

and bidding strategies. We discovered some interesting facts regarding the

allocative efficiency, revenue distribution, price monotonicity, and speed of

convergence of different designs and analyzed their robustness against selected

pure and mixed bidding strategies.

Chapter 5 explains the design of our laboratory experiments. It describes

the economic environment, some known common phenomena, our a priori as-
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sumptions about the bidding behavior, and summarizes a set of hypotheses for

our study. It further defines and motivates the used value models, treatments,

reward mechanism and experiment conduction scheme.

Chapter 6 presents the results of our laboratory experiments. We compared

the CC auction, ALPS, iBundle and the Vickrey-Clarke-Groves auction using

different value models. We were able to identify several similarities to the

computational results, but also observed some other interesting phenomena

specific for the behavior of human bidders.

Finally, Chapter 7 draws conclusions and proposes some future research top-

ics in this area.

The Appendix contains a detailed description of the ALPS and ALPSm

auction designs, an overview of the software platform MarketDesigner and

additional details on the design and results of the laboratory experiments.
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Chapter 2

Iterative Combinatorial

Auctions

The purpose of this chapter is to build a consistent terminology to be used

throughout this thesis, mention the most important theoretical findings and

discuss their impact on the auction mechanism design. The chapter is mainly

based on our own work and on the introduction to the theory of iterative

combinatorial auctions by David Parkes in the book Combinatorial Auctions

(Parkes, 2006). The definitions that currently represent common knowledge

are provided without citation. The definitions developed at our university

department are marked with “IBIS”. The sources of all theorems are explicitly

specified. Though there is a lot of literature on combinatorial auctions, I mostly

reference the above article of David Parkes, as it provides a good overview of

related theory, based on a terminology mostly consistent with the one of this

thesis.

13
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Bidders (Suppliers)

Items Bidder 1 Bidder 2 Bidder 3 Bidder 4
10 HD A 10GB x x x
20 HD B 40GB x x x
20 HD C 60GB x x x
Bid Price AC4000 AC5800 AC6700 AC3500

Table 2.1: Combinatorial auction example

2.1 Introduction

Combinatorial auctions (CAs) are multi-item auctions in which bidders

can define their own combinations of items called packages or bundles and

place bids on them, rather than just on individual items or pre-defined bun-

dles. This allows the bidders to better express their valuations and ultimately

increases the economic efficiency in the presence of synergistic values, often

called economies of scope. CAs have already found application in various do-

mains ranging from transportation to industrial procurement and allocation of

spectrum licenses for wireless communication services (Cramton et al., 2006a).

Table 2.1 illustrates an example of a combinatorial reverse (procurement) auc-

tion for computer hard drives and the bids from 4 suppliers. Each supplier

has provided a bundled ”all-or-nothing” bid and a price for the bundle. Notice

that as the number of items increases, the number of bids can grow exponen-

tially. After receiving bids on bundles of goods in a combinatorial procurement

auction, the auctioneer (buyer) needs to identify the set of bids that minimizes

the total procurement cost subject to the given business rules such as limits on

the number of winning bidders or the amounts purchased from certain bidders

or groups of bidders. Identifying the cost-minimizing bid set subject to these

side constraints is a hard optimization problem. Therefore, automated winner

determination is central to most combinatorial auctions.

The competitive process of auctions serves to aggregate the scattered infor-
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mation about bidders’ valuations and to dynamically set the prices of a trade.

The typical flow of an auction process is illustrated by the Figure 2.1. In a

single-round auction (sealed-bid auction) bids are collected over a pe-

riod of time, after which the auction closes, the winning bids are determined

(this step is a.k.a. winner determination, market clearing , or resource

allocation) and the prices to be payed for the winning bids are calculated. In

an iterative auction (open-cry auction) the steps of bid submission and

bid evaluation are executed multiple times, whereby after each iteration some

information feedback is communicated to the bidders. Iterative auctions close

either at a fixed point in time or after a certain termination rule becomes

satisfied (e.g., no new bids were submitted). Although in most iterative com-

binatorial auctions the winner determination and calculation of prices to pay

is done after each iteration to compute provisional allocations (this belongs to

the bids evaluation step), in some auction designs this is only done after the

auction closes.

Iterative auctions are further divided in continuous auctions and multi-

round auctions (round-based auctions). In continuous auctions bids are

evaluated on arrival of every new bid, whereas in multi-round auctions bids are

collected over a period of time, called round, before the bid evaluation is per-

formed. Continuous auctions contribute to a more dynamic environment, since

the feedback information is kept up to date at every point in time throughout

the auction. However, continuous combinatorial auctions are usually consid-

ered impractical, since they lead to high computational costs for the auctioneer

(the winner determination must be done whenever a new bid is submitted) and

to high monitoring and participation costs for bidders. All iterative auction

designs discussed in this thesis are round-based.

Most of the desirable economic properties of auctions have been analyzed in

the context of mechanism design theory (Jackson, 2000). The mechanism

design approach to solving distributed resource allocation problems with self-

interested bidders formulates the design problem as an optimization problem.
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Figure 2.1: Process of an iterative auction

Bidders have private information about the quality of different solutions, they

are self-interested and willing to misrepresent their private information if that

can improve the solution in their favor. A mechanism takes information from

the bidders and makes a decision about the outcome and payments that are

implemented. This analysis assumes a certain solution concept, for example, a

Nash, or a dominant solution, as well as a certain domain of bidder preferences,

for example, quasi-linear, monotonic, etc.

There are two primary design goals in the application of mechanism design to

auctions and markets, which are concerned with the solution of an auction.

One goal is the allocative efficiency in which the auction mechanism imple-

ments a solution that maximizes the total payoff across all agents. Another

goal is the revenue maximization in which the auction achieves a solution

that maximizes the payoff to a particular participant, usually the auctioneer.

For example, in reverse case such an auction would minimize the buyer’s cost.
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In addition, the budget-balance assures that there is no net payment made

from the auctioneer to the bidders. In other words, the auctioneer does not

loose money. The allocative efficiency and budget-balance together imply the

Pareto optimality of a solution.

In mechanism design, concrete assumptions about the private valuations of all

participants, called value model, need to be made. In the private value

model each bidder values each package of items independently from the val-

uations of other bidders. Each bidder knows her valuations, but not the valu-

ations of other bidders. In the common value model, all bidders have the

same valuations for same packages, but these are uncertain and depend on the

private information of all other bidders. The affiliated value model (cor-

related value model) contains elements of both private and common value

models. Each bidder’s valuations depend directly on the private information

of all other bidders.

For each of the three value models there exist environments in which it is more

appropriate then the others. For example, the private value model assumption

is typical when auctioning pieces of artwork, whereas common value model

assumption is commonplace when auctioning financial products on the stock

exchange; in case of wireless spectrum auctions the correlated value model

best replicates private valuations partially driven by the underlying population

demographics and shared technological basis. The common and affiliated value

models are, however, much younger and less studied than the private value

model (Cramton et al., 2006b). Therefore, most existing work on combinatorial

auctions is based on the private value model assumption (Cramton et al.,

2006a).

The utility of the bidders for the various bundles is private information and

not known to the auctioneer. The auction design can be described as a set of

rules that need to motivate the bidders to reveal their true preferences to the

extent that makes it possible to solve for the optimal allocation with respect
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to the true utilities of all bidders for all possible bundles. A specific auction

design is defined by the following components:

• the auction protocol, i.e. the sequence, syntax and semantics of mes-

sages exchanged throughout the auction

• the allocation rules, which include constraints ensuring the overall

objective of the allocation (i.e. efficiency vs. revenue maximization), as

well as additional allocation constraints

• the payment rules, which determine the payment from or to the win-

ner(s)

As in traditional auction design, the allocation rules, auction protocol and

payment rules impact bidders’ strategies. Auction designers try to construct

incentive-compatible mechanisms in which bidders are self-interested in re-

porting truthful information about their preferences. Strategy-proof mech-

anisms are even stronger in that truthful bidding is a dominant strategy.

Second-price sealed-bid (Vickrey) mechanisms are an example of strategy-proof

mechanisms.

The large design space (as shown in Section 2.3) and the possibility of package

bidding significantly increase strategic and computational complexity of com-

binatorial auctions in comparison to their single-item counterparts. There are

many difficulties to deal with, for detailed discussion see Bichler et al. (2005).

The three main problems are the following:

• The computational complexity is due to the Winner Determina-

tion Problem (WDP), i.e., the problem of determining the winning

bids by maximizing the total payoff subject to the given constraints and

additional allocation rules. The WDP is an integer optimization problem,

and even in its simplest form (if no additional allocation rules exist) it
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can be interpreted as a well-known weighted set packing problem (SPP).

Therefore, it is NP-complete and no polynomial time algorithm can be

expected to exist (Lehmann et al., 2006; Rothkopf et al., 1998). More

details on the WDP can be found in Section 2.4.

• The Preference Elicitation Problem (PEP) includes the valuation

problem, i.e., the selection and valuation of the bundles to bid for from

an exponentially large set of possible bundles. In addition, the strategy

problem of determining the optimal bid prices in various auction designs

has been a main focus in the classic game-theoretic auction research, but

turns out to be an even more difficult problem in iterative combinatorial

auctions. For example, it is possible that a losing bid becomes winning

in a subsequent round without changing the bid. The bidders face the

problem of choosing appropriate bundles to bid for (i.e., bundle selection)

and, if the auction design allows jump bidding , of choosing the bid prices.

• The communication complexity is related to the PEP and deals with

the question, how many valuations need to be transferred to the auc-

tioneer, in order for her to calculate an efficient allocation. Nisan (2000)

shows that an exponential communication is required in the worst case.

This problem might be addressed by designing careful bidding languages

that allow for compact representation of the bidders’ preferences. In

addition, there is much recent research on preference elicitation in com-

binatorial auctions through querying, which can provide an alternative

to the auction designs discussed in this thesis (Sandholm and Boutilier,

2006).

In the first decades after CAs appeared in the literature, they were considered

intractable due to the WDP. Nowadays, however, in many practical cases the

WDP can be solved to optimality by modern computers using sophisticated
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integer optimization algorithms in an adequate period of time.1 Also, good

approximation algorithms for the WDP have been developed. On the contrary,

“PEP has emerged as perhaps the key bottleneck in the real-world application

of combinatorial auctions. Advanced clearing algorithms are worthless if one

cannot simplify the bidding problem facing bidders” (Parkes, 2006).

Iterative combinatorial auctions (ICAs) are to date the most promis-

ing way of addressing the PEP. “Experience in both the field and laboratory

suggest that in complex economic environments iterative auctions, which en-

hance the ability of the participant to detect keen competition and learn when

and how high to bid, produce better results than sealed bid auctions” (Porter

et al., 2003). In contrast, sealed-bid auctions require bidders to determine and

report their valuations upfront.

ICAs have emerged as the predominant form of combinatorial auctions in prac-

tice. In comparison to sealed-bid designs, ICAs have been selected in a number

of industrial applications, since they help bidders to express their preferences

by providing feedback, such as provisional pricing and allocation information,

in each round (Bichler et al., 2006; Cramton, 1998). Even in cases in which

sealed-bid CAs have been used people often decided to run after-market nego-

tiations to overcome the generated inefficiencies (Elmaghraby and Keskinocak,

2002).

ICAs have several advantages over sealed-bid auctions. First, bidders don’t

have to reveal their true preferences on all possible bundles in one round.

Second, prices and other feedback received by the bidders in ICAs help to

reduce the amount of potentially interesting bundles. Third, Milgrom and

Weber (1982) have shown for single-item auctions that if there is affiliation in

the values of bidders, then sealed-bid auctions are less efficient than iterative

auctions, and there are good reasons to expect similar behavior also in case

1The problem sizes that can be solved to optimality depend on the valuation structure.
In many applications with up to 20-50 and sometimes more items the optimal solution can
usually be found in less than 2 minutes.
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of combinatorial auctions (Parkes, 2006). For more detailed discussion of the

advantages of ICAs see Parkes (2006).

However, designing such iterative auctions has turned out to be a challeng-

ing task. One of the main problems is establishing a pricing rule that would

provide enough information to the bidders, to lead the auction to an efficient

equilibrium solution. In the following, I first describe the design space of ICAs

in detail. I then give the mathematical definition of the Winner Determina-

tion Problem and discuss some of its properties. Next, I introduce the ICA

pricing concepts and review some important facts from equilibrium and game

theory. The rest of the chapter describes common properties of price-based

combinatorial auction designs and compares the linear pricing scheme to the

bundle pricing scheme.

2.2 Preliminaries

I first introduce some necessary notation. Let K denote the set of items to be

auctioned (|K| = m) and k ∈ K (also l ∈ K) denote a specific item. Similarly,

let I denote the set of bidders participating in the auction (|I| = n) and i ∈ I
(also j ∈ I) denote a specific bidder.

Definition 1. A bundle (or package) S (also T ) is a subset of the item

set K (S ⊆ K). The empty set (|S| = 0), single-item sets (|S| = 1) and the

all-items set (S = K) are all considered bundles.

Definition 2. A round t = 1, 2, 3, . . . is a period of time during which bidders

can submit their bids. After the round is closed, no more bids can be submitted,

and bidders have to wait until the next round is opened or the auction closes.

The auction can not be closed in the middle of a round, the current round must

be closed before.



22 CHAPTER 2. ITERATIVE COMBINATORIAL AUCTIONS

pseudo-combinatorial auctions 

(SMR)

multi-item auctions 

combinatorial auctions 

(bidding on packages)

decentralized

(AUSM, PAUSE)

centralized

(Vickrey, RAD, iBundle, CC, etc.)

Figure 2.2: Classification of multi-item auctions

A (round-based) iterative combinatorial auction consists of one or more rounds.

Many concepts like prices, bids, provisional allocations, etc., refer to a specific

round. Since in most cases only the current round is to be considered, I shall

usually omit the round index t. For example, bi(S) means the same as bt
i(S),

B means the same as Bt, etc., whereby t stands for the current round.2

2.3 Auction Design Space

Before exploring the auction design space, it is important to clarify, what

kind of combinatorial auctions is discussed in this thesis. Figure 2.2 illus-

trates a classification of multi-item auctions. First, we distinguish between

combinatorial auctions (auctions that allow real package bidding) and pseudo-

combinatorial auctions. One well known example of a pseudo-combinatorial

auction is the Simultaneous Multi-Round Design (SMR) used by the

FCC to auction spectrum licenses (Cramton et al., 1998). The SMR runs

multiple single-item auctions simultaneously. Though the bidders are able to

utilize some synergies of the simultaneous bidding, the auction suffers from

the exposure problem because of the inability to bid for packages.

We further divide combinatorial auctions into centralized and decentralized

auctions. Decentralized auctions were originally developed for small prob-

2The symbols bi(S), bt
i(S), B, and Bt will be defined later.
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lems in which bidders can cooperate in order to find a better allocation by

themselves in each round. Two well known members of this family are the

Adaptive User Selection Mechanism (AUSM) (Banks et al., 1989)

and the Progressive Adaptive User Selection Environment (PAUSE)

(Kelly and Steinberg, 2000). Though these auctions avoid the exposure prob-

lem, they are still vulnerable to the threshold problem, require full information

revelation and introduce high complexity at the bidder side.

In centralized auctions the auctioneer solves the winner determination

problem after the bids are collected. She then provides some kind of feed-

back to support the bidders in improving their bids in the next round. Usually

the bidder’s current winning bids and ask prices are used as the feedback.

Due to the disadvantages of pseudo-combinatorial and decentralized auctions

referenced above, centralized auctions are currently considered most promising

in the literature. In this thesis, I only discuss centralized auction designs.

Due to their very different structure, pseudo-combinatorial and decentralized

auctions are out of the scope of this thesis.

Overall, I only consider auctions that confirm to all of the following character-

istics:

• truly combinatorial (allow package bidding)

• round-based (single-round or multiple-round)

• centralized

Even given the these restrictions, the design space of ICAs remains extremely

large. To be mentioned, all these different rules were not developed to make

the auctions unnecessary complex, but rather emerged from various attempts

to overcome several auction design problems and avoid unwanted bidder strate-

gies. From our experience in research and implementation of ICAs, we propose
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the following categorization of the auction design space3:

• bidding languages

• bidding rules

• allocation rules

• timing issues

• information feedback and pricing schemes

• proxy agents

2.3.1 Bidding Languages

A bid in an auction is an expression of the bidder’s willingness to pay particular

monetary amounts for various outcomes. Bidders formulate bids according to

their private preferences and bidding strategies. A bidding language defines

the way (the format of the communicated messages and the interpretation

rules) in which bidders are allowed to formulate their bids.

In combinatorial auctions every auction outcome corresponds to a particular

allocation. From the point of view of a particular bidder, the auction outcome

is defined by the set of items allocated to her and the monetary amount she

has to pay for it.4 Therefore, the most direct way for the bid formulation is

to let each bidder attach a bid price to each possible bundle. This allows one

to express any kind of preferences, but in worst case requires an exponential

number (2m−1) of bundles to be evaluated and monitored by every bidder and

the same amount of messages to be communicated to the auctioneer. Although

3This categorization slightly differs from Parkes (2006).
4This assumes the absence of anti-social bidders, whose preferences also depend on the

satisfaction of other bidders. To avoid the direct possibility of anti-social bidding, bidding
languages only allow to base bids on the bidder’s own outcome.
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in many cases not every possible combination of items has a positive value for

every bidder, the number of interesting bundles can quickly become cognitive

intractable.

Bidding languages for combinatorial auctions are typically built of atomic bids

and logical rules that either allow several atomic bids to win simultaneously,

or not.

Definition 3. An atomic bid bi(S) is a tuple consisting of a bundle S and a

bid price pbid,i(S) submitted by the given bidder i (bi(S) = {S, pbid,i(S)}). A set

of atomic bids is called non-intersecting if the intersection of their bundles

is empty.

The two most popular and intuitive bidding languages are exclusive-OR (XOR)

and additive-OR (OR).

Definition 4. The bidding language exclusive-OR (XOR) allows bidders

to submit multiple atomic bids. For each bidder at most one of her atomic

bids can win. This means that the bidder either gets all items contained in

the bundle listed in exactly one of her atomic bids, or she gets nothing. By

submitting her atomic bids, the bidder expresses her willingness to pay at most

the amount specified in her winning atomic bid (if any).

Definition 5. The bidding language additive-OR (OR) allows bidders to

submit multiple atomic bids. For each bidder any non-intersecting combination

of her atomic bids can win. This means that the bidder either gets all items

contained in the bundles listed in some non-intersecting set of her atomic bids,

or she gets nothing. By submitting her atomic bids, the bidder expresses her

willingness to pay at most the sum of amounts specified in her winning atomic

bids (if any).

The bidding language XOR lets each bidder define a bid price for each possible

combination she can win, exactly as described above. From this point of view,
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it can be considered the most powerful of all possible bidding languages for

CAs. However, it suffers from the cognitive and communicative complexity,

caused by the exponential number of bundles to be evaluated and monitored.

Consequently, auction designers try to use the information about the structure

of the bidders’ valuations to construct easier-to-handle bidding languages, still

allowing bidders for complete representation of their preferences. For example,

the bidding language OR is sufficient if no subadditive valuations exist. Unfor-

tunately, this is often not the case, e.g., in the presence of budget restrictions

(if the bidder can not afford every combination of bundles she bid for) or when

auctioning substitute goods.

Though several more complex bidding languages have been proposed (Nissan,

2006), the research in this area is still in its early stage. No proposed combina-

torial auction design really deals with the question, which bidding languages

are appropriate for it: the authors mostly only mention what bidding language

is considered – and this is always either OR or XOR. Furthermore, no practical

applications of any other bidding languages are known to me.

Moreover, the term bid is very often used in place of atomic bid, in partic-

ular this is the case in the book “Combinatorial Auctions” (Cramton et al.,

2006a). This is understandable, since atomic bids are actually what the bid-

der communicates to the auctioneer if either OR or XOR bidding language is

used. Since no other bidding languages are supported by any auction design

described in this thesis and to keep the common notation, I will also use the

term bid instead of atomic bid in the following.

Though every (atomic) bid is submitted in some specific round, it is usually

not important, in which round the bid was submitted.5 In contrast, it is

important, which bids are valid at the end of the given round t. This is due to

the fact that some bids can be “kept” for the following rounds and other bids

can be “thrown away”. The decision, which bids to keep, is done due to the

5An important exception are activity rules, see Section 2.3.3.
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rules of the specific auction design (see Section 2.3.3). Therefore, the following

definitions of active, displaced, inactive and revoked bids are crucial for any

real-world implementation of ICAs:

Definition 6 (IBIS). An (atomic) bid is called active at the end of the round t

if it is allowed to be selected as a winning bid (participates at the winner de-

termination) in case if the auction is closed after the round t.

A bid, submitted in the round t, is always active at the end of this round. In

further rounds it can be displaced, deactivated or revoked :

Definition 7 (IBIS). An (atomic) bid is called revoked if it was explicitly

revoked by the bidder (which is only possible if the auction design allows bids

revocations).

Definition 8 (IBIS). An (atomic) bid submitted in some round is called dis-

placed if another bid was submitted by the same bidder for the same bundle

in some later round.

Definition 9 (IBIS). An (atomic) bid submitted in some round is called in-

active if it was deactivated in some later round due to the auction design

rules.

Displaced, inactive and revoked bids are not active, i.e., they do not participate

at the winner determination as the auction closes. In real-world implementa-

tions of ICAs, bidders are usually informed about the current state of their

bids. At least, they usually know, which bids are still active.

In the following, in most cases only active bids have to be considered. Let

bt
i(S) = {S, pt

bid,i(S)} denote the bid submitted by the bidder i for the bundle S

active at the end of the round t. The set of all bids active at the end of the

round t is denoted by Bt = {bt
i(S)}. For displaced, inactive and revoked bids

no special notation is needed.

For more information on bidding languages the reader is referred to Nissan

(2006) and Boutilier and Hoos (2001).
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2.3.2 Information Feedback and Pricing Schemes

The key challenge in the iterative combinatorial auction design is providing in-

formation feedback to the bidders after each auction iteration to guide bidding

towards an efficient solution. Information feedback about the state of the auc-

tion can contain the provisional allocation (if any), the list of bids submitted

by other bidders, the number of active bidders and/or bids, etc. Information

hiding (e.g., bid price rounding) can also be used to to limit the possibilities

of signaling between bidders.

Pricing (assigning ask prices to items and/or item bundles) has been adopted

as the most useful mechanism of providing feedback, to lead the auction to an

efficient equilibrium solution. Ask prices are mostly used as the lower bound

for possible bids, but sometimes also as a non-binding indicator of the current

competition on the corresponding items or bundles. In fact, to our knowledge,

every existing centralized multi-round ICA design uses pricing.

In contrast to single-item auctions, pricing is not trivial in combinatorial case.

The main difference is the lack of natural single-item ask prices. With bundle

bids, setting independent ask prices for individual items is not obvious and

often even impossible (Bikhchandani and Ostroy, 2002). Additionally, ask

prices may need to be personalized, i.e., different bidders get different prices

for the same items or bundles, as opposed to traditional anonymous prices.

Let pt
ask,i(S) denote the personalized ask price for the bidder i and bundle S

valid during the round t (i.e., this price was calculated after the round t−1 was

closed) and P t
ask denote the set of all ask prices valid during the round t. As

already mentioned, I will omit the round index to refer to the current round.

Definition 10. A set of ask prices {pask,i(S)} is called linear (additive) if

∀i, S : pask,i(S) =
∑

k∈S pask,i(k)

Definition 11. A set of ask prices {pask,i(S)} is called anonymous if ∀i, j, S :

pask,i(S) = pask,j(S)
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In other words, the prices are linear if the price of a bundle is always equal to

the sum of the prices of its items, and the prices are anonymous if the prices of

the same bundle are equal for every bidder. Non-linear ask prices are also called

bundle ask prices; non-anonymous ask prices are also called discriminatory

or personalized ask prices. For a shorter and clearer notation, let pt
ask(S)

denote the anonymous bundle ask price for the bundle S and pt
ask(k) denote

the anonymous linear ask price for the item k.

The following hierarchical structure of pricing schemes can be derived from

the above definitions:6

1. linear anonymous prices

2. non-linear anonymous prices

3. non-linear non-anonymous prices

The first pricing scheme is obviously the simplest one. Linear anonymous

prices are easily understandable and usually considered fair by bidders. The

communication costs are also minimized, since the amount of information to

be transferred is linear in the number of items. Linear anonymous prices

can sometimes be efficient even with super- or subadditive valuations (Bichler

et al., 2007; Pikovsky and Bichler, 2005).

The second pricing scheme introduces non-linearity, which is often necessary

to express strong super- or subadditivity in bidders’ valuations (Pikovsky and

Bichler, 2005). Unfortunately, non-linear prices are often considered too com-

plex by bidders. Communication costs also increase, since in the worst case

an exponential number of prices need to be exchanged.

Sometimes, even non-linear anonymous prices are not sufficient to lead the

auction to competitive equilibrium. In this case the theory proposes the pric-

ing scheme 3, which introduces discriminatory pricing. Due to Bikhchandani

6To our knowledge, linear discriminatory prices have hardly been considered in the con-
text of combinatorial auctions.
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and Ostroy (2002), non-linear discriminatory competitive equilibrium prices

do always exist and support the efficient allocation. However, discriminatory

pricing results in additional complexity and is often considered unfair by bid-

ders.

The pricing scheme selection is one of the key decisions in the ICA design

(Parkes, 2006; Pikovsky and Bichler, 2005). In Section 2.5 I discuss the impact

of the different pricing schemes on the auction result from a theoretical point of

view. Chapter 3 describes pricing mechanisms used in selected auction designs.

The main part of the thesis starting with Chapter 4 deals with an experimental

study of the influence of pricing and other factors on the auction outcome.

2.3.3 Bidding Rules

Bidding rules define, what bids can be submitted/revoked in the current

auction state, and how the auction state evolves throughout the auction. Fol-

lowing bidding rules are common to several ICA designs:

Binding ask prices oblige bidders to bid either above or exactly at the

current ask prices. Sometimes, the price to bid is splitted into the ask price

and the price increment, denoted by ∆t. In latter case the price increment

can either apply to the whole bundle price or to the item prices. If jump

bidding is allowed, the bidders can bid above the prices, otherwise they must

bid exactly at the prices. Allowing jump bidding can significantly decrease the

auction duration (especially in combination with small price increments), but

also allows for more complex bidding strategies and for some degree of signaling

between the bidders. Additionally, the so called last-and-final bids (final

bids for a bundle at a bid price slightly lower than the current ask price,

see Parkes (2001)) are sometimes allowed to provide more flexibility for the

bidders expressing their valuations in the latter auction rounds. For details on

the effects of jump bidding and last-and-final bidding see Laqua (2006).
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Price update rules determine the evolution of ask prices throughout the

auction. The pricing scheme together with the price update rule usually

build the kernel of an auction design. In one family of ICA designs, ask prices

of selected (based on the current competition) items or bundles are increased

from the current round t to the next round t + 1 by a fixed (absolute or

relative) price increment ∆t. In this case the price increment either refers to

the whole bundle price or to the item prices. In another ICA family, ask prices

are calculated on the basis of submitted bids and provisional allocation using

a design-specific price calculation algorithm.

Bid validity determines which bids remain active from the current to the

next round. In some auction designs all bids remain active throughout the

auction (the so-called old-bids-active rule). In others, only provisionally

winning bids remain active, whereas all provisionally losing bids are deacti-

vated in the next round. Holding all bids active can significantly improve the

auction efficiency, since more bidders’ preferences are available for the winner

determination (Bichler et al., 2007). On the other hand, it can increase the

complexity of the winner determination problem and sometimes confuse bid-

ders, as every old losing bid can occasionally win. In combination with the

old-bids-active rule, the improve-old-bids rule can additionally prohibit

underbidding previous own bids, even if the current ask price would allow it.

Bid revocation rules allow or prohibit explicit bid revocations by bidders.

The practical importance of bid revocations is often undervalued or ignored,

though it is often indispensable due to typos or occasional wrong preference

elicitation. Whereas revocation of provisionally winning bids is usually pro-

hibited, revocations of provisionally losing bids are often allowed in practice.

Nevertheless, to our knowledge, very low is known about the impact of bid

revocations on the auction outcome.

Activity rules (a.k.a. eligibility rules) enforce active bidding throughout

the auction as opposed to the wait-until-auction-end-and-snipe strategy loved
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by eBay users. Activity rules were introduced in the early FCC wireless spec-

trum auctions and proved important.7 Decisions about appropriate activity

rules are often guided by a tradeoff between allowing for straightforward bid-

ding strategies and encouraging early bidding (Parkes, 2006). More details on

selected activity rules are provided in the context of the CC auction, ALPS,

RAD and iBundle in Chapter 3. For an extended discussion of activity rules

see Ausubel et al. (2006).

2.3.4 Allocation Rules

Allocation rules regulate the way of selecting the winning bids from the

bid set B, i.e., they determine the formulation of the winner determination

problem. Typically, the auctioneer revenue is maximized subject to the bidding

language rules and the inability to sell the same item more than once. For

details on the WDP see Section 2.4.

Beyond the standard rules of the WDP, additional allocation rules, called busi-

ness constraints or, more generally, side constraints, are often of practical

importance. Especially in industrial procurement following constraints are of-

ten requested by procurement managers:

• The number of winning suppliers should be greater than a certain number

(to avoid depending too heavily on just a few suppliers), but smaller than

another certain number (to avoid too much administrative overhead).

• The maximum/minimum amount purchased from each supplier is

bounded to a certain limit.

• At least one supplier(s) from a target group (e.g., minority) needs to be

chosen.

7The form of activity rule used in the FCC spectrum auctions is due to Paul Milgrom
and Robert Wilson. Similar rules have since become standard in ICAs.
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Sometimes even more flexibility is needed, e.g., forcing some specific bids to be

winning or losing (either in a provisional or in the end allocation). Moreover,

business constraints may need to be defined or removed dynamically through-

out the auction.

In spite of their practical importance, there is a gap in the theory of ICAs in

regard to business constraints. Whereas the impact of business constraints on

the solution and complexity of the WDP have been analyzed in Kalagnanam

et al. (2001), Sandholm and Suri (2006), and Collins et al. (2002), no studies of

their influence on the outcome and pricing in iterative combinatorial auctions

is known to us.

2.3.5 Timing Issues

For a round-based auction design two time units are of importance: the round

duration and the auction duration. With round closing we denote the point

in time at which a specific auction round is declared closed, and no more bids

are accepted until the start of the next round. After the round is closed,

the bid evaluation process, called round clearing , starts. According to the

round clearing results and to the auction termination rules, the auction

either moves to the next round or terminates. In latter case the auction is first

closed (the bidders are informed that no more bids can be submitted) and

the final bid evaluation, called auction clearing , starts. After the auction

clearing is finished, the end allocation and prices to be payed are communicated

to the bidders. We call the time period between the round start and the round

closing round duration and the time period between the auction start and

the auction closing auction duration.

Round closing rules control the round duration. The round duration is usu-

ally set to a fixed time period. Often, however, selecting a fixed round duration

is a difficult task. On the one hand, bidders should be given enough time for the
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preference elicitation and bid submission in every round, especially if activity

rules are used. On the other hand, one should avoid boring bidders by to long

rounds, since this costs time, reduces bidders’ concentration, and, therefore,

can distort preference elicitation. A fixed round duration is especially prob-

lematic, as bidders usually need more time at the beginning of the auction than

in its latter rounds (see the results of our laboratory experiments, Chapter 6).

To mitigate the problem, we let bidders communicate their ready-in-round

state to the auctioneer. The round is then prematurely closed as soon as all

participating bidders have indicated their readiness.8

Auction closing rules (a.k.a. termination rules) control the auction

closing time point. Auctions may close at a fixed deadline and/or be limited

in duration and/or the maximal number of rounds. Alternatively, auctions

can have a rolling closure with the auction kept open while one or more losing

bidders continue to submit competitive bids or the allocation does not change

for a given number of rounds.

Fixed deadlines are useful in settings in which bidders are impatient and unwill-

ing to wait a long time for an auction to terminate. However, fixed deadlines

tend to require stronger activity rules to prevent the auction from reducing to

a sealed-bid auction with all bids delayed until the final round. In comparison,

rolling closure rules have been shown to encourage early and sincere bidding.9

All ICA designs considered in this thesis use rolling closure termination rules.

2.3.6 Proxy Agents

With proxy agents bidders can provide direct value information to an auto-

mated bidding agent that bids on their behalf. The bidder-to-proxy language

8This mechanism can only be used if the auctioneer knows all participating bidders. In
auctions with activity rules this is always the case starting with the second round.

9Roth and Ockenfels (2002) have studied the use of deadlines versus rolled closures, on
eBay and Amazon Internet auctions respectively. Bidders on Amazon bid earlier than on
eBay, and many bidders on eBay wait until the last seconds of the auction to bid.
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should allow bidders to express partial and incomplete information, to be re-

fined during the auction, in order to realize the elicitation and price discovery

benefits of an iterative auction.

Proxy agents can query bidders actively when they have insufficient informa-

tion to submit bids. They can also facilitate faster convergence with rapid

automated proxy rounds, interleaved with bidder rounds. Mandatory proxy

agents can be useful in restricting the strategy space available to bidders.

One concern in the design of proxy auctions is to determine, when to allow

proxy information to be revised and to determine the degree of consistency

to enforce across revisions. As an alternative to the use of “full-time” proxy

agents, the iterative, non-proxy part of the auction is sometimes followed by a

final second-price sealed-bid round, called proxy round. An additional con-

cern is that of trust and transparency, since the bidding activity is transferred

to automated agents.

Studying effects of proxy bidding is out of the scope of this thesis and is

certainly one of the very interesting ways to go in the future research. For this

thesis, no considered auction design uses proxy agents. For more information

on the topic see Parkes and Ungar (2000b) and Ausubel and Milgrom (2002).

2.4 Winner Determination Problem

At this point some additional notation is required. According to the private

value model assumption, I denote the private valuation of the bidder i for the

bundle S by vi(S). The valuations of different bidders are assumed independent

and satisfying the free disposal condition10, i.e., if S ⊂ T then vi(S) ≤ vi(T ).

Definition 12. A value model V = {vi(S)} is a set of the private valuations

of all bidders for all bundles.

10The free disposal assumption is common for the literature on combinatorial auctions.
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Definition 13 (IBIS). The price to be payed by the bidder i for the (allocated

to her) bundle S is called pay price and is denoted by ppay,i(S). The set of

all pay prices is denoted by Ppay.

Definition 14. Bidder utility (a.k.a. bidder payoff) πi(S,Ppay) ex-

presses the bidder’s i satisfaction of getting the bundle S at the pay prices

Ppay. We assume quasi-linear bidder utilities πi(S,Ppay) := vi(S) − ppay,i(S),

πi(∅,Ppay) := 0.

Definition 15. An allocation X is a tuple (S1, . . . , Sn) that assigns a corre-

sponding (possibly empty) bundle to every bidder. The allocated bundles may

not intersect: ∀i, j : Si ∩ Sj = ∅. Some items can remain not allocated:

∪i∈ISi ⊆ K. The set of all possible allocations is denoted by X .

An allocation can also be defined by a set of binary variables {xi(S)},
xi(S) ∈ {0; 1} where (∀i, S : xi(S) = 1 ⇔ Si = S) and

(
∀i :

∑
S⊆K xi(S) ≤ 1

)
and

(
∀i :

∑
S⊆K xi(S) = 0 ⇒ Si = ∅

)
. In other words, xi(S) = 1 means that

the bidder i gets exactly the bundle S (and nothing else).

Given an allocation X and pay prices Ppay, let πi(X,Ppay) := πi(Si,Ppay)

denote the utility of the bidder i for the bundle she gets in the alloca-

tion X and πall(X,Ppay) :=
∑

i∈I πi(X,Ppay) denote the total bidder util-

ity (a.k.a. total bidder payoff ) of all bidders. Further, let Π(X,Ppay) :=∑
S⊆K,i∈I xi(S)ppay,i(S) denote the auctioneer revenue. The auctioneer rev-

enue is usually considered to be the auctioneer’s gain, since the auctioneer’s

costs are assumed to be 0.

It can easily be shown that the overall gain (the total gain of the auctioneer

and all bidders) does not depend on the pay prices, but is equal to the sum of
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the winning bundle valuations:

Π(X,Ppay) + πall(X,Ppay) =∑
S⊆K,i∈I

xi(S)ppay,i(S) +
∑
i∈I

πi(X,Ppay) =∑
S⊆K,i∈I

xi(S)ppay,i(S) +
∑

S⊆K,i∈I

xi(S)(vi(S)− ppay,i(S)) =∑
S⊆K,i∈I

xi(S)(ppay,i(S) + vi(S)− ppay,i(S)) =∑
S⊆K,i∈I

xi(S)vi(S)

Definition 16. An efficient allocation is an allocation that maximizes the

overall gain. There can exist multiple efficient allocations. An efficient alloca-

tion is denoted by X∗ = (S∗
1 , . . . , S

∗
n) = {x∗i (S)}.

Obtaining an efficient allocation is a typical auction design goal. Given the

private bidder valuations for all possible bundles, an efficient allocation can be

found by solving the Combinatorial Allocation Problem (CAP) (also

sometimes referred as Winner Determination Problem):

max
X=(S1,...,Sn)∈X

∑
i∈I

vi(Si) (CAP)

The CAP has a straightforward integer linear programming formulation using

the binary decision variables {xi(S)} (see Figure 2.3). The objective function

maximizes the overall gain. The first set of constraints guarantees that at most

one bundle can be allocated to each bidder. The second set of constraints

ensures that each item is not sold more than once.

It is well known that the CAP can be interpreted as a weighted set packing

problem (SPP) (Lehmann et al., 2006) and is therefore NP-hard. The problem

has been attracting intense research efforts. Integer programming techniques
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max
∑
S⊆K

∑
i∈I

xi(S)vi(S)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0; 1} ∀i ∈ I, S ⊆ K

Figure 2.3: Combinatorial Allocation Problem (CAP) as ILP

can be used to handle the winner determination in combinatorial auctions

with a ”small enough” number of items. On the other hand, various heuristics

and approximation algorithms are likely to produce solutions, which, in most

cases, are optimal or close to optimal (Sandholm, 2006). However, subopti-

mality may not be adequate if a market designer aims for economic efficiency.

Rothkopf et al. (1998) discuss limiting biddable combinations which can make

the winner determination problem tractable. A survey by de Vries and Vohra

(de Vries et al., 2003) addresses the literature of the last few years on algo-

rithmic approaches. Similar computational problems can be found in volume

discount auctions (Davenport and Kalagnanam, 2000) and multi-attribute auc-

tions (Bichler and Kalagnanam, 2004).

Additional business constraints (see Section 2.3.4) can be easily integrated

into the ILP formulation of the CAP, whereas they may be difficult to manage

by special algorithms and heuristics. Nevertheless, even when using standard

integer optimization techniques (e.g. branch-and-cut algorithms), they can

affect the solver running time Kalagnanam et al. (2001).

There might exist multiple optimal solutions of the CAP with the same ob-

jective function value, in which case multiple efficient allocations exist. Tie-
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max
∑
S⊆K

∑
i∈I

xi(S)pt
bid,i(S)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀k ∈ K

xi(S) ∈ {0; 1} ∀i ∈ I, S ⊆ K

Figure 2.4: Winner Determination Problem (WDP)

breaking rules determine, which of the optimal solutions is selected by the

solver. For example, earlier realized allocations or allocations with the maximal

number of bidders can be preferred. Tie-breaking rules can be implemented

by an arrangement of the bids in the ILP depending on the used solving algo-

rithm, by adding special tie-breaking constraints, or by solving the CAP mul-

tiple times excluding already found solutions. Often no special tie-breaking is

done, so that an optimal solution is selected coincidentally.

It is important to be aware of the difference between the CAP and winner

determination in a real auction. The auctioneer does not know bidders’ private

valuations needed to solve the CAP. Instead, she selects the winning provisional

or end allocation on the basis of the submitted bids, which may or may not

truly reflect the bidders’ valuations. In addition, bidding languages define

the possible combinations of multiple bids of the same bidder. In case of the

XOR bidding language, the Winner Determination Problem (WDP)

formulation is very similar to the CAP (see Figure 2.4). The only difference

is the use of bid prices instead of valuations in the objective function. In case

of the OR bidding language, the first family of constraints must be removed,

since multiple bids of the same bidder can win.
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For the following, let X t denote the provisional allocation calculated on the

basis of the bids active in the round t. Further let W t ⊆ Bt and Lt ⊆ Bt

denote the sets of provisionally winning and provisionally losing bids in the

allocation X t respectively, with W t
⋂

Lt = ∅, W t
⋃

Lt = Bt. In other words,

bi(S) ∈ W t ⇔ xi(S) = 1.

The end allocation of a combinatorial auction is not always efficient. Al-

locative efficiency (or simply efficiency) is commonly used as a primary

measure to benchmark auction designs. Allocative efficiency in CAs can be

measured as the ratio of the overall gain of the end allocation X to the overall

gain of an efficient allocation X∗(Kwasnica et al., 2005):

E(X) :=
Π(X,Ppay) + πall(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, 1]

Another important measure is the revenue distribution, which shows how

the overall gain is distributed between the auctioneer and bidders. The revenue

distribution is affected by the deviation of the submitted bids from the true

valuations and by the pay price calculation, which is also a part of the winner

determination. In cases in which the auction is not 100% efficient, still another

part of the overall utility is simply lost. Given the end allocation X and the

pay prices Ppay, the auctioneer utility share is measured as the ratio of

the auctioneer revenue in the end allocation to the overall gain of an efficient

allocation:

R(X) :=
Π(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, E(X)] ⊂ [0, 1]

The total bidder utility share corresponds to the ratio of the total bidder

utility in the end allocation to the overall gain of an efficient allocation:

U(X) :=
πall(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, E(X)] ⊂ [0, 1]
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Altogether, it follows that E(X) = R(X) + U(X) and the lost part of the

overall utility corresponds to 1−E(X). Note that the auction efficiency does

not depend on the pay prices, thus it is possible for two auction outcomes with

equal efficiency to generate significantly different auctioneer revenues. The

revenue distribution behavior of a particular auction design, if familiar to the

bidders, can affect their bidding strategies. The following section deals with

strategic considerations of the combinatorial auction design and the impact of

pricing on the bidding strategy.

2.5 Equilibrium Prices and the Core

Coalitional game theory and equilibrium theory are strongly related to the

combinatorial auction design. Both theories help to understand the structure

and outcomes of CA designs and are often used as a guideline for constructing

efficient price-based auctions. Game theory studies a system of self-interested

players under strategical interaction considerations. The theory of the core in

the coalitional game can be transferred to the auction theory by interpreting

bidders as players and the auctioneer as either one of the players or as the

“bank”. As for the game theory, bidders follow different strategies, which may

result in a desired equilibrium. Auction design rules may restrict bidders to

certain strategies to enforce a certain outcome. Information about possible

bidding strategies and their weaknesses is an important research field for bid-

ders and auctioneers. Certain strategies can lead to efficient outcomes, and

an important auction design goal is to encourage such strategies. In particu-

lar, straightforward bidding (truthful preference revelation in response to ask

prices) is desirable, since it is cognitive simple for bidders and allows for finding

an efficient allocation in a natural way.

Nash-equilibrium is a fundamental concept in game theory. It states that

in the equilibrium every player selects the payoff maximizing strategy given



42 CHAPTER 2. ITERATIVE COMBINATORIAL AUCTIONS

the strategies of other players. However, it makes strong assumptions on the

knowledge of the other players’s strategies and loses its advantages in games

with multiple equilibria (Parkes, 2001). A stronger concept is the one of the

dominant strategy equilibrium. A dominant strategy is given if the

player’s payoff maximizing strategy is independent from the strategies of the

other players. Mechanisms with the dominant strategy equilibrium are called

strategy-proof . In a strategy-proof mechanism no assumptions about the

information available to the agents about each other are made, and every

bidder selects her own optimal strategy without requiring the others to act

rational. Strategy-proofness is an important auction design goal. Another

goal is to end up with an outcome for which no coalition of players is willing

to renege once the result is announced - the core outcome.

Definition 17. The coalitional value function is defined as

w(CI) := max
X=(S1,...,Sn)∈X

∑
i∈I

vi(Si)

for any coalition CI consisting of the bidders I ⊆ I and the auctioneer11.

Thus, the value of the coalitional value function is equal to the maximum

overall gain that can be generated by the bidders contained in the coalition,

which is also equal to the value of the efficient allocation computed by the

CAP.

Definition 18. The set of core payoffs is defined as

Core (I, w) =

{
(Π, π) : Π +

∑
i∈I

πi = w(CI) and ∀I ⊂ I : w(CI) ≤ Π +
∑
i∈I

πi

}

If any payoff vector (Π, π) is not in the core, then there exists a coalition CI for

which the total payoff w(CI) is higher than the members’ total payoff in (Π, π).

11The auctioneer must always be a member of the coalition since no allocation can be
realized without her participation.
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That is, there exists some way to redistribute the total payoff that makes all

members of CI strictly better off. In this case the payoff vector (Π, π) is said

to be blocked by the coalition CI .

Altogether, the following properties are considered desirable in combinatorial

auction design:

• strategy-proofness

• budget-balance

• core outcomes

• allocative efficiency

In the following sections I discuss the famous sealed-bid Vickrey-Clarke-Groves

auction, which is known to fulfill all above properties except it does not always

generate core outcomes. I then introduce the notions of prices compatible with

an allocation and competitive equilibrium prices and discuss their properties

and impact on bidding strategies. I also summarize some important theoreti-

cal results regarding the existence of these kinds of prices in different pricing

schemes.

2.5.1 Vickrey-Clarke-Groves Auction

The first-price sealed-bid auction (the sealed-bid auction in which bidders

pay exactly what they bid) has been used as a model for some combinato-

rial auctions in practice (Elmaghraby and Keskinocak, 2002). Similar to the

single-item sealed-bid auctions, it is resistant to collusion, but exhibits a high

strategic complexity for bidders. A famous alternative to the first-price auc-

tion mechanisms in the sealed-bid family are Vickrey mechanisms. They

are strategy-proof , i.e., they make truthful bidding a dominant strategy; they
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do so by refunding bidders the increase in the overall gain caused by their

bids. In other words, they let each bidder pay the social opportunity cost of

her winnings, rather than her bid. Provided the bidders’ truthful valuations,

the auctioneer is able to compute an efficient allocation.12

The counterpart of Vickrey auctions in combinatorial case is called the

Vickrey-Clarke-Groves auction (VCG auction) (a.k.a. generalized

Vickrey auction). The auction utilizes XOR-bidding. The allocation is

calculated by solving the WDP in XOR-form (see Figure 2.4). The winning

bidders pay their bids reduced by the VCG discount w(CI)− w(CI\i) :

ppay,i(S) = pbid,i(S)−
(
w(CI)− w(CI\i)

)
The pay price in a VCG auction is also called VCG payment.

Example 1. Let K = {A; B}, I = {1, 2} and the bidder valuations be defined

by Table 2.2. The efficient allocation is indicated by asterisks, bidder 1 getting

A B AB
b1 8∗ 9 12
b2 6 8∗ 14

Table 2.2: VCG auction example

item A and bidder 2 getting item B. Bidder 1 has to pay 6 = 8− (16− 14) for

A and bidder 2 has to pay 4 = 8− (16− 12) for B.

The VCG auction exhibits several appealing theoretical properties. It is

strategy-proof and budget-balanced and finds an efficient allocation. Achiev-

ing efficiency in a strategy-proof budget-balanced mechanism is remarkable.

Nevertheless, there are serious shortcomings:

12Assuming the WDP is computationally tractable.
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• The outcome of the VCG auction is not always in the core, thus it is

vulnerable to collusion by a coalition of losing bidders. Moreover, if the

outcome is not in the core, the auctioneer revenue can be very low or

zero, even if the sold items are valuable. For a detailed discussion of core

selecting auctions see Day and Milgrom (2007).

• It is important that bidders reveal their entire utility function, i.e., they

need to submit bids for all 2m− 1 possible bundles. This leads to a high

valuation complexity for the bidders, but also to a large input size of the

winner determination problem.

• The determination of the VCG payments itself becomes a computation-

ally hard problem, since one instance of an NP-hard problem similar to

the WDP must be solved for every winning bidder.

• The monotonicity problem: increasing the competition by adding more

bidders might reduce the auctioneer revenue.

• The transparency about the dominant strategy is often not given to

bidders. Truthful bidding in the VCG auction is not intuitive and bidders

often falsify their valuations.

• The need of a trusted auctioneer. A winner in a second price auction

has to doubt, whether the pay price is actually the second-highest price.

Additionally, bidders need to worry, whether the auctioneer gives their

valuations away to other bidders. Cryptographic approaches have been

proposed to solve this problem (Brandt, 2003).

The drawbacks of the VCG auction are strong enough for it to be hardly used

in practice. Nevertheless, it is an important theoretical construct that provides

insights into fundamental properties of auction mechanisms in general. The

VCG auction is often used as a reference point to derive meaningful statements
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about other auction designs. For further details on the VCG auction the reader

is referred to Ausubel and Milgrom (2006b).

2.5.2 Compatible Prices

The concept of ask prices compatible with an allocation is not common in the

auction literature. We introduced this property as it is intuitive and mostly de-

sirable when constructing price-based ICAs. In particular, with linear pricing,

compatible prices often do not exist, but can be approximated.

Definition 19 (IBIS). A set of ask prices Pask is called compatible with the

allocation X and bids B if ∀i ∈ I, S ⊆ K:

(xi(S) = 0 ⇔ pask,i(S) > pbid,i(S)) and (xi(S) = 1 ⇔ pask,i(S) ≤ pbid,i(S))

The interpretation is quite intuitive: the set of ask prices is compatible with

the given allocation and the given bids if and only if all winning bids are not

lower than the ask prices, and all losing bids are lower than the ask prices.

This is best visualized by the following example.

Example 2. Compatible prices.

There are 2 bidders and 2 items, current bids are given by Table 2.3 (the

revenue-maximizing allocation bids are marked by an asterisk).

A B AB
Bidder 1 2 3 5
Bidder 2 1 4 7*

Table 2.3: Compatible prices example

Consider the optimal (revenue-maximizing) allocation x2(AB) = 1 with the

total revenue of 7. We can easily construct non-linear anonymous compatible

prices by setting for instance pask(A) = 100, pask(B) = 100, pask(AB) = 7. On
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the contrary, constructing linear compatible prices is not a trivial task. The

price set pask(A) = 2, pask(B) = 4 (with pask(AB) = 6) is not compatible,

since bidder 1 does not win item A and bidder 2 does not win item B (the

compatibility conditions are violated for the bids b1(A) and b2(B)). The price

set pask(A) = 3, pask(B) = 5 (with pask(AB) = 8) is also not compatible, as

bidder 2 does not get bundle AB (the compatibility conditions are violated for

the bid b2(AB)). A compatible linear price set can be found for instance at

pask(A) = 2.5, pask(B) = 4.5 (with pask(AB) = 7).

Now consider a non-optimal allocation x2(B) = 1 with the total revenue of 4,

which does not allocate item A at all. In this case, (even linear) compatible

prices can also be constructed by setting the price of item A high enough, for

example pask(A) = 100, pask(B) = 4 (with pask(AB) = 104). Notice also that

if an allocation assigns any bundle to a non-highest bidder of this bundle, no

compatible prices can be constructed at all. (Such allocation can not be the

revenue-maximizing one, though.)

Compatible prices explain the winners, why they won, and the losers, why

they lost. In fact, informing bidders about the allocation is superfluous if

prices compatible to the current-round bids are communicated. However, the

above example shows that not every set of compatible prices provides bidders

with a meaningful information for improving their bids in the next round.

Another important observation is the fact that linear compatible prices are

harder and often even impossible (see Example 4 in the following section) to

construct if bidders’ valuations are super- or subadditive.

If no linear prices compatible with the given bids exist, one can try to approx-

imate them by minimizing13 the linear price compatibility distortions

defined as:

δi(S) :=

{
pbid,i(S)− pask,i(S) if xi(S) = 0

pask,i(S)− pbid,i(S) if xi(S) = 1

13There are several ways of minimizing compatibility distortions (see Section 3.3).
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Prices compatible with the given valuations can be defined similarly to the

prices compatible with the given bids :

Definition 20 (IBIS). A set of ask prices Pask is called compatible with the

allocation X and valuations V if ∀i ∈ I, S ⊆ K:

(xi(S) = 0 ⇔ pask,i(S) > vi(S)) and (xi(S) = 1 ⇔ pask,i(S) ≤ vi(S))

In case of truthful bidding, ICAs usually terminate with final ask prices com-

patible with the end allocation and the bidders’ valuations, so that the bidders

have no more incentives to continue bidding.

2.5.3 Competitive Equilibrium Prices

The idea behind the concept of competitive equilibrium prices is to define

prices that characterize an efficient allocation.

Definition 21. The prices Ppay and allocation X∗ = (S∗
1 , . . . , S

∗
n) are in com-

petitive equilibrium (CE) if:

πi(S
∗
i ,Ppay) = max

S⊆K
[πi(S,Ppay), 0] ∀i ∈ I

Π(X∗,Ppay) = max
X∈X

Π(X,Ppay)

The allocation X∗ is said to be supported by the prices Ppay in competitive

equilibrium.

The first condition is equivalent to the compatibility of the prices Ppay with

the given allocation X∗ and bidders’ valuations V (note that the bundles S∗
i

can also be empty). The second condition means that given the prices Ppay,

there exist no other allocation with a total revenue larger than the revenue
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of the allocation X∗. Altogether, in CE the utility of every bidder and the

auctioneer revenue are maximized at the given prices, and the auction will

effectively end, since the bidders will not be willing to change the allocation

by submitting any further bids.

In general, one can show that the existence of competitive equilibrium prices

implies the optimality of the allocation and that the opposite is also true in

case of non-linear personalized prices:

Theorem 1 (Bikhchandani and Ostroy (2006)). The following statements are

true:

1. If an allocation X∗ and prices Ppay are in competitive equilibrium for the

given valuations V, then this allocation is the efficient allocation.

2. For the efficient allocation X∗ there always exist personalized non-linear

competitive equilibrium prices Ppay. This is not always true for linear

and anonymous non-linear prices.

The following examples provide a better understanding of the concept of

CE prices. Example 3 extends Example 2 and illustrates, which of the con-

structed price sets are CE, and shows that no CE prices exist for the non-

optimal allocation. Further, Example 4 and Example 5 demonstrate cases in

which no linear and even no anonymous non-linear CE prices exist for the

optimal allocation.

Example 3. Competitive equilibrium prices.

For the optimal allocation x2(AB) = 1 with the total revenue of 7 in Example 2

we constructed two compatible price sets, so only the second CE condition has

to be verified. At the linear prices pask(A) = 2.5, pask(B) = 4.5 the most

profitable possibilities are to sell the items either in a bundle for the price

of 7 or separately for the total price of 2.5 + 4.5 = 7. In both cases this is



50 CHAPTER 2. ITERATIVE COMBINATORIAL AUCTIONS

exactly the revenue of the considered allocation, so the prices are in competitive

equilibrium. In contrast, the (non-linear) prices pask(A) = 100, pask(B) = 100,

pask(AB) = 7 are not CE, since the allocation x1(A) = 1, x2(B) = 1 with the

total revenue of 100+100 = 200 would be better than the considered allocation

at the current prices.

For the non-optimal allocation x2(B) = 1 with the total revenue of 4 the linear

price set pask(A) = 100, pask(B) = 4 is either not CE, since the auctioneer

can get more revenue by additionally selling item A. Moreover, no CE prices

exist for this allocation, since the price of bundle AB has to be larger than 7

to ensure compatibility, but in this case selling bundle AB would bring more

revenue than the considered allocation.

Example 4. Linear CE prices do not always exist.

There are 3 bidders and 3 items, the bids are given by Table 2.4 (the bids

belonging to the optimal allocation are marked with an asterisk).

A B C AB BC AC ABC
Bidder 1 60 50 50 200* 100 110 250
Bidder 2 50 60 50 110 200 100 255
Bidder 3 50 50 75* 100 125 200 250

Table 2.4: Linear CE prices example

The optimal allocation is x1(AB) = 1, x3(C) = 1 with the total revenue of

275. To be compatible with this allocation, prices must satisfy the following

inequalities:

pask(A) + pask(B) ≤ 200

pask(C) ≤ 75

pask(A) + pask(B) + 2pask(C) ≤ 350

pask(A) + pask(C) > 200

pask(B) + pask(C) > 200

pask(A) + pask(B) + 2pask(C) > 400

, which is a contradiction. This proves that no linear compatible prices (and

thus no linear CE prices) exist for the optimal allocation in this case. The

reason is the strong superadditive bidder valuations of multiple bundles.
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Example 5. Anonymous non-linear CE prices do not always exist.

There are 2 bidders and 2 items, the bids are given by Table 2.5 (the bids

belonging to the optimal allocation are marked with an asterisk).

A B AB
Bidder 1 0 0 3*
Bidder 2 2 2 2

Table 2.5: Non-linear anonymous CE prices example

The optimal allocation is x1(AB) = 1 with the total revenue of 3. To be

compatible with this allocation, anonymous item prices pask(A) and pask(B)

both have to be larger then 2. This implies that the auctioneer can get a total

revenue of at least 4 by selling the items separately, which is larger then the total

revenue of the considered allocation. This proves that no anonymous CE prices

exist for the optimal allocation in this case. The reason is the extremely strong

super- and subadditive bidder valuations of multiple bundles.

Note that for all considered examples we can easily construct discriminatory

non-linear CE prices for the optimal allocation. Generally, the more bundle

valuations are super- or subadditive and the stronger these super- or subaddi-

tivities are, the harder is it to find linear or anonymous non-linear prices.

The following result further emphasizes the importance of CE prices:

Theorem 2 (Bikhchandani and Ostroy (2002)). (Π, π) ∈ Core (I, w) if and

only if there exist personalized non-linear CE prices.

Theorem 2 states that there is an equivalence between the core of a coalitional

game and the set of CE prices. All core outcomes can be priced, and all CE

outcomes are in the core (see Figure 2.5).

The discussed properties of CE prices motivate for construction of ICAs that

update ask prices in the direction of CE prices until there are no new bids.
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Efficient Allocation

Core
<=>
CE

Figure 2.5: Relation between competitive equilibrium, core
outcome and efficient allocation

Such an ICA will converge to so called minimal CE prices. Generating min-

imal CE prices is a desirable property, since it usually imposes the incentive

compatibility of the auction design. The termination with CE prices that sup-

port VCG payments brings straightforward bidding into an ex post equilibrium

(Parkes, 2006).

Definition 22 (Minimal CE Prices). Minimal CE prices Ppay minimize

the auctioneer revenue Π(X∗,Ppay) on an efficient allocation X∗ across all

CE prices.

If linear minimal CE prices exist, they can be found by solving the dual prob-

lem of the linear relaxation of the CAP:

min
∑
i

p(i) +
∑
k

p(k)

s.t.

p(i) +
∑
k∈S

p(k) ≥ vi(S) ∀i ∈ I, S ⊆ K

p(i), p(k) ≥ 0 ∀i ∈ I, k ∈ K

(CAP-DLP)

The values of the dual variables quantify the monetary cost of not awarding the

item to whom it has been provisionally assigned. This means, the dual vari-

ables p(k) can be interpreted as anonymous linear prices, the term
∑

k∈S p(k)
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is then the price of bundle S and p(i) := maxS

{
vi(S)−

∑
k∈S p(k)

}
is the

maximal utility of bidder i at the prices {p(k)}.

A Walrasian equilibrium is described as a vector of such item prices for

which all items are sold when each bidder receives a bundle in her demand set.

Unfortunately, the CAP is a binary program, i.e., a non-convex optimization

problem, in which dual prices will usually overestimate the true item values.

Example 4 illustrates that linear anonymous CE prices do not exist for certain

types of bidder valuations. Kelso and Crawford (1982) show that the goods-

are-substitutes property is a sufficient and an almost necessary14 condition for

the existence of linear anonymous CE prices.

Definition 23. Demand set includes all bundles that maximize the bidder’s

utility at the given prices:

Di(Ppay) :=

{
S ⊆ K : πi(S,Ppay) ≥ max

T⊆K
πi(T,Ppay) and πi(S,Ppay) ≥ 0

}

Definition 24. Valuations V satisfy the goods-are-substitutes condition

(a.k.a. gross substitutes condition) if for all linear price sets Ppay, P ′
pay

such that P ′
pay ≥ Ppay (component-wise) and all S ∈ Di(Ppay) there exists

T ∈ Di(P ′
pay) such that {k ∈ S : ppay,i(k) = p′pay,i(k)}.

Intuitively, this condition implies that the bidder will continue to demand

the items which do not change in price, even if the prices on other items

increase. However, the goods-are-substitutes condition is very restrictive, as

most known practical applications of combinatorial auctions rather deal with

complementary goods.

By adding additional constraints for each set partition of items and each bid-

der to the CAP the formulation can be strengthened, so that personalized

14For details see Parkes (2006).
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non-linear prices can be derived from the respective dual problem. Such a

formulation describes every feasible solution to an integer problem and is solv-

able with linear programming resulting in personalized non-linear CE prices

(Bikhchandani and Ostroy, 2002). Although, such prices do always exist, such

an approach is not practical for larger CAs.

Several ICA designs attempt to result in VCG payments. Minimal CE prices

and VCG payments typically differ. Bikhchandani and Ostroy (2002) show

that the bidders-are-substitutes condition is necessary and sufficient to support

VCG payments in competitive equilibrium.

Definition 25. The bidders-are-substitutes condition (BSC) is satisfied

if ∀I ⊆ I:

w(CI)− w(CI\I) ≥
∑
i∈I

[
w(CI)− w(CI\i)

]
If the BSC fails, VCG payments are not supported in any price equilibrium

and truthful bidding is not an equilibrium strategy. A bidder’s payment in the

VCG mechanism is always less than or equal to her payment at any CE price.

Furthermore, the BSC is not sufficient for an ascending auction to terminate

with VCG prices and Ausubel and Milgrom (2006a) show that it requires the

slightly stronger bidder-submodularity condition for an ascending proxy auction

to implement VCG payments.

Definition 26. The bidder-submodularity condition (BSM) is satisfied

if ∀I ⊆ I ′ ⊆ I and ∀i ∈ I:

w(CI∪i)− w(CI) ≥ w(CI′∪i)− w(CI′)

de Vries et al. (2007) show that under the BSM their primal-dual auction (see

Section 2.6.1) yields VCG payments. If the BSM condition does not hold, the

property breaks down, and the myopic best-response strategy is likely to lead

bidders to pay more than the optimal prices for the winning packages (Dunford

et al., 2007).
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2.6 Price-Based Iterative Combinatorial Auc-

tions

Many iterative combinatorial auction designs utilize ask prices to guide bid-

ding. In fact, every centralized ICA design familiar to me is price-based.15.

Ask prices define the lower bound or the exact value (if jump bidding is not

permitted) for bid prices, inform bidders about the current competition and

help the auction to end up with an efficient allocation. In most price-based

ICAs bidders pay what they bid (pay prices are equal to the bid prices) and

the auction is designed to converge to either exact or approximated minimal

CE prices.

Price-based ICA designs differ mostly by the pricing scheme and price update

rules. Price update rules can be categorized as follows:

Greedy increase: Ask prices are increased on some arbitrary set (perhaps

all) of the over-demanded items or bundles.

Minimal increase: Ask prices are increased on a minimal set of overde-

manded items, or based on the bids from a set of minimally undersupplied

bidders (de Vries et al., 2007; Parkes, 2006).

Bid-based update: Ask prices are calculated on the basis of submitted bids

by some price calculation algorithm, which tries to find a good approx-

imation to CE prices given current bids. Ask prices may sometimes fall

in this case.

The pricing scheme is a key element of an ICA price-based design. On the

one hand, personalized non-linear prices are used in primal-dual auctions,

which try to use the result of the Theorem 1 and converge to exact minimal

15For more details on some decentralized ICA designs see Parkes (2006).
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CE prices.16 On the other hand, linear-price auctions, which end up with

approximate minimal CE prices, avoid several shortcomings of primal-dual

auctions and produce impressive efficiency results.

2.6.1 Primal-Dual Auction Designs

The fundamental work of Bikhchandani and Ostroy (Bikhchandani and Ostroy,

2002) demonstrates the strong interrelationship between iterative auctions and

primal-dual linear programming algorithms. A strengthened form of the CAP

is used as the primal problem, whereas the provisional allocation is interpreted

as a feasible primal solution, and personalized non-linear prices are interpreted

as a feasible dual solution. Bids provide sufficient information to formulate and

solve restricted primal and dual problems, the winner determination and price

update problems respectively. Primal-dual algorithms maintain a feasible

allocation and a feasible price set and terminate as the efficient allocation and

CE prices are found.

Primal-dual auctions assume the (myopic) best-response bidding strat-

egy or some similar concept as it is straightforward and is justified by the

termination with minimal CE prices or VCG payments. With this strategy,

every bidder locally maximizes her utility by bidding for all bundles contained

in her current demand set exactly at current ask prices (Parkes, 2001).

The competitive equilibrium conditions (see Definition 21) exactly correspond

to the complementary-slackness conditions in duality theory and, therefore,

indicate the algorithm termination with an optimal solution. Note that they

can be directly verified by the auctioneer if bidders follow the myopic best-

response bidding strategy. In fact, given an allocation and a price set, the

auctioneer can verify the second CE condition without knowing the bidders’

16There are also similar designs that converge to other kinds of CE prices, e.g., to so called
universal CE prices. For details see Parkes (2006).
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valuations. The first CE condition is satisfied (assuming myopic best-response

bidding) if all current loosing bids are lower than the prices, all current winning

bids are not lower than the prices, and no new bids are submitted in the next

iteration.

The general constructive scheme of primal-dual auctions17 can be outlined as

follows:

1. Choose minimal initial prices (usually set them to 0).

2. Provide the bidders with a bidding language that is expressive for

straightforward bidding. Announce current ask prices and collect bids

(jump bidding is sometimes allowed, but usually prohibited).

3. Compute the current dual solution by interpreting the bid prices as dual

variables. Try to find a feasible allocation (a feasible primal solution)

that minimizes the violation of the complementary-slackness conditions.

4. Terminate if the complementary-slackness conditions are satisfied (and,

therefore, with CE prices) and use the last provisional allocation as the

end allocation. Otherwise adjust prices to make progress towards an

optimal dual solution that satisfies these conditions and go back to 2.

The price update rule is a key design feature, it differs considerably among the

auction designs. In some auctions, prices are increased on a minimal set of

overdemanded items or based on the bids from a set of minimally undersupplied

bidders (de Vries et al., 2007; Parkes, 2006). Usually, a fixed price increment is

used. The prices are usually increased in a way that the second CE-condition

(see Definition 21) remains valid throughout the auction. In this case the

auction finds CE prices as soon as no more overdemanded bundles exist. (All

17de Vries and Vohra (2003) further distinguish between “pure primal-dual” and “subgra-
dient” auction algorithms. I refer to both auction families as to primal-dual auctions.
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bids that are still valid at the current ask prices belong to the provisional

allocation.) This condition is often used as the termination rule.

Some primal-dual auction implementations use anonymous bundle prices to re-

duce the computational, communicational, and cognitive complexity. Though

anonymous bundle CE prices do not always exist, such auctions were shown

to produce good efficiency results. Additionally, Parkes (2001) derives the bid

safety condition, which makes it possible to determine the necessity of the

price personalization dynamically and to switch to personalized prices only as

it is required.

There is a lot of theory on primal-dual auctions, which is out of the scope

of this thesis. The interested reader is referred to Parkes (2001), de Vries

and Vohra (2003) and Bikhchandani and Ostroy (2006). However, primal-dual

auctions are hardly used in practice18 for several reasons:

• The very low speed of convergence, which can require hundreds of rounds

for the auction to complete, as our own19 and other experiments have

shown (Dunford et al., 2007).

• The BSC can often fail in realistic settings (Parkes, 2001, chap. 7).

de Vries et al. (2007) show that when at least one bidder has a non-

substitutes valuation, an ascending CA cannot implement the VCG out-

come. In these cases VCG payments are not supported in any price

equilibrium, and truthful bidding is not an equilibrium strategy (Parkes,

2006).

• The best-response bidding strategy can be hardly realized by bidders if

activity rules are used. The performance of primal-dual auction designs

18A notable exception is the indirect use of primal-dual auctions in some implementations
of proxy agents, e.g., in the Clock-Proxy Auction.

19The results of the referred experiments are not yet published.
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for general valuations and non-myopic bidding strategies is not well stud-

ied yet. Our own computational experiments (see Chapter 4) have shown

that with heuristic bidding behavior (e.g., bidders selecting randomly 3

out of the 10 best bundles in each round) the efficiency of primal-dual

auctions can be very low, while linear-price auctions are robust against

these and other bundle bidding strategies.

• Almost all bidders’ valuations have to be revealed throughout the auction

to end up with an efficient allocation.

Both, the large number of auction rounds and the need for the best-response

bidding strategy require proxy agents. All valuations need to be provided to

the proxy agent up-front or throughout the auction. The proxy agents need to

be hosted by a trusted third party, which can be a considerable disadvantage

in many settings. Also, the use of personalized prices might be perceived as

unfair and also confusing by bidders, since they lack the information about the

current competition.

2.6.2 Linear-Price Auctions Designs

Although the existence of exact linear CE prices is limited, there are several

proposals for auction designs with linear prices. Currently, no formal equilib-

rium analysis for such prices exists, but they exhibit a number of very useful

properties and have performed well in the laboratory:

• Linear prices are easy to understand for bidders. Simplicity of the feed-

back given to bidders is very important to many practical application

domains.

• Only a linear number of prices has to be communicated in each round.
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• One can use linear prices to compute the value of any other bundle, even

if no bid was submitted for this bundle in previous rounds (Kwon et al.,

2005). This gives bidders an indication, which items and bundles will be

expensive and for which there is low competition.

• Overall, dual prices in linear programming are only valid within bounds

under ceteris paribus conditions, when no new bids are submitted. A

single new bid can completely change the allocation, and the previously

losing bids may become winning. Therefore, such pricing information

is best viewed as a guideline for bidders, informing them about what

it would take for a bid to have some possibility of winning in the next

round.

• Problems of approximate linear prices occur when ask prices violate the

price compatibility condition. While this can be confusing for bidders,

if ask prices are viewed as a guideline and minimum bid price this does

not necessarily have to impact the efficiency of the auction.

These arguments motivate further analysis of ICA designs with linear prices,

which was the central topic of our research.



Chapter 3

Selected Auction Designs

This chapter briefly describes the combinatorial auction designs discussed in

this thesis. Since we focused on linear-price auctions, most considered auc-

tion designs are based on linear prices. The well-known Combinatorial Clock

(CC) auction and Resource Allocation Design (RAD) belong to this family.

Additionally, Approximate Linear PriceS (ALPS) auction, developed by us,

is discussed. ALPS is an extension of the RAD design that significantly im-

proves several auction characteristics, in particular the allocative efficiency,

robustness, etc. (See Chapter 4 and Chapter 6). Furthermore, one member of

the primal-dual auctions family, iBundle, is introduced. The Vickrey-Clarke-

Groves auction has already been discussed in Section 2.5.1.

3.1 Combinatorial Clock (CC) Auction

The Combinatorial Clock (CC) auction has been proposed in Porter et al.

(2003) and later reused by a similar Clock-Proxy auction design in (Ausubel

et al., 2006). From the auction designs discussed in this thesis, this is the only

one that supports auctioning multiple units of the same item. Bidders are

61
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allowed to bid on bundles containing specified quantities of every contained

item.

The auction uses anonymous linear prices called item clock prices. In each

round bidders submit bids, which express their desired packaged item quanti-

ties at the current ask prices. Jump bidding is not allowed, thus bidders always

bid at the current prices.

As long as the overall demand exceeds supply for at least one item, the price

clock ”ticks” upwards for those items (the item prices are increased by a fixed

price increment), and the auction moves on to the next round. No provisional

allocation is calculated and all bids remain active throughout the auction. We

call bids submitted in the current round and bids for which the ask price of the

corresponding bundle did not increase standing bids. In other words, a bid

remains standing for the next round, if there is no (more) competition of the

underlying items. We call a bidder standing if she has at least one standing

bid.

As soon as there is no excess demand (but there can be excess supply if several

bidders simultaneously reduced their demands on some item), the auctioneer

solves the winner determination problem considering all bids submitted dur-

ing the auction runtime. If the computed allocation does not generate excess

demand or does not displace any standing bidder (depending on the termi-

nation rule, see below), the auction terminates with the computed allocation.

Otherwise ask prices of the respective items are increased and the auction

continues.

The advantages of the CC auction are its cognitive, computational, and com-

municative simplicity. However, this can be a tradeoff for efficiency losses.

One kind of inefficiencies can be visualized by the following example:

Example 6. There are 3 bidders and 3 items, the bidder valuations are given

by Table 3.1.
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A B C AB BC AC ABC
Bidder 1 5*
Bidder 2 2
Bidder 3 2

Table 3.1: CC auction inefficiencies example - Valuations

The efficient allocation is to sell bundle ABC to bidder 1 for the total revenue

of 5. The progress of this auction is illustrated in Table 3.2.

Ask Prices Bids
Item A Item B Item C Bidder 1 Bidder 2 Bidder 3

Round 1 1 1 1 (ABC, 3) (AB, 2) (C, 1)
Round 2 2 2 2 — — (C, 2)
End allocation — — — — (AB, 2) (C, 2)

Table 3.2: CC auction inefficiencies example - Progress

The auction would allocate package AB to bidder 2 and item C to bidder 3 for

the total revenue of 4, which is not efficient. This happens due to the price

update rule, since the price of package ABC rapidly increases from 3 to 6 in

the second round, so that bidder 1 has no chance to reveal her true valuation

of 5.

Neither Porter et al. (2003) nor (Ausubel et al., 2006) examine the question,

which bidding languages are appropriate for the CC auction design. Porter

et al. (2003) briefly mentions that multiple bids of the same bidder cab si-

multaneously win, whereas (Ausubel et al., 2006) does not discuss the bidding

language question explicitly, but, in our understanding, expects XOR bidding.

In fact, the CC auction is capable of handling both OR and XOR bidding lan-

guages, even in the multi-unit case. However, the overall demand calculation,

price update, and termination rules have to be fine-tuned to avoid a couple of

potential design problems.

First of all, the demand generated by a single bidder has to be calculated in

different ways in OR and XOR cases. With OR bidding, demands produced
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by different bids on the same item by the same bidder have to be aggregated,

as long as they do not exceed the total supply on that item. In contrast, in

XOR case only the maximum demand for every item has to be considered.

Furthermore, in case when some non-standing bids are selected as winning by

the winner determination algorithm, they have to be included in the overall

demand calculation. Otherwise the auction can get stalled since ask prices will

not increase and the termination rule can not be properly verified.

Finally, the termination rule has to be carefully defined. Especially in the XOR

case, the “all standing bids must win” rule is clearly inappropriate. With the

correct overall demand calculation (as described above) the termination rule

“no excess demand is generated by the winner determination” does well in all

cases. An alternative is to terminate as soon as every standing bidder wins at

least one bid (either standing or not). This termination rule is equivalent to

the previous one in XOR case. In OR case, the auction can close even if there

are some OR-bidders winning some bundles, but willing to continue bidding

to win more bundles.

The most common activity rule in clock auctions is monotonicity in quantity.

As ask prices rise, quantities cannot increase. A weaker activity requirement is

monotonicity in aggregate quantity across all items. This allows full flexibility

in shifting quantity among different items (Ausubel et al., 2006). We used this

rule in the laboratory experiments for two reasons. First, in single-unit case it

corresponds to the activity rules of RAD and ALPS and, therefore, improves

the comparability of different designs. Second, we did not find an appropriate

way to explain the more complex revealed preference activity rule proposed in

Ausubel et al. (2006) in the context of the Clock-Proxy Auction to bidders.

This rule is also hard to implement, since the whole bidding history (not only

the last round) has to be considered.



3.2. RESOURCE ALLOCATION DESIGN (RAD) 65

3.2 Resource Allocation Design (RAD)

The Resource Allocation Design (RAD) proposed in Kwasnica et al.

(2005) also uses anonymous linear ask prices. However, instead of increasing

ask prices incrementally, the auction lets bidders submit priced bids (jump

bidding is allowed) and calculates so called pseudo-dual prices based on the

LP relaxation of the CAP (Rassenti et al., 1982). The dual price of each item

measures the cost of not awarding the item to whom it has been allocated in

the last round. Unless the LP relaxation is integral, RAD uses a restricted

dual formulation to derive approximate or pseudo-dual prices compatible with

the current provisional allocation after each auction round. In the next round

losing bidders have to bid not less than the sum of ask prices for a desired bun-

dle plus a fixed price increment. A detailed discussion of the price calculation

rules in RAD and ALPS can be found in Appendix A.

RAD suggests OR bidding language and only winning bids remain active in

its original design. In our work we have enforced all the original RAD rules,

but used the XOR bidding language for comparability reasons and to avoid

side effects caused by the exposure problem1.

The strength of the RAD design lies in its cognitive simplicity for bidders

and its dynamic ask price computation algorithm. Pseudo-dual ask prices are

usually compatible with the provisional allocation, reflect the current compe-

tition in the market, and lead the auction to approximate minimal CE prices.

Additionally, prices can be fine-tuned to reduce the threshold problem, etc.

However, the original RAD price calculation algorithm has a couple of pitfalls,

see Section 3.3 and Appendix A.

Since ask prices may sometimes fall in RAD, the auction termination relies only

on its activity rules defined as in the Simultaneous Multi-Round Design (SMR).

1With OR bidding a bidder can win several bids and receive items with sub-additive
valuations. This makes the bidding strategy more complex and can cause inefficiencies.



66 CHAPTER 3. SELECTED AUCTION DESIGNS

Most notably, the rules enforce monotonicity in aggregate quantity, i.e., a

bidder is not allowed to bid on an increasing number of items in subsequent

rounds.

For further details on RAD the reader is referred to Kwasnica et al. (2005).

3.3 Approximate Linear PriceS (ALPS)

The Approximate Linear PriceS (ALPS) auction design and its modifi-

cation ALPSm were developed at our university department. ALPS is largely

based on, but extends the RAD design. The strength of RAD lies in its sim-

plicity and flexibility for bidders. Ask prices serve as a guideline to discover

new and interesting bundles and allow for submission of bid prices. Also for

novice bidders, linear prices are straightforward to use and intuitive. However,

RAD faces a few design problems. Most importantly, activity and termina-

tion rules can lead to premature termination and inefficiencies. Also, there are

ways to further decrease ask prices to better approximate minimal CE prices

in the end allocation. ALPS is based on similar auction rules with a number

of modifications:

Calculation of linear ask prices: ALPS calculates pseudo-dual prices, but

modifies the rules specified in RAD to better minimize and balance prices

and price compatibility distortions. We found this to have a modest, but

positive impact on the auction efficiency and to better approximate min-

imal CE prices in the end allocation. Additionally, the price calculation

algorithm was adopted to better support XOR bidding.

Termination rule: The termination rule has been adapted, since it is a

potential cause of inefficiency in RAD. The auction terminates if there

are no new bids submitted in the last round. To ensure the auction

progress, ALPS increases ask prices if the provisional allocation does not
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change in two consecutive rounds, whereas in ALPSm every bidder has

to outbid her bids from previous rounds on the same bundle.

Surplus eligibility: Many auction scenarios suffer from the problem that

the RAD activity rule does not allow for an increase in the number of

distinct items a bidder is bidding on. In particular, when auctioning

transportation services, it can become beneficial to bid on a longer route

in later rounds. We have modified the RAD activity rule to allow active

bidders to increase the number of items they bid on.

ALPS supports both OR and XOR bidding languages. A detailed description

of the ask price calculation, termination rules, and activity rules is given in

Appendix A.

In addition to above extensions, we found the old-bids-active rule (see also

Section 2.3.3) to have a significant effect on the auction outcome:

ALPSm old-bids-active rule: In RAD and ALPS, only provisionally win-

ning bids remain active in the subsequent round. In a modified version

of ALPS, called ALPSm, all bids submitted throughout the auction

remain active even if they are provisionally losing. This rule was shown

to provide a significant positive effect on the allocative efficiency.

We have also experimented with last-and-final bids as described in Section 2.3.3

and with per-bundle price increments (as opposite to per-item price incre-

ments), but could not find a significant positive impact on the efficiency in the

computational experiments.

3.4 iBundle

Several authors have proposed auction designs based on non-linear, usually

personalized prices. These designs are mostly based on the primal-dual ap-
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proach. The Ascending Proxy auction has been proposed in the con-

text of the FCC spectrum auction design (Ausubel and Milgrom, 2006a). It

uses personalized non-linear prices and is similar to the iBundle design by

David Parkes (Parkes, 2001), although Ausubel and Milgrom (2006a) empha-

size proxy agents, which essentially lead to a sealed-bid design. Both designs

achieve an efficient outcome with minimal CE prices and Vickrey payments if

the BSM condition is satisfied. The dVSV auction design by de Vries et al.

(2007) is also similar to iBundle, but differs in the price update rule.

de Vries et al. (2007) also show that there cannot be an ascending combinatorial

auction with Vickrey outcomes for private valuation models without restric-

tions. Newer approaches, such as the one by Mishra and Parkes (2007) try

to overcome this negative result by extending the definition of ascending price

auctions, e.g., by multiple price paths or discounts on the quoted bid prices

upon termination. Most problems discussed in Section 2.6.1, however, remain.

In addition, Vickrey outcomes are not in the core for general valuations.

We exemplary selected iBundle, developed by David Parkes, as a member of

the primal-dual auction family, because it does not require proxy bidding, and

the price update rule is easy to understand and to implement. iBundle follows

the general primal-dual auction scheme described in Section 2.6.1 with the

auction rules defined as follows:

• Bidding languages: The XOR bidding language is used.

• Pricing scheme: Non-linear ask prices are used. Three different modi-

fications are proposed: one with personalized prices, another with anony-

mous prices, and the third introduces price personalization dynamically

as it is required. Ask prices are used as minimum or exact bid prices

(depending on the jump bidding option). Last-and-final bids can also

be allowed.
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• Price update rules: The price of every bundle contained in some

bid of some provisionally losing bidder is increased to the correspond-

ing (with personalized prices) or highest unsuccessful (with anony-

mous prices) bid price plus the price increment ∆. Additionally, the

prices are hold consistent with the free disposal assumption, so that

pask,i(S) ≥ pask,i(T ) ∀S, T : T ⊆ S.

• Bid activity rules: Provisionally winning bids are kept active for the

next round. Provisionally losing bids are deactivated.

• Activity rules: No activity rules apply.

• Termination rules: The auction closes as soon as every standing (hav-

ing new bids in the current round or previous-round-winning) bidder wins

a bundle.

As the standard version of iBundle is a theoretical construct not intended to

be used in practical applications, we contacted David Parkes and together

selected the following additional set of rules, to adjust the iBundle mechanism

to be used with human bidders:

• We used iBundle with personalized prices to reduce the cognitive

complexity for bidders without risking to cause efficiency losses.

• Jump bidding was allowed.

• Bid activity rules: The all-bids-active rule was used, though it is not

considered in the standard version.

• Activity rules: We introduced the following activity rule, not consid-

ered in the standard version: a bidder has to submit at least one new bid

in a round (except she provisionally wins) to be able to submit further

bids in following rounds.
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3.5 Summary

An overview of the key properties of the ICA designs discussed in this chapter

is given in Table 3.3. The auctions describe vastly different approaches, and

their comparison is a difficult task. In addition to allocative efficiency, ICAs

need to fulfill a number of criteria to be applicable in a wide range of domains.

Above all, the design should be simple in the sense of easy to understand

rules, easy to interpret information feedback, as well as a reasonable number of

auction rounds. These requirements pose a number of engineering challenges to

auction designers, and ICAs described so far have pros and cons with respect to

these goals. In our research, we compared selected auction designs in different

settings by means of computational experiments under various assumptions

about value models and bidding strategies, as well as in laboratory experiments

with human bidders. The results of this work are presented in Chapter 4 and

Chapter 6.

There is a couple of further centralized iterative auction designs that were

not considered, in particular auctions that involve proxy agents. For example,

the Clock-Proxy auction (Ausubel et al., 2006) is an interesting design, that

extends the CC auction by a last-and-final ascending proxy auction round. We

did not specifically consider these auction designs in our analysis, since bidding

strategies of bidders in iterative auctions with proxy agents are theoretically

less understood and cognitive more complex for bidders. On the other hand,

the results of this work are also highly valuable for constructing auctions with

proxy agents, since they are mostly based on non-proxy designs.
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Chapter 4

Computational Experiments

This chapter presents the setup and results of the computational experiments,

conducted using our simulation framework. We compared the CC auction,

RAD, ALPS, and the Vickrey-Clarke-Groves auction1 in different settings un-

der various assumptions about value models and bidding strategies. We dis-

covered some interesting facts regarding the allocative efficiency, revenue dis-

tribution, price monotonicity, and speed of convergence of different designs and

analyzed their robustness against selected pure and mixed bidding strategies.

4.1 Experimental Setup

A simulation instance is configured by a combination of a value model, bidding

agent and auction processor. A value model defines the set of valuations

of every bundle for every bidder. A bidding agent implements a bidding

strategy adhering to the given value model and to the restrictions of the specific

auction design. An auction processor implements the auction logic, enforces

1Computational experiments with iBundle are not included, since the results are still
being analyzed.

73
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auction protocol rules, and calculates allocations and ask prices. Different

implementations of value models, bidding agents, and auction processors can

be combined, which allows to perform sensitivity analysis by running a set

of simulations while changing only one component and preserving all other

parameters. The architecture of the simulation framework is described in

detail in Appendix D.

4.1.1 Value Models

The type of bidder valuations is an important treatment variable for the analy-

sis of different auction designs (see Section 2.5). The performance of an auction

design can significantly depend on the valuation properties, in particular on

the bidders-are-substitutes and bidder-submodularity conditions, which are

often not satisfied in practical settings. Since there are hardly any real-world

CA data sets available, we have adopted the Combinatorial Auctions Test

Suite (CATS) value models, which have been widely used for the evaluation

of winner determination algorithms (Leyton-Brown et al., 2000).

In the following, a value model is defined as a function that generates realistic,

economically motivated combinatorial valuations on all possible bundles for

all bidders. For example, a transportation network, real estate lots, and an

airport slot occupancy timetable provide the underlying rationale. In addition

to CATS value models, we used the Pairwise Synergy value model from An

et al. (2005). In all value models we assume free disposal (see Section 2.4).

The Transportation value model uses the Paths in Space model from CATS.

It builds a nearly planar transportation graph in Cartesian coordinates, in

which every bidder is interested in securing a path between two randomly

selected vertices (cities). The items traded are the edges (routes) of the graph.

The parameters for the Transportation value model are the number of items

(edges) m and the graph density ρ that defines the average number of edges
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per city and is used to define the number of vertices as (m∗2)/ρ. The bidder’s

valuation for a path is defined by the Euclidean distance between the two nodes

multiplied by a random number, drawn from a specific uniform distribution.

As every profitable bundle contains a path between the two selected cities,

only a limited number of bundles is valuable for the bidder. This allows to

consider even larger transportation networks in a reasonable time.

The Pairwise Synergy value model in An et al. (2005) is defined by a set

of valuations of individual items {vi(k)} with k ∈ K and a matrix of pairwise

item synergies {synk,l : k, l ∈ K, synk,l = synl,k, synk,k = 0}. The valuation of

a bundle S is then defined as:

vi(S) :=
∑
k∈S

vi(k) +
1

|S| − 1

∑
k∈S

∑
l∈S,l 6=k

synk,l(vi(k) + vi(l))

A synergy value of 0 corresponds to completely independent items, and a syn-

ergy value of 1 means that the bundle valuation is twice as high as the sum of

the individual item valuations. The relevant parameters for the Pairwise Syn-

ergy value model are the interval for the randomly generated item valuations

and the interval for the randomly generated synergy values.

The Matching value model is an implementation of the matching scenario in

CATS. It models the 4 largest USA airports, each having a predefined amount

of starting and landing time slots. For simplicity, there is only one slot for each

time unit available. Every bidder is interested in obtaining one starting and

one landing slot (i.e. item) in two randomly selected airports. Her valuation

is proportional to the distance between the airports and reaches its maximum

as the landing time matches a certain randomly selected value. The valuation

is reduced, if the landing time deviates from this ideal value, or if the time

between the starting and landing slots is longer than necessary.

The Real Estate value model is based on the Proximity in Space model

from CATS. The items sold in the auction are real estate lots k, which have
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(a) Transportation (b) Real Estate 3x3

Figure 4.1: Transportation and Real Estate value models

valuations vi(k) drawn from the same normal distribution for every bidder i.

The adjacency relationships between every two pieces of land k and l denoted

by ekl are generated randomly. The edge weights wi(ekl) ∈ [0, 1] are then

generated randomly for every bidder and used to define the bundle valuations

of adjacent pieces of land as follows:

vi(S) :=

(
1 +

∑
ekl:k,l∈S

wi(ekl)

)∑
k∈S

vi(k)

4.1.2 Bidding Agents

A bidding agent implements a bidding strategy adhering to the given value

model and to the rules of the used auction design. In our simulations, we

considered six different agent behaviors. Some of them represent extreme

cases of completely bundle-unaware (näıve) bidders or intelligent bidders who

evaluate all possible bundles (best-response and power-set bidders). Other
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agents implement some bundle selection heuristics, which might closer resemble

real bidder behavior.

The näıve bidder does not use bundle bids at all, but rather submits singleton

bids for the items that provide a positive utility at the current ask prices. In

contrast to all other bidder types, this bidder uses the OR bidding language.

The (myopic) best-response or straightforward bidder is often assumed in

the game-theoretical analysis (Parkes and Ungar, 2000a). This bidder submits

bids for the bundles that maximize her surplus at the current ask prices. In

other words, the bidder bids exactly for her current demand set (see Defini-

tion 23). Determining the demand set requires advanced computational skills.

The power-set bidder evaluates all possible bundles and submits bids for the

10 most profitable ones given the current ask prices. In contrast to the best-

response bidder, the power-set bidder does not only select the bundles with

the maximum profit, but also less profitable ones.

The heuristic bidder is close to the power-set bidder, but randomly selects 3

of the 10 most profitable bundles (3of10 bidder) or 5 of the 20 most profitable

bundles (5of20 bidder) she can bid on.

for each k ∈ K
1) Create a single-item bundle Bk = {k}
2) Define α = argmaxl∈K\Bk

AU(Bk ∪ {l})
3) if AU(Bk ∪ {α}) > AU(Bk)

then Bk = Bk ∪ {α}, goto 2)

Figure 4.2: Best-chain bidder algorithm

The best-chain bidder is similar to the INT bidder from An et al. (2005). It

implements the algorithm shown in Figure 4.2. Starting from every individual

item k ∈ K, the algorithm finds another item that provides the maximum

increase in the average unit utility (AU) of the bundle given the current ask

prices. If the new average utility exceeds the previous value, the new item is
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added to the bundle and the process continues until the average unit utility

cannot be further increased.

4.2 Efficiency and Revenue Analysis

In the first set of the simulations our goal was to compare the performance of

different ICA designs based on various value models. We were interested in

the efficiency and revenue figures using only best-response bidders and a small

price increment. The results provide an estimate of efficiency losses that can

be attributed to the auction design, and, in particular, to the linearity of ask

prices.

4.2.1 Efficiency of Different ICA Designs

We used seven value models to compare the CC auction, RAD, RAD without

eligibility (RADne), ALPS, and ALPSm designs. For every value model

we created 40 instances with different valuations and conducted one auction

for every combination of the value model instance and auction design. All

auctions used a bid increment of 0.1. The auction setup details and average

results, aggregated over all instances of the same value model, are shown in

Table 4.1. The left-hand column indicates the auction setup, i.e., the number

of items, value model, number of bidders, and number of auctions in which the

valuations fulfill the BSC (in most cases the BSC was not fulfilled).

Real Estate 3x3 describes the real-estate model with 9 lots and 5 bidders.

Individual item valuations are normally distributed with a mean of 10 and

variance of 2. There is a 90% probability of a vertical or horizontal edge and

an 80% probability of a diagonal edge. The distribution of the edge weights

has a mean of 0.5 and a variance of 0.3. 16 value model instances out of 40

fulfill the BSC. The lot valuations in the Real Estate 4x4 model with 16 lots
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hhhhhhhhhhhhValue Model
ICA Design

ALPS ALPSm CC RAD RADne VCG

Real Estate 3x3 E(X) in % 96.5 98.81 97.13 69.9 71.21 100
9 items R(X) in % 67.75 82.5 86.56 10.11 10.37 84.2
5 best-response bidders U(X) in % 28.75 16.31 10.57 59.79 60.84 15.8
16 auctions BSC Rounds 532.98 760.83 400 46.95 47.15 1

Real Estate 4x4 E(X) in % 96.84 99.82 96.24 76.13 76.09 100
16 items R(X) in % 75.51 90.72 90.56 9.16 9.75 90.3
10 best-response bidders U(X) in % 21.34 9.1 5.69 66.97 66.34 9.7
1 auction BSC Rounds 440.73 641.7 247.7 28.95 30.65 1

Pairwise Synergy Low E(X) in % 94.82 99.73 98.56 69.98 69.17 100
7 items, valued 0 to 195 R(X) in % 72.41 87.53 88.29 8.84 8.63 87.08
synergy 0 to 0.5 U(X) in % 22.42 12.19 10.27 61.14 60.54 12.92
5 best-response bidders Rounds 369.3 816 412.82 44.42 44.4 1
20 auctions BSC

Pairwise Synergy High E(X) in % 92.8 99.64 99.87 72.66 71.99 100
7 items, valued 0 to 88 R(X) in % 76.28 87.97 89.18 9.82 9.6 87.5
synergy 1.5 to 2.0 U(X) in % 16.52 11.68 10.69 62.84 62.4 12.5
5 best-response bidders Rounds 354.65 656.38 338.48 41.8 41.67 1
15 auctions BSC

Matching E(X) in % 97.27 99.81 97.95 90.09 90.56 100
84 items (21 slots/airport) R(X) in % 52.01 53.81 67.9 28.26 30.45 42.33
40 best-response bidders U(X) in % 45.26 46.01 30.04 61.83 60.11 57.67
0 auctions BSC Rounds 671.55 186.47 93.47 23.3 27.5 1

Transportation Large E(X) in % 93.97 99.52 96.78 82.48 83.73 100
50 items, density ρ = 2.9 R(X) in % 62.33 76.61 80.92 38.97 34.9 64.21
34 cities (vertices) U(X) in % 31.65 22.91 15.86 43.5 48.83 35.79
30 best-response bidders Rounds 193.4 161.8 180.05 31.38 28.3 1
0 auctions BSC

Transportation Small E(X) in % 98.26 99.78 97.73 82.98 81.31 100
25 items, density ρ = 3.2 R(X) in % 54.79 59.54 65 21.96 17.93 48.32
15 cities (vertices) U(X) in % 43.48 40.23 32.74 61.02 63.38 51.68
15 best-response bidders Rounds 409.32 327 314.62 66.17 51.1 1
0 auctions BSC

Table 4.1: Efficiency of different ICA designs with best-response
bidders

and 10 bidders are distributed with a mean of 6 and variance of 1.1, whereas

all other parameters are equal to the Real Estate 3x3 value model. Only one

of the instances of this value model fulfills the BSC. The Pairwise Synergy

Low value model contains 7 items; the valuations for each auction are drawn

based on a uniform distribution between the upper and lower bounds stated in

the table. The synergy values lay between 0 and 0.5 in the Pairwise Synergy

Low model and between 1.5 and 2.0 in the Pairwise Synergy High model,
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each not restricted in bundle size. For the Transportation and Matching value

models the number of bidders is higher to provide sufficient competition. The

Matching value model has 84 items, i.e., 21 time slots per airport. None of

the value model instances fulfills the BSC. Finally, the Transportation Large

models a transportation network with 50 edges, 34 vertices, and 30 bidders,

while the Transportation Small model has only 25 edges, 15 vertices, and 15

bidders. None of the Transportation value model instances fulfills the BSC.

All value model parameters are selected so that the efficient allocation of every

auction has the same order of magnitude (200 to 250).

Overall, the efficiency of ALPS, ALPSm and the CC auction was very high

over all value models and showed the same pattern. The simulations resulted

in the highest efficiency levels for ALPSm. In the Pairwise Synergy High value

model, there was no significant difference between the efficiency values of the

CC auction and ALPSm (t-test, p − value = 0.79). RAD suffered from the

premature termination. Furthermore, omitting the eligibility rules (RADne)

did not show a significant improvement. In all but two value models (Real

Estate 4x4, Transportation Small) the CC auction achieved higher efficiency

values than ALPS.

Figures 4.3 to 4.5 show box plots for the efficiency of selected value models

using best-response bidders. We found a similar pattern in the simulations

with power-set bidders that were restricted to submit their best 10 bids (see

Figure 4.6).

In these simulations we wanted to avoid inefficiencies due to high bid incre-

ments and, therefore, used an ask price increment of 0.1. Consequently, the

average number of rounds was quite high in general. A minimum bid incre-

ment of 1.0 reduced the number of rounds by a factor of 10. Note that the

number of rounds is influenced by the value model, the number of bidders

and their bundle selection strategy. Therefore, the figures in the table cannot

easily be generalized, but only compared relative to the same setting with a
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(a) Real Estate 3x3 (b) Real Estate 4x4

Figure 4.3: Box plot of allocative efficiency for the Real Estate
value models with best-response bidders

(a) 25 Edges (b) 50 Edges

Figure 4.4: Box plot of allocative efficiency for the
Transportation value models with best-response bidders



82 CHAPTER 4. COMPUTATIONAL EXPERIMENTS

(a) Matching (b) Pairwise Synergy High

Figure 4.5: Box plot of allocative efficiency for the Matching and
Pairwise Synergy value models with best-response bidders

(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 4.6: Box plot of allocative efficiency for a Real Estate
and Transportation value model with power-set bidders
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different auction design. ALPSm had the highest number of rounds, except

for the Matching and Transportation value models. RAD often terminated

prematurely, leading to a much lower average number of rounds, but at the

cost of a significantly lower efficiency. We have also tested a dynamic version of

price increments that decrease with increasing competition, and could reduce

the number of rounds in ALPS and ALPSm considerably with very little or

no negative impact on the efficiency.

4.2.2 Auctioneer Revenue in Different ICAs

Another performance characteristic of an auction design is the revenue distri-

bution, i.e. the distribution of the overall utility between the auctioneer and

bidders. If the auction is not 100% efficient, a part of the overall utility is

lost. In theory, only minimal CE prices encourage myopic best-response bid-

ding and lead to an efficient auction outcome, which minimizes the auctioneer

revenue over all efficient allocations (Parkes, 2006). The knowledge of the rev-

enue distribution typical for the particular ICA design can affect the bidding

behavior. Our simulation results indicate significant differences in revenue dis-

tribution between different auction designs. Again, we found similar patterns

across different value models (see Figure 4.7). An important observation is

that the CC auction resulted in the highest average auctioneer revenue, fol-

lowed by ALPSm. The dashed line in Figure 4.7 shows the average auctioneer

revenue of the VCG auction. The VCG outcome can serve as an indicator for

the competition in the auction, which was generally high. We have also con-

ducted simulations with low competition (for example, the Pairwise Synergy

Low model with only 3 bidders) and found the final ALPS ask prices to be

higher than the average VCG prices, compared to the auction instances with

higher competition (Real Estate 3x3 with 5 or 7 bidders).
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 4.7: Revenue distribution of the Real Estate and
Transportation Model with best-response bidders
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Figure 4.8: Calculation of the item price non-monotonicity

4.2.3 Price Monotonicity

Reducing item prices in the course of the auction may be necessary to reflect

the competitive situation, but can also be confusing for the bidders. Price

fluctuations are a phenomenon in RAD, ALPS, and ALPSm. The literature

does not describe a measure for the price monotonicity. Prices in a linear-price

ICA can be described as a discrete function f : N → R+
0 for a single item (see

Figure 4.8).

We measure the price non-monotonicity as the sum of the ask price decreases

∆−pt
ask(k) divided by the sum of the ask price increases ∆+pt

ask(k) for all items

k in all rounds t. This results in the price non-monotonicity µ ∈ [0, 1], where

µ = 0 describes fully monotonic ask prices, as in the CC auction.

µ =

∑
t

∑
k∈K ∆−pt

ask(k)∑
t

∑
k∈K ∆+pt

ask(k)

Figure 4.9 provides a box plot for the µ values of ALPS, ALPSm, RAD, and
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 4.9: Average price non-monotonicity µ in the Real Estate
and Transportation value models

RADne for the Real Estate and Transportation value models with best-response

bidders. Higher values of µ in cases of ALPS and ALPSm can be attributed

to the fact that these auctions take more rounds and do not terminate prema-

turely.

There is a long tradition in economics of Walrasian tâtonnement, which allows

prices both to ascend and descend (Ausubel, 2006, 604). In applications, where

price fluctuations become an issue for bidders, alternative ways of calculating

pseudo-dual ask prices can help to reduce or even eliminate this phenomenon.

We have experimented with a simple rule that forces prices not to decrease

across rounds (Shabalin et al., 2007). This rule ensures monotonous prices, but

also causes minor efficiency losses. Dunford et al. (2007) discuss an alternative

approach that uses a quadratic program to smooth price fluctuations across

rounds.
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4.2.4 Inefficiencies in Linear-Price ICAs

While the efficiency of the linear-price ICAs was generally high in our experi-

ments, it is important to understand those cases, in which the final allocation

was not optimal. We have analyzed all auction instances in the Real Estate

and Pairwise Synergy value models, in which the efficiency was particularly low

(90% and below). Additionally, we ran further simulations using best-response

bidders with eligibility rules switched off, to isolate the negative impact of lin-

ear prices from the inefficiencies due to eligibility rules.

In all situations with an efficiency of less than 90%, the auctioneer did not

sell all items, as opposed to the efficient allocation. These situations happened

rarely in the Real Estate value model, and even less so in the Pairwise Synergy

value model, as can be seen in Figure 4.3. Whenever all items were sold, the

efficiency was always higher than 98%. The two small examples shown in

Table 4.2 and Table 4.3 illustrate the structural characteristics of valuations

that can lead to inefficiencies in ICAs with linear prices and best-response

bidding.

Item A B C AB AC BC ABC
Bidder1 9*
Bidder2 2*
Bidder3 10
Bidder4 10

Table 4.2: Example for inefficiencies in ALPSm

The example in Table 4.2 illustrates a scenario with 3 items A, B, C and

4 bidders. Each bidder has a valuation for one bundle only; the efficient

allocation is marked with a star. In this example ALPSm selected the bid of

bidder 4 on bundle BC and leaved item A unsold. The particular property of

this value model is the existence of a set of mutually exclusive bundle valuations

(AB and BC), none of which belongs to the efficient allocation. During the
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Item A B C AB AC BC ABC
Bidder1 20* 60
Bidder2 61*
Bidder3 50 50

Table 4.3: Example for inefficiencies in the CC auction

auction, bidders 3 and 4 drive up ask prices, which blocks other bidders from

submitting their true valuations. Interestingly, the auction outcome in this

case is sensitive to the start prices. The efficient allocation was found for the

item start prices of 1.3 and 1.9, but for all other values from 0 to 2.0 the

auction produced inefficient outcomes (with the price increment set to 0.1).

The CC auction was generally efficient in this example.

The second example in Table 4.3 illustrates a set of valuations, for which the

CC auction leads to an inefficient allocation. It allocates item A to bidder 2,

and both items B and C remain unsold. Note that bidder 1’s high valuation on

bundle ABC dominates bundle BC. At the time when bidder 2 overbids bid-

der 1, the prices are already too high on all items, which prevents bidder 1 from

submitting bids on bundle BC. Again, all bidders follow the best-response

strategy. As opposed to the CC auction, ALPSm always terminates with an

efficient allocation in this example.

One possibility to mitigate remaining inefficiencies in ALPS and the CC auc-

tion is to auction off the unsold goods in an after-market (sell the rest of the

goods), but this still does not guarantee 100% efficiency and there might be

no demand for these individual items, as in our first example in Table 4.2.

An alternative is the addition of a second phase with an ascending proxy

auction, as suggested in the Clock-Proxy auction (Ausubel et al., 2006), with

suitable eligibility rules. Without eligibility rules, using ALPS end prices as

start prices for the ascending proxy auction, this will always lead to an efficient

allocation under the truthful bidding assumption. However, both minimum bid
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prices and eligibility rules are necessary to encourage active bidding during the

first linear-price auction phase. The impact of different eligibility rules on the

allocative efficiency in a two-stage auction and optimal bidding strategies in

these auction designs are a topic for the further research.

4.2.5 Linear Price Compatibility Distortions

In general, it is impossible to calculate exact linear prices except for special

types of valuations in which the goods-are-substitutes condition holds. In other

words, in both ALPS and RAD there must be cases in which the ask prices are

not compatible with the provisional allocation. The linear price compatibility

distortions (see Section 2.5.2) can be confusing for losing bidders, since their

bids may be above the current ask prices, but still provisionally losing. We have

measured the average percentage of individual ask prices with price distortions

in each round (see Figure 4.10). Overall, price distortions occurred only for

a very small part (< 2%) of the ask prices. The old-bids-active rule led to a

higher percentage of price distortions in ALPSm.

In addition to the number of price distortions, we have also analyzed the effi-

ciency with respect to increasing levels of synergy among items. The Pairwise

Synergy value model allows to increase synergy values sequentially from 0 to 3

(see Figure 4.11). Interestingly, the efficiency remains high for all auction de-

signs even in case of high synergy values. Note that with a synergy value of 2.5

a bundle has already 3.5 times the value of its individual items.

4.3 Bidding Strategies Analysis

In the previous analysis, we have primarily used myopic best-response bidding

agents. We have also performed the same simulations with power-set bidders

limited to their best 10 bids and found the results to be very similar. While it is
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 4.10: Percentage of linear ask prices with price
distortions in the Real Estate and Transportation value models

useful to estimate the efficiency loss attributed to the use of a specific auction

design, real world bundling and bidding strategies are often much simpler

than the power-set or best-response bidding strategies, since evaluating and

submitting all possible bundles is typically not practical for bidders (An et al.

(2005), see also Section 6.2.2).

Moreover, according to the study of transportation CAs by Plummer (2003),

only about 30 percent out of the 644 carriers submitted package bids. This

group of carriers submitted between 2 and 7 lane combinations and the vast

majority of the packages were small, containing between 2 and 4 lanes. The

discounts carriers gave to the packaged lanes were around 5 percent. Apart

from the novelty of CAs and the complexity of eliciting their valuations over

all possible bundles, bidders face the problem of bundle selection from an ex-

ponential number of alternatives. To overcome some of these problems, bidder

decision support tools have been suggested (Hoffman et al., 2005; Song and

Regan, 2002), which are, however, rarely used in practice as of now. Therefore,

it is interesting to see, how robust are considered ICA designs with respect to
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Figure 4.11: Changes in efficiency depending on synergy

other, simpler bundling strategies.

In this analysis we focused on the bundle selection in iterative auctions and

assumed that bidders bid the minimum price only (neglecting jump bids or

similar phenomena). We used 6 types of bidding agents and the ALPS auction

design, since it was shown to produce high efficiency, while it converges to the

minimal pseudo-dual ask prices. All bidders used the XOR bidding language

with the notable exception of the näıve bidder, who used the OR language

while bidding only on individual items. We have analyzed the Real Estate and

Pairwise Synergy value models, in which näıve bidding makes sense, but did

not consider the Matching and Transportation value models.

4.3.1 Efficiency of Pure Strategies

In the first set of simulations we ran the same auction with all bidders of the

same type, and repeated it for different value models (see Table 4.4). The näıve
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hhhhhhhhhhhhhhSetup

Bidder Type

näıve best-chain power-set 3of10 5of20 best-response

Real Estate 3x3 E(X) in % 54.84 96.31 98.63 96.95 95.95 96.18
9 items R(X) in % 47.97 74.12 78.83 78.72 81 67.8
5 bidders U(X) in % 6.86 22.19 19.8 18.22 14.96 28.38

Rounds 198.95 471 364.5 403.25 369.95 532.98

Real Estate 4x4 E(X) in % 52.86 97.96 98.19 96.56 96.73 96.68
16 items R(X) in % 48.43 84.61 86.65 85.03 87.29 75.56
10 bidders U(X) in % 4.43 13.35 11.54 11.53 9.44 21.13

Rounds 108.55 230.43 247.5 367.23 289.7 671.95

Pairwise Synergy Low E(X) in % 77.21 96.25 98.09 96.99 97.7 95.64
7 items, valuations 0 to 195 R(X) in % 66.63 75.68 81.83 81.56 85.3 74.07
synergy 0 to 0.5, 5 bidders U(X) in % 10.59 20.57 16.25 15.43 12.4 21.57

Rounds 259.65 461.2 369.88 395.45 382.88 541.77

Pairwise Synergy High E(X) in % 36.53 96.61 98.61 96.55 97.98 93.6
7 items, valuations 0 to 88 R(X) in % 31.53 78.62 83.25 82.19 85.91 76.47
synergy 1.5 to 2.0, 5 bidders U(X) in % 5 17.99 15.36 14.36 12.06 17.14

Rounds 116.35 380.32 335.8 351 342.05 466.18

Table 4.4: Pure bidding strategies in ICAs

bidder only bids up to her item valuations and ignores synergistic valuations.

In our simulations the näıve strategy was suboptimal and led to efficiency

losses and low auctioneer revenues. The power-set bidder came out best, while

also the best-chain and heuristic bidders achieved high levels of efficiency,

since they focused on the best bundles. The heuristic bidders (3of10, 5of20 )

produced efficiency and revenue values close to the power-set and best-chain

bidders. For example, there was no significant difference between the best-

chain and heuristic 3of10 bidders in ALPS (t-test, p-value of 0.65) in the Real

Estate 3x3 value model. The auctions with best-response bidders produced

high efficiency values, but the auctioneer revenue was significantly lower than

the revenue in all other auctions, except with näıve bidders. We could find the

same pattern in ALPSm, the CC auction, and in the other three analyzed value

models. Figure 4.12 illustrates the revenue distributions for the RealEstate 4x4

value model with ALPSm and the CC auction.
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(a) Real Estate 4x4, ALPSm (b) Real Estate 4x4, CC Auction

Figure 4.12: Revenue Distribution with pure bidding strategies
in the Real Estate 4x4 value model

4.3.2 Sensitivity Analysis wrt. the Bidder Type

In the next set of simulations we measured the efficiency and revenue distri-

bution for auctions with 9 (for the Real Estate 4x4 value model) and 4 (for

all other value models) best-response bidders and the last bidder with a sim-

pler bundle selection strategy (näıve, best-chain, or heuristic) in ALPS. For

the last bidder the mean revenue over all 40 auctions was calculated. The

results are shown in Table 4.5. Overall, the efficiency was not much lower,

since 9 out of 10 (respectively 4 out of 5) bidders were best-response bidders,

keeping the efficiency high. The table rows “u(X) in %” show the revenue

share of the last bidder. Clearly, the näıve bidding strategy came out worst.

Interestingly, either of the power-set, best-chain or heuristic strategies always

performed better than the best-response strategy. One reason for this are the

eligibility rules, which might have prevented some bidders from submitting the

bids that should have win. The same type of sensitivity analysis was repeated
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with respect to power-set bidders in Table 4.6, where we could see a similar

pattern.

In another set of simulations we tested, how much better bundle bidders per-

form, if they only compete with näıve bidders. We ran 40 auctions with

10 (or respectively 5) näıve bidders, and then repeated them with the last

bidder playing the best-chain or power-set strategy. The results are shown in

Table 4.7. Overall, the efficiency of these auctions decreased significantly, com-

pared to the previous setups. This happened because the single smart bidder

could mostly win her preferred bundle, while other bidders were restricted to

bids on individual items, often leading to inefficient allocations.

In comparison to 4 näıve bidders, the best-response strategy of the 5th bidder

performed slightly better than other bundling strategies (see Table 4.7). This

may be attributed to the fact that bidding on more bundles drives up ask

prices on individual items.

In summary, from the perspective of a bidder who is interested in maximizing

her own revenue, it is favorable to bid on bundles. If all other bidders in the

auction use the best-response or power-set strategy, the bidder is better off

using the power-set strategy. In contrast, if all other bidders bid näıvely, the

best-response strategy is slightly better than the power-set strategy. Overall,

the more bidders use bundle bids, the better it is for the auctioneer.

The computational complexity of the CAP and of the ask price calculation and

the time to solve realistic problem sizes are particularly important in iterative

CAs, in which bidders submit bids in an interactive mode. We could solve

problems of practically relevant sizes with up to 2659 bids (196 items, 230

bidders) in the Airport value model and up to 659 bids (62 items, 40 bidders)

in the Transportation value model in less than 2 minutes using the open source

IP solver lp solve2 under Windows XP on an Intel M (2.13 GHz) PC.

2http://sourceforge.net/projects/lpsolve
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hhhhhhhhhhhhhhhhSetup

Last Bidder Type

best-response power-set 3of10 5of20 best-chain näıve

Real Estate 3x3 E(X) in % 96.18 96.65 96.33 96.52 96.26 94.96
9 items R(X) in % 67.88 70.99 71.67 67.82 69.41 61.87
4 best-response U(X) in % 28.30 25.67 24.66 28.7 26.84 33.09

plus one bidder u(X) in % 3.785 4.844 4.708 6.041 5.392 0.5227

Real Estate 4x4 E(X) in % 96.24 97.13 96.58 96.29 96.95 96.08
16 items R(X) in % 74.39 75.77 74.54 76.38 75.41 71.83
9 best-response U(X) in % 21.85 21.36 22.05 19.91 21.54 24.25

plus one bidder u(X) in % 1.314 2.558 2.562 2.187 2.269 0.2110

Pairwise Synergy Low E(X) in % 95.35 97.78 96.98 97.09 96.96 92.86
7 items, valued 0 to 195 R(X) in % 71.87 73.91 76.81 73.83 73.94 69.35
synergy 0 to 0.5 U(X) in % 23.48 23.87 20.17 23.26 23.02 23.51
4 best-response u(X) in % 4.826 7.928 5.679 6.908 5.487 1.533

plus one bidder
Pairwise Synergy High E(X) in % 92.04 94.17 92.9 93.88 93.98 86.37

7 items, valued 0 to 88 R(X) in % 73.33 76.37 77.15 76.24 74.74 65.05
synergy 1.5 to 2.0 U(X) in % 18.71 17.8 15.75 17.64 19.24 21.32
4 best-response u(X) in % 3.191 5.076 4.569 5.577 5.487 0

plus one bidder

Table 4.5: Sensitivity with respect to best-response bidders

hhhhhhhhhhhhhhhhSetup

Last Bidder Type

best-response power-set 3of10 5of20 best-chain näıve

Real Estate 3x3 E(X) in % 98.13 98.9 98.34 98.2 98.08 96.05
9 items R(X) in % 79.34 79.67 79.87 80.14 79.67 66.76
4 power-set U(X) in % 18.79 19.23 18.47 18.06 18.41 29.29

plus one bidder u(X) in % 1.522 3.237 3.263 2.809 2.341 0.05379

Real Estate 4x4 E(X) in % 98.68 98.83 98.53 98.4 98.6 97.4
16 items R(X) in % 85.67 86.88 86.57 86.53 86.76 85
9 power-set U(X) in % 13.01 11.95 11.95 11.88 11.83 12.40

plus one bidder u(X) in % 0.4362 0.8017 0.6333 1.009 1.123 0.002506

Pairwise Synergy Low E(X) in % 98.42 99.6 98.3 98.84 99.25 96.33
7 items, valued 0 to 195 R(X) in % 80.57 83.78 83.85 84.06 84.62 78.41
synergy 0 to 0.5 U(X) in % 17.84 15.81 14.45 14.79 14.63 17.92
4 power-set u(X) in % 2.502 4.171 4.104 3.899 3.883 0.2604

plus one bidder
Pairwise Synergy High E(X) in % 98.17 99.06 98.55 99.01 98.36 95.88

7 items, valued 0 to 88 R(X) in % 82.2 86.41 86.25 86.47 85.56 74.6
synergy 1.5 to 2.0 U(X) in % 15.97 12.65 12.29 12.54 12.80 21.27
4 power-set u(X) in % 1.949 3.336 2.876 3.106 2.757 0

plus one bidder

Table 4.6: Sensitivity with respect to power-set bidders
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hhhhhhhhhhhhhhhhSetup

Last Bidder Type

best-response power-set 3of10 5of20 best-chain näıve

Real Estate 3x3 E(X) in % 69.96 69.95 69.78 69.46 69.18 54.84
9 items R(X) in % 48.19 48.68 48.68 48.89 48.48 47.97
4 näıve U(X) in % 21.77 21.27 21.1 20.57 20.71 6.863

plus one bidder u(X) in % 17.12 16.92 16.81 16.18 16.26 1.199

Real Estate 4x4 E(X) in % 62.07 61.99 61.76 61.74 61.66 52.86
16 items R(X) in % 48.6 48.72 48.93 48.85 48.87 48.43
9 näıve U(X) in % 13.47 13.27 12.83 12.89 12.78 4.431

plus one bidder u(X) in % 9.939 9.809 9.471 9.452 9.295 0.4877

Pairwise Synergy Low E(X) in % 85.13 85.1 85.08 85.08 84.66 77.15
7 items, valued 0 to 195 R(X) in % 67.63 68.34 68.46 68.46 68.28 67.62
synergy 0 to 0.5 U(X) in % 17.5 16.76 16.61 16.62 16.38 9.535
4 näıve u(X) in % 10.96 10.55 10.57 10.61 9.984 1.827

plus one bidder
Pairwise Synergy High E(X) in % 61.96 61.97 61.97 61.87 60.5 36.50

7 items, valued 0 to 88 R(X) in % 31.76 32.32 32.28 32.4 32.32 32.01
synergy 1.5 to 2.0 U(X) in % 30.19 29.66 29.69 29.47 28.18 4.49
4 näıve u(X) in % 27.01 26.72 26.74 26.59 25.37 0.8595

plus one bidder

Table 4.7: Sensitivity with respect to näıve bidders



Chapter 5

Design of Laboratory

Experiments

This chapter explains the design of our laboratory experiments. It describes

the economic environment, some known common phenomena, our a priori as-

sumptions about the bidding behavior, and summarizes a set of hypotheses

for our study. It further defines and motivates used value models, treatment

variables, the reward mechanism, and the experiment conduction scheme.

5.1 Economic Environment and Auction

Mechanisms

5.1.1 Classification of Economic Experiments

Laboratory experiments are the main tool of experimental economics, which

allows for studying the market behavior of human subjects under a controlled

environment. As earlier experiments have shown, still many behavioral phe-

nomena cannot be explained by theories, in particular the Free Rider Problem

97
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(Guala, 2005; Roth, 1988), Prisoners Dilemma (Roth, 1988), Risk Preferences

(Davis and Holt, 1992), Winner’s Curse (Roth, 1988), Preference Reversal

(Davis and Holt, 1992), and Allais Paradox (Allais, 1953). Laboratory exper-

iments differ from field studies in that they take place in a controlled environ-

ment (Roth, 1988), so that they can be reproduced by other researchers with

a high probability of getting the same results.

Laboratory experiments are typically classified by the pursued goals. There are

several similar1 classifications proposed in the literature, e.g., the classification

by Davis and Holt (Davis and Holt, 1992) and the one by Sudgen (Sugden,

2005). Maybe the most famous classification can be found in (Roth, 1995). It

envelops the following three types of experiments named after their primary

goals:

• Speaking to Theorists

• Searching for Facts (Searching for Meaning)

• Whispering in the Ears of Princess

Experiments of type Speaking to Theorists are primarily designed to test well

defined theories and explore possible surprising regularities for which experi-

mental evidence can be found.

Experiments of type Searching for Facts are designed to investigate the im-

pact of selected variables, not well considered in the underlying theory. Such

experiments are often used to further investigate observations from earlier ex-

periments and, given some evidence of empirical regularities, extend theories

to properly reflect the observed behavior (Searching for Meaning).

1The referred classifications are similar in that they usually distinguish between exper-
iments conducted to prove theoretical predictions, and experiments used to find new regu-
larities that might flow into new theories.
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Finally, experiments of type Whispering in the Ears of Princess are designed

to investigate the influence of regulatory authorities and are mainly conducted

to seek for new policies and their market effects. They need to be conducted

under an environment that as close as possible replicates reality.

The basis for most experiments (at least for experiments of the first two types)

is a proposition of one or more hypotheses to be verified. The hypotheses must

not be obvious, rather, there must be a chance of refusion (Guala, 2005). Nev-

ertheless, an experiment is not restricted to analyzing only those phenomena

the experiment was designed for. For example, it is possible to use the results

of an experiment designed as Speaking to Theorists, to exhibit new phenomena.

5.1.2 Factors

Factors are variables that can have an impact on the experiment results.

Depending on the experiment goals, the factors are divided in focus variables

and nuisances:

• Focus variables are factors whose impact is to be investigated in the

survey.

• Nuisance variables or simply nuisances are further factors that affect

the results and have to be considered.

A good experimental design sharpens the effects of the focus variables and

minimizes the blurring effects related to the nuisances. The other design goal is

to distinguish between the effects of the two kinds of variables. Some factors are

selected as treatment variables or simply treatments in that one or more

experiment instances are conducted for every possible value (level) of every

treatment variable, whereby all treatments should be varied independently.

Other factors are either held constant or randomized.
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Focus variables are usually selected as treatments with two or more strongly

separated levels. In contrast, most nuisances should be held constant, so that

they are controlled, and complexity and costs are kept low. However, if a

nuisance is suspected to interact with a focus variable, it can be controlled

as a treatment. Some potential important nuisances, such as subjects’ alert-

ness and interest, are not even observable by the experimenter and much less

controllable. Uncontrolled nuisances can cause inferential errors if they are

correlated with focus variables. Randomization and blocking are a tool that

can be used if full control is not possible (Box et al., 2005).

5.1.3 Validity and Realism of Experiments

Validity (or relevance) is a critical issue for all data sources. Experimental

economics distinguishes between the internal and external validity:

• Internal validity deals with the question, whether the data permits

for correct causal inferences for environments controlled in a similar way.

• External validity also known as parallelism deals with the general-

ization of inferences from the laboratory environment to the field. The

general principle of induction is that behavioral regularities will persist

in new situations as long as the relevant underlying conditions remain

substantially unchanged (Friedman and Sunder, 1994, page 15). For ex-

ample, it may be appropriate to conduct experiments with more traders

or with more experienced (or professional) traders to guarantee external

validity.

Realism is highly related to validity and deals with the question, how close

the laboratory environment should be to the formal model and reality. Both

designing the laboratory environment as close as possible to the real-world set-

ting and replicating the formal model assumptions are misleading approaches.
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The first one is very expensive and complex, whereas the second one leaves out

details important when analyzing human behavior and simply reproduces ex-

isting theoretical results. An effective experimental design should be as simple

as possible and should offer the best opportunity to answer important research

questions. “Good experiments grow organically out of the issues they are de-

signed to investigate and the hypothesis among which they are designed to

distinguish” (Kagel and Roth, 1995).

5.1.4 Reward Mechanisms

Selecting a proper reward mechanism is crucial for a laboratory experiment,

since it is the most important tool to impose internal and especially exter-

nal validity. Evidently, acting in the real economical setting mostly includes

monetary incentives. On the other hand, when using students as subjects,

there are several other thinkable reward mechanisms, e.g., giving credits for

the participation (Guala, 2005).

Guala (Guala, 2005) provides the following four basic precepts that an incen-

tive system has to take into account:

1. Non-satiation: Design a reward mechanism in which the subject always

choses the alternative having the largest reward.

2. Saliency: The reward must be adjusted to the successes an failures of

the subject.

3. Dominance: Any subjective costs must be dominated by the reward.

4. Privacy: Subjects has only informations about the own payoffs.

These precepts might also be accomplished with other reward mechanisms

than monetary incentives, but the mechanism must always be valid within the
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Bidder 1 2 3 4
Bundle AB BC C AB AB C
Value 15 14 5 9 10 4

Table 5.1: Value model VM1

experiment. Nevertheless, most experimenters use monetary incentives, since

it seems rather natural using money in an economic experiment (Friedman and

Sunder, 1994). In fact, monetary rewards are of similar value for every student,

can be directly mapped to experiment results (e.g., in case of an auction), and

replicate the economic reality, which is especially important to impose external

validity. On the other hand, such experiments are costly. Additionally, there is

a couple of issues that can influence the outcome, as for example the cognitive

exertion, motivational focus, and emotional triggers (Read, 2005).

5.2 Experimental Setup

5.2.1 Value Models

We used 4 value models, two small ones with only 3 items, and two larger ones

with 6 and 9 items respectively. The small value models VM1 and VM2

follow selected examples from Dunford et al. (2007). The individual valuations

for each bidder are given in Table 5.1 and Table 5.2. The first value model,

VM1, fulfills the bidders-are-substitutes and bidder-submodularity conditions,

while the second one, VM2, does not.

Note that in all value models we assumed free disposal, i.e., the value of every

bundle is not less than the value of any other contained bundle. However, the

valuations are not additive for disjunct bundles. For example, in VM1 bidder 2

has a value of 14 for bundle AB and a value 5 for item C. This implies that

she also has an (implicit) value of 14 = max(14; 5) for bundle ABC.
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Bundle A B C AB BC
Bidder 1 10 5 2
Bidder 2 5 10 5
Bidder 3 2 5 10
Bidder 4 5 16

Table 5.2: Value model VM2

shoreline
A B C
D E F

Table 5.3: Structure of the value model VM3

For the two larger value models, the value model VM3 fulfills the bidders-

are-substitutes and bidder-submodularity conditions, whereas VM4 does not.

VM3 describes 6 pieces of land arranged in two rows at a shoreline (see

Table 5.3). Bidders 1 and 2 are interested in individual items or in bundles of

two items. For them, every bundle of interest contains at least one lot at the

shore. Bidders 3 and 4 are interested in larger bundles of size 2, 3, and 4. For

all bundles of size 3 and 4, they also must have at least two pieces of land at the

shore. These valuations have both sub- and superadditivities. The individual

valuations for each bidder can be found in Appendix B.

In VM4 there are 9 pieces of land (see Table 5.4). There are bidders 1-3

with maximal bundle size of 3 and the bidder 4 with bundles of size 4, 5, and

6. Each of the bidders has her preferred location (marked in the table) and,

consequently, different bundles of interest containing items close to it. The

valuation of a single item for a bidder depends on its distance to the bidder’s

preferred location: vi(k) := µγ ∗ Bi, k ∈ K, where Bi denotes the basic value

of the bidder’s preferred property, and γ measures the distance to the preferred

location. For bundle valuations, a markup has been added depending on the

bundle size and a parameter δ: vi(S) :=
∑
k∈S

vi(k) + δ ∗ |S|. The individual
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A Bidder 1 B Bidder 1 C Bidder 3,4

D E F

G H I

Table 5.4: Structure of the value model VM4

A Bidder 1 B Bidder 2 C Bidder 3

D Bidder 1 E Bidder 2 F Bidder 3

G Bidder 1 H Bidder 2 I Bidder 3

Table 5.5: Efficient allocation in the value model VM4

valuations for each bidder can be found in Appendix B.

VM4 exhibits the threshold problem for bidders 1, 2, and 3. In the efficient

allocation bidder 1 wins bundle ADG, bidder 2 wins bundle BEH, and bidder 3

wins bundle CFI. Bidder 4 has a high valuation for bundle BCEFHI, and

bidders 2 and 3 have to coordinate their efforts to outbid her. The second best

allocation is shown in Table 5.6.

For all value models we ran simulations with best-response bidding agents, as

well as with more heuristic bidders that would randomly select three of their

best five bundles or 3 of their best 10 bundles (see Appendix C). With best-

response bidders, all value models produced efficient allocations, which served

A Bidder 1 B Bidder 4 C Bidder 4

D Bidder 1 E Bidder 4 F Bidder 4

G Bidder 1 H Bidder 4 I Bidder 4

Table 5.6: Second best allocation in the value model VM4
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No. Auction Design Value Model
1 VCG VM1
2 VCG VM2
3 VCG VM3
4 VCG VM4
5 ALPSm VM1
6 ALPSm VM2
7 ALPSm VM3
8 ALPSm VM4
9 CC VM1

10 CC VM2
11 CC VM3
12 CC VM4
13 iBundle VM1
14 iBundle VM2
15 iBundle VM3
16 iBundle VM4

Table 5.7: Experimental design - Treatments

as a benchmark for the laboratory experiments.

5.2.2 Treatments

As we wanted to study the impact of the auction design, auction size, threshold

problem, and some other factors, we selected the auction design and value

model as the focus variables. The auction design variable has 4 values (levels):

ALPSm, the CC auction, iBundle, and the VCG auction. The value model

variable has also 4 levels: VM1, VM2, VM3, and VM4. Both focus variables

were selected as independent treatments, which resulted in a 4 x 4 design with

16 treatment combinations (see Table 5.7). We conducted 4 auctions for every

treatment combination, so that altogether 64 auctions were conducted.
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5.2.3 Nuisances

There are several nuisances that often occur in economical experiments:

• Experience and learning: It can be controlled as a constant by using

only experienced or only non-experienced subjects. Another possibility

is to treat it as a blocking variable by using a balanced switchover design.

• Intercommunication: The communication between subjects must be

forbidden during the experiment. The use of partitions between the

computers, to block the subjects’ view on the others’ screens, is recom-

mended. There should be also one or more monitors that control the

interactions during the experiment.

• Boredom and fatigue: The experience of earlier experiments shows

that one session should not last more than 3 to 4 hours.

• Subject or group idiosyncrasies: A subjects’ background or tem-

perament or unusual influences in a group of subjects may lead to un-

representative behavior. Therefore, it is essential to replicate the same

experimental situation with different subjects.

For our experiments, we identified the following nuisances: Experience, Learn-

ing, Round Duration, Boredom and Fatigue, Intercommunication.

Experience: Since our subjects were students from our university, we do not

expect any of them to be experienced in combinatorial auctions. We also ex-

pect all subjects to have general experience in auction trading, since electronic

auction platforms as eBay are open for everyone and currently very popular.

Furthermore, we took only students from technical departments (informat-

ics, mathematics, mechanical engineering, and physics), since combinatorial

auctions require understanding of complex auction rules, bundle bidding, and

pricing, and the subjects had only a few time to learn all that rules.
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Though students are the main subject pool for economic experiments (Fried-

man and Sunder, 1994), and in many cases the results achieved with students

were shown to exhibit external validity (Dyer et al., 1989), there can still be

difference in behavior compared to other subject pools. For example, an ex-

periment on combinatorial auctions conducted by Kazumori (Kazumori, 2005)

showed that there are some differences between students and business profes-

sionals. He found that the efficiency of an auction was not affected by the

different subject pools, while the auctioneer revenue was significantly higher

with students. Moreover, even taking students from economic departments can

produce different results (Guala, 2005). To clearly eliminate this uncertainty,

further laboratory experiments are required.

Learning: Another big issue in experimental economics is learning effects

during the experiment. As students are unexperienced and mostly have a

steep experience curve (Guala, 2005), the effect of learning has to be taken into

account. Güth et al. (2003) studied bid function adjustments in auctions and

fair division games with independent private values. They found the differences

in behavior rather large compared to the experience of the subjects. Chen and

Takeuchi (2005) found that subjects adapted bid pricing to their success in

the previous auction. Though the learning process was clearly identified, no

dependency of the point on the experience curve and the subjects’ performance

could be shown.

To minimize the effects of learning, we conducted one training auction during

the introductory presentation and two further training sessions, after which the

subjects were able to ask questions and then had to fill out a questionnaire.

Only those subjects who correctly answered the questions were permitted for

the participation. With all that, we covered the first, steepest part of the

learning curve. Furthermore, every session was conducted in the sequence

VM1, VM2, VM3, VM4. We did not use randomization at this point, to let

subjects deal with more complex value models sequentially, which should also

have partially compensated for learning effects. This also allowed us for some
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analysis of learning effects based on the experiment results.

Round Duration: The round duration is another important factor in combi-

natorial auction experiments, since the auction environment is complex. Espe-

cially in auction designs with activity rules, subjects make important decisions

in the first round. Though Kazumori (2005) did not identify significant impact

of the time limit to input bids, we decided to handle this point with much care.

In our software platform “MarketDesigner” we implemented two round clos-

ing mechanisms: the timer-triggered and readiness-based round closing. The

timer-triggered closing defines the round duration limit valid for every round.

With readiness-based closing, the round additionally closes as soon as every

bidder indicated her unwillingness to submit more bids. This rule has been

shown to work very well in the experiments. With the round duration limit set

to 5 minutes, the first 2-4 rounds lasted approximately 4 minutes, after which

the round duration usually fall under 1-2 minutes. Only in a couple of cases

some bidder did not indicated her readiness, and the round was closed by the

timer-triggered mechanism. The described round closing rules allowed us to

eliminate the negative impact of to short rounds due to cognitive complexity,

but also to avoid the boredom due to too long rounds.

Boredom and Fatigue: Boredom is a common problem in laboratory exper-

iments. In our case, the possibility of boredom was strongly reduced by dy-

namic round duration, as described in the previous paragraph. Additionally,

we limited the usage of computer terminals for other purposes, in particular

we disabled Internet surfing. What remains is the boredom of the experiment

itself, as for example if subjects have to take part in over fifty repetitions of

the prisoner’s dilemma, they might change their behavior just to do something

else (Friedman and Sunder, 1994). Fatigue is another aspect, which was ad-

dressed by holding the session duration within four hours including a pause of

15 minutes, whereby the effective part of the experiment (the part after the

pause) did not exceed two hours. We also provided some (nonalcoholic) drinks
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for the participants.

Intercommunication: We avoided visual communication between the par-

ticipants by using partitions between the computers. Additionally, two exper-

imenters were present to prevent possible oral communication.

5.2.4 Reward Mechanism

We used a monetary reward mechanism, in which the subjects were rewarded

both for the active participation and for the results achieved in the auctions.

This encouraged the subjects to better understanding of the auction rules as

well as to meaningful bidding. We had also to avoid the bankruptcy problem

which appears if a subject makes negative earnings. It is impractical to ask the

subject to net payment to the experimenters. However, making zero payment

in this case may induce risk-seeking behavior.

To fulfill above requirements, we decided for the following payment scheme.

Every subject was guaranteed to get at least the show up fee of AC10 for the

participation. This was also the amount payed to the subjects who were not

permitted for the effective part of the experiment due to their incorrect answers

in the questionnaire. The subjects who provided correct answers, but were

not permitted for the effective part of the experiment due to overbooking,

got the qualification fee of AC20. The subjects who participated at the whole

experiment were rewarded by [max(10; min(80, 30 + gain ∗ 2))] euro, where

10 is the minimum payment, 80 is the maximum payment, 30 is the start

deposit, gain is the total bidder gain over all auctions measured in the virtual

currency, and 2 is the exchange rate. This payment scheme guaranteed a

minimal payment of AC10 in any case, but also discouraged overbidding, since

gain can also be negative.

Altogether, this payment scheme resulted in an average payment of AC48.59 for

the subjects who participated at the whole experiment (4 hours).
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5.2.5 Conduction Scheme

All experiments were conducted from June to August 2007 with undergradu-

ate students in computer science, physics, mechanical engineering, and math-

ematics at the TU München in their first or second year. Each auction was

conducted with 4 subjects. We used our web-based software plattform “Mar-

ketDesigner” (see Appendix D) and conducted experiments in our computer

lab at the Garching campus of the TU München.

Each session tested a single auction design with all 4 value models2. Every

session started with 10 participants. At the beginning of the session every

subject was given printed instructions. The instructions were then read aloud,

whereby the subjects were encouraged to ask questions. Pauses were made to

let the subjects try using the software platform in the first training auction.

The instruction period took 50 minutes on average.

The instructions part was followed by the second training auction, whereby the

subjects were still allowed to ask questions. Afterwards, they had 20 minutes to

fill out a permission questionnaire designed to test their understanding of the

mechanism. In the pause of 15 minutes the partitions were installed and the

questionnaires evaluated. On the basis of the questionnaires, 8 subjects were

permitted for the further participation. They were divided into 2 groups with

4 subjects each, so that 2 experiment runs could be conducted simultaneously.

After the pause, the subjects randomly drew a PC terminal number. The

second part of the experiment started with the last training auctions (one

auction per group of 4 subjects). Then, the effective auctions for the value

models VM1 to VM4 were conducted for every group. Finally, the subjects

filled out a feedback questionnaire.

Each session took 3.5-4.5 hours (usually under 4) inclusive 15 minutes pause

2We designed sessions in this way due to considerable differences in the auction design
rules that make learning of different auction designs in one session almost impossible for
subjects.
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Treatments Auction Design
Value Model

Levels of treatment 1 VCG, CC
ALPSm, iBundle

Levels of treatment 2 VM1, VM2
VM3, VM4

Total subjects 80
Total auctions 64
Total sessions 8
Runs per session 2
Subjects per run 4
Overbooking per session 2
Training auctions per run 3
Effective auctions per run 4
Bundles per bidder 1 - 27
Items per auction 3 - 9
Show up fee AC10
Qualification fee AC20
Minimum payment per subject AC10
Maximum payment per subject AC80
Average payment per subject
permitted for effective part

AC48.59

Session duration 3.5-4.5 hours
Average instructions duration 50 min
Questionnaire duration 20 min
Pause duration 15 min
Effective part duration 2-2.5 hours

Table 5.8: Experimental setup overview

and 2-2.5 hours effective part. Altogether, we conducted 4 repetitions of each

treatment combination (i.e. 64 auctions) in 8 sessions. Every subject partici-

pated in only 1 session.

5.2.6 Summary

Table 5.8 gives an overview on the experimental setup.
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5.3 Hypotheses and Response Variables

5.3.1 Behavioral Assumptions and Bidding Strategies

For the VCG auction there is a dominant strategy for bidders to bid their true

valuations on all bundles. Provided that the valuations satisfy the bidder-

submodularity condition, myopic best-response bidding is an ex-post Nash

equilibrium in iBundle (de Vries et al., 2007). As already discussed, if this

condition does not hold, the myopic best-response strategy is likely to lead

a bidder to pay more than the optimal price for the winning package (Dun-

ford et al., 2007). Behavioral models of bidding in multi-item auctions are

rare (see for example Plott and Salmon (2002)). In Schneider et al. (2007)

we analyzed the performance of primal-dual auctions and linear-price ICAs in

computational experiments. Provided best-response bidding, the simulations

confirmed the theory. The efficiency of iBundle was at 100% in all auctions.

The prices were, however, above the Vickrey prices on average, since not all

value models satisfied the BSM. Based on best-response bidding, both the

CC auction and ALPSm performed significantly worse in terms of efficiency.

The prices in these linear-price auction designs were mostly higher, but some-

times also lower than the Vickrey prices. When bidders followed a heuristic

bidding strategy, linear-price mechanisms showed to be fairly robust, while

primal-dual auctions often led to very low efficiency values.

Since in a private values experiment it is not known to the bidders, whether the

BSM holds, one could expect bidders in iBundle to shade their bids in general.

Also, one can often not expect bidders to follow the pure best-response strategy

due to cognitive barriers, risk aversion, or some sort of strategizing. In general,

deviations from the best-response strategy can have multiple reasons:

• To follow the best-response strategy, bidders need to determine their de-

mand set from an exponential number of possible bundle bids. This
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might be impossible due to cognitive restrictions, but can also have

strategic reasons. For example, in the early stages of FCC spectrum

auctions bidders bid deliberately on bundles of lower interest, to drive

up the prices on those and to maintain a high eligibility.

• Such strategic reasons, might not only be a reason for non-best-response

bundle selection, but also for jump bidding. Isaac et al. (2007) describe

jump bidding to take place in a large proportion of FCC spectrum auc-

tions (up to 44% of the bids with a 5% bid increment) as well as 3G

spectrum auctions in the U.K.

• Bidders might also have a biased estimate of their valuations at the start

of the auction. The auction can then be seen as a way to help bidders

elicit and learn about their true valuations throughout the auction. Re-

searchers like Sargent (1993), among others, have looked into respective

theories of learning.

• Finally, bidders cannot be assumed to behave perfectly rational in com-

plex decision environments. They make mistakes and have different con-

ceptual models of what strategy works best in a given environment.

The discrete choice behavior of a bidder can be described by an ordered logit

model, characterizing how covariates such as the value model or the auction

format impact the bidder’s bundle selection decision, whereas possible bundles

are ranked by their payoff at the ask prices in the given round. For this type

of data the ordered logit model is a suitable analysis tool (Greene, 2003, p.

736-740). The model is based on the following specification:

y∗ = xT β + ε

where xT is the vector of explanatory variables and ε is the disturbance term.

As usual, y∗ can not be directly observed. What we observe is the ordinal

variable y, so that:
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y = 0 if y∗ ≤ 0,

= 1 if 0 < y∗ ≤ µ1,

= 2 if 0 < y∗ ≤ µ2,
...

= J if µJ−1 ≤ y∗.

In our case y corresponds to the bundle ranking, so that bundles with the best

possible payoff are assigned the value 0, second best bundles the value 1, and so

on. The µ-s are unknown parameters to be estimated by the coefficients β. The

model is inspired by the Quantal Response Equilibrium, or more specifically

logit equilibrium models, which have been used in experimental economics

to model deviations from Nash equilibrium predictions (Bajari and Hortacsu,

2005; Goeree and Hold, 2002; McKelvey and Palfrey, 1998). Here, a bidder’s

choice is influenced by an idiosyncratic deviation εt, which is i.i.d.

5.3.2 Hypotheses

Based on the theoretical predictions, we identified the following hypotheses:

Hypothesis 1. In VCG auctions, bidders bid on all packages.

Hypothesis 2. In VCG auctions, bidders bid truthfully.

These two hypotheses are based on the dominant strategy of the VCG auc-

tion. Furthermore, theory suggests that straightforward bidding is an ex-post

equilibrium in iBundle and the auction will result in Vickrey payoffs when the

bidder-submodularity condition is fulfilled.

Hypothesis 3. iBundle and the VCG auction achieve the same efficiency.
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Hypothesis 4. iBundle and the VCG auction achieve the same auctioneer

revenue if the BSM holds.

Hypothesis 5. The auctioneer revenue in iBundle is higher than in the VCG

auction if the BSM does not hold.

While there are strong incentives for bidders to follow the best-response strat-

egy if the BSM is satisfied, there are less reasons to assume this strategy for

general valuations or in linear-price auction designs. Nevertheless, we postu-

late the following hypothesis on bidding behavior in ICAs.

Hypothesis 6. In all auction designs bidders follow the best-response strat-

egy.

Hypothesis 7. Bidding behavior is homogeneous across individuals with the

same treatment.

The performance of different auction designs depends on the valuations of the

bidders. In our lab experiments, we have used 4 specific value models. We

ran simulations with best-response bidders and also with heuristic bidders who

randomly picked 3 out of their 5 best bundles or 3 out of their 10 best bundles

in each round. The results can be found in Appendix C.

Hypothesis 8. With best-response bidding, the results follow the results of

the simulations with best-response bidders.

In addition, we tested the following hypothesis on the number of auction rounds

and the size of the auction.

Hypothesis 9. The number of auction rounds in ALPSm is significantly lower

than in iBundle.

Hypothesis 10. The efficiency of combinatorial auctions with more items is

lower than the efficiency in small auctions.
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Chapter 6

Results of Laboratory

Experiments

This chapter presents the results of our laboratory experiments. We compared

the CC auction, ALPS, iBundle and the Vickrey-Clarke-Groves auction1 using

different value models. We were able to identify several similarities to the

computational results, but also observed some other interesting phenomena

specific for the behavior of human bidders.

6.1 Aggregate Performance Metrics

We used four different value models to compare ALPS, the CC auction, iBun-

dle, and the VCG auction designs. The details on the auction setup and the

results, averaged over 4 sessions each, are provided in Table 6.1. The left

column describes the auction setup, i.e., the number of items and the value

model. Note that 3 of the iBundle sessions on the value model VM4 had to

1RAD was not included due to its premature termination problems and since it was
shown to perform worse than ALPS in the computational experiments.

117
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be canceled, since the auction converged very slowly. For example, session 5-2

was canceled after 4.5 hours, with one iBundle auction being at round 162.

Also, session 10-2 was canceled after 4.5 hours, the last auction being at round

46. In contrast, session 10-1 ended prematurely after 2 rounds, as one bidder

did not submit any bid in the second round and every other bidder got a bun-

dle in the provisional allocation. If the best-response bidding strategy is not

guaranteed, the iBundle termination rule can lead to such inefficiencies.

We have added the results of the simulations using the same value models with

best-response bidders as a benchmark in the columns suffixed by ”-sim”. The

benchmark indicates, how different the human bidders behaved compared to

best-response agents. Appendix C provides more simulation results, in particu-

lar the results of simulations with agents following heuristic bidding strategies.

Also in the simulations iBundle was shown to produce very low revenues under

heuristic bidding assumptions in cases when the auction prematurely closed

due to the iBundle termination rule.

Result 1: There was no significant difference in allocative efficiency across all

4 auction designs. (Hypothesis 3)

All auctions simulated with best-response bidders achieved 100% efficiency,

but varied in the auctioneer revenue. In the lab, the efficiency of all auction

designs was also very high across all value models (see Figure 6.1). We did not

find a significant difference in efficiency between different auction designs (see

Table 6.2).

The primary conjecture for this observation is the decision support and the

user interface provided to the bidders. While in previous auction experiments

bidders were just provided with a list of valuations and had to determine their

best bundles manually, our MarketDesigner platform allowed our subjects to

enter their private valuations for a set of watched bundles and to monitor pay-

offs of that bundles at the current ask prices. Moreover, the bidders could also
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sort their watched bundles by the current payoff. In particular, as the number

of interesting bundles became large, this helped bidders to avoid simple cal-

culation errors and to focus on their bidding strategy. Clearly, the findings in

these experiments can only be generalized for auction events in which bidders

are provided with a similar kind of decision support. Overall, we believe that

for complex economic mechanisms framing effects like bidder decision support

and user interface play a significantly larger role than for simple ones. Exper-

imental results for complex mechanisms are still valuable, but always need to

be seen in the given context.

Result 2: The auctioneer revenue in the VCG auction is lower than in iBun-

dle, the CC auction, and ALPS. (Hypothesis 5)

If the auction result is not 100% efficient, a part of the overall utility is lost.

In simulations with best-response bidders we found differences in the revenue

distribution for different auction designs and value models. We observed simi-

lar behaviour also in the lab experiments, as shown in Figure 6.1. The average

auctioneer revenue share across all value models produced by the simulations

is shown as a benchmark by a dashed red line. Note that while the auctioneer

revenue in ALPS and the CC auction in the lab was very close to the simulation

results, the lab results for iBundle were significantly higher, and the lab re-

sults for the VCG auction were significantly lower than the simulation results.

The iBundle results can be explained by jump bidding and non-best-response

bidding that has been observed (see Section 6.2.2).

Result 3: The number of rounds in iBundle is significantly higher than in

ALPS and the CC auction. (Hypothesis 9)

Figure 6.2 shows the number of auction rounds for every auction design and

for every value model. The average number of rounds across all value models
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(a) Efficiency (b) Auctioneer revenue share

Figure 6.1: Revenue distribution in different auction designs

produced by the simulations is shown as a benchmark by a dashed red line.

The number of rounds in ALPS and the CC auction were lower than in the

simulations for two reasons. First, eligibility rules encouraged the bidders to

bid on more bundles than their demand set. Second, jump bids have been

used in ALPS. (The CC auction does not allow jump bidding.) In iBundle we

observed a significantly higher number of rounds, even though the data does

not contain the 3 sessions that had to be canceled after more than 100 rounds

due to time reasons. Nevertheless, the number of rounds was lower than in the

simulations due to jump bidding, which was allowed in iBundle.

6.1.1 Pairwise Comparisons of Auction Designs

This section provides some statistical analysis with pairwise comparisons of

selected metrics among treatment groups. A pairwise comparison entails less

assumptions on the data generating process than a linear model. We utilize

the t-test for independent samples and the nonparamteric Wilcoxon rank sum

test to remove underlying distributional assumptions. The results are shown in



122 CHAPTER 6. RESULTS OF LABORATORY EXPERIMENTS

(a) Rounds per auction design (b) Rounds per value model

Figure 6.2: Number of auction rounds

Table 6.2. While we did not find significant differences in efficiency, we found

the auctioneer revenue share in the VCG auction to be significantly lower than

in all other auction designs, which is consistent with the simulation results.

Comparison E(X) R(X) U(X) Rounds
VCG vs. iBundle (Wilcoxon) 109 (0.8314) 60 (0.0539) 230 (0.0694) 109 (0.8314)
VCG vs. iBundle (t-test) 0.71 (0.4868) -1.94 (0.0633) 2.47 (0.0197) 0.71 (0.4868)
VCG vs. ALPS (Wilcoxon) 136 (0.7405) 74 (0.0416) 243 (0.2534) 136 (0.7405)
VCG vs. ALPS (t-test) 0,40 (0.6915) -2.09 (0.0450) 1.58 (0.1239) 0.40 (0.6915)
VCG vs. CC (Wilcoxon) 126.5 (0.8962) 58 (0.0072) 231 (0.4096) 126.5 (0.8962)
VCG vs. CC (t-test) -0.81 (0.4263) -2.63 (0.0134) 1.40 (0.1719) -8.1 (0.4263)
ALPS vs. iBundle (Wilcoxon) 103 (0.9619) 88 (0.4944) 200 (0.3730) 103 (0.9619)
ALPS vs. iBundle (t-test) 0.46 (0.6509) -0.18 (0.854) 1.24 (0.2238) 0.49 (0.6295)
ALPS vs. CC (Wilcoxon) 115.5 (0.4463) 124 (0.889) 176 (0.5246) 115.5 (0.4463)
ALPS vs. CC (t-test) -1.25 (0.2253) -0.50 (0.6191) -0.31 (0.7569) -1.25 (0.2253)
iBundle vs. CC (Wilcoxon) 95 (0.6) 119.5 (0.5083) 120 (0.1306) 95 (0.6)
iBundle vs. CC (t-test) -1.15 (0.2717) -0.20 (0.8373) -1.62 (0.1136) -1.15 (0.2717)

Table 6.2: Pairwise significance tests for different auction designs
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(a) Efficiency (b) Auctioneer revenue share

Figure 6.3: Revenue distribution in different value models

6.1.2 Pairwise Comparisons of Value Models

Result 4: There are no significant differences in efficiency across different

value models with 3, 6, and 9 items. (Hypothesis 10)

In our experimental setting we have used auctions with 3, 6, and 9 items. The

bidders were interested in only 1 to 3 bundles in VM1 and VM2 (3 items),

in 11-15 bundles in VM3 (6 items), and in 24-27 bundles in VM4 (9 items).

We did not find any significant differences in efficiency between different value

models (see Figure 6.3 and Table 6.3). Again, we assume the main reason for

that to be the bidder decision support tools that made it fairly easy for bidders

to find out the profitable bundles and follow a certain strategy. It is not clear,

however, whether the same holds for even larger auctions with more than 9

items, in which the preference elicitation on an exponentially large number of

bundles might become a problem.
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Comparison Efficiency Revenue Rounds
VM1 vs. VM2 (Wilcoxon) 142 (1) 211 (0.0209) 147 (0.8472)
VM1 vs. VM2 (t-test) 0.87 (0.3923) 2.21 (0.03441) -0.19 (0.8472)
VM1 vs. VM3 (Wilcoxon) 163 (0.4352) 177 (0.2620) 129.5 (0.6125)
VM1 vs. VM3 (t-test) 1.70 (0.1071) 1.30 (0.2027) -0.9482 (0.3556)
VM1 vs. VM4 (Wilcoxon) 102.5 (0.6591) 119 (0.7333) 115 (0.5894)
VM1 vs. VM4 (t-test) -0.08 (0.9348) 4481 (0.6575) 0.4122 (0.6833)
VM2 vs. VM3 (Wilcoxon) 164 (0.3569) 115.5 (0.3259) 126 (0.5308)
VM2 vs. VM3 (t-test) 1.13 (0.2699) -0.9395 (0.3545) -0.8756 (0.3926)
VM2 vs. VM4 (Wilcoxon) 106 (0.7022) 70.5 (0.0964) 118 (0.762)
VM2 vs. VM4 (t-test) -0.87 (0.3947) -1.58 (0.1247) 0.5876 (0.5615)
VM3 vs. VM4 (Wilcoxon) 91 (0.2260) 89 (0.3787) 121.5 (0.6538)
VM3 vs. VM4 (t-test) -1.696 (0.1069) -0.7473 (0.4611) 1.09 (0.2904)

Table 6.3: Pairwise significance tests for different value models

DF Sum of Squares Mean Square F Value Pr > F
Value Model 1 0.00664 0.00664 0.3829 0.5384
Auction Design 1 0.00535 0.00535 0.3085 0.5807
Value Model *

Auction Design 1 0.00003 0.00003 0.0018 0.9661
Residuals 60 1.04066 0.01734

Table 6.4: Impact of the value model and auction design on
efficiency

6.1.3 ANOVA Analysis

This section describes the results of the analysis of variance (ANOVA), which

identifies the main impact factors and magnitude of interaction effects. The

ANOVA statistical model for our case is given by:

Yijk = µ + αi + βj + (αβ)ij + εijk

where Yijk stands for the dependent variable, and the differences are explained

by the auction design αi and the value model βj. The estimation error is

denoted by εijk and the expected value is denoted by µ. ANOVA assumes

homoscedasticity of residuals, as well as their normal distribution.

First, the parameter estimation was performed with the allocative efficiency
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DF Sum of Squares Mean Square F Value Pr > F
Value Model 1 0.00161 0.00161 0.0596 0.8079
Auction Design 1 0.03931 0.03931 1.4592 0.2318
Value Model *

Auction Design 1 0.00054 0.00054 0.0200 0.8879
Residuals 60 1.61634 0.02694

Table 6.5: Impact of the value model and auction design on the
auctioneer revenue share

as the explanatory variable Yijk. The estimation results are given in Table 6.4.

The results support the null hypothesis that the auction design and value model

overall did not have a significant impact on efficiency in these experiments.

The same analysis was then performed with the auctioneer revenue share as

the explanatory variable Yijk with similar results, see Table 6.5.

6.2 Analysis of Bidding Behavior

This section provides an individual-level analysis of the bidding behavior. In

combinatorial auctions bidding strategies can be much more complex than in

traditional single-item auctions, since bidders not only have to choose the bid

price, but also to select the bundles to bid on in every round. In the VCG auc-

tion, we tested Hypotheses 1 and 2 and analyzed, whether the bidders followed

the strategies predicted by theory. Since there is no equilibrium analysis of

examined linear-price designs, we did not conduct any structural analysis, but

estimated a logit model with different covariates possibly explaining the bid-

ding behavior. In iBundle we compared the bidders’ strategies to best-response

bidders in our simulations.

For the following analysis the extended bundles phenomenon that we ob-

served in many auctions is essential. The bidders sometimes submitted bids for

extended bundles, i.e., supersets of the bundles for which they were given
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explicit valuations. For example, a bidder that received a positive valuation

for AB would sometimes also bid on ABC with the same or higher bid price as

for AB, although she has not been given an explicit valuation for ABC. The

awareness of free disposal might have led them to the conclusion that they

could win more by bidding on extended bundles. On the other hand, bidding

on extended bundles can be a strategy in ALPS and the CC auction to keep el-

igibility high, but at the risk of winning a bundle at a lower payoff. Altogether,

from the 6340 bids over all auctions there were 614 bids on extended bundles,

namely 84 in VM1, 151 in VM2, 233 in VM3, and 146 in VM4. From those

bids more than a half were submitted in the VCG auction, so that excluding

the VCG auction the numbers are 59, 105, 89, 14 respectively.

6.2.1 Bidding Behavior in the VCG Auction

Most laboratory studies of single-unit Vickrey auctions found that bidders

tend to overbid in such environments (Kagel, 1995). In multi-unit uniform

price auctions bidders tend to overbid on the first unit and underbid on the

second unit, which is consistent with the theoretical prediction of demand

reduction (Kagel and Levin, 2001). Chen and Takeuchi (2005) found that

most bidders either underbid or bid at their true value, i.e., the overbidding in

single-unit Vickrey auctions did not carry over to combinatorial VCG auctions.

In contrast, we identified a clear pattern of overbidding in the VCG auction

in our experiment (see Table 6.6).

Result 5: On average, 17.74% of the bids in conducted VCG auctions re-

vealed true bidders’ valuations, 25.84% can be classified as underbid-

ders, 56.40% as bidding more than the true valuation for the bundle.

(Hypothesis 2)

Table 6.6 shows the relative number of bids that were above, below, and exactly

at the respective valuation in different value models. Overall, in all value
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truthful overbidding underbidding activity activity
bidding ratio 1 ratio 2

VM1 0.10 0.59 0.31 2.12 0.96
VM2 0.10 0.58 0.33 1.89 0.95
VM3 0.24 0.50 0.26 1.57 0.88
VM4 0.15 0.61 0.24 1.11 0.80

Table 6.6: Non-truthful bidding in the VCG auction

models the relative number of truthful bids was very low.

Result 6: In VCG auctions bidders did not bid on all bundles for which they

had positive valuations. (Hypothesis 1)

The column “activity ratio 1” in Table 6.6 provides the number of bundles

the bidders have bid on throughout the auction, divided by the number of

positive-valued bundles that were explicitly given to the bidders. The numbers

are significantly higher than 1.0, which can be explained by the extended bun-

dles phenomenon (see Section 6.2). Additionally, some bids were also placed

on bundles without any positive valuation, which might have been simple mis-

takes. Interestingly, the bidders have not bid on all positive-valued bundles

that were explicitly provided to them. The column “activity ratio 2” in Ta-

ble 6.6 shows the ratio of the bids on bundles with explicitly specified positive

valuations to the total number of these bundles. Actually, the longer the list

of valuations, the smaller is this ratio.

To further analyze Hypothesis 2 we used the OLS regression with the bundle

value as the independent variable and the bid price as the dependent variable.

The estimated regression coefficients for explicitly provided and extended bun-

dles are shown in Table 6.7. The row “all VMs” contains the coefficients es-

timated for all auctions. The column “all bundles” refers to all bundles the

bidders bid on, inclusive bundles with a negative payoff, which explains values

less than 1.0.
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VM all bundles given bundles extended bundles
VM1 0.9251 1.2707 1.3698
VM2 0.8457 1.1597 1.1714
VM3 1.0389 1.0296 1.0904
VM4 0.9683 0.9474 1.0406
all VMs 0.9699 0.9635 1.0881

Table 6.7: Regression coefficients for bundle values

Isaac and James (2000) performed a similar regression and found a coefficient

value of 0.95 and not statistically different from 1.0. Chen and Takeuchi (2005)

report a coefficient of 0.962, which is close to truthful preference revelation.

In Table 6.7 we found that the regression coefficient decreased with the value

model from VM1 to VM4. This can be due to an increasing number of items,

but also to the learning effects during the session, since the auctions were

conducted in the order from VM1 to VM4. The coefficients for the small value

models were significantly larger than those reported by Chen and Takeuchi

(2005) and indicate overbidding. Figure 6.4 depicts the diagrams plotting the

bundle valuation (or net payoff respectively) against the actual bid price of all

four value models in all VCG auctions. Triangles denote bids on bundles with

an explicitly given positive valuation, plus signs (+) denote extended bundles,

while stars (*) denote bundles with zero valuation.

6.2.2 Best-Response Bidding Behavior in Iterative CAs

In iterative combinatorial auctions, an interesting question is the bundle se-

lection behavior, i.e., which bundles the bidders bid for in different rounds

given their private valuations and the current ask prices. Deviations from

best-response bidding might impact the efficiency of auction designs based on

this assumption, in particular for iBundle.

To analyze the bundle selection behavior, we define 4 groups of bundles: BB,
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Figure 6.4: Scatter plots of bids in the VCG auction
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2BB, 3BB, and all other bundles. For bundles with explicitly provided val-

uations we determine the best possible, second best possible and third best

possible payoffs (u1, u2, and u3 respectively) at the current ask prices. We

then assign these bundles to the groups according to the rank of their possible

payoffs. Since possible payoffs of extended bundles can lay in between, we as-

sign extended bundles by the following rule: the extended bundles with payoffs

equal to u1 are assigned to BB, with payoffs in [u2; u1[ to 2BB, with payoffs

in [u3; u2[ to 3BB, and all further to other bundles. (Note that there were

only 267 bids on extended bundles from the overall 5249 bids in the conducted

iterative auctions.) With this notation we also refer to the bids submitted on

corresponding bundles. We sometimes further distinguish between jump bids

and non-jump bids in each of the groups, denoted by J and NJ respectively.

So, for example, 2BBNJ refers to the non-jump bids on the bundles from 2BB.

Note that in this notation BBNJ contains exactly the best-response bids.

Table 6.8 provides an overview of what proportion of bids has been submitted

for different kinds of bundles throughout the auctions. The column xBBNJ

refers to all bids from the groups BBNJ , 2BBNJ , and 3BBNJ . Similarly, the

column xBB refers to all bids from the groups BB, 2BB, and 3BB. The

results are also visualized in another way in Figure 6.5 and at a more detailed

level (BB, 2BB, . . . , nBB on the x-axis) in Figures 6.6 to 6.7.

Result 7: The bidders did not follow the pure best-response bidding strategy

in any of the studied iterative combinatorial auction designs. (Hypothe-

sis 6)

In ALPS, 59% of bids (including jump bids) were submitted on bundles from

the best three groups, but only 7% were pure best-response bids. There are

multiple reasons for non-best-response bidding in ALPS, such as eligibility

rules and the non-monotonicity in prices. Also, the fact that all bids remain

active throughout the auction might have an impact on the bidder behavior. In
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Figure 6.5: Distribution of bids in different value models
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Figure 6.6: Detailed distribution of bids in VM3
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BBNJ xBBNJ xBB
ALPS 0.07 0.16 0.59
Clock 0.33 0.66 0.66
iBundle 0.13 0.24 0.69
VM1 0.33 0.54 1.00
VM2 0.30 0.51 1.00
VM3 0.16 0.28 0.62
VM4 0.09 0.24 0.47
VM1 + ALPS 0.15 0.35 1.00
VM1 + Clock 0.65 1.00 1.00
VM1 + iBundle 0.22 0.39 1.00
VM2 + ALPS 0.11 0.25 1.00
VM2 + Clock 0.57 1.00 1.00
VM2 + iBundle 0.26 0.39 1.00
VM3 + ALPS 0.05 0.11 0.49
VM3 + Clock 0.26 0.57 0.57
VM3 + iBundle 0.16 0.22 0.69
VM4 + ALPS 0.06 0.12 0.44
VM4 + Clock 0.24 0.55 0.55
VM4 + iBundle 0.03 0.18 0.52

Table 6.8: Best-response bidding in different auction designs
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Figure 6.7: Detailed distribution of bids in VM4
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the CC action bidders cannot submit jump bids, but the same eligibility rules

apply. Here the percentage of bids from the top three bundle groups was 66%.

Eligibility rules incent bidders to submit many bids, which accounts for many

bids on bundles with a lower payoff. In contrast, the iBundle eligibility rule

does not hinder best-response bidding, and theory predicts bidders to follow the

best-response strategy. Nevertheless, only 13% of bids were best-response bids

in our iBundle experiments. 69% of bids (including jump bids) were submitted

on bundles from the best three bundle groups. The reason can be the inability

of personalized bundle prices to reflect the current market competition and the

large number of rounds, which both induced the bidders to jump bidding. As

the computational experiments have shown, the efficiency of iBundle can be

significantly below 100% for realistic value models if bidders do not follow the

best-response, but heuristic bidding strategies (Schneider et al., 2007).

Result 8: We did not observe pure best-response bidding in iBundle, but

the efficiency levels were close to 100% on average in this experiment.

However, larger value models suffered from many auction rounds and

had partially been canceled due to time reasons. (Hypothesis 8)

The iBundle results need to be interpreted with care. The small value models

all achieved 100% efficiency. Already for value models with 6 or 9 items the

number of auction rounds increased significantly, and some auctions had to be

canceled due to time reasons. This suggests that in its original form iBundle

will only be suitable for very small combinatorial auctions. Higher price in-

crements together with proxy agents that translate these high bid increments

into many small rounds, might be a remedy.

Result 9: The bidding behavior was heterogeneous across individuals with

the same treatments. (Hypothesis 7)
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Figure 6.8: Distribution of bids on individual level in ALPS and
the CC auction in VM3

The cognitive complexity of the decision environment is probably the best

explanation for the fact that observed bidding behavior was different across

individuals with the same treatments. This can be illustrated by a bidder-level

analysis of particular auction designs, as will also be discussed in subsequent

sections. Figures 6.8 to 6.9 show the distribution of bids for individual bidders

in VM3. In the plots the bids submitted by every bidder are splitted in the

groups BB, 2BB, 3BB and other bids respectively. The plots also reveal

the relative number of jump bids in every group, which is reflected by the

respective shaded areas. Furthermore, the relative number of submitted bids

in relation to other bidders is indicated by the width of the corresponding bar.

The figures show that some bidders submitted many bids, the others only a

few. There were bidders who concentrated on the best three bundle groups,

whereas the others submitted more bids for lower-payoff bundles.

Figure 6.10 is just another visualization of the observed phenomenon. Each

plot shows the bid distribution for 4 physical bidders (marked by 4 different

colors) that had the same set of valuations in different experimental sessions.



6.2. ANALYSIS OF BIDDING BEHAVIOR 135

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Individual bidders in VM3

%
 o

f B
B

, 2
B

B
, 3

B
B

 a
nd

 o
th

er
 b

id
s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 6.9: Distribution of bids on individual level in iBundle
in VM3

The results suggest that even if bidders are provided with decision support

tools, one cannot assume them to act according to the same “best strategy”

in a complex decision environment (at least without considering learning ef-

fects over a longer time period). While there are rational explanations for

ALPS, such as eligibility rules, the reasons for this behavior are less obvious

in iBundle. Bidder idiosyncrasies and mixed strategies such as in trembling-

hand perfect equilibria (Selten, 1975) are possible explanations of these ob-

servations. In light of these findings, robustness of auction designs against

non-optimal bidding strategies emerges as an important design criterion for

practical applications of combinatorial auctions.

6.2.3 Ordinal Choice Model

This section models a bidder’s bundle selection decision in each round as a

discrete choice problem, whereby the impact of the auction design and value

model is estimated. The model follows the general structure outlined in Sec-

tion 5.3.1. In the ordinal logit model the dependent variable y can take four
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(a) ALPS, bidder 3, VM3 (b) iBundle, bidder 1, VM3

Figure 6.10: Distribution of bids in ALPS and iBundle for
bidders with the same set of valuations (selected valuation sets,

VM3)

Estimates Y=0 (BB) Y=1 (2BB) Y=2 (3BB) Y=4 (other)
CC .0927 .0152 -.0164 -.0916
PD .1238 .0231 -.0201 -.1268
VM2 -.0708 -.0192 .0083 .0817
VM3 -.3663 -.0728 .0393 .3998
VM4 -.4132 -.1183 .0063 .5251

Table 6.9: Estimation results for the ordinal logit model

different values: 0 means that the bidder submitted a bid on a bundle from

BB, 1 stays for a bid on a bundle from 2BB, 2 stays for a bid on a bundle from

3BB, and 3 stays for a bid on any other bundle. (For the distribution of these

attribute values in different value models see Figure 6.5). The independent

variables xi include binary variables for the auction designs (CC = CC auc-

tion, PD = iBundle) and value models (VM2, VM3, VM4). As a baseline for

the categorical variables auction design and value model we used ALPS and

VM1 respectively. In the ordered logit model εi has a standard logistic distri-

bution. For details on the estimation procedure and the interpretation of the

results see (Greene, 2003).

The marginal effects for the ordered probability model are given in Table 6.9.

Each negative coefficient in the second column describes a negative impact on

choosing one of the best bundles, the third column describes the marginal effect
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on the second best bundles, etc. While the CC auction (CC) and iBundle (PD)

have a positive impact on selecting one of the best and second best bundles, a

larger value model (VM3, VM4) has a negative impact. The last observation

is especially important as it emphasizes the suboptimality of bidders’ decisions

in larger value models, and, therefore, the need of further research in the area

of large-scale auctions and bidder support tools.



138 CHAPTER 6. RESULTS OF LABORATORY EXPERIMENTS



Chapter 7

Conclusions

In this final chapter, the main contributions of this thesis are summarized and

discussed. I also outline potential directions of further research in this area.

7.1 A Brief Review

Iterative combinatorial auctions using linear ask prices are promising mech-

anisms for complex negotiation problems including multiple heterogeneous

items. While game theoretical modeling is essential for the understanding

of basic economic laws, the discrete nature of ICAs, the effects of eligibil-

ity rules and fine grained ask price calculations in these auction designs defy

much formal analysis. Economic experiments, on the other hand, are costly

and the number of treatment variables that can be analyzed in laboratory

experiments is limited. In recent years, computation has become another re-

search method, complementing theory and experiment (a.k.a. computational

sciences). Computer simulations make it possible to investigate scenarios and

study phenomena that have been shown to be difficult to analyze analytically.

Combinatorial auctions are still a new phenomenon and, after a number of
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seminal contributions describing the underlying economic theory, much can be

gained by testing new auction rules and different types of information feedback

using computational methods and laboratory experiments.

In our work, we used both computational and laboratory experiments to com-

pare characteristics of three established (the CC auction, RAD, and iBundle)

and two new (ALPS and ALPSm) ICA designs, four of which are based on

linear ask prices. The comparison was done against the Vickrey-Clarke-Groves

auction, which provides at least a theoretical benchmark. All experiments have

been conducted based on the same auction platform with minimal differences

in the user interface across the auction designs.

In contrast to primal-dual auction designs, linear-price auctions follow a more

heuristic approach to update ask prices and find the efficient solution. While

it is easy to construct examples in which linear prices lead to inefficiencies, the

allocative efficiency in ALPS, ALPSm, and the CC auction was surprisingly

high for very realistic value models in our large-scale experiments. Just like

exact combinatorial optimization algorithms find a feasible optimal solution

at the cost of high computational effort, primal-dual auction mechanisms pro-

vide an efficient solution at the cost of many auction rounds and non-linear

personalized prices. Moreover, best-response bidding is required to achieve the

allocative efficiency. In analogy, similar to approximation schemes or heuris-

tics, linear-price auctions are robust against different bidding strategies and

can find very good allocations in a much lower number of rounds at the cost

of minor inefficiencies.

In the computational experiments, ALPSm typically achieved a higher ef-

ficiency and lower ask prices, than the CC auction. As opposed to the CC auc-

tion, the price non-monotonicity and price distortions can be disturbing for the

bidders in RAD, ALPS and ALPSm. Only a small percentage of ask prices

exhibited price distortions in our experiments, but the price monotonicity was

relatively low. Interestingly, even in cases with high synergy values in the
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Pairwise Synergy value model, the efficiency levels in ALPS, ALPSm and the

CC auction were very high. For the remaining inefficiencies in linear-price auc-

tions, there are a few remedies, such as the Proxy phase in the Clock-Proxy

auction (Ausubel et al., 2006) that address these inefficiencies, but these de-

signs have not yet been thoroughly analyzed. In summary, linear-price designs

bear a number of advantages:

• Only a linear number of prices needs to be communicated.

• Linear prices, if perceived as a guideline, help bidders to easily find items

with high competition and allow for endogenous bidding (Kwon et al.,

2005).

• The perceived fairness of anonymous prices might be of importance in

some applications.

• The number of auction rounds is much lower at the expense of small

inefficiencies at the end of the auction compared to primal-dual auction

designs.

• ALPSm showed to be robust against different non-best-response bidding

strategies. This robustness is important since human bidders might not

follow the pure best-response strategy.

In the laboratory experiments, we compared the auction designs based on

4 different value models with 3, 6, and 9 items. Although the bidding behavior

was heterogeneous and did not follow the pure best-response strategy in any

of the auction designs, we achieved high levels of efficiency in all of them. Ac-

tually, we did not find a significant difference in efficiency across different auc-

tion designs. While the laboratory experiments suggest all examined auction

designs to be robust against non-best-response bidding, the computational ex-

periments have shown that this can actually lead to significant efficiency losses
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in iBundle. Interestingly, we did also find no significant difference in efficiency

across value models of different size. We believe that this is largely due to the

decision support tools that we provided to the bidders. Furthermore, the auc-

tioneer revenue in the VCG auction was significantly lower than in the iterative

designs, as predicted by the simulation results. Overall, iBundle suffered from

a very large number of auction rounds even for auctions with only 6 items. On

the other hand, some instances terminated after one or two rounds, as for some

reason every active bidder got allocated some bundle, which caused iBundle

to terminate.

7.2 Future Work

Combinatorial auctions are considerably more complex for bidders than tradi-

tional single-item auctions. The bidders have to choose one or more bundles

from an exponentially large set of alternatives and select a bid price for ev-

ery bid. We believe that bidder decision support tools play an important role

in these auctions. The role of decision support tools, however, needs to be

analyzed in more detail in future experiments. Software vendors in this field

promote the use of combinatorial auctions for very large events. While our ex-

periments suggest that combinatorial auctions of up to 9 items can achieve very

high levels of efficiency with only minimal bidder decision support, it would

be important to analyze the role of decision support tools and the efficiency in

large-scale combinatorial auctions.

Beside of the auction size, there is also a number of other interesting aspects

that require further research. For example, we did not analyze learning ef-

fects specifically in our laboratory experiments. (Nevertheless, we performed

a number of training rounds and tested the subjects knowledge to make sure

that they had a solid understanding of every auction design.) We expect that

with multiple repetitions bidders would better learn the corresponding auc-



7.2. FUTURE WORK 143

tion design and adjust their bidding strategy. So, for auctions with higher

auctioneer revenues that do not converge to approximate minimal CE prices

(like the CC auction) this can lead to speculative bidding and, hence, larger

inefficiencies than we observed. Furthermore, the impact of different bidding

languages can be analyzed.
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Appendix A

ALPS Auction Design Reference

A.1 ALPS Ask Prices

The central ALPS auction rule focuses on the calculation of ask prices. There

are a number of ways, how pseudo-dual prices can be calculated. The following

three properties can serve as guidelines:

1. The ask prices for the next round should be compatible with the current

provisional allocation and submitted bids, i.e., all winning bids should

be higher than or equal to the ask prices, and all losing bids should be

lower than the ask prices. If no such prices exist, they should be approxi-

mated as closely as possible by minimizing the linear price compatibility

distortions (see Section 2.5.2).

2. The ask prices should be balanced across all items to be perceived as fair

and to mitigate the threshold problem.

3. The ask prices should be minimal, enabling bidders to submit bids as

long as they can and to end up with approximate minimal CE prices.
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RAD describes a procedure to satisfy the first two properties by solving a

series of linear programs (LPs), minimizing the sum of slack variables that

represent the linear price compatibility distortions. The idea of pseudo-dual

prices has been introduced already in Rassenti et al. (1982). In ALPS, we

propose an extension to the RAD price calculation rules, which fulfills all

above requirements and addresses some pitfalls of RAD. The overall approach

can be schematically described as follows:

minpask(k),δi(S) {max{δi(S)}, max{pask(k)}}
s.t. ∑

k∈S

pask(k) = pbid,i(S) ∀ bi(S) ∈ W∑
k∈S

pask(k) + δi(S) ≥ pbid,i(S) ∀ bi(S) ∈ L

δi(S) ≥ 0 ∀ bi(S) ∈ L

pask(k) ≥ 0 ∀ k ∈ K

(1)

The first condition sets the winning bid prices equal to the ask prices, which

satisfies the first price compatibility requirement. The second condition tries

to satisfy the second price compatibility requirement as closely as possible,

whereby the distortions δi(S) represent the deviations from the ideal (slack

variables).

With the XOR bidding language the losing bids of a winning bidder are not

included in (1). Since a bidder can only win one bundle at maximum, her

losing bids might unnecessarily keep up prices on other items, which conflicts

with the third requirement. With the OR bidding language all losing bids are

included (as in RAD).

Note that RAD and ALPS describe only two ways to calculate pseudo-dual

ask prices in each round. There are various possibilities in choosing an ob-

jective function and constraints that satisfy different criteria. For example,

one might also try to minimize the non-monotonicity across rounds. Dunford
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et al. (2007) have explored this subject further and found high monotonicity

with alternative formulations. In ALPS, we have focused on a method that

satisfies all above requirements. The schematically defined objective function

min {max{δi(S)}, max{pask(k)}} stays for a balanced minimization of all dis-

tortions δi(S) and then a balanced minimization of the ask prices. This price

calculation procedure is now described in detail.

In the first step we sequentially lower all slack variables while trying to keep

them balanced. We first minimize the maximum of all slack variables, then

fix those slack variables that can not be further improved, and repeat. Let L̂

denote the set of all bids bi(S) for which δi(S) can not be improved any more,

and initialize it with L̂ = ∅. Then solve the linear program (2).

minpask(k),Z,δi(S) Z

s.t. ∑
k∈S

pask(k) = pbid,i(S) ∀ bi(S) ∈ W∑
k∈S

pask(k) + δ̂i(S) = pbid,i(S) ∀ bi(S) ∈ L̂∑
k∈S

pask(k) + δi(S) ≥ pbid,i(S) ∀ bi(S) ∈ L \ L̂

0 ≤ δi(S) ≤ Z ∀ bi(S) ∈ L \ L̂

pask(k) ≥ 0 ∀ k ∈ K

(2)

Let {Z∗, {δ∗i (S)},P∗
ask} be the solution of (2) and L∗ := {bi(S) : δ∗i (S) = Z∗}.

If Z∗ = 0, we are done. Otherwise RAD would fix the slack variables for

all bids in L∗ and proceed. However, if L∗ contains more than one element,

some of these slack variables may still be possible to improve. Moreover, if

the Simplex optimization algorithm (Nemhauser and Wolsey, 1988) is used,

we will very likely get some δ∗i (S) = Z∗ since it always finds some vertex of the

feasible polytope. This requires additional steps. Therefore, ALPS restricts

the slack variables by Z∗ and minimizes the sum of all slack variables in L∗ as

follows:
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minpask(k),δi(S)

∑
bi(S)∈L∗

δi(S)

s.t. ∑
k∈S

pask(k) = pbid,i(S) ∀ bi(S) ∈ W∑
k∈S

pask(k) + δ̂i(S) = pbid,i(S) ∀ bi(S) ∈ L̂∑
k∈S

pask(k) + δi(S) ≥ pbid,i(S) ∀ bi(S) ∈ L \ L̂

0 ≤ δi(S) ≤ Z∗ ∀ bi(S) ∈ L \ L̂

pask(k) ≥ 0 ∀ k ∈ K

(3)

If at least one of the slack variables in L̂ can be improved, this will be done

by (3). We now remove all bids with improved slack variables from L̂ and

repeat (3) until no more slack variables can be improved. At this point we set

L̂ := L̂ ∪ L∗, fix all non-improvable slack variables (∀bi(S) ∈ L∗ set δ̂i(S) :=

δ∗i (S)), and continue with (2).

After the set of all bids with positive slack variables L̂ is identified, and all

those slack variables are minimized and fixed to {δ̂i(S)}, prices may still not

be unique. For example, in the ideal case we get L̂ = ∅, and we still have a lot

of freedom in setting prices. We now balance prices similar to the minimizing

slack variables in the previous step. We first minimize the maximum of all

prices, then fix those prices that can not be further lowered, and repeat. Let

K̂ denote the set of all items which prices can not be lowered any more, and

initialize it with K̂ = ∅. Then solve the linear program (4).

Let {Y ∗,P∗
ask} be the solution of (4) and let K∗ := {k : p∗ask(k) = Y ∗}. Now

RAD would fix the prices for all bids in K∗ and proceed. But again, if K∗

contains more than one element, some of these prices may still be lowered and

this is very likely to happen when using a Simplex-based LP solver. This can

be illustrated by the following examples.
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minpask(k),Y Y

s.t. ∑
k∈S

pask(k) = pbid,i(S) ∀ bi(S) ∈ W∑
k∈S

pask(k) + δ̂i(S) = pbid,i(S) ∀ bi(S) ∈ L̂∑
k∈S

pask(k) ≥ pbid,i(S) ∀ bi(S) ∈ L \ L̂

pask(k) = p̂ask(k) ∀ k ∈ K̂

0 ≤ pask(k) ≤ Y ∀ k ∈ K \ K̂

(4)

Example 7. Consider an auction with three items A, B, C and four currently

active bids from different bidders pbid,1(A) = 55, pbid,2(C) = 55, pbid,3(AB) =

40, pbid,4(BC) = 40. The provisional winners are bidders 1 and 2 and L̂ = ∅.
After removing redundant inequalities the linear program (4) looks like:

minpask(B),Y Y

s.t.

pask(A) = 55

pask(C) = 55

55 ≤ Y

0 ≤ pask(B) ≤ Y

We can get two possible solutions of this problem when using a simplex-based

LP solver: {p∗ask(B) = 55, Y ∗ = 55} or {p∗ask(B) = 0, Y ∗ = 55}. In the

first case RAD would fix all prices to 55, which would distort the bidder’s

understanding of the current competition on item B.

Another important point is the balancing method used. RAD proposes max-

imizing the minimal price instead of minimizing the maximal price. How-

ever, if the solver finds the second solution, RAD would fix p̂ask(A) = 55 and

p̂ask(C) = 55 and then yield p∗ask(B) = ∞ in the next iteration.

Example 8. Now consider another auction with three items A, B, C and
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two currently active bids pbid,1(ABC) = 160, pbid,2(A) = 70, in which the

provisional winner is bidder 1 and, again, L̂ = ∅. The linear program (4) looks

like:

minpask(A),pask(B),pask(C),Y Y

s.t.

pask(A) + pask(B) + pask(C) = 160

pask(A) ≥ 70

0 ≤ pask(A), pask(B), pask(C) ≤ Y

With a simplex-based solver this would yield one of two possible solutions:

{p∗ask(A) = 70, p∗ask(B) = 20, p∗ask(C) = 70, Y ∗ = 70} or {p∗ask(A) =

70, p∗ask(B) = 70, p∗ask(C) = 20, Y ∗ = 70}. In both cases RAD would stop

with this solution. However, there are no reasons, why the prices for items B

and C are different.

To avoid the pitfalls illustrated in the above examples, ALPS continues by

bounding the prices to Y ∗ and minimizing the sum of all prices in K∗ as

follows:

minpask(k)

∑
k∈K∗

pask(k)

s.t. ∑
k∈S

pask(k) = pbid,i(S) ∀ bi(S) ∈ W∑
k∈S

pask(k) + δ̂i(S) = pbid,i(S) ∀ bi(S) ∈ L̂∑
k∈S

pask(k) ≥ pbid,i(S) ∀ bi(S) ∈ L \ L̂

pask(k) = p̂ask(k) ∀ k ∈ K̂

0 ≤ pask(k) ≤ Y ∗ ∀ k ∈ K \ K̂

(5)

If at least one of the prices in K∗ can be lowered, this will be done by (5).

We now remove all items with lowered prices from K∗ and repeat with (5)
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until no more prices can be improved. At this point we set K̂ := K̂ ∪ K∗,

fix all non-improvable prices (∀k ∈ K∗ set p̂ask(k) := p∗ask(k)), and continue

with (4), unless K \ K̂ = ∅. In Example 8 the algorithm terminates after one

iteration with the prices {p∗ask(A) = 70, p∗ask(B) = 45, p∗ask(C) = 45}, which

better describe the provisional competitive situation.

A.2 ALPS Surplus Eligibility

ALPS activity rules are also based on the RAD eligibility rule. A bidders

eligibility et
i is the number of distinct objects she is allowed to bid on in a

round. In SMR and RAD a collection of bids is eligible if the new bids plus the

last round winning bids are placed on no more items than the eligibility et−1
i .

These rules, however, can also lead to inefficiencies. For example, if the items

vary in price significantly, bidders may want to replace a single expensive item

by a set of cheaper items. This is typically the case in transportation, when

bidders give up bidding on the shortest route and start bidding on a detour.

In ALPS we extend the RAD eligibility rules with the surplus-eligibility , in

order to account for these cases.

The surplus-eligibility et
+,i gives each bidder i a chance to increase her

round t eligibility et
i. To retain the original purpose of enforcing activity

throughout the auction, the value of the surplus-eligibility is directly bound to

the bidder’s market activity in the auction so far. The surplus-eligibility et
i for

each bidder is calculated in each round and is communicated to the bidders

along with the ask prices and provisional allocation. In round t a bidder is

allowed to bid maximally on as many distinct items as she has bid in the last

round, plus the surplus eligibility:

{dist. items in round t} ≤ et
i := {dist. items in round t− 1}+ et

+,i
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To determine the value et
+,i we propose a measure for a bidder’s market activity,

in which we want to avoid pretending activity by submitting deliberately losing

bids. For this purpose, we introduce the notion of the bid volume of bidder i

in round t:

round bid volume: rbvt
i :=

∑
k∈K bpet

i(k)

total bid volume: tbvi :=
∑

t rbv
t
i

The optimistic bid price estimator function bpet
i(k) represents an op-

timistic estimator of bidder’s i bid price for the single item k based on her

bundle bids in round t. For each bid bt
i(S) the bid price is splitted between

the individual items proportionally to the current item ask prices; for each

item k ∈ S the maximum over all bids is then taken. In other words, bpet
i(k)

describes, how much the item k is worth to bidder i in round t. A simple

example illustrates this concept.

Example 9. Consider an auction with three items A, B and C and linear

prices in round t respectively 10, 10, and 20. If bidder i submits a bid on

bundle ABC for 50, the bid price is splitted proportionally to the ask prices,

resulting in the values 12.5, 12.5, and 25 for A, B and C respectively. Let

her second (and last) bid in round t be 30 on bundle BC, which is splitted

proportionally to the ask prices as 10 for B and 20 for C. In this case, we

obtain:

bpet
i(A) = 12.5

bpet
i(B) = max(10, 12.5) = 12.5

bpet
i(C) = max(20, 25) = 25

The total bid volume tbvi equals to the sum of rbvt
i over all auction rounds and

represents the overall bid volume that bidder i has generated in the auction
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so far. Further, the bidders are ranked by their tbvi in ascending order. The

bidder volume rank, denoted by bvri, is the position index in the ordered

sequence of this bidder’s tbvi minus 1 (so the rank of the most inactive bidder

is 0). The surplus eligibility is then defined as:

et
+,i := round

((
bvri

|n| − 1

)
· emax

+

)
The value bvri/(|n| − 1) is scaled to be in [0, 1] and serves as an indicator of the

relative market activity of bidder i. The emax
+ is the maximal possible surplus

eligibility (an auction design parameter). The fact that a bidder’s activity

can be accumulated throughout the auction, sets incentives for bidders to bid

actively right from the start. We found surplus eligibility to have a significant

positive impact on efficiency in the transportation value model.

A.3 ALPS Termination Rules

The termination rule is central to an auction design. RAD has an eligibility

based termination rule and enforces minimum bid increments. As illustrated

below, this is not always sufficient to ensure auction termination. Additionally,

RAD enforces the auction termination if the same provisional allocation is

determined in two consecutive rounds. However, the approximative nature of

linear ask prices in RAD in combination with this termination rule can result

in inefficient allocations.

Example 10. Consider an example auction with the bidders’ valuations given

in Table A.1 and a minimum increment of 2.0. The efficient outcome would

be to sell A to bidder 1 and BC to bidder 2. Let two bids (Table A.2) be active

in some round. Table A.3 shows the resulting ask prices.

Bidder 2 does not win in the provisional allocation, so she has to submit an-

other bid. She now has to choose between 27 [11.5+11.5+ 2+2] for AB and
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Item A B C AB AC BC ABC
Bidder1 10 35
Bidder2 32 32

Table A.1: ALPS termination rules example - Valuations

Item A B C AB AC BC ABC
Bidder1 30.5
Bidder2 23

Table A.2: ALPS termination rules example - Some round bids

23 [11.6+7.5+2+2] for BC. As she has equal payoffs for both bundles, the

second alternative is selected accidentally. The next round bids are depicted in

Table A.4.

This is the second round with the same provisional allocation, and consequently

the auction will be terminated with bidder 1 getting all 3 items. Obviously, this

is not an efficient outcome. For bidder 2 the auction termination comes as a

surprise, since she was still ready to submit higher bids.

A näıve approach of removing this termination rule and relying only on the

eligibility-based principle (Kwasnica et al., 2005) causes other problems.

Example 11. Continuing the above example, ask prices in the new round will

change to the values shown in Table A.5.

At this point bidder 2 could bid 23 on AB again, and the auction would continue

Item A B C
Price 11.5 11.5 7.5

Table A.3: ALPS termination rules example - Some round ask
prices
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Item A B C AB AC BC ABC
Bidder1 30.5
Bidder2 23

Table A.4: ALPS termination rules example: Next round bids

Item A B C
Price 7.5 11.5 11.5

Table A.5: ALPS termination rules example: Next round ask
prices

without stopping at all. The reason for this infinite loop is the possibility for

ask prices to fall (non-monotonicity).

In order to avoid these problems, we suggest omitting the auction termination

rule based on two successive identical allocations and introduce alternative

rules to prevent the auction from looping:

• Increase the minimum increment with every equal allocation, but reset

the minimum increment to the original value as the allocation changes

(ALPS).

• Request every bidder to outbid her own bids which were submitted pre-

viously on the same bundle by the price increment ∆ (ALPSm).

If the losing bidder’s valuation is high enough, both rules will eventually cause

the allocation to change. Otherwise, the losing bidder will stop bidding and

the auction will close.
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Appendix B

Value Models for Lab

Experiments

B.1 Value Model VM1

This value model contains the items A,B,C.

Bidder 1

Bundle Valuation

{A,B} = 15.0

Bidder 2

Bundle Valuation

{A,B} = 14.0

{C} = 5.0

Bidder 3

Bundle Valuation

{A,B} = 9.0

Bidder 4

Bundle Valuation

{A,B} = 10.0

{C} = 4.0
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B.2 Value Model VM2

This value model contains the items A,B,C.

Bidder 1

Bundle Valuation

{A} = 10.0

{B} = 5.0

{C} = 2.0

Bidder 2

Bundle Valuation

{A} = 5.0

{B} = 10.0

{C} = 5.0

Bidder 3

Bundle Valuation

{A} = 2.0

{B} = 5.0

{C} = 10.0

Bidder 4

Bundle Valuation

{A,B} = 5.0

{B,C} = 16.0
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B.3 Value Model VM3

This value model contains the items A, B, C, D, E, F.

Bidder 1

Bundle Valuation

{A} = 9.0

{B} = 6.0

{C} = 6.0

{D} = 6.0

{E} = 3.0

{F} = 3.0

{A,B} = 17.0

{A,D} = 17.0

{B,C} = 14.0

{B,E} = 11.0

{C,F} = 11.0

Bidder 2

Bundle Valuation

{A} = 6.0

{B} = 6.0

{C} = 9.0

{D} = 3.0

{E} = 3.0

{F} = 6.0

{A,B} = 14.0

{A,D} = 11.0

{B,C} = 17.0

{B,E} = 11.0

{C,F} = 17.0

Bidder 3

Bundle Valuation

{A,B} = 14.0

{A,D} = 16.0

{B,C} = 11.0

{B,E} = 10.0

{C,F} = 10.0

{A,B,C} = 25.0

{A,B,D} = 27.0

{A,B,E} = 24.0

{B,C,E} = 21.0

{B,C,F} = 21.0

{A,B,C,D} = 32.0

{A,B,C,F} = 29.0

{A,B,D,E} = 31.0

{B,C,E,F} = 25.0

Bidder 4

Bundle Valuation

{A} = 9.0

{A,D} = 9.0

{A,E} = 11.0

{A,F} = 12.0

{B} = 12.0

{B,D} = 12.0

{B,E} = 12.0

{B,F} = 12.0

{C} = 9.0

{C,D} = 12.0

{C,E} = 11.0

{C,F} = 9.0

{D} = 8.0

{E} = 11.0

{F} = 8.0
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B.4 Value Model VM4

This value model contains the items A, B, C, D, E, F, G, H, I.

Bidder 1

Bundle Valuation

{A} = 10.0

{B} = 5.0

{C} = 2.0

{D} = 5.0

{E} = 2.0

{F} = 1.0

{G} = 2.0

{H} = 1.0

{I} = 0.0

{A,B} = 16.0

{A,D} = 16.0

{B,C} = 8.0

{B,E} = 8.0

{C,F} = 4.0

{D,E} = 8.0

{D,G} = 8.0

{E,F} = 4.0

{E,H} = 4.0

{F,I} = 2.0

{G,H} = 4.0

{H,I} = 2.0

{A,B,C} = 22.0

{A,D,G} = 22.0

{B,E,H} = 13.0

{C,F,I} = 9.0

{D,E,F} = 13.0

{G,H,I} = 9.0

Bidder 2

Bundle Valuation

{A} = 5.0

{B} = 10.0

{C} = 5.0

{D} = 2.0

{E} = 5.0

{F} = 2.0

{G} = 1.0

{H} = 2.0

{I} = 1.0

{A,B} = 16.0

{A,D} = 8.0

{B,C} = 16.0

{B,E} = 16.0

{C,F} = 8.0

{D,E} = 8.0

{D,G} = 4.0

{E,F} = 8.0

{E,H} = 8.0

{F,I} = 4.0

{G,H} = 4.0

{H,I} = 4.0

{A,B,C} = 30.0

{A,D,G} = 19.0

{B,E,H} = 28.0

{C,F,I} = 19.0

{D,E,F} = 20.0

{G,H,I} = 15.0
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Bidder 3

Bundle Valuation

{A} = 2.0

{B} = 5.0

{C} = 10.0

{D} = 1.0

{E} = 2.0

{F} = 5.0

{G} = 0.0

{H} = 1.0

{I} = 2.0

{A,B} = 8.0

{A,D} = 4.0

{B,C} = 16.0

{B,E} = 8.0

{C,F} = 16.0

{D,E} = 4.0

{D,G} = 2.0

{E,F} = 8.0

{E,H} = 4.0

{F,I} = 8.0

{G,H} = 2.0

{H,I} = 4.0

{A,B,C} = 28.0

{A,D,G} = 15.0

{B,E,H} = 19.0

{C,F,I} = 28.0

{D,E,F} = 19.0

{G,H,I} = 15.0

Bidder 4

Bundle Valuation

{A,B,D,E} = 14.0

{B,C,E,F} = 32.0

{D,E,G,H} = 9.0

{E,F,H,I} = 14.0

{A,B,C,D,E} = 36.0

{A,B,C,E,F} = 40.0

{A,B,D,E,F} = 25.0

{A,B,D,E,G} = 21.0

{A,B,D,E,H} = 21.0

{A,D,E,G,H} = 17.0

{B,C,D,E,F} = 39.0

{B,C,E,F,H} = 39.0

{B,C,E,F,I} = 40.0

{B,D,E,G,H} = 20.0

{B,E,F,H,I} = 25.0

{C,E,F,H,I} = 36.0

{D,E,F,G,H} = 20.0

{D,E,F,H,I} = 21.0

{D,E,G,H,I} = 17.0

{E,F,G,H,I} = 21.0

{A,B,C,D,E,F} = 50.0

{A,B,D,E,G,H} = 31.0

{B,C,E,F,H,I} = 50.0

{D,E,F,G,H,I} = 31.0
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Appendix C

Simulations for Lab

Experiments

The following tables illustrate simulation results we achieved for the same

value models that were later used in laboratory experiments. The results

under different bidding strategy assumptions are presented. VCG describes

the results of a VCG mechanism, where bidders follow their dominant strategy.

”2nd best allocation” describes the results of a first-price sealed-bid auction,

where bidders bid their true valuations, but we do not allow the best set of

bundles to win. This indicates how far away would be the 2nd best allocation

from an efficient one and should provide a measure for the competition in the

auction.
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C.1 Best-response bidding strategy

C.1.1 Value Model VM1

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 20.0 14.39 12 B1 {A,B} 10.04 10.04

B2 {C} 4.35 4.35

ALPS 20.0 16.74 14 B1 {A,B} 12.72 12.72

B2 {C} 4.02 4.02

iBundle 20.0 17.0 26 B3 {} 0.0 0.0

B1 {A,B} 13.0 13.0

B2 {C} 4.0 4.0

B4 {} 0.0 0.0

VCG 20.0 17.0 1 B1 {A,B} 15.0 13.0

B2 {C} 5.0 4.0

2nd best 19.0 19.0 1 B1 {A,B} 15.0 15.0

B4 {C} 4.0 4.0
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C.1.2 Value Model VM2

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 30.0 20.0 10 B1 {A} 3.0 3.0

B2 {B} 8.0 8.0

B3 {C} 9.0 9.0

ALPS 30.0 22.0 10 B1 {A} 4.0 4.0

B2 {B} 8.0 8.0

B3 {C} 10.0 10.0

iBundle 30.0 18.0 26 B1 {A} 2.0 2.0

B2 {B} 7.0 7.0

B3 {C} 9.0 9.0

B4 {} 0.0 0.0

VCG 30.0 13.0 1 B1 {A} 10.0 1.0

B2 {B} 10.0 6.0

B3 {C} 10.0 6.0

2nd best 26.0 26.0 1 B1 {A} 10.0 10.0

B4 {B,C} 16.0 16.0
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C.1.3 Value Model VM3

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 55.0 45.56 16 B2 {C,F} 13.96 13.96

B3 {A,B,D} 26.0 26.0

B4 {E} 5.6 5.6

ALPS 55.0 40.01 25 B4 {E} 5.52 5.52

B2 {C,F} 11.47 11.47

B3 {A,B,D} 23.02 23.02

iBundle 55.0 33.0 47 B4 {E} 4.0 4.0

B2 {C,F} 11.0 11.0

B3 {A,B,D} 18.0 18.0

B1 {} 0.0 0.0

VCG 55.0 33.0 1 B2 {C,F} 17.0 11.0

B3 {A,B,D} 27.0 18.0

B4 {E} 11.0 4.0

2nd best 50.0 50.0 1 B1 {C} 6.0 6.0

B2 {F} 6.0 6.0

B3 {A,B,D} 27.0 27.0

B4 {E} 11.0 11.0
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C.1.4 Value Model VM4

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 78.0 69.03 14 B3 {C,F,I} 25.62 25.62

B1 {A,D,G} 17.79 17.79

B2 {B,E,H} 25.62 25.62

ALPS 78.0 66.44 26 B1 {A,D,G} 16.03 16.03

B3 {C,F,I} 25.64 25.64

B2 {B,E,H} 24.77 24.77

iBundle 78.0 65.0 83 B1 {A,D,G} 14.0 14.0

B2 {B,E,H} 24.0 24.0

B3 {C,F,I} 27.0 27.0

B4 {} 0.0 0.0

VCG 78.0 57.0 1 B1 {A,D,G} 22.0 13.0

B2 {B,E,H} 28.0 22.0

B3 {C,F,I} 28.0 22.0

2nd best 72.0 72.0 1 B1 {A,D,G} 22.0 22.0

B4 {B,C,E,F,H,I} 50.0 50.0
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C.2 Heuristic 3of5 bidding strategy

C.2.1 Value Model VM1

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 20.0 18.41 10 B1 {A,B} 14.06 14.06

B2 {C} 4.35 4.35

ALPS 20.0 18.41 10 B2 {C} 4.35 4.35

B1 {A,B} 14.06 14.06

iBundle 20.0 16.0 21 B2 {C} 5.0 5.0

B1 {A,B} 11.0 11.0

VCG 20.0 17.0 1 B1 {A,B} 15.0 13.0

B2 {C} 5.0 4.0

2nd best 19.0 19.0 1 B1 {A,B} 15.0 15.0

B4 {C} 4.0 4.0

C.2.2 Value Model VM2

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 30.0 24.0 9 B1 {A} 6.0 6.0

B2 {B} 9.0 9.0

B3 {C} 9.0 9.0

ALPS 30.0 24.0 9 B1 {A} 6.0 6.0

B2 {B} 9.0 9.0

B3 {C} 9.0 9.0

iBundle 30.0 18.0 27 B1 {A} 2.0 2.0

B2 {B} 7.0 7.0

B3 {C} 9.0 9.0

VCG 30.0 13.0 1 B1 {A} 10.0 1.0

B2 {B} 10.0 6.0

B3 {C} 10.0 6.0

2nd best 26.0 26.0 1 B1 {A} 10.0 10.0

B4 {B,C} 16.0 16.0
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C.2.3 Value Model VM3

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 55.0 49.24 13 B2 {C,F} 15.8 15.8

B3 {A,B,D} 26.92 26.92

B4 {E} 6.52 6.52

ALPS 55.0 36.43 18 B2 {C,F} 11.2 11.2

B3 {A,B,D} 19.05 19.05

B4 {E} 6.18 6.18

iBundle 55.0 37.0 114 B4 {E} 5.0 5.0

B2 {C,F} 13.0 13.0

B3 {A,B,D} 19.0 19.0

VCG 55.0 33.0 1 B2 {C,F} 17.0 11.0

B3 {A,B,D} 27.0 18.0

B4 {E} 11.0 4.0

2nd best 50.0 50.0 1 B1 {C} 6.0 6.0

B2 {F} 6.0 6.0

B3 {A,B,D} 27.0 27.0

B4 {E} 11.0 11.0
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C.2.4 Value Model VM4

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 78.0 69.03 11 B1 {A,D,G} 17.79 17.79

B2 {B,E,H} 24.75 24.75

B3 {C,F,I} 26.49 26.49

ALPS 78.0 71.1 18 B1 {A,D,G} 18.66 18.66

B2 {B,E,H} 24.9 24.9

B3 {C,F,I} 27.54 27.54

iBundle 72.0 60.0 300 B4 {B,C,E,F,H,I} 40.0 40.0

B1 {A,D,G} 20.0 20.0

VCG 78.0 57.0 1 B1 {A,D,G} 22.0 13.0

B2 {B,E,H} 28.0 22.0

B3 {C,F,I} 28.0 22.0

2nd best 72.0 72.0 1 B1 {A,D,G} 22.0 22.0

B4 {B,C,E,F,H,I} 50.0 50.0
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C.3 Heuristic 3of10 bidding strategy

C.3.1 Value Model VM1

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 20.0 18.41 10 B1 {A,B} 14.06 14.06

B2 {C} 4.35 4.35

ALPS 20.0 18.41 10 B2 {C} 4.35 4.35

B1 {A,B} 14.06 14.06

iBundle 20.0 16.0 21 B2 {C} 5.0 5.0

B1 {A,B} 11.0 11.0

VCG 20.0 17.0 1 B1 {A,B} 15.0 13.0

B2 {C} 5.0 4.0

2nd best 19.0 19.0 1 B1 {A,B} 15.0 15.0

B4 {C} 4.0 4.0

C.3.2 Value Model VM2

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 30.0 24.0 9 B1 {A} 6.0 6.0

B2 {B} 9.0 9.0

B3 {C} 9.0 9.0

ALPS 30.0 24.0 9 B1 {A} 6.0 6.0

B2 {B} 9.0 9.0

B3 {C} 9.0 9.0

iBundle 30.0 18.0 27 B1 {A} 2.0 2.0

B2 {B} 7.0 7.0

B3 {C} 9.0 9.0

VCG 30.0 13.0 1 B1 {A} 10.0 1.0

B2 {B} 10.0 6.0

B3 {C} 10.0 6.0

2nd best 26.0 26.0 1 B1 {A} 10.0 10.0

B4 {B,C} 16.0 16.0
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C.3.3 Value Model VM3

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 55.0 49.24 14 B3 {A,B,D} 25.08 25.08

B2 {C,F} 16.72 16.72

B4 {E} 7.44 7.44

ALPS 55.0 36.21 14 B4 {E} 5.14 5.14

B3 {A,B,D} 18.64 18.64

B2 {C,F} 12.43 12.43

iBundle 55.0 37.0 114 B2 {C,F} 13.0 13.0

B3 {A,B,D} 18.0 18.0

B4 {E} 6.0 6.0

VCG 55.0 33.0 1 B2 {C,F} 17.0 11.0

B3 {A,B,D} 27.0 18.0

B4 {E} 11.0 4.0

2nd best 50.0 50.0 1 B1 {C} 6.0 6.0

B2 {F} 6.0 6.0

B3 {A,B,D} 27.0 27.0

B4 {E} 11.0 11.0
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C.3.4 Value Model VM4

Auction Overall Auctioneer Rounds Winning Winning Bid Pay

Format Gain Revenue Bidder Bid Price Price

CC 78.0 69.9 11 B1 {A,D,G} 19.53 19.53

B2 {B,E,H} 23.88 23.88

B3 {C,F,I} 26.49 26.49

ALPS 69.0 66.06 16 B2 {A,D,G} 16.06 16.06

B4 {B,C,E,F,H,I} 50.0 50.0

iBundle 72.0 61.0 297 B4 {B,C,E,F,H,I} 42.0 42.0

B1 {A,D,G} 19.0 19.0

VCG 78.0 57.0 1 B1 {A,D,G} 22.0 13.0

B2 {B,E,H} 28.0 22.0

B3 {C,F,I} 28.0 22.0

2nd best 72.0 72.0 1 B1 {A,D,G} 22.0 22.0

B4 {B,C,E,F,H,I} 50.0 50.0
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Appendix D

Software Plattform Overview

Iterative combinatorial auctions would not be possible without IT-based auc-

tion platforms ensuring the correct auction protocol and solving hard compu-

tational problems in each auction round, most notably the Winner Determi-

nation Problem and the calculation of ask prices. Additionally, an easy-to-use

user interface with integrated bidder support tools is crucial to handle the cog-

nitive complexity of ICAs. This is also a reason, why combinatorial auctions

have been a topic in much recent IS research (see for example Adomavicius

and Gupta (2005); Fan et al. (2003); Jones and Koehler (2005); Kelly and

Steinberg (2000); Xia et al. (2004)).

The computational and laboratory experiments presented in this thesis were

conducted using the software framework MarketDesigner, which was de-

veloped at our university department as an essential part of several research

projects. In the following sections I give a short overview of the framework

architecture and provide a couple of screenshots to illustrate the user interface

used in our laboratory experiments.
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D.1 Framework Architecture

MarketDesigner is a software platform for iterative combinatorial auctions.

The platform allows for automated simulations of ICAs under specific assump-

tions about the value model and agents’ bidding strategies and for conducting

ICAs with human bidders. It was implemented as an extensible, plugin-based

framework with the goal to allow easy integration of additional auction de-

signs. All framework components were developed in JAVA using several cur-

rent J2EE -related technologies like XML, Spring, Hibernate, Struts, AJAX,

XStream, etc. For integer optimization the LP-Solver library “lpsolve” was

used.

Figure D.1: Web usage view of the MarketDesigner framework

Figure D.1 shows a schematic overview of the MarketDesigner framework when

used for conducting auctions with human bidders. As depicted, the main com-

ponent of the framework is the auction server that is capable of holding

several auction processor instances simultaneously, one for every registered

and running auction. Auction processors implement the actual logic of

different CA designs including the winner determination, price calculation

and enforcement of the auction protocol. Additionally, the auction server
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stores all essential information generated during the auction flow in a persis-

tent database. The auction server can be accessed via a SOAP communication

interface using the web services technology. This interface is used by the web

server that provides the web-based user interface of the framework. The

web server enables auction managers and administrators to create, edit and

control auctions as well as human bidders to participate in these auctions. In

the following, the auction server is often referred to as backend and the web

server as frontend.

Figure D.2: Simulation view of the MarketDesigner framework

In the automated auction simulation scenario the web server component is

replaced by the simulation framework component. Additionally, the sim-

ulation framework leaves out the time-consuming web service communication

and is directly integrated into the auction server (see Figure D.2). It provides

functionality to simulate auctions using artificial bidders and value models and

allows for comprehensive analysis of different CA designs.
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D.2 Communication Interface and Data

Model

Data containers play an essential role for the MarketDesigner framework. On

the one hand, they provide auction specific data structures, such as for bids,

bundles, and ask prices, used for internal data representation. On the other

hand, they are also used as parameters of the SOAP communication interface

and the simulation framework interface methods.

The data containers class diagram is shown in the Figure D.3. The

AuctionDescriptorComm object holds the static auction description. In par-

ticular, it contains the auction rules (BiddingRulesComm, ClearingRulesComm,

VisibilityRulesComm, AllocationRulesComm) and the list of the auctioned lots,

whereas the lot object (LotComm) describes the auctioned item, its start and

reservation prices, etc.

A bundle is represented by the class BundleComm, which contains a list of bundle

entries (BundleEntryComm), each referencing a specific auction lot. The class

AskPriceComm holds the bundle (linear for trivial bundles) ask price and the

class AtomicBidComm stores an atomic bid for a given bundle.

Another group of classes represents the dynamic state of related static objects.

So, the AtomicBidStatusComm class represents the current atomic bid state (ac-

tive, inactive, displaced, or revoked) and indicates, whether the given bid is

provisionally winning or losing. The BidderStatusComm class holds the current

status information about the given bidder, in particular her current and ex-

pected next round eligibility, the number of active, inactive, and provisionally

winning bids, etc. The AuctioneerStatusComm holds the current status infor-

mation about the auction manager. Another important class of this group is

AuctionStatusComm, which describes the current auction state. It contains the

counters of the currently active bids and bidders, current round number, and

timing information about the auction and the current round. It also contains
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Name: Communication Data Model
Author: Alexander Pikovsky
Version: 1.0
Created: 15.10.2007 15:42:36
Updated: 15.10.2007 16:27:17

AbstractComm
AllocationComm

{leaf}

AbstractComm
AllocationRuleComm

{leaf}

AbstractComm
AllocationRulesComm

AbstractComm
AskPriceComm AbstractComm

AtomicBidComm
{leaf}

AbstractComm
AtomicBidStatusComm

{leaf}

AbstractComm
AuctionDescriptorComm

AuctionStateBitSetComm

AbstractComm
AuctionStatusComm

AbstractComm
AuctioneerStatusComm

AbstractComm
AuditComm

{leaf}

AbstractComm
BidLanguageComm

{leaf}

BidStateBitSetComm BidderStatusBitSetComm

AbstractComm
BidderStatusComm

AbstractComm
BiddingRulesComm

AbstractComm
BitSetComm

AbstractComm
Iterable<BundleEntryComm>

BundleComm
{leaf}

AbstractComm
BundleEntryComm

{leaf}

AbstractComm
CatalogueCategoryComm

{leaf}

AbstractComm
CatalogueItemComm

{leaf}

AbstractComm
ClearingRulesComm

AbstractComm
LotComm

{leaf}

MarketManagerRoleBitSetComm

AbstractComm
UserComm

{leaf}

AbstractComm
UserGroupComm

{leaf}

AbstractComm
VisibilityRulesComm

+allocation

#auctionDescriptor

1..*

+entries

-audit-audit

-audit -audit

-bundle #bundle

#atomicBid

#biddingRules #clearingRules
#visibilityRulesWhenFinished

#visibilityRulesWhenRunning

#allocationRules

1..*

+lotList

+lot

0..*

+winningBids

0..*
+allocationRules

1..*
+bidLanguages

Figure D.3: MarketDesigner data model

the current provisional allocation represented by the class AllocationComm.

For a particular auction design, many data container classes are extended

by auction design specific classes in the corresponding auction design plu-

gin. For example, the class AuctionStatusClockComm extends the class

AuctionStatusComm for the CC auction. The specialized classes are then used

in place of generic classes by all framework components and by all communi-

cation interface methods.
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Name: Backend Interfaces
Author: Alexander Pikovsky
Version: 1.0
Created: 15.10.2007 17:38:52
Updated: 15.10.2007 17:46:15

java.rmi.Remote
«interface»

soaptemplate::IMarketManagerEndpoint

+ validateAuctionDescriptorForConsistency(UserContextComm, AuctionDescriptorComm) : void
+ validateAuctionDescriptorForStart(UserContextComm, AuctionDescriptorComm) : void
+ createAuction(UserContextComm, AuctionDescriptorComm) : long
+ modifyAuction(UserContextComm, AuctionDescriptorComm) : void
+ startAuction(UserContextComm, long) : AuctionStatusComm
+ clearRound(UserContextComm, long, long) : AuctionStatusComm
+ clearAuction(UserContextComm, long) : AuctionStatusComm
+ getAuctions(UserContextComm, long, AuctionStateBitSetComm, MarketManagerRoleBitSetComm) : AuctionStatusComm[]
+ getAuctionStatus(UserContextComm, long, boolean) : AuctionStatusComm
+ getRounds(UserContextComm, long, long) : AuctionStatusComm[]
+ getRound(UserContextComm, long, long, boolean) : AuctionStatusComm
+ getBid(UserContextComm, long, long) : AtomicBidStatusComm
+ getBids(UserContextComm, long, long, BidStateBitSetComm) : AtomicBidStatusComm[]
+ getBidder(UserContextComm, long, long) : BidderStatusComm
+ getRoundBidderStatus(UserContextComm, long, long, long) : BidderStatusComm
+ getBidders(UserContextComm, long, BidderStatusBitSetComm) : BidderStatusComm[]
+ getCurrentLinearAskPrices(UserContextComm, long, long, long) : AskPriceComm[]
+ getCurrentBundleAskPrices(UserContextComm, long, long, BundleComm) : AskPriceComm[]
+ getRoundLinearAskPrices(UserContextComm, long, long, long, long) : AskPriceComm[]
+ getRoundBundleAskPrices(UserContextComm, long, long, BundleComm, long) : AskPriceComm[]

java.rmi.Remote
«interface»

soaptemplate::ITraderEndpoint

+ getAuctionStatus(UserContextComm, long, boolean) : AuctionStatusComm
+ getAuctions(UserContextComm, long, long, AuctionStateBitSetComm, boolean) : AuctionStatusComm[]
+ getBiddingStatus(UserContextComm, long) : BidderStatusComm[]
+ getBid(UserContextComm, long, long) : AtomicBidStatusComm
+ getBids(UserContextComm, long, long, BidStateBitSetComm) : AtomicBidStatusComm[]
+ getAuctioneer(UserContextComm, long) : AuctioneerStatusComm
+ getCurrentBundleAskPrices(UserContextComm, long, BundleComm) : AskPriceComm[]
+ getCurrentLinearAskPrices(UserContextComm, long, long) : AskPriceComm[]
+ getCurrentAllocation(UserContextComm, long) : AllocationComm
+ setBidLanguage(UserContextComm, long, BidLanguageComm) : void
+ verifyAtomicBid(UserContextComm, long, long, AtomicBidComm) : void
+ submitAtomicBid(UserContextComm, long, long, AtomicBidComm) : long
+ setReadyInRound(UserContextComm, long, long, boolean) : boolean
+ revokeBid(UserContextComm, long, long, long) : void
+ getLastBidForBundle(UserContextComm, long, BundleComm) : AtomicBidStatusComm

java.rmi.Remote
«interface»

soaptemplate::ICatalogueEndpoint

+ getCategories(UserContextComm, long, boolean) : CatalogueCategoryComm[]
+ getItems(UserContextComm, long, boolean) : CatalogueItemComm[]
+ getItemsRecursive(UserContextComm, long, boolean) : CatalogueItemComm[]
+ createItem(UserContextComm, CatalogueItemComm) : long
+ createCategory(UserContextComm, CatalogueCategoryComm) : long
+ getItem(UserContextComm, long) : CatalogueItemComm
+ getCategory(UserContextComm, long) : CatalogueCategoryComm
+ deleteItem(UserContextComm, long, boolean) : boolean
+ deleteCategory(UserContextComm, long, boolean, boolean) : boolean
+ modifyItem(UserContextComm, CatalogueItemComm) : void
+ modifyCategory(UserContextComm, CatalogueCategoryComm) : void
+ findCategoriesByPattern(UserContextComm, String, boolean, boolean) : CatalogueCategoryComm[]
+ findItemsByPattern(UserContextComm, String, boolean, boolean) : CatalogueItemComm[]

Figure D.4: MarketDesigner MarketManager interface

Name: Backend Interfaces
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Version: 1.0
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java.rmi.Remote
«interface»

soaptemplate::IMarketManagerEndpoint

+ validateAuctionDescriptorForConsistency(UserContextComm, AuctionDescriptorComm) : void
+ validateAuctionDescriptorForStart(UserContextComm, AuctionDescriptorComm) : void
+ createAuction(UserContextComm, AuctionDescriptorComm) : long
+ modifyAuction(UserContextComm, AuctionDescriptorComm) : void
+ startAuction(UserContextComm, long) : AuctionStatusComm
+ clearRound(UserContextComm, long, long) : AuctionStatusComm
+ clearAuction(UserContextComm, long) : AuctionStatusComm
+ getAuctions(UserContextComm, long, AuctionStateBitSetComm, MarketManagerRoleBitSetComm) : AuctionStatusComm[]
+ getAuctionStatus(UserContextComm, long, boolean) : AuctionStatusComm
+ getRounds(UserContextComm, long, long) : AuctionStatusComm[]
+ getRound(UserContextComm, long, long, boolean) : AuctionStatusComm
+ getBid(UserContextComm, long, long) : AtomicBidStatusComm
+ getBids(UserContextComm, long, long, BidStateBitSetComm) : AtomicBidStatusComm[]
+ getBidder(UserContextComm, long, long) : BidderStatusComm
+ getRoundBidderStatus(UserContextComm, long, long, long) : BidderStatusComm
+ getBidders(UserContextComm, long, BidderStatusBitSetComm) : BidderStatusComm[]
+ getCurrentLinearAskPrices(UserContextComm, long, long, long) : AskPriceComm[]
+ getCurrentBundleAskPrices(UserContextComm, long, long, BundleComm) : AskPriceComm[]
+ getRoundLinearAskPrices(UserContextComm, long, long, long, long) : AskPriceComm[]
+ getRoundBundleAskPrices(UserContextComm, long, long, BundleComm, long) : AskPriceComm[]

java.rmi.Remote
«interface»

soaptemplate::ITraderEndpoint

+ getAuctionStatus(UserContextComm, long, boolean) : AuctionStatusComm
+ getAuctions(UserContextComm, long, long, AuctionStateBitSetComm, boolean) : AuctionStatusComm[]
+ getBiddingStatus(UserContextComm, long) : BidderStatusComm[]
+ getBid(UserContextComm, long, long) : AtomicBidStatusComm
+ getBids(UserContextComm, long, long, BidStateBitSetComm) : AtomicBidStatusComm[]
+ getAuctioneer(UserContextComm, long) : AuctioneerStatusComm
+ getCurrentBundleAskPrices(UserContextComm, long, BundleComm) : AskPriceComm[]
+ getCurrentLinearAskPrices(UserContextComm, long, long) : AskPriceComm[]
+ getCurrentAllocation(UserContextComm, long) : AllocationComm
+ setBidLanguage(UserContextComm, long, BidLanguageComm) : void
+ verifyAtomicBid(UserContextComm, long, long, AtomicBidComm) : void
+ submitAtomicBid(UserContextComm, long, long, AtomicBidComm) : long
+ setReadyInRound(UserContextComm, long, long, boolean) : boolean
+ revokeBid(UserContextComm, long, long, long) : void
+ getLastBidForBundle(UserContextComm, long, BundleComm) : AtomicBidStatusComm

java.rmi.Remote
«interface»

soaptemplate::ICatalogueEndpoint

+ getCategories(UserContextComm, long, boolean) : CatalogueCategoryComm[]
+ getItems(UserContextComm, long, boolean) : CatalogueItemComm[]
+ getItemsRecursive(UserContextComm, long, boolean) : CatalogueItemComm[]
+ createItem(UserContextComm, CatalogueItemComm) : long
+ createCategory(UserContextComm, CatalogueCategoryComm) : long
+ getItem(UserContextComm, long) : CatalogueItemComm
+ getCategory(UserContextComm, long) : CatalogueCategoryComm
+ deleteItem(UserContextComm, long, boolean) : boolean
+ deleteCategory(UserContextComm, long, boolean, boolean) : boolean
+ modifyItem(UserContextComm, CatalogueItemComm) : void
+ modifyCategory(UserContextComm, CatalogueCategoryComm) : void
+ findCategoriesByPattern(UserContextComm, String, boolean, boolean) : CatalogueCategoryComm[]
+ findItemsByPattern(UserContextComm, String, boolean, boolean) : CatalogueItemComm[]

Figure D.5: MarketDesigner Trader interface
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Figure D.4 and Figure D.5 show the list of methods of the auction server com-

munication interfaces. The MarketManager interface can be used by auction

managers to create, edit and control auctions. The Trader interface provides

the bidding functionality for bidders. Although a detailed discussion of the in-

terface methods is out of the scope of this thesis, the listed method signatures

can give an impression of what kind of functionality is needed to conduct an

iterative combinatorial auction.

D.3 Auction Server

The internal structure of the auction server is schematically shown in Fig-

ure D.6. The central logic component BackendKernel is based on the following

four main classes:

• The UserManagerServer class is responsible for the user management,

tracking of active user sessions, and management and enforcement of

access rights. It exposes the IUserVerifier interface to other parts of

the server that provides user request authorization services.

• The CatalogueServer class manages a hierarchical catalog of categories

and items to be auctioned.

• The MarketManagerServer class exposes the functionality used by auction

managers. The class provides an implementation of the MarketManager

interface shown in Figure D.4. This includes creating and editing auc-

tions, auction runtime control, auction status monitoring, etc. The class

manages an instance of the AuctionProcessorTable class that holds ref-

erences to all currently running auctions.

• The TraderServer class provides the functionality used by bidders, i.e.,

validating bids, submitting bids, and querying the auction status. It

implements the Trader interface shown in Figure D.5.



182 APPENDIX D. SOFTWARE PLATTFORM OVERVIEW

Figure D.6: MarketDesigner Auction server architecture

The BackendDb component is an abstraction layer for the MySql database

used by the auction server. It implements a set of Data Access Objects

(DAO) that, integrated with the open-source library Hibernate1, implement

an efficient mapping of the MarketDesigner data object classes to a relational

database.

The BackendInterfaceSoap component implements the SOAP abstraction layer

that provides a gateway to the BackendKernel when handling network re-

quests. For each BackendKernel object, a corresponding Axis endpoint object

1http://www.hibernate.org
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is created, which exposes the web service functionality. The proxy implemen-

tation is provided by the Axis2 and Spring3 frameworks.

Figure D.7 details the AuctionProcessor component and shows an overview

of all classes involved in the direct auction execution. The abstract class

AuctionProcessorBase provides a generic implementation of the functionality

common to all auction designs. It has to be extended by a concrete subclass

implementing a specific auction design. The class AuctionProcessorRadAlps

exemplary shows the specialized auction processor class for RAD and ALPS.

Figure D.7: MarketDesigner auction processor and round clearer

Each auction processor instance holds an instance of the RoundClearer class,

whose primary objective is to execute the winner determination and price cal-

culation procedures in a separate execution thread, which may take a long

time to complete. The RoundClearer class is not auction design specific. The

winner determination and price calculation execution are controlled through

the IWinnerDetermination and IPriceCalculator interfaces respectively. The

winner determination algorithm is common for all auction designs and im-

2http://ws.apache.org/axis
3http://www.springframework.org
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plemented by the class WinnerDetermination. In contrast, price calculation

algorithms are auction design specific. Each auction processor is therefore

paired with an implementation of the IPriceCalculator interface. The class

PriceCalculatorRadAlps exemplary shows the specialized price calculation

class for RAD and ALPS.

D.4 Simulation Framework

The simulation framework allows for automated simulations of ICAs under

specific assumptions about the value model and agents’ bidding strategies.

It integrates directly with the auction server and provides a command line

interface to control simulations. The simulation runner takes a simulation

parameter set represented by an XML file as input and generates output in

form of text dump, database entries, and Microsoft Excel sheets. Scripts for

sequential execution of multiple simulations using different parameter sets can

be easily written in the Python4 scripting language.

Internally, the simulation framework is formed by a number of interfaces

and their reference implementations. Figure D.8 shows the main interfaces

and available implementations. The IKernelForSimulation interface provides

methods for communication with the associated auction processor. Its stan-

dard implementation InProcessKernel implements an inter-process communi-

cation, i.e., the direct communication with the associated AuctionProcessor

class in the same Java application context. The abstract program flow con-

troller class TestRunner is extended by the CompleteAuctionFlowRunner class,

which just simulates the whole auction without interruption. This architec-

ture allows for later implementation of other flow control mechanisms, e.g., for

manual step-by-step control or real-time visualization of the bidding process.

4http://www.python.org
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simulation::TestRunnersimulation::
CompleteAuctionFlowRunner

«interface»
simulation::IBiddingSource

+ getBidders() : ArrayList<IBiddingAgent>
+ onStartAuction() : void
+ onStartRound() : void
+ doBidding() : void
+ onRoundClosed() : void

«interface»
simulation::IAuctionDataSource

+ getBidders() : ArrayList<IBiddingAgent>
+ getAuctionDescriptor() : AuctionDescriptorComm
+ getAuctioneerId() : long
+ getAsserts() : TestAssert[]
+ getValueModelFactory() : IValueModelFactory

simulation::AuctionDataSourceImpl

bidder::BiddingAgentPool

«interface»
bidder::IBiddingAgent

+ getBidderId() : long
+ getBidderName() : String
+ getBidLanguage() : EnumBidLanguage
+ onStartRound() : void
+ doBidding() : void
+ onRoundClosed() : void
+ getRevenue() : double
+ onStartAuction() : void

IAuctionInterface
IKernelDatabase

«interface»
kernelstub::IKernelForSimulation

+ instantiateAuctionProcessor(AuctionDescriptorComm) : void
+ createAuction(AuctionDescriptorComm, long) : void
+ startAuction() : void
+ getStatus(boolean, long) : AuctionStatusComm
+ getLastRoundActiveBids(boolean, long) : ArrayList<AtomicBidStatusComm>
+ setBidLanguage(long, EnumBidLanguage) : void
+ nextRound() : void
+ getAPCPUTimeNanos() : long
+ getOverallCPUTimeNanos() : long
+ getMonotonicityError() : double
+ getCustomResultDescription(long) : String
+ getCustomResultValue(long) : double
+ getBidderStatuses(boolean, long) : ArrayList<BidderStatusComm>

kernelstub::InProcessKernel

auctionprocessor::
AuctionProcessorBase

-auctionData

#kernel

#biddingSource

#auctionData

1..*+bidders

~auctionProcessor

Figure D.8: MarketDesigner simulation framework

The TestRunner class references one implementation of the IBiddingSource

and IAuctionDataSource interfaces respectively. Whereas the bidding source

generates bids for every round, the auction data source provides general in-

formation about the auction design, bidding rules, and participating bidders.

The bidding source interface can be implemented using various sources, e.g.,

by getting the bids from a database, from an XML-document, using an inter-

active user interface, or, as currently implemented, using automated bidding

agents.

Bidding agents do not act independently in multiple threads. Instead, their

methods are invoked by a central control class derived from TestRunner. The

BiddingAgentPool class references multiple IBiddingAgent interface implemen-

tations, which are queried for their bids through the doBidding(...) method.

Bidding agents submit bids based on their private valuations in the given value

model, given bidding strategy and current auction state, i.e., the current ask
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prices, eligibility, etc.

D.5 Web Server

The web server is a J2EE web application that provides a web-based user

interface for the auction server. It allows auction managers to create, edit,

control, and monitor auctions and bidders to submit bids and observe the auc-

tion state. The web server is based on the Struts5 technology that implements

a Model-View-Controller architecture for Java-based web applications.

The web server is built of a number of Java Server Pages pages (JSPs) and

a number of Struts action classes that implement the logic needed to query

the auction server, generate objects to be displayed, and process user actions.

Additionally, the ClientApi module implements proxy classes for efficient com-

munication with the auction server.

The flow of events during processing of a typical web request is illustrated by

the sequence diagram in the Figure D.9. The web request sent by a user’s web

browser is first processed by the servlet class FrontendActionServlet and re-

quest processor class FrontendRequestProcessor, both deeply integrated with

the Struts framework. Processing is then dispatched to the corresponding ac-

tion class responsible for processing of the specified URI. The action class

(exemplary BidConsoleAction in the diagram) then performs required pro-

cessing, in particular, it queries the auction server using the ClientApi module

(exemplary the TraderController class in the diagram), prepares the objects

to be displayed, and forwards processing to the appropriate JSP.

Many JSP pages and action classes can be directly reused by different auc-

tion designs. Another group of JSPs and action classes is either completely or

partially auction design specific. The WebPlugin technology developed at our

5http://struts.apache.org
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BidConsoleActionFrontendRequestProcessorFrontendActionServlet TraderController AxisTraderEndpoint

process(request, response)

processActionPerform(request, response, action, form, mapping)

execute()

processCurrent(validationFailed)

processCurrent_bidding(onValidationFailed)

bids:= getBids(userContext, auctionDescriptor, userId, includeBidState)

getBids(userContext, auctionId, bidderId, includeState)

Figure D.9: MarketDesigner web request processing example

university department is used to implement different auction designs. For ev-

ery auction design a module called WebPlugin is implemented, which contains

auction design specific JSPs and action classes and can reuse common frame-

work functionality. Plugins implement a specific WebPlugin interface and can

be easily connected to the system to support additional auction designs. The

system is capable of recognizing connected plugins, displaying the auction spe-

cific information and navigation menus on common pages, and navigating from

common framework pages to plugin pages and vice versa.

D.6 User Interface

As already mentioned, an easy-to-use user interface with integrated bidder

support tools is crucial to handle the cognitive complexity of ICAs. Moreover,

results of laboratory experiments are highly dependent on the usability and

amount of information that bidders face in their interaction with the system.
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The following screenshots (Figure D.10 - Figure D.16) illustrate the most im-

portant and frequent interactions of experiment participants with the system

during the bidding process.
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Figure D.10: Screenshot - Creating a watched bundle

Figure D.11: Screenshot - Submitting a bid
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Figure D.12: Screenshot - Bids and watched bundles

Figure D.13: Screenshot - Next round notification
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Figure D.14: Screenshot - Improving a bid

Figure D.15: Screenshot - Auction finished
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Figure D.16: Screenshot - Bidding Information (different states)



Appendix E

List of Symbols

K - set of items

k ∈ K, also l ∈ K - item

m - number of items

S ⊆ K, also T ⊆ K - subset of items (bundle, package)

I - set of bidders

i ∈ I, also j ∈ I - bidder

I ⊆ I - subset of bidders

n - number of bidders

t - round number

Bt = {bt
i(S)} - set of bids active after the round t

bt
i(S) = {S, pt

bid,i(S)} ∈ Bt - bid of the bidder i for the bundle S active after

the round t

pt
bid,i(S) ∈ Bt - bid price of the bid bt

i(S)
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P t
ask = {pt

ask,i(S)} or {pt
ask(S)} or {pt

ask(k)} - set of ask prices valid during

the round t

pt
ask,i(S) - personalized bundle ask price for the bidder i and bundle S valid

during the round t

pt
ask(S) - anonymous bundle ask price for the bundle S valid during the round t

pt
ask(k) - anonymous linear ask price for the item k valid during the round t

∆t - price increment valid during the round t or used for the price update from

the round t to the round t + 1

vi(S) - private valuation of the bidder i for the bundle S

Ppay = {ppay,i(S)} - set of pay prices

ppay,i(S) - pay price for the bidder i and bundle S

πi(S,Ppay) - utility of the bidder i for the bundle S at the pay prices Ppay

X = {X} - set of all possible allocations

X = (S1, . . . , Sn) = {xi(S)} - allocation

Si ⊆ K - bundle allocated to the bidder i

xi(S) ∈ {0; 1} - binary variable which determines, whether the bidder i be-

comes allocated exactly the bundle S

πi(X,Ppay) - utility of the bidder i for the allocation X at the pay prices Ppay

πall(X,Ppay) - total bidder utility for the allocation X at the pay prices Ppay

Π(X,Ppay) - auctioneer revenue for the allocation X at the pay prices Ppay

X∗ = (S∗
1 , . . . , S

∗
n) = {x∗i (S)} - efficient allocation
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X t - provisional allocation calculated on the basis of the bids active in the

round t

W t - set of provisionally winning bids in the allocation X t

Lt - set of provisionally losing bids in the allocation X t

E(X) ∈ [0, 1] - allocative efficiency of the allocation X

R(X) ∈ [0, E(X)] - auctioneer utility share in the allocation X

U(X) ∈ [0, E(X)] - total bidder utility share in the allocation X

CI - coalition consisting of the bidders I ⊆ I and the auctioneer

w(CI) - coalitional value function on the coalition CI

(Π, π) - payoff vector

Core (I, w) - set of core payoffs

δi(S) - linear price compatibility distortion of the bid bi(S)

Di(Ppay) - demand set of the bidder iat the prices Ppay

et
i - eligibilty of the bidder i in the round t

et
+,i - surplus eligibilty of the bidder i in the round t

emax
+ - maximal possible surplus eligibility

rbvt
i - round bid volume of the bidder i in the round t

tbvi - total bid volume of the bidder i

bpet
i(k) - optimistic estimator of the bidder’s i bid price for the single item k

based on her bundle bids in the round t
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Appendix F

List of Abbreviations

ALPS Approximate Linear PriceS

AUSM Adaptive User Selection Mechanism

BSC Bidders are Substitutes Condition

BSM Bidder Submodularity condition

CAP Combinatorial Allocation Problem

CA Combinatorial Auction

CC Combinatorial Clock auction

CE Competitive Equilibrium

IBIS Chair of Internet-based Information Systems at the Technische Univer-

sität München (Munich, Germany)

ICA Iterative Combinatorial Auction

ILP Integer Linear Problem

IS Information Systems
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LP Linear Problem

NP Non/deterministic Polynomial time

OR additive-OR (bidding language)

PAUSE Progressive Adaptive User Selection Environment

PEP Preference Elicitation Problem

RAD Resource Allocation Design

SMR Simultaneous Multi-Round Design

WDP Winner Determination Problem

XOR exclusive-OR (bidding language)
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