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Chapter 1

Introduction

’Molecular electronics’ is an interdisciplinary field, reaching into chemistry,
physics, and electrical engineering, with the ambitious goal to replace or
complement silicon semiconductor electronics with devices based on single
or few molecules. While there is a natural limit to the progressing minia-
turization of semiconductor components (top-down approach), molecules of
different size and functionality are synthesized on an atomic level (bottom-up
approach). By means of organic synthesis it is possible to tailor molecules in
such a way that specific electronic, mechanical, and optical properties are ob-
tained. Based on nano-scale molecular electronic devices it could be possible
to build smaller, faster, and cheaper computers. Besides possible practical
applications, scientists are naturally interested in the fundamental quantum
processes that govern electron transport on the molecular scale.

Historically, the hour of birth of molecular electronics devices was a the-
oretical paper [1] that appeared in 1974, in which the authors devised a
rectifier based on a single organic molecule. This molecule consisted of two
electronic π-systems, which played the role of donor and acceptor and were
separated by an aliphatic bridge. Since then, a growing number of scientists
has investigated the conductance properties of molecules using various the-
oretical techniques [2]. The first experimental single molecule junction was
realized in 1997 [3].

From a chemist’s point of view, ’molecular conductance’ can be considered
as the continuation of concepts well known from theoretical and experimental
studies of charge transfer in donor-bridge-acceptor systems [4]. The major
difference is the fact that in molecular junctions donor and acceptor states
are no longer localized on some part of the molecule, but delocalized in
metal electrodes, while the actual molecule forms the bridge. Therefore, in
the context of molecular conductance, the term charge transport rather than
charge transfer is used.
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Figure 1.1: Energy level scheme of a molecular junction at equilibrium.

To discuss the basic mechanism of charge transport through single
molecules, Fig. 1.1 shows the energy level scheme of a molecular junction.
The left and right metal electrodes are characterized by their chemical po-
tentials, µL and µR, and their Fermi distributions. The electrodes are chem-
ically bound to a molecule, which is described by discrete electronic states
that couple to the continuum of electronic states in the metallic electrodes.
If no bias voltage is applied to the junction, the two electrodes are in equi-
librium and their chemical potentials are equal to each other and to the
Fermi energy εf . In this situation, the occupied molecular levels are located
below the Fermi level, whereas the unoccupied molecular states are located
above. Fig. 1.1 shows the situation at temperature T=0K, where the Fermi
distribution corresponds to a step function.

If a (direct) voltage U is applied, the chemical potentials of the electrodes
are shifted to µL = εf − eU/2 and µR = εf + eU/2, where e is the electron
charge (1.6 ·10−19C), and where we assumed that the voltage drops symmet-
rically at both molecule-electrode interfaces. In principal, also the molecular
states will be shifted by the applied bias voltage (Stark effect) and they could
be manipulated by an additional gate electrode.

At low voltages, carrier transport is possible only through direct tunneling
between left and right electrode. Because of its low current, this region is
referred to as the conductance gap. Resonant carrier transport starts as soon
as the chemical potential of one electrode equals the energy of the highest
occupied molecular orbital (HOMO) (Fig. 1.2 left) or the lowest unoccupied
molecular orbital (LUMO) (Fig. 1.2 right). While in the first case a hole
tunnels from the left electrode via the HOMO of the molecule to the right
electrode, in the second case an electron tunnels from the right electrode via
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Figure 1.2: Energy level scheme of a molecular junction under finite bias.
In the left panel the situation corresponding to hole transport through the
HOMO is depicted, while the right panel shows the situation corresponding
to electron transport through the LUMO.

the LUMO to the left electrode.
The main focus of this thesis is on the investigation of the influence of the

vibrational (nuclear) degrees of freedom of the molecule on the conductance
properties of the junction. The mechanism of electronic transitions that are
accompanied by a change of the vibrational state of the molecule is illustrated
in Fig. 1.3. The left panel in Fig. 1.3 shows a situation, where the chemical
potential of the left electrode is larger than the energy of the vibrational
ground state. In this case an electron on the molecule can tunnel into the
left electrode (black arrow) only by absorption of vibrational quanta (red
arrow). This process is called vibrationally induced transport and can take
place only if the molecule is in a vibrationally excited state. The right panel
in Fig. 1.3 describes a situation, where the chemical potential of the left
electrode is smaller than the energy of the vibrational ground state. In this
case an electron can tunnel from the HOMO by releasing its excess energy
into vibrational motion.

Vibronic effects in single molecule conductance have been of great interest
recently. The current-induced excitation of the vibrations of the molecule
may result in heating of the molecular bridge and could lead to breaking
of the junction, if too much energy is deposited in the vibration of a bond
that is important for the junction’s stability. Conformational changes of the
geometry of the conducting molecule are possible mechanisms for negative
differential resistance (NDR) and switching behavior, properties which are
both of technological interest. Furthermore, the observation of vibrational
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Figure 1.3: Energy level scheme of a molecular junction under finite bias.
Transport occurs through the HOMO, which is allowed to interact with vi-
brations. The bold line indicates the position of the vibrational ground state
of the molecule. In the left panel, an electron on the HOMO needs to absorb
the energy of two vibrational quanta (red arrow, ∆ν = +2) before tunneling
into the left electrode (black arrow). In the right panel, an electron on the
HOMO excites two vibrational quanta (red arrow, ∆ν = −2) before tunnel-
ing into the right electrode (black arrow). The holes on the molecule are
refilled by electrons from the right electrode (gray arrows).

structures in conduction measurements allows the unambiguous identification
of the molecular character of the current.

This thesis is organized in the following way: Chapter 2 gives a short re-
view of experimental and theoretical methods employed in the investigation
of molecular junctions. In Chapter 3, we outline the Hamiltonian of a molecu-
lar junction and describe the methodology used to determine the parameters
including quantum chemical methods and a projection procedure. Chapter 4
presents general aspects of the description of electron and hole transport
through metal-molecule-metal (MMM)-junctions based on scattering theory.
Furthermore, results for various model systems will be discussed. In Chap-
ter 5, electron and hole transport in molecular junctions will be described
within density matrix theory. Results based on density matrix calculations
will be compared to those obtained by scattering theory calculations. An
example of a molecular switch is presented in Chapter 6. Finally, Chapter 7
concludes with a summary of the thesis.

6



Chapter 2

A Survey of Experimental and
Theoretical Techniques

2.1 Experimental Methods

There are various techniques which allow to measure the charge flow through
a single or a small number of molecules [5]. The molecular systems, which
have been studied in recent years, range from small metallic chains to inor-
ganic molecules like H2 or CO, from organic molecules like benzenedithiol to
carbon nanotubes or fullerenes, and to biochemical molecules like DNA. In
small metallic chains the conductance could be shown experimentally [6] to
be quantized, with the quantum unit of conductance being

g0 = 2 e2/h = (12.9 kΩ)−1 , (2.1)

as was predicted theoretically [7], where h is Planck’s constant (6.6·10−34 J·s).
A conductance of g0 constitutes an upper limit for conductance that is usually
not reached by single molecule junctions.

The experimental method, which is most closely related to the molecu-
lar junctions simulated in this work is the ’mechanically controllable break-
junction technique’ [8]. In this technique a notched wire is glued to a piezo-
electrically controlled bendable substrate. By bending, this wire is broken
and gaps with widths of a few nanometers are formed, on which a droplet of a
solution containing the molecule of interest is applied or which is exposed to
gas. The solution is highly diluted in order to prevent clustering. As with-
out molecules conductance quantization could be observed, the electrodes
are assumed to be atomically sharp tips. The junction can be repeatedly
opened and closed until only a single molecule is bound to the electrodes.
One of the advantages of this technique is that it can be used at atmospheric
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pressure, while the lack of knowledge about the atomic configuration of the
molecule-electrode contact constitutes a disadvantage.

The break-junction method was used in the measurement of H2, HD, and
D2 between platinum electrodes [9], where abrupt changes in conductance
were assigned to switching between two slightly different local geometrical
configurations, induced by the transverse motion of the molecule. Observ-
ing the shift in the frequencies on stretching of the platinum contact, the
molecular modes could be classified as longitudinal or transversal [10]. The
conductance of H2 is slightly below g0 (∼ 0.9 g0) and was theoretically demon-
strated to be due to a strong hybridization of the anti-bonding state of H2

with d- and s-like orbitals of the adjacent platinum atoms [11].
An early break-junction experiment was conducted by Reed and cowork-

ers [12] using benzenedithiol as the molecule under study. Later it was crit-
icized that probably not a single but several molecules were measured, an
argument that is supported by the fact that, up to now, the results of this
measurement, especially at larger voltages (∼5V), have not been reproduced.
Nevertheless, this experiment was the first of its kind and constitutes a break-
through in the realization of molecular junctions.

Other experiments [13] on more complex organic molecules demonstrated
that unsymmetric molecules may lead to unsymmetric current-voltage char-
acteristics, demonstrating the realization of molecular rectifiers. It was also
shown that different I-V characteristics can be obtained using one and the
same junction, because of fluctuating metal-molecule contact-geometries.

Another important technique to investigate conductance in molecular
junctions is inelastic electron tunneling spectroscopy (IETS), an experiment
that is conducted in a scanning tunneling microscope (STM). STM has the
advantage that the molecular geometry can be determined on an atomic level,
but has the drawback that measurements can be done in high vacuum only.
In a STM the molecule is contacted on one side by the surface on which it
adsorbs and on the other side by the STM-tip. It is obvious that with this
assembly the MMM-junction is unsymmetric regardless of the symmetry of
the molecule. In IETS, features of vibrational motion are mostly observed
in the electronic off-resonant regime.

Using this technique, the influence of vibrations on the molecular con-
ductance of copper phtalocyanin was investigated [14]. It was found that
vibrational features can be observed, if the coupling of the molecular adsor-
bate to the metal surface is comparatively small. The vibrational motion
observed in this experiment was associated with the deformation of the ph-
talocyanin ring and the out-of-plane motion of the indole-units.

In another STM experiment [15] up to 4 progressions of a vibronic (vibra-
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tional-electronic) transition were seen. Furthermore, the dependence of the
vibronic coupling on the spatial position of the STM-tip was demonstrated.

The conductance of a single molecule can also be measured if this molecule
is embedded in a self-assembled monolayer of insulating molecules, which do
not interact with the molecule under investigation [16].

A related technique is conducting atomic force microscopy, which usually
has a lower spatial resolution than STM, but allows the study of electro-
mechanical properties of the molecular junction. Using this technique it was
found, that molecular junctions, in which the molecule is bound to the gold
substrate via thiol groups, break in the Au-Au bond [17] and not inside the
molecule, when pulling the tip away from the surface.

Another realization of molecular junctions can be achieved by growing a
thin gold wire on a SiO2-layer using electron-beam lithography. The wire is
coated with the molecules under investigation and is broken by electromi-
gration until a gap of a length of a few nm results [18]. Disadvantages of
this method are the facts that the contact geometry and the actual num-
ber of molecules between the electrodes is unknown, as well as the relatively
low fabrication yield. In order to increase the probability with which single-
molecule devices are fabricated, a method was developed that is based on
synthesizing a dimer structure consisting of two colloidal gold particles con-
nected by a dithiolated short organic molecule and electrostatically trapping
it between two metal electrodes [19].

Using electron-beam lithography it is also possible to add a gate electrode
and build molecular transistors [20, 18, 21]. The majority of experimental
work, however, did not employ these electronically relevant three-terminal
devices but two-terminal devices, which are easier to fabricate.

Still a great challenge is the simultaneous investigation of the electronic
and optical properties of molecular junctions. When irradiating molecular
junctions with light in the visible spectrum, the electronic properties may
be altered by a light-induced conformational change of the molecule. On
the other hand, light emission could be stimulated by the electronic current
[22]. A slightly different realization of this idea is described in Ref. [23],
where an electron is photo-excited in the STM-tip with green laser light and
subsequently transferred onto the unoccupied orbitals of the molecule.

2.2 Theoretical Methods

The theoretical methods to describe quantum transport through a MMM-
junction in the presence of vibronic coupling can be classified into three
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groups: scattering theory, density matrix approaches, and methods based on
many-body techniques [24]. As scattering theory and density matrix meth-
ods will be discussed in detail in the respective chapters of this thesis, this
section is intended to give an overview of the third group of theoretical meth-
ods, among which the non-equilibrium Green’s function (NEGF) transport
formalism is most important.

The non-equilibrium stationary current is defined by the temporal change
of the charge in the left or right electrode in the steady state limit,

I = e lim
t→∞

d

dt
〈N̂L/R(t)〉, N̂L/R(t) = 2

∑

k∈L/R

c†k(t)ck(t) . (2.2)

Here 〈N̂(t)〉 is the expectation value of the number operator, c†k (ck) are
electron creation (annihilation) operators, and the factor 2 accounts for spin
degeneracy.

In the non-equilibrium (or Keldysh-) Green’s function formalism [25], the
current (Eq. (2.2)) is expressed in the form

I =
2 e

h

∫

dE tr {Σ<G> − Σ>G<} ,

where Σ< and Σ> denote the lesser and greater self-energies, and G< and
G> are the lesser and greater Green’s functions, respectively, which are all
functions of energy and voltage. The matrix elements of these Green’s func-
tions are given by the following Fourier transforms of electron correlation
functions,

G<
ij(E) = − i

h̄

∫

d(t− t′)e−iE(t−t′)/h̄〈c†j(t′)ci(t)〉 ,

G>
ij(E) =

i

h̄

∫

d(t− t′)e−iE(t−t′)/h̄〈ci(t)c†j(t′)〉 ,

where in the steady-state limit the integrand only depends on the time-
difference t− t′. The correlation function 〈c†j(t′)ci(t)〉 describes events where
first an electron is annihilated in molecular state i at time t and then an-
other electron is created in molecular state j at time t′, while the function
〈ci(t)c†j(t′)〉 describes a situation where first an electron is created in state j
at time t′ and then another electron is annihilated in state i at time t. Thus,
the Green’s functions G< and G> describe particles or holes that enter and
leave the molecule.

The lesser and greater Green’s functions and self-energies are related to
each other via a kinetic (Keldysh) equation,

G< = GRΣ<GA and G> = GRΣ>GA ,

10



where GA and GR are the advanced and retarded Green’s functions, respec-
tively. In contrast to the lesser and greater Green’s functions, GR describes
the dynamics of the particles on the molecule and is given by

GR =
[

E+ −H − ΣR
]−1

= lim
η→0+

[

(E + iη)1−HM − ΣR
]−1

,

where 1 is the unit operator, HM is the Hamiltonian of the molecule, ΣR is
the retarded self-energy, and GA = (GR)†.

The lesser/greater and retarded/advanced self-energies may include com-
ponents due to the interactions of the molecule with the electrodes, due to
electron-electron interactions on the molecule, and due to vibronic interac-
tions on the molecule. It is the complexity of the latter two interactions,
which restricts the NEGF method to small approximate models. For exam-
ple, vibronic coupling has so far only been treated in the Born-approximation
or the self-consistent Born approximation (SCBA). In the self-consistent ap-
proach, the self-energies themselves depend on the lesser/greater Green’s
function and a self-consisted cycle has to be solved until convergence is
reached.

Despite these limitations, the NEGF formalism is attractive because it
describes the non-equilibrium dynamics of the electronic and vibrational sys-
tem simultaneously.

In the absence of electron-electron and vibronic interactions both the
NEGF and the scattering formalism (discussed in Chapter 4) yield the same
expression for the current,

I =
2 e

h

∫

dE tr
{

ΓLG
AΓRG

R
}

[fL(E)− fR(E)] , (2.3)

where ΓL and ΓR give the coupling strength between molecule and left or
right electrode, respectively. In Eq. (2.3) the current is expressed in terms of
the transmission function [7] T (E) = tr

{

ΓLG
AΓRG

R
}

.

The NEGF transport formalism has been used by numerous groups to
study the influence of vibrational motion in molecular junctions. In Ref. [26]
the current as well as the power loss and heat production in a molecular
junction were investigated. Thereby, the molecule was described by a generic
model comprising a single or two electronic states coupled to a single mode.
The authors also studied the lineshape and linewidth of vibrational features
in inelastic electron tunneling spectroscopy, where peaks occur in the low-
voltage region if the voltage is in resonance with a vibrational transition in
the molecule. They found, that the coupling of conducting electrons of the
electrodes to nuclear motion of the molecular bridge contributes substantially
to the features in the IETS curve.
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The same authors developed an approximate, self-consistent procedure for
transport in the resonant regime in the case where vibronic coupling is large
compared to the electronic coupling between molecule and electrodes[27].
In this approach the Green’s functions are derived in second order of the
electrode-molecule coupling.

The NEGF-SCBA formalism was also used to investigate the incoherent
component of the off-resonant tunneling current and the power dissipated
on the molecule for octanedithiol clamped between two gold clusters [28].
The parameters in this study were taken from a DFT parameterized tight-
binding (DFTB) calculation and it was found, that C-C stretch modes give
the largest contribution to both current and power dissipation. Using NEGF
also the IETS spectrum of the fullerene C20 [29] and the I-V characteristics
of benzenedithiol [30] were calculated.

The IETS-spectra for three different organic compounds were computed
using the NEGF formalism in the lowest order expansion in the vibronic
coupling [31]. These spectra agreed very well in peak position and peak width
with experimental data [32], but overestimated the peak height. The same
authors extended their approach to include the SCBA [33], which, except for
the linewidth, described experimental data of gold atmoic wires very well.
For these systems results based on the lowest order expansion and the SCBA
were in good agreement. They also observed that vibronic coupling seems
to lower the IETS-signal for high-conductance systems such as gold wires,
while it seems to increase the signal for low-conductance systems like organic
molecules.

Other techniques to describe inelastic quantum transport at the molecu-
lar scale include path-integral methods (e.g. Ref. [34]) and numerical renor-
malization group methods (e.g. Ref. [35]). The path integral method is a
non-perturbative approach that is capable of describing the transient as well
as the steady-state regime, but it is computationally demanding. The nu-
merical renormalization group method was used to describe transport in the
linear response regime including electron-electron and electron-vibrational
interactions.
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Chapter 3

Modelling of Molecular
Junctions

In this chapter we will derive and discuss the Hamiltonian that is used to
describe a MMM-junction. To this end, the MMM-junction is partitioned
into several parts, which will be treated by different quantum chemistry
methods. We will describe how we employ density functional theory (DFT)
to derive the parameters of the Hamiltonian.

3.1 Hamiltonian of the Molecular Junction

The Hamiltonian of an MMM-junction is given by the general expression,

H = Tn + Vnn +He(R) . (3.1)

Here, Tn denotes the kinetic energy of the nuclei,

Tn =
∑

a

p2
a

2Ma

,

where pa is the momentum and Ma is the mass of nucleus a. The nuclear
repulsion energy is given by,

Vnn =
∑

a6=b

ZaZbe
2

|Ra −Rb|
,

where Za is the atomic number and Ra denotes the Cartesian coordinates of
the position of nucleus a. The electronic Hamiltonian, He, depends on the
nuclear coordinates R via the nuclei-electron Coulomb attraction.

13



If no bias voltage is applied, the junction is in its electronic ground state.
Employing an effective one particle description, the ground state is given by

a single Slater determinant, |Ψg〉 =
ng
∏

i=1

c†i |0〉, where the operator c†i creates

an electron in the single particle state (molecular orbital) labeled by i, the
product is taken over all electrons in the neutral junction, |0〉 denotes the
vacuum state, and ng is the number of electrons in the ground state. The
electron operators were not labeled by their spin projections, as spin will not
be treated explicitly in this work. |Ψg〉 is an approximate solution of the
electronic Schrödinger equation,

He(R)|Ψg〉 = Eg(R)|Ψg〉
with eigenenergy Eg(R), which parametrically depends on the nuclear coor-
dinates. The energy Eg(R) + Vnn represents the adiabatic potential energy
surface of the electronic ground state, which will serve as a reference state in
the following.

If an external voltage is applied to the MMM-junction, electrons (or holes)
are transferred to/from the junction and the electron number, ng, will change.
Within Koopmans’ theorem the energy of a cation is given by subtracting the
energies of the ionized single particle states from the energy of the neutral
ground state. The energy of an anion, on the other hand, is given by adding
the energies of the single particle states, that became occupied, to the energy
of the neutral ground state. An electronic Hamiltonian that can describe both
situations is given by [36],

He(R) = Eg(R)−
∑

i∈occ.
Ei(R)cic

†
i +

∑

j∈unocc.
Ej(R)c†jcj , (3.2)

where the index i labels all orbitals that are occupied in the neutral reference
state, while the index j labels all orbitals that are unoccupied in the neutral
reference state, and the operator ci annihilates electrons in the single particle
state i. If the electronic spectrum of a molecular junction is such, that the
levels, which contribute to conduction, are all located far below or far above
the Fermi energy, the third or second term in Eq. (3.2) can be neglected,
respectively. In the latter case the current is dominated by electron transport
(e. t.), while in the former case hole transport (h. t.) prevails. The electronic
Hamiltonian thus reduces to

He(R) = Eg(R) +
∑

j∈unocc.
Ej(R)c†jcj (e. t.) , (3.3a)

He(R) = Eg(R)−
∑

j∈occ.
Ej(R)cjc

†
j (h. t.) . (3.3b)
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As will be discussed in more detail in the next section, the second term in
Eqs. (3.3) will be split into three terms, describing the molecule, the left and
right electrode, and the electronic coupling between molecule and electrodes,

He(R) = Eg(R) +
∑

j∈M
Ej(R)c†jcj +

∑

k∈L,R
Ekc

†
kck + V (e. t.), (3.4a)

He(R) = Eg(R)−
∑

j∈M
Ej(R)cjc

†
j −

∑

k∈L,R
Ekckc

†
k + V (h. t.), (3.4b)

V =
∑

j∈M

∑

k∈L,R

(

Vjkc
†
jck + h.c.

)

.

Here, the indices j and k denote electrons that now are either localized on
the molecule, or on the left or right electrode. In Eqs. (3.4) it was assumed,
that the left and right electrode spaces do not interact with each other, and
neither the energies of the electrode states nor the coupling elements between
electrodes and molecular states depend on the nuclear coordinates.

In the applications considered below, the potential energy of the nuclei,
Vnn+Eg(R), will be expanded up to second order in the nuclear coordinates
around the equilibrium geometry (Req) of the neutral molecule. Including,
furthermore, the kinetic energy of the nuclei gives the nuclear Hamiltonian,

Hn0 = Tn + Vnn + Eg(R) =
∑

l

h̄ωl

(

a†lal +
1

2

)

(3.5)

where ωl is the frequency of the dimensionless vibrational normal mode ql,
and a†l/al are the harmonic oscillator creation/destruction operators.

Expanding the molecular orbital energies Ej(R) to first order in the
nuclear coordinates around the equilibrium geometry (Req) of the neutral
molecule gives the vibronic coupling term,

Hne =
∑

l,j∈M

κ
(j)
l√
2

(

al + a†l

)

c†jcj (e. t.) , (3.6)

Hne =
∑

l,j∈M

κ
(j)
l√
2

(

al + a†l

)

cjc
†
j (h. t.) . (3.7)

Here, the vibronic coupling parameter κ
(j)
l =

(

∂Ej
∂ql

)

Req

was introduced and

the dimensionless normal mode coordinate was expressed in terms of creation
and annihilation operators, ql =

1√
2
(a†l +al). The overall Hamiltonian is thus
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given by

H =
∑

l

h̄ωl

(

a†lal +
1

2

)

+
∑

l,j∈M

κ
(j)
l√
2

(

al + a†l

)

c†jcj +
∑

j∈M
Ejc

†
jcj

+
∑

k∈L,R
Ekc

†
kck +

∑

j∈M

∑

k∈L,R

(

Vjkc
†
jck + h.c.

)

(e. t.) , (3.8a)

H =
∑

l

h̄ωl

(

a†lal +
1

2

)

−
∑

l,j∈M

κ
(j)
l√
2

(

al + a†l

)

cjc
†
j −

∑

j∈M
Ejcjc

†
j

−
∑

k∈L,R
Ekckc

†
k +

∑

j∈M

∑

k∈L,R

(

Vjkc
†
jck + h.c.

)

(h. t.) . (3.8b)

The linear form of the vibronic coupling implies that only normal modes
belonging to the totally symmetric representation of the respective symmetry
group have a non-vanishing coupling constant. The harmonic approximation
of the nuclear potential will be valid for small amplitude motion.

For the calculations employing scattering theory (Chapter 4) it is expedi-
ent to represent the Hamiltonian in terms of single particle states. In the case
of electron transport the single particle states are defined as |φj〉 = c†j|Ψg〉,
while in the case of hole transport they are given by |φj〉 = cj|Ψg〉. Here,
|φj〉 denotes orthogonal single particle states (molecular orbitals) represent-
ing the molecular bridge. The single-particle Hamiltonian is obtained from
the many-particle Hamiltonian in Eqs. (3.8) by a projection onto the single-
particle states,

H →
∑

i,i′

|φi〉〈φi|H|φi′〉〈φi′ | .

We thus obtain

H = Hn0 +HM +Hne +HL +HR + V (e. t.) , (3.9a)

H = Hn0 −HM −Hne −HL −HR − V (h. t.) , (3.9b)

with

Hn0 =
∑

l

h̄ωl

(

a†lal +
1

2

)

,

HM =
∑

j∈M
Ej|φj〉〈φj| ,

Hne =
∑

l,j∈M

κ
(j)
l√
2

(

al + a†l

)

|φj〉〈φj| ,
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Figure 3.1: The scheme of a molecular junction, consisting of left and right
leads, left and right contacts, and the molecule. Left and right contacts
and the molecule form the extended molecule. Contact and lead form the
electrode.

HL +HR =
∑

k∈L,R
Ek|φk〉〈φk| ,

V =
∑

j∈M

∑

k∈L,R
(Vjk|φj〉〈φk|+ h.c.) (e. t.) ,

V =
∑

j∈M

∑

k∈L,R
(Vkj|φj〉〈φk|+ h.c.) (h. t.) .

3.2 Partitioning of the Molecular Junction

The Hamiltonian introduced in the last section contains several parameters,
energies, electronic and vibronic coupling elements, that have to be deter-
mined by quantum chemistry methods. To this end ab initio methods like
Hartree Fock (HF) and Density Functional Theory (DFT) or semi-empirical
methods like extended Hückel (also called tight-binding) may be employed.

When using quantum chemistry methods, we are confronted with the
problem that an MMM-junction constitutes a non-periodic, open system
of infinite dimension. Thereby, conventional quantum chemistry methods
that either compute small finite or periodic infinite systems cannot be used
straightforwardly.

We circumvent this problem by partitioning the junction into a finite
part that is treated explicitly, and an infinite, periodic part, that is treated
implicitly by self-energies, i.e. by the effect it has on the finite part. The
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separation scheme is illustrated in Fig. 3.1. The finite part, referred to as the
’extended molecule’, comprises the actual molecule and parts of the metal
electrodes. The parts of the metal electrodes which are included in the ex-
tended molecule are in the following referred to as the ’contacts’. A quantum
chemical calculation will be performed for this extended molecule. This en-
sures that changes in the molecular geometry as well as in the molecular
electronic structure due to bond formation with the electrodes are included
explicitly.

Thus, the molecular junctions are subdivided into five parts. The molec-
ular part, the part of the left and right electrode, that is explicitly included
in the quantum chemistry calculation, and the part of the left and right elec-
trodes that is not treated explicitly in the ab initio calculation, referred to
as the left and right leads and modelled by semi-infinite solids.

The quantum chemistry calculation of the extended molecule provides us
with a single particle Hamiltonian matrix, h, and the overlap matrix, S, both
given in the space of atomic non-orthogonal orbitals {|χ〉},

hij = 〈χi|h|χj〉, Sij = 〈χi|χj〉 .

In order to divide the overall Hilbert-space into three mutually orthogonal
subspaces describing the molecular and the two contact parts of the model
system, the following projection procedure was employed (a similar separa-
tion scheme as above was employed in the study of electron transfer dynamics
in dye-semiconductor systems [37]): The atomic orbital basis was orthogo-
nalized using a Löwdin orthogonalization procedure [38], which among all the
possible orthonormal functions yields those closest, in the least-squares sense,
to the original non-orthogonal ones. The new orbitals, {|χ̃〉}, may no longer
be localized on single atoms only, which constitutes a disadvantage of the
Löwdin procedure and may lead to errors for orbitals that are located close
to the partition boundary. As compared to the widely used Gram-Schmidt
orthogonalization scheme, the scheme of Löwdin has the advantage of being
unbiased, i.e. the basis functions do not have to be ordered in some arbitrary
way, but are all treated simultaneously. To this end, S was diagonalized to
calculate its inverse square root and the Hamiltonian was transformed to this
new basis,

ATSA = s S−
1
2 = As−

1
2AT h̃ = S−

1
2hS−

1
2 .

Here,
h̃ij = 〈χ̃i|h|χ̃j〉, .

The basis states |χ̃〉 are arranged in a way that elements of the Hamiltonian
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matrix h̃ belonging only to L, M, or R form blocks on the diagonal,

h̃ =





h̃L h̃LM h̃LR
h̃ML h̃M h̃MR

h̃RL h̃RM h̃R



 . (3.10)

At this stage we add a surface self-energy (Σsf) to the Hamiltonian matrix
elements belonging to the gold atoms of the outermost layer of the contacts
in order to describe the effect of infinite leads (cf. App.A),

hsf = h̃+ Σsf . (3.11)

This surface self-energy can, for example, be modelled by a single parameter
or by a tight binding model of a semi-infinite solid (cf. Sec. 4.3).

In the next step hsf ,

hsf =





hsfL hsfLM hsfLR
hsfML hsfM hsfMR

hsfRL hsfRM hsfR



 ,

will be transformed by a matrix that diagonalizes the submatrices hsfL , h
sf
M ,

and hsfR, yielding the block-diagonalized matrix hu:

hu = UThsfU =





EL V LM V LR

V ML EM V MR

V RL V RM ER



 , U =





UL 0 0
0 UM 0
0 0 UR



 . (3.12)

The diagonal submatrices EL and ER contain the contact energies Ek, the
diagonal submatrix EM contains the eigenenergies of the molecular bridge,
Ej, and the submatrices V denote the electronic coupling between states
localized on the contact and on the molecule. We note, that while the eigen-
vectors that directly diagonalize h constitute the adiabatic states of the total
electronic system, the eigenvectors of hsfL , h

sf
M , and hsfR can be considered as

quasi-diabatic states and the whole block-diagonalization corresponds to a
diabatization procedure [39].

As the surface self-energy, Σsf , is, in general, not Hermitian, the Hamilto-
nian matrix, hsf , is complex symmetric. This has the consequence that after
block-diagonalization the eigenstates in the left and right contact spaces form
a bi-orthogonal basis (cf. App.A).

3.3 Density Functional Theory

In this work the electronic structure of the extended molecule will be com-
puted using density functional theory. In DFT (cf. the corresponding chap-
ters in Refs. [40, 41]) the central quantity is the electron density ρ of the
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electronic ground state, which is a function of three spatial coordinates (ne-
glecting spin). This is in contrast to other computational chemistry methods,
in which the central quantity is the electronic wave function, which depends
on 3·n spatial coordinates, where n denotes the number of electrons.

As was proven by Hohenberg and Kohn, the electron density uniquely
determines the energy of the non-degenerate electronic ground state via the
functional E[ρ], which is a sum of functionals describing the kinetic energy,
the electron-nuclei attraction, and the electron-electron repulsion. The latter
is split into the Coulomb and the exchange part. The functionals describing
electron-nuclei attraction, Ene[ρ], and the Coulomb functional, J [ρ], are given
by,

Ene[ρ] =
∑

a

∫

dr
Zaρ(r)

|R− r| ,

J [ρ] =
1

2

∫ ∫

drdr′
ρ(r)ρ(r′)

|r′ − r| .

In Kohn-Sham theory the exact kinetic energy functional for non-interacting
electrons is given by

T =
∑

i

〈φ̃i| −
1

2
∇2|φ̃i〉 ,

where the Kohn-Sham orbitals |φ̃i〉 are the components of a Slater determi-
nant. The difference in kinetic energy between interacting and non-interacting
electrons and the exchange term form an exchange-correlation functional,
which again is split into an exchange and a correlation part. There exist
different approximations to these exchange and correlation functionals.

Similar to HF, the set of Kohn-Sham orbitals are computed in a way that
minimizes the total energy, which, because of the density dependence of the
Coulomb and exchange-correlation term, leads to a self-consistent procedure.
When expanding the Kohn-Sham orbitals in a non-orthogonal basis set, the
Kohn-Sham equations have the form: hKSC = SCε, where hKS is the Kohn-
Sham matrix, C is the matrix of the expansion coefficients, S is the overlap
matrix, and the vector ε contains the eigenvalues of the Kohn-Sham orbitals.

When working with Kohn-Sham orbitals, as will be done in all of the
following calculations, it should be noted that they are the orbitals of a fic-
titious reference system of non-interacting electrons with the same electron
density and therefore, strictly speaking, have no physical reality. However,
when considering this a drawback as compared to Hartree-Fock theory one
should note, that the molecular orbitals in HF belong to a reference system
of electrons, which experience only the average field of the other electrons
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(mean field theory). This is also only an approximation to the true elec-
tronic interactions in a molecule. Unlike Hartree-Fock theory, DFT with an
approximate exchange-correlation functional is not variational and can yield
molecular energies below the true ground state energy.

Using DFT or Hartree-Fock theory to describe the extended molecule
usually implies that only a single electron configuration is computed and
ionic states, which are supposed to emerge during resonant charge transport,
are described within Koopmans’ theorem i.e. via an additional electron/hole
in the corresponding molecular orbital. Only few researchers take excited
configurations explicitly into account [42]. It should also be mentioned that,
while the use of Koopmans’ theorem in HF can be justified for all molecular
orbitals, this is not the case for the Kohn-Sham orbitals in DFT, where a
similar relation exists only for the HOMO.

Hartree-Fock theory is not a good choice for the computation of molecu-
lar junctions, as it does not account for electron-correlation effects, which are
expected to play an important role in electron transport. As the described
systems are usually large and contain metal atoms, density functional the-
ory is expected to perform better. However, it was found, that DFT has
a tendency towards underestimating the HOMO-LUMO-gap, predicting a
too metallic behavior, and overestimating the broadening [43], and it was
suggested that functionals optimized for transport problems, including non-
equilibrium functionals, should be developed.

3.4 Determination of the Parameters

The parameters for the extended molecule were determined employing
electronic-structure calculations, performed with the TURBOMOLE pack-
age (Version 5-7) [44] using DFT with the B3-LYP hybrid functional. A
double split valence, SV(P), basis set of Gaussian type atomic orbitals includ-
ing polarization functions and an effective core potential, describing 60 core
electrons, ECP-60-MWB, on the gold atoms is used. The B3-LYP functional
was chosen based on test calculations with various functionals, although it
has the practical disadvantage, that the timesaving resolution of identity
approximation [45] cannot be used.

In the B3-LYP functional both the exchange functional, Ex, and the
correlation functional, Ec, are a combination of local density approximation
(LDA) type functionals and generalized gradient approximation (GGA) type
functionals, where the exchange functional additionally contains exact HF
exchange contributions,
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EB3−LY P
xc = (1− a)ELDA

x + bEGGA
x + aEHF

x + (1− c)ELDA
c + cEGGA

c ,

where the three parameters a, b, and c were optimized to fit the results of
high-level quantum chemistry methods or experimental data to give a=0.2,
b=0.72, and c=0.81.

The final structures of the extended molecules were obtained in several
optimization cycles: A full geometry optimization of the isolated neutral
molecule was followed by a full geometry optimization of the molecule after
replacing the hydrogens on sulfur by two gold atoms. Covalent bonding to
two gold atoms is the preferred bond formation, if no symmetry constraints
are applied [13, 46]. Afterwards, a second metal layer, containing 5 gold
atoms, was added, and the system’s geometry was again optimized in order
to determine a more realistic molecule-contact binding configuration, this
time keeping the internal coordinates of the second gold layer fixed.

It is quite common to use structures where the sulfur atom binds to three
gold atoms which form a triangle, separated by the bulk distance of 2.88 Å.
This geometry, which has the advantage that calculations can be done in
three-fold symmetry groups, contradicts chemical intuition, because the sp3-
hybridization of the sulfur atom would cause the sulfur-gold bonds to be
under strong strain.

Another chemically non-intuitive approximation, that is often found in
the literature, is to assume that sulfur binds to a perfectly symmetric surface.
The interaction between sulfur and gold is usually so strong that it destroys
the lattice geometry close to the adsorption site. In test calculations we
performed a full geometry optimization of a benzenedithiol molecule bonded
between two Au13-clusters in symmetry-group C1. The gold clusters, which
initially formed perfect cuboctahedrons, became amorphous in the course
of the optimization procedure and the sulfur atoms ended up bonded to two
gold atoms only. A similar effect was found for chemisorption of benzenethiol
on a Ag51 cluster in Ref. [47].

The nuclear degrees of freedom of the molecular bridge were characterized
based on a normal mode analysis of the system with two gold layers. Thereby,
the mass of the gold atoms was set to 109 atomic mass units, in order to obtain
separation of the nuclear motion in the molecule and the gold clusters.

After the normal mode analysis, the metal contacts were enlargened by
increasing the second layer by several atoms and/or adding two more metal
layers, which are cutouts of the (111)-plain of the face-centered-cubic lattice
of solid gold.

A DFT electronic structure single point calculation was performed on this
system, which yielded the Kohn-Sham and overlap matrices, that enter the
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projection procedure described in Sec. 3.2. In all our model systems direct
contact-contact coupling, V LR, was small enough to be neglected, because of
the relatively large distance between the two metal clusters.

The vibronic coupling constants κ
(j)
l were obtained from the numerical

gradients of the energies Ej with respect to the dimensionless normal co-
ordinates ql. To this end, two DFT calculations with molecular geometries
elongated along the positive and negative vibrational normal mode coordi-
nate were performed. These calculations were done for the extended molecule
using the normal modes of the smaller two-layer system. The elongation pa-
rameter, ∆, was chosen to be 0.1. Test calculations have shown that this
value is large enough to avoid numerical problems, but also small enough so
that the difference quotient is still a good approximation to the differential
quotient. After projection the vibronic coupling parameters were calculated
as follows,

κ
(j)
l =

(

∂Ej

∂ql

)

q=qeq

≈ Ej(qeq +∆ql)− Ej(qeq −∆ql)

2∆
. (3.13)

In principle, all the parameters appearing in Eqs. (3.8) and (3.9) may
depend on the external voltage and on the voltage induced molecular charge,
and would have to be recalculated at any voltage value. In this work, however,
we will, for simplicity, assume that the voltage dependence appears only as
a shift in the real part of the contact eigenenergies, EkL → EkL ± η eU and
EkR → EkR ± (1 − η)eU , and the chemical potentials, µL = εf ± η eU and
µL = εf ± (1 − η)eU . Here η is the voltage division factor, which specifies
the amount of the voltage drop in the individual electrodes, and which is 0.5
in a symmetric junction.

A method which includes the voltage dependence implicitly in the DFT
calculation is the NEGF-DFT formalism, which is not to be confused with the
NEGF-transport formalism introduced in Sec. 2.2. NEGF-DFT constitutes a
method to derive the electronic properties of a molecular junction, where the
DFT equations are solved by NEGF methods [48]. In this connection, the
bias potential is included self-consistently, so that the influence of the voltage
on the molecular orbitals and the electrodes is computed rigorously, and no
assumptions on the position of the voltage drop and the voltage division
factor have to be made. NEGF-DFT is computationally demanding as an
electronic structure calculation has to be done at each voltage value.
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Chapter 4

Scattering Theory

The idea to view transport through mesoscopic conductors as a scattering
process goes back to R. Landauer [7], who first considered elastic, coherent
transport in the linear response regime (at small voltages U), and showed that
under these conditions the current is given by the transmission probability
at the Fermi level T (εf ),

I = g0 T (εf )U .

Scattering theory approaches have since been extended to transport at larger
voltages [25] and also to include inelastic effects [2].

In this chapter we will employ an inelastic scattering formalism to describe
charge transport through MMM-junctions. In the first part we introduce and
derive the method and in the second part we present applications to several
model molecular junctions.

4.1 Scattering Theory Formalism

4.1.1 Transmission Probability

The central quantity in the scattering theory approach is the transmission
function, T (Ei, Ef ), which describes the probability that a charge carrier with
initial energy Ei is scattered by the molecule. After the scattering process
the charge carrier has energy Ef . The transmission probability is determined

by the matrix elements of the T̂ -operator,

T̂ = V + V GV . (4.1)

Here, G is the total, energy-dependent, retarded Green’s function,

G(E) = lim
η→0+

[(E + i η)1−H]−1 =
[

E+ −H
]−1

, (4.2)

24



where 1 is the unit-operator, H is the Hamiltonian of the total system
(Eqs. (3.9)), and η is a positive infinitesimal. The first term in Eq. (4.1),
which corresponds to direct electrode-electrode coupling, in our applications
is small enough to be neglected.

If vibronic interactions on the molecule are taken into account, the situ-
ation can be viewed as a multi-channel scattering problem. The probability
of electron scattering from the left electrode to the right electrode is given
by

TR←L(Ei, Ef ) = 4π2
∑

νi,νf

∑

ki∈L

∑

kf∈R
Pνi

δ(Ef + Eνf
− Ei − Eνi

) (4.3)

× δ(Ei − Eki)δ(Ef − Ekf )
∣

∣〈νf |〈φkf |V G(Ei)V |φki〉|νi〉
∣

∣

2
.

Here, |φk〉 denotes asymptotic electronic single particle states in the elec-
trodes, and |ν〉 describes asymptotic vibrational states on the molecule. The
vibrational function |ν〉 is a product of the harmonic oscillator wavefunc-
tions of the individual modes l, |ν〉 = ∏

l |νl〉. Pνi
= 〈νi|ρ0|νi〉 denotes the

population probability of the initial vibrational state, where

ρ0 = e−Hn0/(kBT )/Z

is the equilibrium density operator in the vibrational subspace, with

Z =
∑

l

〈νl|e−Hn0/(kBT )|ν l〉

being the corresponding partition function.
In Eq. (4.3) the δ-function accounts for energy conservation, Eνf

+Ef =
Eνi

+Ei, with Eνi
and Eνf

being the energies of the initial and final vibra-
tional states, |νi〉 and |νf〉, and Ei and Ef are the initial and final energies
of the scattered electron in the left and right electrode, respectively.

Eq. (4.3) describes the transmission probability for electron transport
through the unoccupied orbitals of the molecule. If transport through the
HOMO is the dominating process, the transmission probability is given by

TR←L(Ei, Ef ) = 4π2
∑

νi,νf

∑

ki∈L

∑

kf∈R
Pνi

δ(Ef − Eνf
− Ei + Eνi

) (4.4)

× δ(Ei − Eki)δ(Ef − Ekf )
∣

∣〈νf |〈φkf |V G(Ei)V |φki〉|νi〉
∣

∣

2
.

Here, the δ-function again accounts for energy conservation, Eνf
− Ef =

Eνi
−Ei, with Eνi

and Eνf
being the energies of the initial and final vibra-

tional states, |νi〉 and |νf〉, and Ei and Ef are the initial and final electronic
energies of the scattered hole in the left and right electrode, respectively.
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If vibrational motion can be neglected, equations (4.3) and (4.5) result in
the same expression for the purely elastic transmission probability,

TR←L(E) = 4π2
∑

ki∈L

∑

kf∈R
δ(E − Eki)δ(E − Ekf )

∣

∣〈φkf |V G(E)V |φki〉
∣

∣

2
.

The differentiation between hole and electron transport transmission prob-
abilities already indicates, that the multi-channel scattering formalism out-
lined above cannot be used, if the HOMO or LUMO are located close to the
Fermi energy. In this case the level-shift and splitting due to nuclear motion
may change the occupation of the molecular orbital.

In the systems considered in this work, the charge carriers couple pri-
marily to modes with relatively high frequencies (ω > 300 cm−1). At room
temperature or below only the vibrational ground state of these modes will
be occupied significantly. Therefore, the density operator ρ0 will be identified
with the operator of the vibrational ground state, ρ0 = |0〉〈0|.

4.1.2 Trace Formula

The transmission functions in Eqs. (4.3) and (4.5) contain operators that are
defined in the infinite space of the total molecular function. In this section an
alternative formulation of the transmission function will be derived, which
only involves operators in the finite molecular space. The involved opera-
tions are similar for the electron and hole transmission functions, but will be
written for hole transport, as this is the dominant transport mechanism in
the applications presented below.

We start by rewriting Eq. (4.5),

TR←L(Ei, Ef ) = 4π2
∑

νi,νf

∑

ki∈L

∑

kf∈R
Pνi

δ(Ef − Eνf
− Ei + Eνi

)

×δ(Ei − Eki) δ(Ef − Ekf )

×〈νi|〈φki |V G†(Ei)V |φkf 〉|νf〉〈νf |〈φkf |V G(Ei)V |φki〉|νi〉 .

Next we define the projection operators P , QL, and QR, which project onto
the molecular space, the left electrode space, and the right electrode space,
respectively,

P =
∑

j∈M
|φj〉〈φj|, QL =

∑

k∈L
|φk〉〈φk|, QR =

∑

k∈R
|φk〉〈φk|,

and insert their sum, P + QL + QR = 1, on the left and right side of each
V -operator. Expanding the obtained expression yields numerous terms, the
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majority of which vanishes, because the operator V only couples M with L
or R,

(P +QL +QR)|φkf 〉 = QR|φkf 〉 = |φkf 〉 ,
(P +QL +QR)|φki〉 = QL|φki〉 = |φki〉 .

This leads us to

TR←L(Ei, Ef ) = 4π2
∑

νi,νf

∑

ki∈L

∑

kf∈R
Pνi

δ(Ef − Eνf
− Ei + Eνi

)δ(Ei − Eki)

× δ(Ef − Ekf ) 〈νi|〈φki |V P PG†(Ei)P PV |φkf 〉|νf〉
× 〈νf |〈φkf |V P PG(Ei)P PV |φki〉|νi〉 , (4.5)

where we used the idempotency of the projection operator, P 2 = P . PG(Ei)P
is the Green’s function projected onto the molecular space, which will be re-
ferred to as GM(Ei). An expression for GM(Ei), which is used in the practical
calculations, will be derived in the next section. In order to simplify Eq. (4.5),
the remaining P -operators will be written explicitly and the terms will be
rearranged yielding the following expression,

TR←L(Ei, Ef ) =
∑

νi,νf

∑

a,b,c,d∈M
Pνi

δ(Ef − Eνf
− Ei + Eνi

)

×
∑

ki∈L
2πδ(Ei − Eki)〈νi|〈φd|V |φki〉〈φki |V |φa〉〈φa|G†M(Ei)|φb〉|νf〉

×
∑

kf∈R
2πδ(Ef − Ekf )〈νf |〈φb|V |φkf 〉〈φkf |V |φc〉〈φc|GM(Ei)|φd〉|νi〉 .

Here, we used that V is assumed to be independent of vibrational motion
and therefore commutes with the vibrational states. We note that the scat-
tering treatment can be extended to include the dependence of the coupling
elements between molecule and contact on the nuclear coordinates [49].

Defining the matrix elements of the energy dependent left and right width
function ΓL and ΓR as

ΓL(Ei)da = 〈φd|ΓL(Ei)|φa〉 =
∑

ki∈L
2πδ(Ei − Eki)〈φd|V |φki〉〈φki|V |φa〉 ,

ΓR(Ef )bc = 〈φb|ΓR(Ef )|φc〉 =
∑

kf∈R
2πδ(Ef − Ekf )〈φb|V |φkf 〉〈φkf |V |φc〉 ,

27



leads us to

TR←L(Ei, Ef ) =
∑

νi,νf

∑

a,b,c,d∈M
Pνi

δ(Ef − Eνf
− Ei + Eνi

)

×〈νi|〈φd|ΓL(Ei)|φa〉〈φa|G†M(Ei)|φb〉|νf〉
× 〈νf |〈φb|ΓR(Ef )|φc〉〈φc|GM(Ei)|φd〉|νi〉 ,

which, because of the idempotency of P , can be written as

TR←L(Ei, Ef ) =
∑

νi,νf

∑

d∈M
Pνi

δ(Ef − Eνf
− Ei + Eνi

)

×〈νi|〈φd|ΓL(Ei)G
†
M(Ei)|νf〉〈νf |ΓR(Ef )GM(Ei)|φd〉|νi〉 .

The sum over d corresponds to a trace operation in the electronic molecular
space,

TR←L(Ei, Ef ) =
∑

νi,νf

tr
{

Pνi
δ(Ef − Eνf

− Ei + Eνi
)

× 〈νi|ΓL(Ei)G
†
M(Ei)|νf〉〈νf |ΓR(Ef )GM(Ei)|νi〉

}

.

Using 〈νi|Eνi
= 〈νi|Hn0 and the expression for Pνi

we obtain

TR←L(Ei, Ef ) =
∑

νi,νf

tr
{

〈νi|ρ0|νi〉〈νi| δ(Ef − Eνf
− Ei +Hn0)

× ΓL(Ei)G
†
M(Ei)|νf〉〈νf |ΓR(Ef )GM(Ei)|νi〉

}

.

Because ρ0 and |νi〉〈νi| commute, the sum over νi results in the trace over
the vibrational degrees of freedom and we finally obtain the trace formula of
the molecular transmission function for hole transport

TR←L(Ei, Ef ) =
∑

νf

tr
{

δ(Ef − Eνf
− Ei +Hn0)ρ0 (4.7)

× ΓL(Ei)G
†
M(Ei)|νf〉〈νf |ΓR(Ef )GM(Ei)

}

(h. t.) .

For electron transport, on the other hand, we obtain in the same way,

TR←L(Ei, Ef ) =
∑

νf

tr
{

δ(Ef + Eνf
− Ei −Hn0)ρ0 (4.8)

× ΓL(Ei)G
†
M(Ei)|νf〉〈νf |ΓR(Ef )GM(Ei)

}

(e. t.) .
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The total transmission probability, TR←L(Ei), is obtained by integrating
TR←L(Ei, Ef ) over the final energies of the charge carrier,

TR←L(Ei) =

∫

dEfTR←L(Ei, Ef ) .

In the absence of vibronic coupling, Eqs. (4.7) and (4.8) reduce to

T (E) = tr
{

ΓL(E)G†M(E)ΓR(E)GM(E)
}

. (4.9)

4.1.3 Molecular Green’s function

In this section we will derive an expression for the Green’s function projected
onto the molecular subspace, GM = PGP .

The starting point is the Lippmann-Schwinger equation [50]

G = G0 +G0V G , (4.10)

where G0 is the Green’s function related to the electronically uncoupled
Hamiltonian H0,

G0 =
[

E+ −H0

]−1
,

H0 = Hn0 +HM +HL +HR (electron transport) ,

H0 = Hn0 −HM −HL −HR (hole transport) .

The energy dependence of G and G0 is not written for clarity. Applying
the projection operator P from both sides to Eq. (4.10) we obtain

GM = PGP = PG0P + PG0V GP .

The sum of projection operators, P +QL+QR = 1, is inserted on both sides
of the operator V . Using similar arguments as in Sec. (4.1.2), it can be shown
that only three terms remain

GM = PGP = PG0P + PG0PV QLGP + PG0PV QRGP . (4.11)

The terms QLGP and QRGP can again be evaluated using the Lippmann-
Schwinger equation and inserting 1 = P +QL +QR. This leads to

QLGP = QLG0QLV PGP .

and a similar expression for QRGP . Inserting this equation into Eq. (4.11)
gives

GM = PG0P + PG0PV QLG0QLV PGP + PG0PV QRG0QRV PGP ,

= PG0P + PG0P Σ̃LPGP + PG0P Σ̃RPGP ,

= PG0P + PG0P Σ̃LGM + PG0P Σ̃RGM , (4.12)
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where the idempotency of P was used and where we have introduced the
retarded self-energy

Σ̃L = PV QLG0QLV P ,

Σ̃R = PV QRG0QRV P .

Eq. (4.12) can be rearranged as

GM =
[

E+ − PG0P Σ̃L − PG0P Σ̃R

]−1
PG0P ,

where the positive infinitesimal η was reintroduced (cf. Eq. (4.2)).
Using the operator relation A−1B = [B−1A]

−1
we obtain

GM =
[

(PG0P )−1
(

E+ − PG0P Σ̃L − PG0P Σ̃R

)]−1

=
[

(PG0P )−1 − Σ̃L − Σ̃R

]−1

=
[

E+ − PHP − Σ̃L − Σ̃R

]−1
,

with

PHP = Hn0 −Hne −HM (e. t.) ,

PHP = Hn0 +Hne +HM (h. t.) .

Writing the energy dependence of the Green’s function explicitly, we ob-
tain the expressions,

GM(E) =
[

E+ − PHP − Σ̃L(E)− Σ̃R(E)
]−1

(4.13)

Σ̃L(E) = PV QLG0(E)QLV P

Σ̃L(E) = PV QL

[

E+ −QLHQL

]−1
QLV P . (4.14)

Using

QLHQL = Hn0 −HL (e. t.) ,

QLHQL = Hn0 +HL (h. t.) ,

the expressions for the self-energy operators read

Σ̃L(E) = PV QL

[

E+ −Hn0 +HL

]−1
QLV P (e. t.) ,

Σ̃L(E) = PV QL

[

E+ −Hn0 −HL

]−1
QLV P (h. t.) .
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As in our model the electronic coupling is assumed to be independent of
the vibrational motion, we can rewrite Eq. (4.14) in a form that does not
contain the vibrational Hamiltonian in Σ̃(E). We define a slightly altered
self-energy function

ΣL(E) = PV QL

[

E+ −HL

]−1
QLV P (4.15)

which is related to the original one via

Σ(E −Hn0) = +Σ̃(E) (e. t.) ,

Σ(Hn0 − E) = −Σ̃(E) (h. t.) .

Also the Green’s function will be redefined as,

ḠM(E) =
[

E+ −Hne −HM − ΣL(E)− ΣR(E)
]−1

, (4.16)

which is related to the original Green’s function as

ḠM(E −Hn0) = +GM(E) (e. t.) ,

ḠM(Hn0 − E) = −GM(E) (h. t.) .

The transmission function for electron transport can thus be written as

TR←L(Ei, Ef ) =
∑

νf

trM

{

δ(Ef + Eνf
− Ei −Hn0)ρ0 (4.17)

× ΓL(Ei)Ḡ
†
M(Ei −Hn0)|νf〉〈νf |ΓR(Ef )ḠM(Ei −Hn0)

}

.

The transmission probability for hole transport, on the other hand, finally
becomes

TR←L(Ei, Ef ) =
∑

νf

trM

{

δ(Ef − Eνf
− Ei +Hn0)ρ0 (4.18)

× ΓL(Ei)Ḡ
†
M(Hn0 − Ei)|νf〉〈νf |ΓR(Ef )ḠM(Hn0 − Ei)

}

.

The self-energy in Eq. (4.15) describes the interaction of the electrodes
with the molecular unit and should not be mistaken for the surface self-energy
(Σsf) in Eq. (3.11). While the surface self-energy describes the influence of
the leads on the contacts, the self-energy in Eq. (4.15) describes the influence
of the overall electrodes on the molecule.

The matrix elements of the self-energy in Eq. (4.15) are given by

ΣL(E)ij =
∑

k,k′∈L
〈φi|V |φk〉〈φk|

1

(E+ −HL)
|φk′〉〈φk′|V |φj〉 , (4.19)

ΣL(E)ij =
∑

k∈L

Vik Vkj
(E+ − Ek)

= ∆L(E)ij −
i

2
ΓL(E)ij .
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The self-energy function describes the level-shift, ∆, and the level-broadening,
Γ, of the molecular states due to coupling to the metallic electrodes. The
matrix elements of Γ were defined in Eqs. (4.6).

When working with the finite number of bi-orthogonal states discussed
in App.A, an element of this self-energy in the following calculations is ap-
proximated by the expression,

ΣL(E)ij =
∑

k∈L

VikVkj
Suk (E

+ − Ek)
. (4.20)

Here, Suk is the overlap of left and right eigenvectors which is defined in
App.A.

4.1.4 Calculation of the Current

The transmission function is related to the current via a generalized Landauer
equation [2]

I = IR←L − IL←R
=

2e

h

∫

dEidEf {TR←L(Ei, Ef )fL(Ei)[1− fR(Ef )]

− TL←R(Ei, Ef )fR(Ei)[1− fL(Ef )]} (e. t.) , (4.21)

where the factor 2 accounts for spin degeneracy. The electron transmission
probability TR←L(Ei, Ef ) is weighted by the probability, fL(Ei), that in the
left electrode the state with energy Ei is occupied, while in the right electrode
the state with energy Ef is unoccupied, [1− fR(Ef )]. To obtain the current
from left to right, IR←L, this weighted probability is integrated over all initial
and final hole energies. The Fermi function is given by

fL/R(E) =

[

e
E−(εf±eU/2)

k T + 1

]−1
.

The terms [1 − fR(Ef )] and [1 − fL(Ef )] represent Pauli exclusion or
blocking factors, the use of which is discussed critically in the literature
[25]. It was argued that, if the electronic coupling between molecule and
contacts is strong, the situation does not correspond to a transition between
separated states, but a scattering state, consisting of an incoming wave in
one electrode and an outgoing wave in the other electrode, is formed and will
contribute to transport as long as it is occupied. In this case we are dealing
with a single state only, therefore, no exclusion factors are needed, and the
following expression should be used instead,

I =
2e

h

∫

dEidEf {TR←L(Ei, Ef )fL(Ei)− TL←R(Ei, Ef )fR(Ei)} . (4.22)
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However, it is generally assumed, that if the coupling between molecule
and electrodes is rather small, the probabilistic approach of Eq. (4.21) yields
a better description. Neither Eq. (4.21) nor Eq. (4.22) have been derived from
sophisticated transport theories so far.

In this work we will use the current formula with the Pauli blocking
factors formulated for hole transport

I = IR←L − IL←R
=

2e

h

∫

dEidEf {TR←L(Ei, Ef )fR(Ef )[1− fL(Ei)]

− TL←R(Ei, Ef )fL(Ef )[1− fR(Ei)]} (h. t.) , (4.23)

Expression (4.23) is valid if many-electron processes are negligible. In par-
ticular, non-equilibrium effects in the electrodes and electron correlation due
to vibronic coupling are not taken into account. Furthermore, it is implicitly
assumed, that between individual scattering processes the system relaxes to
the vibrational equilibrium.

In the case of symmetric transmission functions, TR←L = TL←R, i.e. when-
ever no magnetic fields or other factors, that break microscopic reversibility,
are present, and if transport is elastic, Ei = Ef , both Eqs. (4.21), (4.22), and
(4.23) reduce to the same form,

I =
2e

h

∫

dE T (E) {fR(E)− fL(E)} . (4.24)

Here, the blocking factors are no longer necessary, because transitions from
occupied states in the left to occupied states in the right are exactly cancelled
by the transitions in the opposite direction.

If we consider the elastic transmission function at E = εf and assume
it to be independent of voltage, and further expand {fR(E)− fL(E)} up to
first order in U , we obtain the original Landauer equation,

I =
2e2

h
T (εf )U = g0 T (εf )U ,

which is valid at low voltages (in the linear response regime).

4.2 Application to Benzenethiolates

In this section the multi-channel scattering formalism, presented in the pre-
vious section, is applied to several MMM-junctions. The molecular units of
these junctions consist of a phenyl ring that is bonded to two gold cluster via
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alkane thiolate-linkers of different lengths. We present the calculated trans-
mission probabilities and currents for these systems and compare between
purely electronic and vibronic features.

A few technical details of the calculations that concern all molecular junc-
tions investigated in this section will be mentioned before.

• The model systems exhibit either symmetry group Ci or C2, which does
not only halve CPU-time in the DFT-calculation, but also simplifies the
ensuing transport calculations as it establishes a left-right symmetry
and thus makes the current an odd function of voltage, so only the
positive voltage range will be shown.

• The Fermi energy was approximated as the average value of the HOMO
and LUMO of the extended molecule.

• The temperature was set to T=0K in all computations.

• In order to reduce the computational effort, only those four vibrational
modes with the strongest effective coupling were explicitly taken into
account. The effective coupling was determined by the ratio of the
vibronic coupling parameter κ

(j)
l and the electronic coupling character-

ized by the width function Γ at the molecular eigenenergies Ej of the
involved molecular orbitals.

• A vibrational basis set consisting of 12 to 16 functions per mode was
used. This number was first converged in calculations including a single
mode. For the calculations that include four modes simultaneously not
all combinations of vibrational product states were considered, but only
those which had a total energy of, E =

∑

l h̄ωlνl, smaller than a cutoff
energy Ec. Converged results were obtained for Ec=1.5 eV.

4.2.1 Benzenedithiolate

First, we discuss transport through a benzenedithiolate (BDT) molecular
junction. This system was chosen, because several experimental [3, 51] stud-
ies exist, which triggered numerous theoretical studies, where BDT was in-
vestigated using different theories to describe elastic transport [52, 53, 54,
55, 46, 56, 57, 42] and vibronic effects in the off-resonant, tunneling regime
[58, 59, 60]. Experimentalists investigated this molecule because, due to the
π-electron system, it is expected to be a good conductor, it is rigid, and it
forms strong bonds to the gold electrodes.

The extended molecule of this system is shown in Fig. 4.1. The gold
contacts are formed by pyramidal gold clusters consisting of 30 gold atoms.
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Figure 4.1: The extended molecule of a BDT-junction with two pyramidal
gold clusters consisting of 30 gold atoms.

When considering the sulfur atom as the tip of the pyramid, its base is formed
by a cutout of the (111)-surface of bulk gold.

The modes that were included in the transport calculation are shown in
Fig. 4.2 and can be characterized as a C-C-C bending (a), the benzene ring
breathing (b), a C-C-H bending (c), and a C-C stretching mode (d). They
are similar to those four modes found to have the largest vibronic coupling
parameters in Ref. [58].

As not all 128 orbitals, that span the molecular space of this system, will
give a significant contribution to the transport characteristics, only those 7
states, which reproduced the transmission function including all 128 states
satisfyingly, were included in the calculation.

In Fig. 4.3 the total transmission probability through a BDT junction is
shown. It is plotted relative to the Fermi level, which in this system was
approximately -5.10 eV. In addition to the transmission probability based
on a vibronic calculation (red line), also the result of a purely electronic

calculation (blue line) (where all electronic-nuclear coupling constants κ
(j)
l

were set to zero) is presented.
The transmission probability exhibits several pronounced peaks. There

are four peaks at energies -2.66, -2.50, -2.11, and -1.29 eV, respectively, which
are caused by the three orbitals depicted in Fig. 4.3. The peak positions are
shifted relative to the energies of the orbitals after projection, which are
located 2.55 and 0.45 eV below, and +0.76 eV above εf , respectively. These
orbitals are related to the e1g-orbitals of benzene and p-orbitals at the sulfur
atoms and are similar to the HOMO-2, HOMO-1, and HOMO of the isolated
molecule, respectively. In the isolated molecule these states have energy
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(a) (b)

(c) (d)

Figure 4.2: Normal modes of BDT included in the calculation. The arrows
indicate the direction and relative lengths of the amplitudes.

-2.11, -1.91, and -0.44 eV relative to εf , respectively.
The levels in the projected space will not be characterized as HOMO

or LUMO, as there is a charge flow onto the molecule on bond formation
with the gold cluster. Instead a comparison with the states of the isolated
molecule (without gold atoms but with hydrogen on sulfur), where the term
HOMO is well defined, will be used. The charge flow from the gold atoms
to the molecular unit can be estimated by calculating the Mulliken gross
population [41], and gives a charge of the molecular unit of - 0.177 e for the
BDT junction.

While orbitals B and C in Fig. 4.3 have significant contributions from
the bridging sulfur atoms, orbital A is completely localized on the phenyl-
ring. As a result, the molecule-contact coupling strength and also the level
shift for the three orbitals is quite different: the width function, Γjj, at
zero voltage and the respective peak energy vary from 0.01 eV (A), 0.06 eV
(B) to 0.20 eV (C), which corresponds to electronic lifetimes, approximately
given by the uncertainty relation h̄/Γjj, of 66 fs (A), 12 fs (B), and 3 fs (C),
respectively. Consequently, the structures in the transmission probability
caused by orbitals B and C are rather broad, whereas orbital A results in a
narrow resonance peak.

The comparison of the vibronic transmission probability (red line in
Fig. 4.3) with the results of the purely electronic calculation (blue line) re-
veals that the electron-nuclear coupling in BDT has significant effects on
narrow resonances. In particular, it results in a splitting of the narrow peak
at -2.66 eV into a number of smaller structures. These structures are due to
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Figure 4.3: Purely Electronic (blue line) and vibronic (red line) total trans-
mission probability through a BDT molecular junction at zero voltage as a
function of the initial energy of the electron (relative to the Fermi energy).
Molecular orbital plots of the three localized molecular orbitals, denoted A,
B, and C, which dominate the transmittance at the indicated peaks, are
shown. Only the relevant part of the energy interval [-3:+3], corresponding
to a voltage window of 6V, is shown.

vibronic transitions to the molecular cation state that are weighted by the
respective Franck-Condon factors.

The effect of nuclear motion on the other peaks in the transmission prob-
ability, on the other hand, is rather small. This can be rationalized by con-
sidering the vibronic and electronic coupling constants in the corresponding
states. The importance of vibronic effects caused by the nuclear mode ql in
state |φj〉 is determined by the ratio of the vibronic and electronic coupling

constants, κ
(j)
l /Γjj. Although the electronic-vibrational coupling constants

κ
(j)
l of some of the nuclear modes in states |φB〉 and |φC〉 are relatively large

(cf. Tab. 4.1), the lifetime of the electron on the molecular bridge is short,

resulting in a small effective coupling κ
(j)
l /Γjj.

Besides this ratio, vibronic effects for orbitals B and C are also expected to
be small, because the residence time of the electrons in these orbitals (12 fs
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ω (cm−1) T (fs) κ(A) (meV) κ(B) (meV) κ(C) (meV)
(a) 349.26 96 61 8 62
(b) 1092.02 31 72 80 33
(c) 1198.14 28 90 13 16
(d) 1627.28 20 152 93 36

Table 4.1: Frequencies and periods (T) of the four most important vibrational
modes of BDT as well as gradients of these modes for the three orbitals, A,
B, and C, dominating conduction.

and 3 fs, respectively) are much smaller than the periods of the included
normal mode vibrations (cf. Tab. 4.1).

In Fig. 4.3 there is another peak at +0.14 eV, which is independent of
vibronic coupling. This peak is influenced by orbitals B and C, in the sense
that it vanishes if both states are excluded from the transmission calculation,
but cannot be exclusively related to any of the orbitals of the molecular
bridge. It might be due to a metal-induced gap state [61, 54], which, from
IETS-studies [62], is known to appear if tip-like geometries of metal contacts
are used.

The simulated current-voltage characteristic of BDT, depicted in Fig. 4.4,
exhibits a nonlinear behavior: A small increase of the current at small volt-
ages caused by the peak at εf is followed by a strong increase at larger voltages
resulting from the contributions of orbitals B and C. Because orbitals B and
C are strongly coupled to the metal contacts and thus have small effective
vibronic coupling, the influence of nuclear motion on the current in BDT is
almost negligible.

It is also noted that, similar as in previous (purely electronic) simulations
of electron transport through BDT, the current is significantly larger than
in experimental results [3, 51], which is probably due to the deficiencies of
DFT that were discussed in Sec. 3.3.
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Figure 4.4: Current-voltage characteristic of BDT. Shown are results of calcu-
lations with (solid red line) and without (blue crosses) coupling to molecular
vibrations.
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Figure 4.5: The extended molecule of a BDET-junction with two pyramidal
gold clusters consisting of 30 gold atoms.

4.2.2 Benzenedi(ethanethiolate)

We saw in the last section, that only small vibronic effects can be seen in
the transmission probability and in the I-V characteristic, if the electronic
coupling between contacts and molecular orbitals is strong. The coupling
between orbitals localized on the benzene ring and the contacts is expected
to decrease, if a spacer group is inserted between them. Therefore, in this
section we will present investigations on benzene-di(ethanethiolate) (BDET),
where two methylene groups on both sides of the benzene ring separate the
sulfur atom from the π-electron system. A cartoon of the extended molecule
(Fig. 4.5) shows BDET between two pyramidal gold clusters comprising 30
gold atoms.

The charge of the molecular unit, determined by a Mulliken populations
analysis, is - 0.026 e and thus significantly smaller than the charge of the
molecular unit in the BDT junction of the previous section.

The number of states |φj〉 on the molecular bridge, which were explicitly
included in the calculation of the transmission, was reduced from 200 to 12
including only those with energies in the vicinity of the Fermi level. Similarly,
of the total number of 36 totally symmetric normal modes, the four normal
modes with the largest ratio between gradient (Eq. (3.13)) and electronic
coupling were included in the calculation. They can be characterized as: C-
C-C bending (a), C-C-H bending (b), another C-C-C bending (c), and C-C
stretching (d) (cf. Fig. 4.6).

The transmission probability of BDET at zero voltage is depicted in
Fig. 4.7. The purely electronic transmission (blue line) is dominated by two
resonance peaks at energies -2.23 and -1.85 eV, which are caused by molecu-
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(c) (d)

Figure 4.6: Normal modes of BDET included in the calculation.

lar orbitals A and B. Around 0.80 eV a small broad peak due to sulfur states
can be seen.

The projected orbitals A and B are similar to the HOMO-3 and HOMO-2
of the isolated molecule, where they are located 1.89 and 1.52 eV below εf ,
respectively. The Fermi energy in this system is εf=-5.15 eV. After projec-
tion those orbitals have an energy of -2.23 and -1.84 eV, respectively. The
HOMO-1 and HOMO orbitals of the isolated molecule are quasi-degenerate
and predominantly localized on the sulfur atoms. While the peak due to or-
bital A is not shifted with respect to its eigenenergy, the peak due to orbital
B is shifted by -0.01 eV. The corresponding vibronic coupling constants in
the most important molecular orbitals and the normal mode frequencies are
given in Tab. 4.2.

The peak positions in the transmission function do not coincide with the
eigenenergies of the states after projection, as both peak position and peak
width are influenced by neighboring states. For example, there exist four
pairwise degenerate sulfur p-states with energies slightly below the Fermi
level, which cause the tiny peak at -0.79 eV in the transmission function, but
influence the transport much more via their interaction with states A and
B. This interaction is mediated by the gold clusters via the non-diagonal
elements in the self-energy matrix.

The shoulder on the left of the peak due to orbital B (blue line) is caused
by interactions of orbital B with two states that are energetically located
below state A. These states are localized on the spacer groups and the sulfur
atoms and do not directly contribute to transmission in the considered energy
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Figure 4.7: Purely electronic (blue line) and vibronic (red line) total trans-
mission probability through a BDET molecular junction with a tip-like gold
cluster geometry at zero voltage as a function of the initial energy of the
hole (relative to the Fermi energy). The two orbitals, denoted A and B,
dominate the transmittance at the indicated peaks. Only the relevant part
of the energy interval [-2.5:+2.5], corresponding to a voltage window of 5V,
is shown.

range.
While orbital A resembles an e1g-orbital of benzene, orbital B has ad-

ditional contributions on the ethyl-groups and the sulfur atoms. As a con-
sequence, state A has smaller electronic coupling to the contacts (ΓAA =
1.9 · 10−4 eV, corresponding to a lifetime of τ = 3466 fs ) resulting in a very
narrow peak in the transmission probability, whereas the significant coupling
of orbital B to the contacts (ΓBB = 1.1 · 10−1 eV, τ = 6 fs) results in a rather
broad structure.

The comparison between the results of vibronic (red line in Fig. 4.7) and
purely electronic (blue line) calculations demonstrates that the electronic-
vibrational coupling in BDET alters the transmission probability signifi-
cantly. The elastic 000-peak due to state B is shifted to the right by 0.08 eV.
Here, spectroscopic notation was used, where the first zero indicates that no
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ω (cm−1) T (fs) κ(A) (meV) κ(B) (meV)
(a) 544.48 61 76 22
(b) 1197.11 28 51 69
(c) 1229.49 27 110 47
(d) 1671.56 20 136 162

Table 4.2: Frequencies, periods (T), and vibronic coupling parameters with
respect to the two orbitals (A,B) of the four most important vibrational
modes of BDET between pyramidal gold contacts.

vibrations were involved in this transition, the subscript denotes the vibra-
tional quantum number in the neutral reference state, and the superscript
denotes the vibrational quantum number in the cation. At -1.92 eV and
-1.98 eV single vibrational excitations of mode (b) and (d), respectively, can
be seen.

Only side-bands to the left are seen in the vibronic transmission, because
phonon absorption is not possible, as the system is assumed to relax into
the vibrational ground state, (ν i = 0), after each electron scattering process
and as the temperature is not large enough to significantly populate excited
vibrational levels thermally.

The 000-transition belonging to state A, which is expected to be a narrow
line, cannot be seen, because it is coincidentally shifted into resonance with
a peak caused by the transmission through sulfur p-states. This latter peak
cannot be seen by itself, but it gains width and height on interaction with
state A and causes a broadening of the elastic peak due to this state. The
structure resulting from this effect can be seen around peak A but it is too
broad to assign individual modes. At about -2.15 eV the (m)20 transition
peaks of state B overlap with the 000 transition of state A, where (m) denotes
all four included modes.

The current-voltage characteristic of BDET is shown in Fig. 4.8. The
result obtained from a purely electronic calculation (blue line) shows an in-
crease of the current at about 3.5 V caused by state B, which is followed
by a pronounced decrease of the current at 4 V. The weakly coupled state
A results only in a small step-like increase of the current shortly before 4.5
V and the following rise is due to the increasing width of the peak which
appears at -1.85 eV in the transmission. The negative-differential resistance
(NDR) effect at 4 V is caused by the voltage dependence of the self-energies
ΣL, ΣR and the corresponding width functions Γ.

Including the coupling to the nuclear degrees of freedom changes the
current-voltage characteristic substantially. In particular, the electronic-
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Figure 4.8: Current-voltage characteristic of BDET bound to pyramidal gold
contacts. Shown are results of calculations with (blue line) and without (red
line) molecular vibrations. Only the non-zero part of the voltage range is
shown.

vibrational coupling results in a quenching of the NDR effect, an increased
current between 3.10 and 3.72 V and a reduced current for voltages in the
range 3.72 - 4.03V. The 000 transition due to orbital B causes a step around
3.5V, while the step at 3.9V is due to vibrational excitations. The step due
to orbital A is seen at 4.18V.

The increased current is due to the fact that upon interaction with vibra-
tions the resonance peaks are shifted to higher energies and thus enter the
voltage window at lower voltage. If the voltage window is large enough to
comprise all inelastic peaks, the difference in current vanishes. The smaller
current and the vibrational substructures are a result of the splitting of each
electronic resonance into several vibronic resonances (cf. Fig. 4.7), which con-
tribute with different weights (determined by the respective Franck-Condon
factors) to the transmission. In contrast to the purely electronic case, the
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Figure 4.9: Purely electronic (blue line) and vibronic (red line) conductance
of BDET.

current thus increases in several steps. This effect is well known from previous
model studies [63, 64].

Fig. 4.9 shows the differential conductance, obtained by numerical dif-
ferentiation of the curves in Fig. 4.8. Overall the differential conductance
reflects the transmission behavior of the junction, however, it incorporates
its voltage dependence. In the purely electronic conductance this manifests
itself in the splitting of the peak due to state B as well as the negative dif-
ferential resistance between 4 and 4.3 V. At 4.5 V a narrow resonance due
to state A can be seen.

The vibrational structures are even more pronounced if the conductance
(red line in Fig. 4.9) is considered instead of the zero-voltage transmission.
Orbital B causes the first large peak at 3.58V, without vibrational excita-
tions, while at 3.98V the (d)10-transition can be observed. There are several
narrow features due to orbital A, that could not be seen in the zero-voltage
transmission. Besides the peak due to the 000 transition at 4.17V, we see the
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Figure 4.10: Purely electronic transmission of BDET at 3.94 V (solid line)
and at 4.32 V (dashed line). The two vertical lines indicate the respective
lower integration boundaries.

(a)10 transition at 4.32V.
The vibronic differential conductance curve shows a small negative differ-

ential resistance around 4.15V and two additional negative regions from 4.50
to 4.66V and from 4.81 to 4.98V, which do not exist in the purely electronic
differential conductance.

The negative differential resistance in the current and conductance curve
can be understood from Fig. 4.10, where we compare the transmission func-
tion at 3.94 V (the local maximum in the I-V curve) to the transmission func-
tion at 4.32V (the local minimum in the I-V curve). We recall that the cur-
rent is given by the energy-integral of the transmission function (Sec. 4.1.4)
and thus corresponds to the ’area below the transmission curve’. The peak
caused by orbital B in the 4.32V curve is much thinner than the correspond-
ing peak in the 3.94V curve. Although the current in the former case cor-
responds to the integral with lower boundary -2.16 (see solid vertical line in
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Figure 4.11: Purely electronic zero-voltage transmission of BDET employing
a four layer (dashed line) and a five layer (solid line) gold contact.

Fig. 4.10) and in the latter case the integral is taken only to -1.97 (dashed ver-
tical line), the area under the ’4.32 V’-transmission-curve is much smaller,
which explains the NDR in the current-voltage characteristic and conduc-
tance.

Our results show, that neither the peak position nor the peak width
change systematically with increasing voltage. Therefore, NDR phenomena
cannot be predicted. It should be emphasized that this NDR effect can
only be described if the energy and voltage dependence of the self-energies
is taken into account and will be missed within the often used wide-band
approximation, where Γ(E) is assumed to be independent of energy and,
therefore, ∆ = 0.

Finally, we consider the influence of the size of the gold cluster on the
conductance properties of the molecular junction. All results discussed so far
employed a four layer gold cluster. Fig. 4.11 shows a comparison of the zero-
voltage transmission functions of a system with a four layer and a system with
a five layer gold cluster. They agreed very well after taking into account the
different Fermi levels and different shifts of the localized molecular states after
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Figure 4.12: Current-voltage characteristic of the BDET junction employing
a four layer (dashed line) and a five layer (solid line) gold contact.

projection. However, the differences in the transmission functions increase,
if they are regarded at larger voltages. Consequently, the I-V characteristics
of both junctions differ significantly, as shown in Fig. 4.12. In particular, the
maximum current of the junction with the five layer contact is almost twice
as large, as the maximum current of the junction with the four layer contact.
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Figure 4.13: The extended molecule of a BDET-junction with two cuboid-
shaped gold clusters consisting of 38 gold atoms.

4.2.3 BDET between cuboid-shaped gold clusters

In order to investigate the influence of the gold-cluster geometry on the trans-
port features, we did studies with the same molecule (BDET) clamped be-
tween two gold-clusters of a cuboid shape. To build this geometry, we started
from the optimized 2-layer system mentioned in Sec. 3.4. Next, the number
of gold atoms in the second layer was increased from 5 to 12, and two more
(111) layers also consisting of 12 gold atoms were added, resulting in a metal
cluster of 38 gold atoms on each side (cf. Fig. 4.13). For better compari-
son with the above results, the same value was used for the Fermi energy
(εf=-5.15 eV). We note that, because of the strong voltage dependence of
the transmission function, different choices of the Fermi energy may lead to
I-V characteristics that differ significantly. The chosen normal modes and
projected molecular states are similar to those in Fig. 4.6. The charge of the
molecular unit for BDET between cuboids is - 0.053 e, which is twice as much
as in the system with the pyramidal contacts.

Fig. 4.14 shows the zero-voltage transmission probability as a function
of the hole energy of this system. A large difference, with respect to the
purely electronic transmission curve of the system with the pyramidal gold
contacts, is that the resonance due to state B is split into three peaks at -1.71,
-1.79 and -1.95 eV, while the eigenenergy of that peak lies 1.75 eV below the
Fermi energy. This is caused by the electrode-mediated interaction of state B
with both lower and higher lying states, which seems to be more pronounced
using this gold-cluster geometry. There is a small broad peak at +0.39 eV
due to two sulfur p-orbitals, which is not affected by vibronic coupling, as
the included normal modes show no motions of the sulfur atoms. At -2.17 eV
there is a narrow peak due to state A, which is located only 0.01 eV below
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Figure 4.14: Purely electronic (blue line) and vibronic (red line) total trans-
mission probability through a BDET molecular junction with a cuboid-
shaped contact geometry at zero voltage as a function of the initial energy of
the hole (relative to the Fermi energy). The two orbitals, denoted A and B,
dominate the transmittance at the indicated peaks. Only the relevant part
of the energy interval [-2.5:+2.5], corresponding to a voltage window of 5V,
is shown.

the eigenenergy of that orbital after projection. The coupling of states A and
B to the contacts is of comparable size as in the pyramidal gold geometry:
ΓAA(−2.17) = 4.0 · 10−4 eV (corresponding to a lifetime of τ = 1646 fs),
ΓBB(−1.98) = 6.5 · 10−2 eV (τ = 10 fs), and ΓBB(−1.71) = 1.1 · 10−1 eV
(τ = 6 fs).

In the transmission function based on a vibronic calculation the thin
peak due to state B is shifted to higher energies by 0.05 eV and shows peaks
at -1.72, -1.81, and -1.87 eV due to modes (a), (b), and (d) (cf. Fig. 4.6).
The broad peak at -1.98 eV and the small peak at -1.80 eV due to state B
are not significantly affected by vibronic coupling. In this system also the
000-transition and vibrational progressions of the peak due to state A are
visible. There are no accidental coincidences with transmission features of
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ω (cm−1) T (fs) κ(A) (meV) κ(B) (meV)
(a) 545.38 61 76 21
(b) 1195.46 28 51 68
(c) 1229.71 27 108 46
(d) 1674.61 20 134 163

Table 4.3: Frequencies, periods (T), and vibronic coupling parameters corre-
sponding to the two orbitals (A,B) and the four most important vibrational
modes of BDET between cuboid-shaped gold contacts.

other states, as there were in the system with the pyramidal contact geometry.
The 000-line due to state A appears at -2.03 eV and the (m)10 transition peaks
can be seen at -2.10, -2.17, -2.18, and -2.24 eV and are caused by normal
modes (a), (b), (c) and (d), respectively. As the vibronic coupling of mode
(a) (cf. Tab. 4.3) is almost equal in both the pyramidal and the cuboid system,
structures due to this mode can here only be seen because of smaller electronic
coupling.

Up to 3V the features in the current-voltage characteristic (Fig. 4.15)
arise from orbitals localized on the sulfur atoms themselves, or from their
interaction with orbital B. There is a rise in the purely electronic current
due to state B, which reaches a first plateau at 3.66V and rises again until it
reaches a maximum at 3.77V. This is due to the threefold peak structure of
the resonance due to this state. The following NDR is again due to decreasing
peak width and height at higher voltages. At 4.00V a minimum is reached,
then the current rises again, due to increasing peak height and width of the
transmission features of state B until at 4.21V for a small range the slope
increases again, indicating the contribution of state A.

When including vibronic coupling into the current calculation, the rise
due to state B occurs at smaller voltages than in the purely electronic curve,
as the 000 transition enters the voltage window earlier than the purely elec-
tronic resonance peak. The current reaches a maximum at 3.90V thereby
exceeding the maximum current without vibrations by 6.72µA and then de-
creases for the rest of the voltage window. The contributions of state B are
too small to be seen distinctly. In this case the NDR is not quenched by the
inclusion of vibronic coupling, probably due to larger electronic coupling.

The question arises how the vibronic current can be larger than that with-
out vibrations? The vibronic coupling increases the transmission probability
by shifting and splitting resonance peaks. Thus, they may reach positions
where the electronic coupling to the contacts, but also to other molecular
states via the contacts, is significantly different from the electronic interac-
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Figure 4.15: Current-voltage characteristic of BDET bound to cuboid-shaped
gold contacts. Shown are results of calculations with (red line) and without
(blue line) molecular vibrations. Only the part including transport due to
state A and B is shown.

tion at the initial position. Consequently, the transmission probability may
change and in this case increases.

To conclude this subsection we note that the geometry of the gold con-
tact does have a significant influence on the transport characteristics of the
molecular junction. Both the transmission and the current are influenced by
the obviously different coupling of molecular state B to the contact, while
state A is, at least in transmission, not much affected. The current is larger
by about a factor of two for the system with the cuboid gold contacts.
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Figure 4.16: BDBT between two pyramidal gold clusters consisting of 30
gold atoms.

4.2.4 Benzenedi(butanethiolate)

In order to further reduce the electronic coupling between the benzene-
ring and the gold cluster, and thus increase the lifetime of the electron
and vibronic effects, a model system with two butyl-bridges, p-benzene-
di(butanethiolate) (BDBT) was studied (Fig. 4.16). This system was only
investigated with the pyramidal cluster geometry. The transmission function
can be well described using only 6 electronic states. These comprise two
states similar to states A and B in BDET, and four sulfur p-orbitals.

BDBT has 54 totally symmetric normal modes. Those four with the
largest effective vibronic coupling (Fig. 4.17) were chosen to be included in
the calculation. They are similar to the normal modes in BDET: a C-C-C
bending mode (a), a C-C-H bending mode (b), a combined C-C-C/C-C-H
bending mode, and a combined C-C stretching/C-C-H bending mode (d).

The projected orbitals A and B are similar to the HOMO-3 and HOMO-2
of the isolated molecule and lie -1.55 and -1.17 eV below the Fermi energy,
respectively. The Fermi energy in this system was approximately -5.16 eV.
After projection the states A and B have energies -1.77 and -1.38 eV, re-
spectively, which means that both states were shifted to lower energies. The
HOMO-1 and HOMO of the isolated molecule are quasi-degenerate, mostly
localized on the sulfur atoms and resemble two of the projected sulfur orbitals
(those at larger energy). The charge of the molecular unit, as determined by
a population analysis is - 0.041 e.

The purely electronic zero-voltage transmission, depicted in Fig. 4.18,
shows two narrow peaks at -1.78 and -1.39 eV. These peaks are due to states
A and B, which couple to gold with coupling strengths of ΓAA(−1.78) =
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Figure 4.17: Normal modes of BDBT included in the calculation.
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Figure 4.18: Purely electronic (blue line) and vibronic (red line) total trans-
mission probability through a BDBT molecular junction at zero voltage as a
function of the initial energy of the hole (relative to the Fermi energy). The
two orbitals, denoted A and B, dominate the transmittance at the indicated
peaks. Only the relevant part of the energy interval [-2.5:+2.5], correspond-
ing to a voltage window of 5V, is shown.
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ω (cm−1) T (fs) κ(A) (meV) κ(B) (meV)
(a) 566.12 59 69 29
(b) 1198.40 28 52 73
(c) 1232.90 27 114 56
(d) 1676.10 20 132 170

Table 4.4: Frequencies and periods (T) of the four most important vibrational
modes of BDBT as well as gradients of these modes for the two orbitals (A,B)
dominating conduction.

1.0 · 10−3 eV (τ = 659 fs) and ΓBB(−1.39) = 5.4 · 10−4 eV (τ = 1220 fs),
respectively. Due to the small coupling, these states exhibit negligible level
shift.

If vibronic coupling is included, the peak due to state B becomes shifted
to -1.27 eV, while the 000 transition of the peak due to orbital A appears at
-1.65 eV. Both peaks show pronounced vibrational progressions, whose posi-
tions are arranged in Tab. 4.5. The individual peak heights correspond to the
respective Franck-Condon factors (vibronic coupling parameters). For exam-
ple, the peak due to single excitation of mode (d) in orbital B is larger than
all the other single excitation peaks. Also, for orbital B the (c)10 transition
of mode is much smaller than the corresponding transition of mode (b). For
orbital A this situation is reversed.

orbital A mode (a) mode (b) mode (c) mode (d)
(m)10 -1.72 -1.80 -1.85
(m)20 -1.79 -1.93 -2.07

orbital B mode (a) mode (b) mode (c) mode (d)
(m)10 -1.35 -1.42 -1.43 -1.48
(m)20 -1.56 -1.71

Table 4.5: The positions (in eV) of the vibronic transitions in the transmis-
sion function of BDBT. Blank entries correspond to transitions that can not
be seen, because of too small vibronic coupling.

The purely electronic current curve (blue line in Fig. 4.19) shows a small
rise up to 2.0V and a first step at 2.06V, which would not be expected from
the zero-voltage transmission. Both features are due to the sulfur p-states,
which cause a small, but very broad peak around the Fermi level and a small,
narrow peak at -1.07 eV, which can be seen in the transmission probability
calculated at 2V (inset in Fig. 4.20), but not in the zero-voltage transmission.

55



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

I (
µA

)

U (V)

Figure 4.19: Current-voltage characteristic of BDBT. Shown are results of
calculations with (red line) and without (blue line) molecular vibrations.

When comparing the transmission probabilities at equilibrium and at 2V, it
can also be seen that the height of the two peaks caused by orbitals A and
B is smaller at 2V than at 0V.

In the I-V curve two steps follow at 2.76 and 3.56V, which are due to
orbitals B and A, respectively. As in the other model systems, NDR is
visible after the last step, which is again due to decreasing height of the
peaks due to states B and A with further increasing voltage. In the vibronic
current the step at 2.06V is also present, confirming that this step must be
due to orbitals that do not couple to vibrations. Furthermore, a number
of additional steplike structures appear which can be assigned to excitation
of the different vibrational modes in states A and B. The most pronounced
features are analyzed in Table 4.6. The NDR following the last step still
exists but is significantly smaller compared to the purely electronic case.
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Figure 4.20: Purely electronic transmission probability of BDBT at equilib-
rium (red line) and at 2V (blue line).

000 (a)10 (b)10 (c)10 (d)10 (d)20
orbital A 3.27 3.42 3.57 3.57 3.73
orbital B 2.55 2.68 2.85 2.85 2.95 3.42

Table 4.6: The positions (in V) of the vibronic transitions in the I-V curve of
BDBT. Blank entries correspond to transitions that can not be seen, because
of too small vibronic coupling.
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4.3 Surface self-energy models

As was discussed in Sec. 3.2 and AppendixA, the influence of the semi-infinite
solid on the contacts is described by the surface self-energy (of a (111) gold
surface). In this section we will discuss the influence of different surface self-
energy models on the transport characteristics of molecular junctions. As an
example we will consider transmission through the BDT junction presented
in Sec. 4.2.1 without vibronic interactions.

In a frequently employed model for the surface self-energy Σsf , a diagonal
matrix containing a purely imaginary value σ is added to the diagonal Kohn-
Sham matrix elements belonging to the gold atoms of the outermost gold
layer (cf. Eq. (3.11)) [65, 37]. In this model we neglect that s-, p-, and
d-orbitals might be influenced differently by the interaction with a semi-
infinite solid, and coupling elements between orbitals of the same atom but
also between different atoms are assumed not be influenced.
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Figure 4.21: The purely electronic transmission probability through BDT,
when using σ values of 1 eV (black line), 3 eV (red line), and 5 eV (blue line).
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In Fig. 4.21 the purely electronic transmission probability through BDT
is shown for three different values of the surface self-energy parameter. It can
be seen that the peaks due to states A (-2.61 eV) and B (-2.06 eV) are almost
independent of this parameter, while the peak due to orbital C (-1.25 eV)
increases in width with increasing self-energy. This is probably due to the
smaller electronic coupling of states A and B to the contacts (cf. Sec. 4.2.1).
The peak at the Fermi level becomes flatter and vanishes at large self-energy
values.

To optimize the value of this self energy parameter, we investigated two
linear tight-binding models. These models consisted of a single electronic
state on the molecule, which was coupled to an infinite and a finite linear gold
chain, respectively. The transmission through the model with the infinite
linear gold chain was calculated exactly while an imaginary part was added to
the elements of the outer sites of the finite linear gold chain. The transmission
through this model system was calculated at different self-energy values.
The number that yielded the smallest least-mean-squares error was taken
in the calculation of the quantum-chemical system, its value was 0.93 eV.
All parameters in the tight-binding model were taken to be similar to the
parameters delivered by the quantum chemistry model.

An indication that this single parameter self-energy model is not suffi-
cient, can be deduced from Fig. 4.22, where the purely electronic transmission
probability through BDT is shown for the same self-energy value (0.93 eV),
but for different locations of the boundary between molecule and contact in
the partitioning of the molecular junction.

When separating the extended molecule into molecule and contact part,
all gold atoms are allocated to the latter, while all remaining atoms belong
to the molecular space. Fig. 4.22 shows data where two or seven gold atoms
on both sides of the molecule are additionally included into the molecular
space, respectively. It can be seen that the peak around εf strongly depends
on the projection boundary. Its transmission probability rises from 0.37,
when using the conventional projection boundary, to 0.63, when including
2x2 gold atoms of the first layer in molecular space, to 0.87, when including
both 2x2 gold atoms of the first and 2x5 gold atoms of the second layer
in molecular space. The other peaks, which could be assigned uniquely to
molecular orbitals, depend only weakly on this projection boundary.

The transmission functions in Fig. 4.22 were calculated including all elec-
tronic states in molecular space for comparability. In principle, the trans-
mission features should be independent of the partitioning of the molecular
junction.

Another popular surface self-energy model is based on a tight-binding
calculation of the semi-infinite gold (111) crystal. This model was employed
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Figure 4.22: The purely electronic transmission probability through BDT. A
single imaginary self-energy parameter of 0.93 eV and different partitioning
boundary were used: border between S and the two gold atoms of the first
layer (black line), border between the first and the second gold layer (red
line), and border between the second and the third gold layer (blue line).

in the calculations presented in Sec. 4.2. The self-energy was obtained calcu-
lating the surface Green’s function [54] for the semi-infinite electrode using
a DFT-parameterized tight-binding model for gold. This model neglects
self-energy contributions to coupling elements between different gold atoms
in the outermost gold layer. The surface self-energy matrix for the second
outer gold-layer, was small enough to be neglected.

The transmission probability through BDT for different projection bound-
aries is shown in Fig. 4.23. The peak at the Fermi level is still present, but
its dependence on the projection boundary is much weaker, and the peaks
themselves are not as large as in Fig. 4.22. From a transmission probability
of 0.23 for the conventional projection boundary, the peak maximum rises to
0.31 for 2x2 additional gold atoms, and 0.35 if 2x7 gold atoms are included
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Figure 4.23: The purely electronic transmission probability through BDT,
when using different projection boundaries: boundary between S and the two
gold atoms of the first layer (black line), boundary between the first and the
second gold layer (red line), and boundary between the second and the third
gold layer (blue line). The surface self-energy from a tight-binding model of
the semi-infinite gold solid was used.

in molecular space. When comparing the remaining features in the transmis-
sion functions obtained with the two different surface self-energy models, we
notice that the three peaks in Fig. 4.21 are slightly shifted to the left and now
appear at -2.67 (orbital A), -2.18 (B), and -1.48 eV (C). An additional peak
at -2.50 eV appeared, which is also due to orbital (B), and also the features
below -2.70 eV are different for the two employed self-energy models.

We conclude, that the influence of different surface self-energy models on
the transmission features through the BDT molecular junction is significant.
It leads to a shift and splitting of resonance peaks and strongly determines
the intensity of the peak at the Fermi level. When testing the surface self-
energy model systems with respect to different projection boundaries, the
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tight-binding model gives a significantly better description than the single
parameter model.

4.4 Summary

In this chapter we investigated the transport characteristics of molecular
junctions using a scattering theory formalism. The central quantity in this
approach is the multi-channel transmission probability, from which we obtain
the current via a generalized Landauer formula.

We applied the scattering formalism to four different model junctions:
Benzenedithiolate, benzenedi(ethanethiolate), and benzenedi(buthanethiol-
ate) with pyramidal gold contacts, as well as benzenedi(ethanethiolate) with
cuboid-shaped gold contacts. These three molecules differ in the length of the
spacer group that separates the benzene ring from the contacts. Expectedly,
the overall current decreased, the longer the spacer group, which is in accord
with experimental studies of BDT and benzenedi(methanethiolate) [66]. We
found that the transport characteristics around the Fermi energy can be
assigned to a small number of molecular orbitals. There is strong interaction
between orbitals located on the benzene ring and orbitals located on the
sulfur atoms of the thiolate group, which is mediated by the metal contacts.
For BDET, we investigated the influence of different gold contact geometries
and found that cuboid-shaped and pyramidal gold clusters lead to different
transport characteristics of the molecular junction. For all four molecular
junctions we observed negative differential resistance, which we attributed
to the voltage dependence of the self-energy that describes the effect of the
electrodes on the molecule.

The main focus of this chapter, however, was on the investigation of
vibronic effects on molecular conductance. The results show that due to
electronic-vibrational coupling resonance structures (peaks and steps) are
shifted to the extent of the reorganization energy and they are split into
several substructures whose individual amplitudes are determined by the
respective Franck-Condon factor. We found that several time and energy
scales have to be considered simultaneously in order to understand the extent
of vibronic coupling. As a rule, vibronic effects increase with increasing
vibronic coupling between orbitals and normal mode vibrations and they
decrease with decreasing lifetime of the electron (hole) in these orbitals. The
latter is determined by electronic coupling between molecular orbitals and
electronic states in the electrodes. Furthermore, vibronic effects are more
pronounced the larger the lifetime of the electron (hole) on the molecule
with respect to the period of the normal mode vibrational. As a result,
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vibronic features are less pronounced for BDT than for BDET, and smaller
for BDET than for BDBT.

To conclude this chapter we discuss related work. While we used the scat-
tering formalism to describe inelastic transport in the electronically resonant
regime, scattering theory can also be used to describe inelastic tunneling in
the off-resonant region. To this end, the molecular Green’s function, rather
than the Hamiltonian, is expanded to first order in the vibronic interaction
[67], and the involved matrices are of the dimension of the molecular, elec-
tronic subsystem. In contrast to our method, for a given Hamiltonian, this is
a perturbative treatment of the vibronic coupling and only single vibrational
excitations can be described. Using this technique the experimental spectra
in Ref. [32] could be reproduced [68]. Within scattering theory IETS spectra
can also be simulated by expanding the system’s wavefunctions to first order
in the nuclear coordinates [59].

An effect that is closely related to vibrational excitation in molecular
junctions is heat generation. Heating of a BDT-junction and a single gold-
atom contact due to vibrational excitation was investigated in Ref. [69] using
a first-order perturbation expansion in the vibronic coupling within a scat-
tering theory approach. The authors found that much more heat is generated
in single atom junctions than in single molecule junctions, as the latter con-
stitute a much larger resistance. Using a similar approach, the same authors
demonstrated the dependence of the inelastic, low-voltage conductance on
the contact geometry [70] by binding BDT to two gold clusters or a sin-
gle gold cluster, respectively. Finally, in Ref. [71] a time-dependent scatter-
ing approach was used to investigate processes like molecule desorption or
molecular reactions in a STM configuration, where the final scattering state
is non-bonded.
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Chapter 5

Density Matrix Theory

Density Matrix Theory is a formulation of quantum mechanics, in which
a quantum mechanical system is not described by a single wavefunction,
but by a density operator. This density operator is, in general, a sum of
projection operators onto different quantum mechanical states, weighted by
the probability with which the state is occupied by the system [72],

R̂ =
∑

s

ws |Ψs〉〈Ψs| . (5.1)

If all but one ws are zero, the system is in a pure state, otherwise it is in a
mixed state.

In this chapter we will present a transport formalism that is based on
the density matrix reduced onto the molecular space. In the first part, we
derive the rate equations for the transitions from electrode to molecule and
vice versa, and we deduce an expression for the current. In the second part,
the density matrix formalism is applied to the BDBT molecular junction.

5.1 Density Matrix Formalism

5.1.1 Density Operator

In the framework of density matrices the expectation value of the current
through electrode α, α being either L or R, is given by

Iα = e 〈Îα(t)〉 = e trB+S

{

R̂(t)Îα

}

, (5.2)

where R̂(t) is the density operator of the total system, Î is the current oper-
ator, and the trace is taken over all degrees of freedom (DOF), i.e. electronic

64



and vibrational states of the molecule (S) and the bath (B). In the appli-
cations considered here, the bath corresponds to the electronic states in the
left and right electrodes (B = L+R).

The current operator is the time derivative of the number operator N̂ of
the respective electrode,

Îα =
dN̂α

dt
=

i

h̄

[

H, N̂α

]

, N̂α = 2
∑

k∈α
c†kck , (5.3)

where the factor two accounts for spin degeneracy. Taking the time derivative
results in the evaluation of the commutator of the number operator with the
Hamiltonian of the total system.

The time-evolution of the total density operator is given by the Liouville-
vonNeumann equation

∂

∂t
R̂(t) = Ṙ(t) = − i

h̄

[

H, R̂(t)
]

= −iLR̂(t) ,

where Liouville-space notation was introduced, LÔ = 1
h̄
[H, Ô], with Ô being

some arbitrary operator.
As the density operator of the total molecular junction, R̂(t), is a consid-

erably large quantity, we will express the current and the time-evolution in
terms of the reduced density operator ρ(t),

ρ(t) = trB

{

R̂(t)
}

,

where the trace is taken over the bath (i.e. the electrodes) DOF.

5.1.2 Derivation of the Equation of Motion

The time-evolution of the reduced density operator is given by [73]

ρ̇(t) = ρ̇(t)coh + ρ̇(t)diss = − i
h̄
[HS, ρ(t)]−

i

h̄
trB

{[

V, R̂(t)
]}

, (5.4)

where the first term describes the coherent evolution of ρ and the second
term describes its dissipation caused by the interaction (V ) of the molecular
system with the contacts.

In order to remove the total density operator in the dissipation term
and to obtain a closed equation for ρ(t), projection operators P and Q are
introduced. In contrast to the projection operators introduced in the previous
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chapters, which were defined in Hilbert space, P and Q here are defined in
Liouville space. P is given by its effect on an arbitrary operator Ô,

P Ô = Beq trB

{

Ô
}

. (5.5)

For R̂(t) this gives
PR̂(t) = Beq ρ(t), (5.6)

i.e. P factorizes the total density operator in a density operator of the elec-
trodes at equilibrium and the reduced density operator, ρ(t). The equilibrium
density operator of the electrodes is (β = (k T )−1)

Beq = Z−1B exp

{

−β
∑

k∈α
(Ek − µα)c†kck

}

,

where ZB is the partition function of the electrodes in the grand-canonical
ensemble,

ZB = trB

[

exp

{

−β
∑

k∈α
(Ek − µα)c†kck

}]

.

Introducing the sum of projection operators, P + Q = 1, into the dissi-
pative part of Eq. (5.4) gives

ρ̇(t)diss = − i
h̄
trB

{[

V, P R̂(t) +QR̂(t)
]}

= − i
h̄
trB

{

[V,Beqρ(t)] +
[

V,QR̂(t)
]}

. (5.7)

The first commutator vanishes upon taking the trace, because the interaction
Hamiltonian V is linear in the electrode operators. Using Liouville-space
notation the right part of Eq. (5.7) can be written more compactly

ρ̇(t)diss = −i trB
{

LVQR̂(t)
}

. (5.8)

where LV Ô = 1
h̄
[V, Ô].

In order to evaluate this term, the equation of motion (EOM) for R̂(t) is
rewritten,

∂

∂t
R̂(t) = −iLR̂(t) = −iLQR̂(t)− iLPR̂(t)

= −iLQR̂(t)− iLBeqρ(t) .

66



This is a first order inhomogeneous differential equation that can be formally
solved to give

R̂(t) = e−iLQ(t−t0)R̂(t0)− i
∫ t

t0

dt1e
−iLQ(t−t1)LBeqρ(t1) . (5.9)

The first term of Eq. (5.9), when multiplied by Q, vanishes, if at time t0 there
are no initial correlations between the electrodes and the molecule. Inserting
Eq. (5.9) into Eq. (5.8) gives

ρ̇(t)diss = −
∫ t

t0

dt1trB
{

LVQe−iLQ(t−t1)LBeqρ(t1)
}

= −
∫ t

t0

dt1trB
{

LV e−iQL(t−t1)QLBeqρ(t1)
}

= −
∫ t

t0

dt1trB
{

LV e−iQL(t−t1)(1− P ) (LS + LV + LB)Beqρ(t1)
}

.

Of the term (1 − P ) (LS + LV + LB)Beqρ(t1) all terms except LVBeqρ(t1)
vanish. If the treatment is restricted to second (i.e. first non-vanishing) order
perturbation theory in the electrode-molecule interaction (V ), the Liouville
operator in the exponent L = LS+LV +LB is approximated by L ≈ LS+LB.
In the exponent it can then also be shown, that the term including P vanishes,
which gives

ρ̇(t)diss = −
∫ t

t0

dt1trB
{

LV e−i(1−P )(LS+LB)(t−t1)LVBeqρ(t1)
}

= −
∫ t

t0

dt1trB
{

LV e−i(LS+LB)(t−t1)LVBeqρ(t1)
}

= −
∫ t

t0

dt1trB

{

LVLV (t− t1)Beqe
− i
h̄
HS(t−t1)ρ(t1)e

+ i
h̄
HS(t−t1)

}

. (5.10)

Here it was used that Beq commutes with both LS and LB, while ρ(t) only
commutes with HB, and the time-dependence of V (t− t1) was defined as

V (t− t1) = e−
i
h̄
(HS+HB)(t−t1)V e+

i
h̄
(HS+HB)(t−t1) .

The EOM for ρ(t) in the form of Eq. (5.10) corresponds to an integro-differential
equation, that is referred to as the ‘second order Born approximation’. To
obtain a simple differential equation, the integration variable is substituted
by τ = t− t1

ρ̇(t)diss = −
∫ t−t0

0

dτ trB

{

LVLV (τ)Beqe
− i
h̄
HSτρ(t− τ)e+ i

h̄
HSτ
}

,
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and the Markov-approximation

e−
i
h̄
HSτρ(t− τ)e+ i

h̄
HSτ ≈ ρ(t) ,

is invoked. Physically the Markov approximation implies that memory effects
are neglected, i.e. the system at time t is not influenced by its evolution at
times earlier than t. The EOM for the reduced density operator in the
Markov approximation has the form

ρ̇(t) = − i
h̄
[HS, ρ(t)]−

∫ t−t0

0

dτ trB {LVLV (τ)Beqρ(t)} .

If the bath-correlation functions decay fast enough, the integrand vanishes
at times earlier than t− t0 and the upper integration boundary can be taken
to infinity. This yields the Redfield equation, which is characterized by t-
independent transition rates,

ρ̇(t) = − i
h̄
[HS, ρ(t)]−

∫ ∞

0

dτ trB {LVLV (τ)Beqρ(t)} .

We are interested in the steady state situation, which is established in
the limit t→∞ and at which the reduced density matrix is constant in time
ρ̇ = 0. Writing the commutators explicitly and using the notation,

lim
t→∞

ρ(t) = ρ∞ ,

we obtain the equation for the stationary density operator,

− i
h̄
[HS, ρ∞]−

1

h̄2

∫ ∞

0

dτ trB {[V, [V (τ), Beqρ∞]]} = 0 . (5.11)

Next the expression for the current, Eq. (5.2), is written in terms of the
reduced density operator,

Iα = e trB+S

{

R̂(t)Îα

}

= e trB+S

{

PR̂(t)Îα

}

+ e trB+S

{

QR̂(t)Îα

}

= e trB+S

{

Beqρ(t)Îα

}

+ e trB+S

{

QR̂(t)Îα

}

= e trB+S

{

QR̂(t)Îα

}

.

The term including P vanishes, because the current operator is linear in the
electrode DOF. The expression for QR̂(t) can be extracted from Eq. (5.11),
which gives the current in terms of the reduced density operator

Iα = −i e
h̄

∫ ∞

0

dτ trB+S

{[

V (τ), Beqρ∞Îα

]}

. (5.12)
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5.1.3 Polaron transformation of the Hamiltonian

The many-particle Hamiltonian (Eqs. 3.8) contains the interaction terms V
and Hne. In order to obtain an expression that contains only one interaction
term, which will be treated by perturbation theory, the Hamiltonian will be
transformed, H̃ = eSHe−S. The transformation S is chosen such, that there
is no vibronic coupling term in the new Hamiltonian H̃. This is the case if
(from now on atomic units, where h̄ = 1, e = 1, will be used)

S =
∑

j,l

κ
(j)
l√
2ω

(

a†l − al
)

c†jcj (electron transport) ,

S =
∑

j,l

κ
(j)
l√
2ω

(

a†l − al
)

cjc
†
j (hole transport) .

The transformation is performed with the help of its series expansion

H̃ = eSHe−S = H + [S,H] +
1

2!
[S, [S,H]] + · · · , (5.13)

which gives

H̃ = H̃0 + Ṽ ,

H̃0 = H̃S + H̃B ,

H̃S =
∑

l

ωla
†
lal +

∑

j∈M
Ẽjc

†
jcj +

∑

l,j,j′

κ
(j)
l κ

(j′)
l

2ωl
c†jc
†
j′cjcj′ , (5.14)

H̃B =
∑

k∈L,R
Ekc

†
kck ,

Ṽ =
∑

j∈M

∑

k∈L,R

(

VjkXjc
†
jck + VkjX

†
j cjc

†
k

)

,

where constant terms, which do not contribute to dynamics, were skipped,
so that Eq. 5.14 describes both electron and hole transport. The molecular
orbital energy was renormalized by the reorganization energy (also called the
polaron shift)

Ẽj = Ej −
∑

l

(

κ
(j)
l

)2

2ωl
(e. t.) , (5.15)

Ẽj = Ej +
∑

l

(

κ
(j)
l

)2

2ωl
(h. t.) . (5.16)
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The operator Xj is given by the expression

Xj = e
−i
P

l

κ
(j)
l
ωl

pl = e
P

l

κ
(j)
l√
2ωl

(a†l−al), (5.17)

where pl =
i√
2

(

a†l − al
)

is the dimensionless nuclear momentum of normal

mode l. The last term in Eqs. 5.14 is neglected, ignoring processes where two
electrons (holes) are simultaneously created on the molecule.

5.1.4 Solving the Equation of Motion

In this section, we will express the generic EOM in Eq. (5.11) in terms of the
Hamiltonian derived in Sec. 5.1.3 and we will transform the operator equation
into a system of linear equations by taking the matrix elements with respect
to the vibrational and electronic molecular states. Using the Hamiltonian of
Sec. 5.1.3 the expression for the time-dependent interaction operator becomes

Ṽ (τ) = e−iH̃0τ Ṽ e+iH̃0τ

=
∑

k′∈L,R

∑

j′∈M

(

Vj′k′e
−i(Ẽj′−Ek′)τXj′(τ)c

†
j′ck′

+Vk′j′e
+i(Ẽj′−Ek′)τX†j′(τ)cj′c

†
k′

)

, (5.18)

where Xj′(τ) = e−i
P

l ωla
†
l alτXj′e

+i
P

l ωla
†
l alτ . The current operator, Eq. (5.3),

takes the form

Îα = i
[

H̃, N̂α

]

= 2 i
∑

j,k∈α

(

VjkXjc
†
jck − VkjX†j cjc†k

)

. (5.19)

Using Eq. (5.11), expanding the commutator, and exploiting the Hermiticity
of the operators we obtain

0 = −i
[

H̃S, ρ∞

]

−
∫ ∞

0

dτ trB

{

Ṽ Ṽ (τ)Beqρ∞ − Ṽ Beqρ∞Ṽ (τ) + h.c.
}

.

The multiplication of Ṽ by Ṽ (τ) yields four terms. If the trace with respect
to the electrode DOF is taken, those terms including ckck′Beq and c†kc

†
k′Beq

vanish. The other two terms give

trB

{

c†kck′Beq

}

= δkk′f(Ek − µα),

trB

{

ckc
†
k′Beq

}

= δkk′ (1− f(Ek − µα)) ,
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where f is the Fermi distribution function. Thus we obtain

0 = −i
[

H̃S, ρ∞

]

−
∫ ∞

0

dτ
∑

j,j′∈M

∑

k∈L,R

(

D† +D
)

, (5.20)

D = VjkVkj′e
+i(Ẽj′−Ek)τXjX

†
j′(τ)c

†
jcj′ρ∞ (1− f(Ek − µα))

+Vj′kVkje
−i(Ẽj′−Ek)τX†jXj′(τ)cjc

†
j′ρ∞f(Ek − µα)

−VjkVkj′e+i(Ẽj′−Ek)τXjc
†
jρ∞cj′X

†
j′(τ)f(Ek − µα)

−Vj′kVkje−i(Ẽj′−Ek)τX†j cjρ∞c†j′Xj′(τ) (1− f(Ek − µα)) .

In the next step, we derive the representation of the operator Eq. (5.20) in a
vibrational basis. To this end, Eq. (5.20) is multiplied by 〈ν1| from the left
and |ν2〉 from the right, and the completeness relation,

∑

i |νi〉〈νi| = 1, is
inserted twice,

0 = −i
〈

ν1

∣

∣

∣

[

H̃S, ρ∞

]∣

∣

∣
ν2

〉

−
∫ ∞

0

dτ
∑

j,j′∈M

∑

k∈L,R

∑

ν3,ν4

[〈

ν1

∣

∣D†
∣

∣

ν2

〉

+ 〈ν1 |D| ν2〉
]

(5.21)

〈ν1 |D| ν2〉 =
VjkVkj′e

+i(Ẽj′−Ek)τ 〈ν1|Xj|ν3〉〈ν3|X†j′(τ)|ν4〉〈ν4|c†jcj′ρ∞|ν2〉 (1− f(Ek − µα))
+Vj′kVkje

−i(Ẽj′−Ek)τ 〈ν1|X†j |ν3〉〈ν3|Xj′(τ)|ν4〉〈ν4|cjc†j′ρ∞|ν2〉f(Ek − µα)
−VjkVkj′e+i(Ẽj′−Ek)τ 〈ν1|Xj|ν3〉〈ν3|c†jρ∞cj′ |ν4〉〈ν4|X†j′(τ)|ν2〉f(Ek − µα)
−Vj′kVkje−i(Ẽj′−Ek)τ 〈ν1|X†j |ν3〉〈ν3|cjρ∞c†j′ |ν4〉〈ν4|Xj′(τ)|ν2〉 (1− f(Ek − µα)) .

The term 〈νi|Xj|νi′〉 is the product of Franck-Condon factors of various
modes

〈νi|Xj|νi′〉 =
〈

νi

∣

∣

∣

∣

∣

∏

l

e
κ
(j)
l√
2ωl

(a†l−al)
∣

∣

∣

∣

∣

νi′

〉

=
∏

l

〈

ν
(i)
l

∣

∣

∣X
(j)
l

∣

∣

∣ ν
(i′)
l

〉

.

Here it was used, that the total vibrational wave function factorizes into
the functions of the single modes, |ν i〉 =

∏

l |ν
(i)
l 〉, where ν

(i)
l is the quantum

number of normal mode l in vibrational state i. Furthermore the abbreviation

X
(j)
l = e

κ
(j)
l√
2ωl

(a†l−al)
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was used. The Franck-Condon factors of the individual modes are given by:

〈ν ′|X(j)
l |ν〉 =































ν
∑

h=0

(

−κ(j)
2

2ω2

)h (
κ(j)√
2ω

)ν′−ν √
ν!ν ′!

h! (ν ′ − ν + h)! (ν − h)! e−
κ(j)

2

4ω2 if ν ′ ≥ ν

ν′
∑

h=0

(

−κ(j)
2

2ω2

)h (

− κ(j)√
2ω

)ν−ν′√
ν!ν ′!

h! (ν − ν ′ + h)! (ν ′ − h)! e−
κ(j)

2

4ω2 if ν ≥ ν ′

(5.22)

For the time-dependent Xj-operator one obtains

〈νi|Xj(τ)|νi′〉 = 〈νi|Xj|νi′〉e
−i
P

l ωl

„

ν
(i)
l −ν

(i′)
l

«

.

Introducing the abbreviation 〈ν i|Xj|νi′〉 = X ii′
j , and using the relation

〈ν ′|X(j)†

l |ν〉 = 〈ν|X
(j)
l |ν ′〉 Eq. (5.21) becomes

0 = −i
〈

ν1

∣

∣

∣

[

H̃S, ρ∞

]∣

∣

∣ ν2

〉

−
∑

j,j′∈M

∑

k∈L,R

∑

ν3,ν4

[〈

ν1

∣

∣D†
∣

∣

ν2

〉

+ 〈ν1 |D| ν2〉
]

(5.23)

〈ν1 |D| ν2〉 = σ34jj′X
13
j X

43
j′ 〈ν4|c†jcj′ρ∞|ν2〉 (1− f(Ek − µα))

+σ34
∗

jj′ X
31
j X

34
j′ 〈ν4|cjc†j′ρ∞|ν2〉f(Ek − µα)

−σ42jj′X13
j X

24
j′ 〈ν3|c†jρ∞cj′ |ν4〉f(Ek − µα)

−σ42∗jj′ X
31
j X

42
j′ 〈ν3|cjρ∞c†j′ |ν4〉 (1− f(Ek − µα)) .

Here we used the abbreviation

σll
′

jj′ = VjkVkj′

∫ ∞

0

dτe
+i

„

Ẽj′−Ek+
P

l ωl

„

ν
(l)
l −ν

(l′)
l

««

τ
. (5.24)

In order to convert Eq. (5.23) into a matrix equation, we also introduce
electronic many-particle basis states |Ψ〉, and multiply Eq. (5.23) by 〈Ψ1|
from the left and |Ψ2〉 from the right,

0 = −i
〈

Ψ1

∣

∣

∣

〈

ν1

∣

∣

∣

[

H̃S, ρ∞

]∣

∣

∣ ν2

〉∣

∣

∣Ψ2

〉

−
∑

j,j′∈M

∑

k∈L,R

∑

ν3,ν4

[〈

Ψ1

∣

∣

〈

ν1

∣

∣D†
∣

∣

ν2

〉∣

∣Ψ2

〉

+ 〈Ψ1 |〈ν1 |D| ν2〉|Ψ2〉
]

〈Ψ1 |〈ν1 |D| ν2〉|Ψ2〉 = σ34jj′X
13
j X

43
j′ 〈Ψ1|〈ν4|c†jcj′ρ∞|ν2〉|Ψ2〉 (1− f(Ek − µα))

+σ34
∗

jj′ X
31
j X

34
j′ 〈Ψ1|〈ν4|cjc†j′ρ∞|ν2〉|Ψ2〉f(Ek − µα)

−σ42jj′X13
j X

24
j′ 〈Ψ1|〈ν3|c†jρ∞cj′ |ν4〉|Ψ2〉f(Ek − µα)

−σ42∗jj′ X
31
j X

42
j′ 〈Ψ1|〈ν3|cjρ∞c†j′ |ν4〉|Ψ2〉 (1− f(Ek − µα)) .
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This produces a homogeneous system of linear equations, Cx = 0, where
C is the coefficient matrix containing the transition rates and the vector
x contains the density matrix elements, 〈Ψj |〈ν l |ρ∞| ν l′〉|Ψj′〉, in a column.
The system of equations is solved under the condition that tr{ρ∞} = 1.

The integral over τ in Eq. (5.24)can be rewritten using the relation [74]

∫ ∞

0

dτe±iετ = ±iPV
(

1

ε

)

+ πδ(ε) , (5.25)

where PV denotes the Cauchy Principal Value integral and δ is the Dirac-
δ-function. In this form the similarity between the transition rates in the
EOM and the exact definition of the matrix elements of the width function
Γ and the level shift ∆ is evident,

Γ(E)jj′ = 2π
∑

k

VjkVkj′δ(E − Ek) ,

∆(E)jj′ =
1

2π
PV

∫

dE ′
Γ(E ′)jj′

E − E ′ .

However, matters become more complicated by the appearance of the Fermi
functions.

It should be noted that in the presence of vibronic coupling the EOM for
the many-particle density operator ρ can no longer be expressed in terms of
its single-particle pendant, which makes a compact notation of the transition
rates difficult. An approximate reduction scheme is proposed in [75] but
complicates matters by introducing nonlinearities in the system of equations.
When choosing the number of orbitals included in the actual calculation,
it should be noted that the number of electronic many-particle states N
increases with the nth power of 2, N = 2n, where n is the number of single-
particle states.

5.1.5 Expression for the Current

Starting from Eq. (5.12), we will derive an expression for the current through
electrode α for the Hamiltonian derived in Sec. 5.1.3. First, we will expand
the commutator in Eq. (5.12) and exploit the fact, that the two terms in the
trace are the Hermitian conjugates of each other,

Iα = −i
∫ ∞

0

dτ
[

trB+S

{

Ṽ (τ)Beqρ∞Îα

}

−
(

trB+S

{

Ṽ (τ)Beqρ∞Îα

})∗]

= −2 i=
[∫ ∞

0

dτ trB+S

{

Ṽ (τ)Beqρ∞Îα

}

]

. (5.26)
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Inserting the expressions for Ṽ (τ) and Îα (Eqs. (5.18) and (5.19)) and
taking the trace with respect to the electrode DOF we obtain,

Iα = 4<
[

∫ ∞

0

dτ
∑

j,j′∈M

∑

k∈α

VjkVkj′e
+i(Ẽj′−Ek)τ trS

{

XjX
†
j′(τ)c

†
jcj′ρ∞

}

(1− f(Ek − µα))

−Vj′kVkje−i(Ẽj′−Ek)τ trS
{

X†jXj′(τ)cjc
†
j′ρ∞

}

f(Ek − µα)
]

. (5.27)

Next, the trace with respect to the vibrational and electronic DOF of the
molecule has to be taken. The completeness relation of the vibrational states
is inserted twice. This gives

Iα = 4<
[

∑

j,j′,i∈M

∑

k∈α

∑

ν1,ν2,ν3

(1− f(Ek − µα))σ32jj′X12
j X

23
j′ 〈Ψi|〈ν3|c†jcj′ρ∞|ν1〉|Ψi〉

− f(Ek − µα) σ23
∗

jj′ X
12
j X

23
j′ 〈Ψi|〈ν3|cjc†j′ρ∞|ν1〉|Ψi〉

]

, (5.28)

where the sum over i extends over all electronic many-particle states.

5.1.6 Electronic single level system without vibronic
coupling

In this section, we will present the rate and current equations of a purely
electronic single level system without vibronic coupling. This serves as a
simple illustration of the rather complex equations derived in the previous
sections and enables a formal comparison with scattering theory.

The purely electronic equation of motion is given by

0 = −i [HS, ρ∞]−
∫ ∞

0

dτ
∑

j,j′∈M

∑

k∈L,R

[

(5.29)

VjkVkj′e
+i(Ej′−Ek)τc†jcj′ρ∞ (1− f(Ek − µα))

+Vj′kVkje
−i(Ej′−Ek)τcjc

†
j′ρ∞f(Ek − µα)

−VjkVkj′e+i(Ej′−Ek)τc†jρ∞cj′f(Ek − µα)
−Vj′kVkje−i(Ej′−Ek)τcjρ∞c†j′ (1− f(Ek − µα))

]

.
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A single level system consists of an occupied, |1〉, and an empty state,
|0〉. When multiplying Eq. (5.29) by 〈1| from the left and |1〉 from the right,
the term due to the coherent part of the EOM vanishes and the dissipative
part becomes

0 = −
∫ ∞

0

dτ
∑

k∈L,R

[

(1− f(Ek − µα)) |V1k|2 e+i(E1−Ek)τ 〈1|ρ∞|1〉

−f(Ek − µα) |V1k|2 e+i(E1−Ek)τ 〈0|ρ∞|0〉+ c.c.
]

. (5.30)

Writing the complex conjugate expression explicitly and collecting terms,
Eq. (5.30) becomes

0 = −
∫ ∞

0

dτ
∑

k∈L,R
(5.31)

[

(1− f(Ek − µα)) |V1k|2
(

e+i(E1−Ek)τ + e−i(E1−Ek)τ
)

〈1|ρ∞|1〉
−f(Ek − µα) |V1k|2

(

e+i(E1−Ek)τ + e−i(E1−Ek)τ
)

(1− 〈1|ρ∞|1〉)
]

,

where it was used, that the occupation probabilities add to one, 〈1|ρ∞|1〉 +
〈0|ρ∞|0〉 = 1. Using Eq. (5.25), Eq. (5.31) can be rewritten as

0 = −
∑

k∈L,R

[

(1− f(Ek − µα)) |V1k|2 2πδ(E1 − Ek)〈1|ρ∞|1〉

−f(Ek − µα) |V1k|2 2πδ(E1 − Ek) (1− 〈1|ρ∞|1〉)
]

,

= −
∑

k∈L,R

[

|V1k|2 2πδ(E1 − Ek)〈1|ρ∞|1〉

−f(E1 − µα) |V1k|2 2πδ(E1 − Ek)
]

,

= − [ΓL(E1) + ΓR(E1)] 〈1|ρ∞|1〉
− [f(E1 − µL)ΓL(E1) + f(E1 − µR)ΓR(E1)] . (5.32)

Employing Eq. (5.32) the population of the singly occupied state can be ex-
pressed as

〈1|ρ∞|1〉 =
f(E1 − µL)ΓL(E1) + f(E1 − µR)ΓR(E1)

ΓL(E1) + ΓR(E1)
(5.33)

The current of a purely electronic single level system can be derived in the
same manner as the population. Rewriting Eq. (5.28) for a single electronic
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level we obtain,

Iα = 4<
{

∫ ∞

0

dτ
∑

k∈α

[

(1− f(Ek − µα)) |V1k|2 e+i(E1−Ek)τ 〈1|ρ∞|1〉

−f(Ek − µα) |V1k|2 e−i(E1−Ek)τ 〈0|ρ∞|0〉
]

}

. (5.34)

Using Eq (5.25) and replacing 〈0|ρ∞|0〉 by 1− 〈1|ρ∞|1〉, Eq. (5.34) becomes

Iα = 4
∑

k∈α

[

(1− f(Ek − µα)) |V1k|2 πδ(E1 − Ek)〈1|ρ∞|1〉

−f(Ek − µα) |V1k|2 πδ(E1 − Ek) (1− 〈1|ρ∞|1〉]
)

,

= 4
∑

k∈α

[

|V1k|2 πδ(E1 − Ek)〈1|ρ∞|1〉 − f(Ek − µα) |V1k|2 πδ(E1 − Ek)
]

,

= 2Γα(E1)〈1|ρ∞|1〉 − 2 f(E1 − µα)Γα(E1) , (5.35)

Inserting Eq. (5.33) into Eq. (5.35) we obtain the final expression for the
current through a purely electronic single level system (setting α = L),

IL = 2
ΓL(E1) · ΓR(E1)

ΓL(E1) + ΓR(E1)
(fR(E1 − µR)− fL(E1 − µL)) . (5.36)

5.1.7 Comparison to Scattering Theory

The difference between the current obtained from the density-matrix and the
scattering approach can be analyzed for the purely electronic case assuming
a single electronic state only. In this case the current based on scattering
theory is given by

I =
1

π

∫ +∞

−∞
dE

ΓL(E) · ΓR(E) (fR(E − µR)− fL(E − µL))
(E − E1 −∆L(E)−∆R(E))2 + (ΓL(E) + ΓR(E))2/4

·

When neglecting the level-shift function ∆ and taking the limit

1

2
(ΓL(E) + ΓR(E))→ 0

we obtain

I =

∫ +∞

−∞
dE

ΓL(E) · ΓR(E) (fR(E − µR)− fL(E − µL))
1
2
(ΓL(E) + ΓR(E))

δ(E−E1) · (5.37)

76



Solving the integral gives exactly Eq. (5.36).
This shows that quite severe approximations are necessary to get from

the scattering current expression to the density matrix expression and dif-
ferences in the I-V characteristic are to be expected when comparing both
methods. Furthermore, we note that the operations above imply the wide-
band approximation, which is characterized by a constant width Γ and zero
level-shift ∆.

While the perturbational treatment constitutes a disadvantage of the den-
sity matrix approach, its advantage is that we need no longer assume relax-
ation of the vibration after each electronic scattering process. Instead, the
approach allows to study the steady-state distribution of the vibrational de-
grees of freedom.

The assumption of zero relaxation is the other extreme as compared to the
scattering treatment, where total vibrational relaxation was assumed after
each transmission event. Therefore, effects due to absorption of vibrational
quanta or, generally, due to transitions starting from a vibrationally excited
state, are missed by the scattering treatment.

Within second order perturbation theory only sequential tunneling pro-
cesses can be described. In sequential tunneling the charge carrier physically
occupies the molecule and loses its phase memory, before it escapes into
the other electrode by another tunneling process. Higher order processes,
called cotunneling or superexchange, where a virtual intermediate state is
formed, appear in fourth order of the interaction V [76]. The superexchange
(L ↔ R) transition rates naturally contain the Pauli blocking factors (see
e.g. Ref. [77]), that were discussed in Sec. 4.1. The sequential tunneling tran-
sition rates, of course, do not contain blocking factors in the electrodes, as
only a single electrode is involved in this process and two consecutive pro-
cesses are needed in order to transfer a hole from one electrode to the other.
In Ref. [77] it was also found, that large vibronic coupling leads to a sup-
pression of the cotunneling component relative to the sequential component
of the current. Superexchange processes involve populations of the electrode
states and coherences between electrode and molecular states [78], and can
therefore not be described by the density matrix ρ, which was reduced to
the molecular electronic and vibrational states. In scattering theory, on the
other hand, the molecule-electrode interaction is included to infinite order,
but it is not straightforwardly possible to differentiate between the sequential
and superexchange transport mechanisms.
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5.1.8 Technical Details of the Implementation

In this section, we discuss some of the technical details of the implementation
of the density matrix formalism for the molecular junction considered in
Sec. 5.2.

It would have been desirable to calculate the current via the density
matrix formalism for the same electronic states and vibrational modes as
via the scattering formalism. This could not be done, because of the sulfur
states, which strongly couple to the electrodes and thus cannot be described
within a perturbation treatment. In the I-V curve this becomes noticeable as
large spikes which overlay the features of the benzene orbitals. Even state B
in BDET (cf. Fig. 4.7) is coupled too strongly, which becomes noticeable as
a density matrix calculation for this junction resulted in populations larger
than 1 and lower than 0.

The violation of perturbation theory was analyzed for a purely electronic
tight-binding model and can be summarized as follows: For a single elec-
tronic state, coupled equally to both electrodes, the coupling is merely a
multiplicative factor (cf. Eq. (5.36)). The breakdown of perturbation the-
ory in this case manifests itself in the fact that current-voltage steps do
not broaden with increasing coupling strength. As soon as two electronic
states are considered, the ratio between their coupling to the electrodes and
their mutual level-spacing is decisive. If this ratio is too large, spikes ap-
pear in the I-V characteristic. Therefore, the density matrix treatment was
restricted to the two benzene states A and B in BDBT coupled to a single
mode (cf. Sec. 4.2.4).

Taking into account these two single-particle states, we have to consider
four many-particle states (see scheme in Fig. 5.1): the neutral reference state,
|Ψg〉, where both orbitals are occupied by electrons, a state with a hole in
A, |A〉 = cA|Ψg〉, which, as A is lower in energy than B, corresponds to an
electronic excitation, a state with a hole in B, |B〉 = cB|Ψg〉, and a state
where both A and B are not occupied, |0〉 = cAcB|Ψg〉.
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Figure 5.1: The relation between orbital occupancy and many-particle states.
Black dots indicate electrons.
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Only the electronic off-diagonal elements between single hole excitations,
〈A|ρ∞|B〉 and 〈B|ρ∞|A〉, are coupled to the electronic diagonal elements.
This is in accord with Ref. [79] where it was shown that in second order
perturbation theory only coherences between states of equal particle number
contribute to transport. The coherent part of the EOM only gives a con-
tribution to matrix elements that are off-diagonal in either the electronic or
vibrational states or both. Furthermore, no direct transitions between states
|A〉 and |B〉 exist.

It is sometimes claimed in the literature [80] that off-diagonal electronic
matrix elements vanish under steady-state conditions except for the case of
accidental degeneracies. We experienced that this is not a strict rule but that
electronic off-diagonal density matrix elements become larger, the smaller the
level-spacing.

If all vibrational and those two electronic off-diagonal elements are in-
cluded in the EOM, the coefficient matrix of the linear system of equations
has dimension 6 · lm × 6 · lm, where l is the size of the vibrational basis for
a single mode, which is assumed to be the same for all m modes. If rather
large vibrational basis sets are needed in order to achieve convergence, the
amount of needed memory may easily exceed the amount that is offered by
computers at the time this thesis was written. Therefore, the calculations
presented below were restricted to a single vibrational normal mode.

For the electrode states |φk〉 we use again the states calculated by DFT,
which were broadened and shifted by the surface self-energy. Due to the
broadening, the Ek’s are complex and if we simply insert them into Eq. (5.23),
the argument of the Fermi function would also become complex. Therefore,
we have to devise some way to approximate these expressions. The terms
including the δ- and the Fermi function can be exactly factorized into the Γ-
and the Fermi function evaluated at energy

E = Ẽj′ +
∑

l

ωl

(

ν
(i)
l − ν

(i′)
l

)

− µα , (5.38)

while for the terms including the PV and the Fermi function this constitutes a
local approximation. Another approximation would be to evaluate the Fermi
function at the real part of the contact energies or to neglect the PV -term.
Considering the term

∑

k

{

i PV

(

1

E − Ek

)

f(Ek) + πδ(E − Ek)f(Ek)

}

,

several approximations are possible:
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1. The Fermi function in both the δ- and the PV -term is evaluated at the
real part of the contact energies,

∑

k

{

i PV

(

1

E − Ek

)

f(<(Ek)) + πδ(E − Ek)f(<(Ek))

}

.

2. Both terms are factorized into Γ and ∆ times the Fermi function eval-
uated at energy E = Ẽj′ +

∑

l ωl

(

ν
(i)
l − ν

(i′)
l

)

− µα.

∑

k

{

i PV

(

1

E − Ek

)

f(E) + πδ(E − Ek)f(E)

}

.

3. The δ-function term is factorized and in the PV -term the Fermi func-
tion is evaluated at the real part of the contact energies,

∑

k

{

i PV

(

1

E − Ek

)

f(<(Ek)) + πδ(E − Ek)f(E)

}

.

4. Terms containing the PV -term are neglected and the δ-function term
is factorized

∑

k

{πδ(E − Ek)f(E)} .

For the weakly coupled model system investigated, most approximations,
with the exception of approximation 1, gave nearly identical, reasonable re-
sults. Therefore the approximation with the least numerical effort (approxi-
mation 4) was used.

In the following, results that were obtained using the density matrix for-
malism are shown for the purely electronic case and when including either
mode (a) or mode (d) (cf. Fig. 4.17). A comparison with the equivalent
results obtained with scattering theory will be given. Convergence with re-
spect to the vibrational basis set was achieved for a number of 25 vibrational
states. The criterion for convergence was that the I-V curve did not change
visibly when increasing the basis set further. This rather large vibrational
basis set (25 functions) was necessary, because no mechanisms for vibrational
relaxation were included and therefore all vibrational states connected by a
not too small Franck-Condon factor had to be incorporated. The system
coupled to two modes simultaneously could not be investigated because the
employed vibrational basis set was too large. The density matrix calculations
were solved at zero temperature and room temperature (RT), corresponding
to T = 293.15K.
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In the data presented in the next section, the lower limit of the voltage
range is given by the voltage at which the coefficient matrix of the system of
linear equations becomes singular, because of the number of matrix elements
equal zero. This takes place at higher voltages for the 0K - calculation,
than for the RT - data, because of the broadening of the Fermi function at
room temperature, which decreases the number of non-zero coefficient ma-
trix elements. The frequencies of both normal modes are too large to be ex-
cited thermally at RT, and vibrational excitation can only occur via electron
transport. In our studies we do not include vibrational relaxation. Gener-
ally, however, vibrational relaxation could be included via the coupling to a
thermal bath of secondary vibrational modes, via a simple, exponential phe-
nomenological relaxation time (see Ref. [81] for a discussion of the difference
between the two), and via intramolecular vibrational energy redistribution
by anharmonic coupling between system modes.

5.2 Results and Discussion

In this section, we present data derived from purely electronic density matrix
calculations of the BDBT molecular junction and compare with results from
calculations that include vibronic coupling to two different modes. The I-
V curves will be compared to the corresponding results from a scattering
calculation.

5.2.1 Observables of Interest

Besides the current and conductivity, there is a variety of other observables
of interest to characterize the electronic and vibrational non-equilibrium dy-
namics in molecular junctions. The average number of vibrational quanta in
the stationary non-equilibrium state, is given by

〈a†a〉 =
∑

l,Ψ

νlρ
νlνl
ΨΨ

with
ρνlνlΨΨ = 〈νl|〈Ψ|ρ|Ψ〉|νl〉 .

Here νl is the discrete vibrational quantum number and the sum is taken
over all electronic states |Ψ〉. This quantity allows us to study the creation
and destruction of vibrational quanta as a function of voltage.

The dynamics of the electronic states of the molecule is characterized by
the occupation probabilities of the electronic many-particle states summed
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over all diagonal vibrational elements,

ρΨΨ =
∑

l

ρνlνlΨΨ ,

as a function of voltage.
Finally, we will present the occupation probability of the vibrational

states, which in equilibrium is given by the Boltzmann distribution

P eq
ν =

e−βων
∑

ν′ e
−βων′ .

At finite voltage the probability distribution of the vibrational states may
deviate significantly from that at equilibrium. The non-equilibrium distribu-
tion is given by summing the diagonal elements of the reduced density matrix
over the electronic states |Ψ〉

P neq
ν =

∑

Ψ

ρννΨΨ .

5.2.2 Purely Electronic Calculation

Fig. 5.2 shows the current through the benzene states A and B of BDBT,
calculated via density matrix (solid black line) and scattering theory (red
line). Steps, due to the two orbitals, appear at the same position in both
curves. The step due to state B appears at 2.74V, while that due to state A
appears at 3.54V. The step heights are not equal and the current features in
the voltage range between the two steps and after the second step differ. The
current obtained with scattering theory is lower before the second step and
larger afterwards, and the edges are not as sharp as in the density matrix
calculation. The sharp features in the density matrix data are due to the
wide-band approximation (cf. Sec. 5.1.7). Below 2V there is a vast range of
zero current, which is not shown entirely. The features in between and after
the last resonant step are due to the voltage-dependence of Γ.

Interestingly, the current obtained with the scattering approach is slightly
larger for the calculation including only two states, than for the calculations
of the previous chapter, where four additional sulfur states were included (cf.
Fig. 4.19). The contact mediated interactions between benzene and sulfur
states, obviously, lead to a reduction of the current.

Fig. 5.2 also shows the temperature dependence of the current using the
reduced density matrix approach. The steps are noticeably broadened at
RT (dashed curve), while the current features between the steps and after

82



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2  2.5  3  3.5  4  4.5  5

I (
µA

)

U (V)

Figure 5.2: Comparison of the current based on a purely electronic calculation
through states A and B of BDBT using density matrix theory at T=0K (solid
black line) and RT (dashed line), and using scattering theory (red line) at
0K. The current below 2V is zero and therefore not shown.

the second step are similar. This broadening of I-V features is due to the
broadening of the Fermi distribution function.

Fig. 5.3 shows the occupation probabilities of the electronic many-particle
states |Ψ〉 defined in Sec. 5.1.8, ρΨΨ = 〈Ψ|ρ∞|Ψ〉. At low voltages both
orbitals A and B are occupied and ρgg has probability unity. At 2.74V the
transition to state B comes into resonance, which causes the probability of
ρgg (red curve) to drop sharply to 45%. At the same time the probability that
orbital B is unoccupied while orbital A is still occupied, ρBB (blue curve),
jumps abruptly to 55%. At 3.54V hole transport through orbital A begins to
contribute and the probabilities for the states ρAA (magenta curve) and ρ00
(black curve) increase, but remain rather small compared to the probabilities
of the other two states.

The coherences of the system are rather small: for the real part of the
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Figure 5.3: Occupation probability of the different electronic states (as indi-
cated in the legend) as a function of voltage shown for T=0K (bold lines) and
room temperature (thin lines). The results are based on a purely electronic
calculation.

coherences, <(ρAB) = <(ρBA) < 1.3 · 10−5, and for the imaginary part,
|=(ρAB)| = |=(ρBA)| < 1.7 · 10−3.

5.2.3 Effect of the C-C-C bending mode

Next, we consider the influence of vibrational mode (a) (cf. Fig. 4.17) on
the conductance of the electronic two level system. Fig. 5.4 shows the I-V
characteristic when coupling to mode (a) is included in the calculation. At
2.74V the transition to the vibrational ground state of orbital B comes into
resonance and causes a large step. This takes place at the same voltage value
as in the purely electronic calculation, indicating that the reorganization en-
ergy due to mode (a) for state B is rather small. Two smaller steps can be
seen at 2.88 and 3.02V, which correspond to transitions where one and two
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additional vibrational quanta of this mode are excited, respectively. The step
at 3.02V is followed immediately by another step at 3.05V, which is due to
absorption of vibrational quanta by orbital A. Two more such steps occur
at 3.19 and 3.33V until at 3.47V there is a comparably large step corre-
sponding to the ρννAA ← ρννgg - transitions for all already occupied vibrational
states |ν〉. This last step is shifted by an amount of -0.07V with respect
to the corresponding transitions in the purely electronic curve. There follow
five clearly visible steps due to excitation of vibrational quanta at 3.61, 3.75,
3.89, 4.03, and 4.17V. The step height becomes smaller with increasing volt-
age according to the respective Franck-Condon factors. The distance between
these steps corresponds to twice the vibrational frequency, 2h̄ω/e = 0.14V ,
as expected when applying a symmetric voltage window and in a harmonic
potential (for studies of anharmonic potentials within a density matrix for-
malism see Ref. [82]). At room temperature (dashed line in Fig. 5.4) the steps
are broadened. At 4.56V the I-V characteristic at T=0K and at room tem-
perature can no longer be distinguished, indicating that transitions coupled
by small Franck-Condon factors come into resonance.

The red curve in Fig. 5.4 shows the current for this ’two electronic levels-
one mode’ system obtained from a scattering theory calculation. The first
step due to state B appears at 2.74V. Its edges are again broadened compared
to the density matrix curve. Another step can be seen at 2.88V, which
is due to excitation of vibrational quanta. At 3.47V a step due to state
A follows, and, compared to the density matrix calculation, the preceding
steps, due to absorption of vibrational quanta, are absent. This was to
be expected as in our scattering theory implementation the system is forced
into its vibrational ground state after each scattering process. Only two more
steps, due to excitation of vibrational quanta, follow at 3.61 and 3.75V, while
in the density matrix curve five steps can be seen. This might be due to the
fact that in scattering theory a transition with a certain difference in the
vibrational quantum number, ∆n, is restricted to the transition starting in
the vibrational ground state, (m)n0 , while in the density matrix treatment all
transitions starting from an occupied vibrational ground state, (m)n+n

′

n′ , are
included, which increases the intensity of each step.

The excitation and deexcitation of vibrational quanta, observed in the
I-V curve, is reflected in the average number of vibrational quanta, 〈a†a〉, in
the stationary non-equilibrium state, which is shown in Fig. 5.5. The curve
obtained for zero temperature (solid line) shows that up to 2.74V, which
corresponds to the first step in the I-V curve, the system is in its vibrational
ground state and the average number of vibrational quanta is zero. At 2.74V
〈a†a〉 rises to a value of 0.3. With increasing voltage the average rises in two
steps until it reaches a local maximum at 3.04V. This corresponds to the
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Figure 5.4: The current through states A and B of BDBT coupled to the
mode with frequency ω=566.12 cm−1 using the density matrix approach at
0K (solid line) and at RT (dashed line), and using scattering theory at 0K
(red line).

last step in the I-V curve that is due to transport through orbital B. Just
as this step is followed immediately by another step, the average vibrational
quantum number decreases shortly after reaching the local maximum. This
indicates absorption of vibrational quanta due to orbital A. The local max-
imum corresponds to almost 4 vibrational quanta. This means that also
transitions from an excited vibrational ground state, e.g. ρ44AA ← ρ22gg, must
have contributed, as the voltage is too low to excite four vibrational quanta
at once. After two steps downwards at 3.47V, the ρννAA ← ρννgg transitions,
for all vibrational states |ν〉 that are occupied in the ground state, come into
resonance and, in the following, the average vibrational quantum number
rises due to vibrational excitations.

While at T=0K the local maximum at 3.04V reaches a value of 3.91, at
room temperature the broadening leads to a situation where the step up at
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Figure 5.5: The average number of vibrational quanta as a function of voltage
for T=0K (solid line) and room temperature (dashed line) of the normal
mode with frequency 566.12 cm−1.

3.02V and the step down at 3.05V are no longer separated and the maximum
shrinks to a value of 2.82. At 4.56V the T=0K and the room temperature -
curve coincide and rise, indicating that there are further vibrational excita-
tions, which no longer depend on temperature.

Fig. 5.6 shows the occupation probabilities of the electronic many-particle
states, when normal mode (a) is included in the calculation. It is seen that
up to 2.74V both orbital A and B are occupied (red curve) and all other
electronic states have probability zero. At 2.74V the transition to state
B comes into resonance and the probability of the doubly occupied state
drops to 47%, while the occupation probability ρBB (blue curve) rises to
53%. The red and blue curve both exhibit steps at 2.88 and 3.02 V due to
absorption of vibrational quanta. The probability ρgg decreases, while ρBB
increases, which is to be expected, as the opening of a new vibrational channel
connected to orbital B by hole transport, should increase the probability that
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Figure 5.6: Occupation probability of the electronic states (as indicated in
the legend) as a function of voltage shown for T=0K. Results based on a
vibronic calculation (bold lines) and a purely electronic calculation (thin
lines) including mode (a).

this orbital is not occupied. At 3.05V hole transport through orbital A begins
to contribute and the probabilities ρAA (magenta curve) and ρ00 (green curve)
rise in steps of 2h̄ω/e = 0.14V , while the probabilities of the other two states
decrease. At 3.47V the transitions ρννAA ← ρννgg come into resonance causing
a somewhat larger step, and additional steps due to excitation of vibrational
quanta follow. The electronic occupation probabilities for the vibronically
interacting system closely follow that of the purely electronic system. The
main difference is the second step at 3.47V, which in the vibronic case occurs
at slightly lower voltage, due to the reorganization energy. In the vibronic
calculation this step is additionally divided into several sub-steps.

Fig. 5.7 shows the non-equilibrium vibrational distribution as a function of
voltage and vibrational quantum number in a contour plot. At low voltages
only the vibrational ground state is occupied, as expected at T=0K. At
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Figure 5.7: The vibrational populations of the normal mode with frequency
566.12 cm−1 at T=0K. Large values are colored black while small values are
colored white.

higher voltages the distribution becomes broader, but the vibrational ground
state retains the maximum probability. Between 3.8 and 5.0V also rather
large quantum numbers have non-vanishing probability and the distribution
strongly deviates from the equilibrium distribution. The distribution changes
in steps corresponding to twice the vibrational frequency (0.14V).

5.2.4 Effect of the C-C stretching mode

Next, we consider the influence of vibrational mode (d) (cf. Fig. 4.17) on
the conductance of the electronic two level system. Fig. 5.8 shows the I-V
characteristic for the system coupled to mode (d) (cf. Tab. 4.4). Due to
the larger reorganization energy, with respect to the reorganization energy
due to mode (a), the transition to the vibrational ground state of orbital B
already comes into resonance at 2.61V and is followed by single and double
vibrational excitations causing steps at 3.03 and 3.44V. This last step is
followed immediately by the ρννAA ← ρννgg transitions at 3.46V, which are
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Figure 5.8: Current through states A and B of BDBT coupled to the mode
with frequency ω=1676.10 cm−1 using the density matrix approach at T=0K
(solid line) and at room temperature (dashed line), and using scattering
theory at T=0K.

shifted by an amount of -0.08V with respect to the corresponding transitions
in the purely electronic curve. Steps causing vibrational excitation occur
at 3.87, 4.29, and 4.70V, and the step distance corresponds to twice the
vibrational frequency, 2h̄ω/e = 0.42V .

The red curve in Fig. 5.8 shows the current based on a scattering calcula-
tion, which exhibits a step at 2.61V due to the resonance with state B and
another step at 3.03V due to excitation of vibrational quanta. The current
from the scattering calculation is smaller than that from density matrix the-
ory up to the step at 3.46V, which is due to state A, and becomes larger
afterwards. At 3.87V there is another step due to excitation of vibrational
quanta, and unlike in the density matrix curve, no further steps are seen.

We next consider the average vibrational quantum number, 〈a†a〉, shown
in Fig. 5.9. The steps in this curve closely follow those in the I-V character-
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Figure 5.9: The average number of vibrational quanta as a function of voltage
for T=0K (solid line) and room temperature (dashed line) of the normal
mode with frequency 1676.10 cm−1.

istics. The first three steps at 2.61, 3.03, and 3.44V are due to orbital B.
The step at 3.44V is immediately followed by the first step due to orbital
A at 3.46V, which is rather large as it is connected to the ρννAA ← ρννgg tran-
sitions. Three further steps follow at 3.87, 4.29, and 4.70V until a global
maximum of 10 is reached after the last step. As the distance between in-
dividual vibrational states for this mode is much larger than for mode (a)
(cf. Fig. 5.5) transitions coupled by small Franck-Condon factors occur at
much higher voltages and the region where those transitions are rather small
are not reached in the shown voltage window. Unlike the average vibrational
quantum number for mode (a), that of mode (d) shows no decrease due to
absorption of vibrational quanta. This is due to the fact that the ratio be-
tween the orbital energy difference and the vibrational frequency is much
smaller for mode (d).

Fig. 5.10 shows the occupation probabilities of the electronic many-particle
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Figure 5.10: Occupation probability of the electronic states (as indicated
in the legend) as a function of voltage shown for T=0K. Results based on
a vibronic calculation (bold lines) and a purely electronic calculation (thin
lines) including mode (d).

states summed over diagonal vibrational elements, ρΨΨ, when normal mode
(d) is included in the calculation. We see that up to the step at 2.61V both
orbital A and B are occupied (red curve) and all other electronic states have
probability zero. The occupation probability ρgg then drops to 56%, while
the probability of state ρAA jumps up to 46%. Both probabilities display
steps at 3.03 and 3.44V. Interestingly, at 3.04V the probabilities ρBB and
ρ00 begin to rise, which must be due to absorption of vibrational quanta that
could not be seen in the I-V characteristic or the average vibrational quan-
tum number, but may explain the sharp tip in the solid curve of Fig. 5.9 at
3.04V. The double step structure at 3.44 and 3.46V, which describes trans-
port through orbital B including vibrational excitation immediately followed
by transport through orbital A without vibrational excitation, exists in all
four solid curves. The blue curve shows this behavior also at larger voltages,
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Figure 5.11: The voltage-dependent probabilities of the vibrational popu-
lations of the normal mode with frequency 1676.10 cm−1 at T=0K. Large
values are colored black while small values are colored white.

i.e. at 3.87, 4.29, and 4.70V, where a step up due to the opening of a new
vibrational channel in orbital B is immediately followed by the opening of a
new channel in orbital A, which decreases the probability ρBB and results in
tip-like features. The probability of state ρAA (magenta line) shows inverted
tips at the same positions, while the probability of the doubly unoccupied
state shows simple steps as both new channels in orbital A and B increase its
probability. Compared to the purely electronic calculation, the shifts due to
the reorganization energy are clearly seen for both orbitals. The first step is
noticeably smaller in the vibronic calculation, than without vibrations, and
the second step is subdivided into several steps.

In Fig. 5.11 the probability distribution of the individual vibrational states
with quantum number νl are shown as a function of voltage. The steps at a
distance of 2h̄ω/e = 0.42V are clearly visible. Between 2.2 and 2.6V only
the vibrational ground state is occupied. As expected, the non-equilibrium
distribution becomes broader with increasing voltage.
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Figure 5.12: The purely electronic current for the two orbitals A and B,
whose level-spacing was reduced to 0.001 eV. The current including electronic
coherences (black line) and excluding them (red line) is shown.

5.2.5 Coherences

In the computation of the curves in the last sections all vibrational and elec-
tronic coherences were taken into consideration. The results show, however,
that for this system electronic and vibrational coherences are so small that
a calculation neglecting all off-diagonal components of the density matrix
yields a similar result. This is due to the significant difference of the elec-
tronic energies Ej.

The role of electronic coherences can be artificially enhanced by decreas-
ing the electronic level spacing. Fig. 5.12 shows the purely electronic current-
voltage curve for the two level system, where the actual level spacing of
0.396 eV was reduced to 0.001 eV. It can be seen that the two steps visible
in Fig. 5.2 merged into one step and that the current that was calculated in-
cluding electronic coherences is significantly smaller, than the current without
coherences.

On the other side, the effect of vibrational coherences in our studies could
not be increased by tuning the electronic level-spacing to an integer multiple
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of the vibrational frequency. The vibrational coherences are of size ∼ 10−5

and below.

5.3 Summary

In this chapter, the transport characteristics of a molecular junction were
investigated based on the solution of the equation of motion of the density
operator. The equation of motion was derived for the density operator re-
duced onto the molecular part of the system, the Markov approximation was
invoked, and the steady-state limit was taken.

There are two major differences between the density matrix and scat-
tering theory formalisms as they were used in this work. First, the density
matrix treatment involves perturbation theory in the electronic coupling be-
tween electrode and molecule, while scattering theory includes this interac-
tion to infinite order. Secondly, using the density matrix, vibrational non-
equilibrium effects are included, while in the scattering formalism we assume
that after each scattering process the vibrational equilibrium distribution is
established.

We presented results for charge transport through a molecular junction
modeled by an electronic two level system that was coupled to two different
vibrational modes. In the data based on purely electronic calculations two
steps, due to the two included molecular orbitals, could be seen. When in-
cluding vibrational coupling these features were subdivided into several steps,
the height of which was determined by the respective Franck-Condon factors
and whose level spacing corresponded to twice the vibrational frequency.

For the mode with the lower frequency, absorption of vibrational quanta
was visible, as the electronic level spacing was much larger than the vibra-
tional frequency. Thus, a vibrational population could be created by vibronic
excitations due to the first electronic state, which in turn was depopulated by
vibronic transitions of the second electronic state. Features due to absorp-
tion of vibrational quanta were pronounced at zero Kelvin and smoothened
out at room temperature.

Overall, the density matrix and scattering treatment yielded similar re-
sults. This means, that for the studied model system the electronic states
were coupled weakly enough for perturbation theory to hold and the elec-
tronic resonances were far enough from the Fermi level for the multi-channel
scattering formalism to work. The resonance steps in the results obtained
with a density matrix calculation display sharp edges, while those obtained
with scattering theory are broadened. Also the step heights differ slightly,
while the step positions are equal.
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In the employed model systems, vibronic transitions in which the vibra-
tional quantum number does not change, posses the largest probabilities and
effects like Franck-Condon blockade [83, 84] do not play a role.

To conclude this chapter, we discuss related work. Using rate-equations it
was found that the non-equilibrium vibrational distribution becomes broader
with decreasing electron-phonon coupling [80, 85]. Transport studies employ-
ing density matrices need not necessarily be done considering only the density
matrix reduced to the molecular DOF. In the literature schemes were pre-
sented, where the populations of the total MMM system were considered
[86, 87], which led to a nonlinear system of rate-equations. Furthermore,
the density matrix formalism is often employed in the study of Coulomb in-
teractions between several electrons on the molecule, and it was seen that
the cotunneling transition rates depend on the sequential processes via the
charge that can by located on the molecule by the latter [86]. In Ref. [88] the
authors studied a system where the potential energy surface of the charged
state was not only shifted with respect to that of the neutral state, but also
distorted. This means that different frequencies were assumed in the neutral
and the ionized states, and it was found that non-equilibrium vibrational
effects, like NDR, are enhanced in this case. Density matrix approaches are
also used in the study of laser driven molecular junctions [75, 89].
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Chapter 6

Optical Switches

In this chapter, we will consider the possibility to optically switch molecular
junctions between different conductance states. In contrast to the other parts
of this thesis, this aspect of molecular junctions is not directly related to
vibronic coupling and therefore all results presented will be based on purely
electronic transport calculations.

A molecular junction can be used as an electronic switch, if the molecule
exists in two or more differently conducting states that can be reversibly
transferred into each other. Possible switching mechanisms are based on
charge transfer reactions or optical excitations, which cause an intramolecular
reaction or a conformational change of the molecule.

A photochemical switch was investigated experimentally using a self-
assembled monolayer in a break-junction [90]. In solution, the studied molecule
switched from the highly conducting to the non-conducting form by irradia-
tion with light in the visible range, while it switched into the other direction
by irradiation with UV-light. In the junction only the switching from high to
low conductance could be observed and the absence of the reverse switching
process was attributed to the strong electronic interactions of the molecules
with the gold electrodes.

Stochastic switching and switching induced by the application of pulses
of large voltage were observed experimentally [91] for phenylene ethynylene
oligomers incorporated in alkanethiolate monolayers in STM. It was found
that the different conducting states correspond to different conformations
of the molecule. Application of large voltages again switched the molecules
from the high to the low conducting state, but not in the other direction.

Theoretically, switching behavior was demonstrated in molecular junc-
tions including dithienylethene molecules [92]. Here, the switching mech-
anism is due to photon absorption, which triggers an intramolecular ring
closing or opening reaction. Upon this reaction the energetic positions of the
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Figure 6.1: Scheme of the optically induced hydrogen transfer reaction be-
tween a hydroxy-imine and a keto-amine. R stands either for H in the pure
molecules, or for some hydrogen-carrier group.

HOMO and the LUMO are exchanged. Using scattering theory it could be
demonstrated, that the conductance of the ’closed’ isomer is up to 100 times
larger than the conductance of the ’open’ isomer. A photochemical molecular
switch based on an azobenzene molecule between two carbon nanotubes was
investigated in Ref. [93]. In this system the switching mechanism relies on a
cis/trans isomerization.

In the example presented in this chapter, the switching mechanism is due
to an optically induced hydrogen transfer reaction. The structural formula
of the system under study is depicted in Fig. 6.1. Two planar tautomers, 3-
hydroxy-2,4,6-heptatrien-7-thiolate - butadien-4-thiolate - imine and 3-oxo-
1,4,7-heptatrien-7-thiolate - butadien-4-thiolate - amine (for R=H), are con-
nected via a photochemically induced hydrogen transfer reaction. For similar
systems, this reaction was predicted to be reversible [94] and can be tuned in
either direction by irradiating the sample with light of different frequencies.
As the nitrogen and oxygen atoms are quite far apart, it is expected, that
hydrogen transfer cannot take place for the pure molecule (R=H), but that
a flexible hydrogen-carrier group is needed.

As can be seen in Fig. 6.1, the hydroxy-imine form possess one more
double-bond in the carbon-nitrogen chain than does the keto-amine form.
This difference in π-electron density on the chain could lead to different
transport properties when clamping the molecule between two electrodes
and applying a voltage. In the following, the transport characteristics of the
pure molecules and with two different carrier groups bonded to a gold cluster
of 38 gold atoms on each side will be shown and discussed. Fig. 6.2 shows a
cartoon of the pure (R=H) hydroxy-imine and keto-amine molecules between
two gold clusters.

A geometry optimization was done for the molecules bonded to two gold
atoms at the B3-LYP-SV(P) level using symmetry group Cs. The remaining
gold atoms were added referring to distances and angles known from earlier
calculations and a single point calculation was done for the whole system.
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Figure 6.2: Partially optimized structures of 3-hydroxy-2,4,6-heptatrien-7-
thiolate - butadien-4-thiolate - imine (bottom) and 3-oxo-1,4,7-heptatrien-7-
thiolate - butadien-4-thiolate - amine (top) bonded to gold clusters containing
38 atoms.
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Figure 6.3: Zero-voltage transmission probability through the hydroxy-imine
(red curve) and the keto-amine form (blue curve) of the pure molecules
(Fig. 6.2).
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Figure 6.4: The modulus of the current through the hydroxy-imine (red
curve) and the keto-amine form (blue curve) of the pure molecules.

The value of the Fermi energy was taken from the literature as that of bulk
gold (εf = -5.53 eV). All electronic states of the molecular space were included
in the transmission and current calculations.

The transmission probabilities of the pure molecules are shown in Fig. 6.3.
The hydroxy-imine form (red curve) has a much larger transmission proba-
bility at the Fermi energy and throughout the whole studied energy range
and shows large, broad peaks at 0.48, -0.07, -0.89, -1.63, and -1.73 eV and a
small peak at -1.50 eV, while in the corresponding curve for the keto-amine
form (blue curve) there are small broad peaks in the region between -0.5 and
+1.0 eV with a maximum probability of 6% and two narrow peaks at -0.83
and -1.09 eV, respectively.

As the molecules are not symmetric with respect to the left and right
contact, the current in Fig. 6.4 is shown in the positive as well as in the
negative voltage range, where the current in the latter was mirrored at the
abscissa for compactness. Although the coupling to the left and right lead is
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Figure 6.5: Partially optimized structures of the keto-amine (top) and
hydroxy-imine (bottom) forms, when including a pyridine-ring as the
hydrogen-transferring unit, bonded to gold clusters containing 38 atoms.

no longer symmetric it is expected to be of comparable size and therefore the
voltage division factor of 0.5 is retained. It is clearly seen, that the current
for the hydroxy-imine form (red curve) is much larger than the current for
the keto-amine form (blue curve) over the whole voltage range. Taking the
values at ± 1V, a value that can realistically be reached by experiments, the
ratio of the two current values in the negative voltage range is approx. 3:1,
while that in the positive voltage range is even larger, approx. 26:1. Thus,
for the pure molecules our theoretical treatment predicts switching behavior.
Additionally we note that the keto-amine form has a rectification coefficient
of I(−1V )/I(+1V ) ≈ 8.

In the next step, a pyridine-ring was added to the pure molecules
(R=C5H4N) (Fig. 6.5). This ring is supposed to act as a hydrogen transfer-
ring unit by binding the hydrogen atom of the amine-group to the nitrogen in
the pyridine-ring, performing a 180◦-rotation around the C-C-bond that con-
nects the pyridine to the molecular chain, and releasing the hydrogen-atom
to the oxygen.

The geometry was optimized for the molecules with the sulfur still bonded
to hydrogen. After this, the hydrogen was removed, the gold cluster was
added, and a single point DFT calculation was done.

The transmission functions, shown in Fig. 6.6, for the hydroxy-imine (red
curve) and keto-amine forms (blue curve), with the additional pyridine group,
differ significantly from those of the pure molecules. The transmission of the
hydroxy-imine form shows several broad and large overlapping peaks with
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Figure 6.6: The zero-voltage transmission probability through the hydroxy-
imine (red curve) and the keto-amine form (blue curve), with a pyridine -
hydrogen-carrying group.

maxima at 0.05, -0.19, -1.10, and -1.31 eV, and some smaller features at
-1.54 (narrow line) and -1.61 eV. In the transmission function of the keto-
amine form, on the other hand, there is a peak of probability 0.69 at -0.24 eV
which has two shoulders at -0.02 and 0.57 eV. The small narrow peak at
-1.08 eV, that could already be seen in the pure molecule, also appears in this
system. There is another large peak at -1.36 eV. Overall, the transmission
probability for the hydroxy-imine system is still larger than for the keto-amine
system, but the difference is not as pronounced as in the pure molecules.

The I-V characteristic of the molecules with the pyridine-carrier-group
depicted in Fig. 6.7 shows that the current of the hydroxy-imine system (red
curve) is larger than that of the keto-amine form (blue curve) in the whole
voltage range. However, when analyzing the ratios between the currents of
the two forms at ± 1V, we find that in the positive voltage range this ratio is
approx. 1.6:1 and that in the negative voltage range it is approx. 2:1. These
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Figure 6.7: The modulus of the current through the hydroxy-imine (red
curve) and the keto-amine form (blue curve) with a pyridine-ring as
hydrogen-transferring unit.

ratios are significantly smaller than that of the pure molecules. The absolute
current values at ± 1V, however, are larger than before, even if the current
at large voltages, ± 4V, is smaller.

A more efficient hydrogen transferring unit, in the sense that the acti-
vation barrier for the photo-chemical hydrogen transfer reaction is lowered
considerably, is the imino-lactone-ring, R=C4H2NO2, shown in Fig. 6.8. To
characterize the electronic structure, the geometry was optimized for the
molecules with the sulfur still bonded to hydrogen. After this, the hydrogen
atoms were removed, the gold cluster was added, and a single point DFT
calculation was done.

The transmission function of the molecules with the imino-lactone group,
depicted in Fig. 6.9, only shows single peaks. The peak is of medium size and
broad for the keto-amine form (blue curve), where it is positioned at 0.66 eV,
has probability 0.46 and FWHM 0.14 eV, while it is narrow and large for
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Figure 6.8: Partially optimized structures of the keto-amine (top) and
hydroxy-imine (bottom) forms, when including an imino-lactone-ring as the
hydrogen-transferring unit, bonded to gold clusters containing 38 atoms.
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Figure 6.9: The zero-voltage transmission probability through the hydroxy-
imine (red curve) and the keto-amine form (blue curve), with an imino-
lactone - hydrogen-carrying group.
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Figure 6.10: The modulus of the current through the hydroxy-imine (red
curve) and the keto-amine form (blue curve) with an imino-lactone as
hydrogen-transferring unit.

the hydroxy-imine form (red curve), where it is located at 1.27 eV, has a
probability of 95% and FWHM 0.04 eV. This means that, if the transmission
function is not altered fundamentally at larger voltages, the peak due to the
keto-amine form would enter the voltage window long before that due to the
other form.

The current curve, shown in Fig. 6.10, confirms what could be expected
from the transmission probability. The situation is reversed with respect to
the pure molecules and the molecules containing the pyridine-ring in such a
way that now the current for the keto-amine system is larger in the whole
voltage range. The ratio at ± 1V in the positive range is 1:26, while that
in the negative range is 1:8. This means, that the molecule could still be
used as a switch, but in the other direction than we assumed initially. The
overall current, however, is smaller by about a factor of ten. Furthermore, the
current for the keto-amine system (blue curve) shows much more pronounced
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NDR features, than in the systems described above. These NDR effects are
again due to the voltage-dependence of the electrode self-energy.

To summarize, the hydrogen-transferring unit significantly influences pos-
sible switching behavior by changing the molecular electronic structure of the
orbitals around the Fermi level. The current decreases when going from the
pure molecules via the pyridine to the imino-lactone carrier group. The rea-
son is, that molecular orbitals around the Fermi energy become less delocal-
ized over the whole molecular backbone, the more electronegative the trans-
ferring unit. This mechanism influences the keto-amine and the hydroxy-
imine form differently.
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Chapter 7

Summary

In this thesis we have investigated the conductance of molecular junctions, in
which a single molecule is bound to two metallic electrodes. We focused on
the consequences of nuclear motion of the molecule on the transport charac-
teristics of the junction and investigated the switching behavior of tautomeric
molecules.

To study vibrationally coupled electron transport in single molecule junc-
tions, we used a model Hamiltonian, whose parameters were determined by
ab initio electronic structure calculations. Based on Koopmans’ theorem,
the Hamiltonian describes the two cases that only molecular orbitals suffi-
ciently above (electron transport) or below (hole transport) the Fermi level
contribute to conductance. To determine the parameters of the Hamiltonian,
the overall molecular junction was separated into three parts, a part compris-
ing the molecule and parts of the electrodes and the remaining part of the left
and right electrode. The former was described by density functional theory
while the latter was accounted for by a single parameter or a tight-binding
model self-energy. The quantum-chemically described part was further di-
vided into the molecule and the left and right contacts, respectively, using
projection operator techniques.

We used two different theoretical methods to calculate transport prop-
erties through molecular junctions. The first theoretical transport method
employed in this work is inelastic scattering theory, the central quantity of
which is the multi-channel transmission probability. The current in scat-
tering theory is given by the energy integral of this transmission probability
weighted by occupation factors. The second theoretical method that was dis-
cussed in this thesis is density matrix theory. The current in density matrix
theory is given in terms of the populations and coherences of the vibrational
and electronic molecular states, which are obtained by the solution of a linear
system of rate equations.
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There are several differences between the scattering and the density ma-
trix approach: At first, while scattering theory considers the electronic cou-
pling between molecular orbitals and electrode states up to infinite order,
in the density matrix calculations this interaction was only included in sec-
ond order. This restricts the applicability of density matrix theory to weak
molecule-electrode coupling. Secondly, in scattering theory we assume that
after each scattering process the system relaxes to the vibrational equilib-
rium, whereas we do not include any vibrational relaxation in the density
matrix formalism. In the latter formalism the non-equilibrium distributions
caused by vibronic excitations is computed directly, which enables the ab-
sorption of vibrational quanta. In scattering theory at zero temperature, only
the excitation of vibrational quanta can be observed. Thirdly, while the cur-
rent expression in the density matrix treatment was derived from the general
definition of the current, the current expression involving the multi-channel
scattering probability was derived following probabilistic arguments and has
not been derived strictly, so far. Fourthly, in the density matrix approach we
have to deal with electronic many-particle states, whereas we can reduce our
treatment to single particle states in the scattering formalism. This allows
to include significantly more molecular orbitals in the computation.

Scattering theory was applied to two classes of molecules. The first class
consists of a benzene ring that was separated from the gold contacts by dif-
ferent thiolate-linker groups, the second class consisted of pairs of tautomers,
that acted as photochemical switches. In the benzene-thiolate systems we
demonstrated the importance of respective time/energy scales, comprising
the lifetime of the hole on the molecule, the size of the vibronic coupling,
and the vibrational frequency, which determine the influence of vibrational
effects. In all systems we observed negative differential resistance effects,
which we could attribute to the voltage dependence of the eigenenergies of
the gold contacts. In the tautomeric molecules, on the other hand, we studied
the different transport characteristics of the two tautomers and thus possi-
ble switching behavior. The results depended significantly on the chemical
nature of the hydrogen carrying unit.

Density matrix theory was used to compute the current-voltage curve of
a ’two electronic states’-’one mode’ system, which we compared to similar
results obtained from scattering theory. Qualitatively, the results from both
theories agreed very well except for features due to absorption of vibrational
quanta which could only be obtained by the density matrix formalism.

Finally it is noted that although the field of molecular electronics has
developed rapidly in the last decades, it is difficult to predict whether it is ever
going to be of technological relevance. Nevertheless, it is a fascinating topic
that involves interesting research and yields valuable insights into quantum
mechanical transport processes on the molecular scale.
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Appendix A

Surface Self-energy

The infinite, periodic part of the molecular junction is accounted for by a
surface self-energy (Σsf), which is supposed to describe the effect on the
contacts due to their coupling to a semi-infinite metal solid.

The Green’s function of the whole molecular junction is defined as

G(E) = lim
η→0+

[(E + i η)1−H]−1 =
[

E+ −H
]−1

,

where 1 is the unit-operator, H is the Hamiltonian of the total system, and
η is a positive infinitesimal.

As the transport characteristics will mainly be determined by the ex-
tended molecule, we are interested in the Green’s function projected onto
the Hilbert space spanned by the extended molecule,

Gext = PχGPχ ,

where Pχ =
∑

i |χi〉〈χi|, with |χi〉 being orthogonal states in the extended
molecular space.

Using the Lippmann-Schwinger equation [50]

G = G0 +G0V G ,

whereG0 is the Green’s function related to the Hamiltonian without molecule-
lead coupling, we obtain

Gext = PχGPχ = PχG0Pχ + PχG0V GPχ .

The sum of projection operators, Pχ+Q
sf
L+Q

sf
R = 1, is inserted on both sides

of the operator V , where Qsf
L and Qsf

R are the projection operators onto the
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left and right semi-infinite solid spaces, respectively. It can be shown that
only three terms remain

Gext = PχGPχ = PχG0Pχ + PχG0PχV Q
sf
LGPχ + PχG0PχV Q

sf
RGPχ . (A.1)

The terms Qsf
LGPχ and Qsf

RGPχ can again be evaluated using the Lippmann-
Schwinger equation, and inserting 1 = Pχ +Qsf

L +Qsf
R. This leads to

Qsf
LGPχ = Qsf

LG0Q
sf
LV PχGPχ ,

and a similar expression for Qsf
RGPχ. Inserting this equation into Eq. (A.1)

gives

Gext = PχG0Pχ + PχG0PχV Q
sf
LG0Q

sf
LV PχGPχ + PχG0PχV Q

sf
RG0Q

sf
RV PχGPχ

= PχG0Pχ + PχG0PχΣ
sf
LPχGPχ + PχG0PχΣ

sf
RPχGPχ

= PχG0Pχ + PχG0PχΣ
sf
LG

ext + PχG0PχΣ
sf
RG

ext (A.2)

where the idempotency of Pχ and the definition of the retarded self-energy
Σsf
L = PχV Q

sf
LG0Q

sf
LV Pχ, and similarly of Σsf

R, was used.
Eq. (A.2) can be rearranged,

Gext =
[

E+ − PχG0PχΣ
sf
L − PχG0PχΣ

sf
R

]−1
PχG0Pχ .

Using the operator relation A−1B = [B−1A]
−1

we obtain

Gext =
[

(PχG0Pχ)
−1 (E+ − PχG0PχΣ

sf
L − PχG0PχΣ

sf
R

)]−1

=
[

(PχG0Pχ)
−1 − Σsf

L − Σsf
R

]−1

=
[

E+ − PχHPχ − Σsf
L − Σsf

R

]−1
.

The Green’s function projected onto the extended molecular space thus con-
tains the Hamiltonian of the extended molecule PχHPχ = h̃ and the self-
energy of the left and right metal surfaces Σsf = Σsf

L + Σsf
R,

Gext =
[

E+ −
(

h̃+ Σsf
)]−1

.

This explains the usage of hsf = h̃+ Σsf in Eq. (3.11).
The Hamiltonian matrix hsf can be arranged in block structure,

hsf =





hsfL hsfLM hsfLR
hsfML hsfM hsfMR

hsfRL hsfRM hsfR



 .
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While hsfM is a real symmetric matrix, hsfL and hsfR are complex symmetric
matrices.

Next, hsf is block diagonalized,

hu = UThsfU =





EL V LM V LR

V ML EM V MR

V RL V RM ER



 , U =





UL 0 0
0 UM 0
0 0 UR



 .

The eigenvectors of the blocks belonging to L and R form a bi-orthogonal
basis in the left and right lead space, respectively. This means that the
column vectors of UL constitute the right eigenvectors of hsfL , uk, while the row
vector of UT

L constitute the left eigenvectors of hsfL , u
T
k′ . The left eigenvectors

are the transposed (not the Hermitian conjugate) of the right eigenvectors
and vice versa. The inner product of left and right eigenvectors is given
by uTk′ · uk = δkk′S

u
k , where Su

k is an overlap element, that, in general, is
complex and not equal to unity. The eigenvalues, uTk′h

sf
Luk = δkk′Ek, of a

non-Hermitian matrix are complex as well.
In order to avoid complications that would arise if bi-orthogonality was

considered in the derivation of the transport equations in sections 4.1 and
5.1, we will derive these transport equations assuming a general, orthogonal
basis of continuum states in the leads and approximate these states by the bi-
orthogonal ones of the finite contact space, |φk〉 → uk, in the final transport
equations.

The projection operator
∑

k |φk〉〈φk| in Eq. (4.19) acts on an arbitrary
state |φl〉 like

∑

k

|φk〉〈φk|φl〉 = |φk〉δkl .

In the orthogonal basis set, a projection operator that gives an equivalent
result is given by

∑

k

uk · uTk
Su
k

ul =
∑

k

uk · Su
k

Su
k

δkl = uk (A.3)
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This gives the following expression for the lead self-energy.

Σlead
L (E)ij =

∑

k,k′∈L
〈φi|V |φk〉〈φk|

1

(E+ −HL)
|φk′〉〈φk′|V |φj〉 ,

⇒
∑

k,k′∈L
〈φi|V

uk · uTk
Su
k

1

(E+ −HL)

uk′ · uTk′
Su
k′

V |φj〉 ,

=
∑

k,k′∈L
Vik′

1

Su
k

Su
kδkk′

(E+ − Ek′)

1

Su
k′
Vk′j ,

=
∑

k∈L
Vik

1

Su
k (E

+ − Ek′)
Vkj .

Note that in a complex symmetric matrix, in general, Vik 6= V ∗ki but
Vik = Vki.
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