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Abstract

High resolution multi- and hyperspectral remote sensing data form the basis of important spatially dis-
tributed biogeophysical products in support of crop management at a local to regional scale. Due to the
infrequent and irregular data availability from single high resolution sensors, multi-sensor approaches are
required to fill the gaps in data sequences and to guarantee data takes at critical time steps during the
seasonal life-time of a crop. Prerequisite for such combined use is the consistency of single sensor prod-
ucts and the compatibility between the products of different origin. Developing robust algorithms for the
retrieval of vegetation variables from remote sensing data is often hindered by the underdetermined na-
ture of the problem, which is caused by the inferior number of independent earth observation dimensions
compared to the large number of canopy elements causing variations in the radiometric signal. The main
objective of this thesis is to address this issue in the context of developing an automated, image-based
approach which is applicable to a wide variety of airborne and spaceborne high resolution sensors.

The proposed approach, entitled CRASh, provides a concurrent retrieval of the key agricultural vari-
ables leaf area index (LAI), leaf chlorophyll content (Cab), leaf water content (Cw), and leaf dry matter
content (Cdm), based on the combined inversion of the leaf optical model PROSPECT (Jacquemoud and
Baret, 1990; Fourty et al., 1996) and the 1-D turbid medium canopy structure model SAILh (Verhoef,
1984; Verhoef, 1985). The inversion of these radiative transfer models allows for the exploitation of the
entire information content contained in the data and facilitates optimizing for illumination/observation
geometry and adapting to site specific phenology, background reflectance, and atmospheric conditions.
In CRASh, model inversion is based on a lookup table (LUT) approach, which, apart from being com-
putationally fast, offers maximum flexibility to changing input parametrization.

The presented approach entirely relies on the spectral image content and the information products
provided by automated preprocessing of the data. Under this assumption, the lack of a priori knowledge
on land cover causes the inversion process to be strongly underdetermined and ill-posed, indicating that
the system has multiple solutions. Two novel regularization techniques are proposed in this respect: the
incorporation of an automated spectral land cover classifier, and the assimilation of preliminary, a priori
estimates of the output vegetation variables, calculated in place using predictive regression equations.
Moreover, a new method, based on the local spatial neighborhood of the pixel under inversion, is sug-
gested for dealing with systematic small scale attribution inconsistencies resulting from the land cover
classification.

The suggested land cover classification facilitates a more explicit characterization of spectral un-
certainties and appeared very effective in reducing the uncertainties related to the individual inversion
results, since the LUTs used for model inversion could be optimized for each land cover type. Moreover,
the LUTs that are calculated separately for every land cover class and illumination/observation geome-
try allow for the generation of semi-empirical predictive equations optimized for each specific situation.
These equations are based on the regression between spectral vegetation indices (VIs) calculated from
the reflectance spectra contained in the LUT, and the variables used to simulate this canopy reflectance
in the forward mode. The predictive equations obtained in this way are subsequently used to calculate a
priori estimates of each variable and for every vegetation pixel in the image. The prior estimates, and the
assessment of covariance between the several variables based on these estimates, play a decisive role in
the stabilization of the model inversion and the reduction of ambiguous results between variables invoking
complemental spectral behavior.
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The performance and stability of the new approach was extensively tested at three spatial levels,
including ground measurements performed with a field spectrometer, data from the airborne full-range
imaging spectrometer HyMap, and satellite observations from the multi-directional CHRIS/PROBA sen-
sor. Whereas the field spectrometer measurements allowed for a direct comparison between spectral
signal and canopy characteristics while excluding spatial and atmospheric uncertainties, the airborne and
satellite measurements offered a deeper insight into the effect of changing observation and illumination
properties. The performance of CRASh when applied to the field spectrometer and HyMap data was val-
idated on several intensively used temperate grasslands in southern Germany. Validation measurements
included Cw, Cdm, and LAI. Ground sampling of Cab and LAI, measured on irrigated cotton fields in
Uzbekistan, was used to validate estimates based on the CHRIS data.

Based on resampled field spectra, the influence of different band configurations (HyMap, CHRIS,
Landsat ETM+, SPOT HRG, Quickbird) in retrieval performance of Cw, Cdm, and LAI was tested.
Although the approach is applicable to both multispectral and hyperspectral data, it provided most
consistent results for the full-range hyperspectral HyMap configuration, followed by the multispectral
Landsat ETM+ configuration. The latter indicates that configurations that show an even distribution
of nearly uncorrelated bands across the entire solar-reflective domain contributes more to a robust inver-
sion than a high absolute number of bands in strongly correlating waveband regions, such as provided
by CHRIS. The inclusion of SWIR bands clearly lead to regularization of the leaf water retrievals and
hence to stabilization of the complete inversion process. The average accuracy obtained for resampled
HyMap configuration was around 70% for the 3 considered variables and ranged from 62 - 89% if the
grasslands were split up according to phenological classes. The minimum and maximum relative RMS
errors (rRMSE) obtained at this spatial level were 14 and 39%, respectively.

At the level of the airborne HyMap data, average estimation accuracy was significantly lower and
varied from 37 to 70%, whereas rRMSE laid between 36 - 62%, depending on the variable and on the
sun/view constellation. The unsatisfying results obtained at this level were ascribed to the large dis-
crepancy between the small validation plots of 1 × 1 m2 and the average HyMap pixel size of 5 × 5 m2,
which especially in the highly heterogeneous pasture played a crucial role. Moreover, consistency of the
retrievals among different images of the same area was hindered by anomalies in land cover classification
between the scenes, induced by the diverging view/sun constellations of the data takes.

The results obtained at satellite level, based on CHRIS/PROBA multi-angular observations, were not
directly comparable with the previous results, since both crop type, spectral sensor configuration, and
considered variables differed. Nevertheless, the multi-angular data offered important insight on model
performance for a row-structured crop at different view zenith angles. Moreover, it showed the addi-
tional gain in stability and accuracy when multiple view angles were simultaneously inverted. For the
single view angles, highest accuracy was obtained for the -55◦ backscatter nominal view angle, while
the combination of all view angles except for the extreme forward scattering angle provided best overall
performance with an average accuracy of 74% for both Cab and LAI, and a rRMSE of 22 and 33% for
Cab and LAI, respectively. The fully automically generated results were only slightly inferior to those
obtained after inclusion of well characterized field measured prior information on the canopy variables.
The improvements obtained by using the multi-angular data set underscores the promise residing in this
additional information source, even in situations where the radiative transfer model shows considerable
discrepancy with the observed canopy.

The results obtained in this thesis for automatically generated biogeophysical products indicate that,
based on single sensor observations, full range imaging spectrometers offer most robust radiative transfer
model inversion retrievals in cases where little a priori information is available. Even if the obtained
results were not accurate enough for multi-sensor applications, for homogeneous vegetation canopies still
significant consolidation of the results can be obtained by employing more sophisticated land cover clas-
sification schemes. Multi-angular hyperspectral observations in combination with 3-D radiative transfer
models seem to bear vast potential for a complete and robust automated characterization of row crops.

vi



Zusammenfassung

Hochaufgelöste multi- und hyperspektrale Fernerkundungsdaten bilden eine wichtige Datengrundlage für
die Erstellung räumlich verteilter biogeophysikalischen Produkte zur Unterstützung landwirtschaftlicher
Entscheidungsprozessen auf lokaler bis regionaler Ebene. Die eingeschränkte und unregelmäßige Daten-
verfügbarkeit von einzelnen hochauflösenden Sensoren erfordern multi-sensor Ansätze um die Lücken
in den Aufnahmesequenzen zu vervollständigen und Aufnahmen an allen wichtigen Zeitpunkten des
saisonalen Wachstumszyklus garantieren zu können. Vorbedingung für solch eine kombinierte Nutzung
ist die Konsistenz der einzelnen Sensor-Produkten und die Kompatibilität zwischen den Produkten unter-
schiedlicher Herkunft. Die Entwicklung von robusten Algorithmen zur Ableitung von Vegetationvariablen
aus Fernerkundungsdaten wird oft erschwert durch den unterbestimmten Charakter des Problems, welcher
seinen Ursprung hat in der begrenzten Anzahl der unabhängigen Erdbeobachtungsdimensionen im Ver-
gleich zu den vielen Vegetationsvariablen die für die radiometrischen Schwankungen verantwortlich sind.
Die hier vorgestellte Arbeit hat als Hauptziel dieses Problem in den Griff zu bekommen im Rahmen eines
neuen vollautomatischen und Bild-basierten Ansatzes der für eine Vielzahl von flugzeug- und satellitenge-
tragenen Sensoren entwickelt wurde.

Der Ansatz, namens CRASh, liefert die gleichzeitige Abschätzung vier wichtiger landwirtschaftlicher
Variablen: dem Blattflächenindex (LAI), dem Blattchlorophyllgehalt (Cab), dem spezifischen Wasserge-
halt (Cw), und der spezifischen Trockenmasse (Cdm). Das physikalisch basierte Verfahren beruht
auf der kombinierten Inversion des optischen Blattmodells PROSPECT (Jacquemoud und Baret, 1990;
Fourty u.A., 1996) und des Vegetations-Strukturmodell SAILh (Verhoef, 1984; 1985). Die Inversion von
physikalischen Strahlungstransfer-Modellen ermöglicht es, den gesamten Informationsgehalt der Fern-
erkundungsdaten auszunutzen und das Modell an die fallspezifische Beleuchtungs- und Aufnahmegeome-
trie, und der lokalen Phenologie, Hintergrundstrahlung und den atmosphärischen Bedingungen anzu-
passen. Die Modellinversion erfolgt über Nachschlagetabellen (LUT), welche nicht nur wenig rechenin-
tensiv sind, sondern sich auch sehr flexibel an wechselnde Eingangsparametrisierung anpassen lassen.

CRASh beruht völlig auf dem spektralen Bildinhalt und auf den während der Vorprozessierung ent-
standenen Zusatzinformationsprodukten. Unter dieser Voraussetzung führt die Abwesenheit von Vor-
wissen zur Bodenbedeckung dazu dass das Inversionsproblem sehr stark unterdefiniert und schlecht-
konditioniert ist. Aus diesem Grund werden zwei neue Regelungsmassnahmen vorgeschlagen: die Ein-
bindung eines automatischen spektralen Bodenbedeckungsklassifikators und die Assimilation einer vor-
läufigen oder a priori Abschätzung des Ergebnisses, die nach einem neuen Verfahren berechnet werden.
Des Weiteren wird eine neue Methode vorgestellt die, basierend auf der lokalen Umgebung des zu in-
vertierenden Pixels, kleinräumige Anomalien berücksichtigt die aus der Landnutzungsklassifizierung re-
sultieren.

Die vorgeschlagene Bodenbedeckungsklassifizierung ermöglicht eine explizitere Charakterisierung der
radiometrischen Unsicherheiten und zeigt sich sehr effektiv im Reduzieren der Unsicherheiten der einzel-
nen Inversionsergebnisse. Außerdem bieten die LUTs, die für jede einzelne Bodenbedeckungsklasse und
Blick- / Sonnengeometrie erstellt werden, die Möglichkeit semi-empirische Regressionsgleichungen zu
generieren, die für jede Situation optimiert sind. Diese Gleichungen basieren auf der Regression zwischen
spektralen Vegetationsindizes (VI), berechnet aus den Reflexionsdaten in der LUT, und den Variablen
die verwendet wurden um die Bestandesreflexionswerte zu simulieren. Anschließend werden die Regres-
sionsgleichungen verwendet, um für jeden Pixel in der Szene eine vorläufige Abschätzung jeder Variable
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zu berechnen. Die a priori Abschätzungen und die Kovarianz, die basierend auf diesen Schätzungen
berechnet wird, spielen eine entscheidende Rolle in der Stabilisierung der Modellinversion und in der
Reduzierung der Mehrdeutigkeit zwischen Variablen mit sich ergänzender spektraler Auswirkung.

Die Leistung und Stabilität des neuen Verfahrens wurden getestet auf drei räumlichen Skalenniveaus.
Dazu gehören Bodenmessungen durchgeführt mit einem Feldspektrometer, Daten aufgenommen mit
dem flugzeuggetragenen HyMap-Sensor und multi-direktionale CHRIS/PROBA Satellitenaufnahmen.
Während die Feldspektrometermessungen den direkten Vergleich zwischen spektraler Signatur und Be-
standesmessung ermöglichten, indem geometrische und atmosphärische Unsicherheiten ausgeschlossen
wurden, boten die flugzeug- und satellitengestützten Aufnahmen einen tieferen Einblick in die Effekte
verursacht durch wechselnde Aufnahme- und Sonnengeometrie. Für die Feldspektrometermessungen
und HyMap-Aufnahmen wurde die Validierung des Verfahrens auf mehreren intensiv bewirtschafteten
Grünlandflächen in Südostbayern durchgeführt, wobei Cw, Cdm und LAI gemessen wurden. Boden-
messungen von Cab und LAI, erhoben für Baumwolle in Uzbekistan, wurden verwendet um die Ab-
schätzungen basierend auf den CHRIS-Daten zu validieren.

Mittels resampleten gemessenen Feldspektren wurde getestet, welche Auswirkung unterschiedliche
hyper- und multi-spektrale Bandkonfigurationen (HyMap, CHRIS, Landsat ETM+, SPOT HRG, Quick-
bird) auf die Ableitungsgenauigkeit von Cw, Cdm, and LAI hatten. Die HyMap spektrale Konfiguration,
mit gleichmäßig verteilten schmalen Bändern über das gesamte reflektive Spektrum, schnitt am besten
ab, gefolgt von der multi-spektralen Landsat ETM+ Konfiguration. Letzteres Ergebnis zeigt, dass Kon-
figurationen mit gleichmäßig über das Gesamtspektrum verteilten unkorrelierten Kanälen mehr zu einer
stabilen Inversion beitragen als eine hohe Zahl von korrelierten Bändern in einem eingeschränkten spek-
tralen Bereich, ähnlich wie beim CHRIS-Sensor. Die Angliederung von SWIR Kanälen führt zu einer
deutlichen Stabilisierung der Wassergehaltabschätzung und damit zu einer Stabilisierung der gesamten
Invertierung. Die mittlere Genauigkeit, die für die HyMap Konfiguration erreicht wurde, lag bei 70% für
die drei Variablen und variierte zwischen 62-89%, wenn die Grünlandflächen nach phenologischen Klassen
aufgeteilt wurden. Die minimale und maximale relative mittlere quadratische Abweichung (rRMSE), die
auf diesem räumlichen Niveau erreicht wurden, lagen bei 14% beziehungsweise 39%.

Für die Daten des flugzeuggetragenen HyMap Sensors lag die mittlere Schätzungsgenauigkeit mit 37
- 70% bedeutend niedriger, während die rRMSE abhängig von Variable und Sonnen- / Aufnahmekon-
stellation zwischen 36 - 63% schwankte. Diese unbefriedigenden Ergebnisse sind der großen Diskrepanz
zwischen den kleinen Validierungsplots (1 × 1 m2) und dem mittleren HyMap Pixelgröße von 5 × 5 m2

zuzuschreiben, welche vor allem in den heterogenen Weiden eine ausschlaggebende Rolle spielten. Hinzu
kommt, dass die Konsistenz der Schätzungsgenauigkeit zwischen unterschiedlichen Aufnahmen von einem
und dem selben Gebiet durch Anomalien in der Bodenbedeckungsklassifikation beeinflusst wurde, verur-
sacht durch die unterschiedliche Beobachtungs- und Sonnengeometrie der Datenaufnahmen.

Die Ergebnisse, die auf Satellitenebene aus den multi-direktionalen CHRIS/PROBA-Daten erzielt
wurden, sind nicht direkt mit den oben erwähnten Ergebnissen vergleichbar, da sowohl der Vegeta-
tionstyp als Sensor-Konfiguration und auch berücksichtigte Variablen unterschiedlich waren. Dennoch
ermöglichten die multi-direktionalen Daten einen wichtigen Einblick in die Leistung des Schätzungsver-
fahrens für in Reihen angeordnete Anbaupflanzen unter unterschiedlichen Beobachtungswinkeln. Außer-
dem wurde gezeigt, dass die gleichzeitige Inversion von mehreren Beobachtungswinkeln zu einer zusätzlich-
en Stabilität und Genauigkeit des Schätzungsverfahrens beiträgt. Was die einzelnen Beobachtungswinkel
angeht, wurde die höchste Genauigkeit für den 55◦ nominalen Rückstreuungs- Blickwinkel erreicht,
während die Kombination von allen Blickwinkeln außer dem maximalen vorwärts gerichteten Winkel
die gesamtbeste Genauigkeit erzielte. Im letzten Fall betrug die mittlere Genauigkeit 74%, sowohl für
Cab als LAI, und die rRMSE bei 22 und 33% für Cab beziehungsweise LAI. Die völlig automatisch
erzeugten Ergebnisse waren nur unwesentlich schlechter als die Ergebnisse unter der Verwendung der
Bodenmessungen als a priori Wissen. Die Verbesserungen,die durch Einbeziehung von mehreren Blick-
winkeln erreicht wurden, unterstreicht den zusätzlichen nutzbaren Informationsgehalt von solchen Daten
sogar in einer Situation, wo das Strahlungstransfermodell eine große Diskrepanz mit der Wirklichkeit
vorzeigt.

Die in dieser Dissertation automatisch erzeugten biogeophysikalischen Produkte zeigen dass basierend
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auf einzelnen Aufnahmen, abbildende Spektrometer, die den gesamten reflektiven Spektralbereich von
400 - 2500 nm abdecken, die robustesten Ergebnisse liefern falls kein a priori Wissen vorhanden ist.
Obwohl die erzielten Genauigkeiten noch nicht ausreichen für multi-sensor Ansätze, kann eine erhebliche
zusätzliche Konsolidierung der Ergebnisse erreicht werden durch weiter verfeinerte Bodenbedeckungs- und
Landnützungsklassifikatoren. Multi-direktionale hypespektrale Aufnahmen zeigen großes Potential für
eine komplette und robuste automatisierte Charakterisierung von in Reihen angeordneten Anbaupflanzen.
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Chapter 1

Introduction

1.1 Earth observation in a changing environment

In February 2007, the Intergovernmental Panel on Climate Change reported that if human in-
duced emission atmospheric greenhouse gases is not tempered, an ongoing increase in global
warming is inevitable, having dramatic consequences for our planet (IPCC, 2007). In this
light, increased effort is put in studying the role of the biosphere in terrestrial carbon balance
(GCP, 2003), and in monitoring and modeling the effects of changing climatological conditions
on ecosystems and biodiversity (DIVERSITAS, 2002). Such research is often conducted in sup-
port of policy at national and international level, issued to meet the criteria posed by political
treaties such as The Kyoto Protocol of the United Nations Framework Convention on Climate
Change, the Convention on Biological Diversity signed at the United Nations Conference on
Environment and Development, or the UN Millennium Development Goals.

Earth observation plays a crucial role in such assessments, being able to provide informa-
tion on the state of the vegetation cover over extended geographical areas, at a high temporal
frequency, and at relatively low cost. This potential has also been recognized by various intergov-
ernmental institutions, as evidenced by the large number of programs adopting remote sensing
as one of the key elements in global environmental monitoring. In 2005, the Group on Earth
Observations adopted a 10 year implementation plan of an integrated Global Earth Observation
System of Systems (GEOSS), established to organize the efforts of different nations on the inter-
national level for providing spatially and temporally consistent observations (GEO, 2005). The
Global Monitoring for Environment and Security (GMES) initiative, is the European participa-
tion in this plan, and is a joint effort of European Union and the European Space Agency (ESA)
to provide the data and operational services required for global environmental monitoring and
for a wide range of security related issues (Brachet, 2004).

Environmental and security issues adopted in GMES and similar non-European initiatives
also involve food related risks, such as the effects of drought and unsustainable land use on
crop yield and food security. Several programs concentrate on developing remote sensing based
systems for monitoring and forecasting crop prospects in different parts of the world (e.g., MARS-
FOOD1 and GMFS2 of the EU and CADRE of the Production Estimates and Crop Assessment
Division of the USDA Foreign Agricultural Service3). Whereas these programs mainly intend



1.2. User requirements on remote sensing biogeophysical products

to support political decision making at regional to global scales, at a more local scale remote
sensing products can assist farmers in adapting their crop management strategies. By applying
manure, pesticides, and water supplies according to the needs of the individual plants, yields
can be optimized, costs reduced, and impacts on the fragile and ever scarcer available natural
resources brought down to a minimum (Delécolle et al., 1992; Inoue, 2003). Such management
decisions are often taken at field or intra-field scale thus requiring information products with
high spatial resolution.

The vegetation properties provided by earth observation systems rarely directly support de-
cision making and mostly have to be interpreted in a broader environmental context. Sound
decision making can only be guaranteed when a complete overview of the environmental processes
responsible for ecosystem behavior is provided. In this context, remote sensing products are often
employed in conjunction with information on soil properties, plant phenology and uptake be-
havior, and meteorologic and environmental conditions, to feed or calibrate process models pro-
viding the environmental variables that can be interpreted by users and policy makers and help
them in their decision-making processes (Bach and Mauser, 2003; Delécolle et al., 1992; Houser
et al., 1998; Makowski et al., 2003; Moulin et al., 1998; Olioso et al., 1999; Schaepman, 2007; Ver-
hoef and Bach, 2003a).

1.2 User requirements on remote sensing biogeophysical products

The remote sensing platforms supplying earth observation data have strongly differing prop-
erties, including active and passive systems, with spatial resolutions ranging from less than a
meter to several kilometers, and visit frequencies varying from one single data take to several
measurements every hour. The choice of system, its spatial and spectral resolution, and the
temporal frequency of the observations is driven by the required product and envisaged appli-
cation. For example, ecosystem and terrestrial carbon studies require data with a continental
to global coverage at moderate spatial and temporal resolutions, while long term continuity,
needed to detect gradual changes from the generally accepted steady-state conditions, should be
guaranteed (Van Leeuwen et al., 2003). On the other hand, local scale agricultural applications
require data with high spatial resolutions at several critical time steps during the annual growth
cycle of a crop (Delécolle et al., 1992; Launay and Guerif, 2005).

Data consistency plays a critical role when long term ecological effects are studied, given
the usually relatively limited life time of most sensor missions (Van Leeuwen et al., 2003). But
also for intra-annual applications such as precision farming, several independent providers might
contemporaneously disseminate basically the same product derived from different sensors and
based on different algorithms, making it difficult for a user to decide whether the products are in-
terchangeable and if they can be used to fill gaps in their observation sequences (Verhoef, 2007).
Therefore, if thematic remote sensing based products of the biosphere are to be employed by a
wide range of users and decision makers, the remote sensing community should put increased
effort in developing consistent algorithms and data products.

The success of remote sensing based vegetation products in agricultural applications (Moran

1URL: http://agrifish.jrc.it/marsfood/Default.htm
2URL: http://www.gmfs.info/
3URL: http://www.pecad.fas.usda.gov/cropexplorer/index.cfm
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Table 1.1: Variables indicative for canopy condition and functioning. The third and fourth columns give
some examples of studies where these variables have been successfully retrieved from different types of remote
sensing data.

Biophysical variable Main indicator Sensor type Remote sensing application

Fraction of absorbed
photosynthetically ac-
tive radiation (fAPAR)

Photosynthesis, plant
stress

Reflective Clevers (1997); Gobron et al. (2006)

Leaf Area Index (LAI) Plant development,
plant stress

Reflective Doraiswamy et al. (2004); Mo et al.
(2005); Moulin et al.,(2003)

Fractional cover
(fCover)

Plant development,
land degradation

Reflective Bouman (1995); Bachmann et al.
(2004)

Chlorophyll and other
pigments

Photosynthesis, plant
stress

Reflective Haboudane et al. (2002); Zhao et al.
(2004)

Mineral content (K, P,
Ca, Mg)

Crop quality, soil
degradation

Reflective Mutanga et al. (2004)

Plant water content Drought stress Reflective, Radar Moran et al. (1994); Zarco-Tejada
et al. (2003)

Above ground biomass
/ Net Primary Produc-
tion

Carbon storage; (crop)
yield, timber volume

Reflective, Radar, LI-
DAR

Tucker et al. (1983)

Evapotranspiration Drought stress Emissive Bastiaanssen and Ali,(2003); Hurtado
et al. (1994)

Vegetation height,
stem density

Plant development,
plant stress

Radar, LIDAR, high
resolution optical
stereo

Hollaus et al. (2006); Richardson et al.
(1982)

et al., 1997) and security related issues, such as wild fire propagation (Koltunov and Ustin,
2007; Leblon, 2005) are additionally governed by the need of nearly real-time data delivery,
requiring automated preprocessing facilities and thematic algorithms that provide on demand
self-consistent products without intervenience from producer or user side (Brazile et al., 2005;
De Vries et al., 2007; Habermeyer et al., 2005; Knyazikhin et al., 1999b; Richter et al., 2006b).

1.3 The challenge of providing robust environmental indicators

The way vegetation reacts to changing environmental and climatological conditions is often re-
flected by a direct or gradual change of its biophysical and biochemical properties. Table 1.1 lists
the state variables that are most illustrative for the condition of the canopy, together with the
phenological, environmental, or climatological processes which they are indicative for. However,
different types of stress (e.g., drought, insects, soil contamination) often manifest themselves
in a very similar way in plant physiological response, and not seldom the reaction consists in
a concurrent modification of more than one state variable (Fridgen and Varco, 2004; Vyn and
Hooker, 2002).

Remote sensing observations do not directly sample the canopy variables indicative for vege-

3
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tation state but provide spatially distributed radiation fluxes reflected or emitted by the surface.
The measured radiation fluxes are driven by radiative transfer processes, such as scattering,
absorption and emission, intrinsically related to the properties of the observed surface (Koetz
et al., 2004). However, the variables controlling radiative transfer and, hence, the signal cap-
tured by the earth observation system, are often not directly related to the surface properties
of ultimate interest (Verstraete et al., 1996). Therefore, for establishing consistent relationships
between earth observation signal and variable of interest, other variables controlling the signal
have to be taken into account as well.

Classical empirical approaches calibrated over experimental data sets (Huete, 1988; Richard-
son and Wiegand, 1977) implicitly assume a direct relationship between measured signal and
variable of interest and thus neglect spectral variations induced by changing canopy architecture,
background, or observation geometry. As a consequence, these methods lack robust portabil-
ity and relationships have to be calibrated for every new situation (Baret and Guyot, 1991).
Instead, inversion of canopy radiative transfer models appears a promising alternative to the
empirical approaches (Bacour et al., 2002a; Bacour et al., 2006; Houborg et al., 2007; Jacque-
moud et al., 1995a; Knyazikhin et al., 1999b; Koetz et al., 2004; Weiss et al., 2002). Radiative
transfer models summarize our knowledge on the physical processes involved in the photon
transport within vegetation canopies, and simulate the radiation field reflected or emitted by
the surface for given observational configuration, once the vegetation, the background, and pos-
sibly the atmosphere are specified (Baret and Buis, 2007; Goel and Thompson, 2000; Verhoef
and Bach, 2007).

Comprehensive modeling of radiation propagation in canopies with a radiative transfer model
requires a considerable number of inputs, since absorption and scattering processes at various
levels in the canopy are defined by a large number of biochemical (e.g., leaf chlorophyll con-
tent, leaf and stem water content) and structural (e.g., leaf density, leaf inclination, leaf size)
vegetation properties (Gobron et al., 1997; Kuusk, 1995a; Verhoef, 1984). This number will
even increase when reflectance of structurally complex canopies such as forest stands, orchards,
or transition communities have to be mimicked (Govaerts and Verstraete, 1998; Verhoef and
Bach, 2007). Given the limited number of independent data dimensions in most remote sensing
systems (Fourty and Baret, 1997; Gemmell, 2000; Verhoef, 2007; Zhang et al., 2002a; Zhang
et al., 2002b), estimating vegetation properties from earth observation data by radiative trans-
fer model inversion or by any other retrieval method, is an under-determined problem (Combal
et al., 2002b; Kimes et al., 2000). In addition, several variable combinations show comple-
mentary behavior and may lead to very similar spectral signatures, a phenomenon that is re-
inforced by radiometric, georeferencing, and model errors. Radiative transfer model inversion
therefore has a large number of multiple solutions, a phenomenon also known as ill-posedness
(Atzberger, 2004; Combal et al., 2002b; Tarantola, 2005).

A robust retrieval of vegetation variables can therefore only be guaranteed if additional as-
sumptions, constraints, or additional independent observations are introduced (Bacour et al.,
2006; Combal et al., 2002b; Vohland and Jarmer, 2007; Weiss et al., 2001). Even if assump-
tions and constraints reduce the dimensionality of the inverse problem, they also limit the
transferability of the approach, since they are generally only applicable for a specific situation
(Koetz, 2006). For this reason, the science community increasingly focuses on expanding the
number of independent observations of a target, either by increased spectral resolution of sin-
gle sensors (Schlerf et al., 2005; Verhoef, 2007), by assimilation of additional independent data
sources of different nature, such as multi-directional and multi-temporal observations (Chopping
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et al., 2003; Knyazikhin et al., 1999c; Pinty et al., 2002; Bacour et al., 2002b; Koetz et al., 2005a),
or by a combination of both (Koetz et al., 2007; Menenti et al., 2005). The degree to which addi-
tional observation dimensions contribute to improved retrieval performance strongly depends on
the nature of the complementary information and its collinearity with the information already
present. Whereas increased spectral resolution primarily leads to improved determination of
foliage biochemistry and species composition (Ustin et al., 2004; Verhoef, 2007), multi-angular
observations, laser scanning, and microwave remote sensing principally contribute to enhanced
estimation of canopy structure elements (Hyyppä et al., 2000; Koetz et al., 2007; Widlowski
et al., 2004).

1.4 Rationale of the thesis

Recently, scientists have demonstrated increased activity in developing operational algorithms
for the retrieval of biogeochemical variables from solar-reflective remote sensing data based on
radiative transfer model inversion. Examples are the leaf area (LAI) and vegetation cover
(fCover) products from POLDER-2 onboard ADEOS-2 (Lacaze, 2005), LAI and the fraction
of absorbed photosynthetically active radiation (fAPAR) from MODIS/MISR on the Terra and
Aqua platforms, LAI, fAPAR, fCover, and canopy chlorophyll content from MERIS on EN-
VISAT (Bacour et al., 2006), and the LAI, fAPAR, and fCover products from VEGETATION
observations (Baret et al., 2007; Weiss et al., 2007). These algorithms have all been optimized
for the respective sensor while the spatial resolution of the products ranges from 300 meter for
MERIS over 1 kilometer for MODIS and VEGETATION up to 6×7 kilometers for POLDER. On
the contrary, agricultural applications, such as precision farming, require information products
at field or intra-field levels, typically in the range of 1 - 30 meters.

Several commercial companies4 already offer precision farming products at high to very high
resolutions based on multispectral sensor systems and automated processing chains. But, due
to the limited number of bands inherent to such systems, the product palettes offered by these
companies are based on underdetermined model problems and therefore mainly include biophys-
ical products that have a more or less straightforward relationship with canopy reflectance, such
as yield or biomass. On the other hand, crop stress and nutrition deficiency is often expressed in
changes of biochemical constituents, such as leaf chlorophyll and leaf water content. Designing
consistent automated algorithms for detecting such changes is often hindered by the low spectral
sensitivity of most leaf biochemical variables and by their high correlation with LAI and other
structural variables (Bacour et al., 2006; Vohland and Jarmer, 2007). Moreover, the spectral
changes induced by these variables are not captured by every multispectral system. Whereas
the presented medium resolution sensors can fall back on more frequent coverage, thus facili-
tating land cover classifications in support of retrievals optimized for specific biomes (Houborg
et al., 2007; Lotsch et al., 2003), a similar option is not offered to the high resolution systems. A
stable inversion thus requires several assumptions and constraints which will obviously limit the
transferability of the developed inversion schemes to a wide range of different land cover types.
Additional data dimensions are therefore required to guarantee a stable model inversion for a
wide range of crops based on high resolution data.

At the advent of upcoming European initiatives providing superspectral and hyperspec-
tral data at high resolutions, such as Sentinel-2 (Gascon and Berger, 2007), EnMAP (Müller
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et al., 2004) and VENµs5, a solid understanding of the influence of increased spectral information
content on radiative transfer model inversion is of growing interest. Theoretically, due to the in-
creased number of independent data dimensions, such sensors should provide increased retrieval
performance compared to the common mono-directional multispectral sensors (Verhoef, 2007).
This would allow for enhanced accuracy of automatically generated products as well. Until
launch into orbit of the spaceborne sensors mentioned above, several high resolution technology
demonstrators and operational precursor missions serve the research community with hyper-
spectral data (Schaepman, 2007). Examples of available sensors are the airborne instruments
AVIRIS (Green et al., 1998), HyMap (Cocks et al., 1998), and the currently developed APEX
(Schaepman et al., 2004) and ARES (Müller et al., 2005; Richter et al., 2005), and the space-
borne missions of CHRIS/PROBA (Barnsley and Settle, 2004) and Hyperion/EO-1 (Pearlman
et al., 2003). These instruments allow us to explore the potential of hyperspectral data content
for the characterization of selected targets and at user-defined spatial and observational config-
urations (Beisl, 2001).

Even if hyperspectral imagery would facilitate stable radiative transfer model inversion based
on single mono-directional data takes, the temporal restriction of most data campaigns (airborne
sensors) and the cloud cover frequently encountered at mid-latitudes, still lead to intermittent
data series. Complementing data products from different sensors ares therefore often necessary
to obtain data series that span the entire growth cycle.

In prospect of the forthcoming EnMap mission, the German Remote Sensing Center of the
German Aerospace Center (DLR-DFD) established an automated processing chain for the cali-
bration, georectification, and atmospheric correction of imaging spectrometer data (Bachmann
et al., 2007; Habermeyer et al., 2005) (Figure 1.1). Based on the level-2 surface reflectance
cube, a series of value added level-3 products has been developed, such as a spectral land cover
classifier (Richter, 2007a) and an algorithm for fractional cover estimates of photosynthetic and
non-photosynthetic vegetation (Bachmann et al., 2004). In line with these level-3 products, this
thesis explores the potential of hyperspectral data for an automated retrieval of canopy biophys-
ical and biochemical variables for agricultural purposes using radiative transfer model inversion.
The approach is driven by the prerequisite that it should be completely image based, using only
the information available from preceding processing steps and is not bounded to a single imaging
spectrometer.

1.5 Research objectives

There is a clear gap between the fully operative processing chains providing biogeochemical
products at medium to low resolution, and the exigence from side of the farmers requiring con-
sistent biochemical and biophysical products in support of their farming management strategies
at a local to regional scale. Moreover, the irregular data availability from single sensors calls
for the combination of data products originating from different sensors in order to obtain data
sequences covering the entire growth season. This requires flexible algorithms that provide con-
sistent results among a variety of sensors. This thesis aims to bridge this gap by completing the

4e.g., Spot Image (http://www.spotimage.fr/web/en/640-precision farming.php), Basfood
(http://www.basfood.nl/)

5http://smsc.cnes.fr/VENUS/; visited July 2007
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Figure 1.1: Processing chain for hyperspectral data operated by DLR-DFD (Adapted from Bachmann et al.
(2007))

following main objective:

• To develop a consistent, completely automated, and image based radiative transfer model
inversion approach for the concurrent retrieval of the key vegetation variables leaf area
index, leaf chlorophyll content, leaf water content, and leaf dry matter con-
tent from mono-temporal data recorded with any high resolution airborne or spaceborne
imaging spectrometer.

In order to be fully automated, the inversion approach should satisfy the following criteria:

• It completely relies on the top-of-canopy reflectance data and the intermediate products
provided by the automated procession chain for imaging spectrometer data available at
DLR-DFD.

• It is assumed that no information on land cover is a priori available.

• It should be applicable to a wide variety of field crops and grasslands in different pheno-
logical stages.

7
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• The algorithm should be computationally fast, since the complete chain - from data ac-
quisition over (pre-)processing up to data product delivery - should not take more than a
couple of days in order to guarantee timely decision support to the user.

In fact, the ultimate goal is not the development of the automated approach as such, but
rather the challenge of providing consistent results over a wide variety of sensors, observa-
tion/illumination conditions, and agricultural crops. In order fulfill these requirements, pertinent
answers have to be found to the following research questions:

• Is the radiative transfer model underlying the approach well able to mimic top-of-canopy
reflectance for a wide range of crops and view/sun geometries?

• Is canopy reflectance sensitive enough to the variables of ultimate interest?

• To what degree are the results dependent on waveband configuration of the sensor?

• Are the results reproducible for a single observation, i.e., does the algorithm provide similar
results in different model runs?

• How sensitive is the approach to changing observation and/or illumination conditions and
do certain constellations perform better than others?

• How well does the automated approach regularize the ill-posed model inversion, and how
good is this performance compared to situations in which there is a significantly higher
amount of a priori information?

• Can additional stability and accuracy of the automated approach be provided by inclusion
of multi-angular observations?

In the framework of this study, there has been an explicit choice for imaging spectrometers.
This choice is motivated by the strongly underdetermined nature of radiative transfer model
inversion based on multi-spectral data, especially in absence of thorough a priori knowledge on
land cover. The hypothesis underlying this study is therefore, that the increased information
content of hyperspectral conservations compared to multispectral observations, especially on
biochemical leaf constituents (Fourty and Baret, 1997; Verhoef, 2007), has a positive effect on
the stability and accuracy of radiative transfer model inversion.

In support of the previously mentioned research activities, a prototype software package
called CRASh (Canopy variable Retrieval Algorithm based on PROSPECT and SAILh) has
been developed. The software tool was programmed in the Interactive Data Language (IDL;
ITT-VIS, Inc.) as a stand-alone widget module in ENVI. This compatibility with the most
widely used hyperspectral image processing software and data formats in the remote sensing
community should ensure a continued lifetime and further development after conclusion of this
thesis.
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1.6 Structure of the thesis

Chapter 2 gives a comprehensive state-of-the art overview of the methods used to provide quan-
titative characterizations of vegetative surfaces. It discusses the benefits and limitations of the
different techniques in relation to the underlying physical background of radiation propagation
in leaves and canopies. The main part of the chapter will focus on radiative transfer modeling,
the problems encountered in radiative transfer model inversion, and the solutions proposed by
other authors in order to reduce ill-posed solutions.

Chapter 3 provides the theoretical considerations and the implementational aspects of the
automated CRASh approach. These include the choice of the radiative transfer model, an au-
tomated land cover classification, and the inversion approach itself. The inversion approach
incorporates a new concept for additional regularization based on the spectral content of the
image.

In Chapters 4 and 5, the automated approach is validated at three spatial levels: at ground
level based on field spectrometer measurements, at airborne level using data from a HyMap
sensor, and at satellite level using data from the CHRIS/PROBA multi-angular imaging spec-
trometer. Chapter 4 tests the performance of the retrieval algorithm at the first two levels
against the background of estimating leaf area index, leaf water content, and leaf dry matter
content for mid-latitude agricultural grasslands. Based on the field spectrometer measurements,
the impact of the single algorithm components is tested, as well as the reproducibility of the
results and the sensitivity of the approach to model parametrization. The HyMap data allows
for a close inspection of model sensitivity to changing illumination/observation geometry and
to the automated land cover classification. Chapter 5 validates the automated approach in the
light of leaf chlorophyll and LAI estimations over irrigated cotton. First, the performance of
the automated algorithm is tested on the five single view angle data sets of the multi-angular
CHRIS/PROBA sensor. Subsequently, it is tested whether the concurrent inversion of multiple
view angles can further improve estimation accuracy.

Chapter 6 concludes this thesis, synthesizing the findings of the preceding chapters and
drawing conclusions in the context of the objective and research questions posed in the first
chapter. Finally, an outlook is given and possible focal points of future research in the field of
the presented thesis are spelled out.
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Chapter 2

Characterizing vegetation canopies by
solar-reflective remote sensing∗

Remote sensing of vegetation is based on the measurement of spatially distributed electromag-
netic radiation fluxes reflected or emitted by the canopy. The observed signal is the combination
of scattering, absorption, and emission processes that take place in the atmosphere and on the
surface materials found within the sampling unit of the sensor and is therefore rarely directly
related to the surface properties of ultimate interest (Verstraete and Pinty, 1996). The challenge
is to establish consistent relationships between measured signal and variable of interest while
minimizing the influence of other factors interacting with radiation. To be able to establish
such relationships, a thorough knowledge of the mechanisms determining the variations in the
observed signal is indispensable. Therefore, this chapter first starts with a brief overview of
solar-reflective remote sensing, and the different surface properties interacting with the radiance
signal. It is followed by an overview of the different methods available for retrieving the vegeta-
tion variables of interest, with a special focus on physical approaches based on radiative transfer
model inversion.

2.1 Principles of solar-reflective remote sensing

2.1.1 Electromagnetic radiation

The physical quantity that is measured by a remote sensing system is electromagnetic radiation.
Electromagnetic radiation is a dynamic form of energy that is capable of propagating through a
vacuum and becoming apparent only by its interaction with matter (Suits, 1983). In quantum
theory, electromagnetic radiation is described as a stream of discrete particles (photons) carrying
fixed amounts of energy (Hunt, 1983). Such packages of energy are emitted when a molecule

∗This chapter is partly based on:
Dorigo, W. A., Zurita-Milla, R., de Wit, A. J. W., Brazile, J., Singh, R. and Schaepman, M. E. (2007). A review

on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling, International
Journal of Applied Earth Observation and Geoinformation 9: 165–193.



2.1. Principles of solar-reflective remote sensing

or atom falls from an excited energy state to a lower one. Similarly, electromagnetic radiation
is absorbed if the provided energy matches the amount that is required to promote an atom or
molecule from one energy state to a higher one.

The energy E carried by a photon is associated to the wave frequency v by:

E = h · v (2.1)

where h is Planck’s constant (6.626 ·10−34J · s) and v is the frequency, which in turn is inversely
related to wavelength λ by:

v = c/λ (2.2)

with c being the speed of light (3 · 108m · s−1). Combining Equation 2.1 and 2.2 reveals that
the energy content of electromagnetic radiance is inversely proportional to wavelength. Both
wavelength (optical remote sensing) and frequency (radar) are used to categorize radiation type
in remote sensing.

If a body (e.g. Sun or Earth) is assumed a blackbody radiator (i.e., it emits radiance at the
maximum efficiency possible for a body at its effective temperature T (Schowengerdt, 1997)),
the wavelength λ of maximum emission is given by Wien’s displacement’s law:

λmax = 2898/T (2.3)

where λ is expressed in µm and T in degrees Kelvin. Using this law, the wavelength of maximum
radiant exitance lies at 0.49 µm for the Sun (T = 5900 K) and around 9.66 µm for the Earth
(T = 300 K). The wavelength at which solar irradiation measured at the Earth is matched by
self-emitted thermal energy ranges between 2.5 and 6 µm (Slater, 1980).

The total amount of radiation E incident on a surface is called irradiance and expressed as
the flux density (Ψ) per unit area (A):

E = dΨ/dA,Wm−2 (2.4)

Typically used irradiance quantities in remote sensing are Esun to denote direct solar irradiance
and Esky for diffuse hemispheric irradiance. In the context of spectral measurements, irradiance
is integrated over a specific wavelength interval and the SI-unit is extended with [µm−1]. In-
troducing the direction of the originating irradiance component δ (e.g., incident on a vegetation
surface or on a detector element) gives the radiance L which is the flux density per unit projected
area and per unit solid angle Ω:

L = E/π =
d2Ψ

dA cosδ dΩ
,Wm−2sr−1 (2.5)

In solar-reflective remote sensing usually the quantity reflectance ρλ is used to describe the
spectral properties of a surface, which is given by the ratio between reflected L ↑ and incident
radiance L ↓ measured at the bottom of the atmosphere:
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ρλ = π · L/E (2.6)

Measured reflectance strongly depends on the ensemble of illumination and observation direction
and on the properties of the considered surface (Section 2.1.5 and Section 2.2, respectively).

2.1.2 The solar-reflective domain

Passive remote sensing systems operate in the optical domain which stretches from around 0.4 to
14 µm. This wavelength range can be roughly divided in a reflective and an emissive part. In the
part of the optical domain with wavelengths greater than 5 µm self-emitted radiation from the
Earth surface generally dominates. This part is also called the thermal infrared (TIR) domain.
In the range up to 2500 nm the signal observed by the sensor is dominated by reflected solar
radiance. This (solar-)reflective domain can be subdivided in the visible (VIS; 0.4-0.7 µm), near-
infrared (NIR; 0.7-1.3 µm) and shortwave infrared (SWIR; 1.3-2.5 µm, sometimes also referred
to as mid-infrared (MIR)). In the VIS, a subdivision can be made between blue, green, and red
light (Table 2.1) whereas the SWIR is sometimes separated in two regions, delineated by the
major atmospheric water absorption band around 1.9 µm (Section 2.1.3).

In the transition zone between SWIR and TIR, i.e. between 2.5 and 5 µm, the observed signal
is constituted of a mixture of reflected and emitted radiance having similar magnitudes. Since
the respective contributions are difficult to differentiate, this part of the spectrum is rarely used
in vegetation studies, except for detecting (forest) fires (Giglio et al., 2003; Justice et al., 2002).
In the following paragraphs the discussion is confined to the solar-reflective domain.

Table 2.1: Categorization of wavelength ranges in the solar-reflective domain.

Spectral domain Wavelength range [µm]

Visible (VIS) 0.4 - 0.7

- Blue 0.4 - 0.5

- Green 0.5 - 0.6

- Red 0.6 - 0.7

Near Infrared (NIR) 0.7 - 1.3

Shortwave Infrared (SWIR) 1.3 - 2.5

- SWIR 1 1.3 - 1.9

- SWIR 2 1.9 - 2.5

2.1.3 Atmospheric interaction

Incoming or reflected radiance is subject to absorption by atmospheric gases (Richter and
Schlaepfer, 2002; Berk et al., 2005). Figure 2.1(a) shows that different elements are respon-
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sible for this absorption and that their influence is dependent on wavelength. The principle
contributors to atmospheric absorption are i) ozone (O3), absorbing part of the radiance in the
red and the ultraviolet, ii) oxygen (O2), responsible for the increased absorption around 760
nm, and iii) carbon dioxide (CO2) and water vapor (H2O), who are the principle contributers
to absorption in the reflective domain and show major features around 1.4, 1.9 and 2.5 µm and
some less pronounced ones at 0.9 and 1.1 µm. Figure 2.1(a) shows that absorption is highly
variable across the reflective part of the spectrum. The spectral regions with relatively high
transmittance are called “atmospheric windows”. It is usually in these windows that the spec-
tral bands are positioned for the study of land surface properties and vegetation characteristics
in particular.

Apart from absorption, the solar radiance flux incident on the Earth surface and finally reach-
ing the sensor is also influenced by atmospheric scattering. Molecular or Rayleigh scattering is
caused by particles whose size is far less than the wavelength of the radiation component. The
amount of this type of scattering is inverse proportional to the fourth power of the wavelength.
As a result, shorter wavelengths, such as the blue, are affected more than others. Rayleigh
scattering acts symmetrically in the forward and the backward direction and to a lesser extent
in perpendicular directions (Liang, 2004).

Mie scattering is caused by particulates with a size similar to the wavelength of the incoming
radiation (e.g. smoke, smog, fog, dust, and haze (Liang, 2004)). For large particles Mie scat-
tering is wavelength independent, for smaller ones it is inverse proportional to wavelength, thus
increasingly affecting the shorter wavelengths. It acts mainly in the forward specular direction.
Mie scattering evolves particularly in the lower atmospheric layers where the concentration of
the larger, heavier particles is highest.

A third type of scattering, called non-selective scattering, is induced by particles that are
significantly larger than the wavelength (e.g. rain drops, snow, large dust particles). Scattering
of this type affects all wavelengths equally and shows isotrope behavior. The total amount of
scattered, or diffuse, radiance for a standard atmosphere is around 30% of total radiance in the
blue wavelengths and asymptotically reaches a level of 1-2% in the SWIR (Berk et al., 2005).

The combined action of absorption and scattering is related to the distance the solar ra-
diation has to travel through the atmosphere before reaching the Earth surface or sensor. It
therefore depends on solar elevation, land surface altitude, and view direction of the sensor. A
term often used in this context is the optical thickness which is the product of the atmospheric
extinction coefficient and the path length (Richter, 2007a; Berk et al., 2005). It actually repre-
sents the total of optical thicknesses of the individual contributors (molecular scattering, aerosol
scattering, and molecular absorption).

Figure 2.1(b) gives an overview of the combined action of atmospheric components on the
upwelling radiance measured at a detector element of a high-altitude or satellite sensor. Four
major fluxes can be distinguished:

1. Path radiance, i.e., photons scattered in the air volume between ground and sensor and
reaching the earth observation sensor without prior ground contact.

2. Direct solar radiation incident on a pixel and reflected and transmitted into the instan-
taneous field of view (IFOV)1 of the sensor. In terms of reflectance, this contribution is

1IFOV is the angle subtended by a single detector element on the axis of the optical system
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(a) (b)

Figure 2.1: (a) Atmospheric transmittance in the optical domain (Richter, 2007a), (b) schematic sketch of
radiance components measured at a detector element of a high altitude sensor (b) (Richter et al., 2006a).

denoted as the bidirectional reflectance factor (BRF). Strictly speaking, since the direc-
tional contribution assumes the size of the radiance source and sensor infinitely small, it
would be more correct to use the term biconical reflectance factor instead (Martonchik
et al., 2000; Nicodemus et al., 1977; Schaepman-Strub et al., 2006). However, in most
literature the term BRF is still commonly used.

3. Diffuse solar radiation incident on a pixel and reflected into the IFOV of the sensor. The
sum of direct and diffuse flux incident on the ground surface is called global flux. Translated
into reflectance terminology, the term hemispherical directional reflectance factor (HDRF)
is used for component 3. Like in the case of BRF, it would be more appropriate to use
the term hemispherical conical reflectance factor (HCRF) instead. In common conceptual
terminology, HDRF is used for the combination of directional and hemispherical incoming
radiation reflected in the direction of the sensor and therefore equal to the combination
of reflectance components 2 and 3 (Martonchik et al., 2000). Schaepman-Strub et al.
(2006) already stretched this confounding terminology and the importance of standardizing
reflectance nomenclature in order to exclude uncertainties resulting from inappropriate
interpretation of the spectral quantities.

4. Adjacency radiance: reflected radiation from the adjacent areas scattered by the air volume
into the IFOV of the sensor.

In mathematical form, and expressing the combination of radiance components 2 and 3 as
Lreflected, the total radiance signal measured at the sensor can be written as:

Lsensor = Lpath + Lreflected + Ladjacency (2.7)
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Only the second radiation component in Equation 2.7 contains information from the currently
viewed pixel. Removal of components 1 and 3, and the retrieval of the ground reflectance
component 2 can be obtained by atmospheric correction (Richter, 2007a).

2.1.4 System requirements

The properties of spectral observations in the reflective domain mainly depends on the type of
sensor that is used. The choice for a particular sensor depends on the application and is al-
ways a trade-off between the required spectral resolution, the spatial resolution, and the revisit
frequency. Precision agriculture applications require sensors with high spatial resolutions and,
if possible, repeated visits throughout the vegetation growth cycle. Besides, spectral coverage
should be fine enough to capture all changes in spectral shape that are indicative for the status
of the canopy elements the user is interested in (Figure 2.2). Fourty et al. (1996) report that
the information content in the NIR and SWIR part of canopy reflectance can be explained by
at least 10 selected spectral bands. Including a band in the blue, green, and red, this would lead
to a minimum of 13 spectral bands explaining all spectral variation.

Bearing in mind these requirements, hyperspectral remote sensing systems with a high spa-
tial resolution and several evenly distributed revisits troughout the growth season would be ideal
(Delécolle et al., 1992; Launay and Guerif, 2005). Hyperspectral sensors, or imaging spectrom-
eters, are systems that may add up to several hundreds of narrow contiguous bands throughout
the spectrum thus enabling to detect typical absorption features that would be impossible to
detect with many of the commonly used multi-spectral sensors (e.g. Landsat Thematic Mapper
or SPOT; Figure 2.2). The only operative full range satellite imaging spectrometer (HYPER-
ION) does not meet the criteria posed by the spatial and temporal domain. However, airborne
sensors such as AVIRIS, ARES, and HyMap can partly bridge this gap by providing data with
high spatial resolution. Nevertheless, for airborne campaigns the temporal coverage is often not
guaranteed.

2.1.5 Observation properties

Before continuing the discourse on canopy reflectance, a few common definitions concerning the
view/sun geometry are introduced which are essential for a correct understanding of the work
presented in this thesis (Figure 2.3):

• The zenith angle of sun (θs) and observer (θv) are counted relative to nadir2, i.e., a zenith
angle of 0◦ is identical to nadir, while the horizon has a θs/v of 90◦,

• The relative azimuth(ψrel) is the absolute difference between the solar (ψs) and the obser-
vation (ψv) azimuth and ranges from 0-180◦. In this work, a ψrel of 0 (◦) means that the
observer has the sun in his back, whereas at a ψrel of 180◦ the observer faces the sun,

• The principal plane is the azimuthal plane parallel to the incoming radiation. The az-
imuthal plane perpendicular to the direction of the incoming radiation, is called the or-
thogonal plane.

2Nadir is considered relative to a horizontal plane
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Figure 2.2: Hyperspectral (ASD fieldspec PRO FR) versus multispectral (Landsat 7 ETM+) observation of
a vegetation canopy in relation to spectral absorption features of leaf biochemicals identified from literature
(Schaepman, 2007).

2.2 Canopy reflectance

Canopy reflectance can be considered the combined action of scattering and absorption at phyto-
elements and soil background and depends on the optical properties of the single elements and
the arrangement of these elements in a spatial context. In this section, optical and structural
properties of vegetation and background optical properties will be discussed in consecutive order.

2.2.1 Leaf optical properties

The spectral properties of vegetation elements such as leaves, needles, twigs, stems, and fruits,
can be considered the major determinant of canopy reflectance and influence the shape of the
overall spectrum (Jacquemoud and Baret, 1990). Schematically, a leaf can be considered a pile of
several distinctive cell layers (Figure 2.4). Based on this mesophyll structure, often a distinction
is made between monocotyledon leaves, characterized by a homogeneous parenchyma tissue
with few intercellular airspaces, and dicotyledon leaves, where the mesophyll is characteristically
differentiated into a densely packed palisade and a loosely packed spongy tissue (Govaerts et al.,
1996; Baranoski, 1998).

Radiation incident on a leaf is either scattered (including both reflection and transmission)
or absorbed by leaf constituents. According to the dominant processes, three distinctive spectral
domains can be differentiated (Figure 2.5).

• The visible (VIS) domain is characterized by strong photon absorption caused by leaf
pigments. These pigments (e.g., chlorophyll a and b, carotenoids, and brown pigments)
are found within the chloroplasts in the mesophyll layers. In green vegetation, absorptance
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Figure 2.3: Measurement geometry in solar-reflective remote sensing. θs = sun zenith angle, θv = view zenith
angle, ψrel = relative azimuth angle

Figure 2.4: Schematic cross section of a dicotyledon leaf. Chloroplasts are drawn in only one cell of palisade
and spongy tissues (Govaerts et al., 1996).

in this range is controlled by chlorophyll a and b which use the absorbed energy for
photosynthesis. Maximum chlorophyll absorption lies around 450 nm (blue light) and 670
nm (red light) while absorption in the green (560 nm) is minimum. In healthy vegetation,
chlorophyll concentration is around ten times higher than that of other pigments such as
carotenoids, hence masking out the specific absorption features of these (Jacquemoud and
Baret, 1990). Brown pigment concentration (tannis) increases with a decay of the plant
(Baranoski, 1998).

• Near infrared (NIR) radiance is subject to leaf surface reflectance and intra-leaf scatter-
ing. Responsible for this scattering are the structural organization of the leaf tissues and
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the arrangement of single cells and air spaces within the mesophylls. Absorption by pig-
ments and other leaf chemicals in the NIR range is low, leading to high overall reflectance
and transmittance rates. The strong increase in reflectance around 720 nm is also called
the red-edge (Baret et al., 1992), while the range with maximum reflectance is called the
NIR plateau.

• Leaf water and and various carbon based chemicals composing the frame of the leaf tissues
(e.g. lignin, protein, cellulose) dominate spectral absorption in the shortwave infrared
(SWIR). Water absorption plays a dominant role in the entire SWIR with maximum ab-
sorption concentrated around 1200, 1450, 1940 and 2500 nm. In vigorous green vegetation,
leaf water content masks the absorption features caused by the other biochemicals (Fourty
and Baret, 1997).

Most energy that is absorbed by the leaf is either used for photosynthesis or stored as heat.
However, a small portion of this radiance is first absorbed by chlorophyll and then remitted in
the form of fluorescence (Camenen et al., 1986; Zarco-Tejada et al., 2002). Fluorescence in the
visible domain is active in the region from 660 to 780 nm with peaks around 690 and 740 nm thus
increasing reflectance in the red and the shoulder of near infrared plateau (Gamon et al., 1990).
Under certain conditions, fluorescence may amount even up to 50% of the reflectance in the
red domain (Maier, 2000). Fluorescence intensity depends on photosynthetic activity and is
therefore highly variable in the course of a day. As chlorophyll fluorescence is a good indicator
of photosynthetic activity, reduced fluorescence is an early sign of stress and often precedes the
decay of chlorophyll (Zarco-Tejada et al., 2002).

Leaf optical properties are not at all a static phenomenon but continuously change during
periods of growth, maturity, senescence, decay, or stress (e.g. water and nutrient deficiencies,
parasites). For example, senescence is marked by an increase of reflectance over the whole spec-
trum: a rapid decrease of chlorophylls increases VIS reflectance and, at the same time, exposes
the absorption characteristics of other pigments such as carotenoids (yellowing of the leaf) and
xanthophylls (reddening of the leaf). With an ongoing stress, leaf structures decompose, giving
room to extra intra-leaf scattering and hence to an increased NIR signal. At the same time,
concentrations of brown pigments, which absorb radiance in the VIS and at the onset of the
NIR, may increase leading to a flattening of the red-edge. Absorption in the SWIR decreases
due to reduced leaf water content. With a decay of the leaf material, the absorption features
characteristic for vegetation gradually disappear and the spectral shape approximates that of
the soil background (Nagler et al., 2000).

2.2.2 Canopy structure

Canopy structure represents the spatial configuration of the scattering and absorbing vegetation
elements and mainly accounts for the magnitude and the directional variation of the reflected
signal (Knyazikhin et al., 1999c). Several factors play a role in this respect: the quantity,
the angular distribution, and the form of the scattering and absorbing elements, the spatial
distribution of vegetated and non-vegetated areas, both in the horizontal and vertical dimension,
and the uniformity of this distribution (Kuusk, 1995a; Verhoef, 1984). Following variables are
commonly used to describe canopy architecture:
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Figure 2.5: Example of hemispherical reflectance and transmittance spectra of a dicotyledon leaf. In gray the
fraction of absorbed radiance. Hemispherical reflectance and transmittance spectra are symmetrical in shape
but different in magnitude.

• The quantity of leaves and needles is usually expressed by the leaf area index or LAI.
It can be defined as the total one-sided leaf area in a canopy volume divided by the unit
horizontal ground surface area (Watson, 1947). Although this definition is clear for flat
broad leaves, it may cause problems for needles and non-flat leaves. For this reason,
it is also denoted as half the total developed area of leaves per unit ground horizontal
surface area (Pinty et al., 2004a). LAI characterizes the surface available for exchange
of energy and mass between the canopy and the atmosphere (Baret et al., 2005b) and is
therefore a key variable when modeling surface evapotranspiration and biomass production
as well as yield and yield loss (Broge and Mortensen, 2002). LAI typically varies from
0 for a bare soil to 5-6 for agricultural crops and up to 15 for a tropical forest. As
multiple scattering within the canopy increases with an increasing LAI, canopy reflectance
changes accordingly: reflectance in the VIS decreases (more absorption by pigments) while
reflectance in the NIR increases. However, at LAI values greater than 3 (for the VIS) or
5-6 (NIR), radiation does not penetrate to the lower leaf layers leading to a saturated
signal (Haboudane et al., 2004).

• The leaf angle distribution indicates the distribution of leaf inclination (zenith) and
orientation (azimuth). It varies among vegetation species but also depends on phenological
stage, stress (wilking), and sometimes even on the hour of the day (Thanisawanyangkura
et al., 1997). A general distinction can be made between planophile (flat) and erectophile
(upright) leaf angle inclinations (Verhoef, 1997).

• Canopy height and leaf size condition the probabilities of photon transmission and
interception in the canopy, especially close the direction of the incident radiation. This
bidirectional gap-probability (Kuusk, 1985; Kuusk, 1995a) gives rise to strong anisotropy
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in canopy reflectance and to the foliage hot spot, which will be discussed more in detail in
Section 2.2.4.

• The spatial distribution of vegetation elements in a canopy strongly influences the scat-
tering and shading behavior. The definition of spatial heterogeneity depends on observation
scale and can be observed at leaf level (clumping of leaves and needles (Kuusk, 1995a)),
plant level, or canopy level. One can distinguish between horizontal and vertical hetero-
geneity. Examples of vertical heterogeneity are the layered structures present in a tropical
forest or a cereal crop canopy having a top layer dominated by ears, an intermediate layer
dominated by leaves, and a bottom layer mainly consisting of senescent material. Strong
horizontal heterogeneity is found in open forest canopies, shrub lands, and row crops.

2.2.3 Background reflectance

Background reflectance plays a significant role for sparsely vegetated areas, and has to be well
characterized. Background reflectance is usually dominated by soil optical properties although
also crop residues, litter, organic crusts, and salt deposits may contribute to it. Soil optical
properties differ greatly from those of green vegetation but approximate those of senescent plant
material and litter, especially when it contains a considerable amount of organic matter (Figure
2.6). Soil moisture is one of the major determinants of spectral absorption in agricultural
soils. A liquid water film at the surface of soil particles causes an almost uniform decrease of
reflectance across the solar-reflective domain, whereas additional absorption can be observed
around the common water absorption bands already referred to in Section 2.1.3 for atmospheric
water (Baumgardner et al., 1985; Verhoef and Bach, 2007) (Figure 2.7).

Soil reflectance is highly non-Lambertian, a property depending mainly on surface roughness
(Cierniewski and Verbrugghe, 1997). Specular effects can be observed for smooth soil surfaces
whereas hot spot effects are observed for soils with higher surface roughness. Moreover, soil
improvement measures such as tillage and ploughing may influence the directional heterogeneity
of soil reflectance.

The influence of the soil background over the total signal recorded by the sensor is wavelength
dependent and largest in the near infrared region. Nevertheless, this influence can be neglected
for canopies with LAI greater than 3 in homogeneous canopies (Atzberger et al., 2003) or values
greater than 4-6 for row crops when the solar azimuth coincides with the row direction (Schneider,
1994).

2.2.4 Anisotropy in canopy reflectance

In the previous sections, the anisotropic behavior of atmospheric, leaf, canopy, and background
scattering has already been pointed out. In the vegetation canopy itself, anisotropy is mainly
induced by surface roughness (of leafs and soil particles), volume scattering, which is typical
for any 3-D porous medium, shading caused by geometrical objects, and the contrast between
leaf and background reflectance in combination with the structural effects of the canopy (Lucht
et al., 2000; Roujean and Lacaze, 2002). Anisotropy effects are most pronounced in structurally
vertical canopies such as grasses and conifer stands since the fraction of understorey that is
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Figure 2.6: Spectral similarity of soils (solid curves) and non-photosynthetic vegetation (NPV, dashed curves)
measured in southern Spain. By courtesy of Martin Bachmann.

parameters of the Hapke model is five, of which two (ω and b)
affect all reflectance factors, and three (B0, h and c) only have
an influence on the bi-directional reflectance. In the current
implementation of the model only the single scattering albedo is
assumed to be spectrally dependent.

In order to simulate the effect of soil moisture on the soil's
reflectance, use is made of a physically based model described
in Bach and Mauser (1994). This model considers the two main
effects of liquid water on the soil's reflectance, namely the
effect of a water film on soil particles, which gives a spectrally
almost uniform decrease of the reflectance, and the additional
effect of specific absorption by water, which is spectrally highly
variable. Since this model considers only hemispherical fluxes,
only the effect of moisture on the bi-hemispherical reflectance is
predicted in principle. However, it is obvious that, in order to
extend the effect to all four 4-stream reflectance factors, one has
to modify the single scattering albedo, after which the soil
model can be applied again in forward direction in order to
obtain all four moisture-affected reflectance factors. The
relationship between the single scattering albedo and the bi-
hemispherical reflectance is quite simple and given by

rdd ¼
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−x

1þ 1=4xb

r

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−x
1þ 1=4xb

r ;

and for given b one can easily find the inverse relationship

x ¼
1− 1−rdd

1þrdd

� �2

1þ 1=4b 1−rdd
1þrdd

� �2 :

This inverse relationship is used to convert the moisture-
affected spectrum of the bi-hemispherical reflectance into a
moisture-affected spectrum of the soil single scattering albedo.
The Hapke soil model has been validated by Pinty et al.
(1989). In Bach (1995) several examples are given of
successful validations of the soil moisture effect for common
soil types.

One example of soil BRDF effects simulated with the new
model is illustrated in Fig. 1. It shows the directional
reflectances in the principal plane for direct sunlight and for
diffuse (hemispherical and isotropic) incident flux at 670 nm
and for a solar zenith angle of 30°. In this case the Hapke
parameters were set equal to their default values, which have
been taken from the values that Pinty et al. (1989) obtained for
a ploughed soil, namely b=0.84; c=0.68; B0=0.30; h=0.23.
These settings create a substantial directional variation in both
reflectances, including a very wide hot spot effect in the bi-
directional reflectance. However, this is not uncommon for

Fig. 1. Soil reflectance in the principal plane as simulated by the modified Hapke
soil BRDF model. Shown are the directional reflectances for solar flux (rso) and
for diffuse incident flux (rdo) at 670 nm for a solar zenith angle of 30°.

Fig. 2. Modeling the effect of an increasing soil moisture (volumetric
percentage) on the soil's bi-directional reflectance spectrum.

Fig. 3. Sample reflectance/transmittance spectra calculated by a robust version
of the PROSPECT leaf model for N=3. Transmittance is shown from top to
bottom. The middle curve (thicker line) is for no absorbers at all. For the other
situation Cab=5 μg/cm2 and Cw=0.01 g/cm2.
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Figure 2.7: Effect of volumetric soil water content on soil reflectance (Verhoef and Bach, 2007).

viewed by the sensor significantly changes with changing view angle (Sandmeier et al., 1998;
Sandmeier and Deering, 1999).

Anisotropy effects are particularly strong in spectral ranges of high vegetation absorbance,
such as the visible bands, since the influence of background scattering in these ranges is more
prominent. In highly reflective bands such as the NIR, multiple scattering processes effectively
reduce the contrast between shadowed and illuminated canopy components, resulting in low
anisotropy effects (Sandmeier et al., 1998). In the VIS, anisotropy in the principle plane typically
has a bell shape for canopies with a vertical structure. This can be explained by the higher
fraction of soil background (having relatively high reflectance compared to vegetation) that is
observed by a sensor when it is in nadir position. Canopies having a predominant horizontal
structure exhibit a more or less pronounced bowl shape anisotropy (Widlowski et al., 2004;
Widlowski et al., 2005; Koetz et al., 2005b) (Figure 2.8).

Due to the internal structure of canopy, there is a higher probability that radiance that has
been scattered between the elements in the canopy, leaves the canopy again in a direction opposite
to the incident radiation (Figure 2.9). This peak in backscatter reflectance is called the hot spot
effect (Kuusk, 1985; Verhoef, 1997). Actually, the observed hot spot is a combination of the hot
spot resulting from soil background, volume scattering (the bi-directional gap probability), and
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Figure 2.8: Reflectance anisotropy for a maize crop in the red wavelength domain and for view zenith angles
between 60◦ in forward and backward direction. The HDRF was measured with a field goniometer system at
low solar elevation (Schneider et al., 2006).

geometrical shading (Verhoef and Bach, 2007). The contribution of the latter can be explained
by the fact that the canopy elements - being large compared to the wavelength - cast shadows
that are well visible when the angle between incident radiation and observer (phase angle) is
large, but hidden by the elements themselves when the phase angle is close to zero (Camacho-de
Coca et al., 2004; Roujean, 2000; Sandmeier et al., 1998).

The reflectance anisotropy of ground surfaces can be described by the bidirectional reflectance
distribution function (BRDF) which for a given surface depends on wavelength and view/sun
constellation. It describes the bidirectional reflectance factor (BRF) as a function of illumination
geometry (azimuth and zenith) and the position of the observer in the hemisphere. Under
natural conditions, i.e. for all measurements outdoors, the assumption of a single direction of
the incident beam is unrealistic since atmospheric scattering will lead to a considerable amount
of diffuse hemispherical incoming radiation, especially in the VNIR domain (Schaepman-Strub
et al., 2006). In such a situation the BRDF is based on HDRFs instead of BRFs and thus, for
an accurate thematic evaluation based on reflectance of BRDF shapes measured outdoors, the
diffuse fraction either must first be corrected for or has to be implicitly taken into account in
subsequent processing.

2.3 Retrieving canopy variables by statistical approaches

Statistical approaches search for a consistent relationship between the spectral signature of an
object, in general the leaf or canopy reflectance, and the biophysical or biochemical variable of
interest. For establishing such a relationship, the spectral information is rarely directly used.
Many data manipulations have been proposed to enhance subtle spectral features and to reduce
undesired effects caused by variations in soil reflectance, sun and view geometry, atmospheric
composition, and other leaf or canopy properties. Standard manipulations, often used in imag-
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Figure 2.9: Hot spot effect in HyMap airborne imagery. False color image of Barrax, Spain (acquired on June
3, 1999 at solar noon)

ing spectroscopy, involve normalization (Chappelle et al., 1992), logarithmic transformation
(Jacquemoud et al., 1995b; Yoder and Pettigrew-Crosby, 1995), continuum removal (Kokaly and
Clark, 1999; Mutanga et al., 2004), and the calculation of first or second derivatives (Huang
et al., 2004).

However, the most widespread method used to reduce background effects and enhance spec-
tral features is to express spectral reflectance in a combination of a limited number of (trans-
formed) spectral bands to create what is known as a vegetation index (VI). Most VIs concentrate
on the red-edge region, which is the region between 680 and 800 nm that is characterized by a
sharp decrease of chlorophyll absorption from maximum absorption around 680 nm to almost
zero absorption at 800 nm. This makes this wavelength range very well suited to study vegeta-
tion characteristics (Baret et al., 1992).

Probably the most widely used VI is the normalized different vegetation index (NDVI), an
index based on the early broadband earth observation systems (Rouse et al., 1973). After this
early VI, a wide range of VIs have been developed through the years, each trying to reach max-
imum sensitivity for a specific leaf or canopy variable while minimizing effects of background,
atmosphere, and other canopy properties. The coming up of hyperspectral spectrometers en-
abled the calculation of first and second derivatives, the establishment of the so-called red edge
inflection point (REIP) (Baret et al., 1992; Guyot et al., 1988; Dawson and Curran, 1998)
and the development of indices based on absorption features caused by biochemical compo-
nents other than chlorophyll. The reader is referred to (Broge and Mortensen, 2002; Dorigo
et al., 2007; Haboudane et al., 2004) or to Appendix C for more extensive overviews of existing
VIs.

The traditional way of linking spectral information to the variable of interest is by simple or
multiple regression techniques (Clevers, 1989; Jacquemoud et al., 1995b) (Figure 2.10). Recently,
more sophisticated statistical approaches, such as partial least square regression and artificial
neural networks (ANN), have been introduced (Atzberger, 2004; Huang et al., 2004; Combal
et al., 2002b). Whereas most regression techniques assume a linear or exponential relationship
between the biophysical variable of interest and the measured spectral signature, the artificial
neural network is a sophisticated technique capable of modeling extremely complex nonlinear
functions. ANNs can be considered as an interpolation technique that establishes a response
surface (M) between the reflectance values R (inputs) and the variables of interest V (outputs),
i.e.:
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V = M(R) + ε

where ε accounts for the model error. Calibration of the model M is performed on a learning
data set. In the training stage, inputs (spectral information) are linked to a selection of output
variables, thus optimizing the network for the variables of interest (Combal et al., 2002b). This is
because a nonparametric statistical model can nonlinearly project data so that some factors are
enhanced while others are suppressed. ANNs are frequently used in combination with radiative
transfer model simulations (Section 2.5.3.2), although encouraging results have been obtained
as well for measured variables (Huang et al., 2004).

A limiting factor in the use of the statistical approaches, in particular for VIs or other spec-
tral transformations, is the fact that they are never sensitive to the variable(s) of interest only.
As a consequence, for different plant species, phenological development stages, soil background,
and so on, often a new relationship has to be established between VI and variable of interest. It
may be clear that this is a cost and time intensive matter and - even if such is done properly -
it is nearly impossible to cover all possible realistic scenarios, which in turn might influence the
validity and portability of the relationships (Clevers, 1989; Jacquemoud et al., 1995b). For this
reason, several authors proposed to use radiative transfer model simulations for establishing and
calibrating the empirical relationships (Haboudane et al., 2002; Baret and Guyot, 1991; Huete
et al., 1997; Rondeaux et al., 1996; Verstraete and Pinty, 1996). Radiative transfer simulations
have formed the basis of developing a number of operationally used predictive empirical algo-
rithms for medium resolution sensors, such as the MERIS Global Vegetation Index (MGVI)
(Gobron et al., 2000), the MODIS back-up algorithm based on NDVI (Knyazikhin et al., 1999a),
and the POLDER algorithm based on the difference vegetation index (DVI) computed from
bidirectional reflectance factor measurements normalized to a standard geometrical configura-
tion (Roujean and Lacaze, 2002).

Although often effective, VIs are intrinsically limited by the empiricism of their design and
the small number of bands concurrently used (generally 2 to 3). This might not be a major prob-
lem for fAPAR and fCover which have a nearly linear relationship to canopy reflectance, but
would hamper the retrieval of variables such as LAI or chlorophyll content which show higher
level of non linearity with reflectance measurements (Baret and Buis, 2007; Weiss et al., 2000).
Partly due to this phenomenon increasing interest goes out in the inversion of radiative transfer
models for the retrieval of biophysical and biochemical variables.

2.4 Spectral unmixing for cover fraction estimates

Although not directly linking to biophysical or biochemical information content like the statisti-
cal methods discussed in the previous section, spectral unmixing is often applied for estimating
cover fractions of partly vegetated surfaces and for the differentiation of plant communities
(Garcia-Haro et al., 2005). Spectral mixing models rely on the assumption that the irradiance
measured by a detector element equals the integrated sum of fractional spectral contributions
of the different surface elements found within the IFOV (Adams and Smith, 1997). When a
spectral mixing model is linear, then the spectral contribution of each element, or endmember,
approximately coincides with its fractional coverage (Adams and Smith, 1997). For the measured
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Figure 2.10: Exponential empirical relationship between WDVI and LAI (adapted from (Clevers, 1989)).

reflectance in a single waveband (Rmeas) this is expressed as:

Rmeas =
n∑
i=1

fi ·Ri + ε (2.8)

where fi is the fractional cover and Ri the spectral reflectance of endmember i, while ε is an
error term describing spectral variation unexplained by the spectral mixing model as well as
uncertainties in pre-processing, sensor noise and so on.

Spectral unmixing consists in finding the solution of Equation 2.8, i.e., by determining the sin-
gle contributions of the n endmembers given the measured input reflectance Rmeas. Endmember
reflectance properties Rn are either based on laboratory or field spectrometer measurements or
on the signatures of pixels found at the extremes of the spectral feature space covered by the im-
age. Conventional spectral unmixing approaches are based on a predefined set of endmembers for
the entire scene. To cover the complete spectral variation of the single endmembers (e.g. due to
different biochemical concentrations or variable LAI) a large number of endmembers is required.
However, the collinearity between the several endmembers and the large number of endmembers
compared to the effective dimensionality of the data can lead to unstable solutions and large
errors in the retrieved abundances (Garcia-Haro et al., 2005; Winter et al., 2003). To overcome
such complications, multiple endmember spectral mixture analysis (MESMA) approaches have
been developed (Asner and Lobell, 2004; Bachmann, 2007; Garcia-Haro et al., 2005; Roberts
et al., 1998) which allow for a pixel based optimization of the mixture model based on only
a limited number of endmembers per pixel (e.g. soil, non photosynthetic, and photosynthetic
active vegetation). For a vast overview of different unmixing strategies the reader is referred to
(Bachmann, 2007).

The highly non-linear character of vegetation reflectance, especially in denser canopies, com-
plicates the use of spectral unmixing for open-structured agricultural crops where there is a
considerable radiation exchange between soil and vegetation. For this reason, spectral unmix-
ing is typically applied in semi-arid regions where vegetation shows a more patchy distribution
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(Bachmann, 2007).

2.5 Physical approaches for retrieving vegetation variables

Physical approaches are based on the inversion of radiative transfer models which simulate the
interactions between solar radiation and the elements constituting the canopy, using physical
laws (Figure 2.11). Before discussing the inversion of radiative transfer models for the estimation
of biophysical variables, a more detailed look at the functioning of these models in the forward
mode is indispensable.

The most established way of modeling radiative transfer in canopies is to combine a leaf
optical model with a canopy structure and a soil reflectance model to calculate the top-of-canopy
reflectance. For remote sensing applications, this modeled reflectance should be in agreement
with measured reflectance data corrected for atmospheric influences (i.e., the HDRF). A different
approach consists of computing the radiance as it would have been measured by the sensor and
therefore encompasses a model for the calculation of radiance propagation in the atmosphere
(Baret et al., 2005a; Verhoef and Bach, 2003a; Verhoef and Bach, 2007). In the following sections
the discussion will be confined to reflectance at canopy level, and therefore does not consider any
atmospheric model. Soil reflectance is an important element in radiative transfer modeling, being
the lower boundary condition and having its own spectral properties (e.g., absorption features
and directional anisotropy). Knowing soil reflectance properties is fundamental if sparse or low
vegetated canopies are to be simulated. This model input is typically measured in the field, taken
from the image itself, or can be simulated using soil reflectance models (Hapke, 1981; Jacquemoud
et al., 1992; Pinty et al., 1989). Variations in soil reflectance representing differences in soil
moisture content, surface roughness, soil organic matter, and inorganic carbon content are often
parameterized using simple empirical formulas and scaling factors (Atzberger, 2004; Atzberger
et al., 2003; Baret et al., 2005b). Soil reflectance models are beyond the scope of this thesis and
will therefore not be discussed in further detail here.

2.5.1 Leaf optical models

Our understanding of leaf microstructures and the distribution of biochemical components in
leaves is still very limited. Even if the same is true for the anisotropic scattering of leaves
(Jacquemoud and Ustin, 2001), various approaches have been proposed that successfully de-
scribe leaf scattering and absorption in a more or less simplified way (Table 2.2).

N-flux models (Fukshansky et al., 1991; Richter and Fukshansky, 1996) are based on the
Kubelka-Munk theory and consider the leaf as being a slab of diffusing and absorbing material.
The strength of this approximation is its simplicity. However, it is very difficult to link the
overall absorption coefficient of the leaf with the specific absorption coefficients and the concen-
trations of the plant chemicals. A retrieval of concentrations of biochemicals by model inversion
is therefore rather complex, if not even impossible (Fukshansky et al., 1991).

Plate models consider the leaf as a pile of N plates separated by N-1 air spaces, where N
does not have to be a discrete value. The structure parameter N is comparable to the scattering
parameter in the Kubelka-Munk theory. It is an uncomplicated model which assumes Lamber-
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Figure 2.11: Concept of radiative transfer modeling: forward mode (above) and inverse mode (below)

tian scattering and absorption elements (biochemicals) distributed homogeneously throughout
the leaf. This assumption makes it suitable for the retrieval of leaf biochemicals by model inver-
sion. However, biochemicals with only relatively small absorption features cannot be accurately
retrieved (Fourty et al., 1996). The best known model in this category is the PROSPECT model
developed by Jacquemoud and Baret (1990).

Ray tracing models, based on Monte Carlo simulations, are the only type of model that ac-
counts for the complexity of internal leaf structure and are therefore the most realistic (Govaerts
et al., 1996). A ray tracing model simulates the propagation of photons within a leaf foliage.
This potency is at the same time its weakness: it requires a very detailed description of indi-
vidual cells, their optical constants, and their arrangement within the foliage. This complex
description of light propagation makes the model computationally very intensive and model in-
versions numerically difficult to implement.

Radiosity models describe the total amount of energy leaving a surface per unit time per
unit area (Liang, 2004). The leaf is divided in discrete reflecting and transmitting elements
with distinct shapes, positions and orientations. The major advantage of this method is that
once a solution has been found for radiative transport, leaf and canopy reflectance can be sim-
ulated at any view angle for any wavelength. The major limitation of the method is the initial
computational load in forming the view factor matrix and solving for radiative transport. The
Algorithmic BDF Model of Baranoski and Rokne (Baranoski and Rokne, 1997) is the best known
leaf radiosity model.

Stochastic models are based on Markov chains where transition probabilities from one
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Table 2.2: Examples of various approaches used to model leaf and canopy radiative transfer

Medium Type Leaf model Canopy Model

Homogeneous 1D radiative
transfer

(Fukshansky et al., 1991) SAIL (Verhoef, 1984), KUUSK
(Kuusk, 1995b)

Plate model PROSPECT (Jacquemoud and
Baret, 1990)

Heterogeneous 3D radiative
transfer

- DISORD (Myneni et al., 1992)

Geometric - SGM (Chopping et al., 2003), (Chen
and Leblanc, 1997)

Hybrid - DART (Gastellu-Etchegorry
et al., 1996), GeoSAIL
(Huemmrich, 2001), TRIM (Goel
and Grier, 1988), 4SAIL2 (Verhoef
and Bach, 2007)

Ray tracing RAYTRAN (Govaerts et al., 1996) RAYTRAN (Govaerts and Ver-
straete, 1998), SPRINT (Goel and
Thompson, 2000)

Radiosity ABM (Baranoski and Rokne, 1997) PARCINOPY (Chelle and Andrieu,
1998)

Stochastic SLOP (Maier et al., 1999) (Shabanov et al., 2000)

radiation state to another, for instance from reflected to absorbed, are described. Unfortunately
these models are more computation-intensive than plate and N-flux models and are not suited
for direct inversions. An example of such a model is SLOP (Maier et al., 1999).

Although it is very well known that leaf reflectance and transmittance are strongly anisotrope
(non-Lambertian), depending on angle of incidence, up to date these phenomena rarely have been
captured in the leaf optical models (Bousquet et al., 2005; Jacquemoud and Ustin, 2001).

2.5.2 Canopy radiative transfer models

A wide range of canopy structure models have been developed, for which the difference principally
lies in the grade of detail and the canopy type the model intends to describe (Table 2.2). Tradi-
tionally, canopy radiative transfer models assume that the canopy is a turbid medium where
the canopy elements (leaves) are treated as infinitely small, randomly distributed absorbing and
scattering elements with no physical size. A one-dimensional approximation (Verhoef, 1984) as-
sumes the canopy to be horizontally homogeneous and infinite but vertically variable and finite.
These assumptions, together with the fact that leaf area is explicitly taken into account, make
this type of model well suited for describing radiance propagation in denser canopies where the
single vegetation elements are smaller than the canopy height, which is the case for most agricul-
tural crops. Most models of this type are based on the Kubelka-Munk theory and consider four
different radiative fluxes describing both specular and diffuse downwelling and outgoing radia-
tion. A hot spot function describes the gap probability in the principal plane but only accounts
for volume scattering and not for mutual shading. Several models of this type have seen the
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Table 2.3: Differences between radiative transfer and radiosity approach (after Gerstl and Borel (1992)).

Radiative Transfer Radiosity

Volume scattering Surface reflection and transmission

Continuous medium Discrete and oriented surfaces

Averaged scattering phase function Explicit scattering characteristics

No physically based spatial correlations of leaves Spatial correlations retained

No holes or clumps in canopy Holes and clumps describable

Multiple Scattering Multiple scattering

Integrodifferential equation System of coupled linear equations

light of day during the last two decades (Kuusk, 1995b; Verhoef, 1984; Gobron et al., 1997).
For situations in which the assumption of a horizontally homogeneous and infinite canopy

does not apply (e.g. heterogeneous canopies like row crops and orchards with isolated tree
crowns), different approaches based on the principle of radiative transfer have been proposed.
Geometrical models have been formulated to describe radiation propagation in sparse canopies
where multiple scattering can be ignored and mutual shading is negligible due to low zenith an-
gles (Chen and Leblanc, 1997). In this approach the canopy is described as a ground surface with
opaque geometrical objects with known spatial distribution and optical properties. Often geo-
metrical and turbid medium approaches have been combined to form so-called hybrid models,
in which the canopy is made up of translucent geometrical objects (plants) to which the turbid
medium radiative transfer equation is applied. Therefore, this type of model is particularly suited
for representing forests or sparse canopies. The Three Dimensional Radiation Interaction Model
(TRIM (Goel and Grier, 1988)), GeoSAIL (Huemmrich, 2001), and the Discrete Anisotropic
Radiative Transfer (DART) model (Gastellu-Etchegorry et al., 1996) are examples of such 3D
hybrid radiative transfer models. Various other approaches based on radiative transfer have
been suggested to account for both vertical and horizontal heterogeneities (Kuusk, 1995a; My-
neni et al., 1992; Shabanov et al., 2000).

Monte-Carlo ray tracing models (Goel and Thompson, 2000; Govaerts and Verstraete,
1998) and radiosity models (Borel et al., 1991; Chelle and Andrieu, 1998; Gerstl and Borel, 1992)
give a more realistic representation of the radiation transfer in the canopy and offer the possi-
bility to study the statistical nature of a radiation behavior. The high level of detail used to
describe radiation propagation makes this type of model computationally very intensive. Table
2.3 summarizes the main differences between radiosity and 1-D turbid medium canopy modeling.

The choice of a canopy structure model is not only driven by the canopy type under consider-
ation but also depends on the spatial resolution of the observation (Pinty et al., 2004a; Widlowski
et al., 2006a). A vast intercomparison of the performance of several existing canopy radiative
transfer models at several spatial resolutions and varying canopy complexity is given in (Pinty
et al., 2001; Pinty et al., 2004b; Widlowski et al., 2006b). For a detailed overview of the vari-
ous leaf and canopy radiative transfer models described in this section, and the equations used
to simulate radiation propagation, the reader is referred to the original publications and to
(Liang, 2004).
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2.5.3 Radiative transfer model inversion

Inverting a radiative transfer model (RTM) consists in finding the set of input variables that
leads to the best match between the HDRF (or top-of-atmosphere radiance) simulated with
the model and the reflectance (or radiance) measured by the sensor (Combal et al., 2002b).
Considering that this quantity is a function of the canopy variables V and the measurement
geometry Ω, the reflectance R can be written as:

R = f(V,Ω) + ε (2.9)

where ε represents the error, both for measurement (sensor noise, data pre-processing, etc) and
model uncertainties (model simplifications, assumptions, etc.). Assuming that illumination and
observation properties are a priori known, the inverse problem consists in estimating the set of
variables V that leads to the observed spectrum R. Since ε is not precisely known, usually rather
a best matching spectrum is sought, rather than a unique solution (Section 2.5.4). Different
methods have been developed to find this best fit between modeled and measured reflectance.

2.5.3.1 Iterative optimisation techniques

Iterative optimisation techniques search for the best fit between the simulated and the measured
reflectance by iteratively running the radiative transfer model with different sets of input vari-
ables. The minimization of a cost function that traditionally accounts for differences between
the simulated and the measured reflectance is used as a stopping criterium for this optimisation
problem. The cost function to minimize may be theoretically derived from the maximum likeli-
hood estimator indicating that measurement uncertainty is introduced leading to a solution that
is not exactly determined but constituted by the maximum probability (Bacour, 2001; Taran-
tola, 2005). In the case where only radiometric information is considered and where uncertainties
for each spectral band i are assumed independent and gaussian, the cost function (χ2) to be
minimized is expressed by:

χ2 =
nmeas∑
i=1

(Rimeas −Risim)2

σ2
i

(2.10)

where the distance is minimized between measured reflectance values (Rimeas) and those sim-
ulated with the radiative transfer model (Risim), weighted by the variance associated to both
reflectance measurements and non-systematic model uncertainties (σ2

i ). However, because of
the difficulty of providing an estimate of the variance, in particular that of model uncertainties,
several approximations of Equation 2.10 have been proposed, as summarized in Bacour (2001)
and Baret and Buis (2007).

A wide range of mathematical and statistical approaches is used to converge to the minimum,
such as Quasi-Newton and Simplex algorithms (Bacour et al., 2002b; Vohland and Jarmer, 2007),
simulated annealing, genetic algorithms (De Wit, 1999), and Bayesian probability statistics
(Lavergne et al., 2007; Zhang et al., 2005; Verhoef, 2007). The latter category has been recently
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discovered as a vigorous alternative to the classical numerical approaches and are promising
both in terms of increased model stability and computation efficiency.

The classical iterative approaches present a few drawbacks: (i) they require an initial guess
of the solution. The correctness of this initial guess can be critical to get a successful inversion.
If an inadequate inversion algorithm is used the solution may get trapped in a local minimum
(Qiu et al., 1998). However, this can be partly avoided by confining the range of variation of
the variables to be estimated (Baret and Buis, 2007). (ii) The approach is computationally
too intensive to be suited for operational use or for the inversion of complex three dimensional
radiative transfer models (Liang, 2004), although there are ways to speed up the process by
limiting the number of model runs for each iteration by using the adjoint model that provides
an analytical expression of the gradient of the cost function (Lavergne et al., 2007). (iii) Apart
from the Bayesian approaches, iterative algorithms do not consider an a posteriori probability
distribution of the retrieved variables.

Despite the several drawbacks, various authors have successfully applied this technique for
various vegetation types (Bacour et al., 2002b; De Wit, 1999; Fang et al., 2003; Jacquemoud
et al., 1995a; Qiu et al., 1998). Its strength mainly resides in its flexibility, allowing to adapt
to changing observational configurations. It is even possible to invert radiative transfer models
concurrently over several configurations (Baret and Buis, 2007), opening great potential for the
exploitation of additional temporal, angular, or spatial constraints (Section 2.5.5).

2.5.3.2 Lookup table approach

In the lookup table (LUT) approach, the radiative transfer model is used in a direct way to
simulate a large number of possible spectra, depending on different combinations of input pa-
rameter values. In a next step, a cost function (e.g. one similar to Equation 2.10) searches in the
LUT for the spectrum that has the highest similarity to the measured one. The set of variables
used to simulate this spectrum is considered the final solution of the inversion. Usually, not a
single spectrum but the average or median of a limited number of best fitting spectra close to
absolute minimum is proposed as the solution (Weiss et al., 2000). This allows one to derive a
posteriori variable distribution indicating the ”confidence level” around the final estimate (Koetz
et al., 2004). The LUT approach has the advantage of being considerably faster than iterative
optimisation techniques, although computation time can significantly increase if large lookup
tables, representing a wide range of canopy realizations, are used. The technique can also deal
with more complex radiative transfer models, such as ray tracing models, since the model is
used only in the forward mode.

A major drawback of this method is that a LUT has to be generated for each new situation,
and specific sun and view geometry, although Gastellu-Etchegorry et al. (2003) found a satisfac-
tory way to interpolate between view, sun, and azimuth angles. A point of concern which may
strongly influence the final result of the inversion is the composition of the LUT. A poor choice
of the distribution of the different variables (e.g. uniform or gaussian) or the step size between
successive values of the variables in the LUT may lead to an over- or under representation of
certain variable ranges and thus to a non representative result (Combal et al., 2002b; Weiss
et al., 2000). The composition of the LUT is especially critical for models having many input
arguments. For these models, the size of the LUT dramatically expands if input variables are
sampled at small intervals (Combal et al., 2002b; Weiss et al., 2000). Another point of criticism
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may be the fact that the solution is not always based on a solid theoretical background but
rather depends on a arbitrarily chosen threshold (Baret and Buis, 2007). The cases selected
as possible solutions are either defined as a fraction of the initial population of cases (Combal
et al., 2002b; Weiss et al., 2000), or can be defined by a threshold corresponding to measurement
and model uncertainties as in Knyazikhin et al. (1999c). LUT inversion is being effectively ap-
plied for the retrieval of LAI and fAPAR on a global scale from MISR/MODIS data (Knyazikhin
et al., 1999a).

2.5.3.3 Artificial neural networks

Inversion based on an Artificial Neural Network (ANN) can be seen as the most prominent
member of a collection of hybrid approaches that combine physical and statistical models (Liang,
2004). Like in the LUT approach, a radiative transfer model is used in the direct mode to
build a large synthetic data set that represents a wide variety of canopy realizations. While
the LUT approach searches for the simulated spectrum closest to the measured one, the ANN
minimizes the distance between canopy biophysical variables. ANNs are fast after the training
stage and according to Combal et al. (2002b) less sensitive to model uncertainties than the
iterative optimization and LUT approach. ANNs can effectively adapt for multispectral and
multi-angular data, making it an adequate technique for estimating variables from sensors with
large swath angles (Liang, 2004). Bacour et al. (2006) found satisfying results estimating LAI,
fCover, and fAPAR for the globally operating medium resolution MERIS sensor. As the radiative
transfer model is used only in the forward mode, ANNs are suited for inverting more complex
models such as 3-D or ray tracing models. ANNs are often criticised of having a black-box
character, which makes it difficult to study cause-effect relationships.

2.5.4 Under-determination and ill-posedness in radiative transfer model inversion

Estimating canopy variables by radiative transfer model inversion is mathematically often an
under-determined problem, indicating that the number of unknowns is generally larger than the
number of independent radiometric information sources. Baret and Buis (2007) state that even
a simplified representation of canopy directional reflectance, based on a combination of simple
soil, leaf, and canopy reflectance models, already requires at least 13 input variables. In this
case, theoretically, at least the same number of observational configurations (e.g. wave bands,
view directions, or a combination of both) would be required to retrieve the variables from
the remote sensing data by model inversion. Although several satellite systems (e.g. MODIS
and MERIS both with 15 bands, Hyperion with 220, and CHRIS with 18 to 62 bands in the
solar-reflective domain) would fulfill this requirement, the actual dimensionality of remote sens-
ing measurements is much smaller than the number of available configurations, given the high
level of redundancy between bands and view directions (Gemmell, 2000; Verhoef, 2007; Zhang
et al., 2002a; Zhang et al., 2002b).

A major drawback of the inversion of physically based radiative transfer models is the fact
that the inversion does not fulfill the Hadamard’s postulates of well-posedness (Hadamard, 1902).
Hadamard stated that a problem is well posed if and only if its solution exists, this solution
is unique, and depends continuously on the data. The inversion of radiative transfer models
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is ill-posed for two reasons: (i) the solution is not necessarily unique because of the com-
pensation between several variables that affect canopy reflectance in a similar way (Combal
et al., 2002b; Fourty and Baret, 1997). For example, in the combined leaf and canopy radia-
tive transfer model PROSPECT (Jacquemoud and Baret, 1990) and SAIL (Verhoef, 1984), the
spectral reflectance of a sparse canopy (low LAI) with planophile leaf orientation is very similar
to one of a dense, erectophile canopy (Baret and Guyot, 1991; Jacquemoud et al., 1995a). (ii)
Model uncertainties and assumptions and approximations used for radiative transfer modeling
may induce large variations in the solution of the inverse problem (Combal et al., 2002a; Combal
et al., 2002b; Privette et al., 1996). This is particularly true for well developed canopies, where
a small variation in the measured reflectance can translate into large variation of variables such
as LAI, for which reflectance ’saturates’, i.e., is very little sensitive to variation of LAI (Baret
and Buis, 2007). The problem of ill-posedness augments with an increasing number of input
variables that are left free during inversion (Combal et al., 2002b).

2.5.5 Improving retrieval performances

As seen in the previous section, radiative transfer model inversion in general has an under-
determined and ill-posed nature. Several regularization techniques can be proposed to reduce
the ambiguities involved and get a more stable and reliable solution, either by increasing the
dimensionality of the observation or by introducing constraints on the variables (Tarantola,
2005). Although these methods are discussed in the context of radiative transfer model inversion,
they apply to all inverse remote sensing problems, so just as well to the statistical methods
discussed in Section 2.3.

2.5.5.1 Increasing the observation dimensionality

Hyperspectral remote sensing Increasing the number of spectral bands leads to an increase of
the spectral dimension. However, increased spectral dimensionality does not necessarily imply
an increased information content. Additional bands should be positioned at wavelengths where
canopy reflectance is significantly influenced by changes in one or more variables. Moreover, only
little collinearity should exist between the additional bands and the channels already available.
Verhoef (2007) reports that a well calibrated single-view nadir looking hyperspectral sensor con-
tains up to 12 independent data dimensions, while this dimensionality significantly reduces with
increasing noise levels. The additional dimensions offered by imaging spectrometers compared
to multispectral sensors, appear to contribute mainly to improved estimates of leaf biochemical
variables (Verhoef, pers. comm.).

The large amount of redundancy in the data expresses the need of carefully weighting the
separate bands. If the collinearity is explicitly accounted for in the minimization procedure,
the assumptions made in Equation 2.10 are no longer valid, which leads to the following cost
function:

χ2 = (Rimeas −Risim)T · COV −1
rad · (R

i
meas −Risim) (2.11)
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where COVrad is the matrix containing the covariance between the spectral bands and should
account for both model and measurement uncertainties. The latter depend both on canopy
type and observation/illumination properties and are therefore strongly variable and difficult
to estimate. For this reason covariance description is often omitted. The diagonal element of
COVrad is the variance of the single bands and equals the σ2 of Equation 2.10.

Multi-angular observations As seen in Section 2.2.2, each vegetation canopy exhibits a char-
acteristic anisotropic behavior due to differences in canopy architecture. Multi-angular remote
sensing is a system able to capture such behavior and, if a sufficient number of directions is avail-
able, can even provide albedo estimates (Knyazikhin et al., 1999c). The use of multi-angular
observations increases the dimensionality of the inverse problem thus enabling a more stable
inversion (Lavergne et al., 2007; Verhoef, 2007). The number of configurations of a target is
significantly increased when directional information is added to the spectral information (e.g.
the amount of configurations of MISR adds up to 36 when all view angles are included (9 view
angles × 4 bands), for POLDER it totals 84 (14 directions × 6 spectral bands)), and for CHRIS
it may even add up to 310 (5 view angles × 62 bands).

Even if is there is a large redundancy of information, similar as in hyperspectral observa-
tions, especially the retrieval of structural canopy variables, such as LAI, shrub density, and
vegetation height, benefits from the increased dimensionality (Widlowski et al., 2004; Chopping
et al., 2003; Gobron et al., 2006) and the information content of directional information alone
permits the retrieval of 2-3 structural variables (Gemmell, 2000; Barnsley et al., 1997). The
increased dimensionality offered by the angular anisotropy is therefore complementary to those
offered by hyperspectral observations (Verhoef, 2007). Based on field goniometer measurements,
Schneider et al. (2006) not only found improved estimates of structural variables, but also
obtained improved leaf chlorophyll retrievals when multi-angular instead of mono-directional
observations were used. Moreover, improved stability of the estimates with respect to changing
sun zenith angles was observed. Also land cover classifications appear to become more accu-
rate when directional anisotropy is included (Sandmeier and Deering, 1999; Brown de Colstoun
and Walthall, 2006). As seen in Section 2.2.4, the highest information content on structural
parameters is found in the principle plane and in particular around the hot spot (Jacquemoud
et al., 2000). However, due to their polar space orbits, in practice, satellite observations around
the hot spot are difficult to realize.

In the case of including multi-angular observations in the cost function, COVrad in Equation
2.11 should also contain the covariance between the different view angles.

2.5.5.2 Constraints on input variables

Variable fixation The most straightforward way of reducing the under-determinedness of the
inverse problem is to set one or more variables to a fixed value. Usually, those variables are
fixed that cause little variation in the modeled reflectance and show little variation for the
observed canopy. Fixation of variables requires thorough a priori knowledge of the canopy under
observation since the fixed value should lie closely to the value actually present in the canopy.
Even if in many situations the inversion process becomes more stable, it does not necessarily lead
to improved estimates of the retrieved state variables, as usually poorer fitting occurs between
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measured and simulated reflectance (Widlowski et al., 2005).
A special category of variable fixation is constituted by fixing the ratio between two variables.

This is often done for leaf water and leaf dry matter content since relative water content is usually
close to 80% for green leaves and around 20% for senescent leaves (Bacour et al., 2006; Baret
et al., 2005b; Baret et al., 2005a). Other authors proposed to use a ratio of 1:3.2 (Vohland
and Jarmer, 2007) or to allow for some variation within the given ratio of 1:4 (Vohland and
Mader, 2007).

Synthetic variables Some variables in the radiative transfer model always appear in interaction.
Such interaction is called ambiguity or equi-finality (Baret and Buis, 2007) and often occurs
between the content of an absorbing (leaf) material and the LAI. Although not appearing
formally in the radiative transfer model, the product of these interacting variables would be
a physically meaningful variable corresponding to the actual optical thickness of the medium
(Weiss et al., 2000). Several authors achieved improvements when retrieving such synthetic
variables instead of the single variables separately (Combal et al., 2002b; Fourty and Baret,
1997; Jacquemoud et al., 1995a).

Introducing a priori information A priori information is information on the distribution of
the variables already available and might be collected from literature, field measurements, other
sensors, or previous experiments (Baret and Buis, 2007). Prior knowledge on the distribu-
tion of variables includes information about upper and lower limits of the variable ranges and
probability distributions of the expected result. In fact, also the variable fixation discussed in
the previous paragraph is a form of using prior information. Various authors report consider-
able improvements in the retrieval performance when a priori information is included (Combal
et al., 2002a; Combal et al., 2002b; Knyazikhin et al., 1999b; Lavergne et al., 2007; Verhoef, 2007).

When prior information is included in the cost function searching for the maximum of a prob-
ability density function then Equation 2.11 would turn into (Combal et al., 2002b; Rodgers, 2000;
Tarantola, 2005):

χ2 = (Rimeas −Risim)T · COV −1
rad · (R

i
meas −Risim)︸ ︷︷ ︸

Radiometric information

+(V j
prior − V j

sim)T · COV −1
var · (V

j
prior − V j

sim)︸ ︷︷ ︸
prior information

(2.12)

where V j
prior is the vector of prior estimates of the variables j that is left free in the inversion.

V j
sim is the set of free variables that was used in the RTM to simulate Risim. The covariance

matrix of the variables (COVvar) accounts for collinearity between the variables and weights the
distance between the estimated variables and the prior information. There is no agreement on
the weights the radiometric and a priori parts in the cost function should receive. While Combal
et al. (2002a) used separate weights for each variable left free during inversion, others exploited
radiometric and a priori information in two successive steps (Koetz et al., 2005a).

A priori information is also introduced in LUT and ANN inversions when the upper and
lower boundaries and the sampling scheme of the variables used to generate the LUT and the
training database are chosen.
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In general, well-defined and possibly restricted variable ranges will enhance variable retrieval,
whereas broad ranges lead to a vaguer prior estimate and increased uncertainties as expressed
by the covariance matrix (Baret and Buis, 2007). Therefore, various authors use classification
schemes to split the problem into sub-domains for which prior information is attributed sepa-
rately (Knyazikhin et al., 1999a; Chen et al., 2002). Nevertheless, this approach may introduce
problems due to misclassification and attribution errors and lead to artefacts at the limit be-
tween classes translating into more chaotic spatial or temporal variation of the solution (Lotsch
et al., 2003). Moreover, many of the biomes found at the Earth surface constitute a mixture of
vegetation species, for which rather a gradual transition then a crisp classification applies.

Including spatial information So far, the discussion was limited to the inversion for single spec-
tra. Atzberger (2004) proposed to include the neighborhood radiometric information of a pixel,
to get what he called an “object signature”. The neighborhood data can either be extracted
from moving windows or land cover maps. Particularly for LAI, results were significantly better,
which he attributed to a reduction of the confounding effects between LAI and leaf angle distri-
bution typical for inversion approaches based on single spectra (Atzberger, 2004; Jacquemoud
et al., 1995a).

The method proposed by Atzberger (2004) only includes statistical distributions within a
given object. Methods including additional geo-statistical constraints could bear additional
information, particularly for imagery with higher spatial resolutions (Garrigues et al., 2006a).

Temporal constraints Dynamics in vegetation canopies, and hence reflectance, occur under the
influence of changing meteorologic, climatologic, and environmental conditions and take place
at different time scales ranging from diurnal and seasonal cycles to long-term gradual impacts.
As such changes are rarely of abrupt nature (with the exception of accidental events such as fire,
flooding, harvesting, or lodging), the smooth character of the dynamics of canopy variables may
be exploited as additional constraint in the retrieval process (Baret and Buis, 2007).

Temporal constraints can be introduced either by directly using the series of multi-temporal
observations (CROMA, 2002) or by using additional models which mimic the evolution of one or
more variables over time. Last category ranges from simple semi-empirical approaches (Koetz
et al., 2005a) to advanced soil-vegetation-atmosphere (SVAT) models where the evolution of
the canopy status is modeled in detail and remote sensing and SVAT model predictions are
intercalibrated (Verhoef and Bach, 2003b; Launay and Guerif, 2005; Guérif and Duke, 2000).
When a model is employed that introduces additional free variables, the undetermined nature
of the problem will only reduce if the number of multi-temporal remote sensing observations
exceeds the number of newly introduced variables of the SVAT model and are well-spread across
the observation period (Delécolle et al., 1992; Launay and Guerif, 2005).

2.6 Conclusions

This chapter presented an overview of the methods currently in use for the retrieval of canopy
biochemical and biophysical variables from solar-reflective remote sensing data. As the observed
spectral reflectance is the result of many scattering and absorbing processes in the canopy and
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boundary layers, a clear characterization of these processes is the premise for an adequate and
stable retrieval of the variables of interest. This can only be done against a strong physical
background such as offered by radiative transfer models.

The performance of radiative transfer model inversion greatly relies on the ability of the
chosen model to represent the observed canopy. Although our ability of modeling radiance
propagation in complex canopies has considerably evolved during the last decades, using such
models in the inverse mode does not necessarily lead to improved variable estimations. A
more realistic representation of canopy architecture requires additional input variables, which,
in cases where the ranges of these variables are not adequately known, will even increase the
under-determination of the inverse problem. A compromise should therefore be found between
the model’s capability in describing radiation propagation and the degree of freedom allowed by
the remote sensing observation(s) and ancillary data sources.

Regularization techniques, aiming at reducing the ill-posedness and under-determined nature
of model inversion, intrinsically change the dimensionality of the problem, either by increasing
the number of independent information sources, or by restricting the number of free variables or
the limits in which the variables are allowed to vary. Although imaging spectroscopy is generally
believed to contain additional information content compared to systems with a limited number
of spectral bands, especially on biochemical composition of the leaves, only few studies explicitly
quantify this profit (Bacour et al., 2002a; Verhoef, 2007).

During the last few years, the scientific community repeatedly pointed out the potential of the
combined use of reflective information and signatures originating from the angular (Widlowski
et al., 2004; Knyazikhin et al., 1999b; Chopping et al., 2003), the spatial (Atzberger, 2004), or
temporal (Koetz et al., 2005a) dimension in improving variable retrievals. Also the synergy be-
tween spectral measurements and independent observations of different nature, such as LIDAR
(Koetz et al., 2007) and RADAR (Treuhaft et al., 2002; Treuhaft et al., 2004) holds a promise.

Even if additional information dimensions are very appealing for improved variable estima-
tion, the actual information content has to be clearly addressed, especially in cases where high
correlation exists between the different information sources. Addressing the high dimensionality
and regularizing ill-posed model inversions will be an even more challenging task in the context
of an automated approach, like the one presented in the next chapter, when very little additional
information on the observed surface is a priori known.
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Chapter 3

The automated CRASh approach:
theoretical concept and implementation

3.1 Introduction

An automated, image based retrieval approach based on radiative transfer modeling should
find a careful balance between the lacking knowledge on land cover and phenological conditions
on one hand, and accurate retrieval performances for the various agricultural land cover types
encountered in the scene, at the other. The poorly available a priori information on surface
conditions hampers a strict definition of canopy variables input to the radiative transfer model
and will accordingly exacerbate the ill-posedness of the inversion. The challenge of the auto-
mated approach is therefore to exploit the full information content contained in the image itself
by considering not only the spectral dimension, but also by taking advantage of the information
offered by the other pixels in the scene.

In the previous chapter it was already pointed out that a successful radiative transfer model
inversion depends on three major decisions: i) the choice of the radiative transfer models used
to characterize leaf and canopy reflectance, ii) the choice of a suited inversion approach, and
iii) the definition of the final solution. While Section 3.2 addresses the choice of an appropriate
canopy reflectance model, the inversion approach is discussed in Section 3.3. The definition of
the retrieval procedure itself is tackled in Section 3.4.

The ensemble of automated processing steps that is introduced in this thesis was entitled
CRASh (Canopy variable Retrieval Algorithm based on PROSPECT and SAILh). The basic
processing flow of the automated CRASh procedure is schematically depicted in Figure 3.1.
Input is the atmospherically corrected top-of-canopy (TOC) reflectance image which is first sub-
mitted to a spectral classification based on the SPECL module (Richter, 2007a)(Section 3.3.2).
The land cover classification forms the backbone of the radiative transfer model (RTM) inver-
sion as the classes of spectral similarity allow a description of uncertainty associated to the
measurements and, to some degree, a refinement of the variable ranges considered during model
inversion (Section 3.3.3).

Although land cover classification reduces the number of multiple solutions, it only partly
overcomes the ill-posedness of the inversion, and may even give rise to additional drawbacks
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Figure 3.1: Overview of CRASh inversion approach. TOC = Top Of Canopy, LC = Land Cover, RTM =
radiative transfer model, Cdm = leaf dry matter content, Cw = leaf water content, Cdm = leaf dry matter
content, LAI = leaf area index, θv = view zenith angle, θs = sun zenith angle, ψrel = relative azimuth.
Atmospheric parameters include those that were configured during atmospheric correction. See text for a
detailed explanation of single components.

associated to classification errors. For this reason, in Section 3.4.2 a new method for an image
based retrieval of a priori information on the variables is introduced.

In addition to the use of prior information, two additional information sources are exploited
for their potential in regularizing the inverse problem, i.e., the spatial neighborhood and, if
available, the angular anisotropy of the observation (Section 3.4.4). In the following, the above
mentioned components of the inversion approach will be introduced step by step, while summa-
rizing existing knowledge and proposing new solutions to common problems.

3.2 Choosing an appropriate radiative transfer model

An appropriate canopy reflectance model has to fulfill the following requirements:

1. In the inverse mode, it must be able to deliver the products the user is interested in, being
either primary variables (i.e., variables that are input to the model) or secondary variables
(variables that are no direct model inputs, but can be calculated based on these).

2. It must be able to accurately describe the reflectance behavior of the canopy of interest.
That is, the parametrization of the model must be able to describe the optical properties
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of the various vegetation elements, and the complexity and spatial heterogeneity of the
canopy.

3. The variables left free during inversion should have significant influence on canopy re-
flectance and should possibly be restricted in number (Pinty et al., 2004a; Verstraete
et al., 1996). Since in an operational environment only little a priori knowledge is present
on the exact distribution of the input variables, increasing the number of free variables
will lead to a substantial rise in multiple solutions.

In the framework of this study, the choice of the model was based on the capability of retrieving
the variables leaf area index, leaf chlorophyll content, leaf water content, and organic dry matter.
The complete canopy reflectance model used in this study is composed of three individual sub-
models, accounting for leaf optical properties, canopy architecture, and background reflectance,
respectively.

3.2.1 The leaf optical model PROSPECT

In order to be able to estimate leaf chlorophyll, leaf water, and leaf dry matter content, these
variables should be part of the leaf optical model or should at least have an unambiguous
relationship with its constituents. The commonly used PROSPECT model (Jacquemoud and
Baret, 1990; Fourty et al., 1996) explicitly describes the absorption of these three components
and therefore appears to be a good candidate for modeling the optical leaf properties.

3.2.1.1 N compact layers

PROSPECT describes the leaf as a pile of N compact layers with specific absorbing and refractive
properties (Figure 3.2). The intercellular air spaces which are responsible for multiple scattering
within a leaf and are thus the driving force of high NIR reflectance and transmittance (Figure
3.3b), are represented by the N-1 empty spaces between the layers (Bacour, 2001).

The leaf mesophyll structure parameter N is not necessarily an integer but can be any real
value within a realistic range. It varies between 1.0 for most compact leaves (such as young cereal
leaves) up to 4.5 for thick leaves with well developed spongy mesophyll, or for senescent leaves
having disorganized mesophyll with a large amount of air spaces (Baret et al., 2005b; Jacquemoud
et al., 1996) (Table 3.1).

3.2.1.2 Biochemical components

The overall absorption of a leaf is the sum of the absorption caused by the single leaf biochemicals
contained in PROSPECT plus a rest term accounting for absorption by chemicals that are not
included in the PROSPECT model. The absorbing elements are assumed to be uniformly dis-
tributed across the leaf and their contribution to overall absorption is calculated by multiplying
their concentration per unit area with an absorption coefficient. These absorption coefficients
are specific for every biochemical and vary over wavelength (Figure 3.3a). The current version
of PROSPECT considers 4 specific absorbing materials:
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Figure 3.2: Schematic representation of PROSPECT N-layer radiative transfer model for leaves (Adapted
from: Jacquemoud and Ustin (2001)

Table 3.1: Structure variable N , leaf chlorophyll content Cab, dry matter content Cdm, and leaf water
content Cw for a selection of agricultural crops. N and Cw are given for fresh (left) and dry (right) leaves
(Jacquemoud et al., 1996; Bacour, 2001)

Species N Cab[µg · cm−2] Cdm[g · cm−2] Cw[g · cm−2]

Monocotyledons

Sorghum (grass) 1.49 - 39.03 0.0038 0.0125 -

Maize 1.42 2.41 58.52 0.0045 0.0122 0.0002

Rice 2.03 3.6 30.25 0.0068 0.0089 0.0005

Dicotyledons

Clover 1.87 - 46.71 0.0030 0.0100 -

Salad 1.92 2.11 35.20 0.0021 0.0231 0.0002

Alfalfa 1.54 1.66 40.52 0.0028 0.0107 0.0001

Potato 1.78 1.98 43.37 0.0026 0.0170 0.0001

Sun flower 1.72 2.63 53.23 0.0038 0.0191 0.0002

Tomato 1.66 1.62 20.21 0.0026 0.0184 0.0001

Vine 1.53 2.00 16.92 0.0056 0.0121 0.0003
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Figure 3.3: Standardized PROSPECT absorption coefficients for leaf chlorophyll, leaf dry matter, leaf water,
and leaf brown pigment content. For each variable the contribution relative to the maximum absorption
coefficient is given (left); Relative contribution of different leaf absorbing materials to leaf transmittance
modeled with PROSPECT. Green corresponds to chlorophyll concentration, red to structure parameter N,
blue stands for water content, and brown for dry matter content. The gray curve indicates the sum of
contributions, the shaded area the part remaining unexplained by PROSPECT (Pavan, unpublished; op.cit.
Ustin et al. (2005)) (right)

• Leaf chlorophyll content (Cab) [µg·cm−2] actually corresponds to the content of chloro-
phyll a, chlorophyll b, and carotenoids, as the strong correlation between these components
makes it very difficult to distinguish them based on remote sensing measurements (Sims
and Gamon, 2002). Cab normally varies between 0 and 100 µg ·cm−2 although green leaves
typically have values greater than 15 µg · cm−2 (Baret et al., 2005b).

• Dry matter content (Cdm) [g · cm−2], also called specific leaf weight, is the inverse of
the specific leaf area (SLA), a unit often used by ecophysiologists, and is directly related to
above ground (foliage) biomass when multiplied with the leaf are index. Cdm is actually
the sum of the carbon based absorbing materials cellulose, hemi-cellulose, lignin, starch,
and protein which were combined into a single variable when the distinct absorption fea-
tures appeared to be too insignificant to allow a retrieval of the individual components
from fresh leaves (Baret and Fourty, 1997a; Fourty and Baret, 1997). It typically varies
from 0.002 up to 0.02 g · cm−2 and absorbs over the whole reflective domain, while its rela-
tive importance compared to other absorbing materials is highest in the NIR and SWIR-2.
In vigorous leaves, the specific absorption features of Cdm are usually masked by those of
leaf water.

• Leaf water content (Cw) [g · cm−2], or equivalent water thickness (Danson et al., 1992),
dominates absorption in the SWIR and generally ranges from 0.01 to 0.03 g · cm−2. Multi-
plying it with leaf area gives the total foliage water, a quantity that can be easily measured.
Several studies proposed to approximate relative water content to a value close to 80% for
green leaves, and 20% for senescent leaves, allowing to establish a fixed rapport of 4:1 be-
tween Cw and Cdm (Baret et al., 2005b) and thus to reduce the number of free variables
in RTM inversion.
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Figure 3.4: Effects of N , Cab, Cw, Cdm, and Cbp on leaf reflectance (continuous lines) and transmittance
(dashed lines), modeled with PROSPECT, based on the average set of parameters: N = 1.7; Cab = 50
µg · cm−2; Cdm = 0.015 g · cm−2; Cw = 0.025 g · cm−2; Cbp = 0.001. The variables used in the simulation
for the different leaf variables are respectively N = [1 ; 1.5 ; 2 ; 2.5], Cab = [5 ; 20 ; 50 ; 100], Cdm =
[0.002 ; 0.010 ; 0.015 ; 0.02], and Cw = [0.001 ; 0.010 ; 0.025 ; 0.05]. Dark colors correspond to the lowest
concentrations, bright colors to the highest (Bacour, 2001).

• Leaf brown pigment content (Cbp) [relative units] increases at senescence of a leaf.
Cbp and Cab are spatially exclusive which means that they never appear at the same part
of the leaf (Baret et al., 2002). Cbp typically varies from 0 for green leaves up to 3.5 for
senescent dark brown leaves.

Figure 3.3b shows for an average leaf the wavelength dependent influence of each PROSPECT
variable to leaf transmittance (Pavan, unpublished; op.cit. Ustin et al. (2005)). Figure 3.4
demonstrates the effect of the natural variation of each variable on leaf reflectance. Some clear
trends can be distinguished from these two figures: the VIS is dominated by Cab absorption,
whereas N dominates scattering in the NIR plateau. The gradient of the red-edge, the sharp
rise in reflectance between VIS and NIR, can be affected by the content of brown pigments (not
shown). In the SWIR, leaf optical properties are dominated by Cw and to a lesser extent by
N . In fresh leaves, like the ones simulated in the lower figure, the effects of Cdm are largely
masked out by the previous two components, insinuating that a retrieval of this parameter by
model inversion may be difficult for fresh vegetation.
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3.2.1.3 Simplifications and limitations

Intrinsic to every model is the simplified description of processes compared to reality. The
PROSPECT model is no exception to this. First of all, it starts from the assumption that
optical properties of both leaf faces are equal, an assumption that in many situations obviously
violates reality. In section 2.2.1 it was indeed shown that chlorophyll absorption mainly takes
place in the parenchyma close to the leaf surface, intending that a leaf cannot be considered
symmetrical. Secondly, the PROSPECT model considers the leaf as a Lambertian surface,
an approximation that is valid in all view directions, except for the specular direction (Sanz
et al., 1997). However, mainly due to the simplified parametrization and because of the limited
number of input arguments, the model appears a good candidate for model inversion when little
is known on the distribution of biochemicals. Several studies performed at leaf level (Fourty
and Baret, 1997; Jacquemoud et al., 1996) and at canopy level in combination with a canopy
structure model (Jacquemoud et al., 1995a; Jacquemoud et al., 2000; Koetz et al., 2005a; Weiss
et al., 2000; Zarco-Tejada et al., 2005b) demonstrated the ability of the model in accurately
modeling leaf scattering and absorption.

3.2.2 The canopy reflectance model SAILh

In Chapter 2 it was already pointed out that the use of complex canopy radiative transfer mod-
els, though accurately describing radiation behavior in the canopy, may enhance the ill-posed
and under-determined nature of the inverse problem when input variables cannot be accurately
characterized. In this light it would be appropriate to prefer a model that requires relatively
few input variables while still being able to accurately describe the canopy radiation budget.
For homogeneous agricultural crops, one-dimensional turbid medium models broadly fulfill this
requirement. Widlowski et al. (2005) even state that when both a 1-D and complex 3-D models
account for all features of the measured radiance field, then - in absence of further information
regarding the nature and structure of the target - the use of the latter may even lead to a an
over-interpolation of the available data and therefore appear inappropriate. An additional ben-
efit of using a 1-D model is the relatively low computation time involved.

Several 1-D turbid medium models based on the radiative transfer equation have been pro-
posed (Kuusk, 1995b; Kuusk, 1995a; Verhoef, 1984; Gobron et al., 1997). The choice fell on
SAILh (Verhoef, 1984; Verhoef, 1985), based on intercomparison results (Jacquemoud et al.,
2000; Bacour et al., 2002a) and the satisfying results obtained by the remote sensing community
in a wide range of applications. Moreover, model results for heterogeneous scenes lie close to
those obtained with complex 3-D models for standard situations, although for observations in
the principle plane reflectance values are generally higher than those simulated with 3-D models
(Pinty et al., 2004b).

3.2.2.1 4-stream approximation

SAILh (Scattering by Arbitrarily Inclined Leaves; h stands for the incorporation of the hot spot
function which will be discussed later) is based on a four stream approximation (Verhoef, 1985;
Verhoef, 1997) in which the TOC radiance regime is separated into four major fluxes (Figure
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3.5): i) a direct incoming flux from the source of illumination Es, ii) a diffuse hemispherical
downward flux E−, iii) a diffuse hemispherical upward flux E+, and iv) the radiance flux in the
direction of the observer Eo. All fluxes depend on wavelength.

For calculating the different fluxes at each wavelength, a set of 4 differential equation has to
be solved in relation to the vertical position z in the canopy:

dEs/dz = kEs (3.1)
dE−/dz = −sEs + aE− − σE+ (3.2)
dE+/dz = s′Es + σE−aE+ (3.3)
dEo/dz = w′Es + v′E− + vE+ −KEo (3.4)

where k is the extinction coefficient for the directional incoming flux, and s (s′) the backward
(forward) scatter coefficient for the directional flux contibuting to E− (E+); a (σ) is the for-
ward (backward) scattering coefficient for the downward (upward) hemispherical flux. K is the
extinction coefficient in the viewing direction, w the bidirectional scattering coefficient, and v
(v′) the backward (forward) scattering coefficient for E− (E+). The definition of the coefficients
is completely regulated by the structural properties of the vegetation canopy, the optical prop-
erties of leaves (reflectance, transmittance, and absorption) and soil, and the constellation of
illumination source and observation. For a detailed description of the different fluxes the reader
is referred to (Verhoef, 1997).

In the case of atmospherically corrected data, the flux that is finally observed by the sensor
Eo is the sum of the fractions of direct and diffuse incoming radiation that is reflected by canopy
and soil in the direction of the sensor (=HDRF). Therefore, in order to be able to compare mod-
eled with measured HDRF, the diffuse incoming radiance component has to be characterized.
In SAILh, this so-called skylight component (SKY L) is expressed as the wavelength depen-
dent fraction of diffuse and global irradiance and depends on atmospheric composition, solar
elevation, and altitude.

3.2.2.2 Canopy characterization

The original SAIL model (Verhoef, 1984) is a pure turbid medium model, which considers the
canopy a horizontal infinite layer which in the vertical direction is bounded by the atmosphere
(top) and the soil (bottom). Leaves are the only scattering and absorbing elements, having
an infinitely small physical size and exhibiting a horizontally and vertically uniform random
distribution. However, with the incorporation of the hot spot parameter, which is related to
canopy height and leaf width, leaves obtained a physical size. Therefore, strictly spoken, SAILh
(Verhoef, 1997) is a hybrid model, even if it is mostly still denoted as turbid medium (Verhoef
and Bach, 2007). Average spectral properties of the leaves are described by the hemispherical
transmittance and reflectance modeled with PROSPECT model. The amount of radiance re-
flected in a certain direction is the combined action of extinction, absorbtion, and scattering
within the canopy, depending on LAI, leaf angle distribution, and the hot spot parameter.

The leaf angle distribution (LAD) describes the average distribution of leaf orientation and
inclination. In SAILh leaf orientation (azimuth) is considered uniform. In contrast, leaf inclina-
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Figure 3.5: 4-stream radiation fluxes used to approximate the top of canopy (TOC) and bottom of canopy
(BOC) radiance regimes. See text for explanation. The suffix boc is used to denote the radiance fluxes at the
bottom of the canopy. Note that soil reflectance is assumed Lambertian (Adapted from Verhoef and Bach
(2003b))

.

tion is highly variable. Leaf incination distributions are commonly categorized into six typical
distributions (Bunnik, 1978; De Wit, 1965; Verhoef, 1997):

planophile : majority of leaves has a horizontal orientation,
erectophile : majority of leaves has a vertical orientation,
plagiophile : leaf inclination is centered around 45◦,
extremophile : leaf inclination is concentrated around the two extremes, 0◦ and 90◦,
uniform : probability of finding a particular leaf angle is equal for all inclinations,
spherical : occurrence probability is as if the leaves where placed on sphere, with a higher

probability found at extremer inclination angles.

Several mathematical formulations have been proposed to describe leaf inclination, including
trigonometrical (Bunnik, 1978), beta (Goel and Strebel, 1984), elliptical (Kuusk, 1995a), and
ellipsoidal functions (Campbell, 1986; Campbell, 1990). Verhoef (1984; 1997) proposed a number
of 10-12 typical leaf inclination distribution functions (LIDFs) which are based on a graphical
method and described by a combination of two coefficients (Figure 3.6, upper part). For the
current study it was decided to replace these discrete distributions with the smooth ellipsoidal
function proposed by Campbell (1990)(Figure 3.6, bottom). The advantage of this formulation
is that it requires only one input parameter, the average leaf angle (ALA), and thus reduces the
number of free input variables in the inversion. Nevertheless, not all distributions as proposed
by Verhoef can be exactly reconstructed using the ALA (e.g., the plagiophile distribution in
Figure 3.6). The elipsoidal formulation of leaf inclination distribution in SAILh has however
been successfully implemented by several other authors (Baret et al., 2005b; Jacquemoud et al.,
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Figure 3.6: Graphical (Verhoef, 1984; Verhoef, 1997) versus ellipsoidal (Campbell, 1986; Campbell, 1990)
formulation of LIDF, for absolute (left) and cumulative (right) density distribution functions, respectively.
The following distribution functions are shown: planophile (solid line), plagiophile (dotted), uniform (dashed),
extremophile (dash dot), spherical (dash dot dot), and erectophile (long dashes)

.

2000; Koetz et al., 2005a) and forward RTM simulations show satisfying agreement compared
to the parametrization proposed by Verhoef, except for very extreme leaf inclination or view
angles (Verhoef, personal communication).

3.2.2.3 The hot spot effect

In pure turbid media, in absence of geometrical shading and gaps, the hot spot effect is exclusively
caused by volume scattering (Qin and Xiang, 1994; Widlowski et al., 2005). In SAILh where
leaves have a physical size but no geometric shading is accounted for, the hot spot effect is
approximated by the bi-directional gap probability based on the theory of Kuusk (1985). Its
angular width is directly related to the typical sizes of the individual scatterers and can be
regulated by the hot spot size parameter (HS) which is equal to the ratio of the correlation
length of leaf projection in the horizontal plane and the canopy height. In order to reduce
the number of variables during model inversion Verhoef and Bach (2003a) proposed to slave
the hot spot parameter to canopy LAI by the equation hs = 0.5/LAI, hence describing crops
that tend to grow mainly in vertical direction by addition of new leaves rather than by growth
of existing leaves. In the automated mode however, HS is left free since no preferred canopy
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growth direction can be assumed in advance.

3.2.2.4 Assumptions and caveats

The choice of SAILh was mainly based on its relatively simple parametrization and its proven ca-
pability of simulating radiance propagation in homogeneous canopy types. However, despite the
more or less justified assumption of a turbid medium, the use of SAILh for modeling agricultural
crops brings about a few concerns:

• Horizontal homogeneity : some crops, like maize or cotton, exhibit a row-like distribution
of the plants, which is present especially during early growth. For these situations a hybrid
model that physically describes these rows would be more appropriate. Nevertheless, some
studies obtained satisfying results with SAILh even for row crops (Koetz et al., 2005a).
A row extension to the SAIL model (RowSAIL) was developed in the context of the
CROMA project (CROMA, 2002), but this version did not account for the hot spot effect
and up to date has not been made public. Horizontal homogeneity also has to be seen
within the context of spatial resolution of the data. With increasing resolution, horizontal
discontinuity plays a major role since the principle of SAILh is based on the average
properties of a pixel and does not account for horizontal fluxes. In very high resolution
data of heterogeneous canopies the pixels can thus not be longer considered radiatively
independent units (Pinty et al., 2004a; Widlowski et al., 2006a).

• Vertical homogeneity : at plant level, leaves often show a non-homogeneous distribution.
Clumping of leaves of shoots may occur and the fraction of senescent and vital leaves
depends on the vertical position within the canopy. The youngest members of the SAIL
family do account for non-homogeneous vertical distributions of leaves (leaf color gradients)
and clumping effects (Verhoef and Bach, 2003b; Verhoef and Bach, 2007), but up-to-date
these versions have not been made public.

• Scattering and absorbing elements: in SAILh, leaves constitute the only scattering and ab-
sorbing canopy elements. In certain phenological stages however, flowers, stems, branches,
twigs, fruits, and ears may be even more prominent than leaves. Distinguishing between
leaves and other elements is appropriate since they possess quite different absorption prop-
erties. For this reason, in certain development stages, especially at flowering and ripening
when flowers, fruits or ears appear at the top of the canopy, the use of SAILh might be
inappropriate.

Although in some situations the use of the original SAILh version may lead to some oversim-
plification, it was nevertheless preferred for the automated approach. Based on the fact that
row structures (directions and height), crop type, and phenological development stage are not a
priori known and in most situations cannot be recognized from the image itself, this would lead
to increased uncertainty in model parametrization. The variables finally entering the SAILh
model are summarized in Table 3.2.
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Table 3.2: Input parameters used in SAILh. * Soil reflectance and the soil brightness parameter bs are discussed
in Section 3.2.3

LAI Leaf Area Index [m2/m2]

ALA Average Leaf Angle [◦]

ρleaf Leaf reflectance calculated with PROSPECT -

τleaf Leaf transmittance calculated with PROSPECT -

hs Hot spot parameter -

ρsoil Soil reflectance ∗ -

bs Soil brightness parameter ∗ -

SKY L Fraction of diffuse irradiance -

θs Solar zenith angle [◦, rad]

θv Observation zenith angle [◦, rad]

ψrel Relative azimuth angle [◦, rad]

3.2.3 The soil background model

The lower boundary layer of the SAILh model is constituted by the optical properties of the
soil background. Actually, the background may also comprise non-green materials found in the
bottom layer of the canopy, including litter and non-photosynthetic vegetation and which are
spectrally very similar to soil (Nagler et al., 2000). In contrast, green (and hence absorbing)
understory is considered part of the green vegetation canopy. The background reflectance signal
depends on illumination and view geometry, surface roughness, mineral composition, the amount
of dead organic matter, and soil moisture content.

The soil reflectance parametrization used in this study is based on the soil line concept,
which allows to synthesize the effect of geometrical conditions, roughness and moisture within a
single parameter which is assumed independent of wavelength (Baret et al., 2005b; Weiss et al.,
2002; Bacour et al., 2002a). Using this concept, the background reflectance Rb(λ,Ωi,Hj , zk) for
any wavelength λ, observation geometrical configuration Ωi, moisture Hj and roughness zk is
assumed proportional to the reflectance background for the same wavelength λ but with different
observation geometrical configuration Ωl, moisture Hm and roughness zn (Baret et al., 2005b):

Rb(λ,Ωi,Hj , zk) = BS · ρb(λ,Ωl,Hm, zn) (3.5)

where BS is the brightness parameter that does not depend on wavelength λ, but on all other
factors (Ω,H, z). Representing background spectral variation by a multiplication coefficient
implies Lambert background scattering, an assumption that might be criticized, especially in
situations with low vegetation cover (Verhoef and Bach, 2007). However, in the case of the
automated approach presented in this thesis, average background reflectance and variations are
calculated from the image itself and, except for the multi-angular case, represent a fixed view/sun
geometry. BS has thus only to account for variations in surface roughness and soil moist.
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An additional point of concern may be the fact that soil moist does not induce linear spectral
shifts that are similar for all wavebands. However, most earth observation systems do not cover
the spectral regions covered by the strongest water absorption bands. Moreover, in the VIS, the
domain with highest spectral contrast between soil and vegetation, no specific water absorption
features are present (Verhoef and Bach, 2007). Therefore, in this region soil moist variations
induce a quasi linear spectral shift that is equal for all wavebands (Bacour et al., 2006; Baret
et al., 2005a). The general validity of the brightness concept in standard situations (dry soil,
medium roughness, no hot spot configuration) has been confirmed in several preceding studies
(Bacour et al., 2002a; Koetz et al., 2005a; Weiss et al., 2002). A similar soil brightness concept
has also been implemented for the grass and crop biomes of the MODIS algorithm (Knyazikhin
et al., 1999c).

3.2.4 Interaction of variables

Like already emphasized, several variable combinations can induce very similar spectral effects
thus giving rise to ill-posed nature of RTM inversion. Probably the strongest bias present in the
concurrent inversion of PROSPECT and SAILh is introduced by the opposite effect on canopy
reflectance of LAI and ALA (Figure 3.7). Various authors report the spectral similarity of
a sparse canopy with planophile leaf orientation and a dense, erectophile canopy (Atzberger,
2004; Baret and Guyot, 1991; Jacquemoud, 1993; Jacquemoud et al., 1995a). Regularization of
this interaction is difficult due to the generally poor a priori knowledge on the distribution of
both variables. Up to date, only very few studies are known that properly address leaf angle
distribution1.

Partial compensation takes place between LAI and Cab in the VIS domain (Bacour et al.,
2002a; Baret and Buis, 2007; Jacquemoud et al., 1995a), which particularly for sensors covering
only the VNIR could lead to bias in the estimates. Many other variable interactions, though
less pronounced, should be accounted for, such as the opposite effect of N and average leaf
angle (Jacquemoud, 1993), the counteracting of LAI and Cw in the SWIR (Jacquemoud et al.,
1995a), and the ambiguity between LAI, Cdm, and N . Regularization of these interactions
can be induced by a sharp definition of the expected estimates or by combining two strongly
interacting variables into a synthetic variable. Last mentioned is often done by combining one
of the absorbing leaf materials (Cab, Cdm, Cab) with LAI (Combal et al., 2002b; Fourty and
Baret, 1997; Jacquemoud et al., 1995a; Koetz et al., 2004; Vohland and Jarmer, 2007).

3.3 The inversion approach

3.3.1 Justifying a LUT based inversion scheme

Different inversion approaches have been proposed for the retrieval of canopy variables by ra-
diative transfer model inversion, all having their specific advantages and disadvantages (Section

1A good example is given by the FIFE experiment conducted by the The Oak Ridge National Laboratory
Distributed Active Archive Center (ORNL DAAC): http://daacsti.ornl.gov/FIFE/FIFE Home.html
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Figure 3.7: Ambiguity between the canopy structure variables LAI (left) and ALA (right). Changing their
values shows an opposite effect on reflectance. The spectra have been modeled with PROSPECT and SAILh,
based on the average set of parameters: N = 1.7; Cab = 50 µg · cm−2; Cdm = 0.010 g · cm−2; Cw = 0.025
g · cm−2; Cbp = 0.01; ALA = 50◦, LAI = 3, BS = 0, HS = 0.15, θs = 30◦, θv = 0◦, ψrel = 0◦

.

2.5.3). In the context of a regional, image based inversion scheme, such as presented in this
study, the choice of the inversion approach is driven by the following prerequisites:

1. The inversion algorithm should be fast,

2. optimized for, or easily adaptable to, scene specific view and sun geometry,

3. easily adaptable to site-specific crop types and phenology and open to a priori information
available from the user site,

4. and applicable to a wide variety of hyper- and multispectral, being able to provide con-
sistent data products that depend as little as possible on the specifications of the used
sensor.

An inversion scheme based on LUTs appears the best compromise for this combination of require-
ments. Even if for iterative optimization approaches it is slightly less problematic to incorporate
changing view/sun geometry, band characteristics, and phenology, their iterative nature makes
them computationally too demanding for large data sets. On the other hand, artificial neural
networks which - once trained - are very fast, are optimized for specific view/sun constellations,
canopy types, and sensor specifications, and would have to be trained again if best possible
results want to be obtained for new conditions. Moreover, the large number of database entries
in the LUT allows for the definition of preliminary or priori estimates, as will be seen in Section
3.4.2.1.

As stated in Chapter 2, the use of LUTs also brings along some drawbacks, such as the
large number of LUT entries required to cover all possible canopy realizations, the increased
processing time coinciding with large synthetic data sets and hyperspectral information content,
and the dependence of the solution on the configuration (number and distribution of samples) of
the LUT and the cost function used to select the samples from the LUT forming the end result.
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For a successful retrieval, these issues have to be implicitly accounted for. In the rest of this
chapter these issues will be addressed one-by-one.

3.3.2 Land cover classification for improved retrieval performance

Possessing knowledge on vegetation type or the phenological stage of a certain crop allows one to
confine the range of possible solutions to the actual conditions, thus reducing the ill-posedness
of the inverse problem. For this reason, the current study employs an inversion scheme based
on land cover classification, where the LUT-inversion is performed for each land cover class sep-
arately.

For the LUT approach, a land cover based inversion implies some important advantages
compared to a global scheme: apart from reducing the number of ill-posed solutions, limiting
the range of variation of the variables either leads to i) a reduced number of LUT entries, and
hence reduced processing requirements, when the sampling distance is kept constant, or ii) an
intensified sampling density in cases where the number of samples per variable is kept constant
(Figure 3.8). Moreover, the use of land cover classes facilitates a less vague description of the co-
variance characterizing the uncertainties and collinearity in radiometric and a priori information
(Section 3.4). Finally, a land cover classification permits the user to retrieve canopy variables
for the land cover types of interest only, thus reducing calculation time.

In ideal situations, a land cover or crop map is already available, either generated by su-
pervised classification or field mapping. However, in most situations, up-to-date information on
land cover and land type is not at hand, and an automated classification should be provided by
the inversion model itself. The CRASh program offers both options, whereas in the following
the discussion will be confined to the automated approach.

The complication underlying an automatic spectral classification based on a single image, is
the fact that crop type and phenologic conditions actually present in a scene are not known in
advance and no information on the seasonal spectral course of a crop, which could make classifi-
cation more reliable (Houborg et al., 2007; Houborg and Boegh, In press; Strahler et al., 1999),
is present. On the other hand, class definitions that are too restrictive or specialized are more
sensitive to misclassifications (e.g., induced by variations in spectral brightness or errors origi-
nating from preprocessing), which in turn may lead to significant accuracy loss in the retrieval
process, or to artefacts at class transitions which translate into more chaotic spatial variations
in the solution (Lotsch et al., 2003). For this reason, it was decided to apply a less definite land
cover classification based on some general reflectance characteristics of the pixel under observa-
tion and on partly overlapping classes.

Land cover classification is based on the SPECL module which is integrated in ATCOR
(Richter, 2007a). The SPECL code performs a spectral classification of the reflectance cube
based upon template spectra for the Landsat Thematic Mapper reference wavelengths (i.e.,
0.48, 0.56, 0.66, 0.83, 1.6, 2.2 µm) and returns an image with class indices. The template spec-
tra consist of typical vegetation covers, soil, sand, infrastructure, and water. If at the reference
wavelengths the spectral reflectance signature agrees within a 10% margin with one of the class
template spectra it is put into this class, otherwise it belongs to the class undefined. The decision
rules used by SPECL can be found in Appendix A. The classes containing a green vegetation
fraction are (Figure 3.9):
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Figure 3.8: Effect of posing lower and upper limits (e.g., by a land cover classification) on number and sampling
density of variables in LUT: the black crosses represent a regular sampling over the full range of Cab and LAI
that is commonly found within a scene. Confining the range of variation for a certain land cover type either
leads to an intensified sampling density if the number of samples is kept constant (left), or a reduction of the
total number of sample points (right)

.

• dark vegetation, containing green vegetation with low NIR reflectance, usually induced by
a large shading component due to vertically oriented canopy structures. Mainly coniferous
tree canopies fall into this category, but also agricultural land use with heterogeneous
medium scale canopy or erectophile structures such as vine yards and horticultures. This
class has a strong spectral similarity with canopies composed of a mix of soil and vegetation:
for this reason the class should also partly describe canopy types of this kind,

• average vegetation, principally containing green crops and grasses in intermediate pheno-
logical stages and having medium to high NIR reflectance,

• bright vegetation mainly including green crops and grasses in full development (high NIR
reflectance),

• yellow vegetation, accounting for healthy green vegetation (high NIR reflectance) contain-
ing flourishing yellow flowers (low green and red absorption), such as rapeseed or sun-
flower. This is a problematic class since optical properties of flowers are not included in
the PROSPECT model,

• sparse vegetation/soil, being a class where the soil signature is dominant but which still
contains a fraction of photosynthetic active vegetation or green crop residues,

• mix of vegetation and soil, representing a land cover type where green vegetation does not
yet fully cover the underlying soil background, so primarily crops in early development
stages, but also cut meadows or harvested green crops,

• dry vegetation/soil, encompassing vegetation with a high content of senescent material,
such as cut meadows or mature cereals prior to harvest. This class has very high spectral
similarity to soil signatures (Figure 3.9).
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Figure 3.9: Template nadir vegetation reflectance spectra employed by the SPECL code (Richter, 2007a)

Beisl (2001) observed that, even if the spectral criteria used in SPECL may be susceptible to
changes in reflectance intensity (e.g., due to angular effects), it still outperformed the commonly
used spectral angle mapper (Kruse et al., 1993) based on the same classes.

It was already emphasized that splitting the whole domain into a set of sub-domains may
introduce problems due to misclassification and attribution errors. Even if a jump between
classes and, hence, a sharp change in predicted parameters is justified for two adjacent fields,
such classification steps may not occur at field level. This problem is schematically illustrated
in Figure 3.10, where a hyperspectral image (left) is first submitted to a SPECL classification
(center) and successively to a land cover based inversion scheme (right). The spectral similarity
of the pixels within the central field is depicted by the spectra drawn in the plot below the
image. Despite their spectral similarity, several pixels (some examples are found in the in red
circles) were attributed to classes different from the prevailing average vegetation class. Since
the ranges of variables for each of these classes are defined in a different way (See next Section),
this could have an impact on the estimated values if these misclassifications are not properly
accounted for (e.g. LAI). In this study, a new method is presented to reduce the influence of
classification errors on the variable retrieval, and which is based on the incorporation of local
neighborhood information in the definition of the covariance matrices describing the uncertainty
in measurements and a priori information. This will be introduced in Section 3.4.2.

3.3.3 Considerations underlying lookup table parametrization

In the previous section we have seen that a land cover based inversion scheme breaks the inverse
problem down from a global inversion schedule into a set of sub problems, each optimized for a
specific class. Even if the number of LUT entries can be significantly reduced when the LUT is
optimized for the canopy properties found in the specific land cover class, the risk of getting a
LUT that is either too large, or that undersamples specific parts of the variable space, continues
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LAI

Figure 3.10: Effect of classification anomalies on variable retrieval pattern. A hyperspectral image (left) is
first submitted to a SPECL classification (center) and successively to a land cover based inversion scheme
(right). Although pixels have a very close spectral similarity (left below), retrieved LAI in the misclassified
pixels strongly deviates from their neighborhood pixels

to exist. Last concern is unfortunately too often disregarded. Considering the composition of
the LUT, four aspects have to be taken into account: i) the upper and lower boundaries of
the variable ranges, ii) the distribution of the variables, iii) the number of samples/drawings
per variable, and, directly related to this, iv) the sampling interval. Moreover, atmospheric
conditions and soil characterization should be representative for the image under consideration.

3.3.3.1 Variable ranges

The variable ranges should be set in such way that all possible canopy realizations within the
land cover class are covered but tight enough to allow for a significant reduction of the range
compared to the global range of solutions. This may be less trivial than it seems, especially in
the case of an automated procedure such as the one presented here, since only little might be
known on the land cover type or the phenological stage actually presented by the different pixels
attributed to a specific class. For example, the class bright vegetation can contain different canopy
types, ranging from cereals and grasses to maize and sugar beets, each having their particular
biochemical and structural characteristics. Besides, a certain overlap between different classes
must exist, so that in case of a misclassification - which is probable to occur to spectra at the
class extremes - the pixel is still covered by the class-specific LUT. The variable ranges for the
vegetation classes used in this study are listed in Appendix B, together with the argumentation
used to define these ranges. The ranges have been selected based on expert knowledge and
a range of publications (Atzberger, 2004; Combal et al., 2002a; Hosgood et al., 1995; Koetz
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et al., 2005a; Weiss et al., 2000; Weiss and Baret, 1999).

3.3.3.2 Variable distribution functions

Once the variable ranges are set, one has to decide according to which distribution (e.g. uni-
form, gaussian) the variables are sampled between the lower and the upper limit. In literature
no agreement exists about the distribution rule that should be employed. Although some stud-
ies emphasize that the space of canopy realizations has to be sampled in such a way that
surface response is represented, i.e., with denser sampling in those ranges where sensitivity of
reflectance to specific canopy variables is higher (Combal et al., 2002b; Weiss et al., 2000; Baret
and Buis, 2007), most authors practice probability distributions that mimic the actual distribu-
tion (Atzberger, 2004; Koetz et al., 2005a). Notice that the choice of a particular distribution
function already contains a certain amount of a priori knowledge (Section 3.4.2).

Based on literature review and expert knowledge, it was decided to use different sampling
distributions for different variables. Cw, and Cdm were sampled according to a uniform distri-
bution between lower and upper limit, since very little is known about their actual distributions.
Cbp, N , the hot spot HS, and soil brightness parameter BS were sampled assuming a Gaus-
sian distribution with class mean µ and standard deviation σ that vary among the classes. The
Gaussian distribution allows for denser sampling in ranges that are more likely to occur. Finally,
Cab and LAI were sampled using the distribution functions proposed by (Combal et al., 2002b)
which emphasize those domains where canopy reflectance is more sensitive to variations in the
considered variable (Equation 3.6 and 3.7). This is a justified decision if one wants to cover the
complete spectral variation.

Cabtrans = eCab/100 (3.6)
LAItrans = e−LAI/2 (3.7)

3.3.3.3 Sampling strategy

The most common way of choosing a variable set for a forward model run, is the combination
of variables that are randomly selected according to a specific distribution function for each
variable. Such an approach may lead to undersampling of certain ranges, while oversampling
others. This phenomenon is illustrated by Figure 3.11a where the sampling of 9 free variables
(which is the common number of variables used for the combination of PROSPECT and SAILh)
is assumed. Only 2 dimensions (Cab and LAI) are shown. If we distribute the selections
equally through the variable space and for each variable we consider 5 different values (black
crosses), a structural combination of all possibilities will lead to a LUT of 59 ≈ 2 million canopy
realizations. If we have a similar situation (e.g. 2 million canopy realizations) based on random
drawings from a uniform distribution, the sampling density in a 2-D space may look like the
pattern demarcated by the red crosses in the same figure, in which clear zones of under- and
oversampling are visible.

In order to avoid areas of under- and oversampling, a sampling method based on a full
orthogonal scheme is proposed (Bacour et al., 2002a; Bacour et al., 2006). Using such a stratified
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Figure 3.11: Sampling in a 2-D variable space resulting from global (left) and stratified (right) random
variable selection: 25 ≤ Cab ≤ 95, 2 ≤ LAI < 7. The scenario represents a case where a total of 2 million
canopy realizations is generated for 9 free variables. The shaded ellipses in (a) roughly indicate the zones of
undersampling when a global random sampling scheme is used.

scheme, the range of variation of each variable is split into a given number of intervals from which
samples are drawn on a random basis. All combinations of intervals are sampled once. This
procedure allows accounting for all the interactions between variables while preserving their
natural random variation (Figure 3.11b).

3.3.3.4 Sampling distance

Based on the previous, still the number of intervals for the stratified scheme has to be defined.
In order to keep the processing time within reasonable limits, we assume as a rule of thumb
that the total size of the LUT should not exceed 300,000 entries. With 9 free variables this
would lead to a total number of 9

√
300000 ≈ 4 intervals (data points) per variable. Although

for variables with little sensitivity (i.e. BS for a dense canopy) this may be appropriate, for
variables exhibiting large influence on the spectrum (e.g. LAI) this will not be sufficient and
lead to undersampling. Therefore, a land cover class specific attribution scheme is applied, in
which the sampling intervals depend on the sensitivity and range of the parameters in a specific
class. The considerations that were taken into account for the definition of the classes were
based on expert knowledge and literature reviews and can be found in Appendix B.

3.3.3.5 Incorporating view and sun geometry

The LUTs have to be adapted to the view/sun constellation present in the remote sensing
imagery. The solar geometry (ψs and θs) depends on the geographical location of the scene (lon-
gitude, latitude) and the day of the year and can be adopted from the preceding atmospheric
correction, where these parameters have to be specified as well.

The inclusion of view geometry evolves in a different way for satellite and airborne sensors.
Common high resolution satellite sensors such as Landsat TM, have a field of view (FOV) of
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only a few degrees, and view zenith and azimuth vary only very little across the scene. In this
case, the use of a single LUT for the whole scene is justified. In the case of multi-angular satellite
observations (e.g. CHRIS-PROBA) a single LUT is created for every view angle (Chapter 5).

For airborne high resolution imagery however, FOV may exceed 60◦, giving rise to consid-
erable anisotropy within a single image, specifically for observations in the principle plane and
at high solar elevations (Cfr. Figure 2.9). To account for such anisotropy within a single image,
the HDRF is sampled at an angular view interval of 3◦. For view/sun configurations with ψrel
within ±30◦ to the principle plane, this is done at a sampling interval of 1◦. The sampling is
performed for both azimuth directions (which equals the flight heading ±90◦), separately.

For large FOV data usually a parametric georectification is employed, providing view zenith
and azimuth angle of every single pixel in the form of a scan angle file (Section 4.2.3.3). This file
can be employed in the RTM approach for the coupling of the generated LUTs to the relevant
pixels in the scene. In cases where such information is lacking, the scan angle file is simulated,
based on average flight heading, the FOV of the sensor, and the number of pixels per line.

3.3.3.6 Calculating diffuse radiance

In this work, radiative transfer model (RTM) inversion is based on the spectral similarity of
measured and modeled top-of-canopy HDRF in the direction of the sensor (Section 2.2.4). To
calculate HDRF in the forward simulations, the fraction of diffuse hemispherical incoming radi-
ation (SKYL) has to be known.

The fraction of diffuse radiance strongly depends on atmospheric composition and solar el-
evation. As far as it concerns the automatic approach, an atmospheric correction has been
carried out in advance with ATCOR (Cfr. Section 4.2.3.4). The atmospheric parameters that
where appointed during this operation (solar zenith, average ground elevation, visibility, aerosol
type, and water vapor column) are used for the calculation of the fraction of diffuse radiation
based on the MODTRAN4 code implemented in ATCOR (Berk et al., 2003; Richter, 2007a). In
situations where atmospheric parameters are unknown, a standard atmosphere (visibility = 35
km, ground elevation = 0.5 km, water vapor column = 4 cm, rural aerosol type) is assumed and
a standard diffuse fraction for the complete reflective domain is calculated (Figure 3.12). The
figure shows that particularly in the VIS the skylight fraction is high. Not properly account-
ing for the skylight fraction may therefore considerably affect Cab retrieval (Schaepman-Strub
et al., 2006).

3.3.3.7 Background reflectance parametrization

The regionally based approach employed in this study allows retrieving background reflectance
and its spectral variation directly from the scene itself by means of the pixels that are allocated
to the various soil classes during the automatic land cover classification (Section 3.3.2). This
allows optimizing background reflectance for local soil conditions and composition, and for the
prevailing sun/observation geometry. After a filter procedure for the removal of noisy and falsely
classified pixels, scene average background reflectance is calculated from all pixels that were as-
signed to one of the soil classes in the image (Figure 3.13). As the reflectance of litter and crop
residues are very similar to that of soil (Nagler et al., 2000), this is automatically contained in

59



3.4. The optimization algorithm

Figure 3.12: Diffuse fraction of incident radiance calculated for a solar zenith of 30◦ and a standard atmosphere:
visibility = 35 km, ground elevation = 0.5 km, water vapor column = 4 cm, rural aerosol type.

the SPECL soil classes, and aggregated in the background reflectance characterization. Some of
the soil spectra might also contain a small fraction of green vegetation (e.g., at crop germination
or early leaf stages).

The validity of using a single brightness parameter to describe spectral variation as a func-
tion of average background reflectance is shown in Figure 3.14. The left plot shows 5 different
HyMap spectra (Chapter 4) that all have been attributed to one of the soil classes. The red
spectrum represents the average scene reflectance, calculated from all soil pixels in the image.
The right plot shows the spectra of the left plot divided by the average spectrum. In the ideal
case this should provide a straight line for each spectrum, with the y-value representing the
brightness value. For most spectra this assumption holds reasonably well, with the exception
of spectrum ”soil 4”, which, as observed in the shape of the original spectrum, features some
fraction of photosynthetic active vegetation. In general however, the use of single brightness co-
efficient is reasonable well able to describe variation in soil reflectance. For the parametrization
of the LUTs, a different range of brightness variation is used for the single land cover classes,
since it is assumed that soil moist and surface roughness vary as well among the different land
cover types (Appendix B).

Figure 3.15 gives an indication of the spectral variation found within and between two dif-
ferent vegetation classes. Parametrization of the simulations were based on one of the HyMap
scenes discussed in Chapter 4.

3.4 The optimization algorithm

This section deals with the inversion algorithm itself, i.e., with the way in which, based on an
input spectrum, entries are selected from the LUT in order to calculate the final result. The
solution of the RTM inversion has to fulfill two conditions: first of all, the modeled HDRF
has to lie close to the one that was measured by the earth observation system. As already
pointed out in previous sections, diverging combinations of vegetation variables may render a
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Figure 3.13: Scene based soil characterization: soil spectra are collected from the scene, based on a preceding
land cover classification (left). Noisy and falsely classified spectra are removed and average background
characteristics are expressed by: average background reflectance (solid), standard deviation (dashed), and
min/max reflectance (dotted) (right)

.

Figure 3.14: Evidence for the soil brightness parameter. The left graph shows 5 selected HyMap spectra
encountered in the imagery used in Chapter 4. The red curve shows average soil reflectance as calculated from
all soil pixels in the image. Dividing the individual spectra by the scene average spectrum results in the plot
depicted at the right. The average y-value of the spectra denotes their approximate brightness with respect
to the average soil spectrum

.

very similar signal, thus giving rise to the ill-posedness of the inverse problem. For this reason, a
second condition should be met, i.e., the retrieved variables should fall within plausible margins
around the expected, or a priori, solution (second term of the right-hand side of Equation 2.12).
Last condition is not so straightforward as it may sound, since in an automated approach little
information is available about the canopy under observation and therefore the solution can only
be roughly approximated. For this reason, many authors usually ignore the second condition, or
at most pose upper and lower boundaries to the expected range of variation, and reduce their
inversion to a radiometric minimization problem.
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Figure 3.15: Range of reflectances simulated for the classes bright (a) and sparse vegetation (b). Simulations
were based on the sampling schemes found in Appendix B, a solar zenith of 45◦ and a nadir viewing sensor
position. The solid lines indicate average class reflectance, error bars the standard deviation of the simulations,
and the shaded area the range of maximum variability.

In this section, a new method for the definition of the second term of the right hand side
of Equation 2.12 is proposed. As we will see in Section 3.4.2, the prior estimates partly rely
on the data itself, the reason for which it would be incorrect to speak of a priori knowledge
in a strict sense. Since it rather involves an additional regularization step, it was decided
to abbandon common theoretical perception where both parts of the cost function (Equation
2.12) are simulataneously explored and weighted according to the respective covariance matrices
(Lavergne et al., 2007; Rodgers, 2000; Tarantola, 2005), and instead to explore radiometric
information and a priori information in two successive steps (Figure 3.16). The successive
exploration of radiometric and a priori information has been successfully implemented by other
authors as well (Combal et al., 2002a; Koetz et al., 2005a). Local spatial variance of radiometric
values and a priori estimates were introduced in both steps to cope with classification anomalies,
as explained later.

3.4.1 Exploiting radiometric information

To accelerate the inversion algorithm, only those LUT entries are considered that for each band
have a reflectance value within ±20% of the input spectrum. A range of 40% is considered
broad enough to include all measurement and model errors. However, in order to prevent any
ambiguity, e.g. in bands with a low signal-to-noise ratio or bands affected by strong atmospheric
scattering, only the Landsat TM bands are considered. In addition, for wavebands with a
reflectance lower than 0.1 (10%) an absolute range of ± 0.02 (2%) is employed:

L̂UT ∈ {LUTc|0.8 ·Rmeas ≤ RLUT ≤ 1.2 ·Rmeas} (3.8)

where LUTc is the initial LUT generated for class c, Rmeas the measured reflectance, and RLUT
the reflectance spectra contained in LUTc. If less than 30 LUT-spectra meet above criterion,
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Figure 3.16: Optimization algorithm proposed in this study

the range is automatically extended to ±50%, and, if again this range appears too restrictive,
eventually all LUT spectra are included. This usually only occurs to misclassified pixels or to
spectra that are constituted of mixed signals, and if such happens, this is marked by quality flag
(Section 3.4.3).

Based on the original wavebands, the reduced LUT is sorted according to the cost function
χ2
rad corresponding to the weighted spectral distance between the measured reflectance Rmeas

and the simulated reflectance RLUT found in L̂UT :
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(a) Bright vegetation (b) Dry vegetation / soil

Figure 3.17: Examples showing variance-covariance matrices for two SPECL land cover classes. Dark colors
indicate low (co-)variance, red colors high values. The calculation is based on HyMap data of the Waging-
Taching area (Chapter 4). On the top/left of the figure a characteristic spectrum of each class is shown.

χ2
rad = (Rmeas −R dLUT )T · COV −1

rad · (Rmeas −R dLUT ) (3.9)

COVrad, the matrix describing the covariance between the different spectral bands, should ac-
count for non-systematic uncertainties associated to the measurements (noise, geocoding, atmo-
spheric correction, classification) and to the radiative transfer model. The covariance between
wavebands is not known in advance since it changes with target properties, illumination condi-
tions, and so on. But, using the land cover classification based on spectral similarity measures,
we can approximate COVrad by calculating the matrix from the spectra contained within each
land cover class. This results in a different covariance matrix for each land cover class (Figure
3.17). It should be noticed however, that in this way only non-systematic radiometric uncer-
tainties are accounted for, thus disobeying possible systematic errors in model assumptions and
parameterizations.

Of the sorted LUT, the possible solutions considered were those that were within 20%

of the best absolute radiometric match, leading to a reduced LUT denoted as ̂̂
LUT . The

threshold of 20% is consistent with what other authors proposed in earlier studies (Combal
et al., 2002b; Koetz et al., 2005a).

3.4.1.1 Adding local spectral variance to overcome classification anomalies

Intermediary model test results revealed that in the proposed inversion approach systematic
errors (e.g. by RTM assumptions and parametrization) are in many cases larger than the
normally distributed random uncertainties of a certain object as captured by the covariance
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matrix. In cases of large systematic errors, a too strict definition of radiometric uncertainties
may therefore lead to poor retrieval results. In Figure 3.10 it was already shown that a land
cover classification that splits the whole spectral domain into a set of sub-domains may introduce
problems due to attribution errors which in turn are translated into crisp jumps in the retrieval
results. The covariance matrices that are constructed for the separate classes are unable to
compensate for such larger local systematic uncertainties. To overcome such local systematic
deviations originating from attribution anomalies, additional variance is added to the covariance
matrix. This radiometric variance is calculated from the spectral values in a 5×5pixels window
around the currently inverted pixel. This local spectral variance (V ARloc) is added to the class
specific covariance matrix COV c

rad to constitute the covariance matrix that is finally implemented
in the radiometric minimization function (Equation 3.9):

COVrad = COV c
rad + V ARloc (3.10)

or in matrix notation:

COVrad =

var
0
cla · · · cov0n

cla
...

. . .
...

covn0
cla · · · varncla

 +

var
0
loc · · · 0

...
. . .

...
0 · · · varnloc

 (3.11)

varncla denotes the class variance, varnloc the local variance of waveband n. covnmcla is the class
specific covariance between band n and m. If the local neighborhood of the pixel shows strong
heterogeneity, the variance contained on the diagonal of the covariance matrix is increased,
whereas, in case of a homogeneous local neighborhood, there will be barely any changes compared
to the class specific covariance matrix COV c

rad. In cases where pixels lack a spatial context, which
occurs when the neighboring pixels belong to a class that is excluded from processing, the second
part of the right hand term in Equation 3.9 is omitted and the class specific covariance term
COV c

rad is employed for COVrad instead.

3.4.1.2 Covariance matrix inversion

One of the major drawbacks of using imaging spectrometer data in the proposed way is of
numerical nature. The high degree of linear dependency between bands, especially in cases
where the spectra are smoothed, e.g. during atmospheric correction, is reflected in COVrad,
provoking numerical problems when this matrix has to be inverted. A matrix is not invertible
or singular when its determinant is zero. To find out if COVrad is invertible, the determinant is
calculated using LU decomposition, a procedure for decomposing an N×N matrix into a product
of a lower triangular matrix L and an upper triangular matrix U. This numerical operation is
performed using the Linear Algebra Package (LAPACK) library implemented in IDL (ITT-VIS
Inc, Boulder, CO). If the determinant has a non-zero value, the matrix is inverted, again using
LU decomposition.

In cases where the covariance matrix is singular, the number of bands is reduced. Although
more sophisticated methods based on singular value decomposition have been proposed to reduce
the number of dimensions (Rodgers, 2000; Wang et al., In press), it was decided to employ a more
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pragmatic approach and to halve the number of bands by taking every second channel. Based
on this reduced number of bands, COVrad is recalculated and tested again for its singularity.
If singularity continues to exist, bands are reduced again by taking a third and a fourth of the
initial set of bands, respectively. Eventually, if singularity still persists, the bands proposed
by Fourty and Baret (1997) complemented with a band in the blue, green, and red, are used.
In practice however, when using spectral data that are not strongly polished, matrix inversion
appears usually directly possible or at least after the first reduction of bands. Reducing the
number of bands by structured selection at regular intervals is justified by the equal spacing
of bands in imaging spectrometer systems. Doing so, the original distribution of bands within
the system is preserved and no displacement of the weights attributed to particular wavelength
ranges occurs, which also favors a direct comparison between different land cover classes.

3.4.2 Exploiting a priori information on canopy variables

Even though the use of land cover classes considerably reduces the range of possible canopy re-
alizations and offers an opportunity to quantify the uncertainty contained in the measurements,
it only partly overcomes the ambiguity induced by the ill-posed nature of the inverse problem,
thus still leading to multiple and instable solutions. Additional regularization, in the form of
prior information, is required.

Although up to this point some prior information has already been included in constructing
the LUTs by restraining the ranges of variation of the variables and defining their statistical dis-
tributions, test results showed that this is not sufficient for accurate regularization, so that other
ways have to be explored. Since in an automated, image based, approach a priori estimates based
on expert knowledge, predictions from additional information sources, or the temporal evolu-
tion of one or more parameters (Cfr. Section 2.5.5.2) cannot be presumed available, additional
regularization should be retrieved from the spectral information content of the image itself.

3.4.2.1 Defining prior estimates using vegetation indices

A novel approach, based on the spectral information content contained in the image and the
lookup tables, is presented for obtaining a first estimate of the solution and defining the level
of confidence around this estimate. First estimates of all variables are based on a predictive
regression equation between a selected spectral vegetation index (VI) and the variable of inter-
est which is applied to the image reflectance data (See Section 2.3). Vegetation indices have
the advantage that they are computation efficient and based on only a limited number of inde-
pendent wavebands. Strictly speaking, first estimates defined in this way are not pure a priori
information, since the estimates partly rely on the data itself. Even if it might be more correct
to speak of an additional regularization, the term a priori will be retained due to the similarity
with ”real” a priori information.

Since ground reference measurements of the canopy variables are absent, the regression func-
tions are created by using radiative transfer modeling. This allows one to generate a virtually
endless number of canopy reflectance spectra for which the input variables are known and illumi-
nation and view conditions can be controlled (Ceccato et al., 2001; Haboudane et al., 2004; Zarco-
Tejada et al., 2005a; Zarco-Tejada et al., 2001). The advantage of such an RTM based approach
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compared to an approach based on empirical measurements, is the fact that every regression
function can be optimized for the view/sun geometry and soil and atmospheric conditions en-
countered in the image. Moreover, they can be calculated for each specific land cover class and
for every canopy variable separately.

Simulating reflectance At this point, no additional radiative transfer model simulations have
to be carried out, since a large number of canopy realizations and accompanying variables for
each land cover class are already contained in the LUT. In order to make the regression function
more robust, approximations for sensor, measurement, and model uncertainties are attributed
to the simulated spectra in the LUT to form R∗

LUT (λ). For the individual uncertainty sources,
a random gaussian distribution rn of average noise contributions is assumed:

R∗
LUT (λ) = rn ·Nmodel · (RLUT (λ) +RLUT (λ) · rn · (Nsens(λ) +Natm(λ))) (3.12)

Sensor noise Nsens, is expressed by the Noise Equivalent Delta Reflectance (NE∆ρ) which
roughly corresponds to the reflectance divided by the signal-to-noise ratio (' ρ

SNR). According
to the average sensor specifications of various sensors (e.g. HyMap, MODIS, Landsat TM), the
noise level is set to 0.01 (1%) for wavelengths severely affected by water absorption and to 0.003
(0.3%) for the other wavelengths (Cocks et al., 1998)(Figure 3.18a - blue line). Measurement
and atmospheric uncertainties (Natm; Figure 3.18a - red line), mainly resulting from errors in
atmospheric correction, are set to 0.005 (0.5%) for the blue range, and 0.001 (0.1%) for the
rest of the spectrum (Berk et al., 2003). Finally, modeling errors (Nmodel; Figure 3.18b) have
been approximated by the relative standard deviation (i.e. the standard deviation divided by the
average of measurements) of spectral measurements of a garden cress performed under laboratory
conditions (Richter et al., 2006a). Such a laboratory set-up excludes any disturbing influences
of atmosphere, positioning, or view constellation and is therefore representative for variations
in the canopy alone. As shown in Figure 3.18(c), simulated uncertainty is representative for an
average quality sensor under good illumination conditions.

Choosing appropriate VIs The predictive performance of a certain vegetation index depends on
the variable to be estimated, and the canopy, atmospheric, soil, and illumination/view conditions
at the time of data recording. Therefore, it was decided not to select one specific vegetation index,
but to look in every new situation and for each variable which VI shows highest performance. For
this purpose, a wide range of well-known VIs, developed for the analysis of green vegetation, is
calculated and plotted versus the different canopy variables. In order to find the best predictive
equation, both linear and exponential fits are tested for each combination of variable and VI.
Based on the combination of the largest coefficient of determination (R2) and the smallest root
mean square error (RMSE), the best performing regression function is selected for each variable
in each class. The final regression functions are written to a text file, including the accompanying
R2 and RMSE values.

The single VIs and their formulas are listed in Appendix C. For a detailed discussion of their
unique characteristics the reader is referred to the original publications or to several publications
describing and comparing various VIs (Broge and Mortensen, 2002; Haboudane et al., 2004;
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(a) (b)

(c)

Figure 3.18: Example of attributing atmospheric, sensor, and model uncertainties to a simulated spectrum.
(a) shows the (NE∆ρ) of a typical sensor (blue line) and the uncertainties involved in atmospheric correction
(red). (b) shows the relative modeling errors per wavelength (see text for explanation). (c) shows the result of
adding sensor and atmospheric errors (red) and model errors (blue) in successive steps to a modeled HyMap
spectrum (black; θs = 45◦, φrel = 0◦;Cab = 50 µg · cm−2, Cw = 0.03 g · cm−2, Cdm = 0.01 g · cm−2, N =
1.7, LAI = 3, ALA = 57◦,HS = 0.015). Uncertainties are defined according to Equation 3.12 by applying a
random gaussian error with a wavelength dependent standard deviation as given in plot a and b.

Ruecker et al., 2006; Zarco-Tejada et al., 2005a; Zarco-Tejada et al., 2005b). The selected VIs
can be roughly subdivided into 4 different categories:

• Broadband vegetation indices. VIs of this type were originally designed to estimate canopy
structural variables such as LAI and fCover and all include at least a waveband in the
red and in the NIR. Some of them include an additional band in the blue to make them
more resistant to disturbing atmospheric influences (e.g. SARVI, EVI) or a green band to
render them more susceptible to changes in chlorophyll concentration (e.g., TVI, MTVI1).

• Chlorophyll indices. VIs in this category were designed to estimate leaf chlorophyll content
and contain 2 or more narrow bands around the red edge. Some members of this group of
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the aim at characterizing the red-edge inflection point (REIP), the wavelength of the red
edge where the 1st derivative of the spectrum is maximal (or the 2nd derivative is zero).

• Water indices. Designed to estimate plant water content or detect water stress. Indices
of this type have 1 or more bands in spectral regions sensitive to water absorption, which
at the same time makes them susceptible to atmospheric water vapor. Therefore, their
performance and portability strongly depend on the quality of the atmospheric correction.
Water band indices that in simulation studies were found too sensitive (e.g. Normalized
Difference Water Index (NDWI) (Gao, 2002), or Normalized Difference Water Index - Mid
Infrared (NDWI-MIR) (Chen et al., 2003), were not used.

• Dry matter indices. The indices contained in this category have in common that they are
sensitive to one or more of chemicals composing Cdm, and include indices sensitive to lignin
absorption (NDNI, NDLI) and cellulose absorption (CAI). Notice that absorption features
due to Cdm in green vegetation are usually masked by water absorption. Therefore, indices
of this category only really make sense in estimating Cdm in the class dry vegetation.

Although the different indices were designed for detecting specific canopy characteristics, they
are all tested for every variable. Finally, for all vegetation pixels a prior estimate is calculated,
leading to an image with nine bands, one for each free variable input to PROSPECT and SAILh.
Even if in this way a map with preliminary results is provided, the use of vegetation indices alone
cannot substitute the actual radiative transfer model, as only a few spectral bands are used and
the collinearity between variables is not accounted for. The importance of the latter will be
exemplified in the next chapter.

Sensitivity of VIs The predictive power of the regression equation between a selected VI and a
canopy variable strongly depends on land cover type, illumination/observation geometry, and the
variable in question. Figure 3.19 shows some examples derived from the sun/view constellation
of the HyMap imagery in the next Chapter. The examples show the large difference in sensitivity
among the different variables and classes. Spectral response to changing Cw appears very large
for a dense canopy, whereas for a sparse canopy reflectance shows no response at all. For LAI,
a clear saturation is observed for high values, whereas for a sparse canopy, sensitivity is high. In
neither of the considered cases spectral reflectance is sensitive to soil brightness. Even if these
plots are only a few selected examples, they very well illustrate the high variability among the
predictive equations.

Two of the VIs that were selected for the 3 more sensitive cases, were actually designed for
the considered canopy variable, i.e., LWVI2 for the estimation of leaf water content and RDVI
for the estimation of canopy structural variables such as LAI. Nevertheless, the best performing
VI for the prediction of LAI in sparse vegetation is also the LWVI2, which can be ascribed to
the similar spectral response in the SWIR of leaf water and LAI. It should be noticed that
several of the best performing VIs in the examples are based on narrow hyperspectral bands
in the SWIR. Thus, in the case of a broadband multispectral sensor such as Landsat Thematic
Mapper, or imaging spectrometers covering only a limited part of the reflective domain, not all
VIs can be calculated and, as a consequnce, the predictive equation would be less accurate.
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Figure 3.19: Examples of predictive regression functions between best performing vegetation indices and Cw,
LAI, and BS, based on RTM simulations. The left column shows regression equations for the class bright
vegetation, the right row mix soil/vegetation (view zenith = 20◦; sun zenith = 30◦; relative azimuth = 28◦).

3.4.2.2 Assigning uncertainty to the prior estimates

Minimizing the distance χ2
var between the a priori estimates and the samples used to generate

reflectances in the reduced LUT (i.e. ̂̂
LUT ) is performed according to:

χ2
var = (Vprior − V ddLUT )T · αv · COV −1

var ∗ (Vprior − V ddLUT ) (3.13)

where Vprior is the vector with the prior estimates of the j variables that are left free in the
inversion, V ddLUT is the set of free variables that was used to simulate R ddLUT in Equation 3.9, and
COVvar is the matrix describing the covariance between the different variables. αv is a diagonal
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matrix containing the weights that different variables receive in the cost function. These weights
correspond to the coefficients of determination that were assigned during the establishment of
the predictive regression equations, with high R2 values corresponding to high weights. The α
coefficients are indicative for the quality of the regression model (Cfr. Figure 3.19). They rep-
resent the systematic errors and are therefore complementary to COVvar. Thus, prior estimates
that are based on regression models with a high accuracy are emphasized while those based on
poor predictive equations are suppressed.

The covariance matrix COVvar in Equation 3.4.2.3 accounts for the non-systematic model
errors related to the predictive equations themselves and for the random errors in the predicted
values resulting from uncertainties in reflectance (noise, co-registration, and so on). For land
cover class c the covariance between the variables is calculated from all pixels of the given class
contained within the image, and is denoted COV c

var.
Analogous to Equations 3.10 and 3.11 used to compensate for systematic radiometric uncer-

tainties induced by classification anomalies, local variance of the prior estimates is calculated
from a kernel of 5×5 pixels around the pixel under consideration, and is added to the class
specific covariance matrix of prior estimates:

COVvar = COV c
var + V ARcloc =

var
0
cla · · · cov0n

cla
...

. . .
...

covn0
cla · · · varncla

 +

var
0
loc · · · 0

...
. . .

...
0 · · · varnloc

 (3.14)

with varncla denoting the class variance, and V ARnloc the local variance of variable n. covnmcla is
the class specific covariance between variable n and m. If the neighborhood of the pixel shows
strongly heterogeneous a priori estimates, the diagonal of the covariance matrix is affected
likewise, on the other hand, when the local neighborhood is homogeneous, the covariance matrix
COVvar will be barely altered with respect to COV c

var. Notice, that more than one land cover
class can be found in the kernel. In cases where pixels lack a spatial context, which occurs when
the neighboring pixels belong to a class that is excluded from processing, COVvar in Equation
3.4.2.3 is substituted by the class specific covariance term COV c

var.

3.4.2.3 Defining the final solution

The smallest 20% of sorted χ2
var values is used to select those entries from ̂̂

LUT that are used for
calculating the final solution of variable V j . This is done in such a way that the set of variables
leading to the smallest χ2

var receives largest weight:

V j
est =

n∑
k=1

(
Wk · V j

k

)
(3.15)

where n is the number of entries selected from the reduced ̂̂
LUT and V j

k the value of variable V
for LUT-entry k. The weight Wk, attributed to a each particular entry selected from the LUT,
is defined by:
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Table 3.3: Quality flags used to indicate the confidence of the inversion.

Code Error Consequence and action

0 No error/limitations encountered

2 Less than 30 LUT spectra fall within range of
±20% around input spectrum (Eq. 3.8)

Parametrization LUT is not representative for in-
put spectrum → range of spectral similarity is en-
larged to ±50% from input spectrum

3 Less than 30 LUT spectra fall within ±50% of
input spectrum (Eq. 3.8)

Class is probably not representative for input
spectrum → all spectra contained within LUT are
used for minimization.

7 Too few neighborhood pixels to calculate local
variance terms in COVrad and COVvar

Class specific covariance matrices are used instead
→ local variations are not accounted for

8 COVrad cannot be inverted Spectral covariance is not accounted for → cost
function is based on maximum likelihood estima-
tor (class and local variance) COVvar

Wk =
1/χ2

k∑n
k=1 1/χ2

k

(3.16)

where χ2
k is the result of the cost function (Equation ) for LUT entry k.

3.4.3 Accuracy description

It must be reemphasized that the solution is not a single value but based on the concept of
maximum a posteriori probability (MAP), indicating that the solution is the most probable one
within a certain distribution of solutions. Therefore, the uncertainty around the final solution
can be described by the standard deviation, which is equal to

√
variance and assumes a normal

distribution around the mean. The standard deviation is calculated from the same selected
entries of the reduced ̂̂

LUT that were used for the calculation of V j
est (Equation 3.15).

In addition to the normal distribution around the estimated mean, each pixel is documented
with a quality flag indicating important decisions that were taken during processing and concern
the quality of the solution (Table 3.3). The final quality flag is the sum of the values in the table
(e.g., a value of 9 (=2+7) indicates that the solution was based on all LUT spectra within a
range of ±50% around the input spectrum and that a class based COVrad and COVvar without
local variance was used.

3.4.4 Accounting for angular anisotropy

So far, the discussion was confined to the processing of mono-directional datasets while large
field-of-view sensors were regarded as a kind of ”collection” of mono-directional sensors, each of
them representing a unique combination of view angle and relative azimuth. The local moving
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windows, used to describe variance in the direct neighborhood of a pixel, partly overcome con-
tingent inaccuracies in view angle attributions and the possible crisp jumps in prior estimates
that may occur at the transition from one view angle interval to the next. Although several
view/sun constellations are present in one scene, pixels are only viewed from one direction, and
therefore are still regarded as mono-directional data.

The retrieval procedure for multi-angular data evolves in a way similar to the one for mono-
directional data, with a few modifications regarding the cost function and the description of
covariance. The procedure starts with the generation of a distinct LUT for each available obser-
vation constellation. For each land cover class this is done according to the range and number
of variables and intervals presented in Appendix B while only the view/sun constellation (view
zenith and/or relative azimuth) varies.

Exploring radiometric information Analogous to Equation 3.8, only the LUT entries that in
the Landsat TM bands deviate not more than 20% from the input spectrum are considered,
while extending the range to 50% and eventually to all LUT entries when the criterium is not
met. Notice, that this criterium must be met for all view constellations simultaneously, and
thus not only the reflectance in LUT i should approximate the spectrum in view constellation i,
but the complete anisotropy should match. This is expressed in:

L̂UT ic ∈
{
LUT ic |0.8 ·Rimeas ≤ RiLUT ≤ 1.2 ·Rimeas

}
(3.17)

where LUT ic is used to denote the set of LUTs generated for the i different available view/sun
constellations in class c, Rimeas the measured reflectance anisotropy, and RiLUT the simulated
reflectance anisotropy.

The cost function used to characterize the closeness between modeled and measured re-
flectances is based on Equation 3.9 and adapted in order to incorporate the different view
constellations:

χ2
rad =

ndir∑
i=1

(
(Rimeas −RidLUT )T · COV −1

rad · (R
i
meas −RidLUT )

)
(3.18)

where ndir is the number of view configurations. COVrad describes the radiometric covari-
ance between the wavebands in every separate view angle. Notice that in this way no covari-
ance/weighting between the different view constellations is included. This is conform to the
definitions proposed by Knyazikhin et al. (1999b) and Knyazikhin et al. (1999c) for MISR
and is justified by the lack of a priori information on the sensitivity and model accuracy of the
different view angles.

Exploring a priori information on variables A priori estimates on the variables are calculated
for each view configuration separately using the entries in the respective LUTs (Section 3.4.2.1).
Having i different view constellations, for each pixel and for each variable, the number of i a
priori estimates and accompanying ranges of uncertainty (σ) are averaged to form the final a
priori estimate and uncertainty. The same is done for the determination coefficients providing
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the weights αv in Equation 3.4.2.3.
Covariance between the variables is calculated following Equation 3.14. Alternatively, in

cases where neighborhood information on variables is missing, COVvar is based on the class
specific covariance matrix like specified in Section 3.4.2.2.

3.5 Conclusions and preface to Chapter 4 and 5

In this chapter the background of the image based CRASh inversion approach and the imple-
mentation of it in a practical automated environment was discussed. The approach, which is
based on existing radiative transfer models, focuses on improving retrieval performance by re-
ducing the number of multiple ill-posed solutions. This is done by considering the pixel (and its
spectral values) not as an independent measurement, but by also taking into account its spectral,
spatial and, if available, angular context. The simultaneous exploitation of the various infor-
mation sources is extremely important in cases where only very little knowledge is available on
land cover type and phenology and where additional information sources such as multi-temporal
observations or data from other sensors is lacking.

The novelty of the presented approach mainly resides in the ensemble of processing steps and
the way regularization is obtained, namely by the real-time calculation of a priori variable esti-
mates based on vegetation indices and predictive regression equations optimized for land cover
type, and view/illumination geometry. Although the idea of basing RTM inversion on land cover
classes is not new (Houborg et al., 2007; Knyazikhin et al., 1999b; Knyazikhin et al., 1999c), up
to date no automatic approach is known that utilizes the land cover classes as a basis for the
characterization of spectral covariance.

Even if in this chapter the advantages and some possible limitations (e.g., the limited ca-
pability of the RTM in mimicking radiation transfer in complex, heterogeneous canopies) of
the proposed approach have already been pointed out, the approach should first be extensively
tested on a wide range of data and canopy types before any general conclusions can be drawn.
Although exhaustive testing in terms of sensor configurations and canopy types would go beyond
the scope of this thesis, it was decided to work out two test cases dealing with observations taken
by imaging spectrometers with strongly differing sensor specifications and observation proper-
ties. In addition, it was chosen to test the approach at three different spatial levels, using field
spectrometer measurements with a footprint of less than a square meter, data from an airborne
sensor with a pixel size of 5×5 m2 and satellite data with a spatial resolution of 17×17 m2,
respectively.

The first validation chapter (Chapter 4) discusses the potential of the model for the charac-
terization of temperate grasslands. Based on field spectrometer measurements, the contribution
of the different algorithm components and information sources (e.g., land cover classification,
description of covariance between wavebands, introduction of a priori information) to the end
product will be tested in successive order. Moreover, the influence of the band configuration is
tested, even as the sensitivity of the model to class parametrization and spectral uncertainties.
In the second part of Chapter 4, the approach is tested on data from the airborne HyMap sen-
sor. This part focuses on the sensitivity of the model to changing observation and illumination
conditions and on the influence of the proposed spectral land cover classification on the end
product.
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The second validation chapter (Chapter 5) emphasizes on the estimation of cotton chloro-
phyll content from the hyperspectral CHRIS/PROBA satellite. Apart from having a different
band configuration compared to the HyMap sensor, this sensor is also able to observe a target
from up to five different view directions. In this way, an additional information source, indepen-
dent from the spectral and spatial one, is included in model inversion. The focus of this chapter
will therefore be the concurrent exploitation of the spatial-spectrodirectional information.

Although a validation of the model which is based on data simulated with a radiative trans-
fer model would certainly provide a better control on the input variables and hence a more
comprehensive data set, simulated data would not account for possible mismatches between the
radiative transfer model and reality, while radiometric and spatial uncertainties could only be
roughly approximated. For this reason, validation was exclusively based on real remote sensing
data.

75



3.5. Conclusions and preface to Chapter 4 and 5

76



Chapter 4

Validating CRASh at ground and
airborne level: grassland
characterization using field
spectrometer and HyMap data

4.1 Introduction

In summer 2003, the Waging-Taching experiment, carried out in southeast Germany, was set
up to validate the automatic retrieval algorithm proposed in the previous chapter. The study
involved the instantaneous sampling of agricultural grasslands by HyMap imaging spectrometer
data and ground validation measurements. However, merely validating the results obtained by
RTM inversion with the ground based biophysical and -chemical variables would not reveal the
added value of the proposed approach compared to other statistical and RTM-based approaches.
Validation should therefore also involve a quantification of the merits supplied by the single al-
gorithm components. Moreover, comprehensive analysis of model sensitivity to land cover class
parametrization, data quality, and observation/illumination geometry is required to guarantee
the portability of model performance to future data sets and other sensors. The current chapter
will address these aspects based on field spectrometer and airborne hyperspectral data sets.
Whilst the field spectrometer data exclude uncertainties attributable to atmospheric and geo-
metric correction and thus facilitate a direct comparison between spectral signal and the canopy
properties of interest, the HyMap imaging spectrometer data allows for studying the spatial
distribution of retrieved variables, even as the influence of changing observation properties on
retrieval performance. The study concentrated on temperate grasslands, which are one of the
predominant land cover types in central Europe and therefore of high economic value.



4.1. Introduction

4.1.1 Preceding grassland studies using imaging spectroscopy

Grasslands occupy around 25% of the Earth’s land surface and are therewith the largest food
suppliers to wildlife and dairy worldwide (Brown, 1998). In cultivated, intensively used dairy
husbandry systems, the way in which grasslands are managed determines to a large degree the
productivity and profitability of a farm (Rougoor et al., 1999). In this context, accurate as-
sessment of biochemical (e.g., Nitrogen (N) and chlorophyll content) and biophysical (leaf area
index (LAI), dry matter yield) status of the fields provides valuable information on the neces-
sary management strategies to be followed, the finetuning of nutrient and water supplies, harvest
planning, and the intercomparison of fields and farms (Schut, 2003). The required accuracy of
these information sources should be at least 10% in order to support proper decision making
(Harmoney et al., 1997).

Detailed knowledge on the nutrient balance of a farm does not only bring commercial benefits
but also helps to reduce excessive use of manure and fertilizer and, hence, emissions from farming
systems into the environment (Smit et al., 2003). Washout of manure, the predominant nutrient
supplier for grasslands under temperate climatic conditions, influences the quality of fresh water
resources and hence their ecological state (Melzer, 1999; Pinnel, 2007). Allocating the actual
status of the agricultural grasslands in support of optimized dairy system management would
therefore also help to reduce ecological impacts.

As regular field inventories with sufficient coverage are too cost-intensive and time-consuming,
radiometric measurements provided by multi- or hyperspectral sensors are increasingly ex-
plored for their suitability of deriving key grassland parameters (Clevers et al., 2005; Psomas
et al., 2007; Schut, 2003; Vohland and Jarmer, 2007). At laboratory level, the use of imaging
spectroscopy for the characterization of grass swards was intensively studied by Schut (2003).
He explored the potential for growth monitoring, detection of nitrogen and drought stress, dry
matter yield, clover content, nutrient content, feeding value, sward heterogeneity and produc-
tion capacity, using a close range spectroscopy system applicable in the laboratory or for mini
experiments.

Based on the work Schut, Clevers et al. (2005) showed that the small-scale experiments
could be extrapolated to field level using a multi-spectral non-destructive close sensing sys-
tem. Using multiple linear and partial least square regression they obtained good results for
biomass (R2=0.77), dry matter yield (R2=0.68) and reasonable accuracy for dry matter content
(R2=0.58). Nutrient contents like N were only poorly predicted.

The upscaling of approaches developed at ground level to airborne or satellite based obser-
vations is hampered by the heterogeneity of the grassland canopy in space and time. Unlike
most agricultural crops which build rather homogeneous canopies and exhibit a more or less
predictable annual life cycle, grasslands are composed of different plant species that all have
their unique morphologic and chemical features and whose distribution is strongly dependent on
periods of growth and regrowth (Vohland and Jarmer, 2007). Moreover, composition and archi-
tecture are strongly influenced by management strategy and use (e.g., number of cuts, meadow
vs. pasture). This implies that developed statistical approaches for the retrieval of grassland
variables from remote sensing data will have to be calibrated for land use, phenological stage,
and species composition.

But even physical approaches based on radiative transfer modeling, often proposed as a ro-
bust alternative to statistical approaches, face similar limitations since canopy parametrization
is often given by an average set of variables which mostly does not account for single species
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within the canopy. This is confirmed by Vohland and Jarmer (2007) who were able to accurately
retrieve LAI from field spectrometer measurements while only moderate results were obtained
for leaf water and leaf dry matter content. Even if the application of additional constraints to
canopy parametrization (i.e., by assuming a nearly fixed rapport between leaf water and leaf
dry matter) in their case brought additional improvement, the use of such constraints in a full
operational approach would only be of limited value since very little is a priori known about
land cover and the expected variable ranges. Moreover, upscaling RTM inversion to airborne
or satellite level would involve additional uncertainties ensuing from atmospheric and geometric
preprocessing.

4.1.2 Objectives

The focus of this chapter is to find out to what precision the automated CRASh inversion ap-
proach proposed in the previous chapter is able to estimate important grassland canopy state
variables from data of the airborne HyMap imaging spectrometer. HyMap overflights took place
at two time steps (June 30 and August 4) during the summer of 2003, a summer that was
characterized by extreme drought and excessively high temperatures (Deutscher Wetterdienst1).
The ultimate goal was to see if possible advancing drought stress, expressed by an altering water
content, could be detected by remote sensing. Due to technical problems, the second HyMap
data set could not be used for further purposes. Nevertheless, the canopy sampling and field
spectrometer data collected during this second campaign could still be used for validation pur-
poses at ground level.

Based on the spectral measurements and on the accompanying ground validation measure-
ments for grasslands of leaf area index, leaf dry matter content, and leaf water content, the
following issues are addressed:

• Contribution of the single algorithm elements to the final estimates.

• Absolute accuracy of the automatic approach, both for the field spectrometer and HyMap
data.

• Sensitivity of the approach to land cover classification, LUT parametrization, and radio-
metric uncertainties.

• Stability of the algorithm in terms of changing flight and solar constellation.

• Effect of incorporating local spatial relationships.

4.2 Study site and data

4.2.1 Study site Waging-Taching

The study was performed in the catchment of Lake Waging-Taching which is situated in the
foreland of the Bavarian Alps, close to Salzburg (Figure 4.1). The lake catchment has a size of

1URL: http://www.dwd.de
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Figure 4.1: Location of Waging-Taching test site. The image at the right shows the agricultural parcels in the
area. The red square indicates the actual study area

approximately 120 km2 and its elevation ranges from about 450 to 700 meters above sea level.
The substrate in the area is merely constituted by glacially transformed impermeable clay

deposits which form a perfect base for the development of peat. Both upland moors (on hill
tops) and low moors (near the lake) are present. The soil types are heterogeneously distributed,
corresponding to the small scale variations in geomorphology and elevation. Climate is moderate
central European with relatively mild winters, temperate summers, and precipitation the whole
year round.

Land use within the catchment is dominated by agriculture, though also forestry and to
a lesser extent recreational use play an important role. Two third of the agricultural area is
constituted by grassland, both meadows and pastures, while first mentioned prevail. Grassland
use is predominantly intensive, which is represented by up to seven cuts a year and additional
manuring for meadows, and frequently grazing (and the resulting constant dung input) for
pastures. The parcels of different use and management intensity are evenly scattered through
the catchment and range in area from the size of an average backyard to over 25 hectares.

While remote sensing data were acquired over the entire catchment, biophysical validation
and field spectrometer measurements were concentrated on 3 fields situated near the lake shore
around the center coordinates 47◦57’N, 12◦46’E (Figure 4.1 and 4.2).
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4.2.2 Ground validation measurements

4.2.2.1 Configuration of ground sampling locations

Ground validation measurements were performed close to the time of the HyMap overflights to
test the absolute retrieval performance of the inversion algorithm. For a comprehensive testing,
dry and wet biomass and leaf area index were sampled at various locations in the area and, in
order to facilitate a direct comparison between the measured canopy characteristics and their
spectral signatures, field spectral measurements were performed exactly at the same locations.
The measurements were carried out at 3 fields that during the first flight campaign varied either
in land use or phenological stage, and were coded MEA1, MEA2, and PAS (Figure 4.2).

MEA1 and MEA2 are both intensively managed meadows, with the difference that at the
time of the first HyMap campaign (from now refered to as HYM1; for the second campaign the
abbreviation HYM2 will be used) MEA1 had a dense vegetation cover whereas MEA2 had been
recently cut (Figure 4.3). A look at the pictures reveals that species composition is dominated
by perennial ryegrass (Lolium perenne L.) whereas also different white clover types (Trifolium
repens, cv. Blanca L.) are present. While MEA1 merely consists of green, vital vegetation,
MEA2 is characterized by a certain amount of dry harvest residues, stubbles, and a small frac-
tion of bare soil.

Th epasture PAS is characterized by an inhomogeneous vegetation composition where at
short distance grazed patches with low vegetation height alternate with patches mainly contain-
ing stinging nettle (Urtica dioica L.). As shown in Figure 4.3, the fraction of species other than
grasses is relatively high compared to MEA1 and MEA2.

Each field was sampled on 5 to 7 locations in order to get the spatial distribution of the
biophysical and biochemical characteristics within the field (Figure 4.2). In MEA2 and PAS the
plots were positioned close to the corners and in the center of the field. As spectral properties
in MEA1 showed a clear trend, from high NIR reflectance values in the southwest part of the
field toward lower values in the northeast corner, a transect-like sampling strategy was applied
to this field, allowing to capture possible trends in canopy variables too.

The location of each plot was obtained by a duplicated measurement with a non-differential
handheld Garmin eTrex Vista GPS (Garmin International Inc., Olathe, KS). The accuracy of
a single measurement, expressed in RMSE, is according to the instrument specifications less
than 15 m in the horizontal plane. Although duplicating the measurements increases accuracy,
it should be noticed that location errors, still persist and in several cases span more than one
pixel.

On each plot location, an area of 1x1 m2 was subject to a detailed examination, including
measurements of leaf area index, wet and dry biomass, and canopy height. Canopy height was
measured at 25 locations within the plot area, taking the height of the highest shoot at each
point.

4.2.2.2 Leaf area index

Indirect sampling Indirect sampling was performed with the LAI-2000 Plant Canopy Analyzer
instrument (LICOR, 2000). This instrument determines the gap fraction based on the ratio of
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Figure 4.2: Location of selected test fields and plots used for canopy characterization. The background shows
a subset of the WAGING07 HyMap flightline recorded at June 30, 2003 (Red = band 29 (849 nm); green =
band 15 (646 nm); blue = band 9 (555 nm).

(a) MEA1 (b) MEA2 (c) PAS

Figure 4.3: The three different types of grassland sampled during the first HyMap data campaign [HYM1].
MEA1 is an intensively used meadow in full development, characterized by a high vegetation height (a), MEA2
a recently cut intensively used meadow, characterized by low vegetation height, a relatively high content of
senescent material and a small amount of soil fraction (b), and PAS, an intensively used pasture, characterized
by a low, dense vegetation cover and a high fraction of vegetation species other than grasses (c).

diffuse irradiance at 490 nm measured above and below the canopy (Weiss et al., 2004). Radiance
is captured by an optical fish-eye lens with a zenith cutoff angle of 74 degrees and is divided
into 5 concentric detector rings each of them representing a different view zenith range. Since
measurements in every ring are integrated over all azimuth directions, no information on the
spatial distribution or the clumpiness of the leaves is available (Baret et al., submitted). The
measurement principle, requiring upwards looking measurements from the bottom of the canopy,
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in combination with the thickness of the measurement unit of approximately 5 cm, makes it
difficult to characterize very low vegetation canopies.

Strictly speaking, not leaf area index but plant area index, or crop area index, is measured
with the LAI-2000, since the instrument is not able to separate between radiance absorbed by
leaves or by other phyto-elements (Broge and Mortensen, 2002). This may lead to overestimated
LAI values in canopies with high amounts of stems, ears, and senescent leaves. Moreover, the
model used for the calculation of the gap fraction considers the leaves as complete absorbers,
allowing no transmittance or reflectance. Therefore, measurements should be taken at conditions
of diffuse irradiance, i.e. at homogeneously covered skies or during sunrise/sunset, in order to
reduce specular leaf reflectance and the stronger model violations thus involved. Nevertheless,
despite some generalizations, the LAI-2000 usually provides results that for green crops are in
good agreement with direct field observations (White et al., 2000).

To avoid man-induced disturbances within the field-of-view, a view cap of 180 azimuth was
used to cover the part of the hemisphere oriented toward the person performing the measurement.
One measurement consisted of 1 reading above the canopy layer followed by 5 readings at the
bottom. This was repeated 25 times for one plot, following a regular grid sampling of 5 samples in
both X and Y directions. Average LAI and standard deviation were retrieved from the ensemble
of 25 measurements and based on all concentric rings. The use of all rings was preferred to a
calculation based on ring 1-4 or on ring 4 alone, like recommended by (Weiss et al., 2004), as the
latter provided values exceeding 8.5, a value that according to literature is somewhat unrealistic
for grasslands.

Direct sampling Direct measurements of leaf area were performed in order to proof the con-
sistency of the LAI-2000 measurements in situations where the instrument could not be placed
well below the canopy, i.e., in the case of recently cut meadows and grazed pastures.

The leaf area measurements were performed on exactly the same plot locations where LAI-
2000 measurements had been carried out before. First of all, the complete 1×1 m2 was cut
at ground level and directly weighted with the aim of establishing the fresh wet above ground
biomass (Section 4.2.2.3).

For practical reasons it was impossible to scan the area of the complete harvested square
meter. Therefore, it was decided to determine the leaf area of some subsamples and to extrap-
olate the values thus obtained by using an empirical regression between fresh biomass and leaf
area. This was done in the following way (Figure 4.4): i) 3 to 5 random subsamples were taken
from the total available amount of biomass per plot and their fresh weights established. ii) Each
subsample was spread out on a A3-sized paper in such a way that no overlap existed between
adjacent leaves, after which the sheet was photographed from nadir with a digital camera (Figure
4.4a). iii) After correcting for image distortion, the digital image was subdivided into a plant
material and a background class using the ENVI (ITT-VIS, Boulder, Colorado) unsupervised
K-means classifier (Figure 4.4b). The number of pixels falling in the plant material class were
related to the total area of the A3 sheet in order to get plant cover fraction. The procedure was
repeated for the plots of MEA1 during the HYM1, and all the plots of the HYM2 campaign.
This amounted to a total of 53 data pairs of wet biomass and leaf surface which were plotted in
order to obtain a linear regression function (Figure 4.4c):

Leaf area [cm2] = 34.6 · wet biomass[g] + 103.4 (4.1)
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leaf area = 34.59*biomass  + 103.4
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Figure 4.4: Procedure followed for destructive sampling of LAI: a subsample is taken from the total collected
amount of biomass, laid out on an A3 paper sheet, photographed, and corrected for distortions (a). The image
is classified in order to establish the leaf surface of the subsample (red fraction in b). The paired combinations
of wet biomass and leaf surface are plotted to create a predictive regression function between the two variables
(c) (n=53)

.

The plotted regression function, has a R2 of 0.77 and a standard deviation of 170.9 cm2, which
for an average sample weight of 10 g gives a relative standard error 38%. The established
regression equation was used to calculate LAI from the fresh above ground biomass collected at
each sampling plot of 1×1 m2. Notice, that for the composition of this equation no distinction
is made between grasses and other vegetation species, or between green and senescent plant
material, an assumption that is however in line with the LAI-2000 measurements.

4.2.2.3 Leaf dry matter and water content

The difference between fresh and dry biomass weight allows for the calculation of leaf water
content (Cw) expressed as the equivalent water thickness (EWT ; g · cm−2 or cm). EWT or Cw
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corresponds to a hypothetical thickness of a single layer of water averaged over the whole leaf
area and is calculated by (Ceccato et al., 2001; Danson et al., 1992):

Cw =
FW −DW

A
, [g · cm−2 or cm] (4.2)

where FW [g] stands for leaf fresh weight, DW [g] for leaf dry weight, and A [cm2] for the leaf
surface. In a similar way, the leaf dry matter content (Cdm) or specific leaf weight (SLW ) is
calculated:

Cdm =
DW

A
, [g · cm−2] (4.3)

Leaf fresh weight (FW ) was determined by harvesting the total above ground biomass of the
square meter used for the characterization of spectral properties and leaf area. Leaf dry weight
(DW ) was determined after oven-drying the samples at 70◦ C for 36 hours. Cw and Cdm were
calculated by dividing the total amount of water (= FW -DW ) and dry weight by the measured
LAI. This was done for both the indirect and direct estimations of LAI.

4.2.2.4 Comparing results obtained with direct and indirect LAI sampling

The results of the canopy variables that were measured for each validation plot during both
campaigns can be found in Appendix E while the characteristics per field are summarized in
Table 4.1. The latter shows that there is significant variation in LAI and canopy height within
and between the different fields. Within-field variation is highest for the pasture, thus properly
reflecting the pattern of alternating grazed and ungrazed patches. Intrafield variability is lowest
for MEA2, like one would also expect for a recently cut meadow.

Figure 4.5 plots the LAI values measured in the direct and indirect way. Although values
generally agree, some significant deviations can be observed, particularly for PAS (left). An
interesting trend appears when the difference between the two measurements is divided by the
LAI-2000 measurement (right): the relative difference shown in this way reveals that divergence
between direct and indirect measurement is particularly large at low LAI-values. These values
mainly correspond to the recently cut meadows and hence to low canopy heights.

The discrepancy between directly and indirectly sampled LAI at lower vegetation heights is
also reflected in the calculated Cdm and Cw values (Figure 4.6). Cdm and Cw coincide quite
well for fields where the LAI values calculated in both ways generally agree. In cases where
LAI did not agree well (i.e., MEA2 and, to a lesser extent, PAS) Cdm and Cw values based on
LAI-2000 measurements significantly deviate from average values and in some cases even exceed
the ranges one would expect based on the values known from literature (Cfr. Table 3.1) with
Cdm (Cw) values up to 0.0168 (0.0764) [g · cm−2] observed at MEA1 during the first campaign.
This suggests that LAI-2000 measurements underestimate LAI of low canopies. For the sake
of comparison, the average vegetation height of each field was added to the charts, showing a
strong negative correlation between the vegetation height and the discrepancy of both methods
used to calculate Cdm and Cw.

Another interesting aspect that can be distinguished from Figure 4.6 is that in general Cw
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Table 4.1: Field level results of grassland canopy measurements. In brackets the standard errors.

Unit MEA1 MEA2 PAS

HYM1

LAI-2000 m2/m2 5.04 (1.26) 0.76 (0.17) 4.10 (1.90)

LAI empirical m2/m2 4.23 (1.50) 1.92 (0.22) 5.71 (1.57)

Cdm LAI-2000 g · cm−2 0.0065 (0.0008) 0.0141 (0.0026) 0.0103 (0.0029)

Cdm empirical g · cm−2 0.0079 (0.0012) 0.0055 (0.0008) 0.0066 (0.0012)

Cw LAI-2000 g · cm−2 0.0208 (0.0024) 0.0606 (0.0117) 0.0438 (0.0161)

Cw empirical g · cm−2 0.0252 (0.0015) 0.0233 (0.0007) 0.0273 (0.0012)

Canopy height cm 33.8 (13.9) 8.3 (1.4) 12.6 (4.4)

HYM2

LAI-2000 m2/m2 2.37 (0.44) 1.01 (0.69) 4.90 (2.69)

LAI empirical m2/m2 1.33 (0.44) 1.20 (0.39) 3.28 (1.38)

Cdm LAI-2000 g · cm−2 0.0053 (0.0012) 0.0166 (0.0078) 0.0076 (0.0054)

Cdm empirical g · cm−2 0.0097 (0.0022) 0.0115 (0.0011) 0.0080 (0.0019)

Cw LAI-2000 g · cm−2 0.0130 (0.0046) 0.0295 (0.0130) 0.0204 (0.0091)

Cw empirical g · cm−2 0.0225 (0.0023) 0.0207 (0.0012) 0.0244 (0.0019)

Canopy height cm 15.5 (3.2) 6.5 (1.1) 18.3 (11.3)

(Cdm) is lower (higher) during the second campaign. This reflects the lower relative water
content measured during the second campaign (Appendix E) and matches well to the general
drought stress encountered during this excessively hot summer.

The canopy observations revealed some clear differences concerning the variation within
and between the fields. But also differences between the applied measurement techniques were
observed. Since both techniques underly some assumptions and uncertainties, it can not be
concluded which one is more accurate, although we do have some indications that LAI-2000
underestimates foliage area for lower canopies. However, no distinction was made between dif-
ferent species or between leaves and other plant materials such as leaves and senescent material.
Especially last component has a relatively high presence in MEA2 (Cfr. Figure 4.3), which may
have lead to an overestimation of green LAI. Therefore, initially, both measurements will be
included in the validation of the radiative transfer model inversions.

4.2.2.5 Field spectrometer measurements

Spectral properties of each single plot were measured exactly on the location where subsequently
the measurements for canopy characterization would take place. This enabled a direct compari-
son between the structural and chemical composition of the plots and their spectral properties.

Spectro-radiometric measurements were taken using a portable Fieldspec PRO FR spectrom-
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Figure 4.5: Comparison of LAI obtained by LAI-2000 and destructive sampling during HYM1 and HYM2
campaigns. At the left the absolute values are shown, at the right the relative difference between the two
measurements, which is the difference divided by the LAI-2000 measurement. Red pluses = HYM1 MEA1, blue
asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow triangles = HYM2 MEA1, brown squares =
HYM2 MEA2, dark green crosses = HYM2 PAS. Error bars indicate the standard deviation associated to the
measurements, the numbers indicate the plot numbers.
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Figure 4.6: Cdm and Cw based on directly (emprically) and indirectly (LAI-2000) measured LAI

eter (Analytical Spectral Devices, Inc.). This instrument measures radiance in the solar-reflective
domain at a sampling interval between 1,4 nm and 2 nm, and with a spectral resolution between
3 and 10 nm. In total 10 measurements were taken of each plot. This was done without using
any fore optic, resulting in a FOV of 25◦. The radiance measurements were directly converted
into reflectance by taking a SpectralonTM panel as a white reference. The single spectra were
corrected for the spectral properties of the applied Spectralon panel, deviations of the white ref-
erence off the 100 % reflectance line, and the spectral jump between the VNIR and the SWIR1
detector. The latter was done using an additive correction and taking the SWIR1 detector as a
reference (Dorigo et al., 2006). Subsequently, average reflectance, standard deviation, and mini-
mum/maximum reflectance were calculated. To enable a direct comparison of RTM results with
the HyMap imaging spectrometer data, the field spectra were resampled to match the spectral
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Table 4.2: Technical specifications of the HyMap sensor (Cocks et al., 1998)

Scanner principle Whiskbroom

Field of view (FOV) 61.3◦

Instantaneous field of view (IFOV) 2.5 mrad along track

2.0 mrad across track

Pixels per scan line 512

Ground resolution 3 - 10 m

Number of bands 126 - 128

Spectral coverage 400 - 2500 nm

Full Width Half Maximum (FWHM) 15 - 20 nm

Spectral sampling interval 13 - 17 nm

Radiometric Resolution 16 bit

configuration of this sensor during the HyEurope 2003 campaign, including band positions and
spectral response curves (Appendix D). This was done likewise for the characteristics of the
sensors discussed in Section 4.3.4.2 (Table 4.7).

Due to technical spectrometer problems, not all measurements of the first HyMap campaign
(HYM1) could be used for further evaluation. Eventually, all spectral measurements of MEA1
could be used, plot 5 of MEA2, and plot 2 and 3 of PAS. However, to get a more comprehen-
sive dataset, all measurements performed at ground level during the second campaign that year
(HYM2) were included as well, leading to a total set of 27 sampling plots for which both spectral
field measurements and canopy biophysical/-chemical properties were available.

4.2.3 HyMap imaging spectrometer measurements

4.2.3.1 Sensor characteristics

The HyMap (“Hyperspectral Mapper”) sensor is an airborne imaging spectrometer that provides
almost contiguous spectral coverage throughout the solar-reflective domain (Cocks et al., 1998).
Its technical details are summarized in Table 4.2. In total, it provides 128 wavebands over the
range from 400 - 2480 nm with a spectral resolution of 13 - 17 nm. Signal to noise ratio is quoted
at 500:1 outside the water vapor bands and its band configuration is within 1/10th of a pixel.
The instrument measures reflected radiance at a field of view of 61.3◦ divided over 512 pixels
per scan line. For the recommended spatial resolution of 5 m (Cocks et al., 1998), this leads to
a swath width of approximately 2.3 km. The radiance that is captured by a rotating mirror is
divided over 4 different detectors, each of them covering 32 bands. During the HyEurope 2003
campaign, the sensor had a slightly different setup compared to the original one with a reduced
number of 126 bands. The exact setup of that year is found in Appendix D and from now on
will be entitled HyMap 2003.
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Table 4.3: Observation and illumination details of the 3 HyMap flight lines used in this study and recorded at
June 30, 2003. Relative azimuth is the heading ± 90◦

Flight line Time (UTC) Heading [◦] Solar azimuth [◦] Relative azimuth [◦] Solar zenith [◦]

WAGING07 08:52 180.04 118.96 28.92/151.08 37.43

WAGING13 09:44 89.98 136.2 43.78/136.22 30.57

WAGING14 09:52 269.86 139.79 40.07/139.93 29.56

4.2.3.2 Flight configuration

HyMap data with a spatial resolution of 5 m at nadir were acquired by the German Aerospace
Center (DLR) on June 30, 2003. Even though the complete Waging-Taching catchment was
covered, only 3 flight lines were selected for further analysis (Table 4.3). These three flight
lines were positioned in such a way that the field reference sites were viewed from 3 different
view directions, thus enabling to study the effect of varying view/sun geometries on retrieval
performances (Figure 4.7).

4.2.3.3 Geometric correction

Remote sensing data from airborne sensors are subject to large distortions due to variations in
the flightpath (3-dimensional position) and in attitude (roll, pitch, yaw) of the aircraft. Since
georectification techniques using polynomial transformations based on ground control points
(GCPs) are not able to match sufficiently well these complex movements, a parametric approach
is required that performs a pixel-by-pixel transformation and takes into account the exact po-
sition and attitude of the aircraft. The latter are usually available from Global Positioning
Systems (GPS) and Inertial Measurement Units (IMU) aboard the plane. In addition, the
HyMap scanner, which is mounted on a stabilized platform, contains an integrated IMU which,
independently from the aircraft IMU system, records the exact sensor attitude during the flight.

The software package PARGE (PARametric GEocoding) (Schlaepfer and Richter, 2002) was
used to orthorectify the data. Apart from navigation and sensor movements, PARGE is also able
to correct for distortions due to topographic effects such as inclination, exposition, and distance
of the pixel to the aircraft. Such correction is based on a digital elevation model (DEM). For the
current study, a DEM with a resolution of 5 m was used, based on the digitized contour lines of
the German Land Register Map (Deutsche Flurkarte) 1:5000 which were made available through
the Bavarian Topographic Service2 and have a height accuracy of approximately 1 m. Even if
the DEM does not have the highest possible accuracy (which can be obtained for example by
laser altimetry), this does not constitute a big problem, given the nearly flat topography at the
location of the study site.

Geometric correction implies a resampling of the original data in order to match the new
position. It was decided to employ the nearest neighbor resampling algorithm implemented in
PARGE, in order to preserve the originally measured radiance values.

2Landesverband für Vermessung und Geoinformation Bayern
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4.2. Study site and data

Figure 4.7: Georectified false color composite (red = band 29 (859 nm), green = band 17 (677 nm), blue =
band 9 (555 nm)) of the flightlines WAGING07, WAGING13, and WAGING14, recorded at June 30, 2003.

The accuracy of the geometric correction was tested and optimized by including an average
number of 20-30 GCPs per image taken from the German Topographical Map 1:25000 (TK251).
GCPs were iteratively attributed and omitted until for each pixel a RMSE of less than than 1
pixel in both x- and y- direction was obtained. Finally, for the small subset of intersecting flight
lines at the study site, a manual image-to-image matching was performed. The image-to-image
accuracy is demonstrated by the examples in Figure 4.8 and is about 1 pixel (5 meters) in x-
and y-direction.

In addition to the georectified data, PARGE provides a scan angle file which includes infor-
mation on view zenith and azimuth angle of every pixel in the scene. This important information
is required for accurately assessing view/sun geometry during the RTM inversion process.
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WAGING07 WAGING13 WAGING14

Figure 4.8: Comparing three georectified and image matched subsets of the flightlines recorded at July 30th, 2003:
(Red = band 29 (849 nm), Green = band 15 (646 nm), Blue = band 9 (555 nm)). The shelter contained within the
green circle shows a minor displacement from one image to another which, apart from co-registration errors, also results
from changing view zenith and azimuth angles

4.2.5.4 Calibration and atmospheric correction

The data, that is recorded in Digital Numbers (DN) is first transformed into radiance data. This was
done by the Integrated Spectronics Pty Ltd, the tenderer of the HyMap sensor, who corrected for dark
current and electronic offsets. The required calibration coefficients were acquired at pre-flight laboratory
measurements for sensor characterization and during the data takes performing onboard dark current
measurements. A planned vicarious calibration using selected bright homogeneous targets within the
scene, which is commonly performed for airborne sensors in order to quantify radiometric shifts between
laboratory and operational conditions, could not be performed due to a malfunctioning field spectrometer
??.

The atmosphere has a large influence on the solar radiation that is received by the sensor (Section 2.1.3)
An atmospheric correction has to be performed in order to separate the signal originating from the
actual pixel from that of neighboring pixels and atmosphere and to obtain the hemispherical directional
reflectance factor (HDRF) at the top-of-canopy that is required for the RTM inversion.

The data was corrected for atmospheric influences using the parametric model ATCOR4 (Richter and
Schlaepfer, 2002; Richter, 2007a). This software package is based on the MODTRAN-4 atmospheric radia-
tive transfer code (Berk et al., 2003) and concurrently corrects for radiance differences in radiance caused
by topographic effects. For the latter purpose, the same DEM was used that already was applied for the
geometric correction (Section 4.2.5.3). Atmospheric correction was performed using a rural aerosol type
while the water vapor column was automatically estimated from the bands in the water vapor absorption
regions around 940 and 1130 nm and identified 2 cm. The visibility was calculated by comparing dark
water pixels of Lake Waging-Taching with reference spectra in the ATCOR spectral data base and finally
for all flight lines fixed at 23 km.

Figure 4.9 compares average reflectance of MEA1, MEA2 and PAS for the atmospherically corrected
flightline waging07 with the average spectra of all ASD field spectrometer measurements in the respec-
tive field. Despite the absence of a vicarious calibration, field spectrometer an HyMap data are in very
good agreement for MEA1 and PAS, while there is some discrepancy for MEA2. In general, HyMap re-
flectance is somewhat higher than reflectance measured with the field spectrometer. Nevertheless, all field
spectrometer measurements fall within the range between minimum and maximum reflectance identified
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4.2.3.4 Calibration and atmospheric correction

The data, which is recorded in Digital Numbers (DN), was first transformed into radiance data
by Integrated Spectronics Pty Ltd, the tenderer of the HyMap sensor, who corrected for dark
current and electronic offsets. The required calibration coefficients were acquired at pre-flight
laboratory measurements for sensor characterization and by onboard dark current measure-
ments. A planned vicarious calibration using selected bright homogeneous targets within the
scene, which is commonly performed for airborne sensors in order to quantify radiometric shifts
between laboratory and operational conditions, could not be performed due to a malfunctioning
field spectrometer (Section 4.2.2.5).

The atmosphere has a large influence on the solar radiation that is received by the sensor
(Section 2.1.3) Atmospheric correction has to be performed in order to separate the signal orig-
inating from the actual pixel from that of neighboring pixels and the atmosphere and to obtain
the hemispherical directional reflectance factor (HDRF) at the top-of-canopy that is required
for the RTM inversion.

The data was corrected for atmospheric influences using the parametric model ATCOR4
(Richter and Schlaepfer, 2002; Richter, 2007a). This software package is based on the MOD-
TRAN4 atmospheric radiative transfer code (Berk et al., 2003) and concurrently corrects for
radiance differences caused by topographic effects. For the latter purpose, the same DEM was
adopted as for the geometric correction (Section 4.2.3.3). Atmospheric correction was performed
using a rural aerosol type while the water vapor column was automatically estimated from the
bands in the water vapor absorption regions around 940 and 1130 nm, and identified 2 cm. The
visibility was calculated by comparing dark water pixels of Lake Waging-Taching with reference
spectra in the ATCOR spectral data base and finally for all flight lines fixed at 23 km.

Figure 4.9 compares average reflectance of MEA1, MEA2 and PAS for the atmospheri-
cally corrected flightline WAGING07 with the average spectra of all ASD field spectrometer
measurements in the respective field. Despite the absence of a vicarious calibration, field spec-
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Figure 4.9: Comparison of average field spectrometer (red curves) and atmospherically corrected HyMap (black
curves) reflectance data for the 3 test fields. The HyMap spectra reflect the average field reflectance taken
from flightline WAGING07. Error bars indicate one standard deviation, the dashed black curves the minimum
and maximum HyMap reflectance measured within the respective field.

trometer and HyMap data agree very well for MEA1 and PAS, while there is some discrepancy
for MEA2. In general, HyMap reflectance is somewhat higher than reflectance measured with
the field spectrometer. Nevertheless, all field spectrometer measurements fall within the range
between minimum and maximum reflectance identified by the HyMap sensor for each field. It
has to be kept in mind, however, that the spectral characterization using the ASD data is based
on 3 to 7 point measurements, whereas the spectral characterization using the HyMap data is
based on several hundreds of pixels for each field.

From the initial set of 126 bands, the ones falling within the known regions of enhanced
atmospheric (water) absorption were excluded from further thematic processing, leading to final
set of 95 sound bands (Table 4.4).

4.3 Exploring algorithm potential and constraints using field spec-
trometer data

Even if the theoretical framework of the approach proposed in the previous chapter seems justi-
fied, a thorough insight in the model and its components is required to draw any solid conclusions
and to recognize potential restraints and sources of uncertainty. In this respect, not only insight
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Table 4.4: HyMap bands that were excluded from thematic processing. In brackets the center wavelength in
nanometers

Spectral range [nm] Affected bands (nm)

< 470 1 (438), 2 (450), 3 (462)

1300-1530 60 (1313), 61 (1327), 62 (1340), 63 (1404), 64 (1419), 65 (1433), 65 (1447), 66 (1461),
67 (1475), 68 (1489), 69 (1503), 70 (1516)

1780-2100 92 (1783), 93 (1795), 94 (1807), 95 (1951), 96 (1970), 97 (1990), 98 (2009), 99 (2027),
100 (2045), 101 (2064), 102 (2082)

> 2400 121 (2405), 122 (2421), 123 (2437), 124 (2453), 125 (2468), 126 (2483)

into the contribution of each individual algorithm component is important, but also the ability of
the underlying PROSPECT+SAILh combination of reconstructing the measured field spectra,
and the distinctiveness of the spectral contribution of the individual measured canopy variables.

It seemed more appropriate to test the model performance on the field spectrometer data
than on the HyMap data, as the field spectral measurements were taken exactly at the locations
of biophysical and biochemical sampling. Thus, errors due to georeferencing or atmospheric in-
teraction with radiance could be excluded and a direct relationship could be established between
spectral signal and canopy variable of interest. In the next section, estimations will be based on
the HyMap flight lines, for which uncertainties, mainly resulting from scaling, orthorectification,
atmospheric correction, and the canopy variation found within a specific pixel, are considerably
higher compared to the previous case (Cfr. Figure 4.1). In contrast, the latter will allow to study
the influence of the spatial context of the pixel while the large number of available spectra in
each land cover class enables a more accurate description of the covariance between wavebands
and variables.

4.3.1 Spectral field characteristics

To get an idea of the spectral variation of the 27 field spectra used for this study (Section 4.2.2.5),
the average spectrum of each field was plotted in Figure 4.10. Although the spectral variation
within each field is not visible, some evident characteristics can be distinguished: the fields that
are characterized by relatively high LAI (i.e., HYM1 MEA1, HYM1 PAS, and HYM2 PAS,
Table 4.1) show high NIR reflectance and relatively low VIS and SWIR reflectance, the latter
due to high chlorophyll and water absorption, respectively. In contrast, fields characterized by
relatively low LAI (i.e., HYM1 MEA2, HYM2 MEA1, and HYM2 MEA2), show lower NIR
reflectance, while HYM2 MEA2 also clearly shows reduced chlorophyll (VIS) and water absorp-
tion (SWIR), resulting either from a higher soil signal or an increased amount of senescent plant
material and stubbles. It is noteworthy that for the latter 3 spectra, decreasing NIR reflectance
is consistent with the decreasing LAI values measured by destructive sampling (Table 4.1), a
trend that is consistent with expectations. This parallel between spectral reflectance and mea-
sured LAI cannot be observed for the LAI-2000 measurements. For this reason, and because
of the excessively high leaf water content previously noticed, evaluations in this Chapter are
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Figure 4.10: Average spectra of MEA1, MEA2, and PAS, measured during campaigns HYM1 and HYM2 with
an ASD Fieldspec PRO portable field spectrometer and resampled to the spectral configuration of HyMap in
2003. The black continuous line represents an average soil spectrum measured in the immediate vicinity of
the test fields

performed with canopy variables based on the destructively measured LAI. If done otherwise,
this is explicitly mentioned.

4.3.2 Comparing modeled with measured reflectance

Prerequisite for a successful radiative transfer model inversion is the ability of the RTM of cor-
rectly mimicking measured reflectance in the forward mode. Introducing the variables measured
at the validation fields in the RTM should provide canopy spectra that are within a plausible
range from the ones measured with the field spectrometer. If this is not the case, potential
difficulties in the model inversion can be discovered in advance.

Modeled and measured reflectance were compared for two of the most deviating spectra ob-
served during the two HyMap campaigns: plot 1 in MEA1 measured during the HYM1 campaign
(HYM1 MEA1 1) and plot 5 in MEA2 measured during the HYM2 campaign (HYM2 MEA2 5).
In order to compare modeled and measured reflectance, the measured values of Cw, Cdm, and
LAI (average and standard deviation; Appendix E) were used as input to forward PROSPECT
and SAILh modeling. The characterization of the variables not verified by ground validation
measurements were based on the SPECL classes to which the spectra were assigned by the
automatic land cover classification (See Section 4.3.4.5 and Table 4.9): bright vegetation for
HYM1 MEA1 1 and dark vegetation for HYM2 MEA2 5. The minimum and maximum values
and the sampling plan of each variable were similar to the ones used for the characterization of
the SPECL-based LUTs (Table 4.5).

Figure 4.11 shows that for the two previously mentioned spectra, modeled and measured re-
flectance are in good agreement and always fall within one standard deviation. Slightly larger rel-
ative deviations can be observed in the VIS for HYM1 MEA1 1 and in SWIR1 for HYM2 MEA2
5. A possible explanation for the former deviation could be the fact that average chlorophyll
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Table 4.5: Distribution of the input variables used for the simulation of the canopy spectra in Figure 4.11.
Average and standard deviation of Cw, Cdm, and LAI are based on field validation measurements (Ap-
pendix ), parametrization of the other variables is based on the sampling schemes used for the SPECL class
parametrization (Appendix B)

HYM1 MEA1 plot 1 HYM2 MEA2 plot 5

Variable Distribution Min. Max. µ σ Min. Max. µ σ

N [-] Gaussian 1 2.5 1.63 1. 1 3.5 2.0 1.0

Cab [µg · cm−2] Combal 20 100 - - 20 75 - -

Cw [g · cm−2] Gaussian 0.0100 0.0800 0.0227 0.0086 0.0150 0.060 0.0209 0.0080

Cdm [g · cm−2] Gaussian 0.0050 0.0250 0.0061 0.0023 0.0035 0.0150 0.0113 0.0040

Cbp [-] Gaussian 0 0 0 0 0 1.5 0 0.6

LAI [m2/m2] Gaussian 2 9 6.83 2.59 0.1 6.0 1.31 0.50

ALA [◦] Gaussian 30 70 57 20 25 70 57 20

HOT [-] Gaussian 0.001 0.3 0.2 0.2 0.05 0.2 0.2 0.2

BS [-] Gaussian 0.3 1.1 0.7 0.3 0.3 1.1 0.7 0.3

content of the simulated spectra (= 60 µg · cm−2) is lower than the actual one, although this
value is already higher than the values that Vohland and Jarmer (2007) reported for grassland.
A plausible explanation for the latter deviation could involve an inaccurate sampling of leaf
structure parameter N with values that are too low with respect to the substantial fraction of
dead harvest remainders in the observed canopy (Figure 4.3). Nevertheless, the presented mod-
eled reflectance represents the average of several thousands of spectra which, as demonstrated by
the ranges of variation, on a whole agree very well with measured reflectance. The results pre-
sented in Figure 4.11 therefore confirm the capability of the PROSPECT+SAILh combination
and the proposed SPECL class parametrization of appropriately modeling canopy reflectance
for the grasslands found in the area.

4.3.3 Correlation between canopy variables and wavebands

The degree to which a single variable can be estimated by radiative transfer model inversion
mainly depends on its influence on the overall canopy spectral signature. For this reason, a
correlation analysis was performed between the structural and biochemical parameters of in-
terest and the canopy reflectances measured in the field for each wavelength. This was done
separately for the green, healthy vegetation (represented by the spectra and variables mea-
sured in HYM1 MEA1, HYM1 PAS, and HYM2 PAS) and the partly stressed, cut meadows
(HYM1 MEA2, HYM2 MEA1, and HYM2 MEA2). Figure 4.12 shows the results for the first
case. The plot at the upper left reveals a high collinearity between Cw and LAI, an indication
that separating the spectral sensitivity to both variables could be problematic. The observed
collinearity originates from the almost constant water content in combination with the highly
variable LAI (Cfr. Appendix E). The latter is confirmed by the unnatural behavior of correla-
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Figure 4.11: Comparing modeled (black) with measured (red) average reflectance for two sampling locations
(HYM1 MEA1 plot 1 and HYM2 MEA2 plot 5). Error bars indicate 1 standard deviation of both measured
and modeled reflectance and the dashed black curves a range of 2 standard deviations from average modeled
reflectance. For the used input variables see Table 4.5.

tion between Cw and reflectance at wavelengths where water absorption is supposed zero (i.e.,
in the VIS). A second trend that can be observed from the figure is the complementary behavior
of Cdm to Cw and LAI. This behavior is inherent to the applied measurement technique where
an increase of leaf water content necessarily leads to an decrease of dry matter content and vice
versa.

The upper right graph in Figure 4.12 shows the correlation between wavelength and Cw,
Cdm, and LAI, based on RTM simulations with PROSPECT and SAILh. The correlation anal-
ysis is based on a total of 43,000 simulations for a green canopy and therefore represents a much
larger range of variation in the variables (ranges and parametrization are equal to the ones used
for the land cover class 4: bright vegetation). Although the large differences compared to the
correlation coefficients based on measured spectra are evident, some analogy to the latter can
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still be observed, like the complementary behavior of Cdm to LAI (and, to a smaller degree,
to Cw) and the moderate collinearity between Cw and LAI in the NIR. However, responses
for the simulated data seem more natural than for the measured ones. The zero correlation
between Cw and the VIS is a good example of this, even as the correlation coefficients close
to zero between Cdm and the wavelengths with high water absorption around 1400, 1900, and
2400 nm. The correlation between leaf chlorophyll content (Cab) and modeled reflectance has
been added for reasons of comparison (gray curve). It can be seen that for the modeled spectra,
spectral variations in the VIS can be almost exclusively explained by variations of Cab.

The graphs at the bottom of Figure 4.12 show the correlation coefficients when Cdm and Cw
are calculated at canopy level (Cdm×LAI and Cw×LAI, respectively). For the measured data,
the very high collinearity between the two leaf constituents and LAI is confirmed, whereas for
the modeled spectra, despite more pronounced collinearity, a significant degree of independent
variation continues to exist. Cab at canopy level persists to be primarily responsible for spectral
variations in the VIS.

The correlation diagrams presented in Figure 4.12 provide important insight into the set-
backs often involved in radiative transfer model inversion of canopy spectra, and the potential
gap between model and praxis. Based on the modeled results, all 3 canopy variables of interest
show distinctive spectral responses and could therefore be estimated from reflectance spectra
simulated with PROSPECT and SAILh. However, this distinctive character can only be partly
confirmed for the variables and reflectances measured in this study. Given the high collinearity
between the measured leaf constituents and LAI, a robust retrieval of the biochemicals from
the field spectra, either at leaf or canopy level, seems unfeasible for green, healthy vegetation,
regardless of the applied inversion algorithm or technique. LAI and Cab appear to be the key
variables at canopy level and should therefore be well retrievable from measured spectral re-
flectance.

At leaf level, the results for the drier, cut meadows vastly agree with the results found for
the green grasslands (Figure 4.12) whereas at the canopy level, collinearity between dry matter
and spectral reflectance is absent. However, despite the more distinctive character, retrieval of
Cdm will still remain problematic, since correlation between canopy reflectance and Cdm is low
and significantly less than between canopy reflectance and LAI.

4.3.4 Stepwise integration of algorithm components

Although the previous subsection stretched the theoretical constraints of RTM inversion for the
estimation of the leaf constituents Cdm and Cw, the inversion approach itself can still play a
decisive role in finding the optimal set of variables within the limits dictated by the spectral
response. Moreover, estimates of variables that do have significant influence on the measured
canopy reflectance, such as Cab or LAI, may very well depend on the chosen retrieval algorithm.

This subsection will study in detail the influence of the algorithm components introduced
in the previous Chapter. In consecutive order, the influence of land cover classification, spec-
tral covariance description, the introduction of priori estimates (with and without covariance
description), and the use of the predictive regression functions will be discussed. Starting point
of the new situation will always be the preceding stage. Until introducing spectral covariance,
the spectral cost function will be composed of a maximum likelihood estimator (Equation 2.10),
characterized by the average and standard deviation of the spectral measurements performed
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Figure 4.12: Coefficient of determination (R2) between reflectance and measured (left) and modeled (right)
Cw, Cdm, and LAI for vigorous green grassland, displayed both at leaf level (top) and at canopy level
(bottom). For measured reflectance, n=15, for modeled reflectance, n=43200

Figure 4.13: Coefficient of determination (R2) between canopy reflectance and measured Cw, Cdm, and LAI
for dry, cut meadows, expressed at leaf level (left) and at canopy level (right; n=12)
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at the specific location. For all information levels, soil reflectance, skylight fraction and obser-
vation/illumination properties are identical. Input soil reflectance is an average soil spectrum
measured close to the test site and was already presented in Figure 4.10. Atmospheric parame-
ters used to calculate the skylight fraction are conform the ones parametrized during atmospheric
correction of the HyMap scenes (Section 4.2.3.4), solar zenith (θs) is set to 30◦, and view zenith
(θv) is set to nadir (0◦).

Two commonly used descriptive measures of similarity are used to describe the goodness of
fit between measured and estimated variables. The relative root mean square error of the esti-
mates (rRMSEV̄ ), expressed as a percentage, is the root mean square error (RMSEV̄ ) divided
by the average of the measured variables µV,m and is given by:

rRMSEV̄ =
RMSEV̄
µV,m

× 100% (4.4)

Average accuracy as a percentage (AA%) forms the complement of the average absolute deviation
and is expressed by:

AA% =
1
n

∑n
i=1

(
Vi,m −

∣∣Vi,m − V̄i
∣∣)∑n

i=1 V̄i
× 100% (4.5)

where n is the number of observations, Vi,m the measured, and V̄i the estimated value of variable
V for observation i. Overall accuracy (OA) is in this study used to indicate the mean of the
average accuracies for Cw, Cdm, and LAI. To visualize observed trends in the estimates, most
results are also graphically presented. To facilitate visual comparison of the results throughout
the various steps, the plotted ranges in all steps are kept constant, which in some cases might
lead to high plot densities for which individual data points or error bars cannot be properly
distinguished.

4.3.4.1 Influence of land cover classification

The influence of land cover classification on retrieval performance is twofold: first of all, it helps
to restrain the range of possible canopy realizations, second, it allows for the construction of
predictive regression functions for the estimation of a priori values, optimized for each land
cover class. The first argument is discussed at this point, while the generation of class specific
predictive equations will be discussed in Section 4.3.4.5.

To study the effect of incorporating a land cover classification, RTM inversion of the measured
spectra is first performed with a single ”global” LUT which is able to describe every potential
canopy type found within the scene. The variable ranges used to construct this LUT are spanned
by the extreme values found in the single LUTs in Appendix B and have been summarized in
Table 4.6. The LUT is conform with the variable ranges and distributions that Bacour et al.
(2006) used for the description of global canopy variation. The retrieval algorithm is conform the
approach described in Section 3.4 while minimization between variables is excluded and the cost
function used to minimize for radiometric distance is identical to the simple maximum likelihood
estimator given in Equation 2.10.
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Table 4.6: Distribution of the input variables and sampling plan used to construct a global LUT to match all
land cover types.

Variable Unit Distribution Minimum Maximum Mean σ # intervals

Leaf N Unitless Gaussian 1 4.5 1.5 1 3

Cab µg/cm2 Combal 1 100 (50) (50) 6

Cw g/cm2 Uniform 0.0050 0.0800 (0.0250) (0.0300) 4

Cdm g/cm2 Uniform 0.0020 0.020 (0.0075) (0.0075) 4

Cbp Unitless Gaussian 0 1.5 0.001 0.6 3

Canopy LAI m2/m2 Combal 0 9 (2.5) (3.5) 6

ALA ◦ Gaussian 20 85 57 20 5

HOT Unitless Gaussian 0.001 1 0.1 0.3 5

Soil BS Unitless Gaussian 0.3 1.3 0.8 0.3 3

Total # 388,800

Figure 4.14 plots the estimated variables for the inversion based on the global LUT described
above. Average RTM inversion results for Cw are in good agreement with the measured canopy
variables based on destructive LAI sampling, with an RMSE of 0.0050 g · cm−2 and an average
retrieval accuracy of 83.8%. Dry matter content is estimated less accurately, with an RMSE
of 0.0036 g · cm−2 and an average accuracy of 59.9%. For both variables, the uncertainties
attributed to the result (indicated by the error bars representing 1 standard deviation) are very
large, while for several observations relative standard errors (= σ/µ) even amount to more than
60%. Estimation of LAI in general shows poor performance, with an RMSE of 1.545 and average
accuracy of only 31.5%. LAI retrieval shows good agreement for the low values measured at
HYM2 MEA2, followed by a general overestimation up to values of around 4. Beyond 4.5, i.e.,
for the high values of HYM1 MEA1 and HYM2 PAS2, LAI is underestimated.

In the case where the spectra are first submitted to a SPECL classification (for classification
results see Table 4.9) and subsequently a class specific LUT (Appendix B) is used for inversion,
a moderate improvement can be observed for LAI and Cdm, while Cw estimations slightly
deteriorate (Figure 4.15). However, a considerable decrease of retrieval uncertainties can be
observed in particular for Cw and Cdm, which can be attributed to the reduced range of canopy
realizations covered by each LUT. The better defined solution is also an indicator of improved
stability of the retrieval. Nonetheless, estimation accuracy of both LAI (AA = 59.1%) and Cw
(AA = 70.1%) are still insufficient, calling for additional regularization.

4.3.4.2 Quantifying spectral covariance and the influence of sensor configuration

In the previous examples, only the variance σ2
i of the spectral measurements was used to ac-

count for radiometric uncertainties. The variance matrix is a special case of the covariance matrix
COVrad in Equation 3.9, where the diagonal elements describe the variance of each waveband
while the off-diagonal elements are all set to 0. Therefore, using variance does not compensate
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Figure 4.14: RTM inversion results for Cw, Cdm, and LAI applying the global LUT described in Table 4.6
and without using prior information. Colors and symbols correspond to the ones used in Figure 4.10: red
pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow triangles =
HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses = HYM2 PAS

Figure 4.15: RTM inversion results for Cw, Cdm, and LAI applying LUTs adjusted to SPECL classes,
and without using prior information. Red pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green
diamonds = HYM1 PAS, yellow triangles = HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses
= HYM2 PAS

for the correlation between wavebands or the distribution and number of bands in a specific
spectral region. Theoretically, introducing spectral covariance description would help to empha-
size spectral regions of low reflectance while suppressing others. In practice, for vigurous green
vegetation and using a full range sensor, this would imply an enhancement of spectral changes
taking place in the VIS (for example induced by changing chlorophyll content) while subduing
spectral variations in the highly reflective NIR.

To better study the effect of quantifying covariance in relation to the distribution and num-
ber of bands, RTM inversion was applied to different waveband combinations. For this purpose,
the original Fieldspec reflectance data was resampled to the spectral properties of five commonly
used, high spatial resolution sensors, differing either in the number of wavebands, or in the spec-
tral domain they cover (Table 4.7). Apart from the HyMap sensor already introduced before, the
sensor configurations included CHRIS/PROBA (hyperspectral, covering VNIR), Landsat ETM+
(multispectral, VNIR-SWIR), SPOT5 HRG (multispectral, VNIR-SWIR), and Quickbird (mul-
tispectral, VNIR). RTM inversion is applied to the different spectral configurations based on the
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SPECL land cover classification and for two different scenarios. In the first scenario, radiometric
uncertainty is expressed by the standard deviation of the measurements determined at each sin-
gle plot, and minimization is performed by the maximum likelihood estimator of Equation 2.10.
This case is similar to the approach described in the previous paragraph. In the second scenario,
spectral distance is calculated according to Equation 3.18 while calculation of the spectral co-
variance matrix (COVrad) for each land cover class is based on the different spectra attributed
to that particular class (Cfr. Table 4.9).

Table 4.8 lists the results of both minimization functions. Concerning the sensor configu-
ration, differences in retrieval performance between the various sensors are largest for Cw. As
expected, Quickbird, covering only the VNIR, performs very poorly, which can be directly as-
cribed to the absence of bands in the SWIR, the spectral range most affected by leaf water
absorption (Cfr. Figure 3.4). The CHRIS sensor, having a few wavebands at the onset of leaf
water absorption and a band in the prominent water absorption feature around 970 nm, per-
forms better, followed by the sensors having one or more bands in the highly affected SWIR.
In the case where only variance is considered, the superior performance of SPOT, having only
one band in the SWIR, in the retrieval of Cw may seem a little bit surprising. This is however
compensated by a low retrieval accuracy of LAI. As seen before, both variables show highly
collinear spectral behavior, which is expressed as complementing behavior in the retrieval of
both variables. Nevertheless, the presented results suggest that, notwithstanding the very lim-
ited distinctive spectral response of Cw demonstrated in the previous section, estimations of Cw
are still highly determined by adequate placement of wavebands in the spectral regions affected
by leaf water absorption. Concerning Cdm and LAI, differences between sensor configurations
are not as obvious as for leaf water content, although Quickbird performs somewhat less than
the other sensors in estimating LAI.

At first sight, the introduction of covariance between the spectral wavebands seems to in-
duce some odd effects on retrieval performances. On average, accuracy reduces when spectral
covariance is introduced. This is what is expected for sensors having only a few wavebands in
different characteristic spectral regions, since correlation between these bands is only little, and
introducing covariance based on a class with only a few members may even increase measurement
errors and hence the inaccuracy of the end product. Such a decrease of accuracy can be observed
for LAI estimations of Landsat, SPOT, and Quickbird. On the other hand, introducing class
covariance to the hyperspectral observations increases to some degree retrieval accuracy of LAI,
while predictions of Cdm slightly worsen.

The explanation for the somewhat reduced retrieval accuracy when covariance description is
introduced, has to be sought in the ensemble of variables that is accounted for. This is illustrated
by Figure 4.16 which shows the estimations of Cab, LAI, and ALA, with, and without account-
ing for covariance between wavebands. The figure reveals that a shift in the estimated variables
also takes place for the variables that are not validated in this study. Introducing the covariance
description sort of redistributes the weights of the single wavebands in the cost function. While
some variables take advantage of this, for others retrieval accuracy is reduced. The latter is
exemplified by the loss of accuracy for LAI estimates from multi-spectral band configurations,
probably at the benefit of Cab estimates which spectrally dominate the VIS. A quite unnatural
behavior is observed for many of the estimates of Cab, which seem to be ”trapped” around the
upper boundary of variation permitted by the LUT, and which can be explained by the mis-
match between measured and modeled reflectance in the VIS (Figure 4.11). However, it has to
be beared in mind that in this example quantification of covariance has been based only on a very
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Table 4.7: Spectral configuration of HyMap 2003, CHRIS Mode5, Landsat ETM, Quickbird, and SPOT HRG.
For further details regarding CHRIS/PROBA see Chapter 5 and Appendix F

Sensor Spectral domain Number of bands Band position (Band width [nm])

HyMap 2003 VNIR-SWIR 126 Contiguous at 13 - 17 nm distance (11-22)

CHRIS Mode 5 VNIR 37 Contiguous at 6 - 30 nm distance (6-47)

Landsat 7 ETM VNIR-SWIR 6 478 (71), 570 (80), 662 (61), 874 (126), 1648 (200),
2224 (280)

Quickbird VNIR 4 485 (70), 560 (80), 660 (60), 830 (140)

SPOT HRG VNIR-SWIR 4 545 (90), 645 (70), 835 (110), 1665 (170)

Table 4.8: Retrieval performance for different sensor configurations using two different radiometric cost func-
tions. SE stands for the case where the standard error of the plot measurements is used to describe radiometric
uncertainty, COV for the case where covariance between different class members is used. The last column
shows the overall average accuracy for all variables together. In bold the best result per column.

Sensor Cw Cdm LAI

RMSE [g ·
cm−2]

AA [%] RMSE [g ·
cm−2]

AA [%] RMSE
[m2/m2]

AA [%] OA [%]

HyMap 2003 SE 0.0082 70.4 0.0025 77.1 1.478 59.1 68.9

COV 0.0104 62.1 0.0032 64.0 1.427 63.0 63.0

CHRIS Mode 5 SE 0.0121 51.5 0.0036 58.2 1.335 54.8 56.2

COV 0.0120 55.4 0.0047 43.8 1.405 59.3 52.8

Landsat 7 ETM SE 0.0072 74.7 0.0027 70.9 1.529 57.6 67.7

COV 0.0074 73.6 0.0029 74.1 1.440 45.3 64.3

SPOT 5 HRG SE 0.0060 78.3 0.0032 62.9 1.391 49.6 63.6

COV 0.0100 62.0 0.0022 76.0 1.399 39.9 59.3

Quickbird SE 0.0183 23.9 0.0043 50.2 1.545 57.3 43.8

COV 0.0181 24.5 0.0026 71.2 1.678 44.7 46.8

limited number of spectra and that results may deviate when a more extensive quantification
takes place. Moreover, systematic errors between radiative transfer model and measurement
may have occurred which are not accounted for by the covariance matrices. Nevertheless, the
still unsatisfying accuracy of the estimations show the need for additional regularization, which
could be provided by a priori information on the variables.
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Figure 4.16: Effect of accounting for spectral covariance on estimates of Cab, LAI and ALA. The effect
is shown for 5 different sensor configurations. The x-axis represents the estimations when only measurement
variance is used, the y-axis when covariance based on spectra within the land cover classes is introduced.

4.3.4.3 Introducing prior information on variables

The effect of integrating a priori information on the variables is studied only for the HyMap 2003
configuration, while radiometric minimization includes a SPECL classification and the spectral
covariance description presented in the previous section. Analogous to the process described
in Section 3.4, a priori information is explored in a successive step. Initially, the cost function
χ2, applied for the minimization between variables in the LUT (V j

LUT ) and a priori estimates
(V j
prior), is a maximum likelihood estimator:

χ =
nvar∑
j=1

(V j
prior − V j

LUT )2

σ2
V,j

(4.6)

with σ2
V,j being the uncertainty associated to the prior estimate of variable j.

In the following example, a priori information and its range of uncertainty is composed
by the in situ canopy measurements based on destructive LAI sampling, and therefore very
well-defined and close to the actual values. The importance of including prior information is
reflected by the results for Cw and Cdm in Figure 4.17 (top), which have a significantly higher
accuracy compared to the case where only radiometric information is used, with RMS errors
being approximately only half of the ones retrieved in the pure radiometric case (rRMSE =
14.8 and 15.1%) and an average accuracy of 88.1 and 88.3%, respectively. In contrast, overall
LAI retrieval does not improve (AA = 70.8% rRMSE = 51.0%), which can be explained by
the high level of measurement uncertainty σ2

V,LAI associated to samples having high leaf area
index values and which therefore receive relatively little weight in the cost function. This is
better illustrated by the plots at the bottom of Figure 4.17 where the LAI-values measured
with LAI-2000 are used as a basis for the prior estimates. In this case, the high uncertainties
associated to the measurements of Cw and Cdm and the low range of uncertainty attributed to
the LAI measurements push the solution in favor of the latter.
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Figure 4.17: RTM inversion results for Cw, Cdm, and LAI using LUTs adjusted to SPECL classes and prior
information based on field measurements. The top row shows the results when canopy variables based on direct
LAI measurements are used, the bottom row shows the results when variables based LAI-2000 measurements
are used. Red pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow
triangles = HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses = HYM2 PAS

4.3.4.4 Introducing covariance between the variables

The demonstrated strong dependency of overall retrieval results on the prior estimates of single
variables reveal the importance of well defined prior estimates of all variables, and properly
weighting between them. Weighting between the variables can be obtained by introducing
their covariance (Equation 3.4.2.3). A sufficient number of data points from similar canopy
realizations is required for an explicit characterization of the covariance matrix. In the image
based inversion presented in the next section, this information can be retrieved from the prior
estimates of pixels falling within a specific land cover class, whereas in the spectrum based
approach presented here, it can be approximated by using the canopy measurements found
within a single SPECL class (Table 4.9). As can be seen in the table, only class 4 really contains
sufficient observations for a reliable description of the covariance. Figure 4.18 shows the results
when covariance description between the variables is retrieved from the canopy measurements
based on destructive LAI sampling. While results for Cw and Cdm become less accurate, there
is a prominent improvement in LAI retrievals, being most evident for plots with high LAI.
Introducing the covariance between the variables clearly induces a kind of ”balancing” between
the estimates of the different variables, a phenomenon that is also reflected by the similar levels
of average accuracy (and rRMSE) for Cw, Cdm, and LAI, amounting to 76.3, 78.2, and 81.7%
(29.6, 26.0, 22.0%), respectively. The example reveals the importance of taking into consideration
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Figure 4.18: RTM inversion results for Cw, Cdm, and LAI using LUTs adjusted to SPECL classes
and including prior information and covariance between the variables based on field measurements. Red
pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow triangles =
HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses = HYM2 PAS.

the covariance between variables when a concurrent retrieval of several variables is envisaged.

4.3.4.5 Integrating a priori estimates based on predictive regression functions

In practice, a priori information with the accuracy of the field measurements used in the previous
example is usually not available, and even if such information would be available, the example
showed that the eventual retrieval accuracy of each canopy variable is highly dependent on the
accuracy of the single sources of prior information. The challenge is therefore to define prior
information in such a way that each canopy variable in the RTM is represented and that estimates
are as accurate as possible. The calculation of prior estimates based on predictive regression
equations, like proposed in the previous chapter, is at least able to provide an estimate for
every variable, although its degree of uncertainty strongly depends on the ensemble of canopy,
observation, and illumination characteristics, which, in turn, determines the radiometric effect
of each variable. This is illustrated in Table 4.9 where the predictive equations of the variables
of interest are given for the current situation. For example, the predictive power of VIs in
estimating LAI (expressed by R2 and RMSE) decreases with increasing ”greenness” and density
of the canopy. A reverse trend can be observed for leaf water content and, to a smaller degree,
for leaf dry matter. The trend observed for Cdm is somewhat remarkable since the spectral
response of this leaf constituent is usually masked by leaf water in healthy vegetation. The
trends in predictability are partly reflected in Figure 4.19, showing more accurate LAI retrievals
for plots with low LAI values and slightly better estimates of Cw and Cdm for plots with high
LAI. The average retrieval accuracy (71.7, 73.2, 66.3% for Cw, Cdm, and LAI, respectively) is
only little less than in the case where prior information resulting from the field measurements
is directly included, especially in the case of Cw and Cdm (See previous section).

Introducing prior estimates based on regression functions brings only little improvement
compared to the case where only radiometric information from the reduced SPECL LUTs is
used (Cfr. Figure 4.15). However, although not validated, chlorophyll estimates seem to give far
more realistic values in the case where prior estimates are introduced for all variables, especially
for recently cut meadows with a relatively high amount of dead material and stubbles (Figure
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Table 4.9: Best predictive equations based on simulated spectra in different SPECL classes. For the acronyms of
the selected vegetation indices see: Appendix C. The last column shows the results of the SPECL classification.

SPECL class Variable Regression function R2 RMSE Spectra allocated to class

2 Cw [g/cm2] 0.028 + 0.425 ∗ LWV I1 0.66 0.0097 HYM2 MEA2: 1,3,5

dark Cdm [g/cm2] 0.011− 0.082 ∗ LWV I1 0.50 0.0029

vegetation LAI [m2/m2] 0.843 ∗ 14.8327RDV I − 1.076 0.76 0.807

Cab [µg/cm2] 16.961 ∗ 127.750REIP Guyot − 498.107 0.78 12.6

3 Cw [g/cm2] 0.016 + 0.202 ∗ LWV I2 0.67 0.0118 HYM1 MEA2: 5

average Cdm [g/cm2] 0.014− 0.113 ∗ LWV I1 0.57 0.0039 HYM2 MEA1: 1,3,4

vegetation LAI [m2/m2] 0.024 ∗ 13.069RDV I − 1.322 0.76 0.935 HYM2 PAS: 2,5

Cab [µg/cm2] 17.843 ∗ 140.726REIP Guyot − 564.621 0.86 11.7

4 Cw [g/cm2] −0.006 + 0.323 ∗ LWV I2 0.87 0.0101 HYM1 MEA1: 1-7;

bright Cdm [g/cm2] 0.016− 0.111 ∗ LWV I1 0.58 0.0047 HYM1 PAS: 1-3

vegetation LAI [m2/m2] 1.279 ∗ 8.922RDV I − 0.628 0.48 1.369 HYM2 PAS: 1,3,4

Cab [µg/cm2] −42.007 + 178.939 ∗ LCI 0.88 10.8

6 Cw [g/cm2] 0.025 ∗ 39.335LWV I2 − 0.001 0.43 0.0112 HYM2 MEA1: 2,5,6

mix soil / Cdm [g/cm2] 0.016− 0.150 ∗ LWV I1 0.47 0.0058 HYM2 MEA2: 2,4

vegetation LAI [m2/m2] 24.616 ∗ 0.312MSI − 0.748 0.85 0.411

Cab [µg/cm2] 10.0346 + 96.9097 ∗ LCI 0.59 16.3

4.20). This can be explained by the well defined a priori estimates of chlorophyll, which are
expressed by high R2 (up to 0.88) and low RMSE (< 16 µg · cm−2) values. So, even if in
this case the introduction of prior estimates derived from predictive regression equations does
not significantly influence the estimates of ultimate interest, it certainly seems to improve the
ensemble of estimated variables, including chlorophyll, one of the major determinants of canopy
reflectance and a key parameter in the assessment of grassland vitality.

Probably the most important contribution of incorporating a priori information is not the
improvement of absolute retrieval performance, but the strong reduction of ambiguity, a term
used for the high interaction between variable pairs (Baret and Buis, 2007). This is illustrated in
Figure 4.21 where ambiguity between the estimated variables LAI, ALA, and Cab is shown for
three different sensor configurations and for the case where prior information based on predictive
regression functions is introduced. In the case where covariance between the variables is not
accounted for (top row), high correlation, expressed by the R2 values, exists between the several
data pairs, especially between LAI and ALA. Ambiguity decreases with an increasing number
of spectral bands. Accounting for the covariance between variables shows a dramatic decrease of
ambiguity for all variables and sensor configurations (bottom row). Only the correlation between
LAI and Cab for the HyMap 2003 configuration slightly increases. A moderate correlation
between LAI and Cab is however expected, since the meadows with low LAI were in most cases
recently cut and contained a higher fraction of senescent material and stubbles. This example
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Figure 4.19: RTM inversion results for Cw, Cdm, and LAI using LUTs adjusted to SPECL classes and prior
information based on predictive equations. Red pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green
diamonds = HYM1 PAS, yellow triangles = HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses
= HYM2 PAS

Figure 4.20: Influence of introducing a priori estimates based on predictive regression equations on Cab
retrieval. Red pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow
triangles = HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses = HYM2 PAS

illustrates that, even if for some variables prior estimates are somewhat loosely defined, they
still provide considerable stabilization of the algorithm when their interaction is accounted for.

4.3.4.6 Comparing predictions based on regression functions with final RTM estimates

The approach presented in this study actually includes a dual estimation of canopy variables
based on radiative transfer modeling: i) using the predictive regression equations based on the
RTM simulations in the LUT, and ii) applying RTM inversion directly to the spectra, while prior
estimates based on the predictive equations are included as prior information. Theoretically, and
as shown in the previous section, the second run is required to account for the interaction be-
tween the different variables. However, it might be questioned whether model results are really
improved compared to the first estimates based on predictive equations alone, when RTM in-
version is additionally implemented.

Table 4.10 compares model results obtained with the predictive equations (i.e., the prior
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Figure 4.21: Reducing ambiguity by accounting for covariance between the variables. The top row shows the
results when minimization in the variable space is based on variance alone, the bottom row the results when
also covariance is accounted for.

estimates) with those obtained by implementing the complete algorithm, including RTM inver-
sion. It is noticed that the prior estimates are significantly less accurate than the final results.
The differences are graphically presented in Figure 4.22, where it becomes evident that some
variables and plots are more affected than others. Whereas estimates of LAI on the whole show
good agreement, divergence for the other 2 variables is larger, in particular for HYM2 MEA2.
Moreover, prior estimates of Cw seem to be significantly overestimated compared to the field
measurements and to the values known from literature. As shown in the presented case, the
prior estimates do not necessarily dictate the final solution, but rather enable describing the co-
variance between the several variables, hence leading to stabilization of the retrieval procedure.
The results clearly demonstrate the added value of a complete inversion with respect to a sole
regression equation, not only in the case of the inversion algorithm proposed in this study, but
also compared to empirical approaches based on VIs in general.

4.3.5 Exploring additional regularization

The results presented in the previous section provided some remarkable results concerning the
estimates of Cdm and Cw. Despite their very limited unique spectral response (Cfr. Figure
4.12 and Figure 4.13) for the given data set, they were estimated with a reasonable accuracy.
However, accuracy of none of the variables is good enough (i.e. maximum error of 10%) to
fulfill the requirement posed by many precision farming applications (Harmoney et al., 1997).
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Table 4.10: Comparing retrieval accuracy for Cw, Cdm, and LAI based on predictive equations (prior) with
those obtained by implementing the complete optimization algorithm (RTM)

Cw Cdm LAI

RWC RMSE
[g/cm−2]

rRMSE
[%]

AA
[%]

RMSE
[g/cm−2]

rRMSE
[%]

AA
[%]

RMSE
[m2/m2]

rRMSE
[%]

AA
[%]

OA
[%]

prior 0.0137 57.4 55.1 0.0033 38.2 62.7 1.408 46.5 48.1 55.3

RTM 0.0081 35.6 71.7 0.0028 31.8 73.2 1.213 40.1 66.3 70.4

Figure 4.22: Comparing RTM inversion results of Cw, Cdm, and LAI with prior estimates obtained by
predictive regression equations. Red pluses = HYM1 MEA1, blue asterisks = HYM1 MEA2, green dia-
monds = HYM1 PAS, yellow triangles = HYM2 MEA1, brown squares = HYM2 MEA2, dark green crosses
= HYM2 PAS

Therefore, in this section two additional regularization techniques are explored for their potential
of improving retrieval accuracy.

4.3.5.1 Estimating biochemicals at canopy level

Various authors observed increased accuracy and robustness when synthesized variables were
used directly during inversion (Cfr. Section 3.2.4). In particular, the product between the
concentration of leaf absorbing materials and leaf area index appears to be a suited candidate,
having a physical meaning corresponding to the actual optical thickness of the medium (Weiss
et al., 2000). Furthermore, in our case, one of the variables of ultimate interest is the above
ground biomass, which, for a square meter, is the product between Cdm and LAI, and can be
directly validated with the measured above ground biomass.

Figure 4.23 compares measured with estimated above ground biomass [g ·m−2], canopy water
[g ·m−2], and LAI for the case in which covariance between variables is calculated from the prior
estimates based on predictive equations. At the top row, the results are shown when Cw and
Cdm estimated at leaf level are a posteriori multiplied with LAI, at the bottom the result when
the products of both Cw and Cdm with LAI (Cw×LAI and Cdm×LAI) are directly introduced
in the cost function. However, for none of the variables, direct inclusion of the product in RTM
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Figure 4.23: RTM inversion results for canopy water and dry matter content using the synthetic variables
Cw×LAI and Cdm×LAI. The top row shows the results when the product is calculated a posteriori to the
retrieval, bottom ro shows the results when the products are included in inversions. Red pluses = HYM1 MEA1,
blue asterisks = HYM1 MEA2, green diamonds = HYM1 PAS, yellow triangles = HYM2 MEA1, brown squares
= HYM2 MEA2, dark green crosses = HYM2 PAS

inversion leads to significant improvement which can be explained by the very low ambiguity
between the single leaf constituents and LAI in the original case (R2 = 0.08 and 0.02 for Cw and
Cdm, respectively). In addition, it was tested if introducing the product between Cab and LAI
(Cab×LAI), which shows moderate correlation with LAI (Cfr. Figure 4.21) brought additional
improvement. However, neither in the case where all three products were introduced, nor in the
case where only Cab × LAI was used, significant improvements could be observed for any of
the variables (in the latter case: RMSE=0.0082 g · cm−2, 0.0037 g · cm−2, 1.357 for Cw, Cdm
and LAI, respectively; AA = 73.1, 61.7, and 69.6%). This is probably due to the fact that the
covariance matrix between the variables already accounts for proper weighting of the variables
in the cost function, thus stabilizing the result. This conclusion is supported by the fact that no
significant reduction in ambiguity between Cab and LAI could be observed (not shown).

4.3.5.2 Coupling Cw with Cdm

Several authors proposed to tie the contents of leaf dry matter and leaf water at a fixed ratio,
usually 1:4 for fresh vegetation (Bacour et al., 2006; Baret et al., 2005b; Vohland and Jarmer,
2007). The advantage of doing such is that the intrinsic dimensionality of the under-determined
inversion problem is reduced, which may lead to a more stable and accurate retrieval of all
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parameters. It was tested if this fixed relationship would bring improvement for the current
situation as well. However, given the significant variation in relative water content encountered
in the field measurements (Appendix E), a fixed rapport of Cdm:Cw of 1:4 would be unrealistic.
Therefore it was decided to repeat the estimation while allowing some degree of randomness in
the ratio Cdm:Cw, based on the natural variation in relative water content (58-84%) measured at
the test site. Extending the range to both sides to account for uncertainties in the measurements
(i.e., to the range 55-85%), Cw was tied to Cdm using the following formula:

Cw = (FMCmin + α · (FMCmax − FMCmin))× Cdm, [g · cm−2] (4.7)

where α is a randomly selected number from a uniform distribution between 0 and 1, FMCmin
the minimum foliage moisture content and FMCmax the maximum foliage moisture content
FMC. FMC is expressed as Cw×Cdm−1. In our case FMCmin=1.2 (55/45) and FMCmax=5.7
(85/15). This range reflects the actual values found for the canopy under observation but is very
large compared to the range of 3.8-4.2 proposed by Vohland and Jarmer (2007), a difference that
can be ascribed to the considerable amount of senescent material and different plant species con-
tained within in the plots considered in this study. However, the added value of introducing
such a limited degree of freedom as proposed by these authors (reflecting a relative water content
between 79.2-80.8%), compared to a complete fixation of the tie, might be questioned in our
case.

Table 4.11 summarizes the results of tying Cw to Cdm. Both for the completely fixed rapport
and for the case where Cw is allowed to vary within the ranges given by the field measurements,
overall retrieval accuracy deteriorates compared to the original case where all variables were left
free. For the first case the cause is quite clear, since the fixed rapport does not allow for the
varying moisture content actually measured in the field. The reason for the reduced accuracy in
the second case remains unclear.

Based on the observation that the two commonly applied regularization techniques proposed
in this subsection did not yield any improvements compared to the original algorithm where no
additional constraints were implemented, it is suggested that introducing covariance description
between variables accounts for the maximum attainable reduction of ambiguity between vari-
ables. For this reason it was decided to continue the further evaluations with the original set of
9 input variables and the variable sampling plans proposed in Chapter 3.

4.3.6 Model sensitivity to LUT parametrization

4.3.6.1 Reproducibility of estimates

A prerequisite of a high-quality model is the consistency in reproducing similar results for alter-
nating model runs. This is not as trivial as it might seem, since the generation of the LUTs is
based on a semi-random selection of the variables. Even if the stratified sampling plan forces the
variable selection to take place over the complete domain, within the several intervals there still
remains considerable room for variation. The variable parametrization of the LUT does not only
influence the optimization between LUT entries and measured reflectance, it also influences the
generation of regression fits used for the prediction of the prior estimates. To test the consistency
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Table 4.11: RTM inversion results for Cw, Cdm, and LAI when using a constrained rapport between Cdm
and Cw for the generation of the LUTs. Results are shown for fixed relative water content (RWC) of 80% and
for the case where RWC is allowed to vary in the range defined by the field validation measurements (55-85%).
For the latter, the link between Cdm and Cw is established according to Equation 4.7. The ’free’ case shows
the results when Cw and Cdm are untied and was already presented in Table 4.12.

Cw Cdm LAI

RWC RMSE
[g ·cm−2]

rRMSE
[%]

AA
[%]

RMSE
[g ·cm−2]

rRMSE
[%]

AA
[%]

RMSE
[m2/m2]

rRMSE
[%]

AA
[%]

OA
[%]

80% 0.0076 31.8 78.4 0.0047 54.2 52.3 1.730 57.1 60.1 63.6

50-85% 0.0095 40.1 68.8 0.0034 38.7 61.1 1.371 45.3 65.2 65.0

’Free’ 0.0081 35.6 71.7 0.0028 31.8 73.2 1.213 40.1 66.3 70.4

of the variable retrievals, the model was run 12 times on the complete set of 27 field spectra. For
each variable output from the model and for each model run, the absolute deviation between the
estimated variable (V̄i) and the mean of all estimations for one plot ¯Vi,µ was calculated and in
turn averaged over the number of spectra, to form the mean absolute deviation from the average
of all estimates, expressed as a percentage (MD%):

MD% =
1
n

∑n
i=1

∣∣ ¯Vi,µ − V̄i
∣∣

¯Vi,µ
× 100% (4.8)

where n is the number of plots.
The bar diagram presented in Figure 4.24 shows for every variable output from the model

the mean and maximum absolute deviation. The results have been categorized according to the
SPECL classification result in order to be able to distinguish trends between the classes. Mean
absolute deviation for all parameters is low, usually < 5%, except for most variables in class 2
and LAI in class 6. The maximum absolute deviations show a similar trend, although percent-
ages are significantly higher. While for most variables and classes maximum absolute deviation
remains below 20%, some large outliers can be observed, with up to 55% for Cbp in class 2. The
large variability in class 2 can be explained by the LUT parametrization of this class, which
originally had been set up for canopy types with a high shading component, such as row crops.
The parametrization is thus not representive for the canopy types that were assigned to this
class and which, based on morphological criteria, would better fit into class 6. The relatively
high deviations for LAI in class 6 result from the high percentual deviations that small absolute
differences can have on low average estimates which in this class are around 1 m2/m2. This can
be an indication that the proposed sampling distances are not short enough in variable ranges
where reflectance is very sensitive to changes of the variable.

Regarding the individual variables, except for the problematic cases mentioned above, vari-
ation between the model runs is low to moderate. On average, the hot spot parameter HS is
the least steadily predicted variable, which can be attributed to its limited influence on canopy
reflectance in the studied view/observation geometry. The minor spectral variations caused by
this variable will therefore serve for filling the gaps between modeled and measured reflectance.
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Figure 4.24: Mean (bars) and maximum (indicated with error bars) absolute deviation between single estimated
variables and the average result over 12 model runs. For class 2: n=3; class 3: n=6; class 4: n=13; class 6:
n=5. For the single plots belonging to each class, see Table 4.9

Most stable predicted is ALA, which is also related to the Gaussian parametrization of this
variable in the LUT.

The results presented in this paragraph show that, although most variables are predicted in
a consistent way, additional stabilization and, hence, improvement can be obtained by a repet-
itive model run. This aspect is however time consuming and therefore difficult to realize in an
operational chain where large quantities of data have to be processed in a short time.

4.3.6.2 Dependence on variable ranges

In Chapter 3, the parametrization of LUTs (i.e., variable ranges and distributions) for the various
classes has been based on expert knowledge and existing literature values. It should however
be tested if the model is sensitive to these settings and, if this would be the case, whether the
distributions from which the variables are selected, are characterized in a way that allows for
maximum accuracy of the estimations. Thus, it was analyzed to what degree the estimates
depended on the class characterization. This was done for the two most dissimilar classes the
measured spectra had been assigned to: class 4 bright vegetation, and class 6 mix of soil and
vegetation. These were at the same time the classes containing most members, with n=14 and
n=5 for class 4 and 6, respectively (Table 4.9).

For the variables of primary interest in this study (i.e., Cw, Cdm, and LAI) and for Cab,
causing the major spectral variation in the VIS, it was tested to what degree the results depended
on the range of variation used to construct the LUT. This was done for one variable at the time
while the ranges of the other variables were kept constant. Of the original class range of each
variable, first the lower boundary (LB) was gradually changed, while keeping the upper boundary
(UB) fixed at the predefined value of the respective SPECL class. In a next step, the upper
boundary (UL) was gradually changed while LB remained unaltered. The ranges that were
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applied can be found in the plots presenting the results (Figure 4.25 and 4.26). Results look
different for class 4 and 6.

Class 4: bright vegetation For none of the 4 variables, reducing the LB does really affect the
retrieval performance for the measured variables. In contrast, restraining the range of variation
(i.e., increasing LB) causes the estimates of the variable subject to variation to become less
accurate. This is especially the case when LB approaches the values of the measured variables
(Cfr. Table 4.1 and Appendix E). Except for Cdm in the case of changing Cw, accuracy of the
other variables is only little affected when one of the variables is inadequately parametrized.
Remarkable are the results for changing the LB of Cab: highest maximum overall accuracy is
obtained when Cab is allowed to vary only between 80 and 100 µg · cm−2, a range that does
not seem realistic for grassland species (Vohland and Jarmer, 2007). Also this phenomenon can
be attributed to the mismatch between the modeled and measured VIS reflectance previously
presented in Figure 4.11. The nearly constant accuracy of LAI retrievals in this case confirms
the capability of the algorithm in separating spectral influence of Cab and LAI in the VIS.

Presupposed that the solution is within the LUT range spanned by lower and upper boundary,
the position of UB does hardly influence the result. This might be due to the saturating character
of spectral reflectance in this class. In contrast to the results found for the LB, the UB of Cab
does matter for overall accuracy and significantly influences estimation accuracy of the measured
variables, especially of Cdm.

Class 6: mix soil/vegetation More than for class 4, the results for class 6 are characterized
by some evident optimal ranges, where overall accuracy (rRMSE of the single variables) reaches
a maximum (minimum). Extending the range below (above) the LB (UB) decreases accuracy
again. This phenomenon is particularly apparent for Cw and Cdm and could be ascribed to
the increased sensitivity to spectral reflectance compared to class 4. It is noteworthy that a
reduced estimation accuracy for LAI also influences the results of Cw while for the opposite
case this does not hold true. Actually, estimation accuracy of LAI almost exclusively depends
on parametrization of LAI itself, underscoring the dominating role of this variable in spectral
reflectance.

In all considered cases, and for both SPECL classes, maximum achievable overall accuracy is
around 80%. Using the orginally predefined LB and UB values provides an overall accuracy
(76.2% for class 4 and 78.0% for class 6) that in almost every case is at, or close to this max-
imum value. Only at the level of single variables, the variable ranges used to construct the
LUTs can still be significantly optimized. It has to be emphasized, however, that the results
presented in both figures are far from exhaustive since prediction accuracy depends on the
parametrization of all variables simultaneously and not, like in this case from the range of a
single variable. Moreover, the analysis was based only on a small number of spectra and canopy
measurements representing a limited amount of canopy variation. A comprehensive sensitivity
analysis of the model to LUT parametrization should account for all possible interactions and
typify all possible land cover realizations. Additionally, this should be done for a wide range of
observation/illumination geometries, which would obviously go beyond the scope of this study.
Nevertheless, in the next Section, sensivity of the model to radiometric and angular uncertainties
is illustrated with several examples taken from the HyMap data and by comparing the retrieval
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Figure 4.25: Sensitivity of RTM inversion results to changing lower and upper boundary of LUT variable ranges
for SPECL class 4. Shown is the rRMSE in % for Cw (blue diamonds), Cdm (brown triangles), and LAI
(green squares), and the overall accuracy (black squares), which is the sum of the average accuracy for the 3
variables divided by 3. The dotted red line indicates the range as predefined in Appendix B (n=14).
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results based on the field spectrometer data with the ones that were retrieved from the HyMap
measurements.

4.3.7 Discussion

The original approach, like proposed in the previous chapter, contains two levels of regulariza-
tion: a restriction of the range of variables contained in the LUT, and the introduction of prior
estimates on the variables, obtained from predictive regression equations. Restriction of the
LUT ranges in particular lead to better defined estimates, with significantly reduced a posteriori
levels of uncertainty. The resampled field spectrometer measurements showed that the benefit
of introducing a priori estimates is related to the spectral configuration of the simulated sensor
(Table 4.12): while sensors having an even distribution of bands throughout the complete VNIR-
SWIR (i.e., HyMap 2003 and Landsat 7 ETM+) perform significantly better compared to the
case where only spectral information is used, the accuracy for other sensor configurations is con-
siderably reduced. The latter has several causes. Partly, it is induced by the stabilization of the
ambiguity between variables, which is demonstrated by the increased estimation accuracy when
covariance description between variables is omitted (Table 4.12, shown in brackets). Probably,
also the relatively strong weighting in the cost function of Cab, which in most cases has a high
predictability, plays an important role. Another, and maybe the most important reason, is the
fact that the limited number of bands of sensors other than HyMap, do not allow for calculating
all spectral indices, and therefore lead to less well-defined a priori estimates. This is confirmed
by the finding that for the estimation of Cw and Cdm based on the HyMap 2003 configuration,
for all classes, LWVI1 or LWVI2 was the best performing VI. They both require a band around
1100, and at 1000 or 1200 nm, bands that are not provided by the other sensors. The same
applies for the VIs selected for estimating Cab (LCI and REIP Guyot), which are both based
on narrow spectral bands in the red edge. Nevertheless, in cases where sufficient wavebands are
available, introducing covariance between the a priori estimates brings additional stabilization
of the retrieval process and strongly reduces the ambiguity between the results. The power
of this methodology is reinforced by the findings that two commonly used types of additional
regularization (i.e., introducing leaf constituents at canopy level, and tying Cw to Cdm) did not
bring any improvement to the final estimates, neither a reduction of the ambiguity.

The study presented in this section revealed the importance of a well chosen set of wave-
bands if an adequate, concurrent estimation of several important canopy variables is envisaged.
Sensors covering the complete solar-reflective domain give the best overall estimations whereas
sensors covering only the VNIR are very weak in predicting Cw, leading to lower accuracy for
other variables as well. The similar performance of the HyMap 2003 and the Landsat ETM+
configuration suggests that the 6 bands of the latter are positioned in a way that allows for max-
imum uncorrelated information content. Nevertheless, the estimates based on the hyperspectral
configuration clearly show less ambiguity, an indication that hyperspectral data lead to more
robust estimates.

The benefit of accounting for covariance between wavebands is not straightforward. Although
in theory one should account for spectral collinearity in order to be able to obtain the real dimen-
sionality of spectral differences between modeled and measured reflectance, the impact this has
on estimation accuracy is ambiguous and depends on canopy type and the envisaged variable.
The results presented in this section showed that, especially in the case of multispectral sensors,
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Figure 4.26: Sensitivity of RTM inversion results to changing lower and upper boundary of LUT variable ranges
for SPECL class 6. Shown is the rRMSE in % for Cw (blue diamonds), Cdm (brown triangles), and LAI
(green squares), and the overall accuracy (black squares), which is the sum of the average accuracy for the 3
variables divided by 3. The dotted red line indicates the range as predefined in Appendix B (n=5).
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Table 4.12: Retrieval performance for different simulated sensor configurations when introducing prior infor-
mation on the variables, estimated with predictive regression equations. The values without brackets represent
the cases when covariance between the variables is introduced, in brackets the case where only the variance
per variable is used.

Cw Cdm LAI

Sensor RMSE [g ·
cm−2]

Average
acc. [%]

RMSE [g ·
cm−2]

Average
acc. [%]

RMSE
[m2/m2]

Average
acc. [%]

Overall
acc.[%]

HyMap 2003 0.0081
(0.0052)

71.7
(82.5)

0.0028
(0.0025)

73.2
(77.3)

1.213
(1.496)

66.3
(61.9)

70.4
(73.9)

CHRIS Mode 5 0.0211
(0.0180)

18.8
(23.8)

0.0042
(0.0035)

52.6
(59.2)

1.505
(1.393)

47.3
(49.0)

39.6
(44.0)

Landsat 7 ETM+ 0.0059
(0.0061)

78.0
(78.2)

0.0027
(0.0025)

71.5
(71.9)

1.486
(1.378)

65.3
(52.8)

71.6
(67.7)

SPOT 5 HRG 0.0114
(0.0081)

64.8
(68.4)

0.0040
(0.0041)

58.8
(53.7)

1.732
(1.390)

29.4
(43.1)

51.0
(55.1)

Quickbird 0.0185
(0.0188)

23.9
(22.2)

0.0041
(0.0038)

52.7
(54.8)

1.672
(1.512)

43.7
(49.5)

43.7
(42.2)

introducing spectral covariance deteriorates estimation accuracy, in particular for LAI, probably
for the benefit of variables that play a dominant role in the VIS (Cab). In this study, the HyMap
2003 configuration appeared to be the best overall performer, both in terms of accuracy as well
as in terms of minimum amounts of ambiguity. Second best was Landsat 7 ETM+. Quickbird,
having only 4 wavebands in the VNIR performed worst with lowest overall accuracy and highest
RMS errors.

For a better understanding of the estimation accuracy based on the HyMap 2003 configu-
ration, the 27 samples were grouped into the three prevailing phenological types: the samples
of HYM1 MEA2, HYM2 MEA1, and HYM2 MEA2 were combined into a class representing
recently cut meadows (meadow-cut), all PAS samples of HYM1 and HYM2 were grouped to
represent the class pasture, and all samples of MEA1 represented the class containing mature
meadows (meadow-long). Based on this subdivision, descriptive statistics were calculated for
each group separately. The retrieval accuracy for each class is summarized in Table 4.13, in
brackets the results are shown when estimates are compared to the canopy variables based on
LAI-2000 measurements.

Meadow-cut According to their spectral properties, the plots within this group were catego-
rized in 3 different SPECL classes (Table 4.9): dark vegetation, average vegetation, and a mixture
of soil and vegetation. This reveals the limitation posed by such a crisp class definition, where
spectra from plots with similar phenologic states are assigned to classes whose description is
based on strongly differing assumptions on vegetative conditions. However, the partly overlap
of variable range definitions between SPECL classes should avoid results that show unnatural
jumps due to classification differences. For meadow-cut, Cw and LAI are estimated with mod-
erate precision (rRMSE = 37.1, and 38.8%, respectively), whereas Cw is estimated with a very
high accuracy (rRMSE = 14.1%). The relatively low accuracy of LAI estimates is probably
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Table 4.13: Retrieval performance seprated according to three phenological classes. In brackets the results for
the measurements based on LAI-2000.

Cw Cdm LAI

Land cover RMSE [g ·
cm−2]

Average
acc. [%]

RMSE [g ·
cm−2]

Average
acc. [%]

RMSE Average
acc. [%]

Overall
acc.[%]

meadow-cut 0.0031
(0.0144)

88.8
(40.3)

0.0037
(0.0050)

69.1
(50.0)

0.513
(0.719)

61.6
(62.0)

70.1 (50.8)

meadow-long 0.0041
(0.0044)

86.6
(83.1)

0.0010
(0.0031)

88.2
(57.7)

1.519
(1.163)

80.7
(80.5)

85.2 (73.8)

Pasture 0.0075
(0.0137)

77.1
(61.4)

0.0022
(0.0040)

74.9
(36.8)

2.280
(2.108)

60.0
(65.6)

70.7 (54.6)

attributed to the ambiguity in classification. Validation of measurements based on the LAI-2000
performs poor for Cw and Cdm, and reaches moderate accuracy for LAI.

Meadow-long Without any exception, the spectra contained within this group were attributed
to the SPECL class bright vegetation, a classification that seems to fit well to plots in this
development stage. Results for all 3 variables are in good agreement with the field measurements
and estimates all fall within one standard deviation from the measured values. Validation of
measurements based on LAI-2000 performs well in this class, especially for Cw and LAI.

Pasture The spectra belonging to the pasture group are classified either as average or bright
vegetation, which both seem plausible. Cdm is estimated with a very good accuracy, whereas
RMS errors for Cw and LAI are quite high. Deviations of LAI increase with increasing value,
underscoring the difficulty of estimating high LAI values due to saturation of the reflectance
signal. In addition, and as already pointed out in Section 4.2, this class suffers from considerable
uncertainty in the field measurements. Estimations based on LAI-2000 measurements perform
quite weakly.

The categorization of the ensemble of plots into 3 different phenological classes exposes some
important information on the proposed inversion approach. First of all, estimation performance
appears to be quite stable for Cw and Cdm, both in terms of RMSE and average estimation
accuracy. This is quite surprising as the correlation analysis performed in the previous section
pointed out the high collinearity between these leaf constituents and LAI. For LAI the case
looks somewhat different: although average estimation accuracy remains more or less stable,
RMSE increases with increasing density of the vegetation cover. From values of 5/6 upwards,
the algorithm suffers from saturation effects of the reflectance signal which cannot be solved
by the incorporation of prior estimates based on predictive regressions either, since these suffer
from saturation effects too. This is a common problem in solar-reflective remote sensing and
can only be solved when a priori information from completely independent sources or signals
is integrated. Nevertheless, with overall estimation accuracies between 70 and 85%, depending
on the canopy type, the results are still quite satisfying, especially considering the completely
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automated nature of the approach where no a priori information on variables or land use is
known in advance. Besides, obtained overall accuracies are only 5-10% less accurate than in the
case where measured variables are directly incorporated as prior information.

It should be kept in mind that the results presented in this section were based on a total
of 27 grassland data sets (spectral reflectance and canopy variables), some of them of uncertain
quality, especially in the case of the pasture samples. The data set is thus far from representative
for all agricultural canopy types. Moreover, the limited number of spectra contained within the
single classes may have lead to an unrealistic description of spectral collinearity and covariance
between the variables. At least the latter can be addressed in the next Section where CRASh
will be employed to HyMaP image data of the area.

4.4 RTM inversion applied to HyMap flight lines

The previous section stretched the potential and constraints of CRASh in estimating canopy
variables from spectral data measured at ground level. It was shown that on average accuracy lies
between 70-80%. Measuring spectral reflectance at ground level was ideal in terms of geometric
and atmospheric uncertainties, as these could be practically excluded. Moreover, no spatial
discontinuties of the canopy were involved, since the measured quantities were exactly those
responsible for the observed radiometric signal. Transfering the approach to airborne or satellite
level brings along the challenge of addressing these radiometric and spatial uncertainties, even
as the directional uncertainties involved when the model is deployed to imagery from tilting
sensors or sensors with a large field-of-view.

Despite the several drawbacks that have to be overcome, a regional inversion scheme also
offers the opportunity for a better spectral and spatial characterization of vegetation and soil.
This aspect is of major interest in the radiative transfer model approach presented in this study,
since it allows for a more accurate description of radiometric (co-)variance for each land cover
class. Besides, local neighborhood information may help to overcome unnatural crisp transitions
in estimated values in cases of small-scale classification anomalies (Cfr. Figure 3.10).

The model simulations presented in this section are all based on the complete algorithm
like presented in the previous chapter, including the SPECL land cover classification, the use of
spectral covariance, and introduction of prior estimates based on predictive regression equations.
In contrast to the previous section, characterization of covariance between the prior estimates
is in this section based on the class specific covariance plus a local variance term introduced
to compensate for potential large systematic errors due to land cover classification (Equation
3.14). Although the generation of the predictive regression equations and the different LUTs
were based on distinctive view angle intervals, characterization of the covariance matrices for the
different classes was based on the pixels found across the entire scene, and thus on all view angles
found within a land cover class. This solution was preferred to circumvent deficient covariance
description that could occur when too few pixels of a class are found within a specific view angle
interval. Especially for small images, like the subsets presented later on, this chance would be
relatively high.
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4.4.1 Accounting for spectral anisotropy

4.4.1.1 Quantifying spectral anisotropy

One of the main advantages of using radiative transfer model approaches for the estimation
of canopy variables is the possibility of accounting for changing observation and illumination
properties. Several studies showed that anisotropic spectral behavior of canopies depends on
their structural properties (Bacour and Bréon, 2005; Sandmeier et al., 1998; Sandmeier and
Deering, 1999). If this were also the case for the observation/sun geometries encountered in
this study, it would make sense to perform model inversion for each class separately, while
optimizing the radiative transfer model for prevailing structural class properties. It should first
be questioned, however, if adaptation of the model is required for view/sun geometries far from
the principle plane while sensor observation angle does not exceed 30◦, such as the case for the
HyMap flightlines covered in this study.

Spectral anisotropy in reflectance data can be expressed by the anisotropy factor (ANIF)
which is simply a normalization with nadir reflectance (Sandmeier et al., 1998; Sandmeier and
Deering, 1999):

ANIF (λ, θs, ψs, θv, ψv) =
ρ(λ, θs, ψs, θv, ψv)
ρ0(λ, θs, ψs)

[dimensionless] (4.9)

where ρ is the bidirectional reflectance factor, ρ0 is the nadir reflectance factor, λ is wavelength,
θs (ψs) is illumination zenith (azimuth) angle, and θv (ψv) is viewing zenith (azimuth) angle.

According to the physical mechanisms in vegetation canopies, spectral anisotropy is particu-
larly strong in ranges of high vegetation absorbance such as the visible blue and red chlorophyll
absorbance bands. In highly reflective near-infrared bands, multiple scattering processes ef-
fectively reduce contrast between shadowed and illuminated canopy components resulting in
lower anisotropy effects. In addition, BRDF effects are most pronounced in erectophile canopies
with strongly contrasting soil/background reflectance, and are reduced in planophile surfaces
(Sandmeier et al., 1998; Sandmeier and Deering, 1999). Both these theoretic assumptions are
confirmed by Figure 4.27, which for three different wavelengths, and for the three dominant
vegetation classes, shows the anisotropy factors averaged over the entire length of the flightline.
Although some fluctuations are observed due to the fact that not every view angle interval con-
tains a representative number of pixels for every class, general trends are very well displayed.
For all 3 cover types, BRDF effects show highest dynamics for the red (dotted) and green
(continuous) bands, while effects are least pronounced for near-infrared reflectance (dashed).
Moreover, for all three sun/observation constellations, anisotropy is significantly larger for the
class dark vegetation which is known to be constituted mainly of coniferous forest canopies and
row-structured crops exhibiting a large amount of mutual shading. Dense, homogeneous vegeta-
tion covers (bright vegetation) in general show lowest anisotropy. Against expectancy, spectral
anisotropy in the forward direction is sometimes larger than in the backward direction. A pos-
sible explanation could be the fact that observations so far off the principle plane do not have
pronounced backscattering peaks.

Figure 4.28 shows the relative spectral differences3 between the 3 overlapping subsets in the

3δRrel = |RλWAGINGx−RλWAGINGy|
RλWAGINGx

× 100%; Rλ is the reflectance at wavelength λ and x/y is the flight line
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Figure 4.27: Spectral anisotropy factors (ANIFs) for the HyMap scenes WAGING07, WAGING13, and WAG-
ING14. Results are shown for the 3 dominant vegetation classes for green (band 9, 555 nm), red (band 16,
662 nm), and NIR (band 29, 859 nm) reflectance

red and NIR domain. It can be observed that spectral anomalies between the different images
are largest at extreme backscatter view angles and are most pronounced for the combination of
WAGING07 and one of the two other flight lines. Differences between WAGING13 and WAG-
ING14, which have an opposed view geometry, are smaller and relatively equally distributed
across the scene. From this figure it becomes clear that relative deviations are much stronger
in the red wavelength. Small inconsistencies in the radiative transfer model itself in this do-
main, in parametrization of variables active at these wavelengths, or of the employed inversion
approach, may therefore lead to considerable inaccuries in the estimated canopy variables. This
is especially true for estimation of leaf chlorophyll content, which is the dominant player in this
spectral domain, but would also be transfered to the other variables.

Figure 4.29 shows the influence of angular anisotropy encountered in class dark vegetation
of WAGING07 on the values of a vegetation index, in this case the Normalized Difference Veg-
etation Index (NDVI; Rouse et al. (1973)), and LAI estimates based on this VI. For a simple
empirical equation between LAI and NDVI, such as the one proposed by Gardner and Blad
(1986) (Equation 4.10) this would already impose a variation up to 15% only due to angular
effects, and this for a scene with a view/sun constellation that is far from the principle plane.
The example underscores the importance of incorporating information on view geometry, not
only during model inversion itself, but also for the generation of predictive equations for the

number.
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estimation of prior values on the canopy variables.
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Figure 4.28: Relative spectral differences δRrel in red (band 16; 662 nm) and NIR (band 29; 859 nm)

reflectance between the three overlapping subsets. δRrel = |RλWAGINGx−RλWAGINGy|
RλWAGINGx × 100% where Rλ is

the reflectance at wavelength λ and x/y is the flight line number. θv indicates the view zenith angle of the
indicated flightline, where negative values stand for observations in the backscattering direction and positive
values for observations in the forward scattering direction. For clarity of comparison, the non-vegetative classes
have been masked out.

LAI = −1.248 + 5.839 ·NDV I (4.10)

NDV I =
ρ859 − ρ662

ρ859 + ρ662
(4.11)

Apart from its considerable role in the RTM inversion process, spectral anisotropy also influ-
ences the land cover classification, and therewith the inversion results, since the decision rules
employed in SPECL rely on spectral ratios and thresholds based on nadir reflectance. Therefore,
classification of the image has to be based on nadir-normalized reflectance data. Normalization
of the data was performed by dividing the original reflectance cube through the ANIF factors
(three of which were shown in Figure 4.27), and is identical to the algorithm offered by ATCOR4
(Richter, 2007a). Radiative transfer model inversion was explicitly applied to the original re-
flectance data, since nadir normalization would introduce additional radiometric uncertainties,
and the spectral integration over distinctive land cover types could level out the unique angular
spectral features typical for several vegetation covers.
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Figure 4.29: Effect of spectral anisotropy on NDVI-based LAI estimates for scene WAGING07. Continuous
curve shows the NDVI values, the dashed curve LAI estimates based on NDVI using the regression function
proposed by Gardner and Blad (1986) (Equation 4.10).

4.4.1.2 Incorporating view angle information in model inversion

The anisotropy plots shown in Figure 4.27 clearly demonstrate the need to accurately account for
angular anisotropy in the HyMap data, even when observations are relatively far from the princi-
ple plane. Moreover, they show the need to distinguish between different land cover types, since
each of them exhibits characteristic anisotropy behavior. The question still remains whether
the radiative transfer model is able to accurately mimic the angular behavior of the canopy
and if so, whether the land cover classes are parametrized correctly thus being able to describe
such behavior. In other words, if both radiative transfer model and parametrization are correct,
and the inversion algorithm is robust, inversion of any selected pixel in the intersecting area of
flightlines WAGING07, WAGING13 and WAGING14 should provide very similar results for all
three view/sun constellations. This was evaluated by applying RTM inversion independently to
the three subsets while view angle information was included according to procedure described in
Section 3.3.3.5: a separate LUT was generated for every 3◦ view angle interval using the scene
specific solar geometry. Estimated canopy variables were compared for 27 fields throughout the
entire scene by calculating the average of a 5×5 pixels subset to account for co-registration errors
(Figure 4.30).

Results of the intercomparison are shown in Figure 4.31 for leaf variables, and in Figure
4.32 for canopy variables. Very good agreement is obtained for Cab, LAI, and ALA, whereas
Cw shows moderate to good concurrence between the various sun/observation geometries. Es-
timates of Cdm, one of the primary variables of interest, show very little congruence, even as
the hot spot parameter HS. This can be explained by the fact that influence of these variables
on overall canopy reflectance is relatively low and often masked by other variables (e.g., Cw).
Nevertheless, the inconsistency of Cdm retrievals is higher than those obtained at ground level
for this variable. In contrast, the high variability of HS estimates had already been diagnosed
at ground level (Cfr. Figure 4.24). The soil brightness parameter BS coincides well for high
values and poorly for low values, a trend that is expected, given the sensitivity of this parameter
to exposed (and therefore brighter) soils at low vegetation covers. Positively surprising is the
leaf mesophyll structure variable N for which, except for a few outliers, coincidence is generally
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WAGING07 WAGING13 WAGING14

Figure 4.30: Intercomparison of LAI estimated from different observation/sun constellations. for observa-
tion/illumination details see Table 4.3. The white squares in the WAGING07 scene indicate the locations used
for the intercomparison plots in Figure 4.31 and 4.32.

good.
The stability of the estimates generally follows the trend already observed for the predictive

regression functions (Table 4.9), with stable retrieval performance for variables that have domi-
nating influence on one or more domains of the spectrum, and poor stability for variables having
only minor influence. For the variables of prime interest this affects especially the reliability of
Cdm estimates.

It was also studied if there was any relationship between anomalies in estimated canopy
variables and spectral deviations resulting from differing view/sun geometries (Figure 4.28).
However, for none of the variables, any consistent trend could be observed between spectral dis-
similarity and retrieval anomaly (not shown). This indicates that the canopy radiative transfer
model (SAILh) is capable of correctly mimicking the angular anisotropy observed in the sub-
sets and that the explanation for the divergence has to be sought elsewhere. Apart from the
possible causes already suggested in the previous paragraphs, it would be valuable to study the
relationship between retrieval bias and the classification results of the single subsets.

4.4.2 Influence of land cover classification on retrieval performance

The different sun/observation constellations of the HyMap flightlines allow us to study more in
detail the influence of radiometric discontinuity on the SPECL classification and on retrieval per-
formance. Figure 4.33 shows the SPECL classification results of the three intersecting subsets.
It can be seen that, despite the nadir normalization of the reflectance data prior to classification,
still significant anomalies exist between the different observation geometries. There appears to
be some confusion especially between average and bright vegetation, and for canopies where
the background has a moderate influence. Classification of surface types belonging to the latter
category vary from mix soil/vegetation to dark and average vegetation which, for example, is
visible for example in the southwestern and northeastern part of the subset. Similar classifica-
tion bias dependent on changing view/sun geometry was observed by (Beisl, 2001), who found
a decreasing accuracy with increasing solar zenith angle.

The effect of classification anomaly on estimation accuracy of LAI and Cab is shown in
Figure 4.34 which shows the relative deviation as a percentage (rD) between WAGING07 and
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Figure 4.31: Comparison of leaf variable estimates from from 3 HyMap scenes with varying view/sun geometry;
Cab = leaf chlorophyll a+b content, Cw = leaf water content, Cdm = leaf dry matter content, N = leaf
mesophyll structure parameter. Error bars indicate the variation of the variable within the 5×5 pixels window.
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Figure 4.32: Comparison of canopy variable estimates from 3 HyMap scenes with varying view/sun geometry;
LAI = leaf area index, ALA = average leaf angle, HS = hot spot parameter, BS = soil brightness parameter.
Error bars indicate the variation of the variable within the 5×5 pixels window.
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WAGING13WAGING07 WAGING14

unbiased

Figure 4.33: Results automatic SPECL classification of nadir-normalized HyMap data of June 30, 2003. The
image at the lower right shows the areas (white) that are categorized into the same class for all 3 subsets.

WAGING144. It appears that deviating results are strongly correlated to classification ambi-
guities between average vegetation and bright vegetation. This is somewhat surprising as these
classes show a broad overlap in parametrization of the LUTs. The answer has to be sought
in the low spectral response of the dense canopies belonging to the latter class, leading to less
stable LAI predictions and, as a consequence, to an altered covariance decription. As can be
observed in the figure, classification confusion between classes with a soil fraction (e.g., the two
fields in upper right and the lower left corners of Figure 4.33) is almost completely resolved dur-
ing processing and does not show higher deviations than unambiguously classified areas. This
contrasts with the results found at ground level for which estimates were least consistent for the
classes dark vegetation and mix soil/vegetation.

Figure 4.35 shows the complication of the SPECL based inversion scheme in the case of
smooth gradual reflectance shifts observed within a single field. In this case, one and the same
field is classified into 3 different classes. The crisp classification poses a large unnatural jump in
LAI-values at the transition from one class to the next. Although the characterization of local
variance presented in Equation 3.14 is able to reduce some smaller attribution errors, larger
systemtic artefacts, such as the ones posed by gradual transitions, are only partly compensated.

4.4.3 Inconsistencies and benefits introduced by the predictive regression functions

In Figure 4.30, displaying the spatial distribution of LAI estimates for flightline WAGING13,
some horizontally structured artefacts could be observed for fields with high LAI values (center

4rD = |WAGING07−WAGING14|
WAGING07

× 100%
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LAI Cw Bias class 3/4

0

60% 110%

0

Figure 4.34: Correlation between biased classification results and deviations in LAI and Cw retrievals. The
images show the relative absolute deviations between WAGING07 and WAGING13. The white areas in the
right image indicate the parts where classification shows confusion between class 3 (average vegetation) and
4 (bright vegetation).

of image). It seems that the origin of these artefacts lies in the jump of prior estimates from one
view interval to the next, and occur specifically at locations with high a priori estimates of Cab
and LAI. The reason why they happen in particular for these combinations, has to be sought
in the saturating signal occurring at high variable values. Accordingly, the predictive regression
functions are highly susceptible to small changes in reflectance. Nevertheless, inconsistencies be-
tween adjacent view intervals amount only a few percent and do no not occur for all transitions
and variables (Figure 4.36). Surprisingly, some of the anomalies in the final results are larger
than for the prior estimates themselves, and do not occur between one interval and the next, but
lie at the transition itself. Apparently, this effect is induced by the increased variance within
the predefined local window in the cost function. While some transitions are emphasized, most
anomalies completely disappear so that jumps between view angle intervals that were present in
the prior estimates, are no longer visible.

Even if the inclusion of prior estimations sometimes poses some hurdles, integration of such
information, and especially the covariance description based on this, remains important, par-
ticularly for the reduction of the ambiguity between different variables in the solution. This
had already been observed at ground level and is confirmed by Figure 4.37 which shows the
relationship between LAI and ALA for all vegetation pixels in subset WAGING07 for the prior
estimates based on predictive regression equations (left) and for the final estimates based on
RTM inversion which includes the covariance between the model variables (right). Aside from
reducing the ambiguity between the estimates, the final estimates seem to decouple the estimates
from classification results, a trend that is still very well visible for the prior estimates. A similar
reduction of ambiguity, although not as obvious, was observed for the combinations LAI −Cab
and Cab−ALA (not shown).
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Figure 4.35: Example of effect of land cover classification and inclusion of local variance on variable retrieval.
The CIR image shown at the upper left is characterized by gradual spectral changes (lower left). The crisp
SPECL classification (2nd image on top row; for legend see Figure 4.33) leads to unnatural transitions in
retrieved LAI (3rd image top row). Introducing local variance in the covariance matrices only partly polishes
these artefacts (4th image top row). This is elucidated by the LAI profile taken along the line indicated by
the arrow (lower right).

75

0
Cab [µg/cm2]

0.05

0
Cw [g/cm2]

Figure 4.36: Prior estimates of Cab, Cw, and LAI for flightline WAGING13

4.4.4 Validation at test sites

4.4.4.1 Observed patterns

In the previous subsections, several general tendencies concerning the variable estimates were
highlighted. Major concern were the anomalies in estimates between different view/sun constel-
lations in cases where bias occurred between land cover class 3 (average vegetation) and 4 (bright
vegetation). This bias is also present for MEA1, one of the validation fields considered in this
study. Figures 4.38 and 4.39 show for flightline WAGING07 the results that were obtained at
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Figure 4.37: Relationship between estimates of LAI and ALA for prior estimates (left) and final RTM inversion
results (right) of subset WAGING07. The density of the samples ranges from single points (green) to dense
(dark red) (n=85311).

the 3 test fields indicated in Figure 4.3 for leaf and canopy variables, respectively.

Leaf variables Cab estimates are highest for MEA1, a result that is expected given the high
vitality of this field. On average, values for MEA2 seem too high, knowing that this field contains
a considerable fraction of harvest remnants and stubbles. Uncertainties in predicted Cab are
relatively row, a result that is in accordance with the high canopy spectral response to this
variable and with the stability of the estimates over several model runs (Figure 4.24). The
tendency in Cw estimates is opposite to what one would expect, with higher values at MEA2
than at the fields with vital, green vegetation. While for the first field estimations are in line
with the measured values, MEA1 and PAS seem to suffer from underestimates. For most pixels,
Cdm seems in good agreement with the field measurements, whereas for part of MEA1 they
seem quite high. Little is known about the accuracy of Cbp estimations, although uncertainties
are very high. The black areas coincide with the classes for which this variable was fixed at zero.

Canopy variables Patterns observed for LAI match quite well expectancy, although in the
length direction of MEA1 they seem to drop off to values that are too low for this field. Uncer-
tainties, are on average between 20 and 30% with a very irregular distribution for the pasture,
which probably reflects the patchy vegetation structure of this land cover type. ALA is highest
for MEA2. Although this coincides with the erectophile structure of the cut meadow, there also
seems to be a moderate inverse correlation between ALA with LAI, a tendency that already had
been observed in Figure 4.37. Uncertainty for ALA estimates is low. The uniform distribution
of the HS parameter concurs with the homogeneity of the vegetation species, although values
seem somewhat high. However, too little is know about the actual values of this variable to
draw any stakeholding conclusions. Trends for the soil brightness parameter BS seem to be in
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Figure 4.38: Spatial distribution at MEA1, MEA2, and PAS of leaf variables estimated from flightline WAG-
ING07. The left column shows the average estimated values µ, the right column shows the standard error σ
divided by µ and multiplied with 100%. For the exact delineation of the fields, see Figure 4.2.
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Figure 4.39: Spatial distribution at MEA1, MEA2, and PAS of canopy variables estimated from flightline
WAGING07. The left column shows the average estimated values µ, the right column shows the standard
error σ divided by µ and multiplied with 100%. At the lower left a true color composit of the HyMap data is
shown, at the lower right the SPECL classification results. For the exact delineation of the fields, see Fig. 4.2.
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line with expectations, given the low visibility of the soil in dense canopies.

Spatial incongruities Part of the trends in the patterns observed above reflect the anomalies
in classification results (Figure 4.39, lower left). Whereas discontinuities in MEA2 (class 2, 3,
and 6) are reflected in artificial jumps, especially in Cab and Cbp estimates, incongruity between
class 3 and 4, like observed in MEA1 and PAS, are reflected in aberrant transitions for LAI,
ALA, and BS. The higher degree of uncertainty at such transitions, as offered by the increased
variance of the prior estimates within the local window of 5×5 pixels, appears not to be able to
level out such transitions accurately enough. Nevertheless, the polishing character of the moving
window, in this case unsolicited, can be very well observed at the field boundaries of MEA1, in
particular for Cab, Cdm, and LAI.

4.4.4.2 Comparison with ground validation measurements

Absolute retrieval performance was tested by comparing the field validation measurements of
Cw, Cdm, and LAI based on destructive sampling (Section 4.2.2) with the average values of
a 2×2 pixels window around the measured GPS coordinate of each plot. The latter was done
in order to compensate for allocation uncertainties. Results of this procedure are presented for
each of the three observation/sun constellations (Figure 4.40 and Table 4.14). Error bars have
been omitted to allow for a clearer comparison.

The trends observed in the previous paragraphs already heralded the limited absolute ac-
curacy of the results: for all three different illumination/observation constellations and for all
variables, estimates are significantly less accurate than the ones obtained for the field spectrom-
eter based inversions (Cfr. Table 4.12). Part of the explanation for this reduced accuracy is
the mismatch between the field sample size of 1×1 m2 and the average HyMap pixel size of
5×5 m2. This, in combination with the fact that leaf area characterization was subject to high
uncertainties, is responsible for the disparity between estimated and measured LAI, especially
in the case of the highly heterogeneous pasture. But the consistent underestimation of Cw and
overestimation of Cdm indicate that the algorithm is subject to systematic deviations. It is
suggested that different sensor calibrations and offsets due to atmospheric correction cause this
shift. This is reinforced by the low spectral response induced by these variables, the reason for
which they receive little weight in the cost function.

The influence of radiometric shifts on retrieval performance of the single variables is demon-
strated by Figure 4.41 which for every variable (except for Cbp) compares the divergence between
the estimates based on HyMap data (flightline WAGING07) and the ASD spectra discussed in
the previous section. Comparison of the estimates clearly distinguishes between variables that
show consistent results among both sensor types (N , LAI, ALA, and HS) and variables that
show large fluctuation (Cab, Cw, Cdm, and BS). Especially for Cab, the HyMap data seem to
provide far more realistic results, whereas the ASD-based inversion results appear to be trapped
at the upper boundary of the range of variation defined in the LUT. The improved accuracy of
Cab estimates is confirmed by the findings of Vohland and Jarmer (2007) who found values for
grassland to range between 30-40 µg ·cm−2. Given the very limited spectral deviations in the VIS
previously shown in Figure 4.11, the high sensitivity of Cab estimates seems remarkable, but can
be well explained by the high sensitivity of this variable at high contents and the large weight
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Figure 4.40: Estimated versus measured Cw, Cdm, and LAI, based on HyMap scenes with differing view/sun
constellations: WAGING07, WAGING13, and WAGING14. Red asterisks = MEA1; blue squares = MEA2;
Green triangles = PAS. Error bars have been omitted to allow for a clearer comparison.

the visible domain receives in the cost function due to the incorporation of spectral covariance.

4.5 Conclusions

Extensive testing of the proposed automated CRASh approach provided a good insight into the
potential and constraints inherent to the approach itself, but also to radiative transfer model
inversion in general.
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Table 4.14: Accuracy of estimated Cw, Cdm, and LAI for 3 different observation/illumination conditions.
rRMSE = relative RMSE; AA = average accuracy; OA (overall accuracy) = the average of AA over the 3
variables.

Cw Cdm LAI

Flightline rRMSE [%] AA [%] rRMSE [%] AA [%] rRMSE [%] AA [%] OA[%]

WAGING07 35.6 69.7 43.3 60.8 46.1 63.9 64.8

WAGING13 46.7 55.3 61.8 37.3 36.5 68.2 53.6

WAGING14 47.5 63.2 50.6 51.5 57.3 59.9 58.2

Figure 4.41: Variables estimated from field spectrometer data versus estimates based on HyMap scene WAG-
ING07. Red asterisks = MEA1; blue square = MEA2; Green triangles = PAS.
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Generally, radiative transfer model inversion suffers from the limited spectral influence of
several variables in particular situations, and the saturating spectral signal occurring at high
biochemical concentrations and high LAI. In vigorous vegetation, spectral variations are domi-
nated by changes in chlorophyll concentration in the VIS and by LAI in the NIR-SWIR. Relative
water content in such canopy types fluctuate around 80% and deviations are only limited. The
influence of dry matter is broadly masked by those of canopy water. Nevertheless, and despite
the demonstrated very high collinearity of the leaf chemicals with LAI, at ground level both
Cw and Cdm were estimated with satisfying accuracy, especially for plots for which ground
validation measurements were accurate.

In contrast, the results obtained at image level were unsatisfying. The explanation for this
loss in accuracy in the first place has to be sought in scaling inconsistencies between the small
sample plots and the pixel size of 5×5 meters. A more intensive field sampling campaign is there-
fore required to extrapolate the results of the presented test case to the overall performance of
the approach. In addition, there was an increase of geometric uncertainties, of radiometric un-
certainties due to increased atmospheric path length, and of directional uncertainties resulting
from changing illumination/observation geometries and the attribution of different view angle
intervals. These sources of uncertainty, in turn, influenced the different components of the algo-
rithm such as the land cover classification, the predicted prior estimates, and the characterization
of spectral covariance. The characterization of spectral covariance appeared to play a decisive
role in redistributing the weights of the single wavebands in the radiometric cost function. The
emphasized weight received by the VIS makes the approach susceptible to radiometric uncertain-
ties in this domain. This is particularly true for green vegetation with high VIS absorption for
which small spectral changes can lead to large deviations in predicted chlorophyll concentrations.
Through the covariance terms, these discrepancies are propagated to the other variables. This
assumption is confirmed by the viable results obtained for the cut meadow, a canopy type that is
not subject to saturation of spectral sensitivity. It is therefore recommended not to use spectral
covariance in cases where no explicit information on the quality of the radiometric calibration
and atmospheric correction is available.

The land cover based inversion approach appeared to be a powerful tool in optimizing es-
timations for the observed canopy type and in reducing uncertainties related to the estimated
values. Nonetheless, the quality of the classification plays a decisive role for the accuracy that is
finally obtained. Classifications based on a single image face the difficulty of lacking information
about the phenological course of a canopy which hampers a subdivision based on crop types. As
a consequence the class specific LUT parametrization had to be kept general, thus impeding an
accurate regularization of the inverse problem. In this respect, spectral classification should be
combined with other classification techniques (e.g., texture based approaches and edge detection
algorithms) to improve demarcation of field boundaries and to eliminate unnatural transitions
at intra-field level.

The ultimate goal of this chapter, namely detecting progressive changes in water content,
was overshadowed by the instability of the approach, as presented above. Moreover, spectral
variations in the characterized meadows were mainly induced by morphological changes induced
by cutting and regrowth.

Nevertheless, the results presented in this chapter emphasize the importance of testing a
model for several view/observation geometries and different qualities of radiometric data. Even
if also at image level improved accuracy would have been obtained if the model had been fed
with better-defined a priori information measured during the field campaign, this was not the
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purpose of this chapter, as this thesis emphasizes on achieving maximum accuracy based on a
fully automated approach. Therefore, additional regularization should be explored, provided by
completely independent information sources. The next chapter will focus on including an addi-
tional independent information source, provided by the diverging behavior of angular anisotropy
of different land cover types.
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Chapter 5

Validating CRASh at satellite level:
estimating cotton leaf chlorophyll
content from multi-angular
CHRIS/PROBA observations

5.1 Introduction

Radiative transfer model inversion bears the potential of concurrently accounting for the multiple
elements responsible for canopy reflectance. However, the ill-posed nature of radiative transfer
model (RTM) inversion requires considerable regularization of the system in order to bring mul-
tiple solutions down to a minimum. Especially in situations where only little a priori information
on the canopy under observation is available, like in the case of an automated inversion, this
might constitute a severe limitation. The previous chapter showed that significant consolidation
of the results could be obtained by introducing a land cover classification and prior information
on the variables. Nevertheless, neither the high dimensionality of hyperspectral data, nor the
use of vegetation indices provided sufficient regularization in all situations, mainly due to the
low radiometric sensitivity to several variables and the resulting complicated interaction between
the various variables that were left free during inversion. Therefore, additional regularization is
required in order to obtain a data quality that is accurate enough to be reliably incorporated
in spatially distributed process models. Multi-directional observations of a single target can
provide such supplemental regularization.

5.1.1 Multi-angular remote sensing

Several studies showed that multi-angular observations of reflectance anisotropy provide an in-
dependent and complementary information source to the spectral signature of a canopy (Bacour
et al., 2002b; Beisl, 2001; Gemmell, 2000). They have proved to be diagnostic for structural
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surface properties and are helpful to complement the spectral measurements for a complete and
robust characterization of a vegetation canopy (Bacour and Bréon, 2005; Koetz et al., 2006).
Spectrodirectional anisotropy is known to be particularly large for canopies having a complex 3-D
structure and intermediate density such as open coniferous forest stands (Koetz et al., 2006; Wid-
lowski et al., 2004). Also a row-structured crop like cotton could give rise to increased anisotropy
since the fraction of the spectrally contrasting soil background that is viewed by the sensor
strongly varies with view zenith angle. Due to the complementary effect between the various
input variables in RTM inversions, improved characterization of structural elements should en-
hance estimations of other variables, such as foliage biochemical components, as well.

The aim of the current chapter is to explore the benefit of introducing the directional data
dimension in RTM inversion in addition to the hyperspectral dimension already addressed in
the previous chapter. For this purpose, data originating from the CHRIS (Compact High Res-
olution Imaging Spectrometer) sensor was exploited for its potential of assessing chlorophyll
concentration in cotton leaves. To date, the CHRIS onboard the PROBA (Project for On-board
Autonomy) platform is the only spaceborne initiative providing hyperspectral and multi-angular
observations of the earth surface at high spatial resolutions (Barnsley and Settle, 2004). In sum-
mer 2006, the CHRIS sensor collected multiple viewing angle data of an area covered mainly
with cotton and rice fields in the Khorezm region of Uzbekistan. In this region, a long long-
term, interdisciplinary ZEF/UNESCO pilot research project for the economic and ecological
restructuring of land- and water use is carried out1.

5.1.2 Land and water use restructuring in the Uzbek Khorezm region

The Khorezm region in the Uzbek part of the Aral Sea Basin is characterized by irrigation-based
agriculture. Throughout the years, the region has increasingly suffered from the consequences
of unsustainable use of natural resources, pesticides, and fertilizers. This has led to a variety
of severe ecological and economical problems, such as salinization, over-fertilization, soil and
water pollution, and as a consequence, higher expenses and lower incomes for the farmers. Crop
produce is often far from optimal, partly due to inefficient use of fertilizers. This is also the case
for cotton (Gossypium hirsutum L.), the dominant crop in the region. The application recom-
mendations that were established during Soviet times are often not adapted to the prevailing,
site-specific environmental conditions and recent plant varieties.

Fertilizer trials carried out in the region showed that Nitrogen (N) is the most limiting nutri-
ent in Khorezm soils (Kienzler, In prep.). Therefore, maps showing the spatial distribution of N
status in cotton plants are an important information basis for the local farmers which, combined
with knowledge on soil condition and plant-nutrient uptake behavior, would support adjusting
fertilizer inputs according to the actual and site-specific N requirements and farmers’ individual
crop production strategies (Ruecker et al., 2006).

5.1.3 Imaging spectroscopy in cotton studies

Fertilizer trials and crop simulation models in support of detecting nutrient deficits have been
carried out at several test plots in the region (Kienzler, In prep.). In contrast, satellite-based

1http://www.khorezm.uni-bonn.de/
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approaches have the potential to rapidly assess the intra-field crop nutrient status over a larger
region. Nitrogen is known to strongly correlate with chlorophyll content, a quantity that can
be well detected using various remote sensing approaches (Baret and Fourty, 1997b; Ruecker
et al., 2006). Nevertheless, nutrient stress anomalies not only manifest themselves in premature
senescence, as evidenced by yellowing or chlorosis of older leaves, but also affect crop struc-
tural variables such as LAI and biomass development (Fridgen and Varco, 2004; Zarco-Tejada
et al., 2005b). Concurrent estimation of canopy structure variables and biochemical constituents
may therefore serve as a more robust indicator of hampered vegetation development.

Numerous studies addressed the potential of multi- and hyperspectral remote sensing ap-
proaches in assessing cotton quality and yield estimates, either based on stepwise multiple re-
gression (Thenkabail et al., 2000), broadband and narrow band vegetation indices (Thenkabail
et al., 2000; Zarco-Tejada et al., 2005b; Zhao et al., 2005) or partial least regression (Fridgen
and Varco, 2004; Read et al., 2002). Within-field variability of yield and growth development
can be well detected using high spatial resolution hyperspectral and multispectral remote sens-
ing data or false color infrared aerial photography (Plant et al., 2000; Yang et al., 2001; Yang
et al., 2003; Zarco-Tejada et al., 2005b). Identifying regional anomalies of specific nutrient
stresses appears more difficult due to the combined impact of nitrogen stress on both biochemical
and structural canopy composition. In addition, observed anomalies, for example in chlorophyll
content, are not always a direct result of N deficiency but can be just as well induced by other
stress factors (Fridgen and Varco, 2004).

Several studies, using statistical approaches and conducted at leaf level, achieved high corre-
lations between vegetation indices and leaf chlorophyll or N content (Fridgen and Varco, 2004;
Tarpley et al., 2000). At plant level, reported results were usually less accurate than at leaf scale
(Zhao et al., 2005). Based on field spectrometer measurements conducted at fertilizer trials,
Read et al. (2002) found a good correlation between the R415/R695 ratio and chlorophyll a+b
content in cotton plants. However, practical use of this ratio is hindered by the absence of the
415 nm band in most imaging spectrometer systems and the susceptibility of this channel to
atmospheric influences. Up to date, only few attempts have been reported on the applicabil-
ity of statistically based methods for the spatially distributed detection of nutrient deficits in
cotton plants under real crop production conditions. Such farmer-managed fields usually show
less intra-field variation than fertilizer plots due to more uniform management, making it more
difficult to establish clear correlations (Grillenberger, 2007; Ruecker et al., 2006).

Thenkabail et al. (2000) and Zhao et al. (2005) reported the importance of center wavelength
position and band width on the performance of the proposed statistical relationships between
reflectance data and biochemical compositions. In this regard, there is general agreement on the
added value of hyperspectral data for the detection of biochemical concentrations in cotton leaves
(Zarco-Tejada et al., 2005b). Nevertheless, the limitation of statistical approaches in addressing
nitrogen and chlorophyll status, is the implicit assumption that spectral variations in regions
sensitive to leaf pigments (i.e., the blue and red domains) are solely induced by changes in the
concentrations of these foliage biochemicals. However, the strong absorption in these regions is
also governed by other foliage and structural properties (Cfr. Chapter 2). Simultaneous assess-
ment of the other variables is therefore necessary for an accurate retrieval of leaf chlorophyll
content and N at plant, field, and regional level. Such a simultaneous assessment can be offered
by radiative transfer model inversion.
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5.1.4 Objectives

The main objective of this chapter is to discover to which degree the automated CRASh approach
proposed in Chapter 3 is capable of estimating chlorophyll content in cotton leaves from hyper-
spectral multi-angular CHRIS observations. Although featured spatial resolution and spectral
coverage are different from the HyMap sensor presented in the previous section, the anisotropy
contained in the CHRIS data is said to contain a similar amount of uncorrelated information
as the full resolution HyMap (Verhoef, 2007). RTM inversion based on multi-angular data
should therefore be able to provide accuracies that are comparable with the ones obtained in
the previous section. To gain a more comprehensive insight into the potential offered by the
multi-directional data, the following specific objectives were defined:

• Quantifying the spectral anisotropy present in the data and testing the potential of the
radiative transfer model (PROSPECT+SAILh) in reproducing this anisotropy.

• Assessing the accuracy of chlorophyll a+b and LAI estimations obtained by inversion of
the single view directions.

• Identifying the combination of view angles that provide maximum accuracy of the solution.

• Evaluating the degree to which retrieval accuracy can be improved when, based on the
current RTM, a priori knowledge from the field experiments is included in constructing
the LUTs.

5.2 Study site and data

5.2.1 Study site Khorezm

The study area is located south of the Aral Sea basin, at the lower Amu Darya River, in the
Khorezm region of Uzbekistan (Figure 5.1). This region is situated at an altitude of ca. 96 m
above sea level, and characterized by an extremely continental arid to semi-arid climate with
large daily and seasonal temperature differences. The monthly averaged temperatures are 35-
36◦C in July and dominated by frost with temperatures down to -20◦C in January. Precipitation
rates are very low with an average of 92 mm per year which, in combination with the high summer
temperatures, permits only irrigated agriculture. The inappropriate use of water has led to a
high salinisation of water and soils, a problem often encountered in irrigation-based agriculture
in arid and semiarid landscapes (Bastiaanssen and Ali, 2003). Cotton is the most important
crop in the region, covering in recent years ca. 50% of the irrigated land, while rice, wheat, and
other crops have a markedly smaller area share (Djanibekov, 2007).

Validation of the CHRIS-based estimates of chlorophyll and LAI was performed on the Amir
Temur Shirkat collective farm on four selected fields with the Khorezm-127 cotton variety, which
were intensively sampled between July 11-18, 2006 (Figure 5.1). During the growth season, the
fields received similar amounts of N fertilizer and water while irrigation was always applied
within a few days after fertilization (Table 5.1). Due to varying environmental conditions, as
parametrized by different soil fertility, or bonitet1 levels, large inter- and intra-field variabilities
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Figure 5.1: Location of the Khorezm region in Uzbekistan (left) and site overview as observed by PROBA-
1/CHRIS mode 5 imagery on July 16, 2006 (bands 8, 4, 2). The red polygons indicate the validation fields
used in this study which from the northwest to the southeast are numbered in ascending order C1-C4 (right).
By courtesy of Gerd Ruecker.

Table 5.1: Crop management specifications of validation fields.

Field Planting date Fertilisation date Fertilizer amount irrigation date Bonitet level Row azimuth [◦]

C1 11.04.06 04.05.06 400 kg N/ha 09.05.06 8 31

14.06.06 200 kg N/ha 16.06.06

18.07.06 200 kg N/ha 20.07.06

C2 28.04.06 10.07.06 400 kg N/ha 15.07.06 5-8 34

- - 20.07.06

C3 14.04.06 10.05.06 200 kg N/ha 15.05.06 5-8 34

02.06.06 200 kg N/ha 04.06.06

05.07.06 200 kg N/ha 10.07.06

01.08.06 200 kg N/ha 04.08.06

C4 20.04.06 09.05.06 400 kg N/ha 12.05.06 5-7 32

07.06.06 200 kg N/ha 08.06.06

07.07.06 200 kg N/ha 10.07.06

in plant development were observed, which determined to a large extent the fraction of exposed
bare soil between the rows (Figure 5.2). The planting direction of the single cotton rows was
always orthogonal to the main roads and had an azimuth direction between 31-34◦.

1The bonitet parameter defines the potential soil fertility class and is based on soil texture and depth (Kuziev,
1989). Bonitet is scaled from 1-100, with 100 representing maximum fertility.
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Figure 5.2: Examples of cotton canopies encountered in the study area at the time of satellite overpass. The
left photo was taken in field C1, the right photo in C4. Photos by Jörg Grillenberger

5.2.2 Biometric sampling

5.2.2.1 Sampling scheme

The validation fields in Amir Temur Shirkat were sampled for leaf chlorophyll content and LAI
within two days before or after the satellite image acquisition. An approximate X-shaped sam-
pling pattern was followed with sampling points ca. every 15 m (Figure 5.4). It was ascertained
that measurements were taken at least 20 m from the field boundaries in order to avoid that
measurements would fall into pixels constituting a mixed signal of adjacent fields. Each mea-
surement point was marked using a hand-held non-differential GARMIN GPS 12 receiver. A
total number of 46 point measurements was taken on each field.

5.2.2.2 Chlorophyll

Rapid non-destructive sampling of leaf chlorophyll was obtained with the SPAD-502 chlorophyll
meter (hereafter simply called SPAD; Minolta, Inc.). The instrument calculates an estimate of
the relative chlorophyll content based on the absorbed fraction of red and near-infrared light
emitted by the instrument. To be able to study the contribution of each leaf layer to the remote
sensing signal, SPAD readings were taken at the different shoot levels of the plant, counting
from the top downwards. For each level, the final SPAD values were constituted by the average
of 3 measurements.

The SPAD instrument was calibrated for plant variety and local growth conditions in order
to obtain a chlorophyll a+b content that was comparable with the ones retrieved from remote
sensing observations (Cab; µg · cm−2). Calibration was based on 100 randomly sampled leaves
from 24 cotton plants of the Khorezm-127 variety that were cultivated on a fertilizer trial plot
near Urgench University (Kienzler, In prep.). The leaves were selected in such a way that a
wide SPAD range (3.3 - 70.2) was covered. Five SPAD readings were taken from each leaf
before being harvested. The collected leaves were placed in an iced, air-sealed container and
transported to the laboratory where chlorophyll and carotenoid concentrations were determined
after (Lichtenthaler, 1987). The pigment concentrations were converted to µg · cm−2 by relating
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Figure 5.3: Regression fit between SPAD and laboratory measurements of chlorophyll a+b (Cab).

the concentration to the leaf area of the sample. A relationship between SPAD and laboratory
measured Cab was established using a exponential regression fit with correlation coefficient (R2)
of 0.92 and a root mean square error of 7.0 µg · cm−2 (Figure 5.3):

Chlorophyll a+ b [µg · cm−2] = 0.066 · SPAD1.6216 (5.1)

Equation 5.1 was used to convert the SPAD values measured at the validation fields into Cab.
Errors of the above equation were propagated to the Cab estimates using a relative RMSE2 of
15.8%.

5.2.2.3 Leaf area index

LAI was measured at each sampling location using a LAI-2000 plant canopy analyzer (LICOR,
2000). The LAI-2000 provides an effective plant area index including green foliage and stems
rather than just the green leaf area per unit ground surface area. For a more detailed description
of the instrument and the measuring principle, the reader is referred to Section 4.2.2.2.

LAI was measured in four directions around the stem of the same plants that had been
used for the characterization of chlorophyll content. To upscale these measurements to the level
of the entire canopy, and to account for the intra-row spaces without vegetation cover, digital
nadir-taken photographs of each sampling location were classified into a green-vegetation and
a background fraction representing the uncovered soil between the rows. The fraction of plant
material obtained in this way was in turn used to calculate LAI at canopy level (LAIc) assuming
a linear relationship between vegetation cover and LAI:

LAIc = LAIp · fCover (5.2)

2rRMSE = RMSE / mean of predictions
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Table 5.2: Descriptive statistics of cotton canopy measurements, summarized per validation field. Shown is
the average for value and, in brackets, the coefficient of variation measured in each field. Cab and SPAD
values are shown for the top layer leaves (TL), the bottom leaves (BL), and for the average of all leaf layers
(AL).

Variable Unit C1 C2 C3 C4

SPAD (TL) unitless 36.6 (19.4%) 34.1 (16.7%) 38.3 (12.4%) 34.9 (14.8%)

SPAD (BL) unitless 46.2 (19.8%) 38.6 (17.5%) 42.8 (13.2%) 41.4 (12.6%)

SPAD (AL) unitless 42.5 (15.9%) 35.7 (14.7%) 41.3 (7.9%) 37.8 (9.6%)

Cab (TL) µg · cm−2 23.0 (31.4%) 20.4 (26.9%) 24.6 (20.7%) 21.2 (23.2%)

Cab (BL) µg · cm−2 34.8 (14.6%) 25.0 (27.6%) 29.4 (21.3%) 27.9 (20.7%)

Cab (AL) µg · cm−2 29.2 (11.3%) 22.0 (11.6%) 27.6 (16.0%) 24.0 (15.0%)

LAI m2/m2 1.35 (39.9%) 1.01 (55.0%) 1.61 (34.5%) 1.79 (30.2%)

n samples 44 43 46 46

with LAIp being the LAI measured below the plant with LAI-2000, and fCover the fractional
cover of green foliage estimated from the digital photographs. This procedure was repeated for
all point measurements. The eventual uncertainty of the LAI measurements was calculated
by multiplying the standard error of the average LAI-2000 measurements by the fraction of
uncovered soil.

Table 5.2 shows some descriptive statistics of the canopy measurements. SPAD and Cab are
shown for the top level leaves (TL), the leaves found at the bottom level (BL) and the average
of all leaf layers (AL). Measured SPAD and Cab are significantly higher for the bottom leaves
than for the top level leaves. Although this trend is consistent with earlier results obtained
by Ruecker et al. (2006), it does not coincide with the general assumption that upper leaf
layers generally show higher chlorophyll contents per leaf area (Vohland and Jarmer, 2007).
Cotton plants appear to develop according to a complicated growth pattern with allocations of
high chlorophyll concentrations possible in every layer (Kienzler, pers. comm.). Within-field
variability is significantly higher for LAI than for Cab, while the latter also shows reduced inter-
field variability. Spatial distributions of measured Cab (averaged over all shoot levels) and LAI
are displayed in Figure 5.4. The figure reveals that the relatively low values of Cab and LAI
measured on cotton field C2 coincide well with the less intense green (for Cab) and red (for
LAI) colors of the background image, indicating lower absorption of red light and reduced NIR
reflectance, respectively. Similarly, the intenser background colors observed for C3 and C4 are
consistent with the higher measured levels of both variables, whereas C1 constitutes intermediate
levels.

5.2.2.4 Additional measurements in support of RTM inversion

Several other biochemical and biophysical variables were measured in order to be able to employ
realistic ranges of variation in the radiative transfer model simulations (Section 5.5). These
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Figure 5.4: Spatial distribution of the sampling points and the measured Cab (above) and LAI (below) values.
The sampling points are projected on a true color (red = band 8, green = band 4, blue = band 2) and a false
color composite (red = band 25, green = band 8, blue = band 4) of the CHRIS nadir observation of July 16,
2006, for Cab and LAI respectively.

variables were measured on fertilizer trial plots near Urgench University, which were represen-
tative for the wide range of vitality rates of the Khorezm-127 variety that could be potentially
encountered in the area.

Leaf dry matter (Cdm; g · cm−2) and leaf water content (Cw; g · cm−2) were sampled for
a selected number of leaves (n=33). First, the area of the single leaves was determined using a
Li-3000 planimeter (Li-Cor. Inc., Lincoln, Nebraska). After determining their fresh weight, the
scanned leaves were oven-dried at 70◦C for 36 hours. Differences between fresh and dry weight
in combination with the leaf surface facilitated the calculation of Cw and Cdm according to
Equations 4.2 and 4.3 introduced in Chapter 4.

Canopy height and and leaf width were obtained to allow for the calculation of the hot spot
parameter HS, which is equal to the ratio of the correlation length of leaf projections in the hor-
izontal plane and the canopy height (Verhoef and Bach, 2007). A summary of the additionally
measured variables is given in Table 5.3.
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Table 5.3: Variables measured in support of RTM inversion.

Variable Unit mean σ min max

Cw g · cm−2 0.0265 0.0153 0.0024 0.0852

Cdm g · cm−2 0.0093 0.0052 0.0011 0.0284

Canopy height cm 80 51 108

Leaf width cm 13 10 15

Table 5.4: Observation and illumination details of the CHRIS imagery used in this study.

Date Nominal θv [◦] Actual θv [◦] ψv [◦] θs [◦] ψs [◦] ψrel [◦] Time (UTC)

16.07.06 +55 48.31 6.77 23.4 145.6 138.8 07:06:32

+36 27.44 359.54 146.1 07:07:21

0 8.01 224.29 78.7 07:08:10

-36 32.96 203.20 57.6 07:08:59

-55 51.9 199.01 53.4 07:09:48

5.2.3 CHRIS multi-angular satellite observations

5.2.3.1 Sensor and view characteristics

On July 16, 2006, spectrodirectional data of the test site was collected with the CHRIS sensor
onboard the PROBA platform (Barnsley and Settle, 2004). The CHRIS instrument is able to
acquire observations of one and the same target at 5 different view angles, two in the forward
looking direction, one at nadir, and two in backward viewing direction. Due to the necessity of
sideways pointing, nominal and actual observation angles usually deviate a few degrees (Table
5.4). Although the angular resolution of CHRIS is small compared to other spaceborne multi-
angular sensors such as POLDER (14 view directions) or MISR (9 view directions), the sensor
distinguishes itself from the others by its high spatial and spectral resolution (up to 17 m, and up
to 63 bands in the VNIR, respectively). Another unique feature of the instrument is its capability
of observing the surface in different spectral and spatial modes according to the requirements of
the user.

The scenes recorded for this project were collected using the half swath mode (Mode 5),
imaging an area of 7×7 km2 (744×748 pixels) with the for CHRIS highest possible spatial
resolution of 17 m at nadir. For the two extreme view angles (±55◦), resolution deteriorates by
approximately a factor of two. Mode 5 covers the spectral range between 442 to 1025 nm with
a total of 37 spectral bands having a full-width-half-maximum (FWHM) of 6-30 nm (Appendix
F). The observation details of the data set used in this study is summarized in Table 5.4. Figure
5.5(a) shows the position (view zenith and azimuth) of the observations relative to the test fields.
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(a) (b)

Figure 5.5: (a) Polar plot of CHRIS image acquisition and illumination geometry as of July 16, 2006 (red
squares). The red squares indicate the position of the observation (in polar coordinates) relative to the sensed
area in the origin. In the north (N) ψv=0, in the East (E) ψv = 90◦, and so on. (b) Overlay of georeferenced
multi-angular CHRIS images. Blue scenes: θv,nominal = +/− 55◦; green scenes: θv,nominal = +/− 36◦; red:
θv,nominal = +/− 55◦. The yellow dots indicate the position of the field sampling locations, the black dots,
the positions of the total of GCPs available for georeferencing. By courtesy of Richard Fuchs.

5.2.3.2 Preprocessing

Image enhancement and georeferencing All data were first corrected for bad lines and strip-
ing using the ESA HDFclean V2 algorithm (Cutter, 2006). Subsequently, the images were
georeferenced using a non-parametric approach based on ground control points (GCPs). For
this purpose, the coordinates of several prominent infrastructures, such as road crossings and
bridges over wider irrigation channels, within the expected coverage of the images were marked
using a non-differential hand-held Garmin GPS 12 receiver while the direct vicinity of the vali-
dation fields was more densely sampled.

The entire scenes were projected into the local Gauss Kruger zone 11 (Pulkova 1942) coordi-
nate system using a second degree polynomial transformation and nearest neighbor interpolation
(Figure 5.5(b)). GCPs were iteratively added until a minimum RMSE of the projected GCPs
was obtained. The total number of used GCPs depended on view geometry and ranged from
16-28 (Grillenberger, 2007). Due to the relatively small size of the fields, a good image to image
registration was required to allow for a reliable intercomparison between the different view an-
gles. Thus, image to image registration was performed for the area around the test sites taking
the nadir observation as a reference and using a 1st degree polynomial fit based on 10-15 image
based GCPs. The original data taken at extreme view angles were resampled to a pixel size
of 17×17 m2 in order to match the observations taken at nadir. The final uncertainty (total

151



5.3. Quantifying spectral anisotropy

RMSE) of the georectification process ranged from 0.33-0.70 pixels in X- and Y-direction.

Vicarious calibration and atmospheric correction Since standard calibration coefficients ac-
companying the data did not yield satisfying accuracy, vicarious calibration was performed si-
multaneously to atmospheric correction using the inflight calibration option in ATCOR (Richter,
2007b). For this purpose, spectral properties of a homogeneous bare surface of approximately
500×200 m2 were measured with a portable Fieldspec PRO FR spectrometer (Analytical Spec-
tral Devices, Inc.). In total, 100 bare fiber (FOV = 25◦) radiance measurements were taken and
directly converted into reflectance by taking a SpectralonTM panel as a white reference. The
single spectra were first corrected for the spectral properties of the applied Spectralon panel,
deviations of the white reference from the 100 % reflectance line, and the spectral jump between
the VNIR and the SWIR1 detector, using an additive correction and taking the SWIR1 detector
as a reference (Dorigo et al., 2006). Subsequently, average reflectance, standard deviation, and
minimum/maximum reflectance were defined and resampled to match the sensor characteristics
of CHRIS.

Atmospheric correction was performed using a rural aerosol type, a water vapor column of 2
cm, and an average visibility of 41 km. Flat terrain was assumed and ground elevation was fixed
at 100 m above sea level. Of the initial set of 37 bands, 6 bands subject to increased calibration
uncertainty were excluded from further processing, including band 1 (442.5 nm), 2 (490.4 nm),
3 (530.2 nm), 19 (759.7 nm), 20 (766.8 nm), and 30 (930.4 nm).

5.3 Quantifying spectral anisotropy

5.3.1 Observed directional signatures

According to the physical mechanisms of photon transport in vegetation canopies, spectral
anisotropy should be particularly strong in ranges of high vegetation absorbance such as the
visible blue and red chlorophyll absorption bands where spectral contrast between canopy con-
stituents and background is most pronounced. In the highly reflective near-infrared bands, mul-
tiple scattering processes effectively reduce contrast between shadowed and illuminated canopy
components resulting in lower anisotropy effects. In addition, BRDF effects are most pronounced
in erectophile canopies and are reduced in planophile surfaces (Sandmeier et al., 1998; Sandmeier
and Deering, 1999). According to these principles, one would expect increased anisotropy effects
in the visible channels for the open, row-structured cotton canopies where the bright, saline soil
background should lead to a bell shape pattern with maximum reflectance at nadir (Widlowski
et al., 2004).

Figure 5.6 shows the average HDRF measured at each test field for the green, red, and NIR
channels. Despite the fact that the observation and solar azimuthal plane exhibit an angle be-
tween and 33.9 and 78.7◦, significant anisotropy can be observed. In the visible wavebands, the
expected bell shape, however, cannot be observed. In contrast, angular signatures in the visible
wavelengths show a quasi linear shape with maximum HDRF in the view direction closest to
the hot spot geometry (i.e., θv = −33.0◦), whereas NIR reflectance shows a slightly bowl shaped
pattern. The observed shapes are typical for homogeneous vegetation surfaces and are conform
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Figure 5.6: Green, red, and NIR HDRF for various fields at 5 different view angles. Red = test field C1, green
= C2, blue = C3, orange = C4. The error bars indicate the range of variation encountered in the respective
field. For reasons of comparison also the HDRF for a neighboring rice field (black triangles / dashed curve)
and bare soil (black squares / dashed-dotted curve) are shown.

to what others found for either measured (Widlowski et al., 2004; Verhoef and Bach, 2007) or
modeled anisotropy in structurally homogeneous canopies with rather planophile leaf angle dis-
tributions (Pinty et al., 2004b; Verhoef and Bach, 2007). This finding suggests that, despite the
row structure of cotton, in the considered case it is appropriate to use the 1-D SAILh model.

To give an indication of directional anisotropy of the cotton fields compared to other land
cover types in the area, the spectral variation of a bare soil and a rice paddy in the immediate
vicinity of the cotton fields are shown too in Figure 5.6. Soil anisotropy shows a moderate bowl
shape in all wavelengths, with maximum reflectance at the view constellation closest to the hot
spot. This is exactly in line with the observations made by Verhoef and Bach (2007) and is
explained by the fact that on a smooth surface, backward scattering is stronger than forward
scattering. The observed directional soil anisotropy is an important recognition with respect to
the SAILh parametrization used in this study, which assumes soil reflectance to be anisotrope,
and may have a considerable effect in the visible part of the spectrum at low vegetation covers
where spectral contrast between vegetation and soil is high. The rice paddy shows a directional
behavior that for the visible wavelengths is very similar to the ones observed for the cotton fields,
with the only exception being the reduced absolute reflectance, which is ascribed to the increased
vegetation density as reported by field observations. In contrast, directional behavior observed
in the NIR is very distinctive from that of the cotton fields, showing a pronounced bowl shape.
The bowl shape in the NIR is characteristic for vertically oriented canopy structures, a result
that coincides very well with the observed erectophile structure of rice (Pinty et al., 2001; Pinty
et al., 2004b; Verhoef and Bach, 2007; Widlowski et al., 2006b).

To visualize directional anisotropy for every waveband, the anisotropy index (ANIX) was cal-
culated, which is defined as the ratio between the maximum and minimum reflectance values in
the principal plane (or defined azimuth plane) per spectral band (Sandmeier et al., 1998; Sand-
meier and Deering, 1999):

ANIX(λ,Ω) =
Rmax(λ)
Rmin(λ)

[dimensionless] (5.3)
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Figure 5.7: Anisotropy index (ANIX; left) and average nadir reflectance (right) for six different fields. Red =
test field 1, green = test field 2, blue = test field 3, orange = test field 4. The error bars indicate the range
of variation encountered in the respective field. For reasons of comparison also the ANIX and reflectance of a
neighboring rice field (dashed curve) and bare soil (dashed-dotted curve) are shown.

Rmax is the maximum bidirectional reflectance factor and Rmin the minimum bidirectional
reflectance factor observed for wavelength λ at observation/illumination constellation Ω. In
Figure 5.7(left) it can be seen that ANIX for all considered land cover types is largest in the
visible domain and presents a relatively sharp decrease to lower variation at the onset of the
red edge. The high ANIX peak observed for rice in the red wavebands is a result of dividing
maximum reflectance by a very low minimum reflectance at nadir (Figure 5.6) and suggests that
radiometric calibration at these wavebands is inaccurate, providing reflectances that are too low.
On the other hand, at the time of observation, the rice paddy was filled with water, which due
to its strong absorption could have induced the nadir reflectance to be close to zero in the red
waveband. For the rest, it is noteworthy that, although very different in shape, the amplitude
of anisotropy in the NIR is very similar for the cotton and rice fields. Soil generally shows less
variation.

The additional discriminative power of angular anisotropy is shown when the left plot in
Figure 5.7 is compared the right one, in which the average nadir spectrum of each of the 4
cotton fields, the rice paddy, and the bare soil is plotted. Whereas soil and vegetation can be
clearly distinguished based on spectral properties alone, discrimination between cotton and rice
is subject to much more ambiguity, especially when spectral variation is included as well. The
examples in Figure 5.7 clarify that canopy variable retrievals, but also land cover classifications,
can be significantly improved when both the spectral and angular dimensions are concurrently
explored.

5.3.2 Reconstructing spectral anisotropy with PROSPECT and SAILh

The examples shown in the previous paragraphs and the cited literature elucidate the depen-
dence of directional anisotropy on structural vegetation elements and illumination/observation
geometry. In this context, it is important to gather insight into the degree to which the various
structural canopy variables are responsible for the observed shifts in anisotropy. But even more
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important it is to see whether the PROSPECT+SAILh combination is able to reproduce the
directional behavior observed for the cotton canopy, since SAILh assumes a horizontally ho-
mogeneous canopy and does not account for vegetation clumping in the form of row structures.
Anisotropy is therefore a function of volume scattering while a term describing mutual shading is
absent. To study the ability of SAILh in representing the current situation, spectral reflectance
(HDRF) of the cotton canopy was simulated for the 5 different observation geometries as delin-
eated by the CHRIS observations. For the canopy characterization, average measured Cab (=
25 µg · cm−2) and LAI (= 1.5 m2/m2) were used. The other variables were either measured at
the calibration plot (Cw = 0.0265 g · cm−2, Cdm = 0.0093 g · cm−2, ALA = 30◦, HS=0.15) or
taken from literature (Cbp = 0.001, N = 2, BS = 1.0). Atmospheric conditions were similar
to those employed for atmospheric correction, while the nadir soil spectrum plotted in Figure
5.7(left) was used as background reflectance.

Figures 5.8, 5.9, and 5.10 show the respective anisotropy behavior when one of the struc-
tural variables LAI, ALA, and HS is gradually changed. Only for green reflectance, changing
LAI significantly alters the anisotropy signature. However, also for this wavelength changes in
absolute reflectance remain rather low. With LAI approaching 0, anisotropy vanishes, which
coincides with the assumed Lambert background reflectance. For the red and and NIR domain,
changing LAI mainly induces a shift in absolute reflectance. The effects of varying ALA are
apparent. The erectophile canopies allow enhanced view of the soil background at nadir sensor
position which, due to the large contrast in soil and vegetation reflectance in the red leads to
the well known bell shape in this domain (see also Figure 5.7(left)). In the NIR the opposite is
true: the erectophile canopy structure reduces multiple scattering in the nadir direction, leading
to the observed bowl shape. In the green waveband, significant changes in absolute reflectance
can be observed, whereas alterations in anisotropy at this wavelength are little but still show a
minor bowl shape for erectophile canopies. Varying HS induces similar effects in the green and
NIR domain, where increasing HS (i.e., increasing leaf size) changes the anisotropy shape from
a slight concave form into a moderate bell form with maximum reflectance at the constellation
closest to the direction of maximum backscattering. Also for red reflectance an enhanced bell
shape is observed when HS is increased. Nevertheless, changes in the simulated constellations
are not as large as one would expect close to the hot spot where spectral reflectance is much
more sensitive to this parameter.

Even if the simulations show the spectral sensitivity of SAILh at the considered view/sun
constellation, some differences compared to the measured CHRIS reflectance still occur. Al-
though the decline of reflectance in the forward scattering direction, generally observed for all
wavebands in the CHRIS data, is partly reproduced by the simulations, the extent of the de-
crease is much greater in the measured data. Especially for the green waveband, reflectance
measured for the extreme forward scattering angle drops to a value that is far less than any of
the values reproduced by the simulations. This could be explained by the fact that SAILh lacks
a module describing shading caused by geometrical objects (rows): in the forward scattering
direction the sensor views the shaded sides of the cotton rows, leading to decrease in observed
reflectance with respect to a turbid medium surface. A second anomaly between observed and
modeled anisotropy, is that all simulations in the red domain show a more or less bell shaped
anisotropy, while this pattern cannot be recognized in the measured data.

Although some of the differences between observed and modeled anisotropy can be ascribed
to the generalization of the input variables (e.g., averaging of the measured variables and as-
suming standard values for the other variables) this would not explain all anomalies between the
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Figure 5.8: Influence of changing LAI on spectral anisotropy, simulated with PROSPECT and SAILh for
green, red, and NIR reflectance. Tv [◦] = view direction with negative values in the backscatter direction
and positive values in the forward scatter direction. Simulations were based on the following input variables:
Cab = 25 µg · cm−2, Cw = 0.030 g · cm−2, Cdm = 0.010 g · cm−2, Cbp = 0.001, N = 2, LAI =
[0.1,0.3,0.7,1.2,2.0,3.0,4.0] m2/m2, ALA = 50◦, HS = 0.015, BS = 1.0.

Figure 5.9: Influence of changing ALA on spectral anisotropy, simulated with PROSPECT+SAILh for green,
red, and NIR reflectance. Tv=view direction with negative values in the backscatter direction and positive
values in the forward scatter direction. Simulations were based on the following input variables: Cab = 25
µg · cm−2, Cw = 0.030 g · cm−2, Cdm = 0.010 g · cm−2, Cbp = 0.001, N = 2, LAI = 1.5 m2/m2, ALA
= [10,20,30,40,50,60,70,80] ◦, HS = 0.015, BS = 1.0.

anisotropy characterizations. Undoubtedly, part of the deviations can be ascribed to the defi-
ciency of SAILh in describing gap-driven anisotropy caused by the row structures of the canopy.
This assumption is confirmed by the observed ability of the model in accurately reproducing
the typical bowl shaped NIR anisotropy for the dense rice canopy, a surface type for which the
heterogeneity assumption is legitimate (result not shown).
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Figure 5.10: Influence of changing hot spot parameter HS on spectral anisotropy, simulated with PROSPECT
and SAILh for green, red, and NIR reflectance. Tv = view direction with negative values in the backscatter
direction and positive values in the forward scatter direction. Simulations were based on the following input
variables: Cab = 25 µg/cm2, Cw = 0.030 g/cm2, Cdm = 0.010 g/cm2, Cbp = 0.001, N = 2, LAI = 1.5
m2/m2, ALA = 50◦, HS = [0.001,0.01,0.05,0.1,0.2,0.4,0.6], BS = 1.0

5.4 RTM inversion using the fully automated CRASh approach

The previous section demonstrated that, even if the SAILh model is able to reproduce angular
anisotropy for the fields under observation, the magnitude of the variations is not completely
mimicked. If deviations are large, the introduction of multiple view angles might even introduce
additional uncertainty to the result instead of restraining the set of viable solutions. For this
reason, first the retrieval performance for the single view angles was tested before feeding the
model with multi-directional data.

5.4.1 RTM inversion of individual observation angles

For the single observation angles, the complete approach, like introduced in Section 3 and vali-
dated in Section 4, was employed, including the SPECL land cover classification, the generation
of a separate LUT for each view/sun constellation, and incorporation of a priori estimates. How-
ever, the examples shown in Chapter 4 demonstrated that in cases where there is a mismatch
between modeled and measured reflectance, the introduction of covariance between spectral
bands gives excessively high weight to the visible wavebands, thus leading to overestimations
of leaf chlorophyll content. Since there was some indefiniteness on the nature of the very low
red reflectance observed at nadir for the rice paddy (being either due to water absorption or
to inaccurate calibration), it was decided to use spectral variance (i.e., class variance plus local
variance) instead of covariance. The spectral cost function was therefore similar to the maximum
likelihood estimator presented in Equation 2.10.

Following the same argumentation line as for the radiometric cost function, also for min-
imization in the variable space the use of variance instead of covariance was preferred. In a
later phase, this decision was supported by the notice that no significant ambiguity between the
estimates of Cab, LAI, and ALA would be observed when variance instead of covariance was
used for the prior estimates (Cfr. Section 4.3.4.5). This is probably related to the less satu-
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rated reflectance signals compared to the HyMap observations discussed in the previous section.
When the function to minimize in the variable space χ2

var does no longer account for covariance
between the variables, it is expressed as:

χ2
var =

nvar∑
k=1

(V k
prior − V k

LUT )2

σ2
k

(5.4)

V k
prior is the prior estimate of variable k left free during inversion and constitutes the average of

the prior estimates predicted for the separate view angles. V k
LUT is the LUT entry for variable

k. Similarly to the spectral variance, σ2
k involves both class variance and the variance encoun-

tered in the direct neighborhood of the pixel. It has to be memorized that SPECL land cover
classification, which has been designed for classifying nadir reflectance signatures, was applied
to all view angles independently, which may lead to unforeseen classification results at high view
zenith angles.

The validation of model inversion results was performed by comparing the average estimate
of a 2×2 pixels window with the average of all field measurements found within this window.
This was done in order to compensate for co-registration errors and small scale spatial variations.
Table 5.5 summarizes the results obtained for all view angles. Although not being a biochemical
quantity, for reasons of comparison also the goodness of fit between chlorophyll estimates and
measured SPAD values is presented. For SPAD and chlorophyll, the results are given both for
the top layer (TL) and for the average of all layers (AL). The best and worst performance for
each variable have been marked in bold and italics, respectively.

The results in the table reveal that, except for the +36◦ nominal view angle, LAI is moder-
ately well predicted, with relative RMS errors (Equation 4.4) around 40% and average accuracies
(Equation 4.5) between 62.6 and 74.5%. Figure 5.11 (left) shows LAI estimates for the -55◦

nominal view angle. It can be observed that LAI is predicted evenly well for all fields, whereas
part of the values measured at field 1 and 4 are underestimated. Remarkably, the estimated
values of Cab coincide better with measured SPAD values than with measured Cab. The latter is
in most cases overestimated, (Figure 5.11 (right)). Due to the nearly linear relationship between
SPAD and measured Cab (Cfr. Figure 5.3), the patterns in the relationship between measured
and predicted values do not significantly change, but are rather reflected by a shift (Figure 5.11
(middle-right)).

A very interesting aspect is revealed by Figure 5.12 which shows the column means of the
values given in Table 5.5, i.e., average rRMSE and average AA, in relation to the observation
angle. Although the accuracy descriptions are based on only 2 independent variables, a clear
trend can be distinguished, showing decreasing retrieval accuracy with increasing forward scat-
tering direction. This phenomenon agrees very well with the findings made in the previous
section, which divulged the deficiency of SAILh in reproducing the decrease in reflectance in the
forward scattering direction. The fact that on average, estimations are best in the directions
of maximum backward scattering coincide well with the results found by Bacour (2001). In
addition, at increased view angles the sensor captures less gaps within the vegetation canopy
and, as a consequence, the observed surface again approaches a turbid medium leading to a
reduced discrepancy between SAILh simulations and observations. The better estimates for the
extreme backscatter direction occurred despite the large difference in land cover classification
encountered for this view angle with respect to the nadir direction (result not shown).
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Table 5.5: Goodness of fit between measured SPAD, Cab, and LAI and the values obtained from 5 separate
CHRIS view angles (given is the nominal view angle). rRMSE = relative RMSE (%); AA = average accuracy
(%); TL = top layer; AL = average of all layers. The best result for each variable is represented in bold,
whereas the least accurate result is marked in italics.

-55◦ -36◦ 0◦ +36◦ +55◦

Variable unit rRMSE AA rRMSE AA rRMSE AA rRMSE AA rRMSE AA

SPAD (TL) unitless 30.1 75.2 19.8 83.3 26.8 77.2 33.2 69.7 41.0 65.1

SPAD (AL) unitless 38.0 72.6 21.8 83.4 22.6 82.3 37.4 69.1 34.9 72.9

Cab (TL) µg · cm−2 30.0 59.4 46.2 28.6 57.9 9.3 41.5 50.6 75.4 -17.8

Cab (AL) µg · cm−2 28.9 62.6 40.0 46.2 50.3 27.0 38.3 59.0 68.0 -0.4

LAI m2/m2 37.1 74.5 44.5 68.9 36.9 74.3 55.0 37.3 36.4 62.6

Figure 5.11: Comparison of estimated LAI and Cab with measured LAI, SPAD, and Cab. LAI estimates
are based on the -55◦ nominal view angle, Cab estimates on the -36◦ nominal view angle. SPAD and Cab are
the average values of all canopy layers (AL). Red asterisks, green triangles, blue diamonds, and orange squares
indicate measurements taken at field C1, C2, C3, and C4, respectively.

Figure 5.12: Evolution of average rRMSE and AA in relation to view angle. The values represent the column
means of the values reported in Table 5.5.
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5.4.2 RTM inversion of combined observation angles

5.4.2.1 Adapting the cost function

The results presented in the previous section revealed a clear trend toward increased accuracy
for view angles with enhanced backscattering. Based on this notion, the -55◦ view angle was
used to test whether it was a right decision not to include spectral covariance. Several cost
functions were tested (with and without using prior information, using variance/covariance for
radiometric information and prior estimates) and it appeared that including spectral covariance
in this case indeed deteriorated retrieval accuracy. The cost function used to minimize for the
multi-angular observations χrad is thus expressed as:

χ2
rad =

ndir∑
i=1

nbands∑
j=1

(Rmeas(Ωi;λj)−RLUT (Ωi;λj))2

σ2
i,j

(5.5)

where ndir is the number of view geometries Ωi, and nbands the number of spectral CHRIS bands,
in this case 31. Rmeas and RLUT denote the measured and simulated reflectance in the LUT,
respectively. σ2

i,j is the uncertainty associated to waveband j in view direction i and which for
each pixel is the sum of the variance of the land cover class the pixel belongs to, and the local
variance encountered in a 5×5 pixels moving window (Section 3.4.1). It was decided to apply the
same weight to all observation geometries in the cost function since no a priori information was
available on the sensitivity and accuracy of the different view angles. Even if the backscatter
direction is generally more sensitive to spectral changes and should therefore receive increased
weight (Bacour et al., 2002a), this is compensated by the increased model uncertainties at ex-
tremer view angles (Verhoef and Bach, 2007).

5.4.2.2 Iteratively adding view angles

Starting with the best performing single view angle (-55◦) and using the cost functions in Equa-
tion 5.5 and 5.4, view angles were iteratively added. The results were validated only for the
variables of ultimate interest, namely the LAI and the Cab averaged over all shoot levels. The
latter was preferred over using only the top level measurements since the greater number of
measurements made the measurement more robust. Figure 5.13 visualizes the behavior of the
rRMSE and AA when the view angles are iteratively added.

Introducing additional view angles gradually improves estimation results until all nominal
view angles between -55◦ and +36◦ are included. Additionally incorporating the +55◦ nominal
view angle induces a sharp loss in accuracy. The total absolute gain amounts to approximately
6% both for rRMSE and average accuracy. Although the gain compared to the mono-directional
observation at -55◦ is not very high, the uncertainty of the estimations is significantly reduced
when multi-angular observations are introduced, especially for the areas with less dense vegeta-
tion cover (Figure 5.14 and 5.15). Despite the fact that the view angles that have been added
perform less than the -55◦ view angle in the mono-directional inversion scheme, the more re-
strictive spectral constraints posed by the multi-angular inversion, which requires the modeled
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Figure 5.13: Evolution of average rRMSE (solid) and AA (dashed) in relation to different combinations of
view angles. Green triangles represent Cab, blue squares LAI, and the gray squares the average of both.

Figure 5.14: Comparing the spatial distribution of relative standard errors for mono- and multi-directional
model inversion results of Cab. The upper row shows the errors associated to the inversion of the -55◦

nominal view angle, the bottom row the errors associated to the concurrent inversion of the nominal view
angles -55, -36, 0, and +36◦. The relative standard error is obtained by dividing the uncertainty of the
estimate by the estimate itself and multiplying it with 100%.
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Figure 5.15: Comparing the spatial distribution of relative standard errors for mono- and multi-directional
model inversion results of LAI. The upper row shows the errors associated to the inversion of the -55◦

nominal view angle, the bottom row the errors associated to the concurrent inversion of the nominal view
angles -55, -36, 0, and +36◦. The relative standard error is obtained by dividing the uncertainty of the
estimate by the estimate itself and multiplying it with 100%

anisotropy to be in line with the measured one, puts additional limitations on the range of pos-
sible canopy structure variables resulting in more accurate estimations. Additionally, the prior
information input to model inversion is based on the average of the prior estimates predicted
with four different regression equations (one for each view direction), and therefore more robust.

The accuracy and stability of the estimated values significantly increased when the inversion
is based on multiple view angles, leading to acceptable results in terms of RMSE and average
accuracy. Figure 5.16 shows the spatial distribution of estimated Cab and LAI. Altering zones
of high and low Cab and LAI within the fields are well visible and generally coincide with the
patterns observed for the field measurements in Figure 5.4, suggesting that the obtained maps
can be used for more targeted fertilizer applications at intra-field level. However, Cab estimates
observed for field C3 and C4, show a considerably higher variation compared to the measured
values, including some remarkable overestimations (Figure 5.17). The reason for this is yet un-
clear. In the next section it is investigated if these inaccuracies can be further reduced when the
range of variation of the variables in the LUTs are limited to the ones actually measured in the
field, thus optimizing the inversion for the cotton Khorezm-127 variety in the current situation.
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Figure 5.16: Spatial distribution of Cab and LAI for multi-directional model inversion based on the nominal
view angles -55, -36, 0, and +36◦.

Figure 5.17: Comparing measured with estimated Cab and LAI, obtained from the concurrent inversion of
-55, -36, 0, and +36◦ nominal view angles. Cab values are based on the average of all canopy layers (AL).
Red asterisks, green triangles, blue diamonds, and orange squares indicate measurements taken at field C1,
C2, C3, and C4, respectively.

5.5 RTM inversion including measured a priori information on cotton

5.5.1 Parametrization of the LUTs

Up to this point, the obtained results were all based on the complete automatic approach pro-
posed in Chapter 3. Parametrization of the LUTs was based on the SPECL classification and,
accordingly, the range and distribution of the variables from which the solution of the inverse
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Table 5.6: Distribution of the input variables and the corresponding number of classes of the orthogonal
sampling plan used to construct the LUT for cotton.

Variable Unit Distribution Minimum Maximum Mean σ # intervals

Leaf N Unitless Gaussian 1.5 2.5 2 1 3

Cab µg · cm−2 Guassian 10 50 25 6 5

Cw g · cm−2 Gaussian 0.0024 0.0852 0.0265 0.0153 3

Cdm g · cm−2S Gaussian 0.0011 0.028 0.0093 0.0052 5

Cbp Unitless Gaussian 0 0 - - 1

Canopy LAI m2/m2 Gaussian 0.1 4.7 1.5 0.9 5

ALA ◦ Gaussian 5 60 25 20 5

HOT Unitless Gaussian 0.05 0.3 0.12 0.1 3

Soil BS Unitless Gaussian 0.7 1.3 1.0 0.2 3

Total # 50625

problem was selected could have been far from optimal for the selected cotton species. To test
whether estimations of Cab and LAI could be further improved when LUT parametrization is
optimized for the Khorezm-127 variety in the considered phenological stage, distribution and
ranges of the variables like they were measured in the field experiments were used as input for
the construction of the LUTs (Table 5.6). The distributions used for sampling Cab and LAI
were based on the probability density distributions composed of all point measurements (Figure
5.18). Distributions based on average measured values per pixel would probably have been more
centered around the mean values since the inclusion of several measurements in one pixel will
level out the observed extremes. Except for the leaf structure parameter N and the average leaf
angle, all variables were measured during the field campaign. The distribution of N was based
on literature review, whereas from field photographs a planophile leaf angle distribution could
be established for ALA.

The SPECL land cover classification was abandoned, and instead, all 4 cotton fields were
grouped into one ”cotton” class for which one and the same LUT was deployed. Also com-
putation of the class based variance terms was thus based on all pixels in the 4 cotton fields,
irrespective of the observed vegetation density.

5.5.2 Results and discussion

RTM inversion was performed for the best performing combination of view angles of the previous
section, i.e., for the combination of the -55, -36, 0, and +36◦ nominal view angles. Figure 5.19
shows that in this case good agreement is achieved between measured and estimated Cab, which
is confirmed by the low rRMSE (18.2%) and high average accuracy (75.9%). Nevertheless,
retrieval accuracy is only a few percent better than in the fully automated case.

For LAI, rRMSE (41.8%) is slightly worse, and average accuracy (76.5%) is similar compared
to the values obtained with the fully automated inversion scheme based on SPECL land cover
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Figure 5.18: Frequency distribution of field measured Cab and LAI.

Figure 5.19: Comparing measured with estimated Cab and LAI, obtained from the concurrent inversion of
-55, -36, 0, and +36◦ nominal view angles using field measurement values for the parametrization of the LUT.
Measured Cab is based on the average of all canopy layers (AL). Red asterisks, green triangles, blue diamonds,
and orange squares indicate measurements taken at field C1, C2, C3, and C4, respectively.

characterization. LAI estimates for the more densely vegetated fields C3 and C4 (Cfr. Figure
5.4) clearly correlate with the measured values. For fields C1 and C2 LAI estimates seem to be
trapped around 1. Similar behavior of estimates for C1 and C2, though less pronounced, could
already be observed in the automated approach (Cfr. Figure 5.17). Probably, the inability of
SAILh in completely mimicking anisotropy in sparse, row-structured canopies, is compensated
by an unnatural variation in several canopy variables (e.g., dry matter, leaf water, and ALA).
When in turn these variables are forced to adopt a value that is close to the actual one, the
dissimilarity between measured reflectance anisotropy and model simulation is counterbalanced
by adjusting LAI which relative to its spectral sensitivity has a large degree of freedom. This
assumption is underscored by the finding that estimations for the denser canopies correlate
well with measured values. Similar findings were obtained in a theoretical study performed by
Widlowski et al. (2005), who observed underestimation of LAI in the cases where a 1-D turbid
medium RTM was used to describe a complex 3-D canopy. Further, also scaling issues play a
role when the limited number of point measurements is transfered to an area of 2×2 pixels. This
scaling issue will have to be addressed in a future study.
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5.6 Conclusions

This chapter explored the capability of the automated CRASh approach presented in Chapter
3 in retrieving cotton leaf chlorophyll content from multi-angular CHRIS/PROBA data. It was
shown that the 1-D turbid medium radiative transfer model SAILh, which forms the basis of the
approach, was not able to completely reproduce the spectrodirectional signatures of the cotton
fields as observed by the sensor. Bias between modeled and measured reflectance was smallest
in the extreme backscatter directions, which can be attributed to the reduced effects of mutual
shading induced by the planting rows, a phenomenon that is not accounted for by SAILh. Thus,
in this view direction the turbid medium assumption is most valid. Due to the larger shading
component common to the forward scattering region, large bias between modeled and measured
reflectance was observed for the +55◦ nominal view angle. The increased discrepancy between
model and observation toward forward scattering directions was also reflected in the decreased
accuracy in the estimates of both Cab and LAI based on RTM inversion of the mono-directional
observations. In particular the +55◦ nominal view angle provided results that were significantly
less accurate than the ones obtained for the other view angles. The best performing mono-
directional data set (i.e., -55◦ nominal view angle) provided an rRMSE of 28.9 and 37.1%, and
an average accuracy of 62.6 and 74.5% for Cab averaged over all leaf layers and LAI, respectively.

Inclusion of multi-angular data sets in RTM based inversions does not necessarily lead to
improved retrieval performance. The benefit of introducing additional view angles is strongly
determined by the ability of the RTM in mimicking the complete anisotropy of the canopy
present in the imagery. When discrepancy between modeled and measured reflectance is larger
than the range of variation allowed by the inversion procedure, too restrictive spectral constraints
bear the potential of forcing the solution into unnatural variable combinations. In this study,
progressively adding less performing observation angles to the best performing monodirectional
data set (i.e., -55◦ nominal view angle) gradually improved retrieval performance until all viewing
angles except for the extreme forward scattering angle were included. Model inversion of this
4-angle combination provided an rRMSE of 21.5 and 32.7%, and an average accuracy of 74.2
and 74.3% for Cab and LAI, respectively. Correlation coefficients were generally poor (0.02 and
0.43 for Cab and LAI, repectively) due to the scattered nature of the estimates around the 1:1
line. Additionally including the +55◦ viewing angle dramatically reduced retrieval performance.

In the considered case, the most remarkable effect of including angular anisotropy in model
inversion is the reduction of the uncertainty around the final estimates, especially for sparsely
vegetated areas. In some cases, errors could even be halved in comparison with the results
obtained for mono-directional data. This underscores the potential of multi-angular observations
not only in improving variable estimates but also in stabilizing the result and reducing the
uncertainties associated to the retrievals.

The fact that discrepancy between measured and modeled anisotropy is mainly responsible for
deviating model estimates was confirmed by a multi-angular RTM inversion where the variables
measured for cotton during the field campaign were used to construct the LUT. While the
inclusion of this well-defined a priori information led to significantly better Cab retrievals for all
fields, only for the denser canopies an improvement in LAI could be observed. LAI estimates of
sparser canopies were estimated less accurately than in the case where the variables were allowed
to move more freely.

The work presented in this chapter demonstrated the potential of automated RTM inversion
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of multi-angular hyperspectral remote sensing data for more accurate and stable retrieval of
chlorophyll content in cotton leaves. In conjunction with LAI estimates, a more comprehensive
picture of the spatial distribution of the current crop status was provided which could be a useful
guideline to the farmers in supporting their crop management and fertilizer strategies. Due to
the 1-D turbid medium assumption of the underlying RTM, application of the model should be
limited to later growth stages and fertilizing dates when canopies are fully developed. In early
crop development stages with sparse vegetation cover, SAILh will probably be less capable of
accurately mimicking the anisotropy induced by leaf clumping and the directional behavior of
soil reflectance. Model sensitivity to plant development will be more intensively addressed in
2008, when an extensive field validation campaign covering the entire growth season is planned.
Moreover, the incorporation of an RTM accounting for row structures and bidirectional soil
reflectance is envisaged. It is expected that the use of such an RTM will lead to a significant
additional increase in accuracy.
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Chapter 6

Synthesis

6.1 Introduction

Proper crop management decision making can be supported by spatially distributed biogeo-
physical products based on high resolution remote sensing systems. Due to the infrequent and
irregular data availability from single high resolution sensors, multi-sensor approaches are re-
quired to fill the gaps in data sequences and to guarantee data takes at critical time steps during
the seasonal life-time of a crop. Even if several contractors provide high and very high resolution
precision farming commodities on a commercial basis, the degree of interchangeability between
these products is often not clear. Since most of these products are based on mono-temporal,
multispectral data sets, they underlie an underdetermined model inversion problem, induced
by the large number of canopy variables potentially causing the observed spectral variations
compared to the limited number of available independent information dimensions. Therefore,
the generation of information products based on such sensors require several assumptions and
restrictions.

To bridge the gap between farmers’ needs and the commercial products already available on
the market, this thesis presented a completely automated, image based, radiative transfer model
inversion approach for the concurrent retrieval of the key agricultural variables leaf area index,
leaf chlorophyll content, leaf water content, and leaf dry matter content from mono-temporal
data recorded with any high resolution airborne or spaceborne imaging spectrometer. The choice
to concentrate on imaging spectrometers was motivated by the demonstrated increased informa-
tion content of the data provided by such sensors, especially on plant biochemistry (Fourty and
Baret, 1997; Verhoef, 2007). The use of hyperspectral data is therefore assumed to reduce the
underdetermined nature of algorithms focusing on the retrieval of canopy variables from remote
sensing data.

In contrast to statistical-empirical approaches which usually concentrate on a limited number
of spectral bands, the inversion of radiative transfer models offers the potential of concurrently
exploiting the entire information content contained in the data. In addition, they facilitate
optimizing for illumination / observation geometry and adapting to site specific phenology,
background reflectance, and atmospheric conditions. To guarantee maximum flexibility of the
approach, model inversion was based on lookup tables (LUTs) which, apart from being compu-
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tationally fast, have an open structure which makes them easily adaptable to changing sensor,
observation, illumination, and phenological properties.

The presented approach, named CRASh, entirely relies on the spectral content contained
within the image and the information products provided by the automated preprocessing (i.e.,
calibration, georectification, and atmospheric correction) of the data. The challenge of such a
scene-based, automated approach is to overcome the lack of a priori knowledge on land cover,
causing the inversion process to be a strongly underdetermined and ill-posed problem. To bring
underdetermination down to minimum, CRASh was based on the relatively simple leaf opti-
cal model PROSPECT (Jacquemoud and Baret, 1990; Fourty et al., 1996) and the 1-D turbid
medium canopy structure model SAILh (Verhoef, 1984; Verhoef, 1985) which taken together
result in 9 variables that are not a priori known and are left free during inversion.

Two novel regularization techniques were proposed to address the ill-posedness. First, an
automated spectral land cover classifier (SPECL (Richter, 2007a)) was introduced. The land
cover classification facilitated a more explicit characterization of spectral uncertainty (Chapter
3) and enabled the model inversion to take place in more explicitly defined and restricted vari-
able spaces. Although the concept of performing RTM inversion on a land cover basis is not new
(Knyazikhin et al., 1999b; Lotsch et al., 2003; Houborg et al., 2007), no studies are known where
the classification is directly implemented in the retrieval approach itself and is based on the
same mono-directional data set. Moreover, in combination with the land cover based inversion
scheme, this study proposed a new method, based on the local neighborhood of the pixel under
inversion, for dealing with small scale attribution inconsistencies.

The land cover classification also played an important role in the second proposed regu-
larization technique. The LUTs that were calculated separately for every land cover class and
illumination / observation geometry allowed for the generation of semi-empirical predictive equa-
tions optimized for each specific situation. These equations were based on the regression between
spectral vegetation indices (VIs) calculated from the reflectance spectra contained in the LUT,
and the variables used to simulate these LUT reflectances, using the RTM in the forward mode.
The predictive equations obtained in this way were subsequently used to calculate a priori es-
timates for each variable and for every vegetation pixel in the image (Chapter 3). In turn,
the solution of the model inversion was forced to lie within plausible margins around the prior
estimates as defined by their level of uncertainty.

6.2 Resuming the performance of the automated approach

The ultimate goal of this study was not the development of the automated approach as such, but
rather the challenge of providing consistent results for a wide range of canopy types, sun/view
constellations, and sensor configurations. For this purpose, performance and stability of the
new approach were extensively tested at three spatial levels for different sensor configurations,
including ground field spectrometer measurements, data from the airborne full-range imaging
spectrometer HyMap, and satellite observations from the multi-directional CHRIS/PROBA sen-
sor. Whereas the field spectrometer measurements allowed for a direct comparison between spec-
tral signal and canopy characteristics while excluding spatial uncertainties and uncertainties in
atmospheric correction, the airborne and satellite measurements offered a deeper insight into the
effect of changing observation and illumination properties and spatial scaling issues. Validation
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of model performance for field spectrometer and HyMap data was performed for several inten-
sively used temperate grasslands in southern Germany (Chapter 4), and included the biometric
sampling of leaf water content (Cw), leaf dry matter content (Cdm), and leaf area index (LAI).
Ground sampling of leaf chlorophyll content (Cab) and LAI measured on irrigated cotton fields
in Uzbekistan was used to test the performance of the approach for the CHRIS data (Chapter
5).

To provide insight into the different aspects of the approach, and to expose potential sources
of uncertainty, several research questions have been put forward in Chapter 1. In the following,
these issues will be recapitulated one-by-one against the background of the results obtained in
this thesis.

Choice of the radiative transfer model Prerequisite for a successful retrieval of canopy vari-
ables by radiative transfer model (RTM) inversion is the choice of a RTM that accurately mim-
ics the spectral behavior of the considered canopy. The combination of the leaf optical model
PROSPECT (Jacquemoud and Baret, 1990; Fourty et al., 1996) and the 1-D turbid medium
canopy structure model SAILh (Verhoef, 1984; Verhoef, 1985) was selected as a trade-off be-
tween model accuracy for different types of canopies on one hand and the limited number of
input variables on the other. The latter may become extremely important in situations where
little a priori knowledge is present on the distribution of the input variables (Pinty et al., 2004a).

For the various grasslands studied in Section 4, the combination of PROSPECT and SAILh
appeared well capable in mimicking top-of-canopy reflectance within the the ranges of uncer-
tainty posed by the field measurements. This was true for all observation geometries provided
by the HyMap sensor, confirming the results found by others for homogeneous canopies (Baret
et al., 2005b; Pinty et al., 2004b). In contrast, reflectance anisotropy of the cotton canopies in
Chapter 5 could not be properly reproduced. The open row structure of these moderately vege-
tated fields gives rise to anisotropy caused by shadow-casting and non-Lambert soil reflectance,
phenomena that are both not accounted for by SAILh. It was observed that SAILh performed
better in the backscatter directions, where geometrical shadowing played a less significant role
and the turbid medium assumption was most valid. Incorporation of geometrical functions de-
scribing row geometry would therefore be necessary for improved formulations of the radiative
transfer equations in heterogeneous row crops.

Sensitivity of canopy reflectance to variables of interest The success of retrieving a certain
canopy variable from remote sensing data by RTM inversion strongly hinges on the response
of overall canopy reflectance to the variable in question (Verstraete and Pinty, 1996). This
sensitivity differs from situation to situation and depends on canopy composition and illumi-
nation/observation geometry. The spectral correlation analysis performed in Chapter 4 clearly
demonstrated the distinctive spectral sensitivity to Cw, Cdm, and LAI. In effect, for vigorous
meadows, LAI could be considered the only variable responsible for spectral variations while
Cw and Cdm showed highly collinear behavior with LAI. This is in good agreement with the
results found by Vohland and Jarmer ((2007)). For the recently cut meadows, the situation was
somewhat different, with Cdm showing a sensitivity that was clearly discernible from LAI and
Cw. Nevertheless, the driving canopy variable in most situations is obviously LAI.

In the considered grassland cases, measured and modeled reflectance showed distinct sen-
sitivity to changing variable values, with the latter showing only low to moderate collinearity
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between the leaf absorbing materials and LAI. This discrepancy has its implications on the
transferability of the predictive equations, based on the radiative transfer simulations, to the
actual image data. Whereas, based on the predictive regression equations, Cdm and Cw should
correlate quite well with spectral reflectance, with coefficients of determination (R2) ranging
from 0.43 to 0.87, this was not confirmed by the ground validation measurements. Nevertheless,
RMS errors of predictive equations and final model inversion results agree fairly well.

Influence of sensor configuration The influence of system configuration on retrieval perfor-
mance is one of the issues that is most difficult to get a grip on. It strongly depends on the
number of bands in a specific wavelength region and the cost function used to minimize be-
tween modeled and measured reflectance. The definition of the cost function mainly governs the
weights the single wavebands and, hence, the single variables, receive. In this thesis, a novel
method was proposed to account for spectral covariance based on the spectral variation found
within a specific land cover class. Introducing such covariance terms led to increased weight in
the cost function of spectral regions with low reflectance, mainly the VIS. The influence this
covariance term has on the accuracy of the final results mainly depends on the variable in ques-
tion, on sensor calibration, atmospheric correction, and on the ability of the RTM to describe
the canopy under consideration. Whereas the variance-covariance matrix should explicitly ac-
count for all these uncertainty terms, the way it was calculated in this study assumed that
all uncertainty was enclosed in the spectral information of the respective land cover class and
the local neighborhood of the considered pixel. This obviously violates reality in cases where
systematic errors are particularly large, and is probably the reason that incorporation of the
covariance terms degraded retrieval accuracy for the CHRIS observations (Chapter 5). In the
case of the well-calibrated ASD field spectrometer measurements and atmospherically corrected
HyMap observations of Chapter 4, it principally led to a redistribution of the retrieved variables.
The decision whether to incorporate spectral covariance should therefore be guided by the qual-
ity of the spectral data, the suitability of RTM model, and the envisaged canopy variable. Such
a decision could be supported by quality measures obtained during preprocessing (Bachmann
et al., 2007).

Regardless of the use of covariance measures or the inclusion of a priori information, Chap-
ter 4 revealed some clear relationships between spectral band configuration and the estimation
accuracy of Cw, Cdm, and LAI. Based on resampled field spectra, the performance of different
band configurations (HyMap, CHRIS, Landsat ETM+, SPOT HRG, Quickbird) was tested. Al-
though the approach is applicable to any multispectral or hyperspectral band configuration, most
consistent results were obtained for the HyMap configuration spanning the entire VNIR-SWIR
domain, followed by the Landsat ETM+ configuration. This indicates that an even distribu-
tion of nearly uncorrelated bands across the entire solar-reflective domain is more important
for a stable inversion than a high absolute number of bands in strongly correlating waveband
regions. Obviously, the 6 bands of ETM+ provide significantly more uncorrelated information
than the 37 bands of CHRIS which are all concentrated in the VNIR. The inclusion of SWIR
bands clearly leads to regularization of the leaf water retrievals and hence to stabilization of the
complete inversion. This is confirmed by the poor Cw predictions of the Quickbird, CHRIS,
and to some degree, SPOT HRG configurations. Part of the deviations can also be explained by
the sometimes better defined a priori estimates for hyperspectral data, which are a consequence
of the enhanced number of sensitive vegetation indices to choose from for the generation of the
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predictive equations.
A third aspect where band configuration plays a role, and which is directly related to the

previously mentioned inversion stability, is the reduction of ambiguity between the estimated
variables. Ambiguity is a direct result of the ill-posed nature of RTM inversion and indicates the
complementary behavior of several variables in model inversion results. In Chapter 4 it could be
seen that, in the case where covariance between the variables was neglected, this phenomenon is
very apparent for the multispectral configuration, whereas for the hyperspectral configurations of
CHRIS, and especially HyMap, this ambiguity is significantly lower. Concluding, it can be stated
that a high number of spectral bands, equally spread across the solar-reflective domain, provides
the best precondition for an accurate and stable RTM inversion of mono-directional data. This
notice provides evidence for the increased information content contained in hyperspectral data
as found by Verhoef (2007).

Reproducibility of results and sensitivity to LUT parametrization Due to the semi-random
selection of LUT-variables, different model runs can provide diverging results (Chapter 4). The
maximum degree of variation in the obtained results is inherent to the sensitivity of a specific
variable in the considered situation but in most cases stayed within 20% of the average of several
repeated model runs. Uncertainty is largest in situations of low spectral response to the variables,
such as the case for most leaf biochemical and canopy structural variables of a sparsely vegetated
area, or for the hot spot parameter in observation directions far from the principle plane. The
repetition of 12 model runs firmly consolidated the results and for most situations reduced the
uncertainty to less than 5%. Therefore, if computer resources allow so, such a repeated model
run would be highly recommendable.

In Chapter 4 it was tested to which degree the inversion was dependent on the upper and
lower boundaries posed to variable ranges used to construct the LUTs. It was shown that for
the retrieval of Cdm, Cw, and LAI from the considered grassland spectra the default variable
ranges as specified by CRASh were all close to the optimum. Nevertheless, only the dependence
of the results on the change of one variable at a time was studied. Future work should therefore
focus on multivariate approaches to study the effects of simultaneously changing input LUT
ranges. A further optimization of the ranges could help to reduce the number sampling intervals
per variable or to intensify sampling density in variable spaces where spectral response is high.
Additionally, the sensitivity of retrieval results to the sampling distribution functions should be
considered which however is a precarious task, since spectral sensitivity strongly depends on
canopy composition and observation/illumination geometry.

Sensitivity of the approach to changing view/sun geometry The HyMap imagery presented
in Chapter 4 offered a unique opportunity of studying the effects of changing view/sun geome-
try on estimation performance. It was shown that retrievals of variables with significant effect
on canopy reflectance such as Cab and LAI, but also average leaf angle (ALA), showed high
consistency among the different constellations, whereas variables with low effect such as Cdm
and the hot spot parameter HS showed very low consistency. Estimates of Cw, the leaf meso-
phyll parameter N , and the soil brightness coefficient BS showed intermediate congruity. These
results clearly correlate with the trends revealed in the previous paragraph.

The bias in the obtained results between scenes with different view/sun geometry showed no
direct parallel to the spectral anomalies between the scenes. This indicates that the PROSPECT
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and SAILh combination was well able to mimic reflectance anisotropy resulting from the differ-
ent view/sun constellations of the HyMap scenes. In contrast, discrepancies between different
constellations were primarily induced by anomalies in land cover classification results which oc-
curred even after nadir-normalization. Whereas irregularities in land cover classification had
hardly any effect on sparse to medium-dense canopies, for dense canopies their influence was
very large. It is suggested that due to the saturating spectral response of such dense canopies,
small anomalies in the predictive equations for LAI and Cab have a large impact on the prior
estimates of these variables, and hence on the final results of all estimates.

The study case presented in Chapter 5 provided interesting insight into the relationship be-
tween retrieval performance and view geometry for cases in which the assumptions made in the
RTM are inadequate for describing radiation propagation in the canopy under consideration.
It disclosed the superior retrieval accuracy for oblique backscatter view directions compared
to nadir and forward looking directions. Geometrical shading, a component not accounted for
by SAILh, is negligible in the backscatter directions, leading to a better approximation to the
turbid medium assumption and, hence, to reduced discrepancy between modeled and observed
canopy reflectance.

Performance of CRASh compared to better determined inversions The automated CRASh
approach presented in this thesis had to deal with the lack of a priori knowledge on land cover
and phenology, which severely hampered the definition of well-constrained variable ranges input
to the generation of the LUTs. An inbuilt automated land cover classification and the inclusion
of a priori estimates based on semi-empirical predictive regression equations were proposed to
overcome this deficiency. The integration of both components led to improved accuracy of the
solutions but above all contributed to better defined and more stable solutions. While the land
cover classification primarily reduced the uncertainty of the solution, the integration of covari-
ance between the generated a priori estimates significantly reduced collinearity and ambiguity
between the estimates.

Several knowledge based regularization techniques were tested for their potency of providing
additional improvement of retrieval accuracy, such as fixing the ratio between Cdm and Cw
and a synthesis of leaf biochemicals and LAI. None of these regularization techniques provided
better variable estimates in the considered grassland cases. Apparently, the incorporation of the
covariance between variables in the cost function already led to the maximum possible reduction
of ambiguity in the results. Even the introduction of the ground validation measurements of Cw,
Cdm, and LAI as prior information in the inversion process, improved estimation accuracy (rel-
ative RMSE and overall accuracy) only about 10%, which indicates the fairly good performance
of CRASh in cases where no a priori information on land cover is available. This additional gain
in accuracy could be obtained for cases in which land cover and phenology is previously known
so that RTM parameterization can be optimized for the considered situation.

For the row-structured cotton canopies, introducing a high amount of a priori information
even led to decreased estimation accuracy for LAI. This observation provides important insight
into the behavior of model inversion in the case of an ill-posed and under-determined problem.
Very tight definitions of a priori information only leads to significantly better performance when
the employed RTM is capable of accounting for all dominating radiation transfer processes and of
providing reflectance factors that agree very well with the measured ones. Since there is always
some discrepancy between measured and modeled reflectance, e.g., due to model assumptions

174



Chapter 6. Synthesis

and radiometric and atmospheric uncertainties, always some small degree of variation should be
consented to the several variables influencing canopy reflectance, even when their effect is not
so straightforward. This would namely allow for better retrievals of variables with significant
influence on the spectral signal at the cost of the prediction accuracy of variables having little
influence on canopy reflectance.

Potential of additional regularization based on multi-angular observations Chapter 5 demon-
strated the high potential residing in the simultaneous inversion of several view angles, even in
the case where RTM and observed canopy are not completely compatible. The multi-angular
observations provide a highly complementary information source to the hyperspectral dimen-
sion and reveal additional information on canopy structure. The enhanced regularization of
canopy structure variables stabilized the entire retrieval procedure and at the same time led to
improved estimations of leaf chlorophyll content as well. This potential has been recognized for
many years by the research community (Bacour et al., 2002b; Knyazikhin et al., 1999c; Menenti
et al., 2005; Pinty et al., 2002; Rast, 2004; Verhoef, 2007; Widlowski et al., 2004).

Absolute accuracy For the grassland study, the average accuracy obtained at ground level
for the HyMap configuration was around 70% for all 3 considered variables and ranged from
61.6 - 88.8% if the grasslands were split up according to phenological classes. The minimum and
maximum relative RMS errors (rRMSE) obtained at this level were 14.1 and 38.8%, respectively.
At the level of the airborne HyMap data, average estimation accuracy was significantly lower
and varied from 37.3 to 69.7%, depending on variable and sun/view constellation, while rRMSE
laid between 35.6 - 61.8 % (Chapter 4). The unsatisfying results obtained at image level are
ascribed to the large discrepancy between the small validation plots of 1× 1 m2 and the average
HyMap pixel size of 5 × 5 m2. Especially in the highly heterogeneous pasture this played a
decisive role.

The results obtained CHRIS/PROBA observations are significantly better than the ones
obtained at image level from HyMap data, although they are not directly comparable, since
both canopy type, spectral sensor configuration, and considered variables differed. For the single
view angles, highest accuracy was obtained for the 55◦ backscatter nominal view angle, providing
rRMSE of 28.9 and 37.1%, and an average accuracy of 62.6 and 74.5% for Cab averaged over all
leaf layers and LAI, respectively. Regarding the simultaneous inversion of several view angles,
best overall performance when all view angles but the extreme forward scattering angle (+55◦

nominal view angle) were combined. This provided a rRMSE of 21.5 and 32.7% and an average
accuracy of 74.2 and 74.3% for Cab and LAI, respectively, marking a significant improvement
compared to the best performing single view angle.

6.3 Conclusions

Given the fairly accurate results obtained from the field spectrometer data and the encourag-
ing results obtained for CHRIS, the approach presented in this thesis provides a substantial
contribution to the development of automated algorithms for the generation of consistent bio-
physical and biochemical products based on mono-temporal high resolution earth observation
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data. The large discrepancy between the results obtained at ground and airborne level indicate
that additional effort should be put in validating the model with ground campaigns that are
representative for the spatial resolution of the sensor (Baret et al., submitted). Only in this way
the full potential of the approach can be explored and optimal use can be made of the spectral
and spatial information dimensions provided by the image content. Several data campaigns
supporting such validation and calibration activities are in progress or planned for the coming
years and should provide a more exhaustive overview of model performance over varying land
cover types, phenological stages, view/sun geometries, and sensor configurations. With regard
to the latter, validation should be concentrated on full range superspectral or hyperspectral
sensors such as the airborne sensors AVIRIS (Green et al., 1998), HyMap (Cocks et al., 1998),
APEX (Schaepman et al., 2004), and ARES (Müller et al., 2005; Richter et al., 2005), and the
planned Sentinel-2 and EnMap satellite missions (Gascon and Berger, 2007; Müller et al., 2004).
This study demonstrated that, even if data redundancy is high for such systems, full range
imaging spectrometers provide significantly more uncorrelated information than most multi-
spectral sensor systems, or than imaging spectrometers covering only the VNIR. Inclusion of the
SWIR region is indispensable for robust allocations of leaf biochemics such as leaf water content,
whereas a high number of bands significantly reduces the ambiguity in the estimates of variables
inducing complementary spectral behavior. With this notice, the study confirms the theoretical
work performed by Verhoef (2007).

The high correlation between classification anomalies and inconsistencies in the estimated
variables suggests that considerable inversion improvement can be obtained by applying more
sophisticated land cover classification schemes. Such schemes should be less dependent on pure
thresholds and could for example combine the spectral decision rules with segmentation algo-
rithms for object recognition and fuzzy classifiers (Lucieer and Stein, 2002). Unnatural within-
field transitions can thus be prevented and spectral characterization can be based on coherent
and well defined single fields. It is believed that optimizing for land cover classification in the
proposed way, would provide consistent estimations for homogeneous canopies of spectrally sen-
sitive variables such as LAI and leaf chlorophyll content, but that consistent results could also
be obtained for less sensitive variables such as leaf water and leaf dry matter content.

Even if there is still some room for optimization of the algorithm, especially for homogeneous
surfaces, portability of the approach to more complex surfaces, such as row crops, is hampered
by the limited intrinsic dimensionality of the data. Verhoef (2007) reports that, depending on
the noise level, the number of uncorrelated dimensions in single-view, full-range, hyperspectral
data varies between 6 and 12. Whereas for a homogeneous canopy theoretically all 9 variables
could be retrieved from the TOC reflectance data (given that the variables are uncorrelated), the
number of variables required for a simple representation of a row canopy (i.e., the 9 previously
mentioned variables plus 4 parameters describing row height, distance, width, and direction
(Kuusk, 1995b; Kuusk, 1995a; CROMA, 2002)), already exceeds the dimensionality of the data.
Thus, a stable model inversion for such canopies can only be obtained by incorporating addi-
tional independent information dimensions, such as the temporal evolution of the vegetation
(Koetz et al., 2005a), LIDAR data (Koetz et al., 2005c; Koetz et al., 2007), RADAR backscatter
coefficients (Treuhaft et al., 2002; Treuhaft et al., 2004), or multi-angular observations (Menenti
et al., 2005; Rast, 2004; Verhoef, 2007; Widlowski et al., 2004).

The automated CRASh retrieval approach presented in this thesis was based on the presump-
tion that all the information should be obtainable from the (hyperspectral) remote sensing data
source itself. In practice however, this would be a rather experimental constraint, as in precision
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farming applications information on land cover, crop management, phenology, soil condition
and so on is usually previously available. Therefore, CRASh has been programmed in such a
way that, if complementary information on canopy variables or land cover is available, this can
be integrated into the model, which in such cases will lead to more stable and better defined
solutions. Nevertheless, the purpose of this study was to demonstrate which accuracy could be
obtained by a fully automated and completely image based approach, starting from the theoret-
ical baseline of zero a priori information, and to discover to which degree individual information
sources and regularization techniques can contribute to improved retrieval performance.

6.4 Outlook

As demonstrated in Chapter 5, and as evidenced by many other authors, great potential lies in
the synergetic use of imaging spectrometry and multi-angular observations for enhanced charac-
terization of complex vegetated surfaces. The angular dimension principally provides information
on canopy structure and is therewith highly complementary to the hyperspectral dimension being
diagnostic for biochemistry. Although after the dismissal of the SPECTRA mission (Rast, 2004)
in the near future the experimental CHRIS sensor will remain the only sensor providing spec-
trodirectional observations with high spatial resolutions, potential is also seen for the upcoming
German EnMAP full-range imaging spectrometer (Müller et al., 2004). Through its tilting ca-
pacity up to 30◦ this sensor will be able to provide multi-angular composites of images collected
during successive satellite overpasses. Nevertheless, precision farming products based on spec-
trodirectional observations of both CHRIS and EnMap will probably have a rather experimental
character.

Instead of further exploiting the joint hyperspectral and angular dimensions of high resolution
earth observation data, in the coming decade international political programs and commercial
efforts mainly seem to concentrate on increasing the temporal coverage of multi- and super-
spectral systems (Schreier and Dech, 2005). The system requirements of the ESA Sentinel-2
satellite, which should provide data continuity to Landsat and SPOT-like sensors, are mainly
driven by the GMES Service Elements, requiring earth observation data for natural hazards man-
agement, food security, global change issues, humanitarian aid, and forest monitoring (Gascon
and Berger, 2007). Very promising, in the context of improved product continuity and consis-
tency for agricultural areas, will be the privately owned multi-satellite system RapidEye1 which
is to be launched in 2008. Although the spectral configuration contains only 5 spectral bands,
the five-satellite constellation should guarantee near daily revisit capability. This would clearly
contribute to improved land cover identification (Lotsch et al., 2003; Houborg et al., 2007) and
to additional regularization of the inverse problem offered by the information on phenological
development (Koetz et al., 2005a).

Quantitative characterization of the biosphere is moving toward integrated approaches, fusing
earth observation data of different sensors, spatial resolutions, radiometric quantities, and revisit
frequencies (Schaepman, 2007). The remote sensing signal will thus no longer be considered as
an independent information source but interpreted in the context of the different data dimen-
sions available prior to and during the time of observation. However, assimilation strategies will
not merely rely on complementary remote sensing data sources, but will increasingly incorpo-
rate in situ measurements, canopy state variables generated by physical earth surface process
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6.4. Outlook

models, and ground based GIS information layers (INSPIRE, 2007; Schaepman, 2007; Schreier
and Dech, 2005). The challenge of future remote sensing research will be to develop algorithms
that carefully weight these multiple information sources while taking into account their uncer-
tainties (Dorigo et al., 2007; Launay and Guerif, 2005). In this respect, great potential has been
recognized in the coupling of soil-vegetation-atmosphere (SVAT) models with radiative transfer
model approaches, and in other methods for incorporating a priori information with varying
uncertainties in radiative transfer model inversion schemes (Lavergne et al., 2007; Verhoef and
Bach, 2003a; Verhoef, 2007). In addition, to be able to correctly combine and interpret historic
data records from different sensors, and to extend these records to future missions, further effort
should be put in improving retrieval consistency for mono-temporal data sets and in developing
reliable cross-sensor translation functions (Van Leeuwen et al., 2003).

1URL: http://www.rapideye.de
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SPECL classification rules
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Appendix B

Variable sampling plan for LUTs

Distributions, variable ranges, and sampling intervals used generating LUTs for each SPECL
land cover class in the automatic mode. Below the considerations are listed that were taken into
account for assigning the parameters in the table.

B.1 SPECL class 2: Dark vegetation

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1. 3.5 2.0 1.0 3

Cab Combal 20 90 (50) (50) 8

Cw Uniform 0.010 0.060 (0.015) (0.005) 5

Cdm Uniform 0.0035 0.015 (0.01) (0.003) 5

Cbp Gaussian 0. 1.5 0. 0.6 1

Canopy LAI Combal 0.5 6 (4) (4.) 8

ALA Gaussian 25 70 57 20 3

HOT Gaussian 0.001 0.2 0.02 0.1 3

Soil BS Gaussian 0.3 1.1 0.7 0.3 1

Total # samples 43,200

• Principle land cover characteristics: green vegetation with low NIR reflectance, induced
by a large shading component caused by vertical canopy structures. Mainly tree canopies
fall into this category, but also agricultural land use with an inhomogeneous large scale
canopy structures such as vine yards and horticultures. Strong spectral similarity with
canopies composed of a mix of soil and vegetation: for this reason the class should also
partly describe canopy types of this kind.

• N : should cover both fresh (green row crops) and partly senescent leaves in the case of



B.2. SPECL class 3: Average vegetation

classifying mix of soil and vegetation, therefore average of 2.0 and sigma of 1.0 (Table 3.1.
Relatively little influence on spectrum, therefore only 3 classes/steps.

• Cab: considered medium-high. Large influence on VIS. Distribution according to (Combal
et al., 2002b) in order to allow denser sampling in ranges of high sensitivity. One of end
products → finer sampling steps.

• Cw : Little known about distribution → uniform distribution. Around 4 times higher than
Cdm (In healthy vegetation relative water content is around 80%)

• Cdm: Little known about distribution → uniform distribution. Around 0.25 times Cw (In
healthy vegetation relative water content is around 80%)

• Cbp: For the possibility of receiving misclassified pixels of mix soil/vegetation or senescent
material it was decided to include Cbp with µ = 0 σ=0.6.

• LAI : can cover a wide range of canopy types incuding a mix soil/vegetation and denser
canopies. Therefore range is set from 0.5 - 6.0 (Forest canopies, which can have higher
values are not considered in this case). Distribution according to (Combal et al., 2002b) in
order to allow denser sampling in ranges of high sensitivity. One of end products → finer
sampling steps.

• ALA: Little is known about ALA. As the class mainly consists of shrub-like, a slightly
planophile ALA (45) is assumed: Erectophile- and planophile distributions are less likely,
so a Gaussian distribution with a σ of 20 assumed.

• HS : Vertically structured canopies are assumed: therefore leaf size is assumed small com-
pared to canopy height and a Gaussian distribution with a small mean is adopted.

• Bs: Influence of soil reflectance is assumed little: Bs is reduced to 1 class with Gaussian
variation around average. Because of high shading component (and soil moist), average
Bs is set to 0.7 and σ to 0.2

B.2 SPECL class 3: Average vegetation

• Principle land cover characteristics: green crops and grasses in intermediate phenological
stages, medium to high NIR reflectance

• N : fresh leaves, therefore average of 1.63 and sig. of 0.5 (Table 3.1. Relatively little
influence on spectrum, therefore only 3 classes/steps.

• Cab: considered medium-high. Large influence on VIS. Distribution according to (Combal
et al., 2002b) in order to allow denser sampling in ranges of high sensitivity. One of end
products → finer sampling steps.

• Cw : Little known about distribution → uniform distribution. Around 4 times higher than
Cdm (In healthy vegetation relative water content is around 80%)
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Chapter B. Variable sampling plan for LUTs

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1. 2.5 1.63 0.5 3

Cab Combal 20 100 (50) (50) 8

Cw Uniform 0.0100 0.0700 (0.025) (0.010) 5

Cdm Uniform 0.0035 0.0250 (0.007) (0.003) 5

Cbp Fixed 0. - - - 1

Canopy LAI Combal 1. 7 (4) (4.) 8

ALA Gaussian 30 70 57 20 3

HOT Gaussian 0.001 0.3 0.05 0.2 3

Soil BS Gaussian 0.3 1.1 0.7 0.3 1

Total # samples 43,200

• Cdm: Little known about distribution → uniform distribution. Around 0.25 times Cw (In
healthy vegetation relative water content is around 80%)

• Cbp: Vegetation canopy itself is considered free of brown leaves, so Cbp is set to fixed
value of 0. Incidental brown leaves are assumed to be included in soil signature.

• LAI : considered medium-high, with values up to 7 possible for dense crop canopies. Dis-
tribution according to (Combal et al., 2002b) in order to allow denser sampling in ranges
of high sensitivity. One of end products → finer sampling steps.

• ALA: since very little is known about ALA, an average value of 57 (being a spherical
distribution) is assumed. Erectophile- and planophile distributions are less likely, so a
Gaussian distribution with a σ of 20 assumed.

• HOT : leaf size assumed intermediate compared to canopy height → gaussian distr. with
small mean.

• Bs: Influence of soil reflectance is assumed little: Bs is reduced to 1 class with gaussian
variation around average. Because of high shading component and soil moist, average Bs
is set to 0.7 and σ to 0.2

•

B.3 SPECL class 4: Bright vegetation

• Principle land cover characteristics: green crops and grasses in full development (high NIR
reflectance).

• N : fresh leaves, therefore average of 1.63 and sig. of 0.5 (Table 3.1. Relatively little
influence on spectrum, therefore only 3 classes/steps.
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B.4. SPECL class 5: Yellow vegetation

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1. 2.5 1.63 0.5 3

Cab Combal 20 100 (50) (50) 8

Cw Uniform 0.01 0.08 (0.015) (0.005) 5

Cdm Uniform 0.0050 0.0250 (0.01) (0.003) 5

Cbp Fixed 0. - - - 1

Canopy LAI Combal 2 9 (4) (4.) 8

ALA Gaussian 30 70 57 20 3

HOT Gaussian 0.001 0.3 0.2 0.2 3

Soil BS Gaussian 0.3 1.1 0.7 0.3 1

Total # samples 43,200

• Cab: considered medium-high. Large influence on VIS. Distribution according to (Combal
et al., 2002b) in order to allow denser sampling in ranges of high sensitivity. One of end
products → finer sampling steps.

• Cw : Little known about distribution → uniform distribution. Around 4 times higher than
Cdm (In healthy vegetation relative water content is around 80%)

• Cdm: Little known about distribution → uniform distribution. Around 0.25 times Cw (In
healthy vegetation relative water content is around 80%)

• Cbp: Vegetation canopy itself is considered free of brown leaves, so Cbp is set to fixed
value of 0. Incidental brown leaves are assumed to be included in soil signature.

• LAI : considered medium-high, with values up to 7 possible for dense crop canopies. Dis-
tribution according to (Combal et al., 2002b) in order to allow denser sampling in ranges
of high sensitivity. One of end products → finer sampling steps.

• ALA: since very little is known about ALA, an average value of 57 (being a spherical
distribution) is assumed. Erectophile- and planophile distributions are less likely, so a
gaussian distribution with a σ of 20 assumed.

• HOT : leaf size assumed small compared to canopy height → gaussian distr. with small
mean.

• Bs: Influence of soil reflectance is assumed little: Bs is reduced to 1 class with gaussian
variation around average. Because of high shading component and soil moist, average Bs
is set to 0.7 and σ to 0.2

B.4 SPECL class 5: Yellow vegetation

• Principle land cover characteristics: healthy green vegetation (high NIR reflectance) con-
taining flourishing yellow flowers (low green and red absorption), such as rapeseed or
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Chapter B. Variable sampling plan for LUTs

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1. 2.5 1.63 1. 3

Cab Combal 20 100 (50) (50) 8

Cw Uniform 0.01 0.08 (0.015) (0.005) 5

Cdm Uniform 0.005 0.025 (0.01) (0.003) 5

Cbp Fixed 0. - - - 1

Canopy LAI Combal 1.5 7 (4) (4.) 8

ALA Gaussian 30 70 57 20 3

HOT Gaussian 0.001 0.3 0.05 0.2 3

Soil BS Gaussian 0.3 1.1 0.7 0.3 1

Total # samples 43,200

sunflower.

• N : fresh leaves, therefore average of 1.63 and sig. of 0.5 (Table 3.1. Relatively little
influence on spectrum, therefore only 3 classes/steps.

• Cab: considered medium-high. Large influence on VIS. Distribution according to (Combal
et al., 2002b) in order to allow denser sampling in ranges of high sensitivity. One of end
products → finer sampling steps.

• Cw : Little known about distribution → uniform distribution. Around 4 times higher than
Cdm (In healthy vegetation relative water content is around 80%)

• Cdm: Little known about distribution → uniform distribution. Around 0.25 times Cw (In
healthy vegetation relative water content is around 80%)

• Cbp: Vegetation canopy itself is considered free of brown leaves, so Cbp is set to fixed
value of 0. Incidental brown leaves are assumed to be included in soil signature.

• LAI : considered medium-high, with values up to 7 possible for dense crop canopies. Dis-
tribution according to (Combal et al., 2002b) in order to allow denser sampling in ranges
of high sensitivity. One of end products → finer sampling steps.

• ALA: since very little is known about ALA, an average value of 57 (being a spherical
distribution) is assumed. Erectophile- and planophile distributions are less likely, so a
gaussian distribution with a σ of 20 assumed.

• HOT : leaf size assumed small compared to canopy height → gaussian distr. with small
mean.

• Bs: Influence of soil reflectance is assumed little: Bs is reduced to 1 class with gaussian
variation around average. Because of high shading component and soil moist, average Bs
is set to 0.7 and σ to 0.2
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B.5. SPECL class 6: Mixed vegetation / soil

B.5 SPECL class 6: Mixed vegetation / soil

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1 3.5 1.7 1. 3

Cab Combal 10 80 (30) (50) 7

Cw Uniform 0.007 0.05 (0.015) (0.005) 5

Cdm Uniform 0.002 0.025 (0.01) (0.003) 5

Cbp Gaussian 0. 0.5 0. 0.5 2

Canopy LAI Combal 0.2 3. (1.5) (4.) 5

ALA Gaussian 30 80 57 20 3

HOT Gaussian 0.01 0.3 0.2 0.3 3

Soil BS Gaussian 0.5 1.2 0.9 0.2 3

Total # samples 141,750

• Principle land cover characteristics: green vegetation does not fully cover the underlying
soil background, so primarily crops in early development stages, but also cut meadows or
harvested green crops.

• N : Class includes both young and cut/harvested green vegetation → N maximum is ex-
tended to 3.5. Gaussian distribution with average of 1.7 and sigma of 1. Relatively little
influence on spectrum, therefore only 3 classes/steps.

• Cab: is considered low-medium. Distribution according to (Combal et al., 2002b) in order
to allow denser sampling in ranges of high sensitivity. Range slightly reduced because of
reduced range.

• Cw : Water content ranges from low to high. Little known about distribution → uniform
distribution. LB is lowered as also dry vegetation might be included. Average water
content of ±80% is no longer valid for this class.

• Cdm: Little known about distribution → uniform distribution.

• Cbp: Small fraction of senescent leaves might be available → gaussian distr. with mean=0
and σ = 0.5.

• LAI : considered low-medium, with values up to 3.5. Number of classes is reduced because
of reduced range. Distribution according to (Combal et al., 2002b) in order to allow denser
sampling in ranges of high sensitivity.

• ALA: since very little is known about ALA, an average value of 57 (bspherical distribu-
tion) is assumed. Erectophile- and planophile distributions are less likely, so a gaussian
distribution with a σ of 20 is assumed. Max is increased a little since cut meadows will
have an erectophile distribution.
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Chapter B. Variable sampling plan for LUTs

• HOT : canopy height is assumed low compared to leaf width → Gaussian distr. with mean
0.2.

• Bs: Influence of soil reflectance is assumed medium-large → Number of classes is increased
to 3. Because of larger fraction of unshaded bare soil, and reduced soil moist, average Bs
is increased to 0.9 with a σ to 0.2

B.6 SPECL class 12: Dry vegetation / soil

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Gaussian 1.5 4.0 2.2 1. 3

Cab Combal 0 20 (10) (50) 3

Cw Uniform 0.001 0.01 (0.003) (0.004) 5

Cdm Uniform 0.002 0.015 (0.01) (0.003) 5

Cbp Gaussian 0. 1.5 0 0.6 3

Canopy LAI Combal 0 1.5 (0.5) (4.) 5

ALA Gaussian 30 70 57 20 3

HOT Gaussian 0.01 0.8 0.2 0.2 1

Soil BS Gaussian 0.7 1.3 1.0 0.2 3

Total # samples 30,375

• Principle land cover characteristics: vegetation with a high content of senescent material,
such as cut meadows or mature cereals prior to harvest. Low cover.

• N : Class mainly includes senescent/harvested vegetation → increased N. min is increased
to 1.5, maximum is extended to 4. A gauss. distr. with average of 2 and σ of 1 is used.
Relatively little influence on spectrum, therefore only 3 classes/steps.

• Cab: is considered low. Distribution according to (Combal et al., 2002b) in order to allow
denser sampling in ranges of high sensitivity. Reduced number of intervals because of
reduced range.

• Cw : Little known about distribution → uniform dist. LB is lowered as also dry vegetation
might be included.

• Cdm: Little known about distribution → uniform

• Cbp: Fraction of senescent leaves is likely → gaussian distr. with mean=0 and σ = 0.5. 3
classes

• LAI : considered low, with values up to 1.5 Distribution according to (Combal et al., 2002b)
in order to allow denser sampling in ranges of high sensitivity. Nr. of classes is kept at 5
since spectrum is very sensitive LAI in this range.
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B.7. SPECL class 13: Sparse vegetation / soil

• ALA: since very little is known about ALA, an average value of 57 (being a spherical
distribution) is assumed. Erectophile- and planophile distributions are less likely, so a
gaussian distribution with a σ of 20 is assumed.

• HOT : canopy height is assumed low compared to leaf width → gaussian distr. with mean
0.2. Since canopy is relatively low and sparse, Hot spot has little effect → Nr. classes is
reduced to 1.

• Bs: Soil reflectance is dominant → Number of classes is increased to 3. Because of larger
fraction of unshaded bare soil, and reduced soil moist, average Bs is increased to 1.0. As soil
conditions are very close to those found under bare soil conditions, minimum, maximum,
and standard deviation are the ones that were deducted from scene variation 3.2.3

B.7 SPECL class 13: Sparse vegetation / soil

Variable Distribution Minimum Maximum Mean σ # intervals

Leaf N Combal 1. 4.0 1.7 1. 3

Cab Uniform 0 40. (20) (50) 5

Cw Uniform 0.005 0.03 (0.015) (0.005) 5

Cdm Uniform 0.002 0.020 (0.01) (0.003) 5

Cbp Gaussian 0. 0.5 0. 0.5 2

Canopy LAI Combal 0.01 1.5 (0.5) (1.) 5

ALA Gaussian 30 70 57 20 3

HOT Gaussian 0.01 0.8 0.2 0.2 1

Soil BS Gaussian 0.7 1.3 1.0 0.2 3

Total # samples 33,750

• Principle land cover characteristics: soil signature is dominant but still containing a frac-
tion of photosynthetic active vegetation or green crop residues.

• N : Class includes very young and harvested green vegetation → Relatively little influence
on spectrum, therefore only 3 classes/steps.

• Cab: is considered low-medium. Distribution according to (Combal et al., 2002b) in order
to allow denser sampling in ranges of high sensitivity. Finer steps are chosen because of
large influence on lower concentrations.

• Cw : Little known about distribution → Uniform dist. LB is lowered as also dry vegetation
might be included.

• Cdm: Little known about distribution → uniform

• Cbp: Small fraction of senescent leaves might be available → gaussian distr. with mean=0
and σ = 0.5.
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Chapter B. Variable sampling plan for LUTs

• LAI : considered low-medium, with values up to 1.5. Uniform distribution.

• ALA: since very little is known about ALA, an average value of 57 (being a spherical
distribution) is assumed. Erectophile- and planophile distributions are less likely, so a
gaussian distribution with a σ of 20 is assumed.

• HOT : canopy height is assumed low compared to leaf width → gaussian distr. with mean
0.2. Hot spot has little effect at low cover -→ Nr. classes is reduced to 1.

• Bs: Influence of soil reflectance is assumed large → Number of classes is increased to
3. Because of larger fraction of unshaded bare soil, and reduced soil moist, average Bs is
increased to 1.0. As soil conditions are very close to those found under bare soil conditions,
minimum, maximum, and standard deviation are the ones that were deducted from scene
variation
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B.7. SPECL class 13: Sparse vegetation / soil
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Appendix C

Overview of used vegetation indices

Vegetation Index Equation Reference

Broadband vegetation indices

Normalized Difference Vegeta-
tion Index

NDV I = ρ850−ρ670
ρ850+ρ670

(Rouse et al., 1973)

Ratio Vegetation Index RV I = ρ850
ρ670

(Pearson and Miller, 1972)

Soil Adjusted Vegetation Index SAV I =
(ρ850−ρ670)∗(1+L)

(ρ850+ρ670+L)
(Huete, 1988)

Soil Adjusted Vegetation Index
2

SAV I2 = ρ850

ρ670+ab/bc
(Major et al., 1990)

Modified SAVI MSAV I = ρ850 + 0.5 −p
(ρ850 + 0.5)2 − 2(ρ850 − ρ670)

(Qi et al., 1994)

Optimized SAVI OSAV I = (1 + 0.16) ∗ ρ850−ρ670
ρ850+ρ671+0.16

(Rondeaux et al., 1996)

Transformed SAVI TSAV I = a ∗ ρ850−aρ670−b
aρ850+ρ670−ab

(Baret et al., 1989)

Adjusted Transformed SAVI ATSAV I = a ∗ ρ850−aρ670−b
aρ850+ρ670−ab+X(1+a2)

(Baret and Guyot, 1991)

Soil and Atmospherically Re-
sistant Index

SARV I =
(ρ850−ρRB)(1+L)

ρ850+ρRB+L
(Kaufman and
Tanré, 1992)

ρRB = ρ670 − β(ρ480 − ρ670)

Enhanced Vegetation Index or
SARVI2

EV I =
2.5(ρ850−ρ670)

1+ρ850+6ρ670−7.5/ρ480
(Huete et al., 1997; Huete
et al., 2002)

Ratio Difference Vegetation In-
dex

RDV I = ρ850−ρ670√
ρ850+ρ670

=
√
NDV I ∗RV I (Roujean and Bréon, 1995)

Triangular Vegetation Index TV I = 60(ρ750 − ρ550)− 100(ρ670 − ρ550) (Broge and Mortensen,
2002)

(continued on next page)



(continued)

Vegetation Index Equation Reference

Modified Triangular Vegeta-
tion Index 1

MTV I1 = 1.2 ∗ [1.2(ρ800 − ρ550)− 2.5(ρ670 − ρ550)] (Haboudane et al., 2004)

Modified Triangular Vegeta-
tion Index 2

MTV I2 =
1.5∗[1.2(ρ800−ρ550)−2.5(ρ670−ρ550)]√

(2ρ800+1)2−(6ρ800−5
√

ρ670)−0.5
(Haboudane et al., 2004)

Chlorophyll Absorption Ratio
Index

CARI =

ρ700
ρ670

∗aρ670+ρ670+b

a2+1
(Kim et al., 1994)

a = ρ700−ρ550
150

b = ρ550 − 550a

Chlorophyll indices

Transformed CARI TCARI = 3 [(ρ700 − ρ670)− 0.2(ρ700 − ρ550)] ∗
(ρ700/ρ670)

(Haboudane et al., 2002)

TCARI/OSAVI (Haboudane et al., 2002)

Modified CARI MCARI = [(ρ700−ρ670)−0.2(ρ700−ρ550)](ρ700/ρ670) (Daughtry et al., 2000)

Modified CARI 1 MCARI1 = 1.2[2.5(ρ800 − ρ670)− 2.5(ρ800 − ρ550)] (Haboudane et al., 2004)

Modified CARI 2 MCARI2 =
1.5[2.5(ρ800−ρ670)−1.3(ρ800−ρ550)]√

(2ρ800+1)2−(6ρ800−5
√

ρ670)−0.5
(Haboudane et al., 2004)

MERIS Terrestrial Chlorophyll
Index

MTCI = ρ754−ρ709
ρ709−ρ681

(Dash and Curran, 2004)

Leaf Chlorophyll Index LCI = ρ850−ρ710
ρ850+ρ710

(?)

Simple ratio at 705 nm SR705 = ρ750
ρ705

(Sims and Gamon, 2002)

Greenness Index GI = ρ671
ρ549

(Zarco-Tejada
et al., 2005b)

Photochemical Reflectance In-
dex

PRI = ρ529−ρ569
ρ529+ρ569

(Penuelas et al., 1994)

Carter Stress Index 2 CSI2 = ρ695
ρ760

(Carter, 1994; Carter et al.,
1994)

1st Order Derivative Green
vegetation Index

DGV I1 =
Pλ760

λ680
|ρ′(λi)|∆λi (Elvidge and Chen, 1995)

2nd Order Derivative Green
vegetation Index

DGV I1 =
Pλ760

λ680
|ρ′′(λi)|∆λi (Elvidge and Chen, 1995)

Red Edge Inflection Point (in-
dex)

REIPguyot(λ) = 700 + 740
700

∗ ρi−ρ700
ρ740−ρ700

(Guyot et al., 1988)

ρi = 0.5 ρ780
ρ670

(continued on next page)
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Chapter C. Overview of used vegetation indices

(continued)

Vegetation Index Equation Reference

REIP (maximum of 1st order
Savitzky-Golay filter)

REIPsav1(λ) = max( ∂ρ
∂λ

) (Savitzky and Golay, 1964)

REIP (minimum of 2nd order
Savitzky-Golay filter)

REIPsav2(λ) = min( ∂2ρ
∂2λ

) (Savitzky and Golay, 1964)

REIP (Lagrangian model) REIPLagr(λ) =
A(λi+λi+1)+B(λi−1+λi+1)+C(λi−1+λi)

2(A+B+C)
(Dawson and Cur-
ran, 1998)

A =
Dλ(i−1)

(λi−1−λi)(λi−1−λi+1)

B =
Dλ(i)

(λi−λi−1)(λi−λi+1)

C =
Dλ(i+1)

(λi+1−λi−1)(λi+1−λi)

Water indices

Moisture Stress Index MSI = ρ1600
ρ820

(Hunt and Rock, 1989)

Leaf Water Vegetation Index 1 LWV I1 = ρ1094−ρ983
ρ1094+ρ983

(Galvao et al., 2005)

Leaf Water Vegetation Index 2 LWV I2 = ρ1094−ρ1205
ρ1094+ρ1205

(Galvao et al., 2005)

Disease Water Stress Index 5 DWSI5 = ρ800+ρ550
ρ1660+ρ680

(Apan et al., 2004)

Dry matter indices

Normalized Difference Nitro-
gen Index

NDNI =
LOG(ρ1510)−1−LOG(ρ1680)−1

LOG(ρ1510)−1+LOG(ρ1680)−1 (Serrano et al., 2002)

Normalized Difference Lignin
Index

NDLI =
LOG(ρ1754)−1−LOG(ρ1680)−1

LOG(ρ1754)−1+LOG(ρ1680)−1 (Serrano et al., 2002)

Cellulose Absorption Index CAI = 0.5 ∗ (ρ2015 + ρ2195)− ρ2106 (Nagler et al., 2000)

Shortwave Infrared Green Veg-
etation Index

SWIRV I = 37.27 ∗ (ρ2210 − ρ2090) + 26.27(ρ2280 −
ρ2090)− 0.57

(Lobell et al., 2001)

Table C.1: Vegetation indices used for predictive equations. L = 0.5 (Baret and Guyot, 1991), a = 1.2
(Baret and Guyot, 1991; Broge and Mortensen, 2002), b = 0.04 (Baret and Guyot, 1991), X=0.08 (Baret and
Guyot, 1991), β = 1 (Kaufman and Tanré, 1992)
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Appendix D

Spectral configuration HyEurope 2003



VIS NIR SWIR1 SWIR2

Band λ FWHM Band λ FWHM Band λ FWHM Band λ FWHM

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]

1 438 11 31 878 16 63 1404 16 95 1951 22

2 450 12 32 895 16 64 1419 16 96 1970 22

3 462 16 33 911 16 65 1433 15 97 1990 21

4 478 16 34 927 16 66 1447 15 98 2009 21

5 493 17 35 943 16 67 1461 15 99 2027 21

6 508 16 36 959 16 68 1475 15 100 2045 21

7 524 16 37 975 16 69 1489 14 101 2064 21

8 539 17 38 990 17 70 1503 14 102 2082 21

9 555 16 39 1006 15 71 1516 15 103 2100 21

10 570 15 40 1022 15 72 1530 14 104 2118 21

11 585 15 41 1037 16 73 1543 14 105 2136 20

12 600 16 42 1053 16 74 1557 14 106 2154 20

13 616 16 43 1068 15 75 1570 14 107 2171 20

14 632 15 44 1083 15 76 1583 14 108 2188 20

15 646 15 45 1098 16 77 1596 14 109 2206 22

16 662 16 46 1113 15 78 1609 14 110 2224 20

17 677 16 47 1128 15 79 1622 14 111 2241 20

18 692 16 48 1142 15 80 1635 14 112 2258 20

19 707 16 49 1157 15 81 1648 14 113 2274 19

20 723 16 50 1172 15 82 1661 14 114 2292 20

21 738 16 51 1186 15 83 1673 14 115 2309 19

22 753 16 52 1200 15 84 1686 13 116 2325 20

23 768 16 53 1215 15 85 1698 13 117 2341 19

24 783 17 54 1229 15 86 1710 13 118 2357 19

25 798 17 55 1243 15 87 1723 13 119 2373 18

26 813 17 56 1257 15 88 1735 13 120 2389 19

27 828 17 57 1272 15 89 1747 13 121 2405 19

28 844 18 58 1286 15 90 1759 13 122 2421 19

29 859 17 59 1299 15 91 1771 13 123 2437 18

30 874 17 60 1313 15 92 1783 13 124 2453 18

61 1327 15 93 1795 12 125 2468 18

62 1340 14 94 1807 12 126 2483 18

Table D.1: Spectral configuration of HyEurope 2003, arranged according to the 4 detectors (VIS, NIR, SWIR1,
and SWIR2). λ indicates the central wavelength, FWHM for the Full Width Half Maximum.
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Appendix E

Canopy variables measured at Waging
test site
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Chapter E. Canopy variables measured at Waging test site
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Appendix F

Spectral configuration CHRIS Mode 5
in 2006



Band nr. λ (nm) FWHM (nm)

1 442.5 10.5

2 490.4 11.6

3 530.2 11.5

4 551.6 12.9

5 570.2 10.7

6 631.8 14.1

7 661.5 15.8

8 675.0 11.0

9 686.2 11.5

10 697.9 11.8

11 706.9 6.1

12 713.1 6.3

13 719.3 6.3

14 725.7 6.5

15 732.3 6.6

16 739.0 6.7

17 745.7 6.8

18 752.6 6.9

19 759.7 7.1

20 766.8 7.2

21 774.1 7.4

22 785.4 15.2

23 796.9 7.8

24 804.7 7.9

25 868.3 18.1

26 886.9 18.8

27 901.1 9.6

28 910.8 9.7

29 920.5 9.9

30 930.4 10.1

31 945.6 20.4

32 961.1 10.3

33 971.5 10.6

34 982.1 10.5

35 992.9 10.8

36 1003.6 10.9

37 1025.4 32.9

Table F.1: Spectral configuration of CHRIS Mode 5 in 2006. λ stands for the center wavelength, FWHM for
the Full Width Half Maximum.
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Delécolle, R., Maas, S. J., Guérif, M. and Baret, F. (1992). Remote sensing and crop production
models - present trends, ISPRS Journal of Photogrammetry and Remote Sensing 47: 145–
161.

DIVERSITAS (2002). DIVERSITAS SCIENCE PLAN; DIVERSITAS Report No. 1. 40 pp.,
Paris.

Djanibekov, N. (2007). A micro-economic analysis of farm restructuring in Khorezm region,
Uzbekistan, PhD thesis, University of Bonn, Bonn, Germany.

Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J. and Stern, A.
(2004). Crop condition and yield simulations using Landsat and MODIS, Remote Sensing
of Environment 92: 548–559.

208



Bibliography

Dorigo, W. A., Zurita-Milla, R., De Wit, A. J. W., Brazile, J., Singh, R. and Schaepman,
M. E. (2007). A review on reflective remote sensing and data assimilation techniques for
enhanced agroecosystem modeling, International Journal of Applied Earth Observation and
Geoinformation 9.

Dorigo, W., Bachmann, M. and Heldens, W. (2006). AS Toolbox & processing of field spectra
– user’s manual, Technical report, DLR-DFD, Imaging Spectroscopy Group. URL: http:
//cocoon.caf.dlr.de/astools_en.html.

Dorigo, W., Baret, F., Richter, R., Ruecker, G., Schaepman, M. and Mueller, M. (2007). Retriev-
ing canopy variables by radiative transfer model inversion an automated regional approach
for imaging spectrometer data, Proceedings of the 5th EARSeL Workshop on Imaging Spec-
troscopy, EARSeL, Brughes, Belgium.

Elvidge, C. D. and Chen, Z. (1995). Comparison of broad-band and narrow-band red and
near-infrared vegetation indices, Remote Sensing of Environment 54: 38–48.

Fang, H., Liang, S. and Kuusk, A. (2003). Retrieving leaf area index using a genetic algorithm
with a canopy radiative transfer model, Remote Sensing of Environment 85: 257–270.

Fourty, T. and Baret, F. (1997). Vegetation water and dry matter contents estimated from top-
of-the-atmosphere reflectance data: A simulation study, Remote Sensing of Environment
61: 34–45.

Fourty, T., Baret, F., Jacquemoud, S., Schmuck, G. and Verdebout, J. (1996). Leaf optical prop-
erties with explicit description of its biochemical composition: Direct and inverse problems,
Remote Sensing of Environment 56: 104–117.

Fridgen, J. and Varco, J. (2004). Dependency of cotton leaf nitrogen, chlorophyll, and reflectance
on nitrogen and potassium availability, Agronomy Journal 96: 63–69.

Fukshansky, L., Fukshansky-Kazarinova, N. and Martinez v. Remisowsky, A. (1991). Estimation
of optical parameters in a living tissue by solving the inverse problem to the multiflux
radiative transfer, Applied Optics 30: 3145–3153.

Galvao, L., Formaggio, A. and Tisot, D. (2005). Discrimination of sugarcane varieties in South-
eastern Brazil with EO-1 Hyperion data, Remote Sensing of Environment 94: 523–534.

Gamon, J., Field, C., Bilger, W., Björkman, O., Fredeen, A. and Penuelas, J. (1990). Re-
mote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and
canopies, Oecologia 85: 1–7.

Gao, B.-C. (2002). NDWI a normalized difference water index for remote sensing of vegetation
liquid water from space, Remote Sensing of Environment 58: 257–266.

Garcia-Haro, F. J., Sommer, S. and Kemper, T. (2005). A new tool for variable multiple end-
member spectral mixture analysis (VMESMA), International Journal of Remote Sensing
26: 2135–2162.

Gardner, B. and Blad, B. (1986). Evaluation of spectral reflectance models to estimate corn leaf
area while minimizing the influence of soil background effects, Remote Sensing of Environ-
ment 20: 183–193.

209



Bibliography

Garrigues, S., Allard, D., Baret, F. and Weiss, M. (2006a). Influence of landscape spatial het-
erogeneity on the non-linear estimation of leaf area index from moderate spatial resolution
remote sensing data, Remote Sensing of Environment 105: 286–298.

Garrigues, S., Allard, D., Baret, F. and Weiss, M. (2006b). Quantifying spatial heterogeneity at
the landscape scale using variogram models, Remote Sensing of Environment 103: 81–96.

Gascon, F. and Berger, M. (2007). GMES Sentinel-2 Mission Requirements Document, Technical
report, ESA. issue 2 revision 0 (11/02/07), EOP.SM/1163/MR-dr.

Gastellu-Etchegorry, J. P., Demarez, V., Pinel, V. and Zagolski, F. (1996). Modeling radiative
transfer in heterogeneous 3-D vegetation canopies, Remote Sensing of Environment 58: 131–
156.

Gastellu-Etchegorry, J. P., Gascon, F. and Esteve, P. (2003). An interpolation procedure for
generalizing a look-up table inversion method, Remote Sensing of Environment 87: 55–71.

GCP (2003). The Global Carbon Project, Science Framework and Implementation. Earth System
Science Partnership (IGBP, IHDP, WCRP, DIVERSITAS) Report No. 1; Global Carbon
Project Report No. 1. 69 pp., Canberra.

Gemmell, F. (2000). Testing the utility of multi-angle spectral data for reducing the effects
of background spectral variations in forest reflectance model inversion, Remote Sensing of
Environment 72: 46–63.

GEO (2005). Global Earth Observation System of Systems (GEOSS) 10-Year Implementation
Plan. URL: http://www.earthobservations.org/docs/10-Year%20Implementation%
20Plan.pdf.

Gerstl, S. and Borel, C. (1992). Principles of the radiosity method versus radiative transfer
for canopy reflectance modeling, IEEE Transactions on Geoscience and Remote Sensing
30: 271–275.

Giglio, L., Descloitres, J., Justice, C. O. and Kaufman, Y. (2003). An enhanced contextual fire
detection algorithm for MODIS, 87: 273–282.

Gobron, N., Pinty, B., Aussedat, O., Chen, J., Cohen, W., Fensholt, R., Gond, V., Huemmrich,
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