
A Statistical Approach to Rule Learning

Ulrich Rückert

Institut für Informatik, Lehrstuhl für Bioinformatik

A Statistical Approach to Rule
Learning

Ulrich Rückert

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. J. Schmidhuber

Prüfer der Dissertation:

1. Univ.-Prof. Dr. St. Kramer

2. Univ.-Prof. Dr. J. Fürnkranz,
Technische Universität Darmstadt

Die Dissertation wurde am 30.8.2007 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 20.2.2008 angenommen.

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 A Typical Learning Scenario 1
1.1.2 The Trade-Off Between Comprehensibility and Pre-

dictive Accuracy . 2
1.1.3 Statistical Analysis of Rule Learning 4

1.2 Applications . 5
1.3 Outline of the Thesis . 6

2 Rule Learning 9
2.1 Introduction . 9
2.2 Rule Set Representations . 10

2.2.1 DNF Rule Sets . 10
2.2.2 Decision Lists . 11
2.2.3 Weighted Rule Sets . 12

2.3 Rule Condition Representations 13
2.4 Challenges in Rule Learning 15

2.4.1 Combinatorial Complexity 15
2.4.2 Overfitting Avoidance 18

2.5 Algorithmic Approaches to Rule Learning 20
2.5.1 Separate-and-Conquer 20
2.5.2 Other Approaches . 22

3 Statistical Machine Learning 27
3.1 Introduction . 27
3.2 A Statistical Framework for Classification 29
3.3 Basic Results . 31

3.3.1 The Test Set Bound 32
3.3.2 Bayes Classifier and Consistency 33
3.3.3 No Free Lunch . 35
3.3.4 Approximation and Estimation Error 38

3.4 Capacity Control . 41
3.4.1 Empirical Risk Minimization 41

i

3.4.2 Structural Risk Minimization 43
3.4.3 Regularization . 45

3.5 Ensemble Theory . 47
3.5.1 Bagging . 47
3.5.2 Boosting . 49

3.6 Bayesian Learning . 52

4 DNF Rule Sets 57
4.1 Trade-Offs in Rule Learning 57
4.2 Empirical Risk Minimization for DNF Rule Sets 59

4.2.1 A Randomized Algorithm for k-term DNF Consistency 61
4.2.2 Stochastic Local Search for k-term DNF Maximum

Agreement . 68
4.3 Structural Risk Minimization for DNF Rule Sets 73

4.3.1 The SL2 Rule Learner 74
4.3.2 Experiments . 76

4.4 Ensemble Based Capacity Control 83
4.4.1 The Learning Setting 84
4.4.2 Learning Ensembles of Rule Sets 85
4.4.3 Bounds for Rule Learning 86
4.4.4 Experiments . 91

4.5 Summary and Related Work 95

5 Weighted Rule Sets 99
5.1 Motivation . 99
5.2 Empirical Risk Minimization for Weighted Rule Sets 101

5.2.1 Soft-Margin Loss . 102
5.2.2 Empirical Margin . 103
5.2.3 Margin Minus Variance 105

5.3 Structural Risk Minimization for Weighted Rule Sets 108
5.3.1 Rademacher Bounds for MMV 109
5.3.2 PAC-Bayesian Bounds for MMV 115
5.3.3 Repository Size Bounds 119

5.4 The Rumble System . 125
5.5 Experiments . 128
5.6 Summary and Related Work 132

6 First-Order Rule Learning 135
6.1 Motivation . 135
6.2 Extending Rumble to First-Order Data 138
6.3 A Framework for Relational Learning 141

6.3.1 High-Level View . 142
6.3.2 Low-Level View . 146
6.3.3 Instantiations of the Framework 148

ii

6.4 Dispersion-Based Rule Generation for Structured Data 150
6.4.1 Finding Expressive Rule Sets 151
6.4.2 Stochastic Local Search for Optimal Dispersion Features155

6.5 Experiments . 162
6.5.1 Experiments with Rumble on First-Order Data . . . 162
6.5.2 An Empirical Investigation of Rule Learning in the

Framework . 164
6.5.3 Experiments With Dispersion-Based Rule Generation 169

6.6 Summary and Related Work 171

7 Summary and Outlook 175
7.1 Summary . 175
7.2 Outlook . 177

Bibliography 179

Index 198

iii

iv

The golden rule is that there are no golden rules.

George Bernard Shaw

Abstract

This dissertation investigates rule learning as a statistical classification prob-
lem. Rule learning has a long history in machine learning and is known for
inducing interpretable and comprehensible classifiers. Methods from sta-
tistical machine learning, on the other hand, have traditionally focused on
predictive accuracy, often at the expense of interpretability. The goal of
this work is to combine the approaches to obtain highly predictive, yet in-
terpretable classifiers. Unlike many of the heuristics applied in traditional
rule learning, statistical principles allow for a better theoretical investiga-
tion of rule learning systems, possibly leading to valuable insights. To this
end, we investigate two types of rule sets, propositional logic formulae in
disjunctive normal form (DNF formulae), and weighted rule sets. For DNF
formulae, we investigate the NP-hard problem of empirical risk minimiza-
tion of DNF formulae of at most k terms. We propose a stochastic local
search (SLS) algorithm to solve this problem efficiently. Then, we apply
the SLS algorithm in a structural risk minimization procedure to gain small
yet predictive rule sets. Alternatively, we combine SLS with an ensem-
ble approach to reduce the estimation part of the prediction error and to
upper-bound it analytically. For weighted rule sets, we devise a novel convex
optimization criterion, Margin Minus Variance (MMV), a feasible relaxation
of the infeasible empirical risk minimization problem. For capacity control
we derive a novel concentration inequality. An implementation of these
ideas, the Rumble system, yields favorable results in experiments dealing
with structure-activity relationships of small molecules. Finally, for multi-
relational learning, we propose and use a framework to assess and compare
learning systems according to the flow of information. We evaluate different
strategies analytically and experimentally and present a novel rule genera-
tion criterion that aims at highly diverse rule sets.

Zusammenfassung

Diese Dissertation untersucht Regellernen als ein statistisches Klassifikati-
onsproblem. Regellernen ist seit langem Teil des maschinellen Lernens und
bekannt dafür, einfach interpretierbare und verständliche Klassifizierer zu
erzeugen. Methoden des statistischen maschinellen Lernens, auf der ande-
ren Seite, konzentrieren sich üblicherweise auf die Vorhersagegenauigkeit,
des öfteren auch auf Kosten der Interpretierbarkeit. Das Ziel dieser Ar-
beit ist es, die beiden Ansätze miteinander zu kombinieren, um Klassifi-
zier mit hoher Vorhersagegenauigkeit und Interpretierbarkeit zu erstellen.
Außerdem erlauben statistische Prinzipien, anders als die Heuristiken, die
oft in herkömmlichen Regellernern verwendet werden, eine bessere theore-
tische Analyse, die möglicherweise zu wertvollen Einsichten führen könnte.
Wir untersuchen zu diesem Zwecke zwei Arten von Regelmengen, nämlich
aussagenlogische Formeln in disjunktiver Normalform (DNF-Formeln) und
gewichtete Regelmengen. Im Falle der DNF-Formeln untersuchen wir das
NP-harte Problem, den empirischen Fehler von DNF-Formeln mit maxi-
mal k Konjunktionen zu minimieren. Wir schlagen einen Algorithmus ba-
sierend auf stochastischer lokaler Suche (SLS) vor, um das Problem effizient
zu lösen. Danach wenden wir SLS innerhalb einer Methode zur struktu-
rellen Fehler-Minimierung an, um kleine Regelmengen mit hoher Vorhersa-
gegenauigkeit zu generieren. Als einen alternativen Ansatz verbinden wir
SLS mit Ensembles, um den Abschätzungsanteil des Vorhersagefehlers zu
minimieren und auf analytische Weise abzuschätzen. Im Falle der gewich-
teten Regelmengen entwerfen wir das neue konvexe Optimierungskriterium
“Abstand minus Varianz” (engl. Margin Minus Variance, MMV), eine rea-
lisierbare Vereinfachung des praktisch nicht realisierbaren Problems, den
empirischen Fehler zu minimieren. Für die Kapazitätsüberwachung leiten
wir eine neue Ungleichung zur Dichteabschätzung her. Eine Implementation
der vorgestellten Ideen, das Rumble-System, erzielt positive Ergebnisse in
Experimenten mit Struktur-Aktivitäts-Beziehungen von kleinen Molekülen.
Für multi-relationales Lernen, schließlich, entwerfen und verwenden wir ein
theoretisches System, in dem verschiedene Lernsysteme anhand des Infor-
mationsflusses bewertet und verglichen werden können. Wir bewerten ver-
schiedene Strategien auf analytische und experimentelle Art und Weise und
stellen ein neues Regel-Generierungskriterium vor, das auf hohe Diversität
in Regelmengen abzielt.

Acknowledgements

Many people think that writing a dissertation is a daunting, time-consuming,
and difficult task, which needs to be well-planned and demands a high degree
of discipline and diligence. This is not consistent with my experience. I
found that writing a dissertation is a daunting, time-consuming, and difficult
task, which never proceeds as one would expect, but is nonetheless a great
adventure and generally a heck of a fun thing to do. I am very glad that
my experience differs in this detail from the common expectation and I am
thankful to the people who helped making my work so enjoyable. Without
any doubts, I am most indebted to my advisor, Stefan Kramer. Stefan not
only provided the guidance, encouragement, and support one would expect
from an excellent mentor, he also managed to create a working environment
where even a tight conference deadline proved to be a great challenge rather
than a strenuous death march. Indeed, he was more than just an excellent
mentor in many ways. Other advisors may specify the overall direction
of research for a dissertation, but Stefan also encouraged me to find and
follow my own research interests. Other advisors may only contribute their
knowledge of the field, but Stefan also spent his personal time in countless
discussions on exciting open questions, leading me to valuable inspirations
and insights. I am deeply grateful for having had the chance to work with
him.

Before coming back to Munich, I had a wonderful time in Freiburg. I
would like to thank Luc De Raedt for his tremendous support and his valu-
able work on the papers he co-authored with me. It was a pleasure to work
with the Freiburg group, most notably, Maren Bennewitz, Björn Bring-
mann, Kristian Kersting, Tapani Raiko, Cyrill Stachniss, Moritz Tacke, Sau
Dan Lee, and Albrecht Zimmermann. In 2005, I skipped the cold winter
in Munich and headed for a research visit to the University of Waikato in
New Zealand. I am sorry for making some people envious and I am very
grateful to my host Bernhard Pfahringer as well as Eibe Frank, Geoffrey
Holmes and Peter Reutemann for the support, the discussions and the great
time I had with them. Peter Bartlett kindly invited me to UC Berkeley. I
am indebted to him and Ambuj Tewari for the interesting discussions and
their valuable comments on my work. Special thanks go to my colleagues
and co-authors. Lothar Richter provided his immense biological knowledge.

Caroline Friedel and Elisabeth Georgii did impressive work and were a joy to
work with. Marianne Mueller shared a room with me and supported me on
my teaching duties. Together with Markus Erlacher and Jörg Wicker they
were responsible for the stimulating environment at TU München. Finally, I
need to thank Eibe Frank, Johannes Fürnkranz, Nada Lavrač and Bernhard
Pfahringer for commenting on drafts of the paper I wrote with Luc.

Some people contributed tremendously to this work, even though they
would probably deny any involvement. This includes my parents, my brother,
my friends, Iris Hochstatter, and, in particular, Verena Lauer, who had to
suffer the most from my obsession with unfinished proofs for clearly wrong
theorems.

Chapter 1

Introduction

This dissertation investigates rule learning as a statistical classification problem.
In the introductory chapter, we describe our motivation for investigating statis-
tical rule learning. We start with a typical rule learning scenario and motivate
statistical rule learning from two perspectives: from a theoretical perspective it
is interesting to gain more insights into the trade-off between comprehensibility
and predictivity of models and to reason analytically about different approaches
to rule learning. From a practical point of view, there are a range of interesting
applications that can benefit from statistical rule learning. We close with an
outline of the thesis.

1.1 Motivation

One of the most popular learning schemes in machine learning is rule induc-
tion. There is plenty of research on rule induction, some of it dating back as
far as the 1960s (Michalski, 1969). However, unlike neural networks, SVMs
and some decision trees learners, many established rule learning systems
are hard to analyze from a statistical point of view. Before we give the
motivation for the work in this dissertation, we describe a short example
application, where the results of this thesis could be put to use.

1.1.1 A Typical Learning Scenario

Imagine a research lab in the quest for a drug against cancer. A typical
approach to this endeavour is to apply thousands or millions of agents to
cancerous cells and automatically test the tumor growth rate of the cells
after the treatment. Typically, some agents will slow down tumor growth,
some may actually boost tumor growth and many agents will have no effect.
With those results the researchers have information on which existing agents
are successful in which particular settings. However, given such a table of
millions of results, it is a tremendous undertaking to extract knowledge that

1

2 Chapter 1. Introduction

may help creating new effective drugs. One particular way to gather such
knowledge is to let a computer program induce a predictive model from the
experimental data, which relates the structure of the compounds to their
efficiency. Once learned, such a model can predict the tumor growth inhibi-
tion rates of new potential drugs. By evaluating the model, the researchers
may get new insights into which factors influence growth inhibition. Ideally,
the researchers would like to find a model whose predictions are as accurate
as possible and which can be easily understood and analyzed by humans.
The problem of finding such a model is known as regression, if the quan-
tity to predict is continuous, and as classification, if the task is to predict
whether an instance falls into two or more distinct categories.

Designing computer programs that are able to output helpful models in
scenarios like the illustrated one is part of machine learning. Of course, the
described scenario gives rise to some obvious questions: First of all, we do
not give any information on what exactly a model constitues and how it
is represented. Researchers have come up with various ways to represent
models and each representation has its own advantages and disadvantages.
Second, it is not clear how one could ever find models that are good at
predicting new, previously unseen instances. After all, we might be unlucky
and the new instances might be very different from the ones we have seen
in the training data. Statistical learning theory gives some insight into this
and similar questions. Third, there are also computational issues involved.
Automated methods can easily generate data sets with millions or billions of
records, so it may take a considerable amount of time to process the data. It
is therefore an important goal of machine learning to design fast algorithms
whose runtimes scale well with the data set sizes.

1.1.2 The Trade-Off Between Comprehensibility and Predic-
tive Accuracy

One particular way to represent a classification model is sets of rules. For
instance, in the scenario above, the computer program could output the
following set of if-then rules:

If the molecule contains an aromatic ring,
predict class carcinogen.

If the molecule contains a bromide ion,
predict class carcinogen.

If the molecule contains a chlorine ion connected to a carbon atom,
predict class carcinogen.

Otherwise
predict class non_carcinogen.

The interpretation of a set of rules is straightforward: the individual rules
specify explicitly, which conditions an instance must fulfill in order to be
classified into a specific class. As long as the rule set is not too large and

2

1.1. Motivation 3

the rules are not too complicated, it is easy to get a quick overview on how
and why a rule set predicts in a certain way. For that reason, rule sets are
considered to be among the best comprehensible and interpretable model
representations in machine learning. To foster the comprehensibility of rule
sets, rule learning has traditionally aimed at finding simple, that is, small
rule sets. Since rule learning has a long tradition in machine learning, there
are many efficient and fast algorithms for deriving small sets of rules. For
this reason, rule learning is popular among practitioners, often as a quick
way to gather initial insights into the data at hand.

On the other side, statistical machine learning has come up with many
methods focusing mainly on predictive accuracy of models rather than com-
prehensibility. For example, there are algorithms for inducing neural net-
works (Haykin, 1999): in this representation, a number of artificial neurons
are connected with weighted connections, often in a hierarchical structure.
Usually, the structure and the neuron’s activation functions are predefined
by the user, and the weights are determined by the learning algorithm. An-
other popular approach are support vector machines (Cristianini and Shawe-
Taylor, 2000). In this case, the classifier attaches weights to the training
instances. For classification, a kernel is used to project the instances into a
high-dimensional feature space, where the instance weights induce a hyper-
plane, which separates instances of two distinct classes.

Both, neural networks and SVMs are typically hard to interpret by hu-
mans, mainly because the models contain many weights and it is not obvi-
ous, how those weights interoperate to determine a prediction. However, in
many practical applications, neural networks and SVMs have been shown to
feature excellent predictive accuracy, often significantly outperforming rule
learning approaches. So, if one aims for accurate prediction without inter-
pretation, approaches from statistical machine learning appear to be better
suited. If comprehensibility is more important than predictive accuracy,
rule learning seems to be the better choice. This trade-off between compre-
hensibility and predictive accuracy can be seen in many cases. Sometimes,
statistically motivated methods can be applied to improve a classifier’s pre-
dictive accuracy at the expense of its comprehensibility.

For example, in Section 4.4, the predictive accuracy of the rule learner
RIPPER (Cohen, 1995) was investigated on 35 datasets. RIPPER is known
to induce small and comprehensible rule sets with comparably good predic-
tive accuracy (Rückert and De Raedt, 2007). However, applying RIPPER as
a base learner in a bagging ensemble (Breiman, 1996) improves the predictive
accuracy in all but one cases. Sometimes, the gain is huge, such as 11.2% on
the vehicle dataset. On the downside, bagged RIPPER derives models that
consist of twenty different rule sets, hardly an easily interpretable represen-
tation. By framing rule learning as a statistical classification problem, we
hope to shed some light on the nature of this trade-off. The insights gained
by doing so might then be used to design novel rule learning systems and

3

4 Chapter 1. Introduction

to allow the user to find a good compromise between comprehensibility and
predictive accuracy for her specific application.

1.1.3 Statistical Analysis of Rule Learning

Early research on rule learning was constrained by the performance of the
hardware that was available at that time. Consequently, researchers were
concerned mainly with finding fast algorithms. As the problem of induc-
ing rule sets from examples is at its core an NP-hard combinatorial opti-
mization problem (Pitt and Valiant, 1988), most researchers used heuristics
and pragmatic approximation approaches to derive rule sets in a reasonable
time frame. In particular, the sequential covering or separate-and-conquer
algorithm (Fürnkranz, 1999) proved to be a fast approximation scheme.
Many traditional rule learning systems are based on this approach and differ
mainly in the choice of heuristics and intermediate or postprocessing steps
to avoid overfitting. Each iteration of the sequential covering algorithm de-
pends on the preceding iterations and the applied heuristics. This, and the
combinatorial nature of the underlying problem make it extremely hard to
analyze most established rule learning algorithms theoretically. While one
strategy is to focus on empirical investigations and visualization tools (see
for instance Fürnkranz and Flach, 2005), it is comparably hard to argue
about the advantages or disadvantages of certain approaches to rule learn-
ing. For example, the survey by Fürnkranz (1999) lists fourteen heuristics
used in rule learning algorithms, but there are no systematic theoretical
results on which heuristic excels under which circumstances. Instead of se-
lecting a rule learner that fits to a particular problem, the user is obliged to
test many different variants for suitability on her data.

This is in contrast to the situation in statistical machine learning, where
many methods are derived from basic statistical principles and optimizing
system performance is performed afterwards. Instead of heuristics, statisti-
cal methods often start with a common induction principle and differ mainly
in the assumptions and techniques they employ while following the principle.
This often allows a more principled way to discuss strengths and weaknesses
of different methods. For example, one can show that logistic regression
derives the best possible classifier, if the positive and negative instances are
normally distributed (Hastie et al., 2001). Also, recent theoretical results
relate the performance of a SVM with the ability of its kernel to quantify
the level of similarity between the instances (Balcan and Blum, 2006). This
gives an a-priori criterion for choosing a kernel which is suited for a given
learning problem. We hope that the theoretical results in this thesis allow
for similar insights that enable a sound and convincing reasoning about the
utility of some design decisions in rule learning.

4

1.2. Applications 5

1.2 Applications

Of course, theoretical results are of limited immediate value, if they can not
be translated into practically useful methods. A main goal of this disserta-
tion is thus the design and practical evaluation of statistically motivated rule
learning systems. In the following chapters we will present various systems,
such as SL2 in Section 4.3, the rule ensemble in Section 4.4.2 and Rumble
in Section 5.4. We evaluate those systems empirically on typical learning
problems. We distinguish between propositional and first-order data repre-
sentations. Propositional rule learning deals with data that can be stored in
a single table, whose rows constitute training examples and whose columns
represent attributes. The algorithms presented in the Chapters 4 and 5 deal
with such propositional data. To allow the comparison of our results with
other results in the literature, we evaluate the systems mainly on data sets
taken from the UCI repository (Asuncion and Newman, 2007). The data
sets in this repository cover a variety of different applications. Generally, we
try to use all UCI data sets, which have been used in comparable empirical
studies and which meet the requirements of the specific learning system (for
example, if a system only supports two-class problems, etc.).

In Chapter 6 we deal with learning settings, where the instances are not
represented as a single row in a table. Learning classifiers for such data is
known as multi-relational learning or first-order learning in the more gen-
eral case of a representation in first-order logic (Nienhuys-Cheng and Wolf,
1997; Lavrač and Džeroski, 1994; Lloyd, 2003). Since a theory in definite
clausal first-order logic is essentially a conjunction of first-order rules, rule
learning is particularly well-suited for this induction setting. For the empir-
ical evaluation in this chapter we resort to learning problems similar to the
one outlined in Section 1.1.1 above. The learning task is as follows: given
data about the molecular structure of some compounds and the compounds’
effectiveness (for instance as a drug), learn a model that predicts the effec-
tiveness of new compounds. Learning tasks of this form are usually known
as structure activity relationship (SAR). Obviously, SAR learning is highly
relevant in modern medicinal chemistry and drug design, where automated
experiments, for instance from combinatorial chemistry, have led to vast
amounts of data that is almost impossible to analyze without the help of
computers. As the molecular structure is essentially defined by the atoms
and the bonds between the atoms, SAR is clearly a multi-relational learning
task. For our evaluation, we use a couple of popular SAR data sets that
have also been employed in the literature to evaluate other multi-relational
rule learners, for instance kFOIL (Landwehr et al., 2006).

5

6 Chapter 1. Introduction

1.3 Outline of the Thesis

The main aim of this thesis is to analyze rule learning from a statistical
perspective. Before doing so, we recall the basic concepts of rule learning in
Chapter 2 and describe the general framework of statistical machine learning
we will apply later on in Chapter 3. Readers familiar with these topics
might consider skipping the two chapters. Rule learning is introduced in
Chapter 2: Section 2.2 gives an overview of the representation languages in
rule learning, while Section 2.4 deals with the combinatorial and practical
difficulties that are involved in finding good rule sets. In particular, we
identify two main challenges: empirical risk minimization, that is, the task of
finding rule sets that explain the given training data as well as possible, and
capacity control, that is, the problem of avoiding under- and overfitting. In
Chapter 3, we introduce the statistical approach to classification. We start
with the basic framework in Section 3.2. Based on this, we sketch relevant
parts of statistical learning theory, in particular the theory on empirical
and structural risk minimization (Sections 3.4.1 and 3.4.2), ensemble theory
(Section 3.5) and the Bayesian approach to classification (Section 3.6).

With these prerequisites, we can tackle the actual main task. As de-
scribed in Section 2.2.1, there are different ways to combine rules into rule
sets. One particular way is to build the disjunction of rules, so that a rule set
is equivalent to a propositional formula in disjunctive normal form (DNF).
In Chapter 4, we investigate learning DNF formulae from a statistical point
of view. In Section 4.2 we dig into the problem of finding a preferably small
DNF formula that misclassifies as few training instances as possible. We
propose a randomized algorithm for the noise-free setting in Section 4.2.1,
and an algorithm based on stochastic local search for the noisy setting in
Section 4.2.2. Sections 4.3 and 4.4 deal with capacity control methods for
overfitting avoidance. We test two approaches. The first one is based on
structural risk minimization and a bias towards simple and small rule sets.
An implementation of this method is evaluated empirically in Section 4.3.2.
The second approach uses ensembles for capacity control. It is analyzed
analytically (Section 4.4.3) and empirically (Section 4.4.4).

Representing rule sets as DNF introduces a certain combinatorial com-
plexity into rule learning. A different way to combine rules to rule sets is by
applying weights to the individual rules and predicting the class labels with
a weighted voting procedure. This introduces the notion of a margin into
rule learning. In Chapter 5 we discuss rule learning with margins. Again,
we treat the two main challenges, empirical risk minimization and capacity
control, in distinct sections. Section 5.2 compares three optimization cri-
teria for empirical risk minimization: the 1-norm support vector machine,
empirical margin, and margin minus variance (MMV). While the first cri-
terion has been investigated extensively in the literature on support vector
machines, it is unclear how to perform efficient capacity control for empirical

6

1.3. Outline of the Thesis 7

margin and MMV. In Section 5.3 we take three analytical approaches to es-
timate the structural risk in rule learning settings. The first one is based on
Rademacher penalties, the second one on the PAC-Bayesian theorem, and
the third one describes a novel bound based on rule repository sizes. Finally,
in Section 5.4, we describe Rumble, an implementation of the optimization
criteria with capacity control, and evaluate it empirically in Section 5.5.

So far we have focused on propositional rule sets, where each instance as-
signs values to the attributes in a predefined set. In Chapter 6 we extend the
previously covered approaches to the first-order case, where an instance can
be described by predicates in first-order logic. After an initial motivation,
we extend Rumble towards the multi-relational case in Section 6.2. Rule
learning for first-order data poses the additional challenge of how to build
rules that extract meaningful information from the available training data.
To tackle this problem formally, we describe a generic framework in Section
6.3, which rates and categorizes multi-relational learning systems according
to the type of information that is used during classifier construction. Based
on this framework, we propose a new dispersion-based rule generation pro-
cedure in Section 6.4, which aims at small, but diverse and informative rule
sets. Finally, in Section 6.5, we give an empirical evaluation of the multi-
relational version of Rumble (Section 6.5.1), the framework (Section 6.5.2)
and the dispersion-based rule generation procedure (Section 6.5.3).

Finally, in Chapter 7, we summarize the contributions of the dissertation
in Section 7.1 and describe some promising directions for further research
and open problems in Section 7.2.

7

8 Chapter 1. Introduction

8

Chapter 2

Rule Learning

In this chapter we recall basic concepts of rule learning. We start with a
description of three different ways to combine single rules to rule sets: DNF
formulae, decision lists and weighted rule sets. Then, we address the question
on how to form (and represent) single rules. After these syntactic and semantic
considerations, we deal with the problem of inducing good rule sets. We identify
two main challenges in rule learning, namely the combinatorial complexity of
finding rule sets with small training error, and the task of overfitting avoidance.
Finally, we give a short survey of the algorithmic approaches that have been
taken in the literature on rule learning.

2.1 Introduction

Learning sets of rules has a long history within machine learning. Some of
the theoretical and algorithmic work on rule learning even dates back to
the late 1960s, more than a decade before the term “machine learning” was
made popular at the first machine learning workshop in 1980. For exam-
ple, Michalski’s AQ system (Michalski, 1969) applied separate-and-conquer
strategies to rule induction in 1969 and Plotkin introduced relative least
general generalization (Plotkin, 1971), providing the theoretical foundation
for the ILP system GOLEM (Muggleton and Feng, 1992). Separate-and-
conquer based approaches to rule learning became popular in the early
1990s. Especially in Inductive Logic Programming (ILP), where theories
in first-order logic are derived, the representation with rules is much more
natural than the use of competing representations such as decision trees.
Since the late 1990s, research on inductive rule learning has declined, but
never vanished. Quite the contrary, there appears to be an increase of in-
terest in recent years, as advances in other fields of machine learning shed
a new light on certain aspects of rule learning. For example, Friedman and
Popescu’s RuleFit system (Friedman and Popescu, 2005) is based on re-
search in ensemble methods. Also, in 2004, a workshop on inductive rule

9

10 Chapter 2. Rule Learning

learning (Fürnkranz, 2004) exposed a broad field of recent research on this
topic.

Even though rule learning has a long tradition, there is no precise and
general criterion of what constitutes a “rule learner”, and the border to some
other approaches such as ensemble methods or perceptron learning is blurry
at best. As a general rule of thumb, a learning algorithm which outputs
hypotheses containing rules of the form “if condition then target=class”
can be considered to be a rule learning system. There are no established
standards on what kind of conditions are valid for the antecedent of a rule.
Often, the antecedent is a conjunction of “attribute=value” or “attribute is
less (or more) than a threshold” tests, but some learning systems use more
powerful tests, such as whole DNF formulae in LRI (Weiss and Indurkhya,
2000). More importantly, if an instance matches the conditions in two or
more distinct rules, there are various methods to combine the rules to a
consistent prediction. In the following section we describe some popular
ways to combine single rules into consistent hypotheses.

2.2 Rule Set Representations

The established rule learning algorithms differ not only in the way they
derive the rule sets, but also in the way they interpret the sets in order
to make a prediction. In the following we present three popular ways to
interpret rule sets. For this section, we deal mainly with propositional rule
learners and we assume that the rule antecedents are conjunctions of literals.

2.2.1 DNF Rule Sets

For two-class problems, there is a natural and conceptually intriguing way
to combine the rules so that the resulting hypothesis resembles a Boolean
formula in disjunctive normal form (DNF). The main idea is to generate
only rules with the (previously selected) positive class label in the conse-
quent. Thus, an instance is classified as positive, whenever it matches the
condition of at least one rule and negative otherwise. From a logical point
of view, a rule set is thus a disjunction of rules. Usually, the rules’ an-
tecedents contain only conjunctions, as a rule with a disjunctive antecedent
could easily be split into two rules. This means that a rule set is essentially
a disjunction of conjunctions, that is, a DNF formula. There are a couple of
advantages of this representation: first of all, each rule is valid and mean-
ingful independently of the other rules in the set. This makes DNF rule
sets easy to interpret and comprehend when compared to other hypothe-
sis languages. For example, in linear classifiers it is often difficult to rate
how each feature influences the prediction of an instance. Because of this
compositional nature, DNF like rule sets are also often used by humans to
define concepts. An entry in a dictionary “A key is either a notched and

10

2.2. Rule Set Representations 11

grooved metal implement to open locks, or a vital crucial element, or a but-
ton that is depressed to operate a machine” resembles the form of a DNF
formula: (IsNotched∧ IsGrooved∧OpensLock)∨ (IsV ital ∧ IsCrucial)∨
(IsButton ∧OperatesMachine). Another advantage is that DNF rule sets
extend naturally to the first-order case, if one uses first-order predicates in
antecedents and consequents. Thus, many of the results on DNF rule sets
are also valid for first-order rule sets. This is especially interesting in the case
of large or infinite domains, as first-order theories can contain recursive def-
initions to express complex regularities. A broad range of theoretical results
and practical applications on first-order rule learning has been originated in
the field of Inductive Logic Programming (ILP). Strictly speaking, ILP sys-
tems usually output formulae in Horn clausal normal form. However, this is
equivalent to DNF, because the usual Horn clausal representation “[pos ←
(a11∧ . . .∧a1l)]∧ . . .∧ [pos← (ak1∧ . . .∧akl)]” can be easily transformed into
the DNF representation “[pos← [(a11 ∧ . . . ∧ a1l) ∨ . . . ∨ (ak1 ∧ . . . ∧ akl)]”.

On the downside, it is difficult to extend DNF to the multi-class learning
setting. The main problem is that an instance can meet the conditions of
more than one rule. In this case it is not clear which rule should be used
to make an prediction. In principle, one could generate rule sets with non-
overlapping rule conditions (see for instance Segal and Etzioni, 1994), but
this often leads to large and incomprehensible rule sets. Most practical
rule learners resort to one of the rule set representations below or define
an order on the target classes and split a multi-class learning problem in a
number of one-vs.-rest learning problems (Cohen, 1995; Rifkin and Klautau,
2004). Another disadvantage of DNF rule sets is the fact that it is sometimes
difficult to represent models that are “robust” in the sense that a small
change in an instance does not lead to a completely different prediction. For
example, it is easy to formulate a single rule that predicts the positive class
for one specific instance x and the negative class for all others. If, however,
one wants to have a robust model that also assigns the positive class to all
“neighboring” instances that differ from x in at most one attribute, then
the model needs to be way larger; it must contain at least one rule per
attribute. Therefore, DNF rule sets are often not very well suited for noisy
data. DNF rule sets are induced for example by PRISM (Cendrowska, 1987)
and RIPPER (Cohen, 1995).

2.2.2 Decision Lists

A popular extension of DNF rule sets to the multi-class setting are decision
lists (Rivest, 1987). The main idea is to order the rules in the set and to
apply the rules according to this order during prediction. This means that
one can safely mix rules with varying consequents as only the first matching
rule is used for prediction. Decision lists require a default rule, that is, a
rule that assigns a class if an instance does not meet any of the conditions

11

12 Chapter 2. Rule Learning

in the other rules. Decision lists match very well with separate-and-conquer
learning systems, because those systems induce more general rules first, and
the majority of the prediction errors tend to happen with the small disjuncts
(Weiss and Hirsh, 2000; Holte et al., 1989), that is, the later rules which cover
comparably few instances. Like DNF rule sets, decision lists generalize well
to the first-order case, especially for recursive rules, where the base case is
often required to precede the recursive case. Since decision rules can contain
rules with arbitrary consequents, they can encode disjunctive concepts more
elegantly than DNF rules with an inappropriately selected positive class.
For example, consider Boolean attributes and a rule set that classifies an
instance as positive whenever at least one of the attributes is true. A DNF
rule set would require one rule per attribute, but a decision list can simply
state a negative rule “if all attributes are false then assign the negative
class” and have the default rule classify all other instances as positive. On
the other hand this notational elegance is bought at the expense of having
interdependent rules: the exact meaning of a rule depends on all preceding
rules. Thus, unlike with DNF rule sets, one can not analyze the individual
rules independently of the rest of the rule set. CN2 (Clark and Niblett,
1989) and PART (Frank and Witten, 1998) induce decision lists.

2.2.3 Weighted Rule Sets

Another approach to extending DNF rule sets towards the multi-class setting
is assigning a weight to each rule. To predict a class for a new instance, the
system evaluates all rules in the set and collects the weights of rules whose
antecedent is met. Finally, it sums up the weights for each class and predicts
the class with the largest sum of weights. This voting procedure resembles a
model where each rule quantifies the influence of its antecedent to the target.
Such a representation is well suited for many real-world phenomena, because
there are often a multitude of factors that influence the target variable.
Weighted rule sets avoid the “all-or-nothing” nature of decision lists and
DNF rule sets; the prediction of the class is based on the contribution of all
supporting rules, not only on one or the first matching rule. Thus, if a small
perturbation in an instance leads to the erroneous violation or assertion of a
rules’ condition, the remaining rules can still overrule the incorrect vote and
ensure a correct prediction. This makes weighted rule sets well suited for
noisy domains. Also, weighted rule sets introduce the concept of a margin
into rule learning. The margin of a prediction is the difference between the
sum of weights for the winning class and the runner-up class. It can be
seen as an estimate of the certainty of the prediction. If all rules vote for
a particular class, the classifier appears to be much more certain about the
prediction than if one class has only a slightly better vote than the remaining
classes.

Even though the introduction of weights appears to be a minor exten-

12

2.3. Rule Condition Representations 13

sion of the previous settings, it introduces a wealth of new aspects. First
of all, it is a strict generalization of DNF rule sets and decision lists.1 A
DNF rule set can be emulated by setting a constant weight to the positive
rules and adding a negative default rule with a smaller weight. Likewise, if
one assigns weights that decrease exponentially with the rule number, the
weighted rule set is equivalent to a decision list (see Anthony et al., 1995,
for a proof). If, on the other hand, one allows arbitrary weights, a weighted
rule set can be seen as a linear combination of binary valued features, so
that many classical results from linear algebra apply. This can avoid some of
the combinatorial peculiarities of DNF and decision lists. Even better, the
research on learning linear classifiers immediately applies to weighted rule
sets. Linear classifiers are one of the best investigated hypothesis classes
in machine learning. They form the basis of perceptrons, support vector
machines and ensembles methods. From a Bayesian perspective linear clas-
sifiers correspond to Naive Bayes (Jäger, 2003).

It is not obvious how to select good weights for the rules in a rule set.
Early rule learners such as C4.5rules (Quinlan, 1993) and versions compute
weights from the coverage of the rules. Later versions are usually based
on ensemble theory. For instance, SLIPPER (Cohen and Singer, 1999) and
LRI (Weiss and Indurkhya, 2000) are inspired by boosting, whereas RuleFit
(Friedman and Popescu, 2005) relates to bagging. A major disadvantage
of weighted rule sets is the fact that it is not very clear how and to which
degree the rules interact during the prediction of new examples. Conse-
quently, a large part of the RuleFit system deals with extracting meaningful
characteristics from the rule set.

2.3 Rule Condition Representations

In the preceding section we discussed combining rules into sets and ignored
questions concerning the construction of the rule conditions. We assumed
that the rule antecedents contain conjunctions of literals or negated liter-
als. Indeed, this is the case for the overwhelming majority of rule learning
systems. This choice is obvious for DNF rule sets: since a rule set is just a
disjunction of rules, it does not make sense to use another disjunction in the
rule precedent. Conjunctions, however, form a nice counterpart, because
they limit rather than extend the scope of a rule. This allows for an easy
separate-and-conquer approach to fine-tune the coverage of the rule sets.
Adding literals to the conjunctions in the rule conditions limits the cover-
age, while adding a new rule extends the coverage. Since every Boolean

1Of course, this is only true, if one applies the same restrictions on the number and
types of literals that are used in the rule antecedents. If one allows one literal per rule
condition, the class of Boolean functions that can be represented by decision lists is exactly
the class of read-once weighted rule sets, see Eiter et al. (2002).

13

14 Chapter 2. Rule Learning

function can be expressed as a DNF formula, it is not necessary to allow
any other operation in the rule antecedents. Similarly, decision lists with
conjunctions as rule conditions can encode all possible Boolean functions.

Since weighted rule sets can choose the consequent of each rule indi-
vidually, there is no difference in using disjunctions or conjunctions in the
two-class setting. This is a simple consequence of the De Morgan duality
a∧ b = ¬(¬a∨¬b). For example, the rule if a1∧a2∧a3 then class=pos is
logically equivalent to the rule if ¬a1 ∨ ¬a2 ∨ ¬a3 then class=neg. Thus,
one can transform any two-class weighted rule set with conjunctive rule con-
ditions into a version of the same size and form with disjunctive conditions.
This is not the case in multi-class settings. However, it is possible to ex-
press every possible (multi-class) classifier as a decision list or weighted rule
set with conjunctive rule conditions. Because of this and the elegance of
the separate-and-conquer approach to rule learning, most rule learners use
conjunctions in the rule antecedents.

The expressiveness of conjunctive or disjunctive rule conditions depends
also on the form of used literals. For example, many rule learners allow only
literals of the form attribute=value. This is not a restriction with two-valued
attributes, because the two logical alternatives a and ¬a can be expressed by
a=true and a=false. It is a restriction, however, for attributes with three or
more values, because one can not express “attribute takes the first or third
value” in a conjunctive rule condition.2 Theoretically, this restriction can
be overcome by inducing several rules with slightly different antecedents,
but in practice, the expressive power of a rule set depends very much on the
way the information is encoded in the original data table and the predicates
which are available for forming rule conditions.

This is true in particular in the case of first order rules, where the literals
express relationships between objects. Furthermore, first order rules can also
contain variables, so that the evaluation must take into account that each
occurrence of a variable in the literals references the same object. This
makes the evaluation of a rule much more difficult. Additionally, there is
a vast amount of possible ways to combine literals, variables and constants
into rule conditions, so that it is hopeless to enumerate and test all possible
conditions during the learning process. Consequently, ILP systems often
require some user-defined language bias, which specifies how to generate and
refine rule conditions. Typically, the language bias specifies which literals
can be used with which type of objects, and what kind of literals can be
added to a condition that already references objects of certain types. For
example, consider a database containing small molecules encoded with the
two relations atom and bond. The language bias could specify the object
types atom, molecule and element. Then a refinement operator could specify
that, whenever a condition contains a variable A referencing an object of

2Such conditions are called internal disjunctions by Michalski (2004).

14

2.4. Challenges in Rule Learning 15

type atom, it can be extended by the two literals bond(A, B), atom(B, El),
where B is another atom and El is an element. The new literals demand
that the atom A has a bond to a new atom B which is an element of type
El. If this refinement operator is applied repeatedly, the resulting conditions
describe substructures that may or may not occur in the database molecules.

Additionally to those fundamental considerations, there are also a set
of pragmatic points to keep in mind. First of all, propositional and first-
order rules might use attributes that contain continuous values, such as
the temperature of an object. Since it is very unlikely that two instances
feature the exact same values for this attribute, it is reasonable to use literals
which test whether a value exceeds some threshold or if it lies in an interval.
Finding reasonable thresholds or intervals can be a hard problem. Also, real
world data often contains missing values. For example, a physician might
sometimes skip a particular medical test during an examination, so that the
corresponding field in the database does not contain any data. Modern rule
learning algorithms provide ways to evaluate a rule in a reasonable way, even
if the rule antecedent references the missing parts of an instance.

2.4 Challenges in Rule Learning

Before we can give a description of the algorithmic approaches to rule learn-
ing in Section 2.5, we describe the challenges and problems that need to be
addressed in order to find good rule sets. As we will see, there are two main
issues. First, one would like to find a small rule set that explains the train-
ing data well. Then, the induced rule set might be too specific to generalize
well beyond the given training data, a phenomenon known as overfitting.
We will see in Section 3.4 that these two points have their counterparts in
statistical learning theory.

2.4.1 Combinatorial Complexity

In general, rule learning is concerned with inducing a rule set from a database
of instances, that has a low misclassification error on unseen test data. This
is essentially a statistical problem and we cover it as such in Section 3.4. For
the scope of this section, we just need the following observation, and refer the
reader to Section 3.4 for a more formal and principled discussion. Assume
a learning algorithm is given a training set containing the same number of
positive and negative instances. It is then asked for a rule set that explains
the training data correctly. It turns out that this task is actually quite
easy. For example, the system could just build a rule set where each rule
covers exactly one positive training instance and all remaining instances
are assigned to the negative class. Such a rule set has two disadvantages.
First of all, it is very skewed, in that it assigns the positive class only to
the positive instances it has already seen. In a sense it is nothing more

15

16 Chapter 2. Rule Learning

than a rote learner. This is not a very good learning bias in most practical
settings, because it does not generalize the regularities that appear in the
training data. For example, it might be the case in the given training data
that if a certain attribute has a certain value, the instance is very often
positive. A rote learner would ignore such a pattern rather than taking
advantage of it. Second, the size of such a rule set grows with the size of the
training set, even though the regularities and patterns in the training set
would allow for a much more compact representation. For example, if the
training set contains the pattern described above, the rule set could classify
a large number of positive instances correctly with just one rule, leading
to a more comprehensible and compact representation. Intuitively, it seems
to be likely that such a compact rule set generalizes better to new unseen
instances.3

Thus, practical approaches aim at finding small rule sets, or—similarly—
search for rule sets in a restricted hypothesis class, which contains only rule
sets of a certain limited size. This is motivated by the considerations above,
but also by a philosophical principle called Occam’s razor. This principle
basically states that, if two descriptions explain a phenomenon equally well,
one should choose the simpler one (Domingos, 1999; Webb, 1996). For rule
sets, “simple” is generally associated with “small”, because smaller rule
sets are easier to comprehend. So, the main problem we are faced with in
rule learning is a combinatorial optimization task: given a set of instances,
find the rule set in a restricted hypothesis class (containing only small rule
sets) which assigns the correct target label to as many training instances
as possible. Typical hypothesis classes in the literature on computational
learning theory include

• k-DNF formulae: formulae in DNF with at most k literals per term
(Valiant, 1984)

• k-term DNF formulae: DNF formulae with at most k terms (Pitt and
Valiant, 1988)

• k-decision lists: decision lists with at most k literals per term (Rivest,
1987)

• k-dimensional perceptrons: weighted rule sets with at most k rules
(Höffgen et al., 1995)

Unfortunately, the problem of finding such a rule set can be extremely hard
in the worst case. In particular, for the classes that restrict the number of
rules in a rule set (that is, k-term DNF and k-dimensional perceptrons),
the problem of finding a consistent rule set can be shown to be NP-hard

3From a statistical point of view, this is just an assumption, see Section 3.4 for a more
principled discussion.

16

2.4. Challenges in Rule Learning 17

(Pitt and Valiant, 1988; Höffgen et al., 1995). Even worse, a recent result
shows that it is NP-hard to approximate the maximal agreement of a rule
set with a training set to within some fixed constant (Ben-David et al.,
2003). Therefore, most rule learning algorithms resort to heuristics and
greedy approximation strategies such as the separate-and-conquer approach
(compare Section 2.5).

The fact that these algorithms tend to do quite well in practice indicates
that the underlying learning problems are often not as hard as the worst-
case complexity results suggest. This is certainly due to the fact that users
of machine learning techniques generally aim at providing training sets that
are representative and informative about the concept to be learned. But,
even if the training sets are chosen at random, the average complexity of
finding the best rule set is often way lower than the worst-case complexity.
A recent study has investigated k-term DNF learning in the phase transition
framework (Rückert, 2002; Rückert et al., 2002). It appears that finding the
best rule set with at most k rules for a random training set can indeed be
extremely hard for certain settings of k and training set sizes, but if one
increases the k by a comparably small amount, the resulting combinatorial
optimization problems are often way easier. If the main goal is to find
rule sets with high predictive accuracy, it is often not necessary to find
the smallest possible rule set. Instead, it makes sense to find reasonably
small rule sets while optimizing for other criteria that are known to affect
predictive accuracy.

For instance, it has been shown that a comparably large number of
prediction errors are made on small disjuncts, that is, rules that cover only
a small number of examples (Weiss and Hirsh, 2000; Holte et al., 1989). As
these rules depend only on a small number of training examples, they are
especially susceptible to noise and random fluctuations in the data. Small
disjuncts are a problem in particular for separate-and-conquer algorithms,
which generate large disjuncts first and are left with only a small number of
training examples to generate new rules later on. If one uses weighted rule
sets, optimizing for a large margin has also been shown to be effective to gain
predictive rule sets. This criterion is motivated by the fact that weighted
rule sets can be seen as hyperplanes that separate the instance space into
two half-spaces, where one half-space contains the positive instances and the
other half-space the negative ones. In this case it is reasonable to have a
large distance from the instances to the hyperplane, that is, a large margin.
Such a large margin classification is robust against a random perturbation
of the data that moves an instance only to a small extent, because the
margin is often large enough to accommodate for the effect. Large margin
classification has been made popular by support vector machines, see for
instance the book by Cristianini and Shawe-Taylor (2000).

Another criterion can be used, if a large number of unlabeled instances
are available during the training stage, the so-called semi-supervised setting.

17

18 Chapter 2. Rule Learning

In such a case, one can direct the search for good rule sets in a direction that
agrees well with the unlabeled data. For instance, it is sometimes reason-
able to assume that the decision boundary separating positive from negative
instances should not cross through an area which contains a lot of (unla-
beled) instances, because it would split a naturally occurring cluster into
two distinct areas. Semi-supervised learning is a field of its own. We refer
to the survey by Zhu (2005) and the book by Chapelle et al. (2006) for more
details. Of course, there are many possible heuristics that could be used to
tailor the rule induction process to certain settings. These heuristics influ-
ence the inductive bias of a rule learning algorithm, that is, the preference
of a learning algorithm towards certain hypotheses. In general, a learning
algorithm performs well whenever its bias matches well with the problem
setting at hand.

2.4.2 Overfitting Avoidance

One particularly important part of every rule learner’s bias is overfitting
avoidance. Generally speaking, overfitting describes the phenomenon that
the training accuracy increases when the classifier gets larger and more com-
plex during the learning process, but its predictive accuracy (as measured
on a test set) decreases. Overfitting happens, whenever the induced model
is expressive enough to incorporate noisy or random patterns which appear
in the training data, but are not present in the underlying data generation
process. In order to avoid overfitting one has to restrict the expressive power
of a classifier, or, equivalently, the richness of the hypothesis class of which
the classifier is taken from. On the other hand, if one uses only a very re-
stricted hypothesis class, so that the induced classifier is very simple, it may
not be able to catch valid structure in the underlying data and exhibit bad
training and test accuracies. This is known as underfitting. Unfortunately,
it is impossible to identify the ”correct” classifier complexity only from the
training data, because overfitting harms only the test error, not the training
error.

Hence, many approaches to overfitting avoidance lay aside a certain frac-
tion of the training data as a validation set. The actual classifier is then
induced only on the remaining training instances and the independent val-
idation set is used to estimate the level of overfitting. If the induced rule
set turns out to overfit, then it can be easily simplified by erasing literals or
whole rules until its predictive performance on the validation set is satisfac-
tory. Such a process of cutting back a rule set in order to avoid overfitting
is called pruning, and pruning with a validation set as described above is a
post-pruning strategy, because the pruning is done as a separate step after
the rule set induction. This is in contrast to pre-pruning, where the induc-
tion of the rule set is stopped early, often without consulting a validation
set. In practice, there is a certain trade-off involved: Ideally, one would like

18

2.4. Challenges in Rule Learning 19

to use as many instances as possible in the training step to ensure that the
induced rule sets catches all important regularities. However, if one does
not use a validation set and resorts to general heuristics instead, there is no
accurate assessment of the degree of overfitting, and the induced classifier
might feature bad predictive accuracy.

Different rule learning systems have tackled this problem in different
ways. Early systems applied pre-pruning heuristics based on statistical tests,
such as χ2 in CN2 (Clark and Niblett, 1989), or on the minimum description
length (MDL) principle (Rissanen, 1978) as in FOIL (Quinlan and Cameron-
Jones, 1995). Post-pruning methods are usually based on a validation set.
For example, reduced error pruning (REP) (Brunk and Pazzani, 1991) uses
two thirds of the data for the growing set and one third for the pruning set.
Later approaches intermix pre- and post-pruning. For instance, incremental
reduced error pruning (IREP) (Fürnkranz and Widmer, 1994) prunes each
rule individually, right after it has been induced. Since different growing and
pruning sets are used for each rule, IREP can (potentially) make use of all
instances for learning and pruning. Further refinements led to complicated
systems such as RIPPER (Cohen, 1995), which combines MDL heuristics
with a loop that iterates over an IREP-like induction step and a sophisticated
pruning step. We refer to the survey by Fürnkranz (1997) for further details
on pruning strategies.

It must be emphasized that the ability to overfit is a property of the
induction algorithm rather than the induced classifier or the underlying hy-
pothesis class. Even if the hypothesis class is very expressive and even if
the induced classifier is very complex, it might be the case that the classi-
fier was constructed not to optimize training set accuracy directly, but in a
different way that is not susceptible to overfitting. This is true in particu-
lar for some ensemble methods. For example, in bagging (Breiman, 1996),
the final classifier contains a large set of possibly complex base classifiers,
which individually might very well overfit. However, since it uses a voting
procedure for prediction, the resulting ensemble classifier in a sense averages
over the different base classifiers so that the random fluctuations that lead
to overfitting are canceling each other out.4 This effect is neither due to the
hypothesis class, which clearly contains classifiers that overfit, nor the vot-
ing procedure, as demonstrated by the fact that boosting (Schapire, 2003) is
able to overfit even though it applies a similar voting procedure. The main
difference is the fact that the induction algorithm for bagging averages over
the base learners, while boosting is designed to optimize the margin and
therewith the training accuracy. Both ensemble methods can be extended
to generating weighted rule sets and they are actively employed, for exam-
ple in the rule learning systems SLIPPER (Cohen and Singer, 1999) and

4See Section 3.5 for a more detailed and principled explanation on why bagging does
not overfit.

19

20 Chapter 2. Rule Learning

RuleFit (Friedman and Popescu, 2005).

2.5 Algorithmic Approaches to Rule Learning

The preceding sections dealt with rule set representations and the main
algorithmic challenges that are at the core of rule learning problems. In this
section we are presenting possible strategies to address those challenges. The
first part is devoted to the separate-and-conquer approach as it is the first
and by far most popular strategy applied in rule learning. In the second part
we present a small survey over different approaches that have been taken in
recent work on rule learning.

2.5.1 Separate-and-Conquer

The main idea of separate-and-conquer or set covering for rule learning is
straightforward: Assume one has found a rule that classifies a (preferably
large) number of positive instances correctly. If we add such a rule to the
rule set, the positive instances that are covered by this rule are explained
correctly, and we do not need to care about them during the induction of
further rules. Thus, it is safe to simply remove them from the training set
and induce the new rules based only on the remaining, still unexplained
instances. This procedure can be repeated until no positive instances are
left. Similar considerations lead to an iterative procedure for generating a
rule. In this case the goal is to exclude instances with a class label that is
different from the one in the rules’ consequent. If one extends a rule with a
literal that excludes a (preferably large) number of those instances, further
literals in the rule antecedent do not have to exclude the same instances.
Consequently, we can discard those instances and iteratively generate new
literals based on the remaining instances until the rule covers only instances
whose class label agrees with the rule consequent.

Algorithm 1 gives the pseudo-code for the most basic incarnation of
separate-and-conquer on a two-class problem. The algorithm contains two
loops, one in Separate-And-Conquer for the iterative generation of rules
and one in NewRule for the repeated extension of an initially empty rule
antecedent with new literals. The actual implementation of the procedure
NewLiteral depends on the rule learning system. Usually, it applies some
heuristic to return the literal that discriminates best between positive and
negative examples. The extension towards multiple classes is straightfor-
ward. The version of separate-and-conquer presented in Algorithm 1 gen-
erates DNF rule sets that are fully consistent with the training data. Of
course, such a rule set will overfit hopelessly on most realistic data sets.
Practical rule learners therefore often have less restrictive conditions in the
two while loops. This leaves three places where the plain version of separate-
and-conquer can be extended with heuristics to improve its practical fitness:

20

2.5. Algorithmic Approaches to Rule Learning 21

Algorithm 1 The Separate-And-Conquer algorithm. Given a set P of
positive examples and a set N of negative examples (and assuming P ∩N =
∅), it returns a DNF rule set that classifies all instances correctly.

procedure Separate-And-Conquer(P , N)
R← ∅
while P 6= ∅ do

r ← NewRule(P , N)
R← R ∪ {r}
P ← P \ {x ∈ P | x covered by r}

end while
return

∨
r∈R r

end procedure

procedure NewRule(P , N)
L← ∅
while N 6= ∅ do

l← NewLiteral(L, P , N)
L← L ∪ {l}
N ← N \ {x ∈ N | x violates l}

end while
return rule “if

∧
l∈L l then assign the positive class”

end procedure

• the heuristic in NewLiteral to evaluate new literals.

• the condition in the while loop in NewRule. This criterion determines
how many negative instances a rule may label incorrectly.

• the condition in the while loop in Separate-And-Conquer. This
criterion determines the number of positive training instances, which
are not covered by the final rule set and are thus classified incorrectly.

For the first heuristic it is a natural choice to measure the difference between
the number of positive instances and the number of negative instances cov-
ered by a rule. The literal whose addition to a rule maximizes this accuracy
measure, is selected in NewLiteral. Accuracy has been shown to have
some deficiencies, though, and various other heuristics have been proposed
to overcome its limitations. The survey by Fürnkranz (1999) lists purity,
information content, entropy, cross entropy, the laplace estimate, the m-
estimate, the ls-content and correlation as measures that have been used
in separate-and-conquer learning systems and research on new heuristics
is still ongoing, see for example the work on weighted reduced accuracy
(Todorovski et al., 2000). The second and third heuristic influence the com-
plexity of the rule set and can thus be seen as some form of pre-pruning.

21

22 Chapter 2. Rule Learning

We refer the reader to the survey of Fürnkranz (1999) for a list of heuris-
tics used for complexity control and a classification of over forty different
separate-and-conquer rule learning systems based on various criteria.

From a theoretical point of view, the separate-and-conquer algorithm can
be seen as an approximation algorithm to the problem of finding the smallest
rule set which is consistent with a given training set (Haussler, 1988). While
separate-and-conquer is in general not able to find the set with the smallest
number of rules, there is a guarantee that it does not perform “too bad”
when compared to the optimal solution: If separate-and-conquer evaluates
all possible rules in the inner loop, the problem of finding the smallest num-
ber of rules can be seen as a set covering problem and the outer loop of the
separate-and-conquer algorithm is essentially the greedy approximation al-
gorithm for solving this problem. It is well known that the greedy algorithm
is a 1 + lnn approximation algorithm, that is, if the smallest consistent rule
set contains s rules, then it generates at most s

∑n
i=1

1
n ≤ s(1 + lnn) rules,

where n is the number of positive instances (Vazirani, 2003; Haussler, 1988).
Of course, practical systems never evaluate all possible rules, so this guar-
antee does not apply in practice. Indeed, the empirical results presented
in Section 4.3.2 indicate that some established separate-and-conquer rule
learner induce unnecessarily large rule sets on some commonly used data
sets. When it comes to predictive accuracy, the number of rules is not a
critical measure. Separate-and-conquer’s disregard of examples that are al-
ready covered by a previously generated rule, though, appears to be harmful
for predictive accuracy, in particular on small disjuncts.

Separate-and-conquer approaches are widely employed in propositional
and especially in first-order rule learning. The survey by Fürnkranz (1999)
lists over forty different separate-and-conquer systems. Among the most
popular propositional separate-and-conquer rule learning systems are CN2
(Clark and Niblett, 1989), RIPPER (Cohen, 1995), PART (Frank and Wit-
ten, 1998), and PRISM (Cendrowska, 1987).

2.5.2 Other Approaches

Of course, separate-and-conquer is by no means the only way to derive rule
sets. In the following we give a list of some other approaches that have been
taken in the machine learning literature. One of the earliest alternative
strategies is to build a decision tree first, then pool the branches to all
leaves of the tree as a set of rules. Of course, it is not sensible to keep all
branches, so a post-processing step is required to select a subset of good
rules and to determine their order. This is the strategy taken by C4.5rules
(Quinlan, 1995), an adaption of the well-known C4.5 decision tree learner
(Quinlan, 1993). Instead of post-processing an existing decision tree it is
also conceivable to modify the divide-and-conquer strategy used in decision
tree learning to output rules rather than trees. This has been investigated

22

2.5. Algorithmic Approaches to Rule Learning 23

by Boström (Boström, 1995) for the first-order setting.
Both, separate-and-conquer and divide-and-conquer induce rule sets in a

top-down fashion. Domingos’ RISE system (Domingos, 1994, 1996) follows
the opposite direction: it starts with a rote learning rule set where each
rule covers exactly one instance. Then, it iteratively merges two similar
rules into one more general rule until an accuracy-based stopping criterion
is met. This method can be seen as a bottom-up rule learner, but also as an
instance-based learning scheme, as it generates a “compressed” version of
the instances in the training set. The bottom-up approach also avoids the
problem of small disjuncts in separate-and-conquer rule learning.

As we have seen in Section 2.4, inducing a small set of rules which is
consistent with a training set is essentially a combinatorial optimization
problem. As such, it is amenable to all possible discrete optimization algo-
rithms. One particular approach are genetic algorithms or, more generally,
evolutionary algorithms. Those algorithms start with a random population
of solution candidates. Then, they iteratively select candidates based on
their fitness, that is, their performance on the task to be solved, and recom-
bine or mutate the selected candidates to generate a new population. This
strategy is motivated by the ability of evolutionary processes in nature to
originate complex creatures that adapt well to their environments. Research
on genetic algorithms for rule learning dates back to the 1980s (Smith, 1980;
Holland, 1986). More recent research includes G-Net (Anglano et al., 1998)
and ECL (Divina and Marchiori, 2002). A survey by Divina (2006) gives
an overview over recent work on evolutionary approaches to first-order rule
learning.

Another combinatorial optimization strategy that has had remarkable
success on NP-hard optimization problems is stochastic local search (SLS).
Like genetic algorithms, SLS starts with a random solution candidate. It
then iteratively evaluates the fitness of the neighboring candidates accord-
ing to a predefined neighborhood relation and selects the best neighbor as a
candidate for the next iteration. This choice is from time to time replaced
by a random neighbor to escape local optima. SLS algorithms can be im-
plemented very efficiently and they are among the best algorithms available
to solve hard satisfiability problems, see for instance Hirsch and Kojevnikov
(2005). SLS has been applied to rule learning by LERILS (Chisholm and
Tadepalli, 2002). It is also featured in Chapter 4, where it is used in an
investigation to find optimally small rule sets.

If run times are not a big issue, one can also apply brute-force methods
and simply search through the hypothesis space for good rule sets. As
the hypothesis space of all possible rule sets is too large to be searched
exhaustively, those systems often look only for rule sets of some specific
restricted subclass. Of course, there are also heuristics involved to assess
predictive accuracy and to speed up the search. In the literature on machine
learning, exhaustive enumeration algorithms have been explored for Brute

23

24 Chapter 2. Rule Learning

(Riddle et al., 1994), BruteDL (Segal and Etzioni, 1994) and PVM (Weiss et
al., 1990). Brute uses a depth-bounded search for the best individual rules
and combines the 50 best in a rule set. Its successor BruteDL searches for
the best set of homogeneous (that is, non-overlapping) rules. PVM can be
seen as a heuristic approximation to finding the best single rule. In ILP,
Bratko’s HYPER (Bratko, 1999) applies a best-first search strategy.

Exhaustive rule enumeration algorithms have also been investigated in
the data mining community, where a huge amount of research has been
undertaken on association rule mining. Researchers have begun to extend
this work towards the setting of predictive rule learning. Conceptually,
association rules are not concerned with the prediction of an unknown class
label, but with the extraction of statistically significant regularities in large
databases. A typical application of association rule mining is in market
basket analysis, where algorithms such as Apriori (Agrawal and Srikant,
1994) can be applied to enumerate all rules of the form “if a customer buys
item A and item B, it is likely she also buys items C and D”, which meet
certain significance criteria. It is obvious that a subset of those rules could
be used as a basis for a classifier that predicts only one specific class. Work
in this direction has been spawned by CBA (Liu et al., 1998) and subsequent
systems include CMAR (Li et al., 2001) and CPAR (Yin and Han, 2003).

Another style of rule learning algorithms has been influenced by recent
developments in ensemble methods. There are two main approaches to
learning ensembles of rules. The first one is conceptually based on bagging
(Breiman, 1996), the second on boosting (Schapire, 2003). In its original
form, bagging is a technique to reduce the variance portion of the prediction
error. To this end, a whole set of classifiers is induced on different bootstrap
samples of the original data set. These classifiers are then combined in a
simple voting scheme. In a sense, the resulting ensemble averages over the
randomness, which is due to the instance selection in the bootstrap sample.
Hence, it is more stable and less sensitive to variations that depend on the
particular choice of the training set. Similar ideas can be adopted for rule
learning, in particular, if the rule generation process is non-deterministic.
An adaptation of random forests (Breiman, 2001) towards rule sets can be
found in Section 4.4, also published in a recent paper (Rückert and Kramer,
2004b). A related approach based on importance sampled learning ensem-
ble (ISLE) (Friedman and Popescu, 2003) is taken in RuleFit (Friedman
and Popescu, 2005). Finally, Pfahringer et al. (2004) and Anderson and
Pfahringer (2006) propose a system to build ensembles containing a large
number of randomly generated rules.

Boosting stems from computational learning theory as a method to com-
bine weak learners with a predictive accuracy slightly better than chance
into ensembles of high predictive accuracy. The main idea is to iteratively
induce new classifiers, where each classifier focuses on the training instances
that have been misclassified by the preceding classifiers. Most boosting ap-

24

2.5. Algorithmic Approaches to Rule Learning 25

proaches assign a weight to each classifier quantifying its performance on
the training set and perform prediction with a weighted voting procedure.
As such, boosting appears to be a natural way to induce weighted rule sets
and has been adopted quite early for rule learning. While SLIPPER (Cohen
and Singer, 1999) uses a single rule learning procedure as a base classifier
in a boosting algorithm, Lightweight Rule Induction (LRI) (Weiss and In-
durkhya, 2000) generates ensembles of whole rule sets without weights.

25

26 Chapter 2. Rule Learning

26

Chapter 3

Statistical Machine Learning

This chapter gives a short overview over the parts of statistical machine learn-
ing that are relevant for the work in the following chapters. We describe how
classification is generally framed in statistical learning theory and state basic re-
sults: the test set bound to rate the prediction accuracy measured on previously
unseen data, the Bayes classifier as the theoretically best possible classifier, the
question of consistency of a learning system in the limit, the no free lunch theo-
rems revealing the theoretical limits of inductive learning, and the separation of
the prediction error into an approximation and an estimation part. We describe
why pure empirical risk minimization lacks some form of capacity control and
we present structural risk minimization and regularization as remedies. Finally,
we touch upon ensemble methods and Bayesian approaches to classification.

3.1 Introduction

The tasks that are adressed in typical machine learning applications deal
very often with imperfect, noisy data and uncertain settings, where the
available information is generally too sparse to draw justified deductive con-
clusions. Hence, many machine learning systems rely on statistical and
probabilistic methods, which can express and assess the risks, randomness
and probabilities of the involved events and decisions. This is especially true
when it comes to insights on fundamental questions, such as: What kind of
concepts can or can not be learned under certain circumstances? How many
instances need to be observed to induce a classifier with a certain prediction
performance? Consequently, modern theory on machine learning in general,
and on classification in particular depend to a large degree on probabilistic
and statistical modeling and reasoning.

Research in statistics has always been relevant for machine learning.
Many of the early statistical methods for classification have been adopted
and extended in machine learning. For example, Fisher’s linear discrimi-
nant (Fisher, 1936), logistic regression (Hosmer and Lemeshow, 2000) and

27

28 Chapter 3. Statistical Machine Learning

nearest-neighbor methods (Dasarathy, 1991) are now integral parts of ma-
chine learning. Early theoretical results on modern learning theory are
rooted in the work on parametric estimation starting in the 1920s and non-
parametric estimation in the 1950s and 1960s. On the computer science
side, Gold introduced his identification in the limit paradigm (Gold, 1967)
for learning languages. On the statistical side, most results on the prediction
performance of classifiers were restricted to certain data-generation distri-
butions, until Vapnik and Chervonenkis (1971) gave distribution-free guar-
antees for empirical risk minimization and Stone (1977) did so for instance-
based classification rules. These results were concerned with finding classi-
fiers that are provably predictive for large training sets, but often ignored the
computational issues of deriving such classifiers. This changed with Valiant’s
probably approximately correct learning (PAC) framework (Valiant, 1984),
which also considers the time complexity of computing classifier represen-
tations. Modern statistical learning theory has extended these results into
various directions and numerous modern learning schemes are directly based
on the underlying theoretical considerations.

A relatively recent development in learning theory is the area of ensemble
methods. As ensemble methods essentially derive sets of weighted base
classifiers, they are immediately applicable to rule learning with weighted
rule sets. Historically, ensembles emerged roughly at the same time from two
different backgrounds. The first one, boosting, has its roots in PAC learning.
It is motivated by the goal to prove that strong PAC learning is equivalent to
weak learning, that is, learning classifiers which feature a predictive accuracy
only slightly larger than chance. To this end, Schapire (1990) came up with
a first method to boost weak learners into strong ensembles. This methods
were subsequently refined to overcome certain practical drawbacks and the
research ultimately led to the highly popular AdaBoost algorithm (Freund
and Schapire, 1997). The second prominent ensemble method, bagging, was
introduced by Breiman in a seminal paper (Breiman, 1996). It is motivated
by the goal of reducing the variance part of the prediction error of unstable
predictors. We elaborate on both methods in more detail in Section 3.5.

A different approach to statistical inference has been followed by Bayesian
statistics, where the focus is on distributions of classifiers rather than select-
ing a single best classifier. The main idea is to use Bayes’ rule to calculate a
posterior distribution on classifiers from a prior distribution and the training
set. In machine learning, Bayesian methods have traditionally been more
popular for unsupervised learning than for classification. We therefore give
a short introduction in Section 3.6, but we will not apply Bayesian methods
to rule learning in the subsequent chapters. However, it is sometimes very
instrumental to view classification methods from a Bayesian perspective and
we will do so, when applicable, in the later chapters.

28

3.2. A Statistical Framework for Classification 29

3.2 A Statistical Framework for Classification

Before we can go into the details of statistical learning theory, we need to
specify some terminology, frequently used definitions and assumptions that
are shared by most approaches. We start with a typical single-relational
learning scenario: A user observes some natural phenomenon, such as the
occurrence of a plant disease at some agricultural site. He measures certain
aspects of the phenomenon, for instance nutritional conditions, average so-
lar irradiation, humidity, size of the plants, and whether or not a plant is
diseased. From this data, the user wishes to learn how the measured aspects
influence the phenomenon; in the plant example, how environmental factors
and treatments affect the presence of the disease in a plant. In particular,
the user wishes to make justified predictions regarding the phenomenon in
future cases.

In statistical machine learning terminology, this problem can be framed
as follows. First of all, to describe the phenomenon, we need a set of at-
tributes, sometimes called features A := {a1, . . . , am}. Each of the m at-
tributes describes a distinct aspect of the observations. The domain of an
attribute ai, denoted by dom(ai), states which values can be observed for
the attribute. Typical choices for domains are R, [0; 1], N, {true, false}, or
some set of nominal values such as {red, green, blue}. Second, the individual
observations are called examples or instances. The space of all possible in-
stances is the instance space or input space X := dom(a1)× . . .× dom(am).
For notational convenience, we denote an instance xi = (xi1, . . . , xim) ∈ X
as an m-dimensional row vector, rather than a column vector. This enables
us to write a set of n instances {x1, . . . , xn} as an n ×m matrix X, where
xij denotes the value of the jth attribute in the ith instance.

Furthermore we need to formalize the part of the observation we would
like to make predictions about. This is called the class label or target label,
or shorter class and target respectively. The target label for instance xi is
denoted by yi. Its domain is the class label space or output space, denoted by
Y. The structure of Y determines the kind of statistical problem one has:
if Y contains exactly two labels, it is binary classification, if it contains
a finite number of nominal values, it is multi-valued classification, if Y is
ordered, the learning problem is called ordinal regression, and if Y is R or a
subset thereof, the setting is called regression.

With these definitions we have the tools to model the learning scenario
as a statistical framework. First of all, we assume a fixed, but unknown
distribution D ∼ (X ,Y) over labeled instances. This distribution models
the probabilistic nature of the underlying phenomenon to be explored. The
user draws a sample of n labeled instances (X,Y) = {(x1, y1), . . . , (xn, yn)}
according to Dn. This sample constitutes the training data that is given
to a machine learning system to induce a predictive model. More formally,
a classifier or predictor is a function c : X → Y from the instance space

29

30 Chapter 3. Statistical Machine Learning

to the class labels. The space of all classifiers is denoted by C, but usually,
we will only deal with some subset of C, which can actually be handled
by a learning algorithm. Such a space of potential classifiers is typically
called hypothesis space and denoted by H. Finally, we may want to assess
the quality of a classifier. To this end, we define a loss function or cost
function l : Y × Y → R. This function quantifies the regret or the costs
that we experience whenever an instance of true class yi is classified as y′i
by a classifier. For most practical loss function, l(y, y′) = 0 whenever y = y′

and l(y, y′) > 0 otherwise. For (binary) classification problems, the most
important and popular loss function is the zero-one loss lz(y, y′) = I[y 6= y′],
where I[condition] denotes the indicator function, which is one whenever the
condition is satisfied and zero otherwise. In the following, we assume the
zero-one loss whenever no other loss function is explicitly specified.

We can use the loss to assess the quality of a classifier c: The risk
or error is the expectation of l(c(x), y) over some distribution of (x, y).
There are three distributions that are of particular interest. The first one
is to take the expectation over the unknown underlying distribution D:
εc := E(x,y)∼D l(c(x), y). This quantity is called the true error (true risk),
because it specifies the average error of c we can expect on new unseen data.
If we are given a training set (X,Y), the second quantity is the empirical er-
ror (empirical risk) ε̂c := 1

n

∑n
i=1 l(c(xi), yi), which computes the accuracy

of c on the training set. The empirical error is a random variable depending
on D. Finally, if the learning algorithm outputs a classifier c, it is some-
times possible to draw another n′ instances (X ′, Y ′) (usually from D) for an
independent test set. The accuracy on a classifier on this test set is the test
error (test risk), denoted by εTc := 1

n′
∑n′

i=1 l(c(x
′
i), y

′
i).

From a statistical perspective, the main problem in classification is as
follows. We would like to find a classifier c that predicts well on unseen data,
that is, we would like to have εTc minimized by c. Unfortunately, at learning
time we have neither access to the test data, nor to the underlying distribu-
tion D, so we can not optimize εTc or εc directly. The only information we
have is the training set (X,Y). So, the obvious questions in this setting are:
How does optimizing for ε̂c relate to optimizing the true and test risks? In
particular, can we still find a classifier that performs well on the test data?
If no, which additional assumptions are necessary to enable successful pre-
diction? If yes, can we give performance guarantees, for example depending
on the size of the training set? Are those guarantees valid, if we restrict the
c to a specific hypothesis class, such as certain types of rule sets?

Before we give principled answers to those questions in the next sections,
there are two obvious points we need to address. First, it is obviously im-
possible to learn well if the training data is not related to the test data, for
example, because the test set it drawn from a completely different distri-
bution than the training data. In the following we therefore assume that
training, test and validation data is drawn from the same distribution D.

30

3.3. Basic Results 31

This assumption is sometimes violated and learning in such a setting is
called concept drift (Widmer and Kubat, 1996). In principle, one could ex-
tend most results to the case where the test data is drawn from a slightly
different distribution, but in practice there is rarely enough information to
quantify the extent to which the test distribution differs from the training
distribution, hence the stronger and more practical assumption.

Second, even if training and test data are drawn from the same distri-
bution, learning can be impossible, if we allow dependencies between the
individual instances. For example, if the drawing of an instance depends on
the preceding instances, one could have the effect that the sampling process
gradually shifts from one part of the instance space to another. Then, in the
worst case, the training data may come from a completely different part of
the instance space than the test data. To avoid this pitfall, we assume in the
following that all (training and test) instances are drawn independently from
each other. Again, this assumption is too strong in some applications, and
the requirement of complete independence can be somewhat relaxed with-
out losing most of the important results, see for instance Ryabko (2006).
These two assumptions are well known as the assumption of independently
and identically distributed (i.i.d.) data.

3.3 Basic Results

Let us start to address the questions posed in the preceding section. First
of all, we are interested in determining a classifier c from the training data
that has low test error εTc . Assume we already found a good classifier c.
Because of the i.i.d. assumption the test set is drawn from D as well, so
the expected test error is E εTc = εc. Since the examples in the test set are
drawn i.i.d. as well, the question of wether or not a particular test instance
is classified correctly is equivalent to the toss of a biased coin where the
probability of observing head is given by the true error εc. Thus, the proba-
bility of observing exactly k errors among the n′ test instances is distributed
binomially:

Pr
(X′,Y ′)∼Dn′

[
n′∑
i=1

l(c(x′i), y
′
i) = k

]
=
(
n′

k

)
εkc (1− εc)n

′−k

This has an important implication: The test error is concentrated around its
mean, the true error εc. We have only two ways to influence the distribution
of the test error. We can increase the number of test examples to decrease
the distribution’s variance, so that the test error is tighter concentrated
around its mean. Or, we can choose a different classifier c that gives rise to
a smaller true error εc, which in turn leads to a smaller test error. Thus,
we can reformulate the original problem as follows. Instead of aiming for a
classifier with low test error, we are interested in determining a classifier c

31

32 Chapter 3. Statistical Machine Learning

from the training data that has low true error εc. Then, the error on any
new test set is automatically distributed around εc and the deviation of the
test error from the true error just depends on the test set size.

3.3.1 The Test Set Bound

In practice, we can never know the true error, because we do not know the
underlying distribution D. However, we can estimate it from a (preferably
large) test set. Assume we have a test set of n′ instances and we have
observed k = n′εTc misclassifications among those instances. Since we know
that the distribution of the test error is binomial, we can calculate the largest
true error that gives rise to the observed test error. To do so, we just need
to upper-bound the tail of the binomial distribution.

Definition 3.3.1.

Bin
(
n′, k, δ

)
:= sup

ε

{
ε

∣∣∣∣∣
k∑
i=0

(
n′

i

)
εi(1− ε)n′−i ≥ δ

}
(3.1)

Thus, Bin(n′, k, δ) denotes the largest true error εc so that the proba-
bility of having at most k misclassifications among the n′ test instances is
greater than δ. The following bound on the test set follows immediately:

Theorem 3.3.2 (Test Set Bound (Langford, 2005)). For all δ > 0 and all
classifiers c with test error εTc on a test set of n′ instances, it is the case that

Pr
(X′,Y ′)∼Dn′

[
εc ≤ Bin

(
n′, n′εTc , δ

)]
≥ 1− δ (3.2)

Thus, if we observe a test error εTc on a test set of size n′, then, with error
probability δ over the choice of the test set, the true error is smaller than
the tail inversion Bin(n′, k, δ). This tail inversion can not be calculated
analytically, because one needs to take the supremum in (3.1). Often it
is more convenient to use the following easily computable upper bound in
closed form:

Bin
(
n′, n′εTc , δ

)
≤ εTc +

√
εTc ln 1

δ

n′
+

ln 1
δ

n′
(3.3)

This inequality demonstrates the approximate deviation of the test error
from the true error one has to expect on test sets: If the actually observed
test error is near zero, the second term on the right hand side becomes neg-
ligible, so the deviation is essentially determined by the third term O(1/n′).
Otherwise, the difference between test and true error is dominated by the
second term and thus O(1/

√
n′).

32

3.3. Basic Results 33

3.3.2 Bayes Classifier and Consistency

In the preceding section we have seen that in order to gain a small error
on new data, we need to find a classifier that minimizes the true error.
Unfortunately, the true error cannot be computed, because we do not know
the underlying distribution D. The only quantity we have at our disposal is
the training set (X,Y). Therefore, the main questions in learning theory deal
with how to make use of this information in order to find classifiers featuring
a low true error. Before we can consider specific settings and hypothesis
classes, it is natural to ask about the best classifier one could possibly find.
We demand that a classifier is a deterministic function c : X → Y, but the
underlying distribution might be non-deterministic in the sense that it could
assign different class labels with various probabilities to one and the same
instance x. Thus, even the best classifier will have a non-zero true error, if
the conditional probability Pr[Y = y|X = x] /∈ {0, 1} for some class y and
some instance x with Pr[X = x] > 0. More formally, assume a two-class
classification setting with Y = {0, 1} and define

η(x) := Pr[Y = 1|X = x]

If we know η, we can construct a classifier that always predicts the most
likely class label for each x:

Definition 3.3.3 (Bayes Classifier).

c∗(x) :=

{
1 if η(x) ≥ 1/2
0 otherwise

The expected error of this Bayes classifier is the Bayes error.

Definition 3.3.4 (Bayes Error).

ε∗ := E
x∼D

[
min

{
η(x), 1− η(x)

}]
= εc∗

It is fairly easy to show that the Bayes classifier is the classifier with the
smallest possible true error:

Theorem 3.3.5 (Optimality of the Bayes Classifier, (Devroye et al., 1996)).

ε∗ = inf
c:X→Y

E
(x,y)∼D

[
l(c(x), y)

]
= inf

c:X→Y
εc

Again, there is no way to compute ε∗, because it depends on the unknown
distribution D, but it serves us as a theoretical lower bound when comparing
the risks of classifiers induced by practical learning algorithms. The worst
possible Bayes error is 0.5, which is achieved for the distribution, where
η(x) = 0.5 for all possible x. In this case, the target label is independent of

33

34 Chapter 3. Statistical Machine Learning

the instances and doing better than chance is not possible. If the Bayes error
is zero, the class label is a deterministic function f : X → Y of the instance,
so that y = f(x) for all (x, y). In this “noise free” setting a classifier must
be consistent with every single training instance in order to be considered
for prediction. Finding such a classifier is considerably easier than inducing
a good classifier in the general case, where ε∗ > 0. We will demonstrate
this later in Section 4.2 for DNF rule sets, where learning in the noise free
setting (Section 4.2.1) is more efficient than in the general setting (Section
4.2.2).

It is clear that there is no learning algorithm that can identify the Bayes
classifier from a finite training set; after all, one might be unlucky and draw
a training set that is not representative of the underlying D. In this case any
learning algorithm will have insufficient data to induce the Bayes classifier
exactly. However, as the training set gets larger and larger, the empirical
distribution of the training set converges to the true distribution. This might
raise the hope that one can construct a learning algorithm whose classifiers
reach the Bayes accuracy in the limit, that is, when the training set size
approaches infinity. More formally, let A : (X × Y)n → C denote a learning
algorithm, which outputs a classifier c ∈ C when given a training set of size
n. Now consider the case where we start with a single training example and
draw new examples step by step. For each training set size n = 1, 2, 3, . . .,
the algorithm outputs a new classifier c1, c2, c3, The following definition
makes the notion of “reaching the Bayes risk in the limit” precise:

Definition 3.3.6 (Consistency). An algorithm A is consistent, if

lim
n→∞

εcn = ε∗

It is universally consistent, if it is consistent for any arbitrary underlying
distribution D.

Can we come up with a consistent or even universally consistent algo-
rithm? Many practical learning algorithms are clearly not universally con-
sistent, because they induce only classifiers in a restricted hypothesis class
H ⊂ C. Thus, they are consistent, if H contains the Bayes classifier, but
they are generally not, if one selects a distribution D so that η(x) = c(x)
for some c ∈ C \ H. Learning algorithms, which select hypotheses from a
restricted hypothesis space H are generally only expected to be consistent
in the sense that they select the best hypothesis in H, when given an infinite
amount of raining data. We refer to Section 3.4.1 for a discussion of this
setting. On the other hand, one could design an algorithm which chooses a
classifier from a nested sequence of hypothesis classes H1,H2,H3, . . . of in-
creasing size. If limi→∞Hi = C and if the algorithm chooses a classifier from
Hn for training sets of size n, it would be possible that such an algorithm is
universally consistent.

34

3.3. Basic Results 35

The question on whether there exists a universally consistent learning
algorithm was answered affirmatively by Stone (1977), who showed that the
k-nearest neighbor algorithm is universally consistent for training sets of
increasing size n → ∞, if k → ∞ and k/n → 0. Indeed, Stone’s origi-
nal result was more general and proves the universal consistency of related
learning algorithms such as instance-based histogram or kernel approaches,
too. We do not state the result, because it is of little relevance for rule learn-
ing, but refer to Devroye et al. (1996) for a detailed treatment. In a sense,
consistency is a minimal requirement one would demand from a learning
algorithm, because it ensures that adding new training instances improves
the predictive accuracy. However, we will see in the next section that there
is generally no guarantee about how much predictive accuracy benefits from
a certain number of instances. Therefore, it is of little relevance in practice,
where only finite amounts of training data are available.

Are rule learning algorithms consistent? Most practical rule learning
systems are certainly not consistent; for instance, in separate-and-conquer
approaches, typical overfitting avoidance heuristics impose a fairly strong
bias towards rule sets that prefer large disjuncts over small disjuncts. How-
ever, if we assume that all attributes of the instance space are binary val-
ued, then rule sets can represent all possible classifiers and results from
Vapnik-Chervonenkis in Section 3.4.1 indicate that the original separate-
and-conquer approach is consistent, because it minimizes the empirical risk.
If one assumes that the instance space is an m-dimensional vector space,
such as Rm, the consistency of a rule learning algorithm depends crucially
on the algorithm’s way of deriving the rule conditions on the numerical at-
tributes. Again, a rule learning algorithm can be designed to be consistent.
For instance, the histogram learning algorithm can be seen as a rule learning
algorithm with intervals of constant size in the rule antecedents. As it meets
the conditions of Stone’s theorem directly, it is universally consistent. Also,
many results on tree classifiers (Devroye et al., 1996) extend naturally to
rule sets. However, many practically used heuristics introduce biases that
make learning algorithms non-consistent.

3.3.3 No Free Lunch

In practical applications there is only a limited amount of training and
test data. Therefore, one is generally more interested in results about the
predictive accuracy of classifiers on finite data sets rather than asymptotic
results in the limit. In particular, it would be helpful if one could estimate
an upper bound on the true error of a classifier depending on the training
data and the learning algorithm. Such a bound would enable a user to
derive classifiers with a guaranteed predictive performance and possibly lead
to valuable insights into the characteristics of the used learning approach.
Ideally, we are interested in bounding εc−ε∗, the difference between the true

35

36 Chapter 3. Statistical Machine Learning

error of a classifier c and the Bayes error. Unfortunately, one can show that
there is no way to bound this quantity based on finite amounts of training
data without making any assumptions about the underlying distribution D
(Devroye et al., 1996; Wolpert, 1996). This rather disappointing negative
result can be formulated in different ways and is generally known as the
no free lunch theorem. In the following we will present it in two different
flavors; first as a result on the slow rate of convergence of the empirical risk
to the true risk, and then from a Bayesian perspective as the equivalence
of all possible learning algorithms under conservative assumptions on the
selection of learning problems.

The first result is due to Devroye (1982) and states that for each training
set size n and learning algorithm A there is a distribution that gives rise to
a true error arbitrarily close to pure chance.

Theorem 3.3.7 (Bad predictivity on finite samples (Devroye et al., 1996)).
Let ε > 0 be an arbitrarily small number. For any training set size n and
learning algorithm A, there exists a distribution on (X,Y) with Bayes risk
ε∗ = 0 and true error εc of the classifier c output by A such that

εc ≥
1
2
− ε

This theorem states that the finite sample performance of an algorithm
can be extremely bad for some distributions even though the algorithm
achieves the Bayes risk asymptotically. Thus, there is no guarantee that a
certain finite training set size, regardless of how large it may be, leads to
classifiers with reasonably low true error. The Bayes risk is achieved only in
the limit. The theorem is based on a fixed algorithm A and a fixed sample
size n. It does not exclude the possibility that some algorithms feature a
better universal rate of convergence than other algorithms. The following
stronger result indicates that this hope is not justified; there are distributions
leading to arbitrarily slow convergence for any algorithm.

Theorem 3.3.8 (Slow rate of convergence (Devroye et al., 1996)). Let {an}
be a sequence of positive numbers converging to zero with 1

16 ≥ a1 ≥ a2 ≥
For every learning algorithm A there exists a distribution on (X,Y) with
Bayes risk ε∗ = 0 so that the algorithm A induces a sequence of classifiers
c1, c2, . . . with true error ε1, ε2, . . . and for all i > 1

εi ≥ ai

So, all possible learning algorithms are equal in the sense that for any
algorithm, there is a specific hard learning problem which gives rise to ar-
bitrarily low convergence of the prediction risk. This means there is no
universal distribution-free guarantee. To show that a specific algorithm
works well, one needs to make some assumptions on the distribution D of

36

3.3. Basic Results 37

the learning problem. If the assumptions are met, the algorithm works well,
if not, it can be arbitrarily bad. Of course, a different algorithm A2 might
work well on those learning problems on which algorithm A1 fails. This is a
significant insight, because it means that rather than looking for the “uni-
versally best” learning algorithm, one should search for an algorithm whose
bias matches well with the learning problem at hand. This requires some
a-priori knowledge about the learning problem one is faced with. This fact
motivates the term “no free lunch”. When designing a learning system, it is
thus important to provide a flexible and easy-to-use mechanism for specify-
ing and modifying the system’s bias. We will deal with such considerations
later, for instance in Sections 5.4 and 6.2.

Another very instructive way to look at this phenomenon is from a
Bayesian perspective, a view that has been made popular by Wolpert (1994).
In this framework, the importance of a good match between the learning
system’s bias and the underlying learning problem can be formalized quite
nicely. There are three essential differences to the framework described so
far. First, Wolpert assumes a noise free setting, so that the true class is a de-
terministic function of the instance. This function is denoted by f : X → Y
so that for all (xi, yi) ∈ X ×Y : yi = f(xi). Assuming any arbitrary distribu-
tion D on unlabeled instances, we denote the distribution of instances drawn
from D and labeled according to f by Df . Second, rather than dealing with
the true error of a classifier, one evaluates the off-training set error, that is,
the expected cost of misclassification on instances outside the training set.
Formally, for a finite instance space X :

εOTS
c :=

∑
x∈X\X Pr

[
X = x

]
l
(
c(x), f(x)

)∑
x∈X\X Pr

[
X = x

]
The use of the off-training set error is a natural choice in the noise-free
setting, because one already knows the true label of a training instance,
anyway. Instead, one is interested in predicting the labels of the new, unseen
instances outside the training set. Third, the space of all possible learning
problems is the set of all possible functions from X to Y, that is, the space of
all classifiers C. Since X is finite, C is finite as well. This allows us to easily
compute the off-training set error of a learning algorithm averaged over
all possible learning settings. More realistically, we may assume that some
learning problems are more likely than others and assume a prior probability
distribution over C. Since we do not know the correct prior in practice,
we can compute the off-training set error averaged over all possible prior
distributions. The following theorem does so for two arbitrary algorithms
A1 and A2.

Theorem 3.3.9 (No Free Lunch, (Wolpert, 1996)). Assume a fixed training
set size n and two algorithms A1 and A2. Let P := {P : C → [0, 1]|

∑
f∈C P (f) =

37

38 Chapter 3. Statistical Machine Learning

1} be the space of all probability distributions on C. Denote the expected off-
training set error of the classifier induced by algorithm Ai on the training
set X drawn from the learning problem f ∈ C by εOTS

i (f,X). Then, for any
distribution D on unlabeled instances:∑

f∈C
E

X∼Dnf
εOTS

1 (f,X) =
∑
f∈C

E
X∼Dnf

εOTS
2 (f,X)∫

P∈P
E
f∼P

E
X∼Dnf

εOTS
1 (f,X)dP =

∫
P∈P

E
f∼P

E
X∼Dnf

εOTS
2 (f,X)dP

Also, for a fixed training set X of size n:∑
f∈C

εOTS
1 (f,X) =

∑
f∈C

εOTS
2 (f,X)∫

P∈P
E
f∼P

εOTS
1 (f,X)dP =

∫
P∈P

E
f∼P

εOTS
2 (f,X)dP

In other words, the theorem states that A1 and A2 lead to the same off-
training set error when averaged over all possible learning problems or over
all possible prior distributions on learning problems. This remains to be the
case even if one restricts oneself to the case of a fixed known training set X.
Thus, without any assumptions on the learning problems f or, equivalently, a
prior distribution over C, there is no justification for preferring one algorithm
over the other. While the result paints a rather pessimistic picture of a
learning algorithm’s ability to generalize well, the situation is not so bad
in practice. The no free lunch theorems depend crucially on the fact that
for any learning algorithm one can construct distributions on which the
algorithm performs arbitrarily bad. However, most of these distributions are
rather awkward and occur rarely, if at all, in practice. For example, when
X = {0, 1}m and x(j) denotes the j component of x, the parity function
f : x 7→ (

∑m
j=1 x(j)) mod 2 is known to be hard to learn by typical rule

learning algorithms. Devroye et al. (1996) give an awkward learning problem
for X = R, where f(x) = 1 if x is rational and f(x) = 0 if x is irrational,
so that it is impossible to check f(x) for a given x. Without doubt, such
learning problems occur rarely in practice. Even if they do, a well-informed
user might choose to use a different representation and, for instance, add an
attribute that is related to the parity or the rationality of an instance, so
that the problem is easier to learn.

3.3.4 Approximation and Estimation Error

In a sense, the crux of classification in machine learning is to find algorithms
whose biases match well with the learning problems that are frequently en-
countered in practice. This is often more an art than a science. In partic-
ular, it is difficult to adjust how strong the bias should be. Informally, if

38

3.3. Basic Results 39

a system’s bias is very strong, it performs extremely well on a small set of
learning problems, but badly on other problems. If it has a weak and broad
bias, it might perform well on average, but the induced classifier depends
to a large degree on the training set so that its performance varies greatly
with the random peculiarities of the training sets. This phenomenon can be
described in various ways, depending on the learning setting and the way
the bias is encoded.

For regression problems, the bias-variance decomposition is a natural
way to formalize the concept. Since in regression we have Y = R, the
zero-one loss lz(y, y′) = I[y 6= y′] does not apply. The most popular loss
function for regression is the squared loss l2(y, y′) = (y−y′)2. Let us assume
the usual setting, where a classifier c is induced from a training set (X,Y)
drawn from D. Then, assume a fixed labeled test instance (x0, y0). We
denote the expected squared loss error of c on the test instance by εc(x0) :=
E l2(c(x0), y0). Since we assume the noisy setting, where y0 is a random
variable rather than a deterministic function of x0, the random variable
εc(x0) depends on the training set and the class label y0. Now, εc(x0) can
be written as:

εc(x0) = E
[(
y0 − c(x0)

)2]
= E

[(
y0 −E[y0]

)2]+
(

E[y0]−E
[
c(x0)

])2
+

E
[(

E
[
c(x0)

]
− c(x0)

)2]
(3.4)

= Noise + Bias2 + Variance

In this decomposition, the first term is the expected deviation of the target
value y0 from its mean, that is, the unavoidable Bayes error, caused by noise
in the underlying distribution. The second term is the squared difference be-
tween the expected target value and the expected prediction. This quantity
depends neither on the (random) training set nor on the (random) target
value, but only on the systematic error that is made on average by the learn-
ing system. It therefore quantifies the bias of the learning algorithm with
regard to D and x0. Finally, the third term denotes the expected deviation
of c(x0) from its mean. It depends on how much the prediction c(x0) varies
with fluctuations in the training set. Hence it represents the variance of the
prediction.

While the noise depends only on the underlying distribution and is there-
fore independent of the learning algorithm, each learning system has to find
a balance in the natural trade-off between bias and variance: If the selection
of the classifier c is biased strongly towards a particular setting, a small per-
turbation in the training set will not change its decision very much, hence
the variance part on the error is small. On the other hand, the bias part
might be very large, if the underlying problem matches not very well with

39

40 Chapter 3. Statistical Machine Learning

the system’s bias. If the system has a small bias, it must base the choice of
c mainly on the training set, so that a small change in (X,Y) might cause a
significant change in c and c(x0). Therefore, the bias part of the error may
be small, but the variance tends to be large. It must be emphasized that a
large bias error does not automatically cause a low variance and vice versa.
It is perfectly possible to design a learning algorithm whose error features
high bias and variance ratios. The usual way to decrease the bias part of the
error is to run the learning machine with different parameters to fine-tune
its bias towards the problem or to use a different learning algorithm with
a different bias altogether. The variance part can be reduced by stronger
regularization (see Section 3.4.3) or ensemble techniques (see Section 3.5).

The bias-variance decomposition is also possible for binary classification
with the zero-one loss (Domingos, 2000b), but in computational learning
theory, the phenomenon is more often framed as a compromise between
approximation error and estimation error. This decomposition approach
applies, if the learning algorithm is designed to output only classifiers from
a restricted hypothesis space H ⊂ C. The size of H can be seen as a measure
of the strength of the system’s bias: if H contains only a few classifiers, the
system can induce only this restricted type of classifiers. If, on the other
hand, H is very large, then the algorithm can learn a vast number of possible
classifiers, but its actual choice depends to a larger degree on the training
set. One can therefore distinguish between the error that is made on the
selection of classifiers within the restricted hypothesis class and the error
that is made on the selection of the class as a whole.

εc = ε∗ +
[

inf
h∈H

εh − ε∗
]

+
[
εc − inf

h∈H
εh

]
(3.5)

= Bayes error + approximation error + estimation error

The first term on the right hand side is the Bayes error, that is, the error
of the best classifier overall. No classifier can do better than the Bayes risk.
However, the algorithm chooses its output fromH rather than C. The second
term represents the approximation error that is caused by this restriction. It
depends only on the hypothesis class and D and is zero if the Bayes classifier
is contained in H. Even if this is the case, the learning algorithm might fail
to find and output the best classifier in H, because it has only access to the
training set and not the true distribution D. This estimation error depends
mainly on how representative the training set is on average with regard to
D.

Typically, learning systems aim at an approximation and estimation er-
ror in the same range, because this indicates a sufficiently broad, but not
too general bias. To do so, it is crucial to control the complexity of the
classifier to be induced: if there is only a limited amount of training data,
there is insufficient information to justify the selection of a classifier from
a large hypothesis class and the estimation error is large. This can often

40

3.4. Capacity Control 41

be seen in practice, when a learning system is overfitting. If there is plenty
of training data, a small hypothesis class of simple classifiers might be too
restricted to contain a good approximation to the Bayes classifier, hence
the approximation error is large. This is known as underfitting. Later, we
will present methods for under- and overfitting avoidance with rule sets, for
instance, in Sections 4.3, 4.4, and 5.3.

3.4 Capacity Control

In the preceding section we have seen that a learning algorithm’s bias must
match well with the encountered learning problems, in particular with regard
to the complexity of the induced classifier. This problem is often called model
selection or, when the classifier’s complexity is concerned, capacity control.
In the following we will introduce three popular ways to formulate learning
algorithms with well-defined and easy-to-analyze biases. In the first setting,
the algorithm uses a fixed hypothesis class, so the problem of model selection
is essentially left to the user. In the second setting, the learning algorithm
chooses first a hypothesis class and then a classifier from within this class to
control the classifier complexity automatically. Finally, a system can search
for classifiers which optimize the training set accuracy plus some scoring
function that penalizes overly complex classifiers. In this way, capacity
control is seamlessly integrated in the classifier induction procedure.

3.4.1 Empirical Risk Minimization

In the easiest of the three settings, the learning system is restricted to out-
put classifiers in a specific (often small) hypothesis class H. Thus, the bias
is essentially determined by the choice of H and model selection is left to the
user. Since H is fixed, there is no way to influence the approximation error,
so the learning systems in this category can only aim at a low estimation
error. A natural way to do so is to search for those hypotheses h ∈ H that
have the smallest empirical error ε̂h. This approach is known as empirical
risk minimization. Obviously, empirical risk minimization is the only sensi-
ble strategy in the noise-free setting, because any classifier c with empirical
error ε̂c > 0 is inconsistent with the data and can therefore be discarded.
In the noisy setting, the estimation error of empirical risk minimization can
be shown to converge to 0, where the rate of convergence depends on the
size of H. If H is finite (such as with DNF rule sets), the size of H can be
easily measured by its cardinality |H|. The following theorem gives a (rather
loose) upper bound of the true error depending on the empirical error and
the hypothesis space size.

Theorem 3.4.1 (Uniform Deviation (Devroye et al., 1996)). Let D be an
arbitrary distribution and (X,Y) be a training set of size n drawn i.i.d. from

41

42 Chapter 3. Statistical Machine Learning

D. Then, for all δ > 0 and for every h ∈ H:

Pr
(X,Y)∼Dn

[
εh ≤ ε̂h +

√
ln |H|+ ln 1

δ

2n

]
≥ 1− δ (3.6)

Thus, with high probability it is the case that the true error of the
hypothesis h output by the learning algorithm is smaller than the empir-
ical error plus some penalty that depends essentially on the training set
size n and the hypothesis class size |H|. When n → ∞, the penalty term
(1

2n(ln |H|+ln 1
δ))0.5 converges to zero and ε̂h converges to εh. Hence, empir-

ical risk minimization is guaranteed to minimize the estimation error in the
limit. When n <∞ it is instructive to compare the penalty in (3.6) with the
one of the test set bound (3.3). When we fix a hypothesis h before seeing the
training set, then the training data essentially constitutes an independent
test set and (3.3) tells us that we should expect a penalty of O(1/

√
n) in

the worst case. If we choose h after seeing the training set, then the test set
bound is too optimistic, but the inequality above states that we should ex-
pect a penalty of O(

√
ln |H|/

√
n). The difference is remarkably small, if |H|

is not too large. Unfortunately, it is easy to construct H of significant size.
For instance, it is easy to see that the hypothesis class of DNF rules with at
most k terms and l literals per rule can contain 3kl different hypotheses, so
that the penalty in (3.6) depends exponentially on k and l.

For weighted rule sets, each classifier h ∈ H is given by a set of r rules
and a weight vector w ∈ Rr. Thus, H is uncountably infinite and measuring
the size of H by its cardinality does not work anymore. The historically first
and certainly most popular measure of H’s discriminative power is the VC
dimension due to Vapnik and Chervonenkis (1971):

Definition 3.4.2. Let (X,Y) be a training set of size n and H a hypothesis
class. Let SX = {(h(x1), . . . , h(xn))|h ∈ H} be the set of all possible ways
in which X can be divided into two classes. Then, the VC dimension of H
is the largest n so that there exists a training set X of size n such that

|SX | = 2n

The following famous theorem uses this combinatorial property of H to
bound the true error of empirical risk minimization.

Theorem 3.4.3 (Vapnik and Chervonenkis (Devroye et al., 1996)). Let D
be an arbitrary distribution, (X,Y) be a training set of size n drawn i.i.d.
from D and H a hypothesis space with VC dimension v. Then, for all δ > 0
and for every h ∈ H:

Pr
(X,Y)∼Dn

[
εh ≤ ε̂h + 2

√
2
v ln 2en

v + ln 2
δ

n

]
≥ 1− δ (3.7)

42

3.4. Capacity Control 43

Using some more involved methods, one can remove the unnecessary
log n factor from the right hand side of (3.7), so that the penalty is essentially
O(
√
v/
√
n), only a

√
v factor worse than the test set bound. Similar to the

test set bound, the bound can also be improved, if ε∗ = 0. Unfortunately,
it is comparably hard to determine the VC dimension of hypothesis classes
representing rule sets, that is, Boolean functions. There are some results for
k-DNF (Ehrenfeucht et al., 1988) and monotone functions (that is, Boolean
functions that can be represented without negated literals) (Procaccia and
Rosenschein, 2006), but no general result for k-term DNF or weighted rule
sets.

Even though empirical risk minimization is attractive from a theoretical
point of view, computing the hypothesis that minimizes the empirical error
is often very hard in the worst case. In Section 2.4.1 we list some of the
hypothesis classes that are relevant for rule learning. For the most inter-
esting classes, empirical risk minimization is NP-hard and even NP-hard to
approximate to within some fixed constant. In practice, these hardness re-
sults are often not very prohibitive and most practical systems do well with
(sometimes simple) approximation schemes. This is mainly due to the fact
that the predictive accuracy of a system depends much more on a suitable
bias than on its ability to locate the hypothesis with the best empirical risk
exactly. Quite the contrary, the hypothesis that minimizes ε̂ is often rather
volatile with regard to small changes in the training set, so that a pure
empirical risk minimization approach is often more unstable than a robust
approximation scheme and thus exhibits higher variance. We will deal with
empirical risk minimization for rule learning in Section 4.2 and 5.2.

A particularly elegant way to sidestep the computational hardness of em-
pirical risk minimization is to not optimize ε̂ directly, but a related quantity.
This approach has been made popular by the support vector machine, which
aims at linear classifiers with optimal hinge loss rather than zero-one loss.
Since the hinge loss is a convex function, its minimizer is unique and can
be determined efficiently by a quadratic programming procedure. Also, the
hinge loss aims at classifiers whose decision boundary has a large margin to
the closest training instances. Optimizing for a large margin leads to more
robust classifiers, because the classification of a noisy instance remains the
same whenever the deviation, which is introduced by the noise, is less than
the margin. For many practical learning settings, this bias towards robust
classifiers is more effective than an unstable strategy that minimizes the
zero-one loss (see Section 5.2 for margin-based empirical risk minimization
for rule sets).

3.4.2 Structural Risk Minimization

One of the main problems of straight empirical risk minimization is the
missing capacity control. Empirical risk minimization determines the best

43

44 Chapter 3. Statistical Machine Learning

classifier in a fixed hypothesis class, regardless of the amount of available
training data. If there is only a small amount of training data available,
there might be not enough information to justify the selection of a particular
classifier from the fixed hypothesis class, so the estimation error is large. On
the other hand, if there is a wealth of training data, there might be enough
information to identify classifiers that are more complex than the ones in
the hypothesis class, so the approximation error is large. With empirical
risk minimization the choice of the right hypothesis size is essentially left to
the user, even though classical model selection methods or bounds like (3.7)
could be applied to make this choice automatically.

Structural risk minimization tries to overcome this problem by introduc-
ing a sequence of nested hypothesis classes rather than a single class of fixed
size. Assume a sequence of nested hypothesis classes H1 ⊂ H2 ⊂ . . . with
finite, but increasing VC-dimension h1 < h2 < Then, structural risk
minimization determines the sequence c1, c2, . . . of classifiers that minimize
the empirical risks ε̂i for each hypothesis class Hi. Finally, from this se-
quence of classifiers, it outputs the classifier ci which minimizes the sum of
ε̂i + pen(i, n), where the complexity penalty pen(i, n) penalizes hypothesis
classes with large capacity.

cSRM := arg min
c∈Hi,i∈N

(
ε̂c + pen(i, n)

)
In its original formulation by Vapnik and Chervonenkis (1974), the com-
plexity penalty was set to

pen(i, n) :=

√
32
n
hi ln(en) (3.8)

so that minimizing ε̂i+pen(i, n) is essentially the same as minimizing the VC
bound (3.7) over all hypothesis classesHi. This strategy avoids overfitting in
the sense that it selects a hypothesis class whose capacity is not too large (up
to a certain error probability) even for worst case distributions D. Unlike
empirical risk minimization with a fixed hypothesis class, structural risk
minimization can be made universally consistent, if the sequence H1,H2, . . .
of hypothesis classes is selected suitably. The following theorem gives the
formal conditions, see Chapter 18 of Devroye et al. (1996) for more details.

Theorem 3.4.4 (Consistency of SRM). Let H1,H2, . . . be a sequence of
hypothesis classes so that for any distribution on (X,Y)

lim
i→∞

inf
c∈Hi

εc = ε∗

and the VC dimensions h1 < h2 < . . . of the hypothesis classes are finite
and satisfy

∆ =
∞∑
i=1

e−hi <∞

44

3.4. Capacity Control 45

Then, the structural risk minimization strategy over H1,H2, . . . is univer-
sally consistent.

The original penalty (3.8) is rather pessimistic as it assigns a worst-case
penalty to each hypothesis class. This ensures consistency in the asymptotic
case, but it leads to underfitting in most practical applications. Therefore,
practitioners tend to use other penalty functions. If enough training data is
available, one can simply set aside a holdout set and estimate the predictive
accuracy of a classifiers ci on this independent data. If training data is rare,
cross validation offers a computationally more expensive alternative. Both
methods are intriguing, because they measure the exact performance of the
cis rather than just the capacity of the Hi, but—as apparent from the test
set bound (3.2)—they can feature a comparably high variance. Traditional
statistical model selection criteria include the Akaike information criterion
(AIC) and the Bayesian information criterion, see chapter 7 of Hastie et al.
(2001) for a survey.

Computational learning theory has come up with a range of different
quantities that can be used to bound supc∈H(εc − ε̂c), that is, assess the
capacity of a hypothesis class. Among the more recent ones are the VC en-
tropy (Vapnik, 1995; Opper, 1999), covering numbers (Haussler, 1992), max-
imum discrepancy (Bartlett et al., 2002) and Rademacher averages (Bartlett
and Mendelson, 2003; Koltchinskii, 2001). Unlike the VC dimension, these
quantities depend on the training set, because non-data-dependent capac-
ity estimates have to assume worst case distributions over (X,Y) and are
therefore unnecessarily pessimistic. Calculating those quantities can be a
non-trivial task, but at least minimum discrepancy and Rademacher aver-
ages can be computed by modified empirical risk minimization procedures.
Bartlett et al. (2002) and Kearns et al. (1995) provide experimental and the-
oretical investigations of certain complexity estimates used in structural risk
minimization and model selection in general. We will apply structural risk
minimization for DNF rule sets in Section 4.3 and use Rademacher averages,
among others, for capacity control in Section 5.3.

3.4.3 Regularization

A third approach to capacity control is regularization. Like structural risk
minimization, regularization makes use of a penalty function to control the
classifier complexity. However, the penalty function is included in the em-
pirical risk minimization procedure directly, so that a regularized learning
algorithm minimizes the sum of the empirical error and the penalty for clas-
sifiers from a single, large hypothesis class H:

creg := arg min
c∈H

(
ε̂c + λpen(c)

)
Here, the regularization parameter λ can be fine-tuned by the user to control
the extent of the regularization. Regularization can be seen as a smoothed

45

46 Chapter 3. Statistical Machine Learning

version of structural risk minimization, because it penalizes the classifiers
individually rather than through the stepwise nesting of hypothesis classes.
If the penalty function is normalized so that

∫
c∈H exp(−pen(c))dc = 1,

π(c) := exp(−pen(c)) can be regarded as a probability distribution over the
classifiers. Then, regularized risk minimization can be seen as reformulation
of maximum a-posteriori estimation in Bayesian inference:

arg min
c∈H

(
ε̂c + λpen(c)

)
= arg min

c∈H
ln
(
e

1
λ
ε̂cepen(c)

)
= arg max

c∈H

e−
1
λ
ε̂cπ(c)
Zλ

≈ arg max
c∈H

likelihood · prior
evidence

where Zλ is a normalization factor.

Regularization is especially popular with (generalized) linear classifiers
(for instance in the SVM, see Cristianini and Shawe-Taylor, 2000), because
a linear classifier in a d-dimensional instance space can be conveniently rep-
resented by a (d+ 1)-dimensional vector, so that any vector-valued function
can be used as a regularization penalty. To allow for an efficient computa-
tion of creg one is interested in penalty functions that give rise to convex
optimization problems, such as penalties based on norms pen(c) := ‖c‖p.
The two most well-known regularization penalties for linear classifiers are
the 1-norm (the lasso penalty) and the squared 2-norm (the ridge penalty).
Both norms penalize vectors whose components feature high variance. This
introduces a certain robustness, when some features are highly correlated
and a large positive component for one feature can be canceled out by a
large negative component for a correlated feature. Additionally, since the
1-norm is “peaked” at points where a component is set to zero, the lasso
penalty favors vectors that have many components set to zero. In a sense it
acts as a “feature selection” penalty that keeps only the most informative
features and ignores the others.

It is remarkable that neither the ridge nor the lasso penalty depend on n
or some form of capacity estimate. Thus, unlike the classical structural risk
minimization approaches they do not perform capacity control. Instead, the
user needs to adjust the parameter λ by hand, which controls the strength of
regularization and therewith the effective capacity of the method. Usually, λ
is determined by cross-validation or a holdout set, although a more efficient
method based on an upper bound on the leave-one-out risk (Joachims, 2000)
is available for SVMs. We will describe a regularization scheme based on
Lp-norms for weighted rule sets in Section 6.2.

46

3.5. Ensemble Theory 47

3.5 Ensemble Theory

The theoretical results so far were concerned with the problem of finding
a single good classifier from a large space of hypotheses. Apart from con-
siderations about bias and capacity control, this was framed mainly as a
search or optimization problem. In the following we we will deal with meth-
ods where a classifier is not selected depending on training set and bias,
but composed from smaller “sub-classifiers”. This is motivated by the idea
that a combination of classifiers might balance the various weak spots of
each single classifier, so that the combination of classifiers outperforms each
single classifier in terms of predictive accuracy. In Bayesian statistics, a sim-
ilar phenomenon is known: one can show that the best single classifier, the
maximum a posteriori classifier, performs worse on average than a prediction
based on the posterior probability distribution over all possible classifiers.

The classifiers that originate from such a combination of existing classi-
fiers are generally called ensembles, and the methods to generate them are
known as ensemble methods. The distinction to other approaches is some-
what blurry. Rule sets, for example, can be seen as ensembles of single rules
and ensembles based on a weighted voting strategy are essentially linear
classifiers. Ensembles can be analyzed from different perspectives. In the
following we present the theoretical foundations that were instrumental for
bagging and boosting, two particularly popular types of ensembles.

3.5.1 Bagging

Bagging is short for “Bootstrap aggregating” and was introduced by Breiman
(1996) as a technique for decreasing the estimation part of the prediction
error for general unstable learning systems. The application of bagging to
decision tree classifiers led (with some further refinements) to the devel-
opment of the Random Forest (Breiman, 2001) learning system. In both
cases, the ensemble method proceeds as follows: First, it draws a sequence
(X1, Y1), . . . , (Xk, Yk) of k different bootstrap samples from the original train-
ing set. A bootstrap sample of an instance set (X,Y) containing n instances
is simply the result of randomly picking n instances with replacement from
(X,Y). Then, it induces a base classifier ci for each bootstrap sample
(Xi, Yi). The resulting ensemble of classifiers (c1, c2, . . . , ck) is output as
the final classifier. To predict the class of a new test instance x, the ensem-
ble applies each of the base classifiers ci to x and then predicts the class
label which was output by the majority of base classifiers.

From a theoretical point of view, bagging essentially aims at reducing the
estimation part of the prediction error by averaging over a large number of
classifiers. This is especially effective for unstable predictors, that is, learning
systems where a small change in the training data can lead to large changes
in the predictions on a test set. This can be framed as follows: Assume

47

48 Chapter 3. Statistical Machine Learning

we have a random number generator which draws k i.i.d. random vectors
Θ1, . . . ,Θk according to the fixed distribution T . The learning system gen-
erates k different base classifiers cΘ1 , . . . , cΘk , where each cΘi depends on the
training set (X,Y) and the random vector Θi. In the case of bagging, the
Θis represent the random information used to build the bootstrap sample,
but the following results also apply to any other randomized learning algo-
rithm. Let εΘ(x, y) denote the error on test instance (x, y) of the classifier
cΘ. Then, the expected error of a base classifier averaged over all Θs on
an instance (x, y) is εb(x, y) := EΘ εΘ(x, y), and εe denotes the true error
of the voting procedure of the ensemble (c1, . . . , ck). The following theorem
(Breiman, 2001) gives an upper-bound for the expected error of such an
ensemble (asymptotically for k →∞).

Theorem 3.5.1 (Ensemble Bound). Denote the strength of a base classifier
by

s = E
(x,y)∼D

[
1− 2εb(x, y)

]
and the ensemble correlation by

ρ̄ = E
Θ∼T

E
Θ′∼T

ρ
[
cΘ(x), cΘ′(x)

]
where ρ[f1(x), f2(x)] is the correlation of f1(x) and f2(x) with regard to x ∼
D. Then, for k →∞, εe converges almost surely to εe∞ := E(x,y)∼D ε

b(x, y).
Additionally, if s ≥ 0,

εe∞ ≤
ρ̄(1− s2)

s2
(3.9)

In other words, with an increasing number of base classifiers, the ensem-
ble’s true error can be asymptotically upper-bounded by a term depending
on the strength of the base classifiers and the ensemble correlation. The
theorem has two implications. First of all, there is no overfitting in the
sense that the predictive performance deteriorates when adding many more
base classifiers. Instead, the ensemble’s predictive accuracy converges to a
limiting value. This is in contrast to methods such as separate-and-conquer
rule learning, where extending a classifier increases its complexity, which in
turn leads to a larger estimation error.

Second, there is a certain trade-off between the parameters; in order to
minimize the right side of (3.9) one would like to maximize the strength
s, so that (1 − s2)/s2 is small. Unfortunately, strong classifiers assign the
correct class to most instances. Hence, they agree on large parts of the
training set and are highly correlated to each other, so that ρ̄ is large.
However, this is exactly the opposite of what we would like to have, because
a large ρ̄ in turn increases the right hand side of (3.9). Apparently it is

48

3.5. Ensemble Theory 49

necessary to find a compromise between the classifier strength and ensemble
correlation. In practice, this ambivalence is not a problem, because the
strength measures the true accuracy, which depends on D and is unknown.
Hence, the best thing one can do is to build a number of classifiers with high
empirical accuracy and combine them in an ensemble. If the randomized
base learning algorithm is stable, it will output only a few highly correlated
base classifiers and bagging will neither help nor harm very much. If, on the
other hand, the learning algorithm is unstable and outputs base classifiers
that differ significantly from each other, ρ̄ will be small and the bound
suggests that bagging might improve the predictive accuracy. Since learning
algorithms with large hypothesis classes and broad unspecific biases are
naturally unstable, bagging can also be seen as a regularization method,
which is applied after the actual learning step.

While theoretical and empirical experiments confirm that bagging gen-
erally reduces the variance (or estimation error), its impact on the bias (or
approximation error) is less clear. Most research focuses on regression with
the squared loss, where one can show that bagging reduces the non-linear
parts of the variance in a bias-variance decomposition (Friedman and Hall,
2000) or—for non-smooth predictors like decision trees—it reduces the vari-
ance by smoothing the discontinuities at “hard decisions” (Bühlmann and
Yu, 2000). There is little research on the effect of bagging classifiers with
the zero-one loss. Rao and Tibshirani (1996) frame bagging as a Bayesian
averaging approach with a non-informative Dirichlet prior, while a recent
empirical study indicates that bagging equalizes the influence of individual
training instances and therefore makes more effective use of the available
information (Grandvalet, 2004). We will describe an approach to capacity
control for DNF rule sets similar to bagging in Section 4.4.

3.5.2 Boosting

Another popular ensemble method is boosting. Boosting has its roots in the
theory on probably approximately correct learning (PAC learning). The
earliest work on boosting was motivated by the question of whether the class
of weak learners, that is, learning algorithms whose classifiers have predictive
accuracy slightly larger than chance, differs from the class of strong learners,
which can approximate the Bayes classifier when given reasonable amounts
of time and data. To show that the two classes are essentially equivalent,
Schapire (1990) devised an algorithm that is able to efficiently combine weak
classifiers into a strong ensemble classifier. Further refinements led to the
popular AdaBoost algorithm (Freund and Schapire, 1997), which was shown
to work well in numerous empirical studies.

Boosting differs from bagging in two important regards: First of all, it
assigns weights to the training instances and asks the base learner to focus
on instances with large weights. Initially, the weights are set equally for

49

50 Chapter 3. Statistical Machine Learning

Algorithm 2 The AdaBoost algorithm. It is given a training set (X,Y)
and the maximal ensemble size t.

procedure AdaBoost(X, Y , t)
D0 ← uniform distribution over the instances in X
for i = 1, 2, . . . , t do

hi ← base classifier induced on (X,Y) with instance weights Di−1

εi ← Prj∼Di−1

[
hi(xj) 6= yj

]
αi ← 1

2 ln
(

1−εi
εi

)
Zi =

∑n
j=1Di−1(j)e−αiyjhi(xj)

for j = 1, 2, . . . , n do
Di(j) = 1

Zi
Di−1(j)e−αiyjhi(xj)

end for
end for
return c : x 7→ sign

(∑t
i=1 αihi(x)

)
end procedure

all instances, but during the construction of the ensemble, boosting assigns
large weights to instances that have been misclassified by a large number
of previous base classifiers. Thus, it actively aims at finding a diverse set
of base classifiers complementing each other. This can be seen as a deter-
ministic strategy to minimize the ensemble correlation ρ̄ in (3.9). Second,
AdaBoost also assigns weights to the individual classifiers in the ensemble,
usually depending on their (weighted) training accuracy. In the final voting
procedure, each classifier contributes according to its weight, so that accu-
rate classifiers are valued more than inaccurate ones. The pseudo code for
AdaBoost is given in Algorithm 2.

Since AdaBoost generates the base classifiers deterministically and since
it specifically focuses on the shortcomings of the existing ensemble, the con-
vergence guarantee of theorem 3.5.1 does not apply.1 It is therefore perfectly
possible to achieve overfitting by increasing the ensemble size t. Indeed, the
following theorem (Schapire, 2003) upper-bounds the training error of Ad-
aBoost depending on the accuracy of the base classifiers and the number of
boosting rounds t.

Theorem 3.5.2 (AdaBoost Training Accuracy Bound). Let Zi, εi and αi be
the values that AdaBoost computes in its main loop in Algorithm 2. Then,
the training error ε̂ = 1

n

∑n
i=1 l(c(xi), yi) of the boosted ensemble classifier

1Indeed, recent research indicates that AdaBoost can get trapped in periodic cycles,
so it sometimes fluctuates rather than converges (Rudin et al., 2004).

50

3.5. Ensemble Theory 51

c(x) = sign(
∑t

i=1 αihi(x)) is upper-bounded as follows:

ε̂ ≤ 1
m

n∑
j=1

e−yj
Pt
i=1 αihi(xj) =

t∏
i=1

Zi (3.10)

≤ e−2
Pt
i=1(0.5−εi)2 (3.11)

This results has two interesting implications. First, it is easy to see that
AdaBoost aims at minimizing the Zi by adding base classifiers that focus on
the misclassified instances, that is, those instances, which contribute most to
the Zi. Thus, inequality (3.10) means that boosting is essentially a greedy
method to minimize the exponential loss lexp(x, y) := exp(−yc(x)) rather
than the zero-one loss on the instances in the training set. In this regard
it is very similar to logistic regression, because minimizing the empirical
exponential loss is essentially equivalent to optimizing the log-likelihood of
an additive logistic model (Friedman et al., 2000).

Second, if all base classifiers are better than random by a fixed minimum
margin εmin, so that εj ≤ 0.5 − εmin for all j ≤ t, then the right hand side
of (3.11) declines exponentially fast with the number of boosting rounds t.
Thus, under this assumption, boosting ensembles converge to a consistent
classifier (ε̂ = 0) for large ensemble sizes, a clear sign of overfitting, if the
underlying distribution is noisy. Freund and Schapire (1997) showed that
the true error of a boosted ensemble can be upper-bounded by a term that
depends on the VC-dimension of the base classifier and t. If t is large, the
bound is loose, another theoretical indication that boosting overfits. How-
ever, early practical experiments indicated that AdaBoost is surprisingly
robust against overfitting, even for very large rounds of boosting. In some
cases, the test error continues to decrease, even though the training error
has already reached zero. This phenomenon has been subject of many dis-
cussions. While there are numerous investigations that shed light on the
overfitting behavior of boosting, there is currently no single conclusive the-
ory.

Instead, boosting has spawned a wealth of research, some of which led
to new boosting strategies and connections to other learning systems. To
paraphrase Bartlett et al. (2004), boosting can be seen as a strategy to opti-
mize the margin, that is, the distance between the (linear) decision bound-
ary and the training instances (Schapire et al., 1998), as a game-theoretic
strategy to play a zero-sum game between the boosting algorithm and the
weak learner (Freund and Schapire, 1996), as a general convex optimiza-
tion method (Rätsch et al., 2000), as a gradient descent method for convex
loss optimization (Mason et al., 1999), and as a special case of optimizing
Bregman-distances (Collins et al., 2000). Some of these frameworks also
apply to the ensemble based approach outlined in Section 4.4.

51

52 Chapter 3. Statistical Machine Learning

3.6 Bayesian Learning

In the preceding sections, we framed classification as a statistical estimation
problem. While doing so, we made certain assumptions and abstractions
about the underlying phenomenon (fixed, but unknown distribution), the
available information (an i.i.d. sample), and the object we would like to learn
(a classifier from a predefined hypothesis class that minimizes the test or true
error). While these modelling decisions were overall rather conservative, one
can certainly argue about their utility and appropriateness. In the following
we will sketch classification from a different, Bayesian point of view. We
will not treat the subject exhaustively, but rather give a short review of the
typical Bayesian framework and then touch upon the issues that are relevant
for the succeeding sections.

So far, we framed the data-generating phenomenon as a fixed, but un-
known distribution. This is a rather pessimistic assumption, because the
results in this framework must hold for all, even the most improbable and
difficult distributions. For instance, in the discussion following theorem
3.3.9, we mentioned a few awkward data-generating distributions that are
particularly hard to learn, but extremely unlikely to appear in practice. If
one could quantify which distributions are likely to appear in practical sit-
uations, one could modify the learning algorithm to prefer classifiers that
represent likely phenomena over unlikely ones. An easy way to model such
“likeliness” information is by assigning a prior probability to each hypothesis
in the hypothesis class before the actual learning takes place. Given such a
prior distribution R := Pr[c] on the classifiers c ∈ H and a training set, the
learning algorithm would then only need to find the hypothesis that is most
likely according to R while explaining the training set well. More formally,
the learning task can be framed as follows for the noise-free setting2. We
assume a set of n fixed unlabeled training instances (x1, . . . , xn). First, the
true underlying classifier (the underlying “concept”) ct is drawn according to
the prior R, and the instances are labeled according to ct so that yi = ct(xi).
Then, the labeled instances ((x1, y1), . . . , (xn, yn)) and the prior R are given
to the learning algorithm. It turns out that the knowledge of R allows for
the design of a conceptually very simple, yet optimal learning algorithm. Let
the random variable C ∼ R represent the randomly chosen concept and the
random variable Y denote the resulting sequence of class labels assigned to
the (x1, . . . , xn). Then, one can apply Bayes’ law to compute the posterior
probability Pr[C = ct|Y = (y1, . . . , yn)] that a particular concept cT was
chosen given the training set (y1, . . . , yn):

Pr[C|Y] =
Pr[Y |C] ·Pr[C]

Pr[Y]
(3.12)

2The noisy setting can be formalized in the same way by setting H to the space of
distributions over X × Y, or, equivalently, to the space of non-deterministic classifiers.

52

3.6. Bayesian Learning 53

This means the learning algorithm can determine the most probable classifier
given the training set by computing the maximum a posteriori classifier
cMAP := arg maxct∈HPr[C = ct|Y = (y1, . . . , yn)]. Even better, Pr[C|Y]
induces a posterior distribution S := Pr[C|Y = (y1, . . . , yn)] on the set
of classifiers. Thus, when observing a new unlabeled test instance x′, one
can compute the probabilities that the corresponding class label Y ′ takes a
specific value y′ by summing up over all classifiers:

Pr[Y ′ = y′|Y] =
∑

c∈H,c(x′)=y′
S(c) (3.13)

Thus, a Bayesian learning system simply calculates the posterior S from
prior and training set and then outputs the class label y′ which maximizes
Pr[Y ′ = y′|Y]. It is easy to verify that such a learning system is opti-
mal, because it achieves on average the best possible accuracy when applied
repeatedly on learning problems drawn according to the prior R.

The described Bayesian learning system is known as the Bayesian av-
eraging algorithm or the Bayes optimal classifier. Unfortunately, there are
two important problems with the application of such a Bayesian system in
practice. First of all, its optimality depends crucially on the fact that the
learning problems are drawn according to the prior R. Of course it is impos-
sible to know which learning problems one will encounter in the future, so
there is no way to compute or estimate a correct “universal prior” for gen-
erally applicable learning systems. Also, since one will rarely encounter one
and the same learning problem twice, the usual interpretation of probabili-
ties as relative frequencies makes little sense. To alleviate this problem, the
prior and posterior probabilities in Bayesian analyses are usually interpreted
to quantify the “degree of belief” one has in the validity of a classifier, that
is, the uncertainty of the available background information, rather than rel-
ative frequencies. Thus, the Bayesian averaging algorithm is optimal in the
sense that it makes the best possible use of the information in the prior, but
not in the sense that it achieves the best possible prediction accuracy. Find-
ing a practically good prior can be a hard problem. The second practical
problem of Bayesian methods is the computational complexity of represent-
ing and processing the prior and posterior distributions. It is clearly not
efficient to store the probability values for each classifier in H individu-
ally. Thus, Bayesian learning systems model prior and posterior often with
fixed classes of parameterized distributions (for instance, Gaussians) or ap-
ply sophisticated inference and sampling techniques (for example, Markov
Chain Monte Carlo). Constructing a meaningful prior that incorporates the
available background knowledge efficiently while keeping the computational
complexity at a reasonable level can be challenging.

Regardless of these practical issues, Bayesian learning has the distinctive
advantage of modeling the bias of the learning system explicitly through the
prior. This allows for a particularly elegant way to investigate, compare

53

54 Chapter 3. Statistical Machine Learning

and analyze different biases (that is, priors) for different learning systems.
Since every (Non-Bayesian) learning system can be represented by a function
A : (X,Y)→ H, one can always find a prior R and a likelihood distribution
Pr[Y |C] which yield an equivalent Bayesian learning system. Thus, one
can analyze non-Bayesian systems in a Bayesian framework and this often
leads to interesting insights. For instance, we outlined in Section 3.4.3 how
regularized risk minimization (and structural risk minimization as a special
case) can be translated into a Bayesian form quite naturally.

As an easy example of a Bayesian analysis of a non-Bayesian system, con-
sider weighted rule sets or—more generally—linear classifiers, as described
in Section 2.2.3. A weighted rule set predicts the class sign(

∑
iwiri(x) + b),

where ri : X → {−1,+1} denotes the ith rule, wi is the corresponding
weight and b is the weight of the default rule. Thus, a weighted rule set
predicts the positive class exactly when

∑
iwiri(x) + b ≥ 0, or, equivalently,

when

e
P
i wiri(x)+b = eb

∏
i

ewiri(x) ≥ 1

Scaling the weight vector with an arbitrary factor does not change the clas-
sification of a linear classifier. It turns out that one can always find a scaling
factor so that each wi and b can be written as the logarithm of a quotient of
two probabilities: exp(wiri(x)) = Pr[ri(x)|y = +1]/Pr[ri(x)|y = −1] and
exp(b) = Pr[y = +1]/Pr[y = −1] (see Jäger, 2003, for a proof). With this,
the classifier outputs the positive class whenever:

Pr[y = 1]
∏
i

Pr[ri(x)|y = 1] ≥ Pr[y = −1]
∏
i

Pr[ri(x)|y = −1]

This is the well known Naive Bayes decision rule. Naive Bayes is the max-
imum a posteriori classifier in the case when the rules are conditionally
independent given the class so that Pr[r1(x), . . . , rm(x)|y] =

∏
i Pr[ri(x)|y].

Thus, using a linear classifier to combine the rules is essentially equivalent
to the Naive Bayes assumption that the rules are conditionally independent
given the class. Furthermore, if the rules are indeed conditionally indepen-
dent and the weights are proportional to the log odds computed from the
relative frequencies in the training set, then the resulting weighted rule set
constitutes—from a Bayesian perspective—the optimal classifier with regard
to the information extracted by the rules.

Another way to analyze weighted rule sets from a Bayesian perspective
is to frame ensembles of weighted classifiers as an approximation to the
Bayesian averaging algorithm. Recall from (3.13) that the Bayesian averag-
ing algorithm predicts the positive class for test instance x′, if∑

c∈H,c(x′)=+1

Pr[C = c|Y] ≥
∑

c∈H,c(x′)=−1

Pr[C = c|Y]

54

3.6. Bayesian Learning 55

which is equivalent to ∑
c∈H

c(x′) Pr[C = c|Y] ≥ 0 (3.14)

Since the hypothesis space H is usually very large, it is not efficient to com-
pute all the summands in (3.14). Fortunately, most classifiers c ∈ H are
clearly not consistent with the training set, so that Pr(C = c|Y) is negligi-
bly small. It is therefore often enough to take the sum only over the “likely”
classifiers, whose Pr[C = c|Y] is comparably large. This is a straightforward
recipe for constructing an ensemble: First, use a (possibly randomized) base
learner to identify the set {c1, . . . , cm} of classifiers which agree well with the
training set. Then estimate a weight wi ∝ Pr[C = c|Y] for each classifier de-
pending on its performance on the training set and some prior information.
Finally predict according to sign(

∑
iwici(x)). We will follow this recipe in

Section 4.4.2 to perform capacity control with DNF rule sets. The perfor-
mance of such a system is optimal, if H is large enough and the prior and
likelihood estimates are justified. In practice, it can be quite hard to find
good estimates, see Domingos (2000a) for an example application. On the
other hand, given a successful ensemble learning system, one can deduce
priors and likelihood estimates that yield an equivalent Bayesian learning
system. This allows for a better comparison of general ensemble methods.
For instance, Rao and Tibshirani (1996) frame bagging as a Bayesian averag-
ing procedure with a non-informative Dirichlet prior. The fact that Bayesian
analysis associates a probability with the margin µ := |

∑
iwici(x)| can be

used for abstaining classifiers (Friedel, 2005; Friedel et al., 2006; Pietraszek,
2005). The main idea is to construct a classifier, which predicts a class label
y′ for test instance x′ only if Pr[Y ′ = y′|Y] (or, equivalently, the ensemble
margin µ) is larger than a threshold θ, and abstains from prediction other-
wise. In this way, the classifier makes a prediction only on instances, which
are likely to be classified correctly, thus improving the predictive accuracy.
We investigate abstaining classifiers in a non-Bayesian framework in Section
4.4.3.

Bayesian statements about the predictive accuracy of a classifier always
depend on the validity of the prior and should therefore be taken with a
grain of salt. However, it is possible to investigate the Bayesian averaging
procedure in a non-Bayesian, that is, frequentist, setting. When doing so,
one can upper bound the true error of the Bayesian averaging classifier, even
if the training set was not drawn according to the prior. To state this more
formally, let us go back to the frequentist setting described in Section 3.2
and assume that the training set (X,Y) is drawn i.i.d. from a fixed, but
unknown distribution D. Now, we consider a fixed hypothesis space H and
ask the user to state a fixed prior probability distribution R on H before she
has seen the training set. Then, we give R and (X,Y) to a learning system.
The learning system outputs some distribution S over H. It can do so by

55

56 Chapter 3. Statistical Machine Learning

applying Bayes’ law, but any other derivation of a “posterior” S works as
well. With this, we can make use of S in two different ways to predict the
class label of a test instance x′. The Gibbs classifier is a non-deterministic
predictor. It draws a hypothesis c from H according to S and then outputs
the class label c(x′). Thus, its true error is εG := E(x′,y′)∼D Ec∼S [l(c(x′), y′)]
and its expected empirical error is ε̂G := 1

n

∑n
i=1 Ec∼S [l(c(xi), yi)]. The vot-

ing classifier is deterministic and follows the original Bayesian averaging
strategy: cV (S, x′) := arg maxy′∈{−1,+1}Prc∼S [c(x′) = y′]. Hence, it out-
puts the positive class, whenever S assigns a larger probability mass to the
hypotheses that vote for the positive class than to those that output the
negative class (and vice versa). The true error of the voting classifier is thus
εV := E(x′,y′)∼D l(cV (x′), y′).

The following PAC-Bayesian theorem can be used to bound the true
error of Gibbs and voting classifiers. We denote the Kullback-Leibler di-
vergence between two distributions R and S over a countable space H by
D(R‖S) :=

∑
c∈HR(c) log(R(c)/S(c)).

Theorem 3.6.1 (PAC Bayesian (McAllester, 1999; Herbrich, 2001)). Let
R be an arbitrary fixed distribution over H, and S be a distribution over
H depending on a training set (X,Y) of size n drawn i.i.d. from a fixed
distribution D. Then, for any δ > 0:

Pr
(X,Y)∼Dn

[
εG ≤ ε̂G +

√
D(S‖R) + ln 1

δ + lnn+ 2
2n− 1

]
≥ 1− δ

Pr
(X,Y)∼Dn

[
εV ≤ 2ε̂G + 2

√
D(S‖R) + ln 1

δ + lnn+ 2
2n− 1

]
≥ 1− δ

That means that the bound for the error of the voting classifier is twice
the bound for the Gibbs classifier. Comparing this bound with the test set
bound (3.3), we see that there is essentially only an additional O(

√
lnn)

factor, if the Kullback-Leibler divergence D(R‖S) between the “prior” and
the “posterior” is sufficiently small. In a sense, the PAC-Bayesian bound is
similar to the Bayesian analysis of an ensemble classifier in that it makes
use of the quality of any “prior” background knowledge one may have about
the learning problem. It differs, though, in that it bounds the true error
for any arbitrary underlying distribution D. A slightly modified version of
the PAC-Bayesian bound can be shown to be tight for some distributions
(Langford, 2005). We will use PAC-Bayesian methods later, for example, in
Section 4.4.3 and 5.3.2.

56

Chapter 4

DNF Rule Sets

In this chapter we treat learning DNF formulae from a statistical perspective.
After recalling some of the trade-offs involved in learning DNF, we address the
empirical risk minimization problem, that is, the problem of finding rule sets
that agree with the training data. We present a probabilistic algorithm for
doing so in the noise-free setting, and a stochastic local search algorithm for
the noisy case. For capacity control, we follow two different approaches. For the
SL2 learner, we perform structural risk minimization with a “pure” bias towards
small, comprehensible rule sets. An empirical comparison with established rule-
learners shows, that SL2 induces smaller and simpler rule sets while maintaining
the same level of predictive accuracy, albeit at the cost of high time complexity.
The second approach combines SLS with capacity control based on ensembles.
We give a theoretical analysis of the system’s prediction performance, including
the case where the classifier can abstain from uncertain predictions.

4.1 Trade-Offs in Rule Learning

Before we will delve into technical details in the following sections, let us
recall the basic rule learning setting and the goals one wishes to achieve. As
a basic premise, we assume that the rule learner is given a set of labeled
examples and has to induce a set of rules that correctly describes the un-
derlying data-generating phenomenon. As outlined in Section 2.5, numerous
rule learning algorithms and fielded systems are available for addressing this
task. Many of them employ a separate-and-conquer approach to generate
rules while applying some pruning heuristics to avoid overfitting and handle
noise. To evaluate and compare different rule learning algorithms, many
criteria, most notably predictive accuracy, simplicity and time complexity,
have been employed. The most prominent one, predictive accuracy, aims at
generating rule sets with a low misclassification error on unseen test data.
Simplicity aims at finding rule sets that are as simple as possible. This
can be measured through the number of rules and literals in the rule set.

57

58 Chapter 4. DNF Rule Sets

Simplicity has served in the machine learning literature as the most promi-
nent measure of human comprehensibility (compare, for example, Michalski,
1983) as it is generally agreed that the smaller the rule set, the easier it is
to understand. Finally, one would like to have low time complexity, so that
algorithms scale well on large data sets.

The above mentioned criteria often contradict each other. Indeed, the
empty rule set is the smallest one that can be generated and requires the least
amount of time to generate. Unfortunately, it typically has an extremely
low predictive accuracy. On the other hand, finding small, but consistent
rule sets is an NP-hard problem (Pitt and Valiant, 1988). As outlined in
Section 2.5.1, the popular separate-and-conquer approach can be seen as an
approximation scheme for DNF minimization. Thus, it forms a compromise
between the goals of simplicity and low time complexity. In the following, we
deliberately ignore time complexity considerations and focus explicitly on
simplicity and predictive accuracy. This is for three reasons. First of all, it
allows one to get valuable insight into the “true” trade-off between predictive
accuracy and simplicity in rule learning, that is, without the influence of
heuristics that are usually applied to improve time complexity. Second, as
computers get faster, time complexity is less of an issue. Third, if desirable,
one could incorporate techniques to speed up processing times later on. By
comparing such a modified system to the original algorithm, one could then
quantify the loss of simplicity or predictive accuracy that is caused by the
incorporation of performance tuning techniques.

So, how can one induce small, but predictive rule sets? As described in
Section 3.3.3, there is no easy way to guarantee a certain level of predictive
accuracy in one particular setting, because the individual setting might not
match with a learner’s bias. Instead, one can only apply the statistical
methodology presented in the preceding chapter to ensure good predictive
performance under broad conditions. In our case it is sensible to apply
the structural risk minimization principle as explained in Section 3.4.2: we
start with a sequence of nested hypothesis classes of increasing size. Then,
for each hypothesis class, we identify the hypothesis that minimizes the
empirical error on the training set and among those hypotheses we choose
the one which forms the best trade-off between under- and overfitting. With
this approach we have to tackle two challenges: the first one is to find the
hypothesis with the smallest empirical error in a hypothesis class of restricted
size. We propose two algorithms to solve such empirical risk minimization
problems in Section 4.2. The second problem is to assess the right hypothesis
class size to avoid under- or overfitting. We describe a system for doing
so in Section 4.3. Finally, we can put the considerations into practical
use and implement the SL2 (Stochastic Local Search Learner) system that
performs structural risk minimization with a “pure” bias towards small rule
sets. While this system is too slow to be used in most practical settings, it
is a perfect benchmark tool to experimentally compare to state-of-the-art

58

4.2. Empirical Risk Minimization for DNF Rule Sets 59

rule learners. In this way, one can assess to which degree the existing rule
learners succeed in finding predictive and small rule sets. We present such
an empirical study in Section 4.3.2.

A different approach to capacity control for DNF rule sets is through
ensemble methods, as described in Section 3.5. Ensembles are particularly
well suited for rule learning, because typical rule learners are unstable classi-
fiers. In Section 4.4.2 we present a rule learning system that uses ensembles
for capacity control in a similar way as Random Forests (Breiman, 2001) do
for decision trees.

4.2 Empirical Risk Minimization for DNF Rule
Sets

This section deals with the algorithmic aspects of finding a DNF rule set
that agrees well with a given training set. Before we delve into the details,
let us recall the basic setting and assumptions. First of all, as explained
in Section 2.2.1, we want to induce rule sets that are logic formulae in
disjunctive normal form. In other words, each rule set is a logical disjunction
of terms t1 ∨ t2 ∨ . . . ∨ tk, where each term ti is a conjunction of literals:
ti = (li1 ∧ li2 ∧ . . .∧ liki). F denotes the space of all formulae. For the scope
of this chapter the terms formula and rule set and the terms rule and term
are used with the same meaning. For now, we are not concerned with the
formation of the literals and the conditions they represent. Instead we simply
assume that all information about the training and test instances is encoded
through a fixed set of m distinct Boolean variables {v1, . . . , vm}. With this, a
literal l in a rule set is either an unnegated or a negated variable, that is, it is
of the form vi or ¬vi. Thus, we can represent a training instance as a vector
of truth values x ∈ {true, false}m, or, in a more compact representation, as a
bit vector x ∈ {0, 1}m, where 0 represents false and 1 indicates true.1 Given
an instance x, we write x(i) to denote the ith component of x. We say a term
t covers an instance x (alternatively: x satisfies t), if all unnegated variables
in t are set to 1 by x and all negated variables in t are set to 0. Likewise,
formula f covers an instance, if at least one of its terms covers x. A formula
f or a term t is said to contradict an instance x (alternatively: x violates
f), if it does not cover it. We will write f(x) to denote the application of a
formula f on an instance x, more precisely:

f(x) :=

{
1 iff covers x
0 iff contradicts x

Given a training set of labeled instances {(x1, y1), . . . , (xn, yn)} ⊂ {0, 1}m+1,
one can count the fraction of instances whose class label disagrees with a

1The use of 0 and 1 to represent false and true is chosen for notational compactness
only. In later sections, it will be more convenient to represent false by −1 rather than 0.

59

60 Chapter 4. DNF Rule Sets

rule set’s f prediction f(x). This is the well-known empirical error for the
zero-one loss ε̂f := 1

n

∑n
i=1 |f(xi)− yi|, as explained in Section 3.2.

With this, the problem of empirical risk minimization can be stated as
follows: Given a restricted set of formulae H ⊂ F (the hypothesis space)
and a set (X,Y) of labeled training instances, find a formula f ∈ H that
minimizes ε̂. This is in general a combinatorial optimization problem. The
hardness of this problem depends essentially on the hypothesis spaceH. It is
trivial to solve if H is the set of all formulae F , because one can just build a
rule set where each rule covers exactly one positive example. Typically, rule
learning aims at formulae with a small number of rules and not too many
literals per rule. As explained above, this is motivated by considerations on
how humans tend to describe and communicate concepts (Michalski, 1983).
Limiting only the number of literals per term (that is, learning k-DNF) has
been investigated in computational learning theory (Valiant, 1984), but it is
of little practical relevance. This is because a k-DNF formulae can contain
up to (2m)k rules, way too many to comprehend by humans for realistic
settings of k. In order to gain easily interpretable rule sets, it is necessary
to limit the number of terms. The class of rule sets containing at most k
rules is known as the class of k-term DNF formulae in learning theory.

We will deal with two versions of the problem of learning k-term DNF
rule sets. The first version is concerned only with the question of whether
there is a k-term DNF rule set f that is consistent with a given training set
(X,Y), that is, where f(xi) = yi for all 1 ≤ i ≤ n. This can be seen as an
application of empirical risk minimization in the noise-free setting, where
it makes only sense to induce rule sets that agree exactly with the training
set. This problem is usually called the k-term DNF consistency or learning
problem (Kearns and Vazirani, 1994; Rückert, 2002). It can be trivially
solved for k = 1, but it is NP-hard for k ≥ 2 (Pitt and Valiant, 1988).
The second and practically more relevant version is the actual empirical risk
minimization problem in the noisy case: given a training set (X,Y) and
a constant k, find the k-term DNF rule set f that agrees with the largest
possible number of training instances, that is, find arg minf∈H ε̂f . This
problem is known as the maximum agreement problem for k-term DNF. It
can be shown to be NP-hard for k ≥ 1 (Kearns and Li, 1993) and even for
single monotone terms, that is, terms containing only non-negated literals
(Angluin and Laird, 1988). Recent results indicate that even the problem
of finding approximate solutions, which are within some constant factor of
the optimal solution’s accuracy, is NP-hard (Ben-David et al., 2003). In
the following two sections we describe algorithmic approaches to solving the
k-term DNF learning and maximum agreement problems.

60

4.2. Empirical Risk Minimization for DNF Rule Sets 61

4.2.1 A Randomized Algorithm for k-term DNF Consistency

The k-term consistency problem can be stated as follows: Given an integer
k > 1 and a training set {(x1, y1), . . . , (xn, yn)} of n labeled instances, where
each instance (xi, yi) is composed of an m-digit bit vector xi ∈ {0, 1}m and
a binary class label yi ∈ {0, 1}, find a DNF formula f with at most k terms
so that for all 1 ≤ i ≤ n : f(xi) = yi. A naive algorithm for solving such
a problem could simply enumerate all possible DNF formula with k terms
over m literals. Consider a fixed term t in f : for each variable vi, the term
can either contain the literal vi, the negated literal ¬vi or neither of the
both. Thus, there are 3m possible terms. If f contains k terms, the naive
algorithm would have to generate 3mk candidate formulae and check them
on the n instances. Consequently, the algorithm’s worst case complexity
is O(nm3mk) = O(exp[1.099mk + lnn + lnm]). This is exponential in the
number of variables, but only linear in the number of instances.

This analysis ignores the fact that the hardness of a k-term consistency
problem depends crucially on the distribution of positive and negative in-
stances. If the training set contains only one positive instance xp, a trivial
solution is given by the term lg({xp}), the least generalization of a set of
instances, defined as follows:

lg({x1, . . . , xk}) :=
m∧
j=1

σj({x1, . . . , xk}). (4.1)

Here, the σj({x1, . . . , xk}) is either an unnegated, a negated, or the empty
literal, depending on which of of the three choices is consistent with all
instances {x1, . . . , xk}:

σi({x1, . . . , xk}) :=

vi if xj(i) = 1 for all 1 ≤ j ≤ k,
¬vi if xj(i) = 0 for all 1 ≤ j ≤ k,
1 otherwise.

(4.2)

It is easy to see that the term lg(A) covers all instances in A, but as few
other instances as possible. In the case of a single instance xp, lg({xp})
covers only xp and no other instances. It is therefore a trivial solution to
consistency problems with a single positive instance. On the other hand, if
there is only a single negative instance, then the problem can be solved by
finding k literals that violate the negative instance but whose disjunction
covers all positive instances. Since the naive algorithm described above
ignores the fraction of positive and negative instances in the training set, it
is not optimal in many cases. For many practical data sets, the number of
variables is of the same order of magnitude as the number of instances. Even
worse, Rückert et al. (2002) showed that for the hardest randomly generated
problems in the phase transition region (see Section 4.2.2 and Kirkpatrick

61

62 Chapter 4. DNF Rule Sets

and Selman (1994) for further details), m is an exponential function of the
number of positive instances. The exponential dependency on m in the naive
algorithm’s time complexity is therefore not optimal.

Fortunately, there are more sophisticated algorithms that depend only
linearly on the number of variables. For example, the algorithm described
by Rückert et al. (2002) has worst case complexity O(nnmknp), where np is
the number of positive instances in the training set, and nn is the number
of negative instances. The main idea is to generate all partitionings of
the set of positive instances into k pairwise disjoint partitions X1, . . . , Xk.
Given a particular partitioning χ = (X1, . . . , Xk), the corresponding formula
fχ := lg(X1) ∨ . . . ∨ lg(Xk) is a k-term DNF formula. One can show that
whenever a consistency problem has a solution, then there exists at least
one partitioning χ so that fχ is also a solution. Thus, enumerating all
partitionings is guaranteed to find a solution, if there exists one. Since
the number of possible partitionings of np instances into k partitions is the
Stirling number of the second kind S(np, k) := 1

k!

∑k−1
i=0 (−1)i

(
k
i

)
(k − i)np ,

the complexity of enumerating all partitionings and checking the coverage
of negative instances for each partitioning is O(nnmknp) = O(exp[np ln k +
lnm+ lnnn]).

The two previously described algorithms are simple “enumeration and
test” schemes. They do not make any use of the structure in the training
set and are therefore unnecessarily inefficient. In the following, we modify
the partitioning-based algorithm towards a probabilistic algorithm, which
applies pruning techniques to speed up the search. This allows for a worst-
case analysis that also depends on structural properties of the training data,
rather than simple summary statistics. The pseudo code for the algorithm
is given in Algorithm 3. The idea is rather straightforward: FindFormula
is called a predefined number rmax of times in the main loop of Random-
Search. The loop in FindFormula tries to find a partitioning (F1, . . . , Fk)
of the positive instances, which corresponds to a consistent formula. To do
so, it iteratively adds new positive instances to an initially empty partition-
ing. As with the partitioning enumeration algorithm above, each partition-
ing corresponds to a formula, whose terms are the least generalizations of
the partitions.

There are two important points to the algorithm’s design: First of all, the
two random vectors φ and π are generated before the loop in FindFormula
is executed. The random permutation π determines the order, in which the
positive instances are inserted into the partitioning. The vector φ contains
one uniformly distributed random number between 0 and 1 for each of the np
positive instances. The ith component of φ determines into which partition
the ith positive instance is inserted. Secondly, the loop inserts instances
only into those partitions, where the insertion does not cause the coverage
of a negative example. Thus, while the first few positive examples can be

62

4.2. Empirical Risk Minimization for DNF Rule Sets 63

Algorithm 3 A randomized algorithm for the k-term DNF consistency
problem with training set (X,Y).

1: procedure RandomSearch((X,Y), k, rmax)
2: P ← the positive instances from X
3: N ← the negative instances from X
4: for i = 1 to rmax do
5: π ← a random permutation of {1, . . . , |P |}
6: φ← a random vector drawn uniformly from [0, 1]np
7: f ← FindFormula(P,N, k, π, φ)
8: if f 6= false then
9: return f

10: end if
11: end for
12: return “no solution found”
13: end procedure
14:

15: procedure FindFormula(P,N, k, π, φ)
16: (F1, . . . , Fk)← the empty partitioning (∅, . . . , ∅)
17: for j = 1 to |P | do
18: p← the πjth instance in P
19: B ← {b ∈ N|1 ≤ b ≤ k ∧ lg(Fb ∪ {p}) does not cover any x ∈ N}
20: if B = ∅ then
21: return false
22: end if
23: b← dφj · |B|eth element from B
24: (F1, . . . , Fk)← (F1, . . . , Fb ∪ {p}, . . . , Fk)
25: end for
26: return lg(F1) ∧ . . . ∧ lg(Fk)
27: end procedure

inserted into k different partitions, later instances can only be inserted into
k − 1, k − 2 or even less partitions, because the insertion into some other
partitions Fi would cause the corresponding term lg(Fi) to cover one or
more negative instances. Thus, the algorithm does not test all partitions,
but only those that are still able to induce consistent formulae, given the
distribution of positive instances processed so far. This is the main tool to
bound the worst case running time in the analysis below. Before we delve
into the details, we need to introduce some formal concepts.

First of all, we will use P to denote the set of positive instances, and N to
denote the set of negative instances. We assume that P ∩N = ∅, otherwise
there is no solution. Furthermore, we assume without loss of generality,
that for each variable vi there are two positive instance p0, p1 ∈ P and two
negative instance n0, n1 ∈ N with p0(i) = n0(i) = 0 and p1(i) = n1(i) = 1.

63

64 Chapter 4. DNF Rule Sets

If this is not the case, that is, if either all positive or all negative instances
assign the same value to some variable vi, one can create a new k-term
decision problem, which has vi removed and contains less instances than the
original problem. The solution to this simpler problem can than be trivially
transformed into a solution to the original problem. Now, let x, x′ ∈ {0, 1}m
be two instances, that is, two m-dimensional bit-vectors. The following
definitions make use of the Kronecker delta δij , which is one, if i = j and
zero otherwise. First or all, we will need the well-known Hamming distance.

dH(x, x′) :=
m∑
i=1

(1− δx(i)x′(i))

Then, if x1, x2, x3 ∈ P ∪N are instances, we define the 3-way similarity as

d3(x1, x2, x3) :=
m∑
i=1

δx1(i)x2(i)δx2(i)x3(i)

Finally, consider a subset B ⊆ P of positive instances. If for every proper
subset B′ ⊂ B, the corresponding term lg(B′) covers no negative instances,
but lg(B) covers at least one negative instance, we say that B is a block.
Blocks are important for the analysis of the randomized algorithm, because
whenever a partition contains all of a block’s instances but one, adding the
last instance makes the corresponding term cover some negative instance.
We are mainly interested in the size |B| of the blocks that are induced
by a training set (P,N). Let B be the set of all blocks of (P,N). Then,
bs := maxB∈B |B| denotes the maximal block size achievable in B. The
following lemma gives an upper bound for bs:

Lemma 4.2.1. Let (P,N) be a training set and let B be the set of all blocks
of (P,N). Then

bs ≤ max
p,p′∈P
n∈N

(
m+ 2− dH(p, p′)− d3(p, p′, n)

)
Proof. Let B ∈ B be an arbitrary block, let t = lg(B) be the corresponding
term and let n denote the negative instance covered by t. Since P∩N = ∅, B
contains at least two positive instances. Let p and p′ denote the two positive
instances in B with the largest Hamming distance dH(p, p′). We partition
the set of variables V = {v1, . . . , vm} into three disjoint sets. The first set
is V1 := {vi|p(i) 6= p′(i)}, the second is V2 := {vi|p(i) = p′(i) ∧ p(i) = n(i)},
and the third is V3 := {vi|p(i) = p′(i) ∧ p(i) 6= n(i)}. The term lg(p, p′)
does not contain any variables in V1 and it agrees with n on all variables
in V2. Therefore, in order for t to cover n, B must contain one instance
pi ∈ B \ {p, p′} for each vi ∈ V3, where pi assigns a different value to vi than
p and p′. Thus, |B| ≤ 2 + |V3|. Since |V1|+ |V2|+ |V3| = m, |V1| = dH(p, p′),
and |V2| = d3(p, p′, n), |B| ≤ m + 2 − dH(p, p′) − d3(p, p′, n). Taking the
maximum over all p, p′ ∈ P and n ∈ N yields the result.

64

4.2. Empirical Risk Minimization for DNF Rule Sets 65

With this, we have an easy way to compute an upper bound for bs
from the training set. We can now compute the algorithm’s worst case
complexity depending on np, bs and k. If there is no solution for a k-
term DNF consistency problem, RandomSearch will correctly output “no
solution found”. If there are one or more solution formulae, let τ denote
the probability that a single call to FindFormula will find one of them.
The probability that a solution is not found after r independent calls to
FindFormula is (1−τ)r ≤ e−τr. We want to ensure that a solution is found
with probability 1 − δ for some small error probability δ > 0. This can be
achieved by performing r = ln 1

δ/τ independent calls to FindFormula. We
will give a lower bound τ(np, bs, k) ≤ τ in the theorem below. Thus, calling
RandomSearch with rmax = ln 1

δ/τ(np, bs, k) will return the correct result
with one-sided error probability at most δ, and it will do so inO(rmaxnpnnm)
steps.

Theorem 4.2.2. Given a soluble k-term consistency problem with training
set (P,N) and let τ be the probability that one call to FindFormula finds
a solution. Then:

τ ≥ exp
[
− nD

(
ln(k)−

k−1∑
j=1

ln(k
k−j)

(k − 1)bs + 1

)]
.

Proof. The procedure FindFormula adds np positive instances to an ini-
tially empty partitioning in the order pπ1 , . . . , pπnp induced by the permuta-
tion π. Assume a fixed permutation π. The partition, into which an instance
is inserted, is chosen uniformly and independently for each instance. Thus,
the probability that FindFormula finds one specific solution partitioning
F = (F1, . . . , Fk) is Ψπ,F :=

∏np
i=1 ψπ,F (i), where ψπ,F (i) is the probability

that it chooses the correct partition for instance pπi . The individual ψπ,F (i)
depend on the number of partitions the πith instance can be added to. If
an instance can be added to any of the k partitions without causing the
coverage of a negative instance, the corresponding ψπ,F (i) is 1

k . If there are
only k−1 partitions to choose from, ψπ,F (i) = 1

k−1 and so on. Usually, there
are many different solution partitionings F (1), . . . ,F (t). Thus, given a fixed
π, the probability τπ that FindFormula finds one of the t partitionings is
τπ :=

∑t
i=1 Ψπ,F(i) . We would like to lower-bound τπ, but we do not know

t. To avoid the rather messy analysis of τπ, we analyze a related quantity
θπ instead and show later that τπ ≥ θπ for all permutations π.

For the definition of θπ, we consider a modified version FindFormula2

of FindFormula. There are two changes. First of all, instead of starting
with an empty partitioning in line 16, we start with a partitioning, that
contains exactly one unique artificial instance per partition. The new line
is:

(F1, . . . , Fk)← ({p̃1}, . . . , {p̃k}) (4.3)

65

66 Chapter 4. DNF Rule Sets

Here, the p̃1, . . . , p̃k are artificial instances, which do not appear in P and
are used later on to block certain branches of execution. They do not have
any further meaning and can be removed from the final partitioning to yield
a solution. The second modification is in line 19. Let Beπ be some set of
blocks. The new line is:

B ← {b ∈ N|1 ≤ b ≤ k ∧ ∀B ∈ Beπ : (Fb ∪ {p}) 6= B} (4.4)

In the original line, the set B contains the indices of those partitions, where
the addition of the positive instance p does not cause the coverage of a
negative instance. In other words, B contains an index i only if there is no
subset F ′i ⊆ Fi of the ith partition so that F ′i ∪{p} is a block. Thus, if Beπ is
set to B, the set of all blocks in the training set, the new line is equivalent
to the original line.

In our case, though, we will use an extended version of Beπ, which con-
tains all blocks in B, and a few additional blocks, which ensure that Find-
Formula2 can only find one specific solution partitioning. Let Ψmin

π :=
min1≤i≤t Ψπ,F(i) denote the smallest summand in the definition of τπ, and
let Fmin denote the solution partitioning that achieves this minimum. We
will now describe the additional blocks in Beπ, which ensure that FindFor-
mula2 can only find Fmin and no other solution partitioning. To do so,
consider the point where FindFormula2 has added the first i positive in-
stances and is now evaluating φi+1 to determine which partition the πi+1th
instance should be assigned to. We assume that the first i instances have
been assigned to the “correct” partitions agreeing with Fmin, so that the
procedure would find Fmin, if the remaining assignments are correct, too.
Now, consider the case where FindFormula2 selects the “wrong” parti-
tion Fj , so that FindFormula will not find Fmin. There are two cases.
Either the selection of Fj for p can still lead to a different solution partition-
ing F 6= Fmin, or the remaining positive instances can not be distributed
among the partitions in a way that yields a solution partitioning. We would
like to prevent the first case, but not the second. Thus, we add the new
artificial block {p̃j , pπi+1} to Beπ. If we do this for every “wrong” choice and
every iteration i, FindFormula2 can only find Fmin and no other solution
partitioning. With this, θπ is simply the probability that FindFormula2

finds the only solution Fmin, when called with the parameter π and when
using the extended block set Beπ described above.

We will now show that the probability τπ that FindFormula finds a
solution is larger than the probability θπ, that the modified FindFormula2

finds a solution. The only relevant difference between the two procedures is
the fact that FindFormula2 can not add an instance to a partition Fj that
would lead to a solution different from Fmin. We compare FindFormula
and FindFormula2 in the case where the first i instances are distributed
“correctly” according to partitioning Fmin, and the i + 1th instance pπi+1

66

4.2. Empirical Risk Minimization for DNF Rule Sets 67

needs to be assigned to a partition. In the case of FindFormula we can
have a ≤ k different choices. Let b denote the number of choices, which could
possibly lead to another solution different from Fmin, and let ψ̄1, . . . , ψ̄b de-
note the corresponding probabilities that FindFormula will find such a
solution, after choosing a “wrong” partition. The probability that Find-
Formula finds a solution at this point is therefore 1

a(ψ̄min +
∑b

j=1 ψ̄j),
where ψ̄min denotes the probability that FindFormula finds Fmin after
choosing the “correct” partitioning. Since Fmin is the solution with mini-
mal probability, ψ̄j ≥ ψ̄min for all j. This means that the probability that
FindFormula finds a solution at this point is larger than b+1

a ψ̄min. On the
other hand, FindFormula2 can only choose between a− b different parti-
tions, and only one of them leads to a solution. The probability is therefore

1
a−b ψ̄min. Since b+1

a ≥ 1
a−b for a ≥ b + 1, the probability that FindFor-

mula finds a solution is larger than the probability that FindFormula2

does. Applying this inequality recursively in all iterations, where FindFor-
mula differs from FindFormula2 leads to the claim that τπ ≥ θπ. This is
true for every possible permutation π, and therefore also for the expectations
Eπ τπ ≥ Eπ θπ.

As a final step, we give a probabilistic analysis of FindFormula2 to
lower bound Eπ θπ, the expected probability that one call to FindFor-
mula2 will find a solution. Because of the discussion above, this is also a
lower bound of τ = Eπ τπ. Recall that for a specific π, θπ =

∏np
i=1 ψπ,F (i).

The individual ψπ,F (i) are either 1
k or 1

k−1 or . . . or 1, depending on how
many partitions are blocked at iteration i. Let nbl(j, π) denote the number
of iterations, where j among the k possible partitions are blocked, or equiv-
alently, the number of factors of the form 1

k−j in the product above. With
this we can merge the factors as follows:

E
π

[
θπ
]

= E
π

[k−1∏
j=0

(1
k − j

)nbl(j,π)
]

= E
π

[
exp

[
−
k−1∑
j=0

nbl(j, π) ln(k − j)
]]

≥ exp
[
−E

π

[k−1∑
j=0

nbl(j, π) ln(k − j)
]]

(4.5)

= exp
[
−
k−1∑
j=0

ln(k − j) E
π

[
nbl(j, π)

]]
, (4.6)

where (4.5) is a consequence of the convexity of the exponential function.
We will now compute the Eπ nbl(j, π) for arbitrary j. Observe, that for each
permutation π and each positive instance pi, there is exactly one partition
Fj , which gives rise to a solution. If one moves one particular positive

67

68 Chapter 4. DNF Rule Sets

instance p from Fj to a different partition Fl with l 6= j, the corresponding
formula will not be a solution. That means that there must be a block
Bl ∈ Beπ, which contains p and some other instances in Fl. The maximum
size of Bl is bs, because this is the maximum size for the blocks in B and
the additional blocks added for FindFormula2 are of size 2 ≤ bs. Let
x1, . . . , xbs , p denote the examples in the block Bl.

Let us assume for a moment that the blocks have maximum size bs and
that they are pairwise disjoint, i.e. Bl ∩ Bk = ∅ for k 6= l. Then, the
probability that all partitions are blocked for pπi is equal to the probability
that pπi is last among

⋃
l 6=j Bl. Since all permutations are equally likely,

this probability is 1
(k−1)bs+1 . Moreover, this is also a lower bound for the

probabilities that k − 2, k − 3, . . . or no options are blocked, because for
every permutation, which has pπi last, there is a permutation that sorts
pπi before other instances from the blocks. Define Pnblj := Pr[“instance pπi
has j partitions blocked”]. The distribution of Pnblj that minimizes (4.6)
subject to the constraint that Pnblj ≥ 1

(k−1)bs+1 for all j ≥ 0 is given by

Pnbl0 = 1 − k−1
(k−1)bs+1 and Pnblj = 1

(k−1)bs+1 for all 1 ≤ j ≤ k − 1. Thus, we
have the following lower bound:

τ ≥ exp
[
− ln(k)

(
np −

np(k − 1)
(k − 1)bs + 1

)
−
k−1∑
j=1

ln(k − j)np
(k − 1)bs + 1

]

= exp
[
− np

(
ln(k)−

k−1∑
j=1

ln(k
k−j)

(k − 1)bs + 1

)]
The case where some active blocks are not pairwise disjoint or where some
blocks do not have maximal size bs corresponds to selecting a smaller bs
in the denominator of the fraction in the inequality above. Since doing so
would improve the bound, so the result is valid for those cases, too.

It is interesting to note that the number of negative instances is not used
directly in the theorem, but only through the upper bound on bs provided
by lemma 4.2.1. This is a much more natural measure for the hardness of a
k-term DNF consistency problem, because it measures the strength of the
constraints imposed by the negative instances on the solution candidates.
As an immediate consequence of the theorem and the considerations above,
we can state that RandomSearch ∈ RTIME(exp[lnnp+ lnnn+ lnm+ τ]).

4.2.2 Stochastic Local Search for k-term DNF Maximum
Agreement

The k-term DNF maximum agreement problem is considerably harder to
solve than the k-term DNF consistency problem. This is due to two rea-

68

4.2. Empirical Risk Minimization for DNF Rule Sets 69

sons. First of all, it is a combinatorial optimization problem rather than
a decision problem. The goal is to determine the DNF formula with the
best possible error rate rather than deciding whether there exists a consis-
tent formula. The problem is that there is no easy way to check whether
a current candidate solution is indeed optimal. In order to prove that a
DNF formula is optimal, an algorithm needs to ensure that there is no DNF
formula with a smaller error. This is much more costly, because it needs
to check many candidates that are “almost solutions”. Of course, one can
use branch-and-bound methods to convert any optimization problem into
a sequence of decision problems with varying thresholds. In our case, one
would iteratively solve the decision versions of the problem, which answer
the question “Is there a k-term DNF formula with empirical error less than
a predefined threshold t?”. If the t are selected in a binary search fashion,
one needs to solve at most log2 n such decision problems to identify the DNF
formula with optimal error.

Unfortunately, the decision version of this optimization problem is still
harder than the k-term DNF consistency problem. Whereas the consistency
problem demands that all training instances are classified correctly, the deci-
sion version of the optimization problem requires only a fraction of instances
to be consistent, but it does not specify which ones need to be consistent. If
it is known which instances need to be consistent, one can simply apply the
randomized algorithm in the preceding section to those training instances to
yield an optimal solution. Unfortunately, it is hard to obtain this informa-
tion, and in the worst case, an algorithm would need to check

(
n
t

)
possible

combinations, thus increasing the runtime by an additional O((net)t(n
n−t)

n−t)
factor. While one could certainly apply techniques similar to the ones in the
preceding section to somewhat alleviate this penalty, there is little hope to
solve even medium-sized problem instances of the k-term DNF maximum
agreement problem within reasonable time frames.

In order to still gain good approximate solutions to k-term DNF empir-
ical risk minimization problems, we need to resort to other, more heuristic
approaches. In recent years, stochastic local search (SLS) algorithms have
been shown to be remarkably successful on similar NP-hard combinatorial
problems. In particular, they are among the best algorithms available to
solve hard satisfiability problems, see for example Hirsch and Kojevnikov
(2005). SLS algorithms differ from other approaches in that they perform
a local, randomized-walk search. In its basic incarnation, an SLS algorithm
starts with a randomly generated solution candidate. It then iterates in
a two-step loop. In the first step it examines a fixed set of “neighboring”
candidates according to some predefined neighborhood relation. Each neigh-
bor is evaluated according to some global scoring function. In the second
step the SLS algorithm selects the neighbor with the highest score as next
candidate. Such a greedy hill climbing approach is obviously susceptible of
getting caught in local optima. Most SLS algorithms therefore select with

69

70 Chapter 4. DNF Rule Sets

Algorithm 4 A generic stochastic local search algorithm.
procedure SLSearch(p)

c ← a randomly generated candidate
while score(c) 6= max do

n ← the set of all neighbors of c
with probability p do

c ← a random neighbor in n
otherwise

s ← the scores of the neighbors in n
c ← the neighbor in n with the highest score

end with
end while
return c with the best score so far

end procedure

a fixed probability p (the so-called noise probability) a random neighbor in-
stead of the neighbor with the highest score. In this way they can escape
local optima through random steps. Algorithm 4 sketches the main concept.

Technically, SLS algorithms are Las Vegas algorithms, that is, nondeter-
ministic algorithms that output a correct solution, if they terminate. Be-
cause of the non-determinism, the runtime of a Las Vegas algorithm is a
random variable. Since in practice one is not willing to wait forever, SLS al-
gorithms are usually implemented to stop after a certain maximum runtime
(the so called cutoff time) and output “no solution found”. This yields a
Monte Carlo algorithm, that is, a non-deterministic algorithm which might
with a certain probability output a wrong result. Sometimes the average
runtime of an SLS algorithm on a specific set of problems can be improved
by selecting a comparably low cutoff time and using frequent restarts (Gomes
et al., 1998; Hoos, 1998).

When designing an SLS algorithm for k-term DNF maximum agreement,
one has to decide about a suitable candidate space first. Using the space
of k-partitions, just as with the randomized search algorithm described in
Section 4.2.1 seems to be an obvious choice. Unfortunately, calculating
the neighboring formulae for a given candidate in k-partition space is a
relatively time consuming task, because it requires the computation of two
lggs per neighbor. From our experiments (Rückert, 2002) it seems to be
more time-efficient to use k-term DNF formulae as candidates and to add or
remove literals to generate the neighboring candidates. The obvious choice
for the global scoring function is the empirical error scoreP (f) := ε̂f . We
are therefore aiming for minimal, not maximal score.

Another important design issue for SLS algorithms is the choice of the
neighborhood relation and the decision rule. The decision rule specifies
which of the neighbors is chosen as the next candidate. A straightforward

70

4.2. Empirical Risk Minimization for DNF Rule Sets 71

Algorithm 5 An SLS algorithm for k-term DNF learning.
procedure SLSearch(k, maxSteps, pg1, pg2, ps)

H ← a randomly generated k-term DNF formula
steps ← 0
while scoreL(H) 6= 0 and steps < maxSteps do

steps ← steps+ 1
ex ← a random example that is misclassified by H
if ex is a positive example then

t←

with probability pg1: a random term in H
otherwise: the term in H that differs
in the smallest number of literals from ex

l←

with probability pg2: a random literal in t
otherwise: the literal in t whose removal
decreases scoreL(H) most

H ← H with l removed from t
else if ex is a negative example then

t ← a (random) term in H that covers ex

l←

with probability ps: a random literal m
so that t ∧m does not cover ex
otherwise: a random literal whose
addition to t decreases scoreL(H) most

H ← H with l added to t
end if

end while
return H

end procedure

decision rule for k-term DNF learning SLS algorithms could evaluate all
formulae that differ from the current candidate by one literal and choose the
neighboring formula with the lowest score. As it turns out, this approach
is not very effective (Rückert, 2002). In the following we present a more
target-driven decision process to boost the search.

The main idea is to concentrate on those changes that will correct the
misclassification of at least one misclassified example. Assume p is an uncov-
ered positive example. Thus, the current candidate formula c is obviously
too specific and we have to remove at least one literal in order to satisfy p.
Of course it does not make sense to modify a random term in c, because one
might then affect a large number of currently correctly classified examples.
A more sensible strategy would generalize the term t in c that differs in
the smallest number of literals from p. One can then evaluate the formulae
that differ in one literal in t as neighbors and choose that neighbor with the
lowest score.

Similar considerations can be made for adding literals: assume n is a

71

72 Chapter 4. DNF Rule Sets

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120

20

40

60

80

100

120

|Neg|

n

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
4

20 40 60 80 100 120

20

40

60

80

100

120

|Neg|

n

Figure 4.1: PSol (above) and search costs (below) plotted as 3D graph (left)
and contour plot (right) for the problem settings with k = 3, |Pos| = 15,
1 ≤ |Neg| ≤ 128, and 1 ≤ n ≤ 128

covered negative example. Then the current formula is obviously too general.
Let t be the term that covers n. We have to add a literal to t in order to make
n uncovered. Again we can generate a set of neighbors by adding one literal
to t and then choose that neighbor whose score is lowest. This consideration
leads to a decision rule and a neighborhood relation for the final algorithm,
which use as much information as possible to guide the search: The decision
rule first selects a random misclassified example e. If e is an uncovered
positive example, the algorithm performs a generalization step as explained
above; if e is a covered negative example, it performs a specialization step.
Of course, this algorithm can get stuck in a local optimum quite quickly.
It makes sense to replace each decision step with a random choice from
time to time to escape those local optima. There are two decisions to be
made during a generalization step and one decision for the specialization
step. Thus, we have three different places to perform a random instead of
an informed decision with certain probabilities. Algorithm 5 sketches the
idea.

How well does the SLS algorithm perform on hard k-term DNF maximum
agreement problems? Unfortunately, it is not trivial to assess the hardness

72

4.3. Structural Risk Minimization for DNF Rule Sets 73

of such a combinatorial optimization problem. Contrary to intuition, the
number of training instances or attributes are not very useful to assess a
problem instance’s hardness. For example, even though the test sets used in
Kamath et al. (1992) have up to one thousand examples, they can be solved
by a randomized version of an exhaustive search algorithm in less than a
second (Rückert, 2002). On the other hand, some problem instances with
only sixty examples can take weeks to solve.

One way to assess problem hardness is the phase transition framework.
Consider, for instance, maximum agreement problem instances where m, the
number of positive examples np and k are fixed and the number of negative
examples nn is varied. One would expect to have—on average—low search
costs for very low or very high nn. With only a few negative examples, al-
most any formula covering the positive instances should be a solution, hence
the search should terminate soon. For very large nn, we can rarely generate
formulae covering even a small subset of the positive instances without also
covering one of the many negative examples. Consequently, we can prune
the search early and search costs should be low, too. Only in the region
between obviously soluble and obviously insoluble problem instances, the
average search costs should be high. Similar considerations can be made
about m, np, and k. This transition between obviously soluble and obvi-
ously insoluble problem settings resembles the phase transition in physical
systems. Recent research has shown that the hardest random problems
are located in this “phase transition area” (Rückert et al., 2002): Figure
4.1 shows PSol := Pr[“instance soluble”] and average search costs for ran-
domly generated problem instances with k = 3, np = 15, 1 ≤ nn ≤ 128,
and 1 ≤ n ≤ 128. As can be seen, the problem instances whose average
probability of being soluble is approximately 0.5 require the largest average
search costs. A recent study (Rückert and Kramer, 2003) compares the per-
formance of various SLS algorithms on hard problems taken from this phase
transition region. As it turns out, the system presented above outperforms
the other established systems such as WalkSAT (Selman et al., 1996) and
Novelty (McAllester et al., 1997). These results give some confidence in the
algorithm’s ability to solve or at least find good approximative solutions to
hard maximum agreement problems. In the next section we will extend it
with methods for capacity control and investigate it empirically.

4.3 Structural Risk Minimization for DNF Rule
Sets

So far we have dealt with “pure” empirical risk minimization for DNF rule
sets of a certain restricted size k. Let us now address the question of how
to choose a suitable k. This is essentially a capacity control problem. One
popular approach to solve this problem is structural risk minimization, in-

73

74 Chapter 4. DNF Rule Sets

troduced in Section 3.4.2. Recall from Inequality (3.6) that the expected
error of a classifier can be upper-bounded as follows:

Pr

[
εh ≤ ε̂h +

√
ln |H|+ ln 1

δ

2n

]
≥ 1− δ

As usual, εh is the true risk of hypothesis h, ε̂h is its training set error, n the
number of instances in the training set, H the hypothesis class and δ a small
mistake probability. Thus, in order to aim for high predictive accuracy or,
equivalently, low expected error, one would want to select a hypothesis with
a small training set error ε̂h from a small hypothesis class H, so that both
summands on the right side of the inequality are small. Unfortunately, if
the hypothesis class is too small, it is unlikely that it contains a hypothesis
with small training set error, so ε̂h is large and the bound is loose. On the
other hand, if H is very large, then it will be easy to find a hypothesis with
small training error, but ln |H| is large and the bound is loose again. In
order to avoid under- and overfitting, one should select the best hypothesis
from a hypothesis class whose size is just in between. In our case, the size of
the hypothesis class is essentially determined by k, the maximum size of the
rule sets in the class. In principle, one could compute the right hand side of
the inequality above to assess the structural risk for a hypothesis class with
a given maximum number of rules k. Unfortunately, the bound holds for all
possible data-generating distributions D and is thus a worst-case rather than
an average-case estimate. Choosing a good estimation procedure can be a
challenging task. However, as put by Bartlett et al. (2002), it is clear that
“good error estimation procedures provide good model selection methods”.
We therefore choose ten-fold cross validation as a popular and established
error estimation technique to perform capacity control.

4.3.1 The SL2 Rule Learner

With this, we can formulate an easy structural risk minimization scheme to
learning small, but predictive rule sets. The algorithm starts with k = 1,
that is, the class of all rule sets of size one. It uses the SLSearch algorithm as
explained in Section 4.2.2 in an internal tenfold cross validation to estimate
the predictive accuracy of the rule set with the best training accuracy in this
class. Then, it iteratively repeats the same procedure for k = 2, k = 3, etc.
as long as the accuracy estimate increases. As soon as the accuracy estimate
for one size k is lower than that for the preceding size k − 1, the algorithm
selects k − 1 as the optimal hypothesis class size. It then applies SLSearch
on the whole learning set to identify a rule set rk with low empirical error
within this class. We call this rule learning procedure SL2 (Stochastic Local
Search Learner).

So far, the system has concentrated on minimizing the number of rules,
but not the number of literals. The following postprocessing step aims at

74

4.3. Structural Risk Minimization for DNF Rule Sets 75

Algorithm 6 A modified SLS algorithm for finding a set of k rules with at
most lmax literals that misclassifies as few examples as possible.

procedure SLSearch(k, maxSteps, pg1, pg2, ps, lmax)
H ← a randomly generated set of k rules
for j ← 1 to maxSteps do

if H has more than lmax literals then
ex ← a random positive example that is misclassified by H

else
ex ← a random example that is misclassified by H

end if
if ex is a positive example then

t←

with prob. pg1: a random rule in H
otherwise: the rule in H that differs in the

smallest number of literals from ex

l←

with prob. pg2: a random literal in t
otherwise: the literal in t whose removal de-

creases scoreL(H) most
H ← H with l removed from t

else if ex is a negative example then
t ← a (random) rule in H that covers ex

l←

with prob. ps: a random literal m so that t∧m does

not cover ex
otherwise: a random literal whose addition to t

decreases scoreL(H) most
H ← H with l added to t

end if
end for
return the H with the lowest score found so far

end procedure

minimizing the number of literals in rk without compromising its training
set accuracy. To do so, we augment SLSearch with an additional parameter
lmax that states an upper limit on the number of literals in the rule set.
The stochastic local search then considers only formulae with less than the
specified number of literals. The modified SLSearch algorithm is given in
Algorithm 6. The postprocessing loop calls SLSearch repeatedly with de-
creasing values of the lmax parameter. It stops as soon as it fails to find a
rule set that has the same or better training set accuracy than the unre-
stricted rule set rk. The rule set with the smallest number of literals is then
output as the final result. In other words, SL2 outputs the rule set with the
smallest number of literals among the rule sets with the best training set
accuracy in the hypothesis class of sets of size k.

In a sense, SL2 is designed to feature a clean and well-motivated bias:

75

76 Chapter 4. DNF Rule Sets

it aims at rule sets with the smallest possible number of rules, which still
exhibit good predictive accuracy. If there are many rule sets with the same
(training) error, the post-processing step selects the one with the least num-
ber of literals. As such, SL2 is a “pure” approach to find the best compro-
mise between predictive accuracy and simplicity. However, there are two
disclaimers to be considered. First of all, as already mentioned, we can not
expect that SL2 features high predictive accuracy in all possible cases. For
some learning problems, a different bias (for instance, towards some large
rule sets of a certain form) might work better. The system is designed to
work well on a broad range of problems as it is designed from basic sta-
tistical induction principles. In particular it is guaranteed to minimize the
estimation error in the limit. The approximation part of the error, though,
depends on the bias and it is not clear whether a bias towards small rule sets
works well in all cases. The study in the next section addresses this question
empirically. The second disclaimer deals with the fact that one could also
use the number of literals as the main indicator of simplicity. It is clear
that one can modify SL2 to optimize the number of literals directly in the
cross-validation loop and then minimize the number of rules later on. How-
ever, the change of predictive accuracy caused by removing a literal from a
DNF formula is usually minor when compared to the natural random fluc-
tuation of the tenfold cross-validation estimate. We chose the current setup
because it is more coarse-grained and therefore more efficient and stable to
use in combination with cross-validation. Also, as Michalski (1983), we feel
that the number of rules is a more natural indicator of simplicity than the
number of literals when comparing different rule sets.

4.3.2 Experiments

The goal of the experiments in this section is to investigate how SL2 com-
pares to state-of-the-art concept-learners in terms of predictive accuracy and
simplicity. In particular, we aim to answer the following three questions.

1. How does the predictive accuracy of SL2 (as an algorithm that is de-
signed to optimize for small rule sets) compare to the accuracy of
state-of-the-art concept-learning algorithms? This gives us some feed-
back on whether or not the bias for small rule sets performs worse
than other established biases.

2. How does the size of the rule sets that were induced by SL2 compare to
the size of those learned by state-of-the-art rule learning algorithms?

3. How does the number of literals that were induced by SL2 compare
to the number of those learned by state-of-the-art rule learning algo-
rithms?

76

4.3. Structural Risk Minimization for DNF Rule Sets 77

For our investigation, we choose all two-class concept learning data sets used
by Frank and Witten (1998). All of the data sets are available from the UCI
repository and have been used in many other empirical investigations (for
example, Frank and Witten, 1998; Holte, 1993; Chisholm and Tadepalli,
2002; Cohen, 1995; Lavrač et al., 2004). Since the basic SL2 algorithm
handles only Boolean attributes without missing values, we transformed
the data sets for use in our experiments. The goal of this transformation
was to keep as much information of the original data sets as possible. For
nominal attributes, we introduced one Boolean attribute per attribute value.
For continuous attributes, we used simple frequency based discretization to
replace the attribute with ten new Boolean attributes2. Some data sets
also contained missing values. To keep the information “value is missing”
we added a new Boolean variable for attributes with missing values. This
Boolean attribute was set to 1, if the value was missing and 0 otherwise. We
used the default parameters pg1 = 0.2, pg2 = 0.1, pS = 0.1 and maxSteps =
100, 000. These parameters have been found to deliver good performance
on hard rule minimization problems by Rückert and Kramer (2003).

We employed the following rule learners in our investigation:

• The benchmark system SL2 as described above.

• CN2 (Clark and Niblett, 1989) as an example of a pure covering algo-
rithm using beam search and an entropy based heuristic.

• CN2-WRACC (Todorovski et al., 2000) is a modification of the CN2
algorithm that uses the weighted reduced accuracy heuristic instead
of the entropy based one.

• PART (Frank and Witten, 1998) uses the standard covering algorithm
to generate a decision list, but avoids over pruning by obtaining rules
from partial decision trees.

• RIPPER (Cohen, 1995) employs the covering algorithm twice: first,
it generates an initial rule set using the set covering algorithm with
incremental reduced error pruning. Then, in the optimization step, it
replaces each rule with a modified one if the modified rule is better ac-
cording to an MDL heuristic. Finally, it applies the covering algorithm
a second time to cover any remaining positive examples. The stopping
criterion of the covering algorithm is based on the total description
length of the rule set and the examples. RIPPER thus explicitly aims
at finding small rule sets. We tested RIPPER both with and without
the global optimization step.

2Using a larger number of discretization intervals would have increased the number of
attributes to a large extent, possibly exceeding the limits imposed by some learners.

77

78 Chapter 4. DNF Rule Sets

System Win Loss Draw Prob
CN2Orig 5 5 8 0.472
RIPPERwOpt 5 3 10 0.435
C50 5 5 8 0.327
RIPPERwoOpt 4 5 9 0.879
CN2WRACC 5 6 7 0.586
PART 5 8 5 0.381
FOIL 1 13 4 <0.001
DecStump 2 7 9 0.094

Table 4.1: Results: the number of wins/losses/draws of the tested algorithms
compared to SL2 together with the p-value of a signed Wilcoxon rank test
on the outcome.

• C5.0 (J, 2003) is an improved version of the classic C4.5 decision tree
learning algorithm. As such it employs a divide-and-conquer approach
rather than a separate-and-conquer one. After inducing the trees,
there is a post-processing step that produces the rules.

• FOIL3 (Quinlan, 1990) employs the covering algorithm using a two-
stage pruning approach and an MDL-based stopping criterion to in-
duce rules expressed in first order logic. To be able to run FOIL on
our data sets, we used a straightforward conversion of our Boolean
descriptions into a relational format.

Unless noted otherwise we used the default values provided by the imple-
mentations for the algorithms’ various parameters. As another benchmark
classifier we also include the WEKA implementation of a Decision Stump
(that is, a decision tree of height one) learner in the survey. As argued by
Holte (1993), decision stumps are representationally very simple, but often
feature only slightly worse predictive accuracy than more sophisticated ap-
proaches. They are therefore well suited as a baseline classifier with a fixed,
very high simplicity, but unknown predictive accuracy.

To obtain an answer to our first question concerning the relative accu-
racy of the SL2 algorithm (see Table 4.2), we performed ten runs of each
system on each data set, where each run consists of a ten-fold cross valida-
tion. Each value in Table 4.2 denotes the mean and the standard deviation
over the ten runs. Results are marked with a bullet (“•”), if they are sig-
nificantly worse according to a paired two-sided t-test than the SL2 result

3We performed some preliminary experiments with PFOIL (Mooney, 1995), a proposi-
tional version of FOIL. Unfortunately, PFOIL always induces rule sets with zero training
error, so it strongly overfits on the data sets in this study. FOIL uses a MDL heuristic to
generate small rule sets, so it was more suitable for this study.

78

4.3. Structural Risk Minimization for DNF Rule Sets 79

on the 1% level, and are marked with a circle (“◦”), if they are significantly
better. Table 4.1 denotes the number of data sets on which SL2 had sig-
nificantly better, significantly worse or comparable accuracy. Following the
methodology recommended by Demšar (2006), the rightmost column gives
the probability that a system has the same average predictive accuracy as
SL2 according to a signed Wilcoxon ranks test. The results indicate that
there is no statistically significant difference beween SL2’s and the other sys-
tem’s predictive accuracy, with the exception of FOIL and decision stumps.
On some data sets (such as heart-statlog), SL2 is clearly outperformed by
the other algorithms, but there are also data sets (such as labor), where SL2

performs better than the competition. All in all, SL2 achieves good predic-
tive accuracy in most cases. The fact that decision stumps do suprisingly
well (it features the best accuracy of all algorithms on two data sets) indi-
cates that for the presented data sets overfitting seems to be an important
issue.

The situation is much more pronounced for what concerns the second
question. The sizes of the rule sets and their standard deviations are shown
in Table 4.3. We applied again a paired two-sided t-test and annotated
the results in the same way as before. The table shows that SL2 delivers
significantly smaller rule sets than its competitors in almost all cases, and
is inferior to those of the other algorithms in only three comparisons. CN2
with WRACC is the most competitive system. It induces smaller rule sets
for the kr-vs-kp and the mushroom data sets, both times at the expense of
predictive accuracy when compared to SL2. Interestingly, there are a lot
of extreme cases, such as CN2 learning 124 rules on the german data set,
when SL2 generates one or two rules. Often, the difference in the size of the
rule sets is grossly disproportionate to the difference of the corresponding
predictive accuracies.

Even though SL2 is not particularly aggressive in minimizing the num-
ber of literals, the results on the third question in Table 4.4 show a similar
picture. Again, CN2 with WRACC is the most competitive system, deriv-
ing less literals than SL2 in four cases. In general, though, the competing
systems tend to generate many more literals than necessary. All in all, the
results confirm that a “pure bias” towards small rule sets can work well in
practice and that the investigated established rule learners tend to generate
unnecessarily large rule sets. We therefore believe that our investigation
indicates that an important direction for further research in rule learning is
concerned with searching at the level of rule sets, rather than at the level of
individual rules, and also with techniques for obtaining small rule sets. An-
other, important area of research for rule learning concerns capacity control
with ensembles rather than regularized risk minimization. We present such
an approach in the next section.

79

80 Chapter 4. DNF Rule Sets

D
ata

set
C

N
2

R
IP

P
E

R
C

5.0
R

IP
P

E
R

C
N

2
PA

R
T

F
O

IL
D

ec
SL

2

(O
rig)

w
O

pt
w

o
O

pt
W

R
A

C
C

Stum
p

australian
84.3±

1.1
85.0±

0.4•
85.1±

0.7
84.4±

1.0•
85.1±

0.3
83.4±

0.8•
71.9±

1.0•
85.5±

0.0
85.4±

0.2
breast-cancer

71.0±
1.6

71.2±
1.6

70.2±
1.1

71.0±
1.9

69.5±
1.0

66.3±
1.3•

67.2±
1.8•

70.3±
1.4

70.1±
1.8

breast-w
94.1±

0.6
94.4±

0.4
94.4±

0.3
94.0±

0.6
94.5±

0.4
94.9±

0.7◦
93.8±

0.5
88.3±

0.0•
94.1±

0.6
germ

an
72.0±

0.9◦
70.6±

1.0
71.9±

1.1◦
70.9±

0.6
68.5±

0.5•
68.8±

1.3
60.9±

1.1•
70.0±

0.0
70.0±

0.9
glass(G

2)
77.2±

2.0◦
76.7±

1.6◦
75.5±

3.2
73.3±

3.0
70.4±

2.6
75.8±

2.7◦
67.6±

2.6•
55.8±

0.8•
71.6±

2.7
heart-c

77.0±
1.6◦

79.5±
2.0◦

77.8±
1.5◦

79.9±
1.3◦

75.1±
1.4◦

77.4±
1.3◦

70.4±
2.2

72.8±
1.7

72.9±
1.5

heart-h
79.2±

1.1•
79.8±

1.0
80.1±

0.9
79.4±

1.3
79.3±

1.3•
77.6±

2.0•
72.6±

2.7•
80.3±

1.2
80.5±

0.8
heart-statlog

77.9±
1.5◦

80.6±
1.3◦

78.9±
1.2◦

80.4±
1.7◦

76.4±
0.8◦

76.7±
2.2◦

71.2±
1.3

72.5±
0.9

72.1±
1.4

hepatitis
81.2±

1.5
80.1±

1.9
79.4±

1.4•
78.7±

1.8•
78.1±

1.1•
79.7±

1.8
76.3±

2.4•
82.6±

1.2◦
81.3±

1.4
horse-colic

81.6±
0.8

85.1±
0.8◦

82.7±
1.2

83.3±
1.0◦

83.2±
0.7◦

79.0±
2.5•

75.4±
1.5•

81.5±
0.2

81.5±
0.4

ionosphere
89.7±

0.9•
89.2±

1.0•
90.4±

1.0
88.9±

0.8•
91.9±

0.5
87.7±

1.5•
83.7±

2.0•
82.6±

0.0•
91.1±

1.1
kr-vs-kp

98.3±
0.1

99.3±
0.1◦

99.3±
0.1◦

98.9±
0.1◦

94.1±
0.0•

99.1±
0.1◦

99.2±
0.1◦

66.1±
0.0•

98.1±
0.5

labor
88.1±

3.0•
83.7±

4.0•
87.9±

0.9•
80.2±

4.2•
91.2±

1.1•
88.2±

0.8•
86.0±

1.6•
79.5±

2.1•
94.2±

3.2
m

ushroom
100.0±

0.0•
100.0±

0.0
99.9±

0.0•
100.0±

0.0
98.5±

0.0•
100.0±

0.0
100.0±

0.0
88.7±

0.0•
100.0±

0.0
pim

a-indians
69.7±

0.8•
72.7±

0.9
70.4±

1.4•
71.8±

0.6
71.0±

0.9
69.3±

1.1•
60.6±

1.2•
72.1±

0.0
72.1±

1.0
sick

93.9±
0.0

93.8±
0.2

93.7±
0.1•

93.8±
0.2

93.9±
0.0

92.8±
0.2•

92.8±
0.2•

93.9±
0.0

93.8±
0.0

sonar
68.8±

3.1◦
61.9±

1.8
64.4±

1.6
58.3±

2.1•
66.6±

1.7◦
65.6±

2.9
52.8±

2.9•
51.1±

1.3•
63.6±

3.1
vote

94.9±
0.5

94.8±
0.5

95.6±
0.5◦

95.0±
0.3

95.2±
0.4◦

94.3±
1.0

92.8±
0.5•

95.5±
0.3◦

94.3±
0.8

average
83.3±

1.2
83.2±

1.1
83.2±

1.0
82.4±

1.2
82.4±

0.8
82.0±

1.3
77.5±

1.4
77.2±

0.6
82.6±

1.2

T
able

4.2:
R

esults:
percentage

of
correct

classifications
and

standard
deviation.

80

4.3. Structural Risk Minimization for DNF Rule Sets 81

D
at

a
se

t
C

N
2

R
IP

P
E

R
C

5.
0

R
IP

P
E

R
C

N
2

PA
R

T
F

O
IL

SL
2

(O
ri

g)
w

O
pt

w
o

O
pt

W
R

A
C

C
au

st
ra

lia
n

44
.9
±

0.
7•

2.
9±

0.
4•

11
.8
±

0.
7•

4.
9±

0.
7•

2.
0±

0.
0•

22
.8
±

1.
0•

22
.8
±

0.
8•

1.
0±

0.
0

br
ea

st
-c

an
ce

r
40

.0
±

1.
0•

1.
4±

0.
2◦

6.
8±

0.
6•

3.
6±

0.
8•

2.
8±

0.
1•

25
.9
±

1.
0•

10
.8
±

0.
6•

1.
8±

0.
2

br
ea

st
-w

19
.6
±

0.
3•

6.
1±

0.
8•

7.
2±

0.
2•

6.
3±

0.
7•

3.
0±

0.
0•

5.
3±

0.
6•

9.
6±

0.
3•

1.
3±

0.
1

ge
rm

an
12

4.
0±

1.
6•

3.
6±

0.
4•

21
.2
±

1.
2•

5.
1±

0.
7•

2.
3±

0.
1•

60
.5
±

1.
5•

36
.3
±

2.
1•

1.
5±

0.
2

gl
as

s(
G

2)
21

.5
±

0.
4•

5.
6±

0.
2•

7.
6±

1.
0•

6.
2±

1.
0•

4.
2±

0.
3•

7.
4±

0.
5•

6.
1±

0.
2•

1.
6±

0.
2

he
ar

t-
c

31
.3
±

0.
5•

3.
5±

0.
2•

11
.3
±

0.
8•

5.
1±

0.
6•

2.
9±

0.
2•

12
.4
±

0.
7•

12
.4
±

0.
6•

1.
3±

0.
2

he
ar

t-
h

27
.1
±

0.
8•

2.
2±

0.
2•

8.
9±

0.
9•

3.
5±

0.
5•

2.
7±

0.
2•

13
.3
±

0.
8•

11
.1
±

0.
5•

1.
1±

0.
1

he
ar

t-
st

at
lo

g
31

.8
±

0.
6•

3.
6±

0.
2•

9.
7±

0.
5•

5.
0±

0.
7•

3.
4±

0.
2•

10
.7
±

0.
4•

12
.6
±

0.
6•

1.
2±

0.
2

he
pa

ti
ti

s
16

.4
±

0.
4•

1.
9±

0.
2•

7.
0±

0.
9•

3.
0±

0.
4•

3.
0±

0.
2•

7.
6±

0.
8•

7.
8±

0.
3•

1.
1±

0.
1

ho
rs

e-
co

lic
30

.8
±

0.
6•

2.
8±

0.
3•

8.
5±

0.
8•

3.
7±

0.
7•

3.
0±

0.
1•

14
.7
±

0.
5•

12
.4
±

0.
6•

1.
1±

0.
1

io
no

sp
he

re
26

.9
±

0.
5•

6.
9±

0.
3•

7.
9±

0.
6•

6.
6±

0.
4•

3.
0±

0.
0•

4.
0±

0.
1•

6.
6±

0.
4•

1.
3±

0.
1

kr
-v

s-
kp

31
.5
±

0.
5•

16
.0
±

0.
6•

11
.7
±

1.
3•

17
.0
±

0.
8•

5.
0±

0.
0◦

21
.0
±

0.
7•

21
.5
±

0.
3•

8.
9±

0.
9

la
bo

r
5.

1±
0.

2•
2.

7±
0.

4•
4.

6±
0.

1•
2.

5±
0.

2•
2.

8±
0.

0•
1.

2±
0.

2
2.

9±
0.

1•
1.

1±
0.

1
m

us
hr

oo
m

7.
8±

0.
2•

5.
3±

0.
1•

8.
0±

0.
0•

6.
3±

0.
2•

2.
9±

0.
0◦

3.
0±

0.
0

4.
0±

0.
0•

3.
1±

0.
1

pi
m

a-
in

di
an

s
11

3.
6±

1.
5•

3.
8±

0.
4•

15
.4
±

1.
0•

6.
0±

0.
8•

2.
2±

0.
2•

43
.5
±

1.
0•

31
.6
±

1.
5•

1.
1±

0.
1

si
ck

11
5.

0±
1.

9•
3.

3±
0.

4•
.8
±

0.
6

3.
6±

1.
0•

2.
0±

0.
0•

73
.3
±

1.
5•

18
.1
±

0.
6•

1.
1±

0.
1

so
na

r
23

.7
±

0.
4•

5.
4±

0.
4•

8.
7±

0.
8•

3.
9±

1.
2•

4.
6±

0.
2•

5.
9±

0.
4•

9.
0±

0.
2•

1.
4±

0.
1

vo
te

13
.9
±

0.
4•

2.
5±

0.
4•

5.
1±

0.
4•

3.
4±

0.
4•

2.
0±

0.
0•

5.
7±

0.
4•

6.
9±

0.
2•

1.
5±

0.
1

av
er

ag
e

40
.3
±

0.
7

4.
4±

0.
3

9.
0±

0.
7

5.
3±

0.
7

3.
0±

0.
1

18
.8
±

0.
7

13
.5
±

0.
5

1.
8±

0.
2

T
ab

le
4.

3:
R

es
ul

ts
:

av
er

ag
e

nu
m

be
r

of
ru

le
s

le
ar

ne
d

by
th

e
al

go
ri

th
m

s
an

d
st

an
da

rd
de

vi
at

io
ns

.

81

82 Chapter 4. DNF Rule Sets

D
ata

set
C

N
2

R
IP

P
E

R
C

5.0
R

IP
P

E
R

C
N

2
PA

R
T

F
O

IL
SL

2

(O
rig)

w
O

pt
w

o
O

pt
W

R
A

C
C

australian
169.2±

2.1•
9.0±

1.7•
42.9±

3.6•
18.4±

2.6•
5.2±

0.1•
137.4±

7.9
•

322.7±
13.7•

2.1±
0.7

breast-cancer
136.2±

2.8•
4.0±

1.0◦
18.8±

1.7•
13.5±

3.1•
14.9±

0.9•
173.7±

5.8
•

79.7±
5.9
•

8.5±
2.2

breast-w
61.4±

1.0•
20.7±

2.8
14.1±

0.6◦
24.4±

1.8•
14.5±

0.3◦
26.0±

1.8
•

76.6±
1.8
•

18.0±
2.9

germ
an

439.1±
4.9•

17.0±
2.0•

125.7±
5.3•

27.6±
3.7•

13.2±
0.7•

454.9±
16.7•

539.6±
34.8•

8.6±
1.2

glass(G
2)

61.4±
1.0•

12.0±
0.4

21.3±
2.4•

14.0±
2.5

22.5±
0.9•

28.4±
1.9
•

80.4±
3.7
•

15.5±
3.7

heart-c
105.4±

1.0•
11.3±

0.9•
30.6±

2.5•
18.1±

2.2•
13.1±

1.7•
64.3±

4.7
•

117.1±
7.9
•

6.2±
2.2

heart-h
90.1±

1.6•
6.6±

0.7•
22.5±

3.2•
12.3±

1.9•
14.6±

1.7•
85.7±

5.7
•

102.5±
4.8
•

4.3±
0.7

heart-statlog
102.5±

2.2•
11.1±

0.8•
24.7±

1.8•
16.9±

2.6•
14.0±

1.1•
54.2±

3.6
•

106.7±
3.7
•

3.6±
2.6

hepatitis
46.0±

0.9•
5.5±

0.8
16.2±

3.0•
9.3±

1.3•
16.5±

0.8•
33.6±

2.2
•

38.4±
1.4
•

6.3±
1.4

horse-colic
100.6±

1.7•
9.0±

1.0•
19.7±

2.8•
12.9±

2.7•
11.6±

0.4•
79.9±

3.6
•

116.4±
4.1
•

2.0±
0.4

ionosphere
63.6±

1.0•
17.8±

1.0•
15.2±

2.4•
16.9±

1.1•
15.6±

0.3•
24.6±

0.9
•

74.5±
5.4
•

9.3±
2.5

kr-vs-kp
109.7±

1.9•
63.9±

2.6•
45.0±

3.9
74.4±

4.3•
12.1±

0.0◦
67.3±

2.1
•

85.8±
1.7
•

44.2±
4.5

labor
12.5±

0.3•
6.0±

0.7•
7.0±

0.2•
5.9±

0.7•
9.9±

0.1•
3.8±

0.2
◦

9.2±
0.3
•

4.5±
0.5

m
ushroom

19.2±
0.3•

16.1±
0.4

16.7±
0.1

18.2±
0.5•

10.3±
0.1◦

15.0±
0.0
◦

16.8±
0.2

16.1±
0.9

pim
a-indians

394.9±
3.6•

10.3±
1.8•

98.9±
6.8•

22.4±
3.4•

18.8±
1.2•

264.4±
8.8
•

648.4±
31.6•

6.1±
1.6

sick
402.8±

5.9•
19.4±

2.8•
1.3±

1.0
22.5±

6.1•
7.4±

0.2•
640.8±

17.5•
264.3±

10.6•
1.6±

0.5
sonar

59.2±
1.0•

11.6±
1.2◦

24.9±
2.2•

8.7±
2.9◦

28.5±
0.6•

28.4±
1.2
•

145.4±
3.2
•

19.1±
2.8

vote
42.6±

1.1•
7.9±

1.6•
10.5±

1.0•
11.3±

1.5•
2.6±

0.1◦
12.9±

1.6
•

33.3±
1.1
•

3.5±
0.7

average
134.2±

1.9
14.4±

1.3
30.9±

2.5
19.3±

2.5
13.6±

0.6
122.0±

4.8
158.8±

7.6
10.0±

1.8

T
able

4.4:
R

esults:
average

num
ber

of
literals

in
the

rules
induced

by
the

algorithm
s

and
standard

deviations.

82

4.4. Ensemble Based Capacity Control 83

4.4 Ensemble Based Capacity Control

So far, we have applied the structural risk minimization principle for capac-
ity control. This is a natural choice as it allows to incorporate a bias towards
simple rule sets in an elegant way. The experiments in the previous section
have shown that such a bias compares favorably with existing rule learn-
ing systems. However, most traditional separate-and-conquer rule learning
systems feature similar biases. It is very well possible that other biases
work better on average for the problems considered here. Indeed, many em-
pirical studies have shown that ensemble methods such as bagging succeed
remarkably well in improving predictive accuracy with unstable predictors
such as decision trees and rule learners. This can also be seen in the exper-
iments in Table 4.5 in Section 4.4.4, where bagged PART outperforms the
original PART significantly on 29 of the 35 data sets and bagged RIPPER
outperforms the original RIPPER in 27 cases.

This phenomenon can be explained in various ways. A traditional ex-
planation is the observation that bagging reduces the estimation part of the
prediction error by averaging over many classifiers. This explanation indi-
cates that bagging essentially performs capacity control, but does so in a
superior way when compared to the heuristics and concepts in traditional
rule learners. In fact, the results in the preceding section indicate that a
comparably small number of rules and literals is sufficient in order to achieve
competitive predictive accuracy. This means, that the capacity control fa-
cilities in those rule learners appear to not work very well. Since most of
the rule sets in Table 4.3 contain only one or two rules, even the structural
risk minimization approach of SL2 might be too coarse-grained, because it
regularizes essentially with regard to the number of rules.

Another explanation is given by Grandvalet (2004), who states that bag-
ging equalizes the influence of training instances on the classifier. In this
way, bagging reduces the influence of outliers and thus improves robustness
and predictive performance on noisy data. This is consistent with an obser-
vation that was made by Holte et al. (1989) quite early in the research on
rule learning: Most errors in separate-and-conquer rule learning are made
by small disjuncts, that is, rules, which are induced late and are therefore
based on only few training examples. As these instances can not be ex-
plained by the existing rules, they are often outliers. Consequently, small
disjuncts often predict badly, and reducing the influence of the outliers, they
are based on, countervails this effect.

Finally, aiming for a short DNF representation is sometimes diametrical
to robustness considerations. Consider the case, where the four Boolean
attributes a2, a5, a6 and a9 have a positive influence on the concept to
be learned, so that an instance is certain to feature a positive class label,
whenever all four of them are true. Furthermore, even when only three
of four attributes are true, the influence is still strong enough to make an

83

84 Chapter 4. DNF Rule Sets

instance very likely to have the positive class. Representing such a robust
concept as a DNF formula requires at least four terms: (a2∧a5∧a6)∨ (a2∧
a5 ∧ a9)∨ (a2 ∧ a6 ∧ a9)∨ (a5 ∧ a6 ∧ a9). On the other hand, the concept can
be elegantly expressed by a voting procedure such as a2 + a5 + a6 + a9 ≥ 3,
where the influence of individual components is added up. So, in some
cases, the bias towards short DNF representations might indeed be harmful,
whereas the voting procedures applied in typical ensemble methods could
compensate for this representational shortcoming. In those cases, ensembles
improve robustness by changing the bias rather than the variance part of
the error.

In the following we present an ensemble based approach to perform-
ing capacity control on DNF rule sets. The general design is motivated by
Breiman’s Random Forest (Breiman, 2001). Instead of aiming at a single
simple and comprehensible predictive rule set (which, as explained above,
might not even exist), the system generates an ensemble of diverse rule sets.
The loss of comprehensibility due to the ensemble can be compensated by
extracting comprehensible consensus rules and statistics over frequently used
features and feature combinations along the lines of the work by Pfahringer
et al. (2001) on ADTrees. As an interesting side-effect, the linear combina-
tions of ensembles are generally more amenable to analytical investigations
than the combinatorial properties of DNF representations. For instance,
the prediction error of ensembles can be easily bounded using the PAC-
Bayesian theorem (Theorem 3.6.1 in Section 3.6). Doing so for SL2 is a
non-trivial problem. The natural tool to do so would be VC theory, but the
VC-dimension of k-term DNF is not known exactly.

4.4.1 The Learning Setting

To give a precise description of the learning algorithm and the underlying
theory, let us recall a few definitions and state basic assumptions. As usual,
training and test data are given as sets of labeled instances, taken from an
instance space X . The instance space is structured as the cartesian prod-
uct of m domains Ai, so that each instance x is represented by an m-tuple
(x1, x2, . . . , xm), where each xi denotes a value taken from Ai. We require
that all domains are finite, so continuous attributes need to be discretized in
order to fit into our framework. For example, if A1 = {a, b, c}, A2 = {0, 1},
and A3 = {red, blue}, then X = A1×A2×A3 and (a, 1, red) and (c, 0, blue)
are two out of the 12 instances in X . Since the system is designed to also
work in multi-class settings, Y denotes a finite, but otherwise arbitrary set
of classes. As usual, we assume a fixed, but unknown distribution D on
the pairs (x, y) ∈ X × Y. A training set (X,Y) is generated by drawing n
labeled instances (x, y) independently according to D. The learning algo-
rithm is given the sample (X,Y). Upon termination it outputs a classifier
c that maps instances to classes. The main goal, of course, is to come

84

4.4. Ensemble Based Capacity Control 85

Algorithm 7 The rule learning algorithm. S is the training set, kmax the
maximal number of rules per rule set, o the number of rule sets per ensemble
and rule set size k, and ν is the noise probability.

procedure LearnEnsemble(S, kmax, o, ν)
for cl = 1 to p do

Qcl ← empty ensemble
for k = 1 to kmax do

for s = 1 to o do
rs← SLSearch(k)
w ← exp(−ν l̂(rs, S))
Qcl ← Qcl ∪ {(rs, w)}

end for
end for
Normalize the weights in Qcl to sum up to one

end for
return {Q1, . . . , Qp}

end procedure

up with an algorithm that generates a classifier c with provably low error
Pr(x,y)∼D[c(x) 6= y].

Since we are working in the field of rule learning, we use a particular
representation for the classifiers to be learned. First of all, a literal is of
the form (ai = vi) or ¬(ai = vi) for any 1 ≤ i ≤ m, where ai identifies the
attribute i and vi is a value taken from the corresponding domain Ai. For
example, for the instance space defined above, (a2 = 0) and ¬(a3 = red) are
valid literals. A conjunction of literals is a rule. A rule is said to cover an
instance, if the conditions imposed by all literals in the rule are met by the
instance. For example, the rule (a1 = b) ∧ ¬(a3 = red) covers the instance
(b, 0, blue), but does not cover the instance (b, 0, red). Not surprisingly, a
rule set is a set of rules. A rule set covers an instance, if any rule in the rule
set covers it. If we have p distinct class labels, a labeled ruleset ri := (r, yi)
is a ruleset together with a class label. We can use a labeled rule set ri to
predict the class ri(x) given an instance x:

ri(x) :=

{
+1 if x is covered by ri
−1 otherwise

The class of all possible yi-labeled rule sets is denoted by Ri.

4.4.2 Learning Ensembles of Rule Sets

With these notations, we can now describe the actual ensemble based rule
learning approach. Algorithm 7 learns one ensemble per class. The rule sets
in the ensemble are conveniently sampled using the SLSearch algorithm,

85

86 Chapter 4. DNF Rule Sets

outlined in Section 4.2.2. Since we do not know the optimal number of rules
per rule set k in advance, we sample a constant number of rule sets for each
k up to a user-specified limit kmax.

Of course, the sampled rule sets differ in their ability to explain the
training set. It makes sense to keep, along with each rule set, a probability
Q(ri) depending on the Ri’s error on the training set. If the user has infor-
mation about the noise behavior of the underlying target distribution, she
can use this information to generate a matching noise model and generate Q
accordingly. For example, if one is learning in a noise-free setting, it makes
sense to assign a probability of 0 to inconsistent rule sets and 1/h to the h
consistent rule sets that were found. If, on the other hand, the noise level
is higher for some parts of the instance space X , one would want to base
Q(ri) on the misclassified instances at hand: if a rule set misclassifies only
“noisy” instances, a higher probability is assigned than for a rule set that
misclassifies relatively stable instances. As a conservative default strategy
we use a Q that assigns a probability that is exponentially decreasing with
its empirical error on (X,Y) to each ri:

Q(ri) :=
exp(−ν l̂(ri, X, Y))

ΣQ(ri)6=0 exp(−ν l̂(ri, X, Y))
,

where l̂(ri, X, Y) denotes the empirical error of ri on the sample (X,Y) (see
also Section 4.4.3), and ν specifies the rate of decay. This corresponds to a
white noise model, where the error probability is constant α := exp(−ν/n)
across all instances. Similar models have been studied, for instance, by
Freund et al. (2004) and Littlestone and Warmuth (1994).

The learning algorithm should also be able to handle multi-class prob-
lems directly. Up to now, we only consider the case of two-class problems.
Dealing with multi-class problems has traditionally been problematic for
rule learning systems. For the sake of simplicity, we employ a simple one-vs-
all scheme here: we learn p ensembles Qi, where ensemble Qi distinguishes
between class label yi and Y\{yi}. As the scores can be seen as a measure of
how certain an ensemble is about its prediction (see Section 4.4.3), it makes
sense to choose that class yi with the largest score c(Qi, x).

4.4.3 Bounds for Rule Learning

In the following, we will present a theoretical analysis of the above algorithm.
The goal is to bound its expected prediction error. In the first part, we
show how McAllester’s PAC-Bayesian theorem (see also Section 3.6) can be
used to bound the error in ensemble rule learning. In the second part, we
prove that the PAC-Bayesian bound can be further improved by allowing
the learner to abstain from uncertain predictions. Together, these results
are more generally applicable, but they serve well the purpose of bridging
the gap between theory and practice for rule learning.

86

4.4. Ensemble Based Capacity Control 87

The PAC-Bayesian Bound for Rule Learning

Two-class problems are generally easier to handle than multi-class problems.
We therefore use characteristic functions χi to split a p-class problem into
p 2-class problems: let Y be a set of p class labels. Just like ri(x), χi(y)
is defined to be +1, if y = yi, and -1 otherwise. To estimate the rule set’s
predictive behavior we are especially interested in the cases where the class
yi assigned by the rule set disagrees with the “true” class y of an instance
x. To measure the rate of misclassification, we generalize the zero-one loss
function introduced in Section 3.2 towards the multi-class setting: let (x, y)
be a labeled instance drawn according to D, and ri a labeled ruleset. Then
the loss l(ri, x, y) := I[ri(x) 6= χi(y)] is 0, if the prediction agrees with the
“true” class y, and 1 otherwise. Intuitively, l is a 0-1 loss for measuring
whether the prediction of a rule set agrees with an observation drawn from
D, when we are only distinguishing between class label yi and the remaining
class labels.

The expected loss l(ri) := E(x,y)∼D[l(ri, x, y)] indicates, how often the
rule set ri disagrees with the “true class” on average. Given a sample (X,Y)
of size n, the empirical loss l̂(ri, X, Y) := 1

nΣ(x,y)∈(X,Y)l(ri, x, y) yields the
fraction of instances in (X,Y) that are misclassified by ri. It is easy to
see that the PAC-Bayesian theorem (Theorem 3.6.1 in Section 3.6) can be
slightly adapted to deal with (prior and posterior) distributions on the space
Ri of yi-labeled rule sets. If Q is an arbitrary probability measure on Ri, we
can extend the notion of a loss to distributions instead of single rule sets:
l̂(Q,X, Y) := Eri∼Q[l̂(ri, X, Y)] and l(Q) := Eri∼Q[l(ri)]. Recall that the
PAC-Bayesian theorem uses the well known Kullback-Leibler divergence,
denoted by D(Q‖P) := Σr∈R(Q(r) ln Q(r)

P (r)), to compare prior and posterior
distributions. As a notational shortcut we write ∀δ(X,Y) Φ(X,Y) instead
of Pr(X,Y)∼Dn [Φ(X,Y)] ≤ 1−δ to express that Φ holds for all but a fraction
δ of the cases. With this we can reformulate Theorem 3.6.1:

Theorem 4.4.1 (PAC-Bayesian, (McAllester, 1999)). Let yi ∈ Y be a class
label, let P be a distribution over the space of yi-labeled rule sets Ri, let
δ > 0, and define:

B(Q,P, n, δ) := l̂(Q,X, Y) +

√
D(Q‖P) + ln 1

δ + lnn+ 2
2n− 1

Then, where Q ranges over all distributions on Ri:

∀δ(X,Y) ∀Q l(Q) ≤ B(Q,P, n, δ)

This theorem can be used to upper-bound the expected error of an en-
semble classifier in the following way: the user provides a prior distribution
Pi on the rule set space Ri. If she has some information about which rule

87

88 Chapter 4. DNF Rule Sets

sets are most likely to resemble the “true” target distribution D, she can
use this information by selecting a Pi that assigns high probabilities to those
rule sets. If she does not have any such information, she can simply select
an uninformative, flat prior. In the next step she draws a sample (X,Y)
of size n from D. It is now the task of the learning algorithm to select a
distribution Qi on Ri for each class label yi. The algorithm aims at finding
Qi that minimize the right hand side of the inequality and thus provides a
tight upper bound on the expected error of rule sets drawn according to Qi.

Using those Qi and the PAC-Bayesian theorem one can construct a vot-
ing ensemble of weighted rule sets, and bound its generalization error. Let
Q̄ := (Qi, . . . , Qp). Then:

c(Qi, x) := E
ri∼Qi

[ri(x)]

cV (Q̄, x) := argmax
yi∈Y

c(Qi, x)

c(Q, x) is the score of Q on x and cV (Q̄, x) denotes the voting classi-
fier for Q̄. The expected error of the voting classifier is thus lV (Q̄) :=
E(x,y)∼D I[cV (Q̄, x) 6= y]. The following theorem bounds the expected error
of the voting classifier for two-class problems, that is, Q̄ = (Q1, Q2). Bounds
for multi-class problems can be derived in a similar fashion.

Theorem 4.4.2. For i ∈ {1, 2} let yi ∈ Y be class labels, Pi be distributions
over the spaces of yi-labeled rule sets Ri, let δ > 0, and Q̄ = (Q1, Q2) be as
above. Then:

∀δ(X,Y) ∀Q lV (Q̄) ≤ B(Q1, P1, n, δ) +B(Q2, P2, n, δ)

Proof. First, observe that for Q̄ = (Q1, Q2):

lV (Q̄) = Pr
D

[χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤ 0] (4.7)

Additionally,

1− 2l(Qi) = 1− 2 E
D

[
E
Qi

[I[ri(x) 6= χi(y)]]
]

= 1− 2 E
D

[
E
Qi

[
1
4

(ri(x)− χi(y))2]
]

(4.8)

= 1− 1
2

E
D

[
E
Qi

[ri(x)2 − 2ri(x)χi(y) + χi(y)2]
]

= 1− 1
2

(
1− 2 E

D

[
E
Qi

[ri(x)χi(y)]
]

+ 1
)

(4.9)

= E
D

[χi(y) c(Qi, x)]

88

4.4. Ensemble Based Capacity Control 89

(4.8) uses the fact that I(a 6= b) = 1
4(a − b)2 for a, b ∈ {−1,+1}, (4.9) uses

a2 = 1 for a ∈ {−1,+1}. It follows from Theorem 4.4.1:

∀δ (X,Y) E
D

[χi(y)c(Qi, x)] = 1− 2l(Qi) (4.10)

≥ 1− 2B(Qi, Pi, n, δ)

Now, let C := 2−χ1(y)c(Q1, x)−χ2(y)c(Q2, x) be a random variable. Since
C ≥ 0 for all x, y,Q1, Q2, we can apply Markov’s inequality:

∀ε > 0 : Pr
D

[
C ≥ εE

D
[C]
]
≤ 1
ε

By definition of C,

∀ε > 0 : Pr
D

[
χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤

2− 2ε+ εE[χ1(y)c(Q1, x)] + εE[χ2(y)c(Q2, x)]
]
≤ 1
ε

and because of (4.10)

∀ε > 0 ∀δ(X,Y) : Pr
D

[
χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤

2− 2ε(B(Q1, P1, n, δ) +B(Q2, P2, n, δ))
]
≤ 1
ε

(4.11)

The theorem follows from (4.7) by setting

ε =
1

B(Q1, P1, n, δ) +B(Q2, P2, n, δ)
.

In order to keep this bound as tight as possible, one would like to find Qi
that have low empirical error on the sample (X,Y) and that differ from the
Pi only to a small degree. While this may be possible theoretically, such a
“PAC-Bayesian-optimal” algorithm would require calculating the empirical
error of all possible concepts in the underlying concept class. Of course, this
is not practical for our purposes, because the space of rule sets is way too
large to be evaluated exhaustively.

We try to keep the computational costs within a reasonable range by
taking two measures: first, we limit the maximum size of the rule sets to
be considered. This is necessary anyway, because rule sets of arbitrary size
can represent all possible dichotomies. If a flat prior is used and we choose
Q only depending on the training set, this is effectively bias-free learning,
which is known to be equivalent to rote learning. Thus, we restrict our

89

90 Chapter 4. DNF Rule Sets

concept space to the set of all rule sets with at most kmax rules per rule
set. This bias towards short hypothesis is motivated by the principle of
William of Ockham and – in one form or the other – included in virtually any
existing rule learning algorithm. Second, instead of considering all possible
rule sets for a Qi, we sample a small number of rule sets from Ri, and set
the probability measure Qi to zero for all rule sets outside the sample. In
this way, we have to deal with only a rather small number of concepts; the
calculation of c(Qi, x) involves only the summation over the few rule sets
with non-zero Qi(ri) and the task of predicting and estimating the expected
error becomes feasible.

Unfortunately, it is a bad idea to sample uniformly or according to Pi
from Ri, because the bound depends on the empirical error l̂ on the training
set. Thus, if the sampled rule sets have a high error on the training set,
the bound will be loose. It is therefore essential that we select rule sets
with low empirical error. As explained in the preceding sections, we em-
ploy the SLSearch algorithm that finds DNFs with low empirical error in a
randomized fashion to achieve this goal.

Improving the Bound Through Abstaining

Most rule learning systems are designed to assign a class to any instance
that was input for classification. In practice, though, it is often the case that
some instances clearly belong to one class, while other instances are just in
between two classes or particularly susceptible to noise. A classifier that
abstains from classification for instances of the latter kind might feature
a much higher predictive accuracy, because it avoids errors on uncertain
predictions. Sometimes, abstaining can give important hints to the user,
e.g. about the existence of a previously unknown class label.

These considerations lead to a different approach for getting tighter
bounds: allowing the classifier to abstain from a classification for uncer-
tain instances. In our case we can assess the deviation of the votes in an
ensemble as a measure of how certain the corresponding prediction is. If all
rule sets in an ensemble vote for the same class label, the classification is
quite certain. If, on the other hand, the weight of the rule sets that vote for
yi differs only by a small margin from the weight of the rule sets that vote
for a different yj , the classification can be regarded as uncertain. Thus, it
might make sense to abstain from a classification, if the absolute value of
the margin is lower than a certain threshold θ > 0. For the two-class setting,
the following definition gives the abstaining voting classifier cθV . Again, the
concept can be easily extended to the multi-class setting.

cθV (Q̄, x) :=

y1 if c(Q1, x)− c(Q2, x) ≥ θ
0 if − θ < c(Q1, x)− c(Q2, x) < θ

y2 if c(Q1, x)− c(Q2, x) ≤ −θ

90

4.4. Ensemble Based Capacity Control 91

The expected error of this abstaining classifier is

lθV (Q̄) := E
(x,y)∼D

[I(cθV (Q̄, x) 6= 0 ∧ cθV (Q̄, x) 6= y)]

= Pr
(x,y)∼D

[χ1(y)c(Q1, x) + χ2(y)c(Q2, x) ≤ −θ]. (4.12)

The following adaption of Theorem 4.4.2 improves the PAC-Bayesian bound
for an ensemble Q̄, if the abstaining voting classifier is used instead of the
voting classifier.

Theorem 4.4.3. Let the y1, y2, P1, P2, Q1, Q2, and δ be as above, let θ > 0.
Then:

∀δS ∀Q̄ lθV (Q̄) ≤ B(Q1, P1, n, δ) +B(Q2, P2, n, δ)
1 + 1

2θ

Proof. The result follows from (4.12) and by setting

ε =
1 + 1

2θ

B(Q1, P1, n, δ) +B(Q2, P2, n, δ)

in (4.11).

4.4.4 Experiments

In this section we describe an empirical evaluation of the ensemble based
rule learning algorithm. The goal of the first experiment is to investigate
how the presented algorithm compares to modern rule learning algorithms.
To get results on learning problems with varying characteristics, we select
35 data sets from the UCI repository (Asuncion and Newman, 2007). Since
the presented rule learning algorithm works only on nominal attributes, we
discretize continuous attributes using a frequency-based discretization with
ten intervals. If a data set contains unknown values, we simply add a new
value “unknown” to the corresponding domains, so that unknown values are
treated just like any other value.

To estimate the predictive accuracy of the algorithms we averaged over
ten runs of tenfold cross-validation. The presented algorithm was set up
to build rule sets with up to eight rules per rule set, and we set the o pa-
rameter to twenty rule sets per level. To calculate the Q(r) probabilities,
we chose the “white noise” model described in Section 4.4.2 with the noise
parameter α set to 0.9. The SLSearch algorithm was set up to search for
5000 iterations, with pg1, pg2, ps set to the default values of 0.1, 0.2, and 0.1,
respectively. We compare the results for the presented algorithm with the
results of a support vector machine with RBF kernel and two state-of-the art
rule learning systems. PART (Frank and Witten, 1998) is a separate-and-
conquer-based rule learning algorithm, that avoids over pruning by obtaining

91

92 Chapter 4. DNF Rule Sets

Bagged Bagged Rule
Data Set SVM PART JRIP PART JRIP Ens.
anneal 92.9 97.2 98.0 ± 0.4 98.2 ± 0.2 98.4 ± 0.2 98.3 ± 0.1
audiology 43.8 78.8 72.8 ± 1.6 82.6 ± 0.6 77.6 ± 1.3 81.5 ± 0.9
autos 62.0 70.7 74.2 ± 2.1 82.2 ± 0.9 82.3 ± 1.3 83.4 ± 0.4
balance-scale 90.7 77.3 71.7 ± 0.9 85.1 ± 0.6 80.9 ± 1.2 83.6 ± 0.5
breast-cancer 70.3 71.0 71.8 ± 1.4 72.8 ± 1.7 74.2 ± 0.9 73.8 ± 0.5
breast-w 97.3 94.3 94.1 ± 0.5 95.3 ± 0.2 94.8 ± 0.3 96.6 ± 0.2
bupa 58.0 58.3 62.1 ± 0.9 60.9 ± 1.8 59.7 ± 1.2 69.3 ± 0.9
colic 85.9 83.4 84.3 ± 0.4 85.1 ± 0.5 85.2 ± 0.4 82.9 ± 0.5
credit-a 86.2 85.9 85.4 ± 0.4 87.0 ± 0.5 85.7 ± 0.5 86.1 ± 0.6
credit-g 71.3 70.7 69.6 ± 0.7 74.7 ± 0.6 73.1 ± 0.6 73.6 ± 0.5
diabetes 72.4 73.4 71.5 ± 0.4 73.7 ± 0.7 72.5 ± 0.6 73.9 ± 0.9
glass 54.2 52.3 64.2 ± 2.5 65.2 ± 2.0 70.2 ± 1.8 73.2 ± 1.1
haberman 73.5 73.5 71.4 ± 0.7 70.9 ± 0.7 72.1 ± 0.5 70.7 ± 0.4
heart-c 84.8 80.9 78.7 ± 1.9 83.0 ± 1.3 81.1 ± 0.9 78.5 ± 0.7
heart-h 83.3 78.9 79.4 ± 1.5 81.3 ± 1.2 81.0 ± 0.6 79.8 ± 0.6
heart-statlog 84.1 78.5 77.6 ± 1.3 81.2 ± 0.8 81.3 ± 0.8 77.1 ± 1.2
hepatitis 79.4 80.0 78.2 ± 1.4 81.9 ± 0.9 79.4 ± 0.7 83.9 ± 0.4
hypothyroid 96.8 97.9 97.9 ± 0.1 98.2 ± 0.1 98.1 ± 0.1 98.1 ± 0.1
ionosphere 90.3 88.0 90.8 ± 0.9 90.4 ± 0.4 91.9 ± 0.5 91.8 ± 0.3
iris 90.7 92.0 88.1 ± 1.5 92.6 ± 0.6 90.9 ± 1.3 91.1 ± 0.3
kr-vs-kp 91.4 99.1 99.2 ± 0.0 99.4 ± 0.1 99.4 ± 0.1 97.8 ± 0.1
labor 70.2 87.7 76.7 ± 2.8 84.4 ± 2.0 83.3 ± 1.2 93.3 ± 1.3
lymph 80.4 79.1 78.6 ± 1.9 85.3 ± 1.6 80.1 ± 1.2 84.9 ± 0.7
mushroom 99.9 100.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
primary-tumor 24.8 40.7 38.7 ± 1.0 45.3 ± 1.1 42.0 ± 0.8 43.6 ± 0.6
segment 94.4 94.2 91.8 ± 1.0 95.7 ± 0.2 96.4 ± 0.2 97.2 ± 0.1
sick 97.6 98.1 97.6 ± 0.1 98.3 ± 0.1 97.7 ± 0.0 98.1 ± 0.0
sonar 76.9 62.0 64.2 ± 3.3 72.1 ± 2.1 70.4 ± 1.2 76.2 ± 1.4
soybean 88.4 91.8 92.2 ± 0.5 93.6 ± 0.3 93.5 ± 0.3 93.2 ± 0.2
splice 96.1 92.5 94.3 ± 0.4 94.9 ± 0.1 95.8 ± 0.1 93.8 ± 0.3
tic-tac-toe 76.2 94.5 97.5 ± 0.4 99.7 ± 0.2 98.2 ± 0.1 99.2 ± 0.1
vehicle 68.4 67.0 58.8 ± 1.0 69.9 ± 1.3 70.0 ± 0.6 71.8 ± 0.7
vote 95.2 95.9 95.3 ± 0.3 96.0 ± 0.3 95.8 ± 0.2 95.9 ± 0.1
waveform-5000 84.6 73.7 72.6 ± 0.7 80.3 ± 0.3 80.7 ± 0.3 82.0 ± 0.3
zoo 73.3 92.1 87.7 ± 0.8 92.7 ± 0.9 90.7 ± 0.8 95.0 ± 0.9

Table 4.5: Results: percentage of correct classifications, together with stan-
dard deviation.

rules from partial decision trees. JRIP (an implemention of Cohen’s RIP-
PER (Cohen, 1995) in the WEKA workbench (Witten and Frank, 1999))
combines separate-and-conquer with incremental reduced error pruning and
an iterated post-processing optimization step. To include ensemble-based
approaches, we estimated the predictive accuracy of twentyfold-bagged ver-
sions of the two algorithms. The results are given in Table 4.5. Table 4.6

92

4.4. Ensemble Based Capacity Control 93

Bagged Bagged Rule
SVM PART JRIP PART JRIP Ens.

SVM 16 16 10 11 9
PART 19 17 2 5 7
JRIP 14 9 0 1 4
Bagged PART 23 29 28 15 14
Bagged JRIP 19 22 26 6 7
Rule Ensemble 23 24 25 12 17

Table 4.6: Results: each number identifies the number of data sets, on which
the method in the row significantly outperforms the method in the column.

shows how different methods compare to each other. Each entry indicates
the number of data sets for which the method associated with its row is
significantly more accurate than the method associated with its column ac-
cording to a paired two-sided t-test on a 1% significance level over the runs.
As can be seen, the presented algorithm performs favorably. It clearly out-
performs SVM, PART, JRIP, and Bagged JRIP, and is slightly worse than
Bagged PART. A comparison of the rule ensemble’s predictive accuracy with
the one of SL2 (described in Section 4.3.1) on eighteen data sets with binary
target attributes can be found in Table 5.1 in Section 5.5. There, the rule
ensemble outperforms SL2 in fifteen of the eighteen cases, a clear indication
that capacity control based on ensembles works better than the structural
risk minimization approach taken by SL2.

For the second experiment, the main goal is to investigate the gap be-
tween the PAC-Bayesian bound and the true error as estimated by tenfold
cross-validation and to compare our results with related approaches. Multi-
class problems require the application of the union bound on the PAC-
Bayesian bounds for the p ensembles, so the resulting bound is rather loose.
We therefore focus on two-class problems. We apply the presented algo-
rithm with the same parameters as above and a flat prior P to a selection of
two-class problems taken from the UCI repository (Asuncion and Newman,
2007). To the best of our knowledge, there are no comparable results on
theoretical bounds for rule learning systems in the literature. The closest
approaches in the literature are SLIPPER (Cohen and Singer, 1999), LRI
(Weiss and Indurkhya, 2000), and the set covering machine (Marchand and
Shawe-Taylor, 2001; Sokolova et al., 2003; Marchand et al., 2003). SLIPPER
and LRI are rule learning algorithms based on ensembles of individual rules
instead of rule sets. Since they employ voting schemes, they are amenable
to theoretical analysis and also would be able to abstain from predictions.
However, standard approaches to bounding the error applied to SLIPPER
and LRI give rather loose bounds. Like a rule learning system, the set

93

94 Chapter 4. DNF Rule Sets

Rule Ens. Consistent Simple
Data Set Bound CV Bound CV Bound CV
breast-w 30.6 3.4 43.6 4.8 15.8 2.3
bupa 54.3 30.7 100.0 38.0 84.6 30.7
credit-a 57.7 13.9 100.0 39.1 87.6 29.9
diabetes 64.1 26.1 99.9 29.9 78.6 26.8
glassg2 76.8 26.8 91.4 22.1 63.8 22.1
haberman 68.0 29.3 99.7 38.1 78.2 31.6
vote 36.5 4.1 71.2 11.5 44.2 11.5

Table 4.7: Results: the prediction error in percent as estimated by ten runs
of tenfold cross validation and the size of the bound for the rule set ensemble
algorithm, the consistent set covering machine, and the simple set covering
machine.

covering machine uses disjunctions4 of Boolean-valued features as concepts.
However, unlike rule learners, it disjunctively joins data-dependent features
such as generalized balls and half-spaces instead of conjunctions of literals.
Marchard et al. derive a bound based on a compression scheme, that can
be compared to the PAC-Bayesian bound. They report empirical and an-
alytical results for a whole range of parameter settings. In Table 4.7 we
reproduce the values for two particular settings: the “consistent” columns
give the results for the unparameterized version of the data-dependent ball
SCM, which induces only consistent classifiers. The “Simple SCM” is able
to derive inconsistent classifiers, but the results are given for experiments
that use only the best parameter settings among an exhaustive scan of many
values for each data set. Those values are thus much more optimistic than
our results, which are based on default parameter values that are fixed for
all data sets. Nevertheless, the PAC-Bayesian bound is better in five out of
seven cases, and the presented algorithm achieves a lower prediction error
in five out of the seven cases.

We also performed preliminary experiments with abstaining ensembles
of rule sets. To test the validity of this approach empirically, we estimate the
prediction error of the abstaining voting algorithm on the Haberman data
set using tenfold cross-validation. We used the same parameters as before,
but varied θ between 0 and 2. Figure 4.2 shows the difference between bound
and estimated error. As can be seen, the relative accuracy of the bound is
optimal for values of θ near 1. Thus, the bound can in fact be improved on
this data set for a certain level of abstention.

4The set covering machine can induce disjunctions or conjunctions. Since we are dealing
with rule sets, we consider the disjunctive case only.

94

4.5. Summary and Related Work 95

0 0.5 1 1.5 2
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

θ

B
ou

nd
 −

 E
rr

or

Figure 4.2: The difference between the bound and the estimated prediction
error depending on the abstaining parameter θ.

4.5 Summary and Related Work

In this chapter we dealt with empirical risk minimization and capacity con-
trol for DNF rule sets. We started with empirical risk minimization in
the noise-free setting. In this setting, rule sets must classify all training
instances correctly. Finding a consistent rule set with at most k rules is
an NP-hard problem. We described three simple enumeration schemes for
solving such k-term DNF consistency problems, some of which were also
considered in previous work (Rückert, 2002; Rückert et al., 2002). Those
enumeration schemes are slower than necessary, because they do not make
use of the structure in the training data to speed up the search. Thus, we
devise RandomSearch, a probabilistic version of Algorithm 4 in Rückert
(2002), which prunes the search depending on the training data. A theoret-
ical analysis similar to the one by Paturi et al. (2005) yields a bound on the
worst case time complexity, which depends on the block size, a structural
property of the training data.

For the noisy setting, the goal is to find a rule set that agrees with
as many training instances as possible. We resort to the stochastic local
search approach introduced previously (Rückert, 2002) and investigated in
the phase transition framework by Rückert and Kramer (2003). The ap-
proach is conceptually similar to WalkSAT (Selman et al., 1996) and has
been successfully applied in a multi-relational setting by Paes et al. (2007).
In Section 4.3 we describe the rule learner SL2, which combines SLS with
capacity control based on cross-validation and a postprocessing step to in-
duce small, yet predictive rule sets. This allows for an investigation of how
existing rule learners perform in terms of rule set size and number of lit-
erals as compared to an “optimal” strategy that is designed to output the
smallest possible rule sets while preserving predictive accuracy. The results
were surprising in that some (but not all) rule learners produced rule sets
that were orders of magnitude larger than necessary to achieve comparable

95

96 Chapter 4. DNF Rule Sets

predictive accuracy.
Simplicity has always been an important issue in rule learning (see for

instance Weiss and Indurkhya, 1993; Lavrač et al., 2004) and decision tree
learning (for example Bohanec and Bratko, 1994). It is also known that
simple classifiers can feature high predictive accuracy. For instance, Holte
(1993) showed that for some real-world data sets, decision stump classifiers
can have predictive accuracies that are as high as 97% of C4’s performance.
However, the work reported here (also published in Rückert and De Raedt,
2007) differs in that it is based on basic statistical induction principles rather
than heuristics and that SL2 is not restricted to a fixed hypothesis class.
This allows for well-supported insights into the trade-off between predictive
accuracy and simplicity of rule learning systems

Finally, in Section 4.4.2 we investigate capacity control based on en-
sembles (also published in Rückert and Kramer, 2004b). We apply SLS
to address the k-term DNF maximum agreement problem for various set-
tings of k and combine the resulting rule sets in an ensemble, similar to the
way it is done with decision trees in Random Forest (Breiman, 2001) and
with rule sets in LRI (Weiss and Indurkhya, 2000). We analyze the sys-
tem empirically and analytically. On the analytical side we show that the
empirical error of the algorithm can be bounded theoretically by applying
McAllester’s PAC-Bayesian theorem (McAllester, 1999) and that the system
can be seen as a straightforward approach to optimize this bound. In most
cases, the ratio of the bound to the empirical error is smaller than for the
set covering machine, for which one of the tightest bounds is known. We
prove that the PAC-Bayesian bound can be further improved by allowing
the model to abstain from making uncertain predictions and give an exam-
ple of how abstention can improve predictive accuracy. Work on abstaining
classifiers dates back to the 1970s (Chow, 1970) and has been investigated
empirically and theoretically by Friedel (2005); Friedel et al. (2006) and
Pietraszek (2005), among others. Recent theoretical results on abstention
with ensembles can be found in the work of Freund et al. (2004).

On the empirical side, we evaluated the performance of the algorithm
on standard UCI data sets. We found that it compares very favorably with
state-of-the-art rule learning algorithms and their bagged variants. Experi-
ments showed that the calculated bounds are reasonably close to the actual
prediction errors as estimated by tenfold cross-validation. It should be noted
that the bound (and with it the algorithm’s predictive accuracy) can be im-
proved in various ways. For instance, one can

• provide an informative prior instead of a flat prior,

• use a matching noise model instead of the white noise default,

• increase the ensemble size, or

• allow for abstaining.

96

4.5. Summary and Related Work 97

Thus, the algorithm can be easily adopted to a particular setting in the pre-
sented framework. Moreover, it should be possible to extract comprehensible
consensus rules and statistics over frequently used features and feature com-
binations along the lines of the work on ADTrees by Pfahringer et al. (2001)
and RuleFit by Friedman and Popescu (2005).

97

98 Chapter 4. DNF Rule Sets

98

Chapter 5

Weighted Rule Sets

This chapter deals with rule sets where a weight is attached to each rule. Em-
pirical risk minimization for this kind of rule sets is a numerical optimization
problem. We describe one established and two novel convex optimization crite-
ria for empirical risk minimization on those rule sets. For capacity control, we
extend the Rademacher and PAC-Bayesian bounds to work directly on the new
criteria, and we derive a new inequality, which gives estimates of the structural
risk depending on the size of the rule repository. Based on these tools, we
implement the rule learner Rumble, which combines the three criteria with ca-
pacity control based on the rule repository size bound. An empirical evaluation
of Rumble shows that the Margin Minus Variance criterion performs best and
that it generates small and highly predictive rule sets.

5.1 Motivation

Though many traditional rule learning systems induce DNF rule sets or
decision lists, weighted rule sets offer some advantages that justify a further
analytical and empirical investigation. In the following we highlight two
particular points and refer to Section 2.2.3 for a more thorough description of
the three common rule set representations. The first fundamental difference
to DNF rule sets or decision lists is the fact that weighted rule sets introduce
the concept of a margin into rule learning. To classify an instance weighted
rule sets add up the weights of rules that vote for the positive class and
subtract the weights of rules that vote for the negative class. Whereas
the sign of the resulting quantity indicates the prediction for the particular
instance, the margin, that is, its absolute value can be seen as a measure of
the certainty of the prediction. This is intuitively intriguing: the prediction
appears to be more justified, when all rules vote for the same class as opposed
to a near-draw situation where the weights of rules favoring one class are
of the same size as the weights of rules for the other class. This notion can
also be stated more rigorously, for instance, by noting the equivalence of

99

100 Chapter 5. Weighted Rule Sets

linear classifiers and the “Naive Bayes” assumption, which effectively assigns
probabilities to margins (see Section 3.6 for a more detailed description).

Margin-based learning has been made popular by the support vector
machine, which induces linear classifiers that maximize the margin to the
training instances. Aiming for such a large margin turned out to be a re-
markably well working bias. Since a linear classifier essentially represents
a hyperplane in feature space, large margin classification can be seen as
finding the hyperplane that maximizes the distance to the nearest training
instance. A popular explanation for the success of SVMs is the fact that
such a hyperplane is robust against noise in the test data, at least if the
variation caused by the noise is smaller than the margin. Hence, unlike clas-
sical empirical risk minimization and the systems outlined in the preceding
chapter, margin-based methods do not minimize the empirical error directly,
but only implicitly through the margin.

Another nice property of weighted rule sets is the fact that sums of
weighted quantities are well-investigated mathematical objects. There is a
wealth of tools in linear algebra and probability theory to deal with linear
forms and derive analytical results about them. If, for instance, the weights
of a weighted rule set add to one, then the set of possible rule sets forms
a convex set and the Jensen inequality can be used to upper-bound convex
functions of weighted rule sets. Furthermore, linear functions of that type
can be interpreted geometrically (as hyperplanes in a high-dimensional vec-
tor space) or probabilistically (as distributions over the set of rules). Since
linear forms are continuous, related optimization criteria are generally dif-
ferentiable and can thus be solved easily by established numerical methods.
This is in contrast to the mathematics of DNF rule sets, whose discrete
nature leads to hard combinatorial optimization problems.

In this chapter, we follow a margin-based approach to rule learning.
Instead of the pure empirical and structural risk minimization procedures
employed in the preceding chapter, we compare different margin-based op-
timization procedures. As before, we aim at simple, that is, small rule sets.
However, we do so implicitly through regularization, instead of the struc-
tural risk minimization approach taken in Section 4.3. The main goal is to
incorporate the favorable large margin bias into a rule learning system that
favors small rule sets. Since we aim at small sets of explicit rules, there
is no need for the kernel trick, which is applied in SVMs to induce an im-
plicit higher dimensional feature space. Consequently, we can consider other
margin-based optimization criteria, which are not compatible with the stan-
dard kernel-based approaches. As before, capacity control is an important
component. In Section 5.3, we describe various bounds for capacity control
with two optimization criteria, namely the empirical margin and the margin
minus variance (MMV).

100

5.2. Empirical Risk Minimization for Weighted Rule Sets 101

5.2 Empirical Risk Minimization for Weighted Rule
Sets

Before delving into details, we need to introduce some basic definitions.
First of all, recall that we assume the instances to be drawn i.i.d. from a
fixed but unknown distribution D. D ranges over X × Y, where X is the
set of all possible instances and Y := {−1, 1} contain the target labels. The
values -1 and 1 represent the negative and positive class respectively. A
sample X = {x1, . . . , xn} of size n is drawn. In addition to this standard
setting, we assume we already have a (possibly infinite) repository of rules
R = {r1, r2, . . .}, where a rule rj : X → [−1, 1] assigns a value between -1
and 1 to each instance. A typical rule could be “assign +1, if the color
is red, and -1 otherwise” or “assign +1, if the size is greater than 1.2 and
-1 otherwise”. We will later present a scheme to enumerate the rules in
the repository declaratively. The following results also hold for rules that
assign intermediate values, such as 0.5 (“probably positive”) or 0 (“don’t
know”), but in general we assume that r(x) ∈ {−1,+1}. Let xi(j) denote
the result of the application of rule j on instance xi. If we consider only the
first m rules, we can represent the ith instance by the vector of rule values
xi := (xi(1), xi(2), . . . , xi(m))T . Likewise, a weighted rule set can be given
by a weight vector w ∈ [−1, 1]m. An individual rule set w assigns class label
sgn(wTxi), so that instance xi is positive, if

∑m
j=1wjxi(j) ≥ 0 and negative

otherwise. Representing a rule set as a weight vector might seem unusual.
However, even if the number of rules m is large, we can still deal with small
rule sets, if most components of w are set to zero. Also note that the weight
vector defines a hyperplane separating [−1; 1]m into two half-spaces so that
rule sets in our setting are related to linear classifiers and perceptrons.

As already described, one usually uses the zero-one loss l(wTx, y) =
I[sgn(wTx) 6= y] to define the empirical error ε̂w := 1

n

∑n
i=1 l(w

Txi, yi) and
the true error εw := E(x,y)∼D l(wTx, y). We are interested in finding a
weighted rule set w that minimizes the true error εw. However, since D is
unknown, we have no information about the true error and the best we can
do is to minimize the empirical error ε̂ instead. Note that scaling a weight
factor w with a positive factor does not change the actual classification of
the instances. Thus, in practice, one often restricts the space of possible
weight factors. Unfortunately, due to the discontinuity of the zero-one loss,
empirical risk minimization is a combinatorial optimization problem. It has
been shown to be NP-hard and is also hard to approximate up to a fixed
constant. One way to avoid those computational expenses is to optimize
ε̂ not directly, but through a related quantity. For example, support vec-
tor machines restrict the hypothesis space to weight vectors of unit length
w ∈ {x | ‖x‖ = 1} (as scaling w with a factor does not change the classifi-
cation) and search for a w that maximizes the margin (or the soft margin)

101

102 Chapter 5. Weighted Rule Sets

to the nearest training instances.1 As discussed in the previous setting, this
approach does not optimize the empirical risk directly, but only through a
related quantity. While this does not identify the w, which minimizes the
empirical error, it optimizes the empirical error to a certain extent, because
the hinge loss lH(w, x, y) = max{0, ywTx} used in support vector machines
dominates the zero-one loss. Hence, the training hinge loss can be seen as
an upper bound for the empirical error. In a sense, the SVM sacrifices some
training accuracy for the increased robustness of large margins. This com-
promise leads not only to better predictive accuracy in most cases, it also
replaces the NP-hard empirical risk minimization problem with a feasible
convex optimization problem. In the following, we present three different
quantities that can be used in a similar way as a substitute for the empirical
error and that allow for an efficient optimization procedure.

5.2.1 Soft-Margin Loss

The first quantity is simply the soft-margin loss as used in the SVM. Op-
timizing for a large margin is theoretically well-founded and the resulting
quadratic programming problem can be solved efficiently. For rule learning,
we are looking for an explicit representation of the rule set, not one that is
implicitly defined by a kernel. Thus, we do not depend on the applicabil-
ity of the kernel trick and can use other hypothesis spaces than the weight
vectors of unit length w ∈ {x | ‖x‖ = 1}. In particular, for ensembles it is
much more common to demand that the absolute weights in w sum to one,
that is, to use the 1-norm instead of the 2-norm. This leads to the so-called
1-norm support vector machine (Zhu et al., 2004):

minimize
w

m∑
i=1

[
1− wTxi

]
+

(5.1)

subject to ‖w‖1 =
n∑
j=1

|wj | = s

where s is a free tuning parameter. Unlike the 2-norm SVM, the 1-norm
SVM sets most weights to zero and assigns non-zero weights only to a few
highly relevant rules. This behavior matches well with our purposes in rule
learning. To implement the 1-norm SVM, we reformulate criterion (5.1) as

1Of course, the actual optimization problem is formulated differently.

102

5.2. Empirical Risk Minimization for Weighted Rule Sets 103

Figure 5.1: The distances between a hyperplane and the training instances
(left) induce a distribution of margins (right). Empirical margin optimiza-
tion aims for hyperplanes whose margin distribution features a large mean.

a linear program:

minimize
p

m∑
i=1

ci (5.2)

subject to ∀i yiwTxi − ci ≥ 1,
n∑
j=1

|wj | = s, ∀i ci ≥ 0

This can be solved using any of the established methods for linear program-
ming.

5.2.2 Empirical Margin

The second quantity is the empirical margin. One problem of the SVM’s
large margin approach is that the classifier depends only on the support
vectors and ignores the other data. If—as in Figure 5.2—the support vec-
tors are not very representative of the underlying distribution, the classi-
fier performs worse than necessary. A different approach is to consider the
margin to all training instances. Ideally one would want to maximize the
average distance from the separating hyperplane to the training instances.
More formally: Given an instance (x, y) let µw(x, y) := wTx · y denote the
margin. The margin is positive, if the instance is correctly classified by
w and negative otherwise.2 Similar to true and empirical error, one can

2Often, linear classifiers are defined to include an intercept w0 so that the margin is
(wTx + w0)y. However, a linear classifier w ∈ Rd with intercept w0 ∈ R is equivalent to a

103

104 Chapter 5. Weighted Rule Sets

define the empirical margin µ̂w := 1
n

∑n
i=1 µw(xi, yi) and the true margin

E(x,y)∼D µw(x, y). As illustrated in Figure 5.1, a straightforward approach
is to maximize µ̂w subject to ‖w‖1 = 1. However, it is easy to see that
this procedure assigns the full weight to the single rule that agrees with the
target class on most examples. It sets weight zero to all the other rules. In
essence, aiming for maximum empirical margin with the 1-norm constraint is
equivalent to selecting the single best rule. We therefore resort to using the
2-norm and minimize for large µ̂w subject to ‖w‖2 = 1. This sets almost all
weights to non-zero values. The main advantage of this criterion is the fact
that its solution can be calculated in closed form. Setting d = 1

n

∑n
i=1 xi,

the problem can be stated as µ̂opt = minw−dTw subject to ‖w‖22 = 1. The
corresponding Lagrangian is L(w, λ) = −dTw+ λ(‖w‖22 − 1) and setting its
gradient ∇wL(w, λ) = 0 yields wopt = 1

2λd. It follows from duality that
µ̂opt = maxλ L(1

2λd, λ) and setting the derivative with regard to λ to zero
we have λopt = 1

2‖d‖2. Thus, wopt = d
‖d‖2 is a solution to this optimization

problem. From a theoretical point of view, the following lemma guarantees
that optimizing for large µw also minimizes the true error εw:

Lemma 5.2.1. Let (X,Y) be drawn according to D and let w be a weight
vector with true error εw and true margin µw. Then:

εw ≤ 1− µw

Proof. Consider the random variable C := 1− µw(X,Y). Since C is always
positive, we can apply Markov’s inequality. For any ε > 0:

1
ε
≥ Pr

[
C ≥ εE

[
C
]]

= Pr
[
1− µw(X,Y) ≥ ε− εE

[
µw(X,Y)

]]
= Pr

[
µw(X,Y) ≤ 1− ε(1− µw)

]]
Now set ε = 1/(1− µw) and yield:

εw = Pr[µw(X,Y) ≤ 0] ≤ 1− µw

As the lemma is valid for all possible distributions, it also applies to
every empirical distribution induced by a training set. Hence, the empirical
error can also be upper-bounded by the empirical margin. Thus, optimizing

linear classifier w′ ∈ Rd+1 without intercept on a d + 1-dimensional instance space, where
the d + 1th component is always set to one. For the sake of simplicity we therefore omit
the intercept and instead assume that the rule repository includes a rule, which outputs
+1 for all instances.

104

5.2. Empirical Risk Minimization for Weighted Rule Sets 105

- 5 0 5
- 5

0

5

Figure 5.2: The maximum margin hyperplane (solid) and the margin minus
variance hyperplane (dotted) for a small data set where positive and negative
instances are drawn from two normal distributions with mean at (-2, -2) and
(2, 2).

µ̂ can be seen as a computationally feasible relaxation of the infeasible direct
empirical risk minimization problem. In particular, if µ̂p reaches the largest
possible value one, the empirical error is guaranteed to be zero.

5.2.3 Margin Minus Variance

The third approach tries to improve on the second one by also incorporating
the variance. One can estimate the sample variance of the margins from a
training set; the empirical variance is σ̂w := 1

n−1

∑n
i=1(µw(xi, yi) − µ̂w)2,

the true variance is σw := E(x,y)∼D(µw(x, y) − µw)2. Using this notation,
one can look for weight vectors w that maximize the empirical margin but
minimize the empirical variance. This is illustrated in Figure 5.3. The goal is
to minimize the probability of having a negative margin, that is the red area
in the (empirical) margin distribution in Figure 5.3. To do so, we aim for a
classifier which has high average margin and low variance, more formally:

maximize
w

µ̂w − σ̂w (5.3)

subject to ‖w‖1 =
m∑
j=1

|wj | = 1

We call the optimization function margin minus variance (MMV) and de-
note it by γ̂w := µ̂w − σ̂w. It is easy to see that maximizing γ̂ is a quadratic

105

106 Chapter 5. Weighted Rule Sets

Figure 5.3: The distances between a hyperplane and the training instances
(left) induce a distribution of margins (right). MMV optimization aims for
hyperplanes whose margin distribution features a large mean and a small
variance.

optimization problem and can therefore be solved efficiently. In Figure 5.2,
the dotted line denotes the maximum-MMV hyperplane, while the solid line
indicates the maximum-soft-margin hyperplane. Even though the MMV
hyperplane misclassifies one instance in the training set, it obviously ap-
proximates the decision boundary for the underlying data distribution (the
bisecting line at the origin) better than the soft-margin hyperplane. Just
as the 1-norm SVM, MMV sets most weights to zero and assigns non-zero
weights only to the best few rules. For example, during a test run on the
australian data set MMV maximization sets non-zero weights only to 15 out
of the 1600 rules.

Another nice property is that γ̂w is an unbiased estimator of the true
margin minus variance γw := µw − σw and this quantity can be used to
upper-bound the true error. This is intuitively intriguing: A hyperplane
that features a large true margin and a low true variance should have a
low true error, because most instances are clearly classified correctly (large
margin) and there are only a few exceptions (low variance). The following
lemma quantifies this:

Lemma 5.2.2. Let S be drawn according to D and let w be a hyperplane
with true error εw and true MMV γw. Then:

εw ≤

{
γw

4γ2
w+γw

if γw ≤ 0.5
1−γw
2−γw if γw > 0.5

106

5.2. Empirical Risk Minimization for Weighted Rule Sets 107

Proof. The Chebyshev inequality states that

εw = Pr[µ(X,Y) ≤ 0]

≤ V ar[µ(X,Y)]
V ar[µ(X,Y)] + (E[µw(X,Y)])2

=
µw − γw

µw − γw + µ2
w

We will now determine the value of µw that maximizes the right hand side
of this inequality to yield the final result. Denote the right hand side by
f(µw, γw):

f(µw, γw) :=
µw − γw

µw − γw + µ2
w

Then we would like to find

µ′w := argmax
µw

f(µw, γw)

subject to the constraint that γw ≤ µw ≤ 1 (since the variance is always
positive). To find this optimum, we set the derivative to zero:

∂f

∂µw
=
−µ2

w + 2µwγw
(µw − γw + µ2

w)2
= 0

The only positive solution to this equation is µ′w = 2γw. So, for γw ≤ 0.5
we yield:

εw ≤ f(2γw, γw) =
γw

4γ2
w + γw

If γw > 0.5, the optimal value of µw is violating the constraint that µw ≤ 1.
As f is increasing until 2γw, the optimal margin is thus 1 and we yield:

εw ≤ f(1, γw) =
1− γw
2− γw

Just as Lemma 5.2.1 did for the empirical margin, this lemma ensures
that γ̂ can be seen as a computationally feasible relaxation of the infeasible
direct empirical risk minimization problem. Again, if γ̂w reaches the largest
possible value one, the empirical error is guaranteed to be zero.

We formulate the MMV optimization task as a standard quadratic pro-
gramming problem: minimizex xTGx + dTx, where G ∈ Rn×n denotes the
quadratic part and d ∈ Rd is the linear part. This corresponds naturally to
the two parts in the MMV γ̂w = µ̂w − σ̂w. The empirical margin µ̂ is linear,

107

108 Chapter 5. Weighted Rule Sets

while the quadratic part can be written as a function of the empirical covari-
ance matrix G. If the training set is given as a m× n matrix T with tij :=
xi(j)yi, G and d can be computed as follows. The linear part is d := 1

n(~1Tw).
The quadratic part is G := − 2

n−1 [(T T T)− 1
n(~1T)T (~1T)], where ~1 is a vector

containing n ones. Typical approaches to solving this optimization problem
compute the Lagrangian L(w, λ) := 1

2w
TGw + dTw − λ(

∑m
i=1 |wi| − 1) and

search for parameters (w, λ) that set the Lagrangian’s gradient to zero. Un-
fortunately, the 1-norm contains absolute values, and is thus not differen-
tiable at weight vectors that have some weight set to zero. Consequently,
the gradient is not defined at those weight vectors, and gradient-based op-
timization approaches can not be used. Fortunately, it is easy to remove
the non-differentiabilities in the 1-norm-constraint. To do so, one can de-
compose each weight wi in the weight vector w into a positive part w+

i ≥ 0
and a negative part w−i ≥ 0 so that wi = w+

i − w
−
i . Using the notation

w = (w+
1 , . . . , w

+
n , w

−
1 , . . . , w

−
n)T the optimization problem becomes:

maximize
w

1
2
wT
(

G −G
−G G

)
w + wT

(
d
−d

)
subject to

n∑
j=1

(w+
j + w−j) = 1,∀j w+

j , w
−
j ≥ 0

This is a semidefinite quadratic programming problem with one equality and
2n inequality constraints. It can be solved using any established algorithm
for constrained optimization. Usually, the computationally most demanding
part of the process is to determine the set of active constraints. As the
number of non-zero weights is usually rather small, this optimization step is
typically very fast.

All of the three described optimization criteria can be applied to derive
weights for an existing repository of rules. Before we describe a system to
generate such rules in Section 5.4, we deal with the problem of capacity
control for weighted rule sets.

5.3 Structural Risk Minimization for Weighted Rule
Sets

In the preceding section we presented three quantities that can be used to
determine weights for a class of predefined rules. Obviously, the success of
this algorithm depends to a large degree on the choice of this class, and, in
particular, on its size. If the class is too small, the algorithm will most likely
underfit, if it is too large, it will overfit. The standard approach to tackle
this dilemma is to start with a small class, then iteratively increase the
size of the class. In each step, one determines for each class the hypothesis
that explains the training set best, and an estimate of the structural risk

108

5.3. Structural Risk Minimization for Weighted Rule Sets 109

of the class. The best hypothesis class is the one which minimizes the sum
of empirical risk and structural risk. Similar approaches include structural
risk minimization (Vapnik, 1995) or model selection based on Rademacher
risk bounds (Koltchinskii, 2001).

Unfortunately, most of the established model selection strategies do not
work well in our setting. The first problem is, that often only a few large
hypothesis classes are used, so that the model selection is rather coarse.
For instance, a popular scheme is to use cascading classes of polynomial
kernels with increasing exponent in SVMs. In rule learning, though, even
very small hypothesis classes can overfit. For example the hypothesis class
of 1-term DNF formulae is a subset of a linear kernel (that is, a polynomial
kernel with exponent one), and nevertheless, empirical risk minimization
overfits with this hypothesis class on the UCI hearth data set (see Section
4.3.2). Apparently, in rule learning one needs more fine-grained and (at least
initially) slower increasing hypothesis class sizes.

The risk bounds that are used for model selection usually deal directly
with the empirical error. This does not match very well with the approaches
taken in the preceding section. First of all, the empirical error is a discrete
quantity and often does not change in steps from one hypothesis class to
the other, making it hard to handle. The quantities presented in Section 5.2
provide a more fine-grained estimate of the empirical risk. In the following,
we present concentration inequalities that work directly on the empirical
margin and the MMV. It seems to be more sensible to use those risk bounds
depending on the the actual quantities that are optimized instead of the
(possibly fluctuating) empirical error. We present three different ways to
derive such risk bounds. First of all, in Section 5.3.1 we extend the work
on Rademacher penalties to upper-bound the true margin and true MMV
by quantities that depend on a randomized version of the training set. A
different approach is taken in Section 5.3.2, where the PAC-Bayesian bound
is adjusted to deal with true margin and MMV. Finally, in Section 5.3.3
we present novel bounds that are constructed to only incorporate the rule
repository size. Since there is a wide range of results on the SVM, we
concentrate on bounds for maximum margin and MMV optimization.

5.3.1 Rademacher Bounds for MMV

Rademacher complexities for data-dependent generalization bounds were in-
troduced by Koltchinskii (2001) and Bartlett and Mendelson (2003). The
main idea is to construct a randomized version of the training set by ran-
domly flipping the class labels. The training accuracy of the learning algo-
rithm on this randomized training set can then be used to estimate the data-
dependent structural risk of the system. It can been shown that this esti-
mate is always better than the traditional estimate based on VC-dimensions
(Kääriäinen, 2004).

109

110 Chapter 5. Weighted Rule Sets

Consider Rademacher random variables, that is, variables taking the val-
ues -1 and +1 with probability 0.5 each. Assume we are given n Rademacher
random variables ρi, one for each training instance. The Rademacher error
complexity is given by

RX := sup
c∈H

∣∣∣∣∣ 1n
n∑
i=1

ρil(c, xi, yi)

∣∣∣∣∣ (5.4)

This random variable can be used to upper-bound the true error of an linear
classifier in the following way:

Theorem 5.3.1 (Rademacher bound (Koltchinskii, 2001; Kääriäinen et al.,
2004)). Let (X,Y) be a training set of size n drawn i.i.d. from D and let
{ρ1, . . . , ρn} be the outcome of tossing a fair coin n times. Then, for any
classifier c and δ > 0:

Pr

[
εc ≤ ε̂c + 2RX + 5

√
ln 2

n

2n

]
≥ 1− δ

If a learning system is known to find a classifier that minimizes the em-
pirical risk on a data set, the supremum in RX can be calculated by applying
the system on two training sets where the class labels are flipped according
to the ri. An application of this trick can be found in Kääriäinen et al.
(2004), where a pruning algorithm is applied to compute RX so that the
Rademacher bound can be used for model selection. This trick is intuitively
appealing, because the application of the learning system on a randomized
training set measures how strongly the learning system can overfit on data,
which is random, but features the same characteristics as the original train-
ing set.

Since we can find a weight vector that minimizes the empirical margin
on a data set, we could make use of a similar bound to upper-bound the true
margin instead of the true error. Hence, we are interested in the Rademacher
margin complexity

SX := sup
w∈[−1,1]m

∣∣∣∣∣ 1n
n∑
i=1

ρiw
Txi

∣∣∣∣∣ (5.5)

and the Rademacher second margin moment complexity

TX := sup
w∈[−1,1]m

∣∣∣∣∣ 1n
n∑
i=1

ρi(wTxi)2

∣∣∣∣∣ (5.6)

Note that SX and TX are random variables that depend on the unlabeled
training instances xi and the Rademacher variables ri, but not on a specific
weight vector w or the labels yi. Intuitively, Sx gives the best margin a

110

5.3. Structural Risk Minimization for Weighted Rule Sets 111

weight vector can achieve on a training set with random class labels. In
order to derive Rademacher bounds for the true margin and true MMV
depending on SX and TX , we need the McDiarmid inequality, a powerful
concentration inequality that can be used to bound functions of independent
random variables.

Theorem 5.3.2 (McDiarmid, (McDiarmid, 1989)). Let X1, X2, . . . , Xn be
independent (not necessarily identically distributed) random variables. If
for a function g : X1 × . . . Xn → R there are some nonnegative constants
c1, . . . , cn so that

sup
x1,...,xn,x′i

|g(x1, . . . xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n,

then for all ε > 0:

Pr
[
g(X1, . . . , Xn)−E[g(X1, . . . , Xn)] ≥ε

]
≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
and

Pr
[
E[g(X1, . . . , Xn)]− g(X1, . . . , Xn) ≥ε

]
≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
In other words, if the value of a function g changes only up to a con-

stant when replacing one of the input parameters, then the random variable
g(X1, . . . , Xn) is sharply concentrated around its mean. The application
of McDiarmid’s inequality and a symmetrization argument give rise to the
following Rademacher bound for the true margin:

Theorem 5.3.3. Let (X,Y) be the application of the rules to a training set
of size n drawn i.i.d. from D and let {ρ1, . . . , ρn} be the outcome of tossing
a fair coin n times. Then, for any linear classifier w ∈ [−1, 1]m and δ > 0:

Pr

[
µw ≤ µ̂w + 2SX + 6

√
ln 2

n

2n

]
≥ 1− δ

Proof. The proof follows along the lines of its counterpart for the empirical
error (Kääriäinen et al., 2004). First we show that SX is concentrated
sharply around its mean. Observe, that replacing one pair (xi, ρi) in the
definition of SX by any new pair (x′i, ρ

′
i) changes the value of SX by at most

2/n. Thus, one can apply Theorem 5.3.2 and gain:

Pr

[
SX ≤ E[SX]− 2

√
ln(1/δ)

2n

]
≤ δ (5.7)

The following symmetrization argument shows how the expectation of SX
is related to the difference between empirical and true margin. Let (X1, Y1),

111

112 Chapter 5. Weighted Rule Sets

. . . , (Xn, Yn) be a collection of independent random variables drawn accord-
ing to D and (X ′1, Y

′
1), . . . , (X ′n, Y

′
n) with the same distribution. Both collec-

tions form training sets of the size n. Let Bnp = {w ∈ Rn|‖w‖p ≤ 1} denote
the p-norm ball in Rn, so that the weight vectors w ∈ Bm∞.

E
[

sup
w∈Bm∞

∣∣µw − µ̂w∣∣] = E

[
sup
w∈Bm∞

∣∣∣∣E [1
n

n∑
i=1

Y ′iw
TX ′i

]
− 1
n

n∑
i=1

Yiw
TXi

∣∣∣∣
]

≤ E

[
sup
w∈Bm∞

∣∣∣∣ 1n
n∑
i=1

Y ′iw
TX ′i −

1
n

n∑
i=1

Yiw
TXi

∣∣∣∣
]

(5.8)

= E

[
1
n

sup
w∈Bm∞

∣∣∣∣ n∑
i=1

ρi
[
Y ′iw

TX ′i − YiwTXi

]∣∣∣∣
]

(5.9)

≤ 2 E

[
1
n

sup
w∈Bm∞

∣∣∣∣ n∑
i=1

ρiYiw
TXi

∣∣∣∣
]

(5.10)

= 2 E

[
1
n

sup
w∈Bm∞

∣∣∣∣ n∑
i=1

ρiw
TXi

∣∣∣∣
]

= 2 E
[
SX

]
Inequality (5.8) and (5.10) are applications of Jensen’s inequality, whereas
(5.9) follows from the fact that the ρi essentially swap instances between
(X,Y) and (X ′, Y ′). Since the two samples are drawn i.i.d. swapping in-
stances does not change the expectation.

Now, we apply McDiarmid’s concentration inequality again to prove
that the difference between the empirical and true quantities is also concen-
trated around its mean. Consider the random variable supw∈Bm∞

∣∣µw− µ̂w| =
supw∈Bm∞ |µw − n

−1
∑n

i=1 yiw
Txi|. If one replaces a pair (xi, yi) with a pair

(x′i, y
′
i), the value changes by at most (2/n). Thus, we can again apply

Theorem 5.3.2:

Pr

[
sup
w∈Bm∞

∣∣µw − µ̂w| ≥ E
[

sup
w∈Bm∞

∣∣µw − µ̂w|]+ 2

√
ln(1/δ)

2n

]
≤ δ (5.11)

We are now in the position to give a bound that does only depend on the
empirical margin and the Rademacher margin complexity. Observe that for
all w

µw ≥ µ̂w − sup
w∈BM∞

|µw − µ̂w|

Because of (5.11) and the symmetrization inequality above we know that

112

5.3. Structural Risk Minimization for Weighted Rule Sets 113

with probability at least 1− δ/2:

µw ≥ µ̂w − sup
w∈Bm∞

|µw − µ̂w|

≥ µ̂w −E
[

sup
w∈Bm∞

∣∣µw − µ̂w|]− 2

√
ln(2/δ)

2n

≥ µ̂w − 2 E
[
SX
]
− 2

√
ln(2/δ)

2n

Thus, with (5.7) we have that with probability 1− δ

µw ≥ µ̂w − 2SX − 6

√
ln(2/δ)

2n
(5.12)

It is easy to see how this theorem can be used for capacity control with
the maximum margin optimization criterion. Observe that the term in the
absolute value of the definition of SX in (5.5) is essentially the empirical
margin for a training set, where the class labels yi are replaced by the
Rademacher variables ρi. Thus, one can simply generate two new training
sets, the first by setting yi = ρi, the second with yi = −ρi and apply the
empirical margin maximization algorithm on them. The value of SX is
then the maximum of the two values, because for x ∈ R : max{x,−x} =
|x| so that taking the maximum accommodates for the absolute value in
(5.5). With this, SX + ε̂w gives a practical data-dependent estimate of the
structural risk for empirical margin optimization.

To obtain a similar result for MMV optimization, the following theorem
considers the second moment of the margin distribution.

Theorem 5.3.4. Let (X,Y) be the application of the rules to a training set
of size n drawn i.i.d. from D and let {ρ1, . . . , ρn} be the outcome of tossing
a fair coin n times. Then, for any linear classifier w ∈ [−1, 1]m and δ > 0:

Pr

[
γw ≥ γ̂w − 6SX − 2TX − 20

√
ln(3/δ)

2n

]
≥ 1− δ

Proof. The proof follows the same scheme as the one for the margin, except
for a more involved argument to apply the symmetrization. It is clear that
TX is concentrated around its mean, just as its counterpart SX :

Pr

[
TX ≤ E[TX]−

√
ln(1/δ)

2n

]
≤ δ (5.13)

113

114 Chapter 5. Weighted Rule Sets

Let ν̂w := 1
n

∑n
i=1(wTxi)2 denote the empirical second margin moment and

νw := E(wTx)2 be the true second margin moment. Now, observe that

E
[

sup
w∈Bm∞

|γ − γ̂|
]
≤ E

[
sup
w∈Bm∞

|µw − µ̂w|+ sup
w∈Bm∞

|νw − ν̂w|+ sup
w∈Bm∞

|µ2
w − µ̂2

w|
]

≤ 3 E
[

sup
w∈Bm∞

|µw − µ̂w|
]

+ E
[

sup
w∈Bm∞

|νw − ν̂w|
]
. (5.14)

The second inequality holds, because |x2 − y2| ≤ 2|x − y| for all x, y ∈
[−1, 1]. Applying the symmetrization argument in the proof of Theorem
5.3.3 to the two summands above yields 3 E[supw∈Bm∞ |µw − µ̂w|] ≤ 6SX and
E[supw∈Bm∞ |νw− ν̂w|] ≤ 2TX . Thus, the sum of the two expectations can be
upper-bounded as follows:

E
[

sup
w∈Bm∞

|γw − γ̂w|
]
≤ 6 E

[
SX
]

+ 2 E
[
TX
]

(5.15)

Now, we show that the random variable supw∈Bm∞ |γ− γ̂| is also concentrated
around its mean. Consider the case where one replaces a pair (xk, yk) in the
training set with a pair (x′k, y

′
k). As discussed in the proof of Theorem 5.3.3,

the margin part of MMV changes by at most (2/n). The empirical variance
part can be written as follows:

σ̂w =
1

n(n− 1)

∑
i>j

(yiwTxi − yjwTxj)2

Thus, if one changes the instance (xk, yk), n−1 summands are affected. Each
summand can change by at most 4, because supb,b′∈[−1,1][(a−b)2−(a−b′)2] ≤
4 for a ∈ [−1, 1]. Altogether the variance part can change by at most 4/n, so
that the empirical MMV changes by at most 6/n. McDiarmid’s inequality
yields:

Pr

[
sup
w∈Bm∞

∣∣γw − γ̂w| ≥ E
[

sup
w∈Bm∞

∣∣γw − γ̂w|]+ 6

√
ln(1/δ)

2n

]
≤ δ (5.16)

As above, we can combine (5.16) and (5.15) to yield that with probability
at least 1− δ/3:

γw ≥ γ̂w − sup
w∈Bm∞

|γw − γ̂w|

≥ γ̂w −E
[

sup
w∈Bm∞

∣∣γw − γ̂w|]− 6

√
ln(3/δ)

2n

≥ γ̂w − 6 E
[
SX
]
− 2 E

[
TX
]
− 6

√
ln(3/δ)

2n

114

5.3. Structural Risk Minimization for Weighted Rule Sets 115

From (5.13) and (5.7) we have with probability 1− δ:

γw ≥ γ̂w − 6SX − 2TX − 20

√
ln(3/δ)

2n

The bound for MMV contains considerably larger constants than the
bound for the empirical margin. This is mainly due to the loose bound in
(5.14), which is necessary to make the symmetrization trick work for the
squared margin part of the variance. It is unclear how one can work around
this problem. From a practical point of view, the Rademacher penalization
for MMV involves the computation of four additional convex optimization
problems, two for SX and two for TX . This means the time necessary for
computing the structural risk estimate 6SX +2TX + γ̂w is prohibitively large
for larger data sets. Rademacher complexities are therefore only suitable for
a comparably small number of instances and rules.

5.3.2 PAC-Bayesian Bounds for MMV

For an estimate that can be computed in closed form without the need
for expensive optimization procedures, we consider PAC-Bayesian bounds.
The PAC-Bayesian bound for the empirical loss of a classifier is given in
Theorem 3.6.1 in Section 3.6. In the following, we will modify the original
inequality so that it bounds the true margin and the true MMV given its
empirical counterparts. Recall that the original PAC-Bayesian theorem deals
with the expected error of the Gibbs classifier, that is, the meta-classifier,
which draws a hypothesis according to a probability distribution over the
hypothesis space H and then predicts with this hypothesis. To make this
bound work in our case, we need to relate a weighted rule set, or, more
generally, a linear classifier to a Gibbs classifier.

This is rather straightforward. Recall that the margin of a weighted
rule set w ∈ {x ∈ Rm|‖x‖1 = 1} on instance (x, y) is ywTx. The weight
vector is “almost” a distribution, in the sense that the absolute values of
its components sum to one:

∑m
i=1 |wi| = 1. If all wi ≥ 0, w would in-

deed define a probability distribution on the index set {1, . . . ,m}. This
probability distribution could then form the basis for a Gibbs classifier, al-
lowing for a PAC-Bayesian analysis. To make this happen, we apply the
following trick: Instead of dealing with the original weight vector w and
the original training data X, we construct a 2m-dimensional weight vec-
tor w′ := ([w1]+, . . . , [wm]+, [w1]−, . . . , [wm]−)T and use a training matrix
X ′ := (X −X) with twice the number of columns. Here, [x]+ := max{x, 0}
is defined to be zero for negative weights and |x| otherwise, and [x]− :=
max{0,−x} is zero for positive values and |x| otherwise. It is easy to see

115

116 Chapter 5. Weighted Rule Sets

that the margin of the original weight vector w on an original training in-
stance (x, y) is equal to the margin of the new weight vector on a duplicated
instance: ywTx = yw′Tx′. Since the components of w′ are positive, it in-
duces a distribution on {1, . . . , 2m} and the PAC-Bayesian analysis applies.
For ease of notation, we will assume for the rest of this section that the trick
has already been applied to the data and that w ∈ [0, 1]m.

Thus, the weight vector w defines a distribution Rw on {1, . . . ,m}, where
the probability of drawing an index k is simply the kth weight Pr[Rw = k] =
wk. In this notation, the margin of w on an instance (x, y) can be written as
yEr∼Rw [x(r)]. The empirical margin on a training set (X,Y) is then µ̂w :=
1
n

∑n
i=1 yi Er∼Rw [xi(r)], and the true margin is µw := E(x,y)∼D yEs∼Rw [x(r)].

Likewise, the empirical and true MMV are:

γ̂w := µ̂w −
1

n− 1

n∑
i=1

(
E

r∼Rw

[
xi(r)

]
− µ̂w

)2

γw := µw − E
(x,y)∼D

[(
E

r∼Rw

[
xi(r)

]
− µw

)2
]

Before we can give the results, we need to introduce some additional nota-
tion. We denote the Kullback-Leibler divergence between two distributions
R and S over a countable space H by D(R‖S) :=

∑
c∈HR(c) ln(R(c)/S(c)).

Furthermore, given a distribution R on space R and a distribution S on
space S, R × S denotes the product distribution on R × S, which assigns
probability Pr[R = r] Pr[S = s] to the event (r, s) ∈ R× S. Sometimes we
write R2 as a short cut for R×R. The following technical lemma is used in
the proofs of the PAC-Bayesian theorems for margin and MMV.

Lemma 5.3.5. For β > 0,K > 0, and R,S, x ∈ Rm satisfying Rj ≥ 0, Sj ≥
0, xj ≥ 0,

∑m
i=1Rj = 1, we have that if

n∑
j=1

Rje
βx2

j ≤ K

then
n∑
j=1

Sjxj ≤

√
D(R‖S) + lnK

β

For a proof, see lemma 21 in McAllester (1999). With this, we are in the
position to give PAC-Bayesian bounds for average margin and MMV.

Theorem 5.3.6. Let v ∈ [0, 1]m, ‖v‖1 = 1 be a fixed weight vector, and
w ∈ [0, 1]m, ‖w‖1 = 1 be a weight vector depending on a training set (X,Y)
of size n drawn i.i.d. from a fixed distribution D. Then, for any δ > 0:

Pr
(X,Y)∼Dn

[
µw ≤ µ̂w +

√
D(Rw‖Rv) + ln 1

δ + lnn
0.5n− 1

]
≥ 1− δ

116

5.3. Structural Risk Minimization for Weighted Rule Sets 117

Proof. Let µ̄r := |E(x,y)∼D[yx(r)] − 1
n

∑n
i=1 yixi(r)| denote the difference

between the expectation of the rth feature and the corresponding empirical
estimate. This is a random variable depending on (X,Y). As a first step,
we prove that

Pr
(X,Y)∼Dn

[
E

r∼Rv
e(0.5n−1)µ̄2

r ≤ n

δ

]
≥ 1− δ (5.17)

To prove this, note that changing one instance in (X,Y) changes µ̄r by at
most 2

n . Thus, for arbitrary r ∈ N, McDiarmid’s inequality (Theorem 5.3.2)
yields:

Pr
(X,Y)∼Dn

[
µ̄r ≥ x

]
≤ 2e−0.5nx2

(5.18)

Now, we investigate the distribution of the random variable µ̄r. Let f :
[0, 2]→ R denote the density function of µ̄r so that Pr[µ̄r ≤ x] =

∫ x
0 f(a)da.

Since we want to find an upper bound for E(X,Y)∼Dn e
(0.5n−1)µ̄2

r , we look for
a density fmax that achieves the maximum of this term. More precisely,
we look for the density f which maximizes

∫∞
0 e(0.5n−1)µ̄2

rf(µ̄r) dµ̄r, subject
to the constraint (5.18) that

∫∞
x f(µ̄r) dµ̄r ≤ 2e−0.5nx2

. The maximum is
achieved when

∫∞
x f(µ̄r) dµ̄r = 2e−0.5nx2

. Taking the derivative yields that
fmax(µ̄r) = 2nµ̄re−0.5nµ̄2

r . Therefore,

E
(X,Y)∼Dn

e(0.5n−1)µ̄2
r ≤

∫ ∞
0

e(0.5n−1)µ̄2
rfmax(µ̄r) dµ̄r

=
∫ ∞

0
2nµ̄re(0.5n−1)µ̄2

re−0.5nµ̄2
r dµ̄r

=
∫ ∞

0
2nµ̄re−µ̄

2
r dµ̄r

= n

Since this upper bound is valid for all indices r, it holds also for the expec-
tation over those indices:

E
(X,Y)∼Dn

E
r∼Rv

e(0.5n−1)µ̄2
r ≤ n

Inequality (5.17) follows from this and Markov’s inequality. Applying Lemma
5.3.5 to (5.17) with K = n

δ , R = Rw, S = Rv, x = (µ̄1, . . . , µ̄m)T , β = 0.5n−1
yields:

Pr
(X,Y)∼Dn

[n∑
j=1

wjµ̄j ≤

√
D(Rw‖Rv) + ln n

δ

0.5n− 1

]
≥ 1− δ

The result follows from the definition of µ̄j .

117

118 Chapter 5. Weighted Rule Sets

A similar result can be established for the MMV:

Theorem 5.3.7. Let v ∈ [0, 1]m, ‖v‖1 = 1 be a fixed weight vector, and
w ∈ [0, 1]m, ‖w‖1 = 1 be a weight vector depending on a training set (X,Y)
of size n drawn i.i.d. from a fixed distribution D. Then, for any δ > 0:

Pr
(X,Y)∼Dn

[
γw ≤ γ̂w +

√
D(R2

w‖R2
v) + ln 1

9δ + lnn
n
18 − 1

]
≥ 1− δ

Proof. The proof follows along the same lines as the preceding one, except
for the fact that γw needs to be decomposed into m2 components. We define
the m×m matrix Γ̂ = (γ̂rs)1≤r,s≤m with

γ̂rs :=
1
n

n∑
k=1

ykxk(r)−
1

n(n− 1)

n∑
k<l

(
ykxk(r)− ylxl(r)

)(
ykxk(s)− ylxl(s)

)
(5.19)

A simple calculation confirms that γ̂w = wT Γ̂w, or, in terms of distribu-
tions γ̂w = E(r,s)∼R2

w
γ̂rs. Similarly, γrs := E(X,Y)∼Dn γ̂rs, so that γw =

E(r,s)∼R2
w
γrs. Let γ̄rs := |γrs − γ̂rs| denote the difference between the ex-

pectation of the MMV restricted to feature r and s and the corresponding
empirical estimate. This is a random variable depending on (X,Y). As a
first step, we prove that

Pr
(X,Y)∼Dn

[
E

(r,s)∼R2
v

e(1
18
n−1)γ̄2

rs ≤ n

9δ

]
≥ 1− δ (5.20)

To prove this, we investigate changing one instance in (X,Y). The left-
most sum of (5.19) (the margin part) changes by at most 2

n . The right
summand (the variance part) changes by at most 4

n . This can be seen as fol-
lows: Changing an instance affects n− 1 summands of the form (ykxk(r)−
ylxl(r))(ykxk(s) − ylxl(s)) in the rightmost sum of (5.19), and each sum-
mand changes by at most 4, because supb,b′∈[−1,1][(a − b)2 − (a − b′)2] ≤ 4
for a ∈ [−1, 1]. Altogether, γ̄rs changes by at most 6

n . Thus, for arbitrary
r ∈ N, McDiarmid’s inequality (Theorem 5.3.2) yields:

Pr
(X,Y)∼Dn

[
γ̄rs ≥ x

]
≤ 2e−

1
18
nx2

(5.21)

Now, we follow the same procedure as in the proof for Theorem 5.3.6. We
look for the density f which maximizes

∫∞
0 e(1

18
n−1)γ̄2

rsf(γ̄rs) dγ̄rs, subject
to the constraint (5.21) that

∫∞
x f(γ̄rs) dγ̄rs ≤ 2e−

1
18
nx2

. The maximum is
achieved when

∫∞
x f(γ̄rs) dγ̄rs = 2e−

1
18
nx2

. Taking the derivative yields that

118

5.3. Structural Risk Minimization for Weighted Rule Sets 119

fmax(γ̄rs) = 2
9nγ̄rse

− 1
18
nγ̄2
rs . Therefore,

E
(X,Y)∼Dn

e(1
18
n−1)γ̄2

rs ≤
∫ ∞

0
e(1

18
n−1)γ̄2

rsfmax(γ̄rs) dγ̄rs

=
∫ ∞

0

2
9
nγ̄rse

(1
18
n−1)γ̄2

rse−
1
18
nγ̄2
rs dγ̄rs

=
∫ ∞

0

2
9
nγ̄rse

−γ̄2
rs dγ̄rs

=
n

9

Since this upper bound is valid for all indices r, s, it holds also for the
expectation over those indices:

E
(X,Y)∼Dn

E
(r,s)∼R2

v

e(1
18
n−1)γ̄2

rs ≤ n

9

Inequality (5.20) follows from this and Markov’s inequality. Applying Lemma
5.3.5 to (5.20) with K = n

9δ , R = R2
w, S = R2

v, x = (γ̄11, . . . , γ̄mm)T , β =
n
18 − 1 yields:

Pr
(X,Y)∼Dn

[n∑
r,s=1

wrwsγ̄rs ≤

√
D(R2

w‖R2
v) + ln n

9δ
n
18 − 1

]
≥ 1− δ

The result follows from the definition of γ̄rs.

Unfortunately, the bound is not very tight. In the next section, we
describe a novel bound that depends only on the rule repository size and is
therefore better suited for our purposes.

5.3.3 Repository Size Bounds

In the following we derive two concentration inequalities that apply di-
rectly to the empirical margin and the MMV without the need to compute
Rademacher complexities or the mutual entropy between weight vectors.
Instead of modifying existing bounds for the empirical error (so that they
apply to the empirical margins and MMV), we derive a new result using
properties of the specific hypothesis class in our case, that is, the class of
linear classifiers. The bounds turn out to be quite tight when compared
to their Rademacher and PAC-Bayesian counterparts. The structural risk
penalty depends only on the number of rules. This avoids costly calculations,
but turns out to still yield good risk estimates in empirical experiments. In
order to prove the actual concentration inequalities, we need the following
lemma:

119

120 Chapter 5. Weighted Rule Sets

Lemma 5.3.8 (Hoeffding’s inequality (Hoeffding, 1963)). Let X be a ran-
dom variable with EX = 0, a ≤ X ≤ b. Then, for s > 0,

E
[
esX
]
≤ es2(b−a)2/8

For the preceding concentration results we only required that w ∈ [−1, 1]m.
For the actual optimization problems in Section 5.2.2 and 5.2.3, however,
we had stricter requirements. If one denotes the unit-ball in Rm according
to the p-norm by Bmp := {w ∈ Rm|‖w‖p ≤ 1}, we had constraints to ensure
w ∈ Bm2 for empirical margin maximization and w ∈ Bm1 for MMV optimiza-
tion. It turns out that one can make use of these stricter requirements to
improve the concentration properties. In the case of empirical margins, we
give the following result, which relates the size of the weight vector space
to the instance space. The special case of regularization with the two-norm
can then be derived as a corollary.

Theorem 5.3.9. Let (X,Y) be the application of the rules to a training set
of size n ≥ 3 drawn i.i.d. from D. Let p ≥ 1 and q = p

p−1 (so that q = ∞,
if p = 1). If D is such that for all (x, y) ∼ D : x ∈ Bmq , then, for any linear
classifier w ∈ Bmp and δ > 0:

Pr

[
µw ≥ µ̂w −

√
2
n
m

2
q ln

2m
δ

]
≥ 1− δ

Proof. Let X ∈ [−1, 1]n×m denote the training matrix and Y ∈ [−1, 1]n the
class label vector. Then, the empirical margin can be conveniently written
as a bilinear form µ̂w = 1

nY
TXw. Correspondingly, the true margin is

simply µw = µTw, where µ := E(x,y)∼D yx is the expected mean instance
vector, pre-multiplied with the class. With this, one can write the maximal
difference between empirical and true margin µ̄ as the supremum over a dot
product with the weight vector w:

µ̄ := sup
w∈Bmp

|µ̂w − µw|

= sup
w∈Bmp

∣∣∣(1
n
XTY − µ

)T
w
∣∣∣

We are interested in upper-bounding the probability that µ̄ exceeds a thresh-

120

5.3. Structural Risk Minimization for Weighted Rule Sets 121

old ε:

Pr
[
µ̄ ≥ ε

]
= Pr

[
es

1
2
µ̄ ≥ es

1
2
ε
]

(5.22)

≤ e−
1
2
sε E

[
exp(s

1
2
µ̄)
]

(5.23)

= e−
1
2
sε E

[
exp

[
s sup
w∈Bmp

∣∣∣(1
2n
XTY − 1

2
µ
)T
w
∣∣∣]]

≤ e−
1
2
sε E

[
exp

[
s
∥∥∥ 1

2n
XTY − 1

2
µ
∥∥∥
q

(
sup
w∈Bmp

‖w‖p
)]]

(5.24)

≤ e−
1
2
sε E

[
exp

[
s
∥∥∥ 1

2n
XTY − 1

2
µ
∥∥∥
q

]]
(5.25)

In (5.22) and (5.23) we perform Chernoff’s bounding method: First, we
introduce an (arbitrary) parameter s > 0, which can be adjusted to fine-tune
the bound later on. Then, we apply Markov’s inequality. Since 1

p + 1
q = 1

we can apply Hölder’s inequality to the dot product in (5.23), so that the
supremum in (5.24) is only over the p-norm of w. Since w is taken from Bmp ,
the supremum in (5.25) is at most one and can be omitted.

Since the average over a vector’s components is smaller than the vector’s
largest component, we have for any x ∈ Rm and any q ≥ 1: 1

m

∑m
i=1 |xi|q ≤

sup1≤i≤m |xi|q and therefore (1
m

∑m
i=1 |xi|q)

1
q ≤ sup1≤i≤m |xi|, or, in terms

of norms ‖x‖q ≤ m
1
q ‖x‖∞. Therefore, where [x]i denotes the ith component

of vector x:

Pr
[
µ̄ ≥ ε

]
≤ e−

1
2
sε

[
E sup

1≤i≤m
exp

∣∣∣sm 1
q
[1
2n
Y TX − 1

2
µ
]
i

∣∣∣]

≤ e−
1
2
sε

[
E

m∑
i=1

exp
∣∣∣sm 1

q
[1
2n
Y TX − 1

2
µ
]
i

∣∣∣]

= e−
1
2
sε

[
m∑
i=1

E
n∏
j=1

exp
∣∣∣sm 1

q
[1
2n
yjxj −

1
2
µ
]
i

∣∣∣]

= e−
1
2
sε

[
m∑
i=1

n∏
j=1

E exp s
∣∣∣m 1

q
[1
2n
yjxj −

1
2
µ
]
i

∣∣∣] (5.26)

(5.26) holds, because the expectation of the product of independent random
variables equals the product of expectations. Define dij := m

1
q [1

2nyjxj−
1
2µ]i.

We would like to upper-bound exp(s|dij |). We can not apply Hoeffding’s in-
equality directly, because E[|dij |] 6= 0. However, when writing exp(s|dij |) ≤
exp(sdij) + exp(−sdij), Hoeffding’s lemma is applicable to the two sum-

mands. The dij can take values in the interval between − 1
2nm

1
q − 1

2µi and

121

122 Chapter 5. Weighted Rule Sets

1
2nm

1
q − 1

2µi. Since the size of this interval is 1
nm

1
q , we get:

Pr
[
µ̄ ≥ ε

]
≤ e−

1
2
sε

[
m∑
i=1

n∏
j=1

2 exp
[

1
8
s2m

2
q

1
n2

]]

= e−
1
2
sε2m exp

[
1
8
s2m

2
q

1
n

]
Setting s = 2nεm−

2
q yields:

Pr
[
µ̄ ≥ ε

]
≤ 2m exp

[
− 1

2
nε2m

− 2
q

]
The result follows by setting ε =

√
2
nm

2
q ln 2m

δ .

It is interesting to see how the regularization of the weight vector influ-
ences the bound. If w ∈ Bm1 , q = ∞ and the penalty grows only logarith-
mically with

√
ln 2m. If, on the other hand, w ∈ Bm2 , the penalty contains

an additional factor of
√
m. This is not very suprising. In the worst case,

if w ∈ Bm∞ the bound needs to hold for the case where each weight is set
to one. If the individual attributes are independent, the variances of each
attribute add up, so that V ar(wTµ) =

∑m
i=1 V ar(µi). To accommodate for

this m-fold uncertainty, the penalty contains the additional factor m. If, on
the other hand, the weights add to one, the variance of wTµ is determined
essentially by the component with the largest variance.

For the MMV we give a similar result. We restrict ourselves to the case
where w ∈ Bm1 .

Theorem 5.3.10. Let D be a fixed unknown distribution over Bm∞×{−1,+1}
and (X,Y) = {(x1, y1), . . . , (xn, yn)} be a sample of size n drawn i.i.d from
D. Then for all δ > 0 and all w ∈ Bm1 :

Pr
(X,Y)∼Dn

[
γw ≥ γ̂w −

√
18

2 lnm+ ln 1
δ

n

]
≥ 1− δ (5.27)

Proof. We assume that the training data is given as a n ×m matrix X ∈
Rn×m. Here, each of the n row vectors is an instance xi := (xi1, . . . , xim)
and each of the m columns represents a rule. When given a weight vector
w ∈ [−1; 1]m, we are interested in the distribution of the empirical margins
yixiw. If a training set contains a negative instance (that is, yi = −1)
one can simple multiply yi and xi with -1 to gain an equivalent positive
training instance that gives rise to the same margin. Therefore, we assume
without loss of generality that yi = 1 for all 1 ≤ i ≤ n and omit the yi in the
following. One can then conveniently represent the empirical margin µ̂w of w
with regard to X as the quadratic form µ̂w := 1

n1nXw, where 1n denotes the

122

5.3. Structural Risk Minimization for Weighted Rule Sets 123

vector containing n ones. To compute the MMV, we need the (unweighted)
empirical mean vector µ̂ ∈ Rn := 1

nX
T1n and the (unweighted) empirical

covariance matrix Σ̂ ∈ Rm×m := 1
n−1(XTX − 1

nX
T1n1TnX). Later on, we

will find it convenient to compute the individual entries σ̂ij in Σ̂ by

σ̂ij =
1

n(n− 1)

∑
k<l

(xki − xli)(xkj − xlj) (5.28)

The corresponding true quantities are µ := E µ̂, Σ := E Σ̂ and σij := E σ̂ij .
With these tools, the empirical MMV γ̂w can be defined as γ̂w := µ̂Tw −
wT Σ̂w, and the true MMV is just the expectation over all training sets
γw := EX∼Dn γ̂w. We would like to find an upper bound of the proba-
bility Pr[supw∈Bm1 (γ̂w − γw) ≥ ε] that the empirical MMV differs from its
expectation by more then ε for the worst possible weight vector.

First of all, observe that

sup
w∈Bm1

(
γ̂w − γw

)
= sup

w∈Bm1

(
(µ̂− µ)Tw − wT (Σ̂− Σ)w

)
= sup

w∈Bm1

(m∑
k=1

wk(µ̂k − µk)−
m∑

k,l=1

wkwl(σ̂kl − σkl)
)

≤ sup
w∈Bm1

(m∑
k,l=1

wkwl
[
(µ̂k − µk)− (σ̂kl − σkl)

])
(5.29)

≤ sup
v∈[−1;1]m×m

(m∑
k,l=1

vkl
[
(µ̂k − µk)− (σ̂kl − σkl)

])
(5.30)

≤ sup
k,l

(
(µ̂k − µk)− (σ̂kl − σkl)

)
(5.31)

Inequality (5.29) holds because the wl sum up to at most one, (5.30) is a
relaxation of the condition in the supremum, and (5.31) is due to the fact
that a linear function on a convex hull reaches its optimum at one of the
vertices.

Then, we can upper-bound the structural risk as follows, where s > 0 is
a free parameter that can be tuned to make the inequality sharper later on:

Pr[sup
w∈Bm1

(γ̂w − γw) ≥ ε] = Pr[sup
w∈Bm1

es(γ̂w−γw) ≥ esε]

≤ e−sε E
[

sup
w∈Bm1

es(γ̂w−γw)
]

(5.32)

≤ e−sε E
[

sup
k,l

es[(µ̂k−µk)−(σ̂kl−σkl)]
]

(5.33)

≤ e−sε
m∑

k,l=1

E
[
es[(µ̂k−µk)−(σ̂kl−σkl)]

]
(5.34)

123

124 Chapter 5. Weighted Rule Sets

Inequality (5.32) is an application of Markov’s inequality, (5.33) is given
above, and (5.34) follows because ex > 0 and the sum over all k, l includes
the summand that achieves the supremum.

Now, define the set of random variables

Z(k,l) := (µ̂k − µk)− (σ̂kl − σkl)

depending on X. If we can find an upper bound for the Z(k,l), (5.34) gives us
an upper bound of the structural risk. We follow the method by McDiarmid
(1989) and write Z(k,l) as a sum of martingale differences to find such a
bound. Let

V (k,l)
r := E

[
Z(k,l) | x1, . . . , xr

]
−E

[
Z(k,l) | x1, . . . , xr−1

]
Then, Z(k,l) =

∑n
r=1 V

(k,l)
r . Replacing the σ̂ij in V

(k,l)
r with their definition

(5.28) and µ̂i with 1
n

∑
j xjiwi yields:

V (k,l)
r =

1
n

(xrk −Exrk)− (5.35)

1
n(n− 1)

∑
j 6=r

[
E
[
σ̂klrj | x1, . . . , xr

]
−E

[
σ̂klrj | x1, . . . , xr−1

]]
(5.36)

where σ̂klij := (xik − xjk)(xil − xjl). It turns out that the random variable

V
(k,l)
r can take only values in the interval [c; c+ 6

n] for some constant c. The
first part in (5.35) depends only on xrk ∈ [−1; 1], so it can differ from its
expectation by at most 1

n . In the second part (5.36) each summand depends
only on xrk and xrl, so that the σ̂klij can take values that differ by at most
four. Since there are n − 1 summands, the part in (5.36) changes within a
range of at most 4

n depending on X. Also, since the conditional expectation
E[V (k,l)

r | x1, . . . , xr−1] = 0, we can apply a conditional version of Hoeffding’s
inequality (Lemma 5.3.8). Applying this inequality conditionally to the
V

(k,l)
r , we obtain:

E
[
esV

(k,l)
r | x1, . . . , xr−1

]
≤ e

1
8
s2(6

n
)2 (5.37)

Since the instances are drawn independently from each other, we can apply
(5.37) iteratively on all summands in Z(k,l) =

∑n
r=1 V

(k,l)
r :

E
[
esZ

(k,l)]
= E

[
es

Pn−1
i=1 V

(k,l)
i · esV

(k,l)
n

]
= E

[
es

Pn−1
i=1 V

(k,l)
i ·E

[
esV

(k,l)
n | x1, . . . , xn−1

]]
≤ E

[
es

Pn−1
i=1 V

(k,l)
i · e

1
8
s2(6

n
)2
]

≤ . . . ≤ en
1
8
s2(6

n
)2

= e
9
2
s2 1
n

124

5.4. The Rumble System 125

Finally, we may plug this result into (5.34):

Pr
[

sup
w∈Bm1

(γ̂w − γw) ≥ ε
]
≤ e−sεm2e

9
2
s2 1
n

≤ m2e−
1
9
ε2n+ 1

18
ε2n (by choosing s =

1
9
εn)

= m2e−
1
18
ε2n

Choosing

ε =

√
18(2 lnm+ ln 1

δ)
n

yields

Pr

[
sup
w∈Bm1

(γ̂w − γw) ≥

√
18(2 lnm+ ln 1

δ)
n

]
≤ δ

This is equivalent to the statement in Theorem 5.3.10.

The two inequalities basically state that the true margin or MMV is with
high probability larger than its empirical counterpart minus a risk term that
depends logarithmically on the size of the class of rules. A straightforward
application of lemmas 5.2.1 and 5.2.2 also give bounds on the true error.
The inequalities provide a pessimistic estimate of the structural risk that is
involved with using larger classes of rules. The constants in the the two risk
terms are too pessimistic for most real world distributions and applicable
only for worst-case analysis; for practical model selection applications one
should use smaller constants.

5.4 The Rumble System

In Section 5.2 we described three optimization criteria to perform empirical
risk minimization on weighted rule sets. These criteria allow for an efficient
way to identify good weight vectors for a given repository of rules. In Section
5.3 we dealt with the question of how large the rule repository should be in
order to minimize the structural risk. In this section we describe how these
building blocks are put together to form the statistically motivated Rumble
(Rule and Margin Based Learner) system.

Rumble’s main design is inspired by a simple application of structural
risk minimization. An outline is given in Algorithm 8. The system starts
with the training set given in a set X and an empty set of rules. In the
main loop, it adds a new rule to the set of rules and applies the rules to the
examples in the training set. It determines the weight vector p(i) optimizing

125

126 Chapter 5. Weighted Rule Sets

Algorithm 8 The basic Rumble rule learning algorithm.
procedure Rumble(X)

R(0) ← ∅
for i = 1, 2, . . . and while new rules available do

R(i) ← add new rule to R(i−1)

T (i) ← apply rules in R(i) to instances in X
p(i) ← argmaxp γ̂p(T (i))
γ(i) ← bound calculated from p(i) and |R(i)|

end for
return (R(i), p(i)) with the maximal γ(i)

end procedure

the soft margin loss, the empirical margin or the empirical MMV on this
data and calculates an upper bound on the corresponding true values given
the empirical quantity and the number of rules. If there are no new rules
available, the algorithm terminates the loop and returns the set of rules
and the weight vector which achieved the best bound. To complete the
system, one needs two additional subroutines: one to solve the empirical
optimization problems and another to generate new rules for the training
set.

The optimization tasks for empirical risk minimization are described in
Section 5.2. For MMV optimization, the problem is essentially a semidef-
inite quadratic programming problem with one equality and 2n inequality
constraints. It can be solved using any established algorithm for constrained
optimization. Usually, the computationally most demanding part of the pro-
cess is to determine the set of active constraints. It is a good idea to keep the
list of active constraints even during the main loop. In this way one can use
the active constraints for iteration i as a starting point for the optimization
problem in iteration i+ 1. If the active set is known, the optimization pro-
cedure boils down to solving a linear equation system. This system features
one equation for every weight set to a non-zero value and can be solved in
quadratic time. As the number of non-zero weights is usually rather small,
the optimization step is typically very fast.

In principle, one can use any arbitrary method to generate new rules.
Ideally, one would like to generate only rules, that are informative for the
prediction task at hand. However, selecting the rules depending on the class
labels in the training set can easily lead to overfitting.3 It is a better idea
to select the rules based on information about the structure of the instances
without the class labels or on other background knowledge. For example,
one could use information obtained in a previous clustering step to generate

3In the extreme case one could generate just one rule that perfectly explains the training
set. Of course, this would render the bound useless and lead to overfitting.

126

5.4. The Rumble System 127

rules that describe certain characteristics of the clusters in the data. It is not
clear how to devise a general scheme that generates “good” rules for all kinds
of data sets. Instead, we found it more sensible to keep the rule generation
process as generic and flexible as possible. In this way the user can adjust
the rule generation depending on her knowledge of the particular domain.
In the following we will present a rule generation strategy that resembles the
approach taken in traditional rule learning systems. It appears to work well
on typical attribute-value data sets as those taken from the UCI repository
and is easy to adjust to more complex data, for example in multi-relational
settings.

We start by generating rules that describe the original features found in
the data set. For nominal-valued feature we generate one rule of the form
“feature=value” for each possible value. We use a simple frequency based
discretization step to split continuous attributes into four bins and generate
one rule per bin. Each rule outputs +1, if its condition is met, -1 if it
is not, and 0, if the value is missing. This gives a certain base set of rules
encoding most information in the training sample. In a second step we apply
refinement operators on the existing rules to generate more complex rules.
One straight-forward approach is to combine two rules by calculating the
maximum or minimum of two base conditions. This resembles the logical
“and” and “or” used in traditional rule learning systems. The weighted sets
of rules representation seems to be a relaxed form of Boolean conjunction,
because optimizing for a large margin means that positive examples are
satisfied by a large majority of the rules. This suggests using the “or”
(that is, maximum) operation for the rules to generate a kind of relaxed
conjunctive normal form (CNF). However, the representation also allows
for negative weights, that is, negated rules. For negated rules, the “and”
(that is, minimum) operator appears to be the better choice. In effect, using
the minimum instead of the maximum operator is equivalent to swapping
the target label.

The repository size bounds used for capacity control depend only on the
number of rules that might be used to generate a weighted rule set, not on
any structural properties of the rules. While it is tempting to provide a
fixed default order of rule classes, best results can be achieved if the classes
are selected in an application-specific manner. For example, if the user has
some information on which kind of rules might be more informative than
others, she should start with a rule class containing the informative rules
and add the presumably non-informative rules only later on. This is an easy,
yet flexible and powerful way to adjust the learner’s bias and incorporate
background knowledge, without the need to adjust parameters or kernels.
The next section contains a small empirical study on how to adjust the rule
classes in order to boost predictive accuracy.

127

128 Chapter 5. Weighted Rule Sets

5.5 Experiments

In order to test the performance of Rumble on real world data, we imple-
mented a version in C++ on Linux. In practice, the overhead of optimizing
for rules with very low weights is not necessary, as their weight does not con-
tribute in a significant way. Thus, whenever the number of generated rules
exceeds one hundred, we ignore the rule with the lowest weight assigned
during the optimization step (but not during the rule refinement step). We
apply the system to all two-class data sets from Frank and Witten (1998).
We select the rule generation bias outlined above: nominal attributes are
added as one “feature=value” rule for each feature value, continuous at-
tributes are discretized into four bins. After those base rules, we build all
combinations of two rules and form new rules by combining the conditions
in each rule pair with the maximum operator. We use the model selection
procedure using Theorem 5.3.9 for the 1-norm SVM and the empirical mar-
gin maximization, and Theorem 5.3.10 for MMV optimization. We set the
risk term constants to 0.1 for the 1-norm SVM and empirical margin, and to
1.0 for MMV to avoid overly pessimistic model selection. Also, for the em-
pirical margin optimization, we adjusted the training sets in a preprocessing
step to contain equally many positive and negative instances. Otherwise, it
would have performed worse on data sets with skewed class distribution.

Table 5.1 gives the predictive accuracy of the induced rule sets as esti-
mated by tenfold cross-validation for the proposed system in comparison to
PART (Frank and Witten, 1998) and SLIPPER (Cohen and Singer, 1999).
We also include the results for the benchmark learner SL2 presented in
Section 4.3.1 and the rule ensemble described in Section 4.4.2. The table
indicates that MMV performs better than the 1-norm SVM in 14 of the 18
cases and better than empirical margin optimization in 15 cases. To assess
the statistical significance of this result we use a Wilcoxon signed ranks test.
The test yields a chance probability of less than 0.02 in both comparisons.
Thus, we can be very certain that MMV outperforms the 1-norm SVM and
empirical margin optimization on similar data sets. MMV is also better
than PART and SLIPPER in 10 of the 18 cases. The corresponding chance
probabilities are 0.71 and 0.81. Even with this rather limited rule generation
bias, MMV optimization appears to be competitive with existing rule learn-
ing algorithms. It outperforms SL2 in 12 of the 18 cases, but is better than
the rule ensemble on only 8 data sets. Thus, it is safe to say that MMV’s
bias works better than SL2’s bias towards small DNF sets on those data
sets. While the rule ensemble appears to be slightly better when averaged
over all data sets, the differences for individual data sets can be large. For
instance, MMV optimization outperforms the rule ensemble on the heart-c
data set by a margin of over 9 percent, while the rule ensemble’s accuracy
on the labor data set exceeds the one of MMV by over 12 percent. It seems
that the biases of Rumble and the rule ensemble work differently well on

128

5.5. Experiments 129

Data Set PART SLIP- SL2 Rule 1-norm Emp. MMV
PER Ens. SVM margin

australian 84.3 85.1 85.4 86.1 85.5 80.9 85.5
breast-cancer 69.6 71.4 70.1 73.8 70.3 52.8 69.2
breast-w 94.9 96.0 94.1 96.6 90.8 96.6 94.0
colic 84.4 84.6 81.5 82.9 81.5 80.7 82.9
diabetes 74.0 73.5 72.1 73.9 74.2 65.0 75.8
german 70.0 71.8 70.0 73.6 70.0 61.1 74.4
glass(G2) 80.0 83.1 71.6 73.2 61.3 68.1 80.4
heart-c 78.5 79.3 72.9 78.5 75.9 79.5 85.1
heart-h 80.5 79.2 80.5 79.8 78.6 78.9 81.6
heart-statlog 78.9 78.5 72.1 77.1 75.2 78.5 83.3
hepatitis 80.2 79.5 81.3 83.9 79.4 59.4 84.5
ionosphere 90.6 93.2 91.1 91.8 78.6 78.1 86.9
kr-vs-kp 99.3 59.4 98.1 97.8 68.3 77.7 91.2
labor 77.3 92.3 94.2 93.3 75.4 84.2 80.7
mushroom 100.0 100.0 100.0 100.0 88.7 97.3 91.8
sick 98.6 98.5 93.8 98.1 93.9 66.0 93.9
sonar 76.5 74.2 63.6 76.2 56.7 69.2 77.4
vote 95.9 94.1 94.3 95.9 95.6 89.2 95.6

Table 5.1: Results: percentage of correct classifications.

different data sets.

Table 5.2 gives the number of rules that were generated by PART, SLIP-
PER, and MMV. For reference, we also give the average number of rules
induced by SL2 as specified in Table 4.3 in Section 4.3.2. MMV generated
the most compact rule set in 7 cases, PART in 6, and SLIPPER in 7 cases,
so there is hardly a significant win for any of the three systems. However, in
contrast to PART, MMV never generated an excessively large rule set (more
than 30 rules). Also, unlike PART and SLIPPER, each of MMV’s rules con-
tains at most two literals, so the individual rules are much more compact
than those of the other systems. While regularization with the 1-norm in
MMV optimization induces sparse weight vectors, its bias towards small rule
sets is not as strong as the one of SL2. In a sense, Rumble appears to offer
a viable compromise between the comprehensibility of SL2’s rule sets and
the predictive accuracy of rule sets induced by the rule ensemble.

One additional benefits of the flexible rule generation process, though,
is the fact that the user can adjust the learner’s bias by rearranging the
order in which the rules are added or by including new rule conditions. The
order matters, because the risk of overfitting increases with the number of
generated rules. Hence, the structural risk term in (5.27) penalizes rules

129

130 Chapter 5. Weighted Rule Sets

Data Set SL2 PART SLIPPER MMV
australian 1.01 32 9 15
breastcancer 1.76 20 2 20
breastw 1.31 10 15 8
colic 1.08 9 2 15
diabetes 1.14 13 21 17
german 1.46 78 24 17
glassg2 1.59 7 30 17
heartc 1.29 25 19 22
hearth 1.13 10 8 10
heartstatlog 1.19 24 30 25
hepatitis 1.09 8 3 10
ionosphere 1.27 10 19 10
krvskp 8.91 23 35 6
labor 1.11 3 3 12
mushroom 3.07 13 10 5
sick 1.11 20 22 1
sonar 1.4 8 26 22
vote 1.46 7 4 2

Table 5.2: Results: number of induced rules.

that are added only very late. To avoid the pruning of good rules, the user
should configure the system to evaluate the (presumedly) more informative
rules first. We investigate this principle in three cases.

Consider the mushroom data set. Rules with just two conditions do
not seem to work very well on it. Taking a closer look at the data set, it
appears that the attributes are not isolated, but come in groups depending
on what part of the mushroom they describe. For instance, there are three
attributes describing the cap (shape, surface and color), four about the gills
(attachment, spacing, size, color) and six specifying the stalk (shape, root,
surface above ring, surface below ring, color above ring and color below ring).
In order to find rules that specify a certain appearance of a specific part of
the mushroom, we split the attributes into the segments cap, odor, gill, stalk,
veil, ring, and occurrence. For each segment we form all disjunctions of three
base features and add those as rules. As the rule generation process in our
implementation is controlled by a set of simple declarative statements, this
bias adjustment does not require the modification of any code. Running the
system with this new bias, we yield a predictive accuracy of 98.5% according
to tenfold cross-validation, a 6.7% increase over the default bias.

When looking at the labor data set, one immediately notices that there
are lots of missing values. The instances in the data set represent con-
tracts and it seems to be sensible that the inclusion or omission of a certain

130

5.5. Experiments 131

attribute value is on purpose rather than a random phenomenon. Conse-
quently, it might make sense to include new rules that are satisfied only if a
specific attribute value is missing. Also, some of the features are obviously
correlated (e.g. wage-increase-first-year and wage-increase-second-year). To
avoid combinations of attributes with similar informative value, we calculate
the mutual information of all pairs of base features and add the 200 disjunc-
tions with the smallest mutual information as rules. This two modifications
boost the estimated preditive accuracy from 80.7% to 91.2%, an increase of
over ten percent.

Finally, we investigate the mutagenesis data set (Helma et al., 2004).
This data set contains 684 instances, each of which represents the molecular
structure of a compounds. The goal is to predict whether or not a specific
compound is mutagenic. We represent each molecule as a graph, where
the nodes specify atoms and the edges are bonds. With this representation
one can form rules that are satisfied, if a specific substructure (that is, a
subgraph) is present in the molecule. Of course, one would like to have
rules about substructures that occur with a minimal frequency in the data
set, otherwise the rules would identify individual instances and the learner
would certainly overfit. We run the substructure mining system FreeTreeM-
iner (Rückert and Kramer, 2004a) with a minimum threshold of 2% to find
the frequently occurring acyclic subgraphs of the molecules in the data set.
This yields 3940 frequent structures, most of them containing long chains
of carbon atoms A straightforward approach is to generate the 3940 rules –
one for each substructure – in the same order as output by FreeTreeMiner.
Tenfold cross validation with this simple bias yields an accuracy estimate
of 68.4%. In order to improve this score one might want to include some
background knowledge. For example, it is well known that halogen com-
pounds are often mutagenic. Thus, we generate rules containing bromine
or chlorine atoms first. Also, the presence or absence of aldehyde, alcoholic
or carboxylic groups might indicate certain functional behavior; thus, we
generate rules containing oxygen atoms after the halogen rules. Running
the MMV system on this slightly reordered rule set yields an accuracy es-
timate of 70.9%. To further improve this score, we order the substructures
according to their size, because larger substructures are usually rather spe-
cific and more likely to play a role in overfitting. Also, a occurrence of two
(unconnected) small substructures might be more predictive than the exis-
tence of one large group. Therefore we first generate all rules containing up
to two atoms, and then build disjunctive rules testing the occurrence of two
small fragments before continuing with larger substructures. This improves
the score slightly to 73.1%, while retaining a small and informative rule set
containing only 19 rules. Further experiments on multi-relational data can
be found in the next chapter.

131

132 Chapter 5. Weighted Rule Sets

5.6 Summary and Related Work

In this chapter, we discussed empirical risk minimization and capacity con-
trol for weighted rule sets. We started with three different criteria for
margin-based risk minimization. The 1-norm SVM has been introduced by
Bradley and Mangasarian (1998) and is investigated in more detail by Zhu et
al. (2004). The feature-selection bias of regularization based on the 1-norm
is well known and used for instance in the lasso penalty, see Section 3.4.3.
Maximizing the empirical margin directly can be seen as a reformulation
of empirical risk minimization with a linear loss ll(c, x, y) := y(1 − c(x)),
which dominates the zero-one loss for x ∈ [−1, 1]. In a sense, the linear
loss is an extreme version of the hinge loss, because it optimizes the mar-
gin for every instance. Thus, empirical margin maximization can be seen
as an SVM, which treats all instances as support vectors, see Cristianini
and Shawe-Taylor (2000) for a discussion of SVMs. Finally, we introduced
Margin Minus Variance minimization, a new optimization criterion aiming
at classifiers that agree with most instances (large margin) and have only a
few exceptions (low variance). MMV is similar to logistic regression (Hos-
mer and Lemeshow, 2000) and Fisher’s linear discriminant (Fisher, 1936)
(see Hastie et al., 2001, for a concise discussion) in that it uses the variance
part. However, MMV differs in that it uses the total variance information
instead of the within-class variance.

In Section 5.3 we gave bounds for the true margin and MMV depending
on their empirical counterparts and some penalty terms depending on the
hypothesis class complexity. We provide three different ways to measure the
hypothesis class complexity. For Rademacher penalties, we use the empiri-
cal margins or second moments on randomized versions of the training data.
Rademacher penalties for model selection have been studied by Bartlett
et al. (2002). On the theoretical side, localized versions of Rademacher
complexities (Bartlett et al., 2005) can be shown to be tighter than their
global counterparts. There are still some interesting open questions re-
garding Rademacher bounds for margin based quantities (Wang and Feng,
2007). In the PAC-Bayesian framework, the original bounds apply to the
Gibbs and voting classifiers and depend on the availability of a good “prior”
distribution. There are many different ways to adapt the PAC-Bayesian
bound to margin-based classification, see for instance Herbrich and Grae-
pel (2002) and the tutorial by Langford (2005). More recently, “Occam’s
Hammer” (Blanchard and Fleuret, 2007) provides a pointwise version of the
PAC-Bayes bound, which applies to individual classifiers instead of the com-
bined Gibbs or voting classifiers. Finally, the repository size bounds depend
only on the number of rules in the rule repository. It is noteworthy that
the penalties in the bounds are O(

√
logm), that is, logarithmic in the rule

repository size, whereas a standard VC-dimension analysis yields a O(
√
m)

penalty.

132

5.6. Summary and Related Work 133

In the final sections, we combine margin-based empirical risk minimiza-
tion with capacity control based on the repository size bounds. An empirical
investigation of the resulting Rumble system (also published in Rückert and
Kramer, 2006b; Rückert and Kramer, 2007a) on UCI data sets (Asuncion
and Newman, 2007) indicates that MMV works best. Margin-based rule
learning has been employed by SLIPPER (Cohen and Singer, 1999) and
RuleFit (Friedman and Popescu, 2005). Similar to Rumble, the set cov-
ering and decision list machines (Marchand and Taylor, 2003; Marchand
and Shawe-Taylor, 2001; Sokolova et al., 2003; Marchand et al., 2003) build
sparse rule sets from a predefined rule repository. However, they do not pro-
vide weights and use the Occam’s razor bound for capacity control. Finally,
Lightweight Rule Induction (Weiss and Indurkhya, 2000) applies a simple
voting procedure to combine individual rule sets into a predictive ensemble,
but it does not explicitly optimize the margin.

133

134 Chapter 5. Weighted Rule Sets

134

Chapter 6

First-Order Rule Learning

This chapter deals with rule learning on data in first-order representation. After a
short description of the new challenges introduced by first-order representations,
we describe how the rule learner Rumble can be extended in a modular and
flexible fashion to address some of the pragmatic considerations posed by the
multi-relational setting. To address the challenges in a systematic way, we
formulate a framework to assess and categorize multi-relational learning systems
according to the way they extract information from the available data. Based
on this framework, we devise a new rule generation procedure for graph-based
data, which aims at highly diverse rule sets. The procedure applies stochastic
local search to optimize a dispersion score quantifying the diversity of the rule
set. Finally, we perform experiments to compare Rumble with other margin-
based first-order learners, to demonstrate the utility of the framework, and to
evaluate the dispersion-based rule generation procedure.

6.1 Motivation

In the preceding chapters we approached rule learning from a statistical
perspective and proposed new methods to address the two main challenges
in rule learning, namely, efficient empirical risk minimization and capacity
control. The proposed methods, systems and analyses dealt with the tra-
ditional statistical setting, where a training or test instance is essentially a
row in a table, that is, a vector. This data representation is easy to han-
dle and applicable whenever the data is readily available in a single table
format. However, in many real-world applications, the data is structured
or too complex to be adequately modeled in a single table. For instance,
it is awkward to represent molecules in a single table and impossible to so,
if one row in the table should represent an instance. A much more natu-
ral and convenient way is to store the information in three tables, one for
atoms, one for bonds and a third one to represent molecule instances. In
this way each molecule is represented by one entry in the molecule table and

135

136 Chapter 6. First-Order Rule Learning

its structure can be easily determined by following the references to the cor-
responding entries in the atom and bond relations. An additional advantage
of such a multi-relational representation is the fact that one can incorpo-
rate background knowledge in additional tables. In the molecule example,
one could give information about partial charges, hydrophobicity and so on.
If supported by the learning system, some of the background information
might even be computed dynamically so that a wealth of complex informa-
tion can be accessed on demand without the need to store and manage large
databases.

Learning systems which can deal with more than one data table are said
to work in the multi-relational setting. Multi-relational representations are a
special case of first-order logic, where relations can also be defined intention-
ally and recursive definitions allow for the formulation of complex relations.
Not surprisingly, many multi-relational learning systems are based on Pro-
log or similar logic concepts. Research on inductive logic programming in
particular has led to a range of first-order learning systems. The large ma-
jority of them are based on separate-and-conquer rule learning, although
decision trees (Blockeel and De Raedt, 1998; Kramer, 1996) have also been
employed.

From a statistical point of view, multi-relational classification is not very
different from propositional classification. In both cases, the goal is to find
classifiers that are accurate models of Pr[Y |X], that is, the conditional prob-
ability of the class label given a training or test instance. The main difference
is the size and the structure of the input space. In propositional domains,
the input space is simply the space of all possible attribute-value tuples.
In many learning systems, this space is simply assumed to be equivalent to
a vector space. In contrast, first-order input spaces can feature arbitrarily
complex structure and be of immense size. Representations that work well
in one case might fail in other cases. Sometimes, different aspects of the data
contribute in different ways. For instance, in Structure-Activity Relation-
ship (SAR) applications, small molecules might be represented as labeled
graphs. There are many ways to extract relevant information from such a
labeled graph: For instance, structural local properties of the graph’s struc-
ture, such as the presence or absence of a specific subgraph, provide valuable
information about active parts of a molecule. Sometimes, descriptive local
properties, such as the partial charge of one specific atom can contribute to
the classification. Global summary statistics or aggregated information over
the whole graph might also contain significant information. Clearly, it is not
feasible to make use of all possible structural or descriptive, global or local
data properties in the learning step.

The main challenge in first-order rule learning is therefore to extract as
much relevant information as possible from the training data. There are two
aspects to this problem:

136

6.1. Motivation 137

• Pragmatic considerations, such as data modelling and suitable meth-
ods to provide and use background knowledge, which might help to
identify the relevant information to be extracted. We deal with those
issues in Section 6.2.

• Fundamental considerations. These include analytical and empirical
questions about how to generate features that extract information from
the data and how to use certain kinds of information for classifier con-
struction. We deal with those questions in the framework in Section
6.3 and propose a novel rule generation procedure based on the frame-
work in Section 6.4.

From a user’s perspective, the pragmatic issues are the more relevant
ones. In most practical settings, there is some domain knowledge available
that could be used to rate the relevance of individual data features. Incor-
porating such knowledge in the learning task can make a huge difference,
because it allows the system to examine only presumedly relevant features
and ignore irrelevant parts of the data. Also, the user might find it im-
portant to select a suitable representation for the input data. For example,
deciding whether or not a substructure occurs in a molecular graph is an
NP-hard problem. If graph and substructure data are stored in an unfa-
vorable representation, occurrence checks can take considerable amounts of
time. Therefore, relational learning systems should be designed to allow for
a flexible and easy to understand, yet powerful way to specify meta informa-
tion and represent input data. As stated above, we deal with such pragmatic
considerations in Section 6.2, where we describe how Rumble can be used
with first-order data.

The fundamental considerations mentioned above are more relevant for
the designer of a multi-relational learning system. By extracting features
from the input data, a learning system is essentially partitioning the input
space X into pairwise disjoint parts X1, . . . ,Xt, where the instances in each
part give rise to the same feature values. Since the main goal is to model
Pr(Y = y|X = x) accurately, the partitioning should be performed in a way
that for each instance x in a part Xj Pr(Y = y|X = x) ≥ 0.5 for one class
label y and Pr(Y = y′|X = x) ≤ 0.5 for any other class label y′ 6= y. In
other words, the input space should be partitioned so that the Bayes classi-
fier assigns the same class label to all instances in one particular partition.
Of course, since the true underlying distribution is not known exactly, it
is impossible to find such a partitioning. However, we have access to the
training sample, so we can estimate an approximate partitioning. Finding a
good partitioning for relational data is a non-trivial task. It is complicated
by the fact that most first-order learning systems perform the partitioning
only implicitly by selecting features to be generated and included in the final
model. Since this is often a complex process, it can be hard to compare and
rate different approaches to feature generation. In Section 6.3 we describe

137

138 Chapter 6. First-Order Rule Learning

a general framework that categorizes learning systems according to the way
information is extracted from the input data. This allows theoretical and
empirical investigations on how feature generation should be performed un-
der which circumstances. In Section 6.4 we make use of the framework
to derive a feature generation approach that aims specifically at features
that complement each other. This leads to diverse, but small and therefore
simple feature sets for first-order rule learning. We evaluate Rumble, the
framework, and the feature generation approach empirically in Section 6.5.

6.2 Extending Rumble to First-Order Data

In principle, every propositional learning system can be upgraded to a first-
order setting, for instance, by adding a preprocessing step that performs
some form of propositionalization. However, when it comes to efficiency
and ease of use, integrated systems that can deal directly with first-order
data are often beneficiary. Unfortunately, upgrading propositional learners
in an integrated fashion is not always easy. For instance, the SL2 system
presented in Section 4.3 applies a stochastic local search approach to em-
pirical risk minimization. This works well for single relations with Boolean
attributes, but it is unclear how to do it with many relations and inter-
relation dependencies. Since the success of SLS depends to a certain degree
on its efficient and fast inner loop and since specialization and generalization
operators for first-order logic are expensive and complicated procedures, it is
unlikely that SL2’s approach to empirical risk minimization can be extended
towards the first-order case without sacrificing efficiency or accuracy. The
situation is more favorable, though, for the margin-based approach taken
by Rumble. Here, we already have a rather generic and flexible way to
generate individual rules. Extending the rule generation procedure to incor-
porate first-order rules is not a large problem. In the following we describe
two modifications to Rumble that were made specifically to improve sup-
port for multi-relational data.

The main goal for the design of the rule generation process is to allow for
a flexible and generic way to specify a declarative bias. Consequently, we do
not restrict the data representation to a particular format. For instance, it
does not make sense to force the user to encode molecules as Prolog facts, if
the data is already available in a much more efficient representation (for ex-
ample, a canonical form for a graph mining tool). Instead, we implemented
a plugin architecture, where the user can upgrade Rumble with plugins for
various data representations. Each plugin offers a set of refinement opera-
tors that are called by the system to generate new rules. The refinement
operator can access the existing set of rules, the weights of the current rule
set, the training data and generic background knowledge to form new rules.
A setup text file specifies, which plugins are loaded and which refinement op-

138

6.2. Extending Rumble to First-Order Data 139

erators are called in which order to generate the rules. Right now, Rumble
provides five plugins:

• Terms. These are simple mathematical expressions such as (a1 +a2)/2
or (a1 ∧ a3)∨ a5. The plugin provides refinement operators for adding
new (fixed) term rules, modifying existing term rules or combining
existing terms to form a new rule.

• FreeTree. Predicting the biological activity of small molecules is an im-
portant and popular application of ILP. Thus, we incorporate a version
of the frequent substructure mining tool FreeTreeMiner (Rückert and
Kramer, 2004a) as a plugin. It offers refinement operators that can
build rules checking for the occurrence of a particular substructure,
create all substructure rules that occur more frequently in the train-
ing data than a predefined threshold or refine existing rules depending
on the existing rule set or weights.

• Dispersion. This plugin provides the dispersion-based feature genera-
tion method for graph data described in Section 6.4. As a side effect
it can also be used to generate subgraph features using a frequent
subgraph mining algorithm similar to gSpan (Yan and Han, 2002).

• Prolog. Prolog is a powerful and generic way to represent general data
and background knowledge. The Prolog plugin incorporates a fully
featured Prolog engine based on YAP Prolog (Costa and Lopes, 2007)
or CxProlog (Dias, 2006). This enables the user to write her own
refinement operators in Prolog.

• Meta. This plugin can combine existing rules from other plugins using
simple logical combinations. The refinement operators can be config-
ured to combine only rules whose instantiations meet certain condi-
tions, for instance, minimum mutual information.

Figure 6.1 gives a small text file specifying a sample declarative bias for
a small molecule data set. Initially, the file specifies the plugins to be loaded
and the feature describing the target class. The following declaration states
that the system should first generate 200 rules describing the substructures
that occur in more than 20% of the molecules in the data set. Then, the Term
plugin generates five rules that test the molecules’ logp value as discretized
in 5 equal-frequency bins. Finally, the Meta plugin combines those of the
first 205 rules in a disjunction, whose mutual information is among the fifty
lowest.

It is noteworthy that the system’s predictive performance depends not
only on the rule repository as a whole, but also on the order in which the
rules are evaluted. If the system generates a large amount of rules, it is
quite likely that one of the rules agrees with the target class label just by

139

140 Chapter 6. First-Order Rule Learning

Required plugins
require <FreeTreePlugin>
require <TermPlugin>
require <MetaPlugin>

Target feature
target Term yoshida.Class

Refinement operators
refine FreeTree MinFreq yoshida.SMILES: 0.2 SortedBySize 200
refine Term NewFeature yoshida.Logp:bin1of5
refine Term NewFeature yoshida.Logp:bin2of5
refine Term NewFeature yoshida.Logp:bin3of5
refine Term NewFeature yoshida.Logp:bin4of5
refine Meta CombineMostUncorrelated [1-205] or 50

Figure 6.1: A sample bias description file

pure coincidence. Hence, the risk of overfitting increases with the number of
generated rules and the structural risk term in equation (5.27) penalizes rules
that are added only late. The user should therefore configure the system
to generate presumedly informative rules first. For instance, in the task
of predicting carcinogenicity of small molecules, one could generate rules
that check for the existence of halogens (which are known to contribute to
carcinogenicity) before presumedly less informative rules. This imprecise
knowledge is in contrast to the design in many ILP systems, where the
background knowledge is encoded in a precise logical form. The order can
be interpreted as a Bayesian prior: early rules have greater prior probability.

Since the rules can be based on two or more relations, they aggregate
information from different sources. Often, each part of a rule contributes
some information about the target. Removing or replacing a part of the
rule leads to a different, but related rule. This means that there is often
not a single, but rather a whole number of related good rules. In many
multi-relational domains the bias towards small rule sets does therefore not
work very well, because it picks a single rule instead of making use of the
complete information provided by all related rules. This was also the case
for the experiments in Section 6.5. As a remedy, we generalize the MMV
criterion in Rumble to use an arbitrary p-norm instead of the 1-norm for

140

6.3. A Framework for Relational Learning 141

regularization. More formally, we compute the solution to

maximize
w

µ̂w − σ̂w (6.1)

subject to ‖w‖p =
(m∑
j=1

|wj |p
) 1
p = 1.

Here, the main difference to the original MMV formulation in (5.3) is the
norm parameter p ≥ 1. It determines how evenly the weights should be
distributed among the rules. In the original case p = 1, the space of feasible
weight vectors {w||w|1 = 1} is peaked at the vertices, where one or more
weights are zero. Hence, the optimization procedure sets the rule weight
to exactly zero whenever the contribution of a rule is small compared to
the contribution of other rules. The exact opposite is true when p = ∞.
Here, the feasible set is peaked whenever |wi| = 1 so that the resulting
weight vector tends to assign full weight to many rules. Empirically, values
between 1 and 4 work well on most problems. Regularization with p = 2
is a good compromise in many cases. In regression, a similar regularization
criterion is known as ridge penalty. Before we perform experiments with this
extended version of Rumble, we address the question of how rules should
be generated in the first place. We frame this problem in a more precise
framework in the next section and propose a dispersion-based approach to
rule generation in Section 6.4.

6.3 A Framework for Relational Learning

As outlined in Section 6.2, the main difference between propositional and
multi-relational learning is the fact that in multi-relational learning the in-
put space contains complex, structured objects. Usually, these objects can
be described in many ways and these descriptions can be aggregated or
combined to form potentially useful criteria for classification. Hence, if a
learning system wants to extract meaningful information, it has to deal with
the combinatorial explosion of different information extraction possibilities.
Since it is generally infeasible to generate all possible combinations, each
multi-relational learning algorithm needs to address the problem of finding
a good subset of features that are relevant for the classification problem at
hand. In order to compare, analyze and assess different learning algorithms
it is therefore essential to understand what kind of information is used in
which way by each system. In the following we propose a framework that
compares learning algorithms with regard to the information, which is ex-
tracted for classification. The framework is separated in two parts. In the
high level view, we make no assumptions on the inner working of the actual
learning algorithm. Instead, we focus only on the queries used to extract
the information from the database. In the low-level view, we assume that

141

142 Chapter 6. First-Order Rule Learning

the learner is designed based on a simple loop, which repeatedly generates,
filters and sorts queries. This view is generic enough to cover a broad range
of existing learning algorithms, while specific enough to allow for meaningful
analytical and empirical investigations.

6.3.1 High-Level View

To model the case of first-order data, we assume from now on that X is
simply a space of arbitrary instances. In contrast to the propositional case
we do not make any assumptions about the semantics or representation
of instances; they may be graphs, arbitrary objects in the real world or
mathematical constructs. Instead of imposing any syntactical or semantical
restrictions on the instances, we make use of a query language to derive
pieces of information about specific instances. For our purposes a query is a
function from the instance space to the real numbers extended with a “don’t
know” symbol: q : X → R, where R := R∪{ε} and the abstention symbol ε
denotes “no information available”. We assume that a query extracts some
information from the instances in X , such as the presence or absence of
some properties, the number of nodes, or the result of some mathematical
function. In typical applications, one would encode nominal values, such as
red, blue and green using two-valued indicator variables and numerical (for
example size) or aggregated quantities (for example mean size of referenced
objects) as real numbers. We assume a fixed space Q of possible queries.
We also need a way to encode a query as a string of symbols in a computer.
For that purpose, we define a language LQ, so that every string sq ∈ LQ
represents exactly one query q ∈ Q. For ease of notation, we do not distin-
guish between q and sq explicitly, but simply write q whenever we mean “q
as a string”, and q(x) whenever we apply the query q as a function to x.

Later on, we will apply queries to whole sequences of instances X ∈ X n.
Again, we denote the component-wise application of q on such as sequence of
instances X by q(X), so that q : X n → Rn can be seen a a function of arbi-
trary arity n. Finally, let Y := {−1, 1} be the set of class labels, so that X×Y
denotes the labeled instance space. We are concerned with a learning system,
that induces classifiers1 from data. We assume that the system is given a
training set (X,Y) ∈ (X × Y)n of n labeled instances (x1, y1), . . . , (xn, yn).
A classifier is a function that assigns a class to each instance in X . In our
setting we formalize this as follows: a classifier c := (k, dc, Qc) of size k con-
tains a decision function dc : Rk → Y and a sequence of queries Qc ∈ Qk. A
classifier assigns a class label to each instance by evaluating the queries and
combing the query results through the decision function: ifQc = (q1, . . . , qk),
then c(x) := dc(q1(x), . . . , qk(x)). Let C be the space of all classifiers. In

1All of the following considerations are equally valid if one is concerned with regression
rather than classification. Further, generalizations to more complex learning settings such
as multi-class, multi-label, or multi-task learning are straightforward.

142

6.3. A Framework for Relational Learning 143

(X,Y)

q1

c
!

L

(X,Y)

q2

c
!

L

(X,Y)

q3

c3

L

(X,Y)

q4

c4

L
…

(X,Y)

qn

cn

L
cn

Figure 6.2: The high-level view of a relational learning system in the frame-
work: The learning system L poses queries q1, . . . , qn to the database and
receives an instantiation vector for each query. Sometimes, after receiving
an instantiation vector, the system updates its current classifier. Here, ci
denotes the current (partial) classifier after posing query qi.

particular, let cε denote the empty classifier. A learning system L is given a
training set (X,Y) as input. After some computations it outputs a classifier
c that can be used to make new predictions on new instances. Thus, we can
formalize a learning system as a function L : (X,Y)→ C.

Of course, the learning system is implemented as a computer program.
In order to gather information about the training set, it poses queries to the
database, which contains the training instances. We would like to classify
and investigate the various ways a learning algorithm generates new queries
and ultimately induces a final classifier. To do so, we observe the queries
q1, q2, . . . , ql that are sent from the system to the database in chronolog-
ical order. We assume that L is a deterministic algorithm, so that each
qi is uniquely identified by the input to L, that is, the training set and
(possibly) some input parameter. This is not a severe limitation as most
non-deterministic algorithms use in practice a pseudo random number gen-
erator. For the ease of presentation we also assume that the algorithm never
sends the same query twice, so that qi 6= qj for all 1 ≤ i, j ≤ l. An algorithm
can be easily extended with a caching procedure to meet this condition.
Finally, we do not demand that the queries are evaluated on all instances
in the database. Some algorithms (for example separate-and-conquer ap-
proaches) perform the queries only on subsets of instances, others only on
single instances (for instance SVMs). For simplicity of representation we as-
sume that the database always returns a vector s ∈ Rn, where the undesired
components of s are simply set to ε.

Since we are concerned with deterministic learning machines only, a
query qk is uniquely identified by the list of preceding queries q1, . . . , qk−1,
the corresponding result vectors (q1(X), . . . , qk−1(X)) and the class label

143

144 Chapter 6. First-Order Rule Learning

vector Y . Let ~qk : LkQ×Rn×k×Y → Q be the function, that decides, which
new query is sent to the database, after the system has sent the preceding
k queries, and observed the corresponding instantiations and the class label
vector Y .2 Thus, the kth query can be reconstructed by an application of
~qk on the data that is returned by the database for ~q1, . . . , ~qk−1.

Some algorithms build the classifier to be output in an incremental fash-
ion. For example, separate-and-conquer rule learning systems iteratively
add new rules to an initially empty rule set until a stopping criterion is met.
To model this stepwise refinement approach, we peek inside the learning sys-
tem to observe which (partial) classifiers have been built so far. We denote
the current classifier of the algorithm after sending k queries to the database
as ck. When the machine maintains no classifier until query k, we set the
c1, . . . , ck to the empty classifier cε. By convention, c0 = cε, because there is
no current classifier before the system starts and cl = L(X,Y), because after
the last query is posed, the algorithm builds and outputs the final classifier.
Similar to the ri, the system’s current classifier after query qk depends only
on the queries so far, their instantiations and the class labels. We define
the function ~ck : LkQ ×Rn×k × Y → C to output the current classifier of the
system after seeing the first k queries, the corresponding instantiations and
Y . The setup is illustrated in Figure 6.2.

This formalization allows us to categorize learning systems into certain
categories. First of all, we can discriminate between systems that build the
classifier incrementally and systems that generate all the queries first, but
induce the final classifier only in the last step. We say that a learning system
is a propositionalization system, if for all k < l: ck = cε and cl = L(X,Y).
Otherwise, the system is a stepwise refining system. In principle, every
refinement system can be reduced to a propositionalization system, because
one can modify the ~ck(q1, . . . , qk, q1(X), . . . , qk(X), Y) to output only the
empty classifier for k < l and keep only the last classifier generation function
~cl. However, having access to an initial (partial) classifier can speed up the
computation of the ~qk and ~sk considerably. Many practical systems are
therefore implemented as refining systems.

Another way to categorize multi-relational learning systems is by the
information that is used in the ~qk and ~sk. One can distinguish between
three sources of information:

• The dependence of ~qk and ~ck on the preceding query representations. If
the generation of new queries does not depend on the representation
of the preceding queries, we call the system agnostic propositional-
ization. For instance, in the case of small molecule data, a learning
system could simply process a list of predefined queries that check for
certain active functional groups of a small molecule. However, this is

2In slight abuse of notation we use the arrow in ~q to indicate that ~q describes the
transition from k to k + 1.

144

6.3. A Framework for Relational Learning 145

rarely practical. Many systems generate the queries according to a
“more general than” order imposed on the query strings in LQ. Some-
times, the dependence of ~qk on the preceding queries can by configured
explicitly by a user, often by specifying refinement operators.

• The dependence of ~qk and ~ck on the preceding instantiations. The
main motivation to use this information is to find a preferably di-
verse and informative set of queries. Some systems prune away queries
whose instantiations are duplicates of existing queries. On graph data
it is common to prune away queries that are satisfied or violated on
less instances than a predefined threshold, because such queries intro-
duce little discriminative power and are therefore less desirable. If the
queries in LQ are ordered by generality, threshold-based pruning can
be implemented efficiently, because it depends only on the instantia-
tion of the least general generalizations of a query. In Section 6.5.3
we evaluate a dispersion-based approach that depends on all preced-
ing instantiations to produce a set of queries with preferably diverse
instantiations.

• The dependence of ~qk and ~ck on the class labels Y . This is the most
prominently used information for ~ck, because every good classifier is
based on queries that are as informative as possible about the target.
The influence of the class labels on ~qk is less clear, because it is hard
to predict whether or not a new feature will offer valuable information
about the target before evaluating it. We will see later that one can
do remarkably well with ~qk that do not depend on the class labels.

The categorization of learning algorithms according to the utilization of
available information can be used as a foundation for theoretical analyses of
existing and novel systems. For instance, a system that makes use of the class
labels Y to build the queries is more susceptible to overfitting than a learner
that ignores this information. An analytical investigation could quantify
this phenomenon. A similar effect takes place when a learner generates
queries whose instantiations are highly correlated. A simple application of
the PAC-Bayesian bound can be used to determine analytically, to which
degree the queries’ inter-correlation influences the overfitting behavior.

In most learning systems, ~qk and ~ck depend on all three sources of infor-
mation, although the actual dependencies vary considerably. Often, perfor-
mance considerations lead to systems that use certain types of information
only implicitly, so that their influence on the output is only marginal. Some-
times there are complicated interdependencies that make it hard to assess
the influence of each source of information. However, there are also many
learning systems which proceed in a way that can easily be formalized. For
example, a very common approach to relational learning is to extend an
initially empty classifier step by step until it reaches a sufficient level of pro-

145

146 Chapter 6. First-Order Rule Learning

ficiency. Often, such a system iterates in a loop: First, it generates a new
batch of queries and sends it to the database. Then, it filters those queries
that are likely to be relevant and adds them to the current (partial) classi-
fier. In the next section we give a formal way to describe this (or similar)
approaches to query and classifier construction.

6.3.2 Low-Level View

The level of the framework described in the preceding section focuses on the
sequence of queries and models from an abstract point of view. In particu-
lar, it does not consider the way the queries in a sequence are generated. In
the following, we take a look inside the learning system’s “black box” and
take a more procedural view of the query and classifier generation process.
On this level, we deal with the information effectively used to generate indi-
vidual queries or batches of queries. For instance, we can express formally
whether information about the target class is used directly (by looking it
up in the database) or only indirectly (via looking at a partially induced
classifier) in this process. To do so, we abstract from single queries and
instead deal with batches of queries, where each batch contains the queries
generated between two classifier updates. More formally, recall that ck de-
notes the current classifier of the system after sending the kth query qk.
If a system does not update the classifier after qk, then ck = ck−1. For
each current classifier c let Q(c) := {qi|ci = c} be the set of queries that
do not lead to an update of c. It is clear that the Q(.) can be used to
partition the the query sequence q0, . . . , ql into a sequence of query batches
Q1 = Q(q0), . . . , Ql′ = Q(ql), so that the Qk contain exactly those queries
that are sent to the database between two classifier updates. We can now
investigate, how a system generates each batch of queries. For instance,
when modeling a stepwise refinement system (for example, Tilde, Blockeel
and De Raedt, 1998), the algorithm obtains the next batch of queries or the
next query by maximizing some criterion (for instance with respect to the
target class). Another possibility is to generate the next queries depending
on the parameters of the decision function dc of the current classifier.

To allow for a more fine-grained formalization of the classifier update
process, we frame the construction of a query batch Qk as follows: First,
the queries in Qk are (syntactically) generated depending on some infor-
mation available at the time of generation, then they are filtered, sorted,
and finally handed over to a classifier construction procedure, which derives
the decision function dc. For each of these steps, we consider the informa-
tion that is necessary to perform them: information about the instances,
their class labels, the previously generated queries, or the partially learned
model. The generated queries are presented to the classifier construction
part of the learning system, which selects, weights, or otherwise processes
them to combine their information in a decision function dc for prediction.

146

6.3. A Framework for Relational Learning 147

g(.) f(.)

!L

q1 q3 q5

q7 q9 q10q8q6

q4q2

q1

q5 q7

q4q2

q1

q5q7 q4

q2

q1

q5

q7 q4

q2d

queries

(X,Y)
filtered
queries

sorted
queries

classifier

generator filter

sortinglearner

Figure 6.3: The low-level view of a relational learning system in the frame-
work: each batch of queries is generated by g(.), filtered through f(.), then
sorted according to � and finally handed over to the classifier construction,
where the queries are augmented with the decision function d to form an
(intermediate) classifier. Each component can base its actions on previous
queries, the training instances, the labels and/or previous classifiers. This
procedure is repeated iteratively until a final classifier is output.

To formally define the process of query generation and the information
used therein, we have to introduce a few functions and predicates. First,
we assume that the system contains a procedure b that generates the next
batch of queries. The resulting batch of queries is possibly sorted according
to some criterion and presented to the classifier construction procedure.
Different implementations of b are conceivable: For instance, b could use
information about the queries q1 to qk generated so far, X resp. Y , or the
current decision function dc. Zooming in on b, we may find it practical for
some systems to distinguish between the process of generating and filtering
queries. In other words, we assume the batch of queries is first generated
using a so-called generator procedure g and then filtered according to a
filter procedure f . Thus, b consists of two parts g and f where each query
generated by g is given as input to f . This does not necessarily need to
happen in a chronological way (first call g, then f), but it can also happen
in a more complex fashion.

Typical generator functions g generate queries syntactically based on a
declarative language bias. The filter function f can be thought of as apply-
ing an interestingness predicate p, as known from the data mining literature
(Mannila and Toivonen, 1997), to a set of generated queries f(Q) = {q ∈

147

148 Chapter 6. First-Order Rule Learning

generator filter sorting
predicate

agnostic g() f(Q′) �
syntax-dependent g(q1, ..., qk) f(Q′) �
instantiation-dependent g(X) fX(Q′) �X
interaction-depdendent g(q1, ..., qk, X) fq1,...,qk,X(Q′) �q1,...,qk,X
class-dependent g(q1, ..., qk, X, Y) fX,Y (Q′) �X,Y
model-dependent g(q1, ..., qk, dc) fq1,...,qk,dc(Q

′) �q1,...,qk,dc

Table 6.1: Sources of information for generator function, filter function, and
sorting order.

Q|p(q)}. In some instantiations of the framework, f may pick a single query,
for instance, by optimizing a scoring function. Splitting the process into gen-
erating and filtering, it is possible to reconstruct pattern mining approaches
like Warmr (Dehaspe and Toivonen, 1999) or classical ILP systems like FOIL
(Quinlan and Cameron-Jones, 1995) in some detail (see below). Optionally,
we can sort the resulting queries for the batch according to some order �,
which in turn may depend on various types of information. Finally, the
newly generated, filtered, and sorted batch of queries has to be instantiated
with respect to the instances of a database (if it has not already been in-
stantiated by g, f or the sorting procedure), before it can be processed by
the classifier construction procedure, which induces dc.

The generator/filter functions as well as the sorting predicate may be
based on different sources of information (see Table 6.1). If the data without
the class are accessed, we have X as an argument or as a subscript. If the
queries from the sequence up to index k are taken as input, we have q1 to
qk either as argument or as subscript. Analogously, we have Y or dc as an
argument of g, or as a subscript of f or �, if the target class or the current
model is required. A schematic illustration of the classifier induction loop in
this framework is given in Figure 6.3. Modelling a relational learning system
as an iterated query generation, filtering, sorting and learning procedure
might appear arbitrary or ad-hoc. However, we feel that the presented
framework not only enables theoretical and empirical investigations, but
is also flexible and generic enough to apply to existing systems. In the
next section we give a short survey of how a selection of existing relational
learning systems can be described and classified in the framework.

6.3.3 Instantiations of the Framework

In this section, we briefly discuss known and conceivable instantiations of
the above framework. First, many traditional ILP algorithms proceed top-
down, iterating query generation and testing. Typically, models consist of

148

6.3. A Framework for Relational Learning 149

queries that are combined conjunctively or disjunctively. Queries that are
already part of a model are syntactally refined according to a declarative lan-
guage bias specification. In this process, existing queries are often replaced
by newly generated queries. This scheme applies to many classical ILP algo-
rithms, from FOIL (Quinlan, 1990) to Tilde (Blockeel and De Raedt, 1998).
In terms of the framework, the queries are generated depending on previ-
ous queries (g(q1, ..., qk)) and evaluated with respect to the class (fX,Y (Q′)).
The state of the classifier dc is not included in the generation function, be-
cause the queries are combined conjunctively and no additional information
has to be considered for the purpose of query generation. Surprisingly, the
kFOIL (Landwehr et al., 2006) approach shares the same pattern of neces-
sary information (g(q1, ..., qk) and fX,Y (Q′)).

Some systems use more complex decision functions than just conjunc-
tions, for instance, linear combinations of queries. In these cases further
options are available. Structural logistic regression (Popescul et al., 2002;
Popescul and Ungar, 2003) refines only those features already incorporated
into the logistic regression model (g(q1, ..., qk, dc) and fX,Y (Q′)). Data-
driven approaches access the database already for the generation of new
queries. This can be observed in simple extensions of top-down methods,
where information about training instances is extracted “on the fly” from
the database and directly used in newly generated queries. As an example,
consider thresholds for tests on numeric variables in Tilde (g(q1, ..., qk, X)),
subsequently filtered as above with respect to the class (fX,Y (Q′)).

Progol (Muggleton, 1995) and other bottom-up, data-driven approaches
as implemented in Aleph (Železný et al., 2006) generate bottom clauses
based on single training instances (g(X)), and then search for compressive
and predictive clauses above the bottom clause in the lattice (fX,Y (Q′)).
Other ILP approaches based on the generalizations of pairs of instances can
be treated similarly. Data-driven propositionalization approaches include
Roth and Yih’s relation generation functions (RGFs) (Roth and Yih, 2001)
and aggregation-based methods (Krogel and Wrobel, 2001). Relation gener-
ation functions generate features by the application of general templates to
training instances (g(X) and f(Q′) = Q′). Roth and Yih also investigated
the use of frequency-based filtering (fX(Q′)) in subsequent publications.
Aggregate functions for propositionalization were proposed by Krogel and
Wrobel in their RELAGGS system (g(X)) and f(Q′) = Q′). In his PhD
thesis (Krogel, 2005), Krogel also discusses the elimination of redundant
features whenever there are functional dependencies between two or more
predicates (again fX(Q′)).

Other propositionalization approaches proceed purely syntactical in the
generation of new queries (Železný and Lavrač, 2006) (g()). However, syn-
tactic constraints such as the non-decomposability of structural features are
known to restrict the search space considerably. Moreover, feature filter-
ing is performed (fX(Q′)), making sure that any two features have different

149

150 Chapter 6. First-Order Rule Learning

extensions. In contrast to stepwise refinement methods, however, features
are generated at once and not incrementally. Top-down propositionalization
methods like Warmr (Dehaspe and Toivonen, 1999) and AGM (Inokuchi et
al., 2003) generate or refine existing queries syntactically (g(q1, ..., qk)) and
filter according to frequency constraints (fX(Q′)). The graph mining algo-
rithm gSpan (Yan and Han, 2002) generates new queries by searching for
frequent extensions of queries already known to be frequent (g(q1, ..., qk, X)
and f(Q′) = Q′).

6.4 Dispersion-Based Rule Generation for Struc-
tured Data

In the preceding section we described a framework to rate a relational learn-
ing system according to the kind of information it uses for rule generation,
filtering and sorting. Before reporting on experiments performed within the
framework in the next section, we describe a rule generation procedure for
Rumble that is inspired directly by the presented framework. The proce-
dure is motivated by the observation that many approaches to learning from
molecular graph data tend to generate large amounts of features. This is
the case even for methods that use information about the class labels during
feature generation (g(q1, ..., qk, X, Y) in the framework). This is in contrast
to the following simple lemma, which bounds the number of features that
are necessary for linear classifiers.

Lemma 6.4.1. Let X ∈ {−1, 1}n×m be a training matrix with rank d < n.
Then there are at least 2d weight vectors that induce a different partitioning
into positive and negative instances.

Proof. Since X has rank d, one can find a d× d submatrix X ′ of full rank.
Consider an arbitrary target vector y′ ∈ {−1, 1}d. Since X ′ has full rank,
there is exactly one weight vector w′ ∈ Rd which is a solution to the linear
equation system X ′w′ = y′. Insert zeros in those positions of w′, where a
column was removed to generate X ′ from X and denote the resulting weight
vector by w ∈ Rm. It is easy to see that w assigns the values of y′ to the
instances (rows) that were not removed while building X ′ from X. The
lemma follows, because there are exactly 2d different y′s.

Thus, if one selects the features in a way that the training matrix has
full rank, then one needs only n features to enable the learning algorithm
to induce any possible dichotomy and reach 100% training accuracy. Thus,
even if the learning algorithm does not use the class labels (g(q1, ..., qk, X)
in the framework), there is no need to generate more than n−1 rules. Since
many existing systems generate significantly more than n features, their
feature generation process appears to make inefficient use of the available
information in the training data.

150

6.4. Dispersion-Based Rule Generation for Structured Data 151

In the following we present a feature generation procedure for graph-
structured instances that aims at finding small, but complementary and di-
verse feature sets. For the sake of clarity, we only deal with features, which
specify whether or not a subgraph is present in an instance. However, the
approach is general enough to also work on more general representations, if
desired. Even though subgraph features are popular for graph classification
problems, the number of subgraphs grows exponentially with the size of the
graphs. Hence, it is clearly infeasible to use all possible subgraphs as fea-
tures. Therefore, many approaches restrict the set of subgraph features to
frequently occurring, frequent closed, or class-correlated subgraphs (Desh-
pande et al., 2005; Bringmann et al., 2006). In all of these cases, however,
there is no guarantee that the resulting feature sets have sufficient coverage
over all instances of a data set. Moreover, the resulting features may be
only slight alterations of a few subgraphs. As a consequence, the number of
features required to reach some level of performance may be unnecessarily
high, potentially harming comprehensibility and efficiency. While we focus
on graph classification in this study, the same problems occur with other
forms of structured data, for instance, in logic-based representations.

Instead of generating a bulk of features blindly and obtaining a well-
balanced coverage only incidentally, it may be worthwhile to actively con-
struct favorable structural features in the first place. One way to minimize
the number of features required is to explicitly maximize the diversity of sub-
graph features. Thus, we frame the search for diverse, complementary sets of
subgraph features as an optimization problem. We define a scoring function
measuring the diversity of a feature set and present a stochastic local search
(SLS) procedure to find subgraphs optimizing that score. Stochastic local
search is motivated by the NP-hardness of the problem of finding a perfectly
complementary subgraph given a set of graphs and optimal features so far.
To focus the search for useful structural features even further, it is possible
to extend the scoring function by balancing diversity with class correlation.
The resulting feature sets are used in linear classifiers. In Section 6.5.3, the
effectiveness of the method and its dependence on variations are tested in
experiments on three small molecule data sets from cheminformatics.

6.4.1 Finding Expressive Rule Sets

Recall that we deal with the problem of rule generation for linear classifiers
on first-order data. In this setting, the instances are arbitrary objects and we
need to find rules that extract meaningful information from the objects. In
particular we are interested in features that are well suited for use by a learn-
ing algorithm to construct a predictive classifier. Information theory gives
us the tools to quantify what constitues a feature set that is informative
about the target class: Let X ∈ {−1, 1}n×m be the training matrix con-
taining n instances x1, . . . , xn, where each instance xi = (xi(1), . . . , xi(m))

151

152 Chapter 6. First-Order Rule Learning

ranges over m features. Xi denotes the ith column of the training matrix,
that is, the instantiation of the ith feature. Assuming a binary classifica-
tion problem, we denote the class labels of the instances by Y ∈ {−1, 1}n.
Then we are aiming at features X1, . . . Xm with high mutual information
I(X;Y) = I(X1, . . . , Xm;Y) between features and target class. We can
write the mutual information as the difference between the entropy of X
and the conditional entropy of X given Y : I(X;Y) = H(X) − H(X|Y).
Thus, in order to obtain highly informative features, we need to maximize
H(X) := H(X1, . . . , Xm) and to minimize H(X|Y) := H(X1, . . . , Xm|Y).
This leads to the following three criteria:

• High correlation with the class. Since we would like to minimize
H(X|Y), we are looking for features that are highly correlated with
Y . This is the criterion that is most prominently applied in most
traditional multi-relational learning systems. Theoretically, a single
feature Xi agreeing with Y on all instances would be enough to ensure
H(Xi|Y) = 0. In practice it is rarely possible to find such a perfect
feature and often there is only a small number of features with high
correlation. In such a setting, the learning algorithm also needs to
consider features with comparably low correlation and the two other
criteria below become relevant for optimal feature construction.

• High feature entropy. The joint entropy can be upper-bounded by
the sum of single features: H(X) =

∑m
i=1H(Xi|Xi−1, . . . , X1) ≤∑m

i=1H(Xi). Thus, in order to maximize H(X) we need to maxi-
mize the entropy of each single feature. For Boolean features this
means that each feature should divide the training instances in two
parts of preferably equal size, so that it assigns −1 to roughly the
same number of objects as +1. This is intuitively intriguing: a set of
k features that assign +1 to only one training instance and −1 to the
others can discriminate only between k different instances, whereas a
set of features that divide the instances into two equal-sized parts can
discriminate between up to 2k bins of instances.

• High inter-feature entropy. Even if all single features have maximal
entropy, it could be the case that the features are highly correlated to
each other. In the most extreme case, it could be that all features as-
sign the same labels to all instances X1 = . . . = Xm. Clearly, we need
to ensure that the features complement each other and do not provide
the same information all over again. In terms of information theory one
can write H(X) =

∑m
i=1H(Xi|Xi−1, . . . , X1) ≤

∑m
i=1H(Xi|Xi−1).

Thus we need to maximize H(Xi|Xi−1) for all 1 < i ≤ n. Since the
features can be ordered arbitrarily, this essentially means we need to
maximize H(Xi|Xj) for each pair of features.

152

6.4. Dispersion-Based Rule Generation for Structured Data 153

The first criterion has been dealt with to great extent in the existing liter-
ature on relational learning, the second is sometimes addressed by putting
minimum frequency constraints on the features, and the third is usually not
considered or included only implicitly. This is a problem in particular in the
graph learning setting, where a feature indicates the occurrence or absence
of a substructure in a graph. Typically, it is easy to construct substructures
that appear in only a very small number of graphs, so the entropy of single
features tends to be low. To avoid this, one often selects substructures that
appear only with a certain minimal frequency in the graph database. Un-
fortunately, the resulting substructure’s instantiations are often very similar
so that inter-feature entropy is low. For instance, mining all subgraphs that
appear in at least six percent of the NCTRER data set (see Section 6.5.3)
yields 83,537 frequent subgraphs. However, when comparing the instantia-
tion Xi with Xj for all pairs of subgraphs (i, j), it turns out, that in 19% of
the pairs Xi = Xj and in 77% of the pairs Xi differs from Xj on less than
ten instances. Hence, training matrices based on minimum frequency mining
tend to be large and exhibit an unnecessarily large degree of redundancy.

On the other hand, it is easy to see that Hadamard matrices constitute
optimal training matrices with regard to the latter two criteria, because any
two columns are orthogonal (so H(Xi, Xj) = 2 is maximal for all i 6= j), and
the number of ones is equal to the number of minus ones in each column
(so H(Xi) = 1 is maximal for all i). Hadamard matrices of order 2i can be
generated using Sylvester’s recursive construction:

H1 =
(

1 1
1 −1

)
, Hi =

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
.

In the following we propose a method that optimizes the second and third
criterion explicitly for linear classifiers on subgraph features. A linear clas-
sifier is given by a direction vector w ∈ [−1, 1]m and an intercept w0. As
usual, the classifier predicts the positive class for an instance x, whenever
wTx − w0 > 0 and the negative class otherwise. Hadamard matrices are
especially well suited for linear classifiers, because they have full rank. As
shown in Lemma 6.4.1, a training matrix of rank d can give rise to 2d differ-
ent linear classifiers, each representing a unique partitioning of the training
instances into two classes. Thus, each of the 2n different ways to split the
instances into a positive and a negative class can be represented by a lin-
ear classifier on a Hadamard training matrix. This means a rule generation
procedure that produces Hadamard matrices needs to generate only n rules
to achieve 100% training accuracy, regardless of the actual class labels Y .

While such a training matrix would be optimal for learning, it is certainly
impossible to find subgraphs whose instantiations give rise to a Hadamard
matrix. Instead, we are faced with the problem of finding subgraphs whose
instantiations approximate a Hadamard matrix as good as possible. In the
following, we assume a forward selection setting and frame the problem as

153

154 Chapter 6. First-Order Rule Learning

an iterative combinatorial optimization problem: Let D = {g1, . . . , gn} be
a set of graphs (the instances), and F = {f1, . . . , fm} be a set of subgraphs
(the already existing features), and denote by si the instantiation vector
of the ith subgraph fi with regard to D, that is, the vector whose jth
component is 1 if fi is a subgraph of gj and -1 otherwise. We are then
looking for a new subgraph fm+1 whose instantiation vector sm+1 optimizes
some score quantifying the criteria explained above. For the experiments in
Section 6.5.3, we use what we call a dispersion score in the remainder of the
chapter:3

d(sm+1) :=
m∑
i=1

(sTi sm+1)2

Minimizing this score adresses the criteria in an elegant way: first of all,
the dot product between the new instance vector and an existing vector is a
measure of the similarity of the two vectors. Its absolute value is large, if the
two vectors agree on all instances (or, equivalently, disagree on all instances),
and zero, if the two vectors agree and disagree on an equal amount of in-
stances. By summing up the square of the dot products, the score therefore
penalizes features that are similar to existing ones. If the score is zero, the
new instance vector is orthogonal to all existing vectors and thus increases
the rank of the training matrix. Second, the score can be reformulated as
a sum over all pairs of instances, where x(j) denotes the jth component of
vector x:

d(sm+1) =
m∑
i=1

(n∑
k=1

si(k)sm+1(k)
)2

=
n∑
k,l

sm+1(k)sm+1(l)
m∑
i=1

si(k)si(l) (6.2)

The second sum on the right side of (6.2) measures how many features
assign the same label to the instances gk and gl. It is maximal if all features
assign the same label and minimal if all features disagree on those two
instances. Thus, for each k, l the summand in the first sum is minimal, if
sm+1 assigns different labels whenever the existing features assign identical
labels, and the same label whenever the majority of features assigns different
labels. Minimizing this score therefore promotes features that discriminate
between instances that have not been discriminated well by the existing
features. Third, the score reaches the global optimum zero precisely for the
Hadamard matrix. Of course, the dispersion score does not aim at finding
features that correlate well with the target. In order to also incorporate the
first criterion, we extend it to not only penalize features that are similar to

3In principle one could also apply mutual information instead of the dispersion score,
but experiments have shown that this is not effective for the data sets in Section 6.5.3.

154

6.4. Dispersion-Based Rule Generation for Structured Data 155

¬1

C

1

2

¬2

¬3 3

4

¬4

¬1

C

2

¬3

4

¬4

C

2

¬2

¬3 3

4

¬4

¬1

C

2

¬2

¬3 3

4

¬4

C

1

2

¬2

¬3 3

4

¬4

(a) (b) (c)

(d)

Figure 6.4: The graphs that are generated during the reduction of a 3SAT
problem to a dispersion score problem. The graph s for four Boolean vari-
ables V1, V2, V3, V4 is given in (a), the graph from GC corresponding to the
clause (V1 ∧¬V2 ∧ V3) in (b), the graph corresponding to V1 from GV in (c)
and the graph corresponding to V1 from GD in (d).

the existing features si, but also to reward features that are similar to the
target class vector t:

d′(sm+1) :=
m∑
i=1

(sTi sm+1)2 −m(tT sm+1)2

The modified class-correlated dispersion score is designed to value dispersion
to the same extent as similarity with the target. In the following section we
describe our algorithmic approach to optimizing the dispersion score.

6.4.2 Stochastic Local Search for Optimal Dispersion Fea-
tures

The dispersion score provides a practical way to formulate the search for fea-
tures with large discriminative power as a combinatorial optimization prob-

155

156 Chapter 6. First-Order Rule Learning

lem. Unfortunately, due to the complexity inherent in graph operations, the
problem can be extremely difficult to solve. It is clear that computing the
instantiation vector for an arbitrary graph involves the repeated computa-
tion of solutions to NP-complete graph isomorphism problems. Even if one
avoids these subgraph isomorphism tests, the problem can be shown to be
NP-hard:

Theorem 6.4.2. The problem of deciding whether there exists a graph that
achieves a dispersion score of zero on a given training matrix and a given
graph database is NP-hard.

Proof. The proof is based on a reduction of 3SAT to the dispersion score
problem. Let S be a CNF formula containing k clauses over l Boolean
variables V1, . . . , Vl. Let n = 2(k + l). We construct a training matrix X
and a graph database G = (g1, . . . , gn) and show that there exists a subgraph
h whose instantiation vector th on G has dispersion score d(th) = 0 if and
only if there is a truth value assignment on V1, . . . , Vl that satisfies S.

First, let H be a n× n Hadamard matrix. Denote the last row of H by
r and let the training matrix X be H with the last row r removed. The
dispersion score of a new feature t is d(t) =

∑n−1
i=1 (xTi t)

2, where the xi are
the columns of X. In order to have d(t) = 0, a new feature t must satisfy
xTi t = 0 for 1 ≤ i ≤ n− 1. Since X has rank n− 1 and there are n− 1 linear
equations for the n components of t, the solution space {t|d(t) = 0} is a one-
dimensional vector space, that is, a line. However, since we are interested
only in instantiation vectors t ∈ {−1,+1}n, the only two solutions with
d(t) = 0 are r and −r. We denote the set of indices where ri = +1 by
R+1 := {i|ri = +1} and the set of indices where ri = −1 by R−1 := {i|ri =
−1}. Since r is part of a Hadamard matrix, |R+1| = |R−1| = n

2 = k + l.
Now, we generate a database G = (g1, . . . , gn) depending on the clauses

in S. All graphs in G are subgraphs of the star-shaped graph s = (Vs, Es, ls)
with the vertex set Vs, the edge set Es, the vertex label function ls :
Vs → Ls and the set of vertex labels Ls. We define s as follows: Vs =
{vc, v1, v¬1, v2, v¬2, . . . , vm, v¬m} so that it contains one center vertex vc (the
center of the star) and two vertices for each variable Vi in S. Intuitively,
vertex vi encodes the truth assignment “variable Vi is true” and v¬i encodes
“variable Vi is false”. Es = {{vc, vi}|1 ≤ i ≤ n} ∪ {{vc, v¬i}|1 ≤ i ≤ n} con-
tains only edges between the star center vc and the truth assignment vertices
vi and v¬i. Finally, we set Ls = {c, 1,¬1, . . . , n,¬n} and ls : vx 7→ x, so that
each vertex is labeled with its subscript. Figure 6.4 (a) gives s for a 3SAT
problem with four variables V1, V2, V3, V4.

We now construct the graph database G. The graphs in G ensure that
the vertices of a solution graph (if it exists) represent the literals of a solution
to the 3SAT problem. G is partitioned into four disjoint parts: The graphs
in GS ensure that the solution graph is a subgraph of s, so that the vertices
represent literals. For each variable Vi, the GV part of the database encodes

156

6.4. Dispersion-Based Rule Generation for Structured Data 157

the constraint that the solution graph contains either the vertex vi or v¬i,
while the GD part guarantees that it does not contain both, vi and v¬i.
Finally, the graphs in GC ensure that the truth value assignment induced
by the solution graph satisfies all clauses of S. To specify the graphs in G, we
describe how each graph gi in the database is derived from s. First of all, for
the indices i ∈ R−1, we set the gi to subgraphs of s, where specific vertices
and their incident edges are removed. If one removes vertices vx1 , vx2 , . . . , vxp
and the corresponding incident edges from s, we denote the resulting graph
by δ(s, x1, x2, . . . , xp). For instance δ(s, 1,¬2, 3) is the graph s with the
vertices v1, v¬2, and v3 removed. Recall that there are k + l indices in R−1.
For the first k indices we set the corresponding graphs gi to δ(s, vx1 , vx2 , vx3),
where x1, x2 and x3 are the literals of the corresponding clause of S. For
example, if S contains the clause (V1 ∧ ¬V2 ∧ V3), G contains the graph
δ(s, 1,¬2, 3), that is, the star graph s with the vertices v1, v¬2, v3 removed.
This graph is illustrated in Figure 6.4 (b). This scheme describes the form
of the graphs with the first k indices in R−1. Let GC denote the set of these
k graphs. For each of the l remaining indices, we set the corresponding
graph to δ(s, i,¬i), where 1 ≤ i ≤ l. In other words, we set the ith of the
remaining graphs to s with the two vertices vi and v¬i removed. We call the
set of graphs that are built in this way GV . Figure 6.4 (c) depicts the graph
δ(s, 1,¬1) ∈ GV .

For the indices in R+1, we also distinguish between the first k graphs and
the remaining l graphs. The first k graphs are all set to the unmodified star
graph s. Let GS denote the resulting multiset of graphs that contains only
copies of s. For the remaining l graphs, we need to join two subgraphs of s by
adding an edge between the two center vertices. More formally, if u and u′

are subgraphs of s, then γ(u, u′) is the graph (Vu∪Vu′ , Eu∪Eu′∪{vc, v′c}, ls).
For each variable Vi, we add the graph γ(δ(s, vi), δ(s, v¬i)) to the database.
As an example, Figure 6.4 (d) shows the graph corresponding to V1. Since
there are l variables, this yields exactly the remaining l graphs with indices
in R+1. For later reference we also keep these graphs in the set GD.

Now, we show that solving the dispersion score problem with the training
matrix X and graph database G is equivalent to solving the 3SAT problem
for the CNF formula S. First of all, if the dispersion score problem has a so-
lution, there exists a subgraph h whose instantiation vector is t ∈ {−1,+1}n
with d(t) = 0. First of all, t 6= −r, because otherwise h is a subgraph of the
graphs in GC ∪GV , and therefore also a subgraph of the graphs in GS ∪GD.
This would mean that all components of t are +1, a clear contradiction to
d(t) = 0. Apparently t = r is the only possible solution. This means that
the solution graph h is a subgraph of the graphs in GS ∪ GD. Since GS
contains only s, h must be a subgraph of s, that is, a star with vertices
expressing variable truth assignments. For an arbitrary variable Vi, GD
contains a subgraph of s which lacks vi and a subgraph, which lacks v¬i, but
no star, which contains both, vi and v¬i. Since h must be a subgraph of all

157

158 Chapter 6. First-Order Rule Learning

graphs in GD, it can contain either vi or v¬i, but not both for all 1 ≤ i ≤ l.
On the other hand, h must not be a subgraph of any graph in GC ∪GV .

Thus, h must differ from each g ∈ GC ∪GV by at least one vertex, or, more
precisely, for each graph g ∈ GC ∪GV , there must be at least one vertex vx
of s which is contained in h, but not in g. Thus, a graph in GV enforces
that h contains at least either vi or v¬i for an i ∈ {1, . . . , l}. Thus, h must
contain exactly one vertex per variable Vi, namely either vi or v¬i. Thus,
the vertices assign a truth value to each variable. Now it is easy to see that
each graph g in GC enforces that h contains at least one vertex vx so that
the literal x satisfies the corresponding clause c in S. Therefore the truth
value assignment induced by h is a solution to the 3SAT problem given by S.
If there is no h with d(h) = 0, then there is also no truth value assignment
that satisfies S.

On the other hand, if a : {V1, . . . , Vl} → {true, false} is a truth assign-
ment satisfying S, one can compute the graph gS := δ(s, a′(Vi), . . . , a′(Vi)),
where a′(Vi) is vi, if a(Vi) = true and v¬i otherwise. It is easy to see that
gS is a subgraph of the graphs in GS ∪GD, but no subgraph of the graphs
in GC ∪GV . If there is no truth value assignment that satisfies S, there can
also be no subgraph h that gives rise to the instantiation vector r.

Finally, it is clear that the computation of G can be done in time polyno-
mial in k and l, because it just involves the construction of 2(k + l) graphs,
where each graph contains at most 4l + 1 edges. The computation of H
for an arbitrary size n = 2(k + l) is difficult. However, if one chooses a
larger n′ ≥ n of the form n′ ∈ {2i|i ∈ N}, then Sylvester’s recursive con-
struction can be applied to generate a H of size n′ × n′ in polynomial time.
Since the proof above remains valid for a larger H, and since there is an
n′ ∈ {2i|i ∈ N} with n < n′ ≤ 2n, the computation of an H of appropriate
size is possible in polynomial time. Thus, the construction procedure of X
and G above constitutes a polynomially computable reduction of 3SAT to
the dispersion score problem.

There is no generally applicable approach to solving such a combinatorial
optimization problem. However, in recent years stochastic local search (SLS)
algorithms have been shown to be remarkably successful on similar NP-hard
combinatorial problems. In particular, they are among the best algorithms
available to solve hard satisfiability problems, see for example Hirsch and
Kojevnikov (2005). Essentially, stochastic local search can be described as
a randomized greedy walk in the space of solution candidates. As described
in Section 4.2.2, an SLS algorithm starts by generating a random solution
candidate. It then iterates in a loop over two steps: in the first step, it
calculates “neighboring” solution candidates according to some predefined
neighborhood relation. For each neighbor, it computes a score function
indicating to which degree the candidate is optimal. In the second step, it
randomly selects a new candidate among the neighbors with the best score.

158

6.4. Dispersion-Based Rule Generation for Structured Data 159

Algorithm 9 An SLS algorithm for dispersion based feature induction. D
is the graph database, maxSteps specifies the maximal length of search, p
is the probability for random steps.

procedure DispersionSLS(D)
c ← a random subgraph of D
steps ← 0
while score(c) 6= 0 and steps < maxSteps do

steps ← steps+ 1
n ← set of general and specific neighbors of c

c←

with probability p: a random graph in n
otherwise: a random graph from n that

achieves the best score within n.
end while
return the best c found so far

end procedure

As such a pure greedy algorithm can easily be trapped in local optima, the
second step is from time to time (that is, with a predefined noise probability
p) replaced by a step, where a completely random neighbor is selected as new
candidate. Finally, the algorithm keeps track of the best candidate found
so far and outputs this candidate as a solution after a maximum number
of iterations. While modern SLS algorithms often use more sophisticated
decision functions, the basic principle has been shown to be effective on a
range of NP-hard problems.

The SLS framework can be easily adjusted to the optimization problem
presented in this section. A solution candidate is simply a graph, and the
scoring function is the dispersion score explained in the preceding section.
For the neighborhood relation we generate two different kinds of neighbors:
more specific neighbors are built by extending the current candidate graph
with an edge so that the resulting subgraph occurs in at least one graph
of the graph database. This avoids generating neighbors that do not occur
in the database at all. More general neighbors are built by removing one
edge from the current candidate. If the removal of the edge separates the
graph into two unconnected components, we keep the larger of the two as
neighbor and discard the smaller one. Since such a breakup can remove a
large part of the current candidate, the SLS algorithm is able to proceed
from one part of the candidate space to a different part in only a few steps.
This ensures that the local search is not restricted to the proximity of the
start candidate. Algorithm 9 gives the pseudocode for the SLS algorithm.
It is crucial for the effectivity of an SLS algorithm that the calculation of

the score function and the neighbors is as fast as possible. Unfortunately,
both tasks are exceptionally expensive in our case. To compute the disper-
sion score, one needs to identify the instantiation vector and that implies a

159

160 Chapter 6. First-Order Rule Learning

a

b

c

c

a b

c c

g1

v0

v1

v2

v3

v0 v1

v2 v3

g2

Figure 6.5: A graph database, containing two graphs g1 and g2. The vertices
in the graphs are ordered according to a breadth-first traversal v0, . . . , v4.
These traversals give rise to the canonical code string “a(0,b,1)(1,c,2)(1,c,3)”
for graph g1 and “a(0,b,1)(0,c,2)(1,c,3)(2,c,3)” for graph g2.

subgraph isomorphism test with each graph in the database. While com-
puting more general neighbors is straightforward, identifying more specific
neighbors involves finding the occurrences of the current candidate in the
database and to collect the edges that extend those occurrences. Again, this
requires a subgraph isomorphism test of the candidate with each graph in
the database. To overcome this performance bottleneck, we pre-compute an
index structure that stores all subgraphs up to a maximum size that occur
in the database. The calculation of a candidate’s instantiation vector and
more specific neighbors is then just a lookup or a limited search operation
in the index structure. As there is a huge number of subgraphs in a typical
database, it is important to design the index structure to be space efficient,
yet fast to access.

We achieve this by associating each (sub-)graph with a canonical code
string, that is, a string that uniquely determines the graph, and storing those
canonical strings in a graph trie. More precisely, let G = (V,E, l) be a graph,
where V = {v1, . . . , vn} is a set of vertices, E ⊆ {{a, b} | a, b ∈ V, a 6= b}
the set of edges, and l : V ∪ E → L is a function assigning labels to the
vertices and edges. Typically, a program stores the vertices of such a graph
in arbitrary order and uses pointers to encode the edges. In this way, each
graph can be represented in many different ways and looking up a particular
graph in a list of graphs involves expensive graph isomomorphism tests. To
avoid this overhead, we compute a unique representation of each graph and
store only this canonical string. We follow the scheme by Borgelt (2005) and
compute a graph’s canonical string as follows: first of all, we assume an order
�l on the vertex and edge labels. We select this order so that infrequent

160

6.4. Dispersion-Based Rule Generation for Structured Data 161

(0,b,1)

a

(0,c,2)
(1,c,3) (2,c,3) g2

(1,c,2)
(1,c,3)

(2,c,3)

g1

g2

(2,c,3) g2

(0,c,1) (1,c,2) (2,b,3) g2

b (0,c,1) (0,c,2) g1

(1,c,2) g2
c

g1

(0,c,1) g2

Figure 6.6: The graph trie for the database in Figure 6.5. Each node rep-
resents the canonical code string of a subgraph. The leaves below a node n
are exactly the IDs of the database graphs that are supergraphs of n.

labels precede frequent ones. Then, we traverse the graph in breadth-first
order starting from vertices with minimal label. This is illustrated in Figure
6.5, where a database contains two graphs g1 and g2. The order v0, . . . , v4,
by which the two graphs are traversed is a breadth-first traversal. Of course,
there are many possible traversals and the order in which a traversal visits
the graph’s vertices determines an index number for each vertex. Given
such an index numbering scheme, an edge in the graph can be conveniently
represented by a code (i1, lv, i2,), where i1 is the index of the edge’s start
vertex, i2 is the index of the end vertex and lv is the end vertex’s label.4 We
define the order �c over such codes to be the lexicographic order with �l
for the labels and ≤ for the indices. For each traversal, a graph can now be
represented by a string lsc1 . . . cm, where ls is the label of the start vertex
and the ci are the codes for each edge. For the canonical code string, we
consider only ordered strings where ci �c cj whenever i ≤ j. It is easy to
see that the codes in such a string are ordered according to the succession
in which the traversal visits the vertices. As each traversal gives rise to
a different ordered code string, we define an order �s on all ordered code
strings, again by taking the lexicographic order. Finally, the canonical code
string is defined to be the minimal code string according to this order among
all ordered code strings. In Figure 6.5 the two canonical code strings are

4For simplicity of representation, we give the code for graphs without edge labels. In
the case of labeled edges, the code is (i1, le, lv, i2), where le is the edge label.

161

162 Chapter 6. First-Order Rule Learning

given for each of the two graphs. We refer to Borgelt (2005) for an algorithm
to check for canonicity.

This canonical code has a couple of nice properties. First, due to the
choice of �l, vertices with infrequent labels appear early in the string. Thus,
when comparing the code strings of two graphs highly discriminative node
labels get tested early. Second, each prefix of a code string is a canonical
string on its own and represents a subgraph of the original graph. This
enables the use of a trie to store subgraphs efficiently. Instead of storing all
subgraphs of a graph, we only store the maximal canonical subgraphs, that
is, the subgraphs whose code string is not a prefix of a larger subgraph’s
code string. Figure 6.6 gives the graph trie which contains all subgraphs of
the graph database in Figure 6.5. One can determine the instantiation of
a graph g by looking up the canonical code of g in the trie and collecting
all leaves below the node representing g. For instance, consider a simple
graph g with three vertices labeled a, b and c and an edge between the first
and the second and the second and the third vertex. Its canonical code
string is “a(0,b,1)(1,c,2)”. Traversing this code in the trie leads to the node
marked with a star. The leaves below this node are g1 and g2 and these are
exactly the graphs of which g is a subgraph. In the next section we present
experiments with Rumble and dispersion-based feature generation.

6.5 Experiments

In the preceding sections we extended Rumble towards the multi-relational
setting. To do so, we presented a framework to assess and categorize first-
order learning approaches according to their use of information, and put the
framework to use to derive a dispersion-based rule generation procedure that
aims at small, but diverse and complementary rule sets. With this, we are
in the position to evaluate the proposed methods empirically. We perform
three experiments. For the first experiment, the goal is to test whether
Rumble in general is competitive with existing margin-based first-order
rule learning systems. The second experiment is designed to demonstrate
how the framework can be applied to empirically compare and rate typical
design decisions in first-order rule learners. For the third experiment, we
investigate the utility of dispersion-based rule generation on three small
molecule data sets from cheminformatics.

6.5.1 Experiments with Rumble on First-Order Data

Here, we compare the predictive accuracy of MMV optimization to those of
other margin-based approaches. Following the discussion in Section 6.2, we
set p to two and b to zero for all experiments. In a recent paper, Landwehr
et al. (2006) present kFOIL, a version of FOIL modified to use kernels and
SVMs in the rule induction step. The authors give a comparison of kFOIL

162

6.5. Experiments 163

kFOIL nFOIL Aleph c-ARMR Rum
+ SVM ble

Mutagenesis 81.3% 75.4% 73.4% 73.9% 84.0%
Alzh. amine 88.8% 86.3% 70.2% 81.2% 91.1%
Alzh. toxic 89.3% 89.2% 90.9% 71.6% 91.2%
Alzh. acetyl 87.8% 81.2% 73.5% 72.4% 88.4%
Alzh. memory 80.2% 72.9% 69.3% 68.7% 83.2%
NCTRER 77.6% 78.0% 50.9% 65.1% 79.3%

Table 6.2: Predictive accuracy according to tenfold cross-validation for sev-
eral systems. Four systems are compared on six data sets with MMV opti-
mization.

with nFOIL, Aleph and the propositionalization approach c-ARMR+SVM
on six data sets. Mutagenesis (Srinivasan et al., 1996) is a popular ILP
benchmark data set. To warrant a fair comparison we used atom and bond
information only and give results for the regression friendly part, as the
regression unfriendly part is too small to warrant precise estimation of pre-
dictive accuracy. On the Alzheimer data set (King and Srinivasan, 1995)
the task is to predict the ranking of certain compounds with regard to
four quantities that are known to influence Alzheimer’s disease. Following
Landwehr et al. (2006), we give results for amine reuptake inhibition (686
instances), low toxicity (886 examples), high acetyl cholinesterase inhibition
(1,326 instances) and reversal of memory deficiency (642 instances). We
used a Prolog-based bias that resembles the original GOLEM bias (Srini-
vasan et al., 1996). The NCTRER data set deals with the prediction of
binding activity of small molecules at the estrogen receptor. We used the
FreeTree plugin to build substructure rules for the 232 examples. Table 6.2
gives the results for the four systems (Landwehr et al., 2006) and Rumble.
As can be seen, Rumble outperforms the other approaches on all data sets.
For NCTRER, one can improve the predictive accuracy of Rumble even
further to 82.76% by setting p to 1.5.

A different approach to relational margin based learning has been taken
by Muggleton et al. (2005), where the output of CProgol5.0 is used in a linear
kernel SVM. The authors compare their algorithm with partial least squares,
multi-instance kernels and an RBF kernel on three chemical features on the
DSSTox data set (576 instances). The goal is to predict whether or not
the toxicity of a compound is above average. We used a Prolog refinement
operator to generate 300 rules that check for the existence of substructures
in the molecules that appear at least three times in the data set. Then,
we apply a Meta refinement operator that calculates all pairs of the first
100 existing rules and combines them disjunctively. The results in Table
6.3 show that Rumble outperforms SVILP on this data set. The results

163

164 Chapter 6. First-Order Rule Learning

Method Pred.
Acc.

CProgol5.0 55%
CHEM 58%
PLS 71%
MIK 60%
SVILP 73%
Rumble 76%

Table 6.3: Predictive accuracy according to tenfold cross-validation for sev-
eral systems. Five systems are compared on the DSSTox data set.

demonstrate that margins are useful in first-order learning without the need
for kernels.

6.5.2 An Empirical Investigation of Rule Learning in the
Framework

The framework outlined in Section 6.3 allows to rate a relational learn-
ing system according to the information it is using to generate queries and
classifiers. With this, we have a convenient method to compare different
learning systems and make justified statements about the contributions of
certain design decisions. For example, we could answer questions such as:
On this particular kind of data, does it make more sense to generate queries
of form A or form B? Is it worthwhile to keep all the features or will filtering
those features, which meet condition C, help overfitting avoidance? If the
goal is to pass the informative queries earlier to the learning system than
non-informative queries, should one sort the generated queries according to
sorting order E or F? Each of these questions could be answered by keeping
parts of the learning system fixed while varying only the part under investi-
gation. Other experiments could shed light on the interdependence between
certain design decisions. For instance, one could ask: What is the best
sorting order for each of three different feature generation methods? Which
learning algorithms works particularly well with certain filters? Those ques-
tions are often hard to answer when comparing existing methods, because
most existing systems are built in an integrated fashion so that it is difficult
to rate the contribution of single design decisions.

In the following we perform two studies. In the first, we primarily com-
pare different query generation procedures while keeping the filter and sort-
ing order fixed. In the second study, we keep the query generation and filter
stage fixed and use different sorting criteria to investigate which sorting or-
der works best. We deal with two data sets where the goal is to predict
the biological activity of small molecules, given as molecular graphs. The

164

6.5. Experiments 165

Data Set & Agnostic Minimum Dispersion Dispersion +
Number of Queries Frequency Class Corr.

Trg Tst Trg Tst Trg Tst Trg Tst
20 45.2 45.7 56.4 53.2 66.2 58.9 72.9 64.9
40 46.6 45.7 61.8 55.5 75.8 66.4 78.3 67.5
60 51.1 47.9 63.3 55.8 78.2 68.3 80.4 66.0

Yoshida 80 53.2 50.2 64.6 57.4 79.8 68.7 80.0 67.5
100 53.7 49.8 66.4 56.2 81.9 68.3 81.4 67.5
150 53.8 48.7 70.5 57.0 83.6 68.3 82.5 63.4
200 54.9 50.2 73.4 60.0 85.1 66.0 82.8 63.4
20 61.1 63.6 63.9 62.7 71.7 67.7 76.6 71.6
40 64.4 61.2 61.2 55.7 76.8 70.8 78.4 73.5
60 65.2 62.4 66.7 60.2 78.0 71.8 79.5 72.3

Bloodbarr 80 59.4 56.9 66.2 61.4 78.4 71.3 80.6 71.8
100 62.4 60.7 66.1 59.0 80.7 73.5 82.0 74.0
150 68.8 65.5 67.6 59.8 81.8 73.0 82.0 69.6
200 70.7 66.0 74.1 64.8 84.4 72.8 83.9 73.0

Table 6.4: Training and test set accuracies for agnostic, minimum frequency,
dispersion-based and dispersion with class correlation based feature genera-
tion.

yoshida data set (Yoshida and Topliss, 2000) consists of 265 molecules clas-
sified according to their bio-availability. The second data set classifies 415
molecules according to the degree to which they can cross the blood-brain
barrier (Li et al., 2005).

For the first study, we chose the following four query generating proce-
dures, sorted by the amount of information that is used:

• Agnostic. Here we simply generate all subgraphs with up to ten edges
(g()).

• Based on a minimum frequency constraint. Here, we apply a frequent
subgraph mining tool to identify all subgraphs that appear in at least
6% of the graphs in the database (g(X)). The implementation is based
on a depth-first search.

• Based on dispersion. Dispersion based query generation (compare Sec-
tion 6.4) aims at a diverse set of queries, so that each query’s instan-
tiation is as different as possible from the instantiations of the other
queries. To this end, we use the dispersion scoring function (6.2) that
measures the dissimilarity (dispersion) of a query set and apply the
stochastic local search algorithm described in Section 6.4 to find sub-
graph queries whose instantiation optimizes this score (g(q1, ..., qk, X)).

165

166 Chapter 6. First-Order Rule Learning

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

20 40 60 80 100 150 200

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

20 40 60 80 100 150 200

Occurrence MinFreq Dispersion Dispersion+Target

Figure 6.7: Predictive accuracy (left) and training set accuracy (right) for
linear classifiers on the yoshida data set plotted against on the number of
queries posed to the database.

This ensures that each new query contributes a different piece of in-
formation.

• Based on dispersion and correlation to the target class. This is the
same as the preceding strategy, except that the scoring function is
modified so that dispersion and correlation with the target contribute
in equal parts (g(q1, ..., qk, X, Y)).

In each of the four cases we use a simple filter that discards all queries whose
instantiations are duplicates of already existing features (f(X)). We do not
sort the generated features, but hand them to the learning algorithm in the
order they were generated. A good strategy finds relevant queries first and
less informative queries only later so that the system can stop early without
compromising predictive accuracy. Stopping as early as possible is desirable
because it leads to fast learning systems that induce small and compact
classifiers. Thus, to investigate the performance of each strategy, we generate
a fixed number of queries and use those as features in a linear classifier. We
apply Margin Minus Variance (MMV) with b = 0 and p = 2 to learn the
linear classifier. We give the results in Table 6.4. Then, in Figure 6.7 and
6.8 we plot the predictive accuracy and the training set accuracy for each
strategy on the two data sets. It can be seen that the first two strategies do
not make efficient use of the information provided by the database. For both
strategies, predictive accuracy and training set accuracy increase only slowly
and are significantly lower than the corresponding quantities for the second
two strategies. For the two dispersion based strategies there is surprisingly
little difference. The correlation to the target, which is used in the fourth
strategy, causes the predictive and training set accuracy to be better for

166

6.5. Experiments 167

0.5

0.55

0.6

0.65

0.7

0.75

0.8

20 40 60 80 100 150 200

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

20 40 60 80 100 150 200

Occurrence MinFreq Dispersion Dispersion+Target

Figure 6.8: Predictive accuracy (left) and training set accuracy (right) for
linear classifiers on the Blood Barrier data set plotted against the number
of queries posed to the database.

small numbers of queries. However, after a certain number of queries is
generated, the “dispersion only” strategy not only catches up, but also does
not overfit as strongly as the fourth strategy. This indicates that – at least
for the two investigated data sets – finding queries that complement each
other is more important than finding queries that are informative about
the target on their own. The visualization of training and test accuracy in
Figure 6.7 illustrates this phenomenon on the yoshida data set.

For the second study, we keep the feature generation and filtering fixed,
but investigate different sorting criteria. Sorting is particularly interesting,
if one is aiming at small and comprehensible feature sets and wishes to stop
query generation as early as possible. We generate all queries by mining
for subgraphs that are contained in at least 6% of the database graphs
(g(X)). The queries are then filtered by the same filter as above, that is, by
discarding all features that give rise to the same instantiation as an already
existing query. We investigate the following four sorting criteria:

• By size. Here we sort the subgraph queries according to the number
of edges in the subgraph (�). The sorting order is from few edges to
many edges.

• By balance. In this case, queries are sorted according to how evenly
the +1 and -1 are assigned in a query instantiation (�X). Queries,
which assign +1 to the same number of instances than -1 are ranked
first, while queries that assign +1 (or -1) to only a single instance are
ranked last. The idea is to prefer queries whose instantiations split the
training set into parts of preferably equal size, because those provide
more information and can be better used to scatter the instance space.

167

168 Chapter 6. First-Order Rule Learning

Data Set & By Size By Balance By Class By a χ2

Number of Queries Correlation Test
Trg Tst Trg Tst Trg Tst Trg Tst

20 65.2 58.9 65.2 59.6 71.0 61.1 72.5 62.3
40 68.6 57.0 68.5 60.0 72.7 64.5 74.1 65.3
60 73.5 63.0 75.7 66.4 73.5 64.2 74.5 66.4

Yoshida 80 74.3 61.5 78.9 65.3 75.1 67.2 75.4 67.5
100 80.6 67.5 81.6 68.3 75.8 66.8 76.4 67.5
150 84.9 68.7 82.8 67.5 77.1 67.5 78.7 65.3
200 86.1 69.1 83.7 68.7 77.9 66.4 80.3 66.0
20 73.0 70.8 73.3 71.1 77.3 74.9 76.3 74.5
40 75.3 69.9 73.7 72.5 77.4 75.9 77.3 74.7
60 77.5 72.0 76.2 72.8 77.8 74.7 77.8 74.2

Bloodbarr 80 80.7 74.7 78.9 73.3 78.3 72.3 78.1 73.0
100 82.0 74.7 79.6 72.5 79.4 73.5 78.3 72.8
150 83.9 74.9 80.0 71.8 80.1 72.8 80.0 72.3
200 84.8 75.2 81.1 72.0 80.9 73.0 82.2 73.7

Table 6.5: Training and test set accuracies for sorting by size, by balance,
by class correlation and by a class χ2 test.

• By class correlation. This simply sorts the queries according to the
Pearson correlation coefficient between query instantiation and target
class vector (�X,Y).

• By χ2. This is similar to the preceding sorting criterium, except for
the use of a χ2 test on the 2x2 contingency table instead of a simple
correlation coefficient (�X,Y).

We give training and test accuracies (estimated by tenfold cross validation)
in Table 6.5. Again, sorting dependent on the class information works better
than the first two criteria only for a small number of features. For a large
number of features (150 or 200 queries), sorting by subgraph size outper-
forms the other methods on both data sets with regard to training and test
accuracy. It is a surprising fact that an agnostic sorting criterium that uses
neither information about the training set nor the target class performs best.
This demonstrates that empirical investigations similar to the two studies
performed above can lead to interesting insights. In particular the visualiza-
tion scheme in Figure 6.7 and 6.8 can be a valuable tool to compare existing
and novel methods and biases.

168

6.5. Experiments 169

6.5.3 Experiments With Dispersion-Based Rule Generation

In order to evaluate dispersion-based rule generation, we implemented the
dispersion optimizing SLS algorithm and applied it to three data sets. We
use the same data sets as before: The NCTRER data set (Fang et al.,
2001) deals with the prediction of binding activity of small molecules at
the estrogen receptor. It contains 232 molecules. The yoshida data set
(Yoshida and Topliss, 2000) consists of 265 molecules classified according to
their bio-availability. The third data set classifies 415 molecules according
to the degree to which they can cross the blood-brain barrier (BBB) (Li et
al., 2005). These data sets were found to be the most useful for studying
overfitting and related phenomena in the previous experiments.

For the experiments, we set the noise probability of taking a purely
random step in the SLS loop to 0.2, the maximum size of subgraphs stored
in the graph trie to fifteen edges and the maximal number of iterations
for the SLS loop to 2000. To evaluate dispersion-based feature generation
independently from the MMV optimization criterion, we chose two different
learning algorithms to induce linear classifiers from the resulting training
sets. The first one is a support vector machine with soft margin and the C
parameter set to one. We also experimented with different values for C but
could not yield significantly better results. The second learner is Margin
Minus Variance (MMV) optimization as described in Section 6.2. MMV
optimization offers the parameter p to adjust how evenly the weights should
be distributed among the features in the induced linear classifier. We set
this parameter to two. As before, we build the classifier in an iterative
fashion: we start with an empty feature set and then add the features one
by one according to the optimal dispersion criterion. Whenever the number
of features exceeds one hundred, we compute the linear classifier and remove
the feature with the smallest weight before adding a new feature. The time
to generate the trie is typically a few minutes. As it is generated once per
data set (like an index structure in a database), it does not influence the
runtimes of subsequent SLS runs.

For the first experiment, we investigate to what extent SLS with the
dispersion score and the class-correlated dispersion score is able to generate
training sets that are well suited for classification. To do so, we apply SLS
with the two scores to construct four feature sets containing 25, 50, 150
and 300 features. We apply MMV and the SVM to induce classifiers on
those training sets and report the training set accuracy and test accuracy
as estimated by tenfold cross-validation in Table 6.6. The results point
out some interesting insights. First of all, the dispersion score with class
correlation is on average able to obtain a better training accuracy than the
pure dispersion score, in particular with larger feature sets. This is not very
surprising given the fact that the pure dispersion score does not consider the
class labels. However, the improvement in training accuracy does not always

169

170 Chapter 6. First-Order Rule Learning

Data Set SLS SLS
& Nr. (Dispersion) (Class Corr.)

Features MMV SVM MMV SVM
Trg Tst Trg Tst Trg Tst Trg Tst

25 70.1 61.5 72.4 60.0 75.3 65.3 76.7 60.0
Yo- 50 75.6 64.5 79.2 62.3 78.0 67.2 80.5 66.4
shida 150 76.6 67.2 81.5 62.3 78.8 68.3 81.7 64.2

300 77.2 66.4 81.5 63.8 85.9 66.4 96.1 65.7
25 84.2 82.8 83.1 77.6 82.6 81.5 82.9 76.3

NCT 50 84.1 81.9 85.2 78.4 83.8 82.3 84.5 78.0
RER 150 84.2 81.0 84.5 77.2 84.3 82.3 86.1 82.8

300 84.4 80.2 84.5 77.2 88.6 81.5 96.5 78.4
25 72.7 69.6 76.8 66.5 77.1 72.5 78.2 68.2

Blood 50 77.5 71.3 80.0 67.2 77.5 73.5 79.5 68.4
barr 150 77.3 69.9 81.1 69.9 78.0 74.9 80.8 68.0

300 77.7 71.1 81.2 70.4 84.7 73.7 95.2 74.5

Table 6.6: Results: percentage of correct classifications for SLS with the
original dispersion score and SLS with class-correlated dispersion score on
training and test set according to tenfold cross validation.

translate to an improvement in predictive accuracy. Generally, it does so for
small feature sets up to 50 features, but for larger feature sets the difference
in predictive accuracy is small even though the training accuracy is way
larger for the class-correlated dispersion score. Also, MMV tends to perform
better with regard to predictive accuracy than the SVM, even though its
training accuracy is generally inferior to the SVM. Overall, MMV with the
class-correlated dispersion score achieves good predictive performance for all
feature set sizes.

As the SLS-based method should be particularly well-suited for obtaining
small (for example, size 25 or 50) useful feature sets, we set up an experiment
comparing it to minimum-frequency and class-correlation feature generation
within this range and beyond (size 150 and 300). First, we apply a subgraph
mining tool to identify all subgraphs that occur in more than six percent of
the data set’s graphs. Then, we sort the subgraphs by size (that is, number of
edges) or by the correlation with the target according to a χ2 test on the 2x2
contingency table. Finally we derive four feature sets with 25, 50, 150 and
300 features from those two sorted feature sequences. Hence, the first sorting
order is essentially an unsupervised propositionalization approach (similar
to the one by Deshpande et al., 2005), while the second resembles the class-
correlation based approach by Bringmann et al. (2006). Table 6.7 gives
the training and test accuracies for MMV and the SVM. Generally, sorting

170

6.6. Summary and Related Work 171

Data Set MinFreq MinFreq
& Nr. (Sorted by Size) (Sorted by Corr.)

Features MMV SVM MMV SVM
Trg Tst Trg Tst Trg Tst Trg Tst

25 65.7 58.5 68.6 60.0 70.9 61.9 71.2 60.0
Yo- 50 67.7 57.0 73.4 60.0 72.2 60.4 73.1 60.0
shida 150 80.8 66.4 91.3 68.7 73.5 64.9 76.4 60.0

300 85.8 66.8 96.4 68.7 76.4 66.8 83.4 63.4
25 80.2 76.3 80.7 59.9 79.2 78.4 79.6 59.9

NCT 50 83.4 79.7 84.2 69.4 80.6 80.2 79.3 59.9
RER 150 87.1 82.3 91.3 78.0 80.8 79.7 82.2 79.3

300 87.6 80.6 92.5 75.9 81.1 79.7 82.5 77.6
25 72.9 70.4 73.6 66.5 76.2 73.7 77.3 67.5

Blood 50 76.8 71.3 81.0 70.4 76.7 74.2 79.7 67.5
barr 150 83.2 75.7 90.0 75.9 78.4 72.0 85.6 70.1

300 85.7 75.2 95.1 74.2 81.3 73.7 87.9 74.0

Table 6.7: Results: percentage of correct classifications for minimum fre-
quency mining sorted by size and minimum frequency sorted by class corre-
lation on training and test set according to tenfold cross validation.

by correlation appears to be better than sorting by size for small feature
sets, but the opposite is the case for larger feature sets. On larger feature
sets (150 and 300 features), the differences between dispersion-based and
minimum frequency approaches are only marginal. However, in the target
range of small feature sets, the SLS optimization of dispersion outperforms
other approaches on two of the three data sets (yoshida and NCTRER) in
almost all pairwise comparisons.

Overall, the results are competitive with those of other methods. Table
6.8 compares the presented results with those of an SVM with optimal as-
signment kernel (Fröhlich et al., 2005) for the yoshida and bloodbarrier data
sets and, for the NCTRER data set, with those of kFOIL, an extension of
FOIL incorporating an SVM in a novel evaluation function (Landwehr et al.,
2006). Both, MMV optimization and the SVM outperform these algorithms.

6.6 Summary and Related Work

In this chapter we dealt with data in first-order representation. In order
to induce predictive classifiers from such data, a learning system needs to
extract the relevant pieces of information from the training set. We address
this problem from two perspectives. First, we deal with the pragmatic issues
and describe how Rumble can be extended towards the multi-relational

171

172 Chapter 6. First-Order Rule Learning

Yoshida NCTRER Bloodbarr
kFOIL n/a 77.6 n/a
OA Kernel 67.8 n/a 57.97
Dispersion MVV 68.3 82.3 74.9
Dispersion SVM 65.7 82.8 74.5

Table 6.8: Results: comparison of the dispersion based approach with kFOIL
and a SVM with optimal assignment kernel.

setting in a modular and flexible manner (also published in Rückert and
Kramer, 2006a, 2007a). This allows for a customizable and efficient way to
extract meaningful information from the data. Also, using arbitrary p-norms
instead of the 1-norm in Rumble accommodates better to the first-order
setting, where the relevant information is often spread uniformly among the
rules.

Margin-based first-order learning is a comparably new field of research.
Popescul and Ungar (2003) extend logistic regression to the relational set-
ting. They apply refinement operators to generate new features from re-
lational data and add those features to a logistic regression model until
the model overfits according to the Bayesian information criterion (BIC).
Landwehr et al. (2005) propose replacing the scoring function of FOIL with
a criterion based on Naive Bayes. Most of the work on margin-based multi-
relational learning builds on kernel methods: Muggleton et al. (2005) pro-
posed Support Vector Inductive Logic Programming, where the clauses that
are induced by CProgol5.0 are used as features to represent the training
data propositionally and thus allow the application of a linear SVM. This
is similar to the feature construction procedure already proposed by Srini-
vasan and King (1999). A different approach is taken by Landwehr et al.
(2006). They replace the rule evaluation function in FOIL with a novel scor-
ing function, which rates the quality of a set of clauses as the accuracy of a
SVM that is built on a propositional data representation, where the clauses
are again used as features. Passerini et al. (2006) propose kernels on Pro-
log proof trees, whereas Woźnica et al. (2005) extend convolution kernels to
work on relational data. The main idea is to represent each instance in the
training set as a tree whose edges are connections between the tuples in dif-
ferent relations. This instance representation can be dealt with convolution
kernels so that standard SVM methods apply.

On the theoretical side, we formulate a framework to compare methods
on how well they use the information they get and to assess which kind of
information is well suited to generate predictive classifiers. The framework
(introduced in Rückert and Kramer, 2007c) is designed to focus primarily
on the information that is actually retrieved by the learning system from the
available data. This enables statistical analyses of various learning systems

172

6.6. Summary and Related Work 173

and design issues. In contrast, the traditional ILP framework (Nienhuys-
Cheng and Wolf, 1997; Lavrač and Džeroski, 1994; Lloyd, 2003) is based
primarily on (first-order) logic and deals more with the problem of finding
consistent theories than with predictive accuracy. In recent years, research
on statistical relational learning has attracted considerable interest. Most
of the foundational work is not tailored towards classification, but the prac-
tical problems of combining logic and probability theory, see for instance
Richardson and Domingos (2006) and Getoor and Taskar (2007) and the
references therein. Neville et al. (2003) provide a short survey over recent
work in statistical relational learning.

Finally, we propose dispersion-based feature generation (published also
in Rückert and Kramer, 2007b). Here, the goal is to find rules that are not
only correlated with the target label, but that also represent a diverse set of
properties and complement each other, instead of providing redundant infor-
mation. To this end, we rate feature sets using the novel dispersion score and
devise an SLS algorithm to optimize this score. This is related to proposi-
tionalization (Kramer et al., 2001) and general feature generation procedures
such as the ones by Popescul and Ungar (2004a,b). Dispersion-based feature
generation can also be viewed as a contribution to the field of feature selec-
tion (Guyon and Elisseeff, 2003). According to one of the taxonomies (Liu
and Motoda, 1998), it belongs to the family of non-deterministic methods
with a consistency measure. However, the non-determinism of search stems
from the complexity of the pattern language and not from the combinatorial
problem of choosing a suitable subset.

173

174 Chapter 6. First-Order Rule Learning

174

Chapter 7

Summary and Outlook

In the final chapter of the thesis, we summarize the main contributions and
give an outlook on possible directions for further research.

7.1 Summary

In this thesis we investigated rule learning from a statistical perspective. In
particular, we framed rule learning as a classification problem, where the
learning system is given a training set and has to select a rule set from a
predefined class of possible rule sets. Finding a “good” rule set is a non-
trivial task for many reasons. First of all, one can rate a rule learner’s
performance according to various criteria. Among the most popular ones
are predictive accuracy, simplicity and time complexity. In our studies we
generally focus on predictive accuracy as the most important goal and aim
for simple rule sets and scalable algorithms as second criteria. Unfortunately,
there is no simple scheme to achieve good predictive accuracy in all settings.
From a statistical perspective finding predictive rule sets depends on three
things: first of all, a learner has to select a rule set from the hypothesis
space that explains the training set well. This empirical risk minimization is
a NP-hard problem for most interesting rule set hypothesis spaces. Second,
the representation language and the hypothesis class from which the final
classifier is chosen determine a learner’s bias. A learner is predictive if the
bias matches well with the learning setting. There is no single bias that
works well in all settings, but some biases (for example, a bias towards large
margins) appear to work well in most practical settings. Third, the size
of the chosen hypothesis class (or, equivalently, the strength of the bias)
needs to be adjusted to avoid under- and overfitting. This is called capacity
control and can be done based on heuristics or through analytically derived
methods.

Within this thesis, we deal with empirical risk minimization and capac-
ity control for two rule set representations: DNF rule sets and weighted

175

176 Chapter 7. Summary and Outlook

rule sets. DNF rule sets are covered in Chapter 4: First, in Section 4.2.1
we propose a randomized algorithm for empirical risk minimization for k-
term DNF rule sets in the noise-free setting. Then, for the noisy setting, we
propose an approach based on stochastic local search in Section 4.2.2. For
capacity control, we present a structural risk minimization approach based
on cross validation to estimate the structural risk in Section 4.3. The re-
sulting system, SL2 aims explicitly at predictive, but small rule sets and is
therefore well suited as a benchmark system. In Section 4.3.2 we investigate
how such a pure bias compares to existing rule learners. It turns out that
SL2 achieves the same level of predictive accuracy, but induces smaller and
simpler rule sets.

It is well known that ensemble methods such as bagging are quite suc-
cessful at improving the predictive accuracy of rule learning systems. Thus,
in Section 4.4 we take an ensemble-based approach to capacity control for
DNF rule learning. Instead of selecting a fixed hypothesis class size, we
build a weighted ensemble of rule sets with varying sizes. This approach
resembles Random Forests and proves to be on par with bagged PART. If
one allows abstaining classifiers, a modified PAC-Bayesian theorem can be
used to gain tight upper-bounds of the prediction error.

For weighted rule sets, we investigate three different margin-based opti-
mization criteria in Section 5.2. It turns out that Margin Minus Variance
performs best. For capacity control, we modify the Rademacher and PAC-
Bayesian bounds to provide structural risk estimates in terms of margin and
MMV instead of the discrete error measure. In Section 5.3.3 we also present
novel bounds that depend only on the size of the rule repository. Finally, in
Section 5.4 we put together the described building blocks to implement the
new weighted rule learning system Rumble. The experiments in Section
5.5 indicate that Rumble is competitive with PART and SLIPPER, and
outperforms an 1-norm SVM.

Finally, we turn to data in first-order representation. After extending
Rumble to the multi-relational setting by adding a modular rule generation
system, we deal with the fundamental issues encountered in first-order rule
learning. In Section 6.3 we describe a theoretical framework to assess and
compare rule learning systems according to the way they extract information
from the available data. Motivated by this framework we present a novel
rule generation approach for graph-structured data based on stochastic lo-
cal search optimizing the dispersion score. Experiments indicate that Rum-
ble outperforms other margin-based multi-relational learners and that the
framework can be used to gain interesting empirical results. Furthermore,
dispersion-based rule generation appears to induce compact and simple, yet
diverse and predictive rule sets.

176

7.2. Outlook 177

7.2 Outlook

In this thesis we tackled the challenges in rule learning using the tools and
concepts from statistical machine learning. Rule learning and statistical ma-
chine learning are broad and lively research areas, and current research in
these fields continues to contribute new and relevant results. It is therefore
impossible to cover the statistical aspects of rule learning in an extensive or
even detailed manner. We therefore concentrated on algorithms for empiri-
cal risk minimization and on methods for capacity control. While simplicity
and time complexity were important considerations, we focused on predic-
tive accuracy as the main objective. Of course, this choice is somewhat
subjective, and research on simplicity and time complexity of rule learning
remains an interesting area.

But even when one is only concerned with the statistical issues in predic-
tive rule learning, there are lots of poorly understood issues and promising
directions for further research. From a practical perspective, an exception-
ally hard, but important challenge is to better understand and deal with
the bias (or approximation) part of the prediction error. Since this part
depends on a learner’s bias, the actual question is how to select a suitable
learning bias when given a particular learning problem. Rule learning is
notably well positioned to contribute to this question, because the rule gen-
eration process can be adjusted in a flexible way, so that different biases can
be easily compared and analyzed. The variance (or estimation) part of the
prediction error is better understood than the bias part. Still, there is no
silver bullet, and the advantages and disadvantages of certain methods for
capacity control are not as well understood as one would like.

When it comes to the issues and methods presented in this thesis, it
is easy to find unanswered questions and promising directions for further
research. For instance, the SL2 system presented in Section 4.3 uses a time-
consuming and rather coarse scheme for capacity control. It would be in-
teresting to evaluate more fine-grained approaches (possibly based on the
number of literals rather than rules) with better time complexity. Using
ensemble methods instead of structural risk minimization has been proven
to improve predictive accuracy in Section 4.4, albeit at the expense of gen-
erating large and incomprehensible classifiers. Research on the extraction
of relevant information from these ensembles or on the generation of small
and comprehensible, yet predictive ensembles would be certainly most fruit-
ful. While we dealt with DNF rule sets and weighted rule sets, we did not
treat decision lists. Decision lists are simpler than weighted rule sets, but
harder to comprehend than DNF formulae. On the other hand, they lack
the concept of a margin and are therefore somewhat less robust against noise
when compared to weighted rule sets. Still, they seem to be more robust
than DNF rule sets. Hence, in many regards decision lists appear to be an
interesting compromise between DNF and weighted rule sets.

177

178 Chapter 7. Summary and Outlook

Our empirical study on margin-based empirical risk minimization for
weighted rule sets in Section 5.2 was limited to only a few approaches. While
MMV performed well, other optimization criteria based on second (or even
higher order) moments might work equally well or even better. For instance,
margin divided by variance can be framed as a convex optimization problem,
but it appears to be harder to analyze analytically. The bounds in Section
5.3.3 provide an elegant way to perform capacity control, but they depend
only on the number of rules and ignore other relevant information. It would
be interesting to extend them to also accommodate for inter-feature correla-
tion, sparsity of the weight vector, or the use of information about the class
labels in the rule generation procedure. As mentioned above, Rumble’s rule
generation procedure allows for a flexible way to adjust the bias. While our
experiments give first indications, a more extensive study on which rule gen-
eration bias works well under which circumstances could lead to practically
very relevant results.

Our investigation of first-order rule learning in Chapter 6 is probably the
part of the thesis which gives rise to the most opportunities for further re-
search. The framework in Section 6.3 provides an elegant way to categorize
and assess multi-relational learning systems, but its real value depends on
how well it facilitates the derivation of novel and practically relevant results.
We gave two examples of how the framework can provide interesting empir-
ical results, but while we demonstrated its practical utility, its theoretical
foundation could certainly be investigated further. Various extensions are
conceivable, for instance, a more quantitative measurement of the used in-
formation in bits, or an investigation of exploration versus exploitation when
extracting information from the input space. Similar considerations can be
made about the dispersion-based approach to feature generation. Also, the
use of stochastic local search is by no means the only way to optimize for
diverse rule sets. Approximation schemes or randomized algorithms might
prove to work better and faster. Finally, it would be interesting to extend
dispersion-based rule generation from graph-structured data towards more
general first-order representations.

In any case, we hope that the results in this thesis prove to be useful for
further work and encourage future research on statistical rule learning.

178

Bibliography

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zan-
iolo, editors, Proceedings of the Twentieth International Conference on
Very Large Data Bases, VLDB, pages 487–499. Morgan Kaufmann, 12–
15 1994.

Grant Anderson and Bernhard Pfahringer. Random relational rules. In
S. Muggleton and R. Otero, editors, ILP ’06, Sixteenth International
Conference on Inductive Logic Programming, Short Papers, Santiago de
Compostela, Spain, August 2006, pages 10–12, Santiago de Compostela,
Spain, 2006.

Cosimo Anglano, Attilio Giordana, Giuseppe Lo Bello, and Lorenza Saitta.
An experimental evaluation of coevolutive concept learning. In ICML
’98: Proceedings of the Fifteenth International Conference on Machine
Learning, pages 19–27, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343–370, 1988.

Martin Anthony, Graham Brightwell, and John Shawe-Taylor. On specifying
boolean functions by labelled examples. Discrete Applied Mathematics,
61(1):1–25, 1995.

A. Asuncion and D.J. Newman. UCI machine learning repository [http:
//www.ics.uci.edu/~mlearn/MLRepository.html], 2007.

Maria-Florina Balcan and Avrim Blum. On a theory of learning with simi-
larity functions. In William W. Cohen and Andrew Moore, editors, Ma-
chine Learning, Proceedings of the Twenty-Third International Conference
(ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, pages
73–80. ACM, 2006.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian com-
plexities: risk bounds and structural results. Journal of Machine Learning
Research, 3:463–482, 2003.

179

180 BIBLIOGRAPHY

Peter L. Bartlett, Stéphane Boucheron, and Gábor Lugosi. Model selection
and error estimation. Machine Learning, 48(1-3):85–113, 2002.

Peter L. Bartlett, Peter J. Bickel, Peter Bühlmann, Yoav Freund, Jerome
Friedman, Trevor Hastie, Wenxin Jiang, Michael J. Jordan, Vladimir
Koltchinskii, Gabor Lugosi, Jon D. McAuliffe, Yaacov Ritov, Saharan
Rosset, Robert E. Schapire, Robert Tibshirani, Nicolas Vayatis, Bin Yu,
Tong Zhang, and Ji Zhu. Discussions of boosting papers, and rejoinders.
The Annals of Statistics, 32(1):85–134, 2004.

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local
rademacher complexities. The Annals of Statistics, 33(4):1497–1537, 08
2005.

Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of
approximately maximizing agreements. Journal of Computer and System
Sciences, 66(3):496–514, 2003.

Gilles Blanchard and François Fleuret. Occam’s hammer. In Nader H.
Bshouty and Claudio Gentile, editors, Learning Theory, 20th Annual Con-
ference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-
15, 2007, Proceedings, volume 4539 of Lecture Notes in Computer Science,
pages 112–126. Springer, 2007.

Hendrik Blockeel and Luc De Raedt. Top-down induction of first order
logical decision trees. Artificial Intelligence, 101(1-2):285–297, June 1998.

Marko Bohanec and Ivan Bratko. Trading accuracy for simplicity in decision
trees. Machine Learning, 15(3):223–250, 1994.

Christian Borgelt. On canonical forms for frequent graph mining. In Pro-
ceedings of the Third International Workshop on Mining Graphs, Trees,
and Sequences, pages 1–12, 2005.

Henrik Boström. Covering vs. divide-and-conquer for top-down induction
of logic programs. In C.S. Mellish, editor, Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, pages 1194–1200,
Montreal, Canada, 1995. Morgan Kaufmann.

Paul S. Bradley and Olvi L. Mangasarian. Feature selection via concave
minimization and support vector machines. In Jude W. Shavlik, editor,
Proceedings of the Fifteenth International Conference on Machine Learn-
ing (ICML 1998), Madison, Wisconson, USA, July 24-27, 1998, pages
82–90. Morgan Kaufmann, 1998.

Ivan Bratko. Refining complete hypotheses in ilp. In Saso Dzeroski and
Peter A. Flach, editors, Inductive Logic Programming, 9th International

180

BIBLIOGRAPHY 181

Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings, volume
1634 of Lecture Notes in Computer Science, pages 44–55. Springer, 1999.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Björn Bringmann, Albrecht Zimmermann, Luc De Raedt, and Siegfried Ni-
jssen. Don’t be afraid of simpler patterns. In Johannes Fürnkranz, Tobias
Scheffer, and Myra Spiliopoulou, editors, Proceedings of the Tenth PKDD,
volume 4213 of Lecture Notes in Computer Science, pages 55–66. Springer,
2006.

Clifford A. Brunk and Michael J. Pazzani. An investigation of noise-tolerant
relational concept learning algorithms. In L. Birnbaum and G. Collins,
editors, Proceedings of the Eighth International Workshop on Machine
Learning, pages 389–393. Morgan Kaufmann, 1991.

Peter Bühlmann and Bin Yu. Explaining bagging. Technical Report 92,
Seminar für Statistik, ETH Zürich, 2000.

Jadzia Cendrowska. Prism: An algorithm for inducing modular rules. In-
ternational Journal of Man-Machine Studies, 27(4):349–370, 1987.

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised
Learning. MIT Press, Cambridge, MA, 2006.

Michael Chisholm and Prasad Tadepalli. Learning decision rules by ran-
domized iterative local search. In Machine Learning, Proceedings of the
Nineteenth International Conference (ICML 2002), pages 75–82. Morgan
Kaufmann, 2002.

C. Chow. On optimum recognition error and reject tradeoff. IEEE Trans-
actions on Information Theory, 16(1):41–46, 1970.

Peter Clark and Tim Niblett. The cn2 induction algorithm. Machine Learn-
ing, 3:261–283, 1989.

William W. Cohen and Yoram Singer. A simple, fast, and effective rule
learner. In Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI-99), pages 335–342. AAAI Press, 1999.

William W. Cohen. Fast effective rule induction. In Armand Prieditis and
Stuart Russell, editors, Proceedings of the Twelfth International Confer-
ence on Machine Learning (ICML 1995), pages 115–123. Morgan Kauf-
mann, 9–12, 1995.

181

182 BIBLIOGRAPHY

Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regres-
sion, adaboost and bregman distances. In COLT ’00: Proceedings of the
Thirteenth Annual Conference on Computational Learning Theory, pages
158–169, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc.

Vitor Santos Costa and Ricardo Lopes. Yet Another Prolog [http://www.
ncc.up.pt/~vsc/Yap/], July 2007.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge Univer-
sity Press, Cambridge, 2000.

B. V. Dasarathy, editor. Nearest Neighbor (NN) Norms: NN Pattern Clas-
sification Techniques. IEEE Computer Society Press, Los Alamitos, CA,
1991.

Luc Dehaspe and Hannu Toivonen. Discovery of frequent datalog patterns.
Data Mining and Knowledge Discovery, 3(1):7–36, 1999.

Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7:1–30, January 2006.

Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis.
Frequent substructure-based approaches for classifying chemical com-
pounds. IEEE Transactions on Knowledge and Data Engineering,
17(8):1036–1050, 2005.

Luc Devroye, Laszlo Györfi, and Gabor Lugosi. A Probabilistic Theory
of Pattern Recognition (Stochastic Modelling and Applied Probability).
Springer, New York, February 1996.

Luc Devroye. Necessary and sufficient conditions for the pointwise conver-
gence of nearest neighbor regression function estimates. Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete, 61(4):467–481, 1982.

A. Miguel Dias. CxProlog [http://ctp.di.fct.unl.pt/~amd/cxprolog/],
October 2006.

Federico Divina and Elena Marchiori. Evolutionary concept learning. In
William B. Langdon, Erick Cantú-Paz, Keith E. Mathias, Rajkumar
Roy, David Davis, Riccardo Poli, Karthik Balakrishnan, Vasant Honavar,
Günter Rudolph, Joachim Wegener, Larry Bull, Mitchell A. Potter,
Alan C. Schultz, Julian F. Miller, Edmund K. Burke, and Natasa Jonoska,
editors, GECCO 2002: Proceedings of the Genetic and Evolutionary Com-
putation Conference, New York, USA, 9-13 July 2002, pages 343–350.
Morgan Kaufmann, 2002.

182

BIBLIOGRAPHY 183

Federico Divina. Evolutionary concept learning in first order logic: An
overview. AI Communications, 19(1):13–33, 2006.

Pedro Domingos. The RISE system: Conquering without separating. In
Sixth International Conference on Tools with Artificial Intelligence, pages
704–707, New Orleans, Louisiana, USA, 1994.

Pedro Domingos. Unifying instance-based and rule-based induction. Ma-
chine Learning, 24(2):141–168, 1996.

Pedro Domingos. The role of Occam’s razor in knowledge discovery. Data
Mining and Knowledge Discovery, 3(4):409–425, 1999.

Pedro Domingos. Bayesian averaging of classifiers and the overfitting prob-
lem. In Pat Langley, editor, Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML 2000), Stanford Univer-
sity, Standord, CA, USA, June 29 - July 2, 2000, pages 223–230. Morgan
Kaufmann, 2000.

Pedro Domingos. A unified bias-variance decomposition for zero-one and
squared loss. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on on Innovative Applica-
tions of Artificial Intelligence, July 30 - August 3, 2000, Austin, Texas,
USA., pages 564–569. AAAI Press / The MIT Press, 2000.

Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant.
A general lower bound on the number of examples needed for learning.
In COLT ’88: Proceedings of the first annual workshop on Computational
learning theory, pages 139–154, San Francisco, CA, USA, 1988. Morgan
Kaufmann Publishers Inc.

Thomas Eiter, Toshihide Ibaraki, and Kazuhisha Makino. Decision lists and
related boolean functions. Theoretical Computer Science, 270(1-2):493–
524, 2002.

Hong Fang, Weida Tong, Leming M. Shi, Robert Blair, Roger Perkins,
William Branham, Bruce S. Hass, Qian Xie, Stacy L. Dial, Carrie L.
Moland, and Daniel M. Sheehan. Structure-activity relationships for
a large diverse set of natural, synthetic, and environmental estrogens.
Chemical Research in Toxicology, 14(3):280–294, 2001.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems.
The Annals of Eugenics, 7(2):179–188, 1936.

Eibe Frank and Ian H. Witten. Generating accurate rule sets without global
optimization. In Jude W. Shavlik, editor, Proceedings of the Fifteenth
International Conference on Machine Learning (ICML 1998), Madison,

183

184 BIBLIOGRAPHY

Wisconson, USA, July 24-27, 1998, pages 144–151. Morgan Kaufmann,
1998.

Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and
boosting. In COLT ’96: Proceedings of the Ninth Annual Conference on
Computational Learning Theory, pages 325–332, New York, NY, USA,
1996. ACM Press.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, 1997.

Yoav Freund, Yishay Mansour, and Robert E. Schapire. Generalization
bounds for averaged classifiers. Annals of Statistics, 32(4):1698–1722,
2004.

Caroline C. Friedel, Ulrich Rückert, and Stefan Kramer. Cost curves for ab-
staining classifiers. In Third Workshop on ROC Analysis in ML (ROCML-
2006), Pittsburgh, USA, 29 June, 2006, 2006.

Caroline C. Friedel. On abstaining classifiers. Master’s thesis, Ludwig-
Maximilians-Universität München, 2005. [http://www.bio.ifi.lmu.de/
~friedel/material/OnAbstainingClassifiers.pdf].

Jerome Friedman and Peter Hall. On bagging and nonlinear estimation.
Technical report, Department of Statistics, Stanford University, 2000.

Jerome Friedman and Bogdan Popescu. Importance sampled learning en-
sembles. Technical report, Stanford University, Department of Statistics,
2003.

Jerome Friedman and Bogdan Popescu. Predictive learning via rule ensem-
bles. Technical report, Stanford University, 2005.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logis-
tic regression: a statistical view of boosting. The Annals of Statistics,
28(2):337–374, 2000.

Holger Fröhlich, Jörg K. Wegner, Florian Sieker, and Andreas Zell. Op-
timal assignment kernels for attributed molecular graphs. In Luc De
Raedt and Stefan Wrobel, editors, Machine Learning, Proceedings of the
Twenty-Second International Conference (ICML 2005), pages 225–232.
ACM, 2005.

Johannes Fürnkranz and Peter A. Flach. Roc ‘n’ rule learning - towards a
better understanding of covering algorithms. Machine Learning, 58(1):39–
77, 2005.

184

BIBLIOGRAPHY 185

Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error prun-
ing. In W.W. Cohen and H. Hirsh, editors, Machine Learning, Proceed-
ings of the Eleventh International Conference, pages 70–77. Morgan Kauf-
mann, 1994.

Johannes Fürnkranz. Pruning algorithms for rule learning. Machine Learn-
ing, 27(2):139–172, 1997.

Johannes Fürnkranz. Separate-and-conquer rule learning. Artificial Intelli-
gence Review, 13(1):3–54, 1999.

Johannes Fürnkranz, editor. Proceedings of the Workshop Advances in In-
ductive Rule Learning, ECML/PKDD 2004, 2004.

Lise Getoor and Benjamin Taskar. Introduction to Statistical Relational
Learning (Adaptive Computation and Machine Learning). The MIT Press,
August 2007.

E. Mark Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting combinatorial
search through randomization. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence and Tenth Innovative Applications of
Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26-30, 1998,
Madison, Wisconsin, USA, pages 431–437, Menlo Park, 26–30 1998.
AAAI Press.

Yves Grandvalet. Bagging equalizes influence. Machine Learning, 55(3):251–
270, 2004.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. Journal of Machine Learning Research, 3:1157–1182, 2003.

Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements
of Statistical Learning. Springer, August 2001.

David Haussler. Quantifying inductive bias: AI learning algorithms and
Valiant’s learning framework. Artificial Intelligence, 36(2):177–221, 1988.

David Haussler. Decision theoretic generalizations of the PAC model for
neural net and other learning applications. Information and Computation,
100(1):78–150, 1992.

Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice
Hall, 1999.

185

186 BIBLIOGRAPHY

Christoph Helma, Tobias Cramer, Stefan Kramer, and Luc De Raedt. Data
mining and machine learning techniques for the identification of muta-
genicity inducing substructures and structure activity relationships of
noncongeneric compounds. Journal of Chemical Information and Com-
puter Sciences, 44(4):1402–1411, 2004.

Ralf Herbrich and Thore Graepel. A PAC-Bayesian margin bound for linear
classifiers. IEEE Transactions on Information Theory, 48(12):3140–3150,
2002.

Ralf Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT
Press, Cambridge, MA, USA, 2001.

Edward A. Hirsch and Arist Kojevnikov. Unitwalk: A new SAT solver that
uses local search guided by unit clause elimination. Annals of Mathematics
and Artificial Intelligence, 43(1-4):91–111, 2005.

Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58:13–30, 1963.

Klaus-U. Höffgen, Hans-U. Simon, and Kevin S. van Horn. Robust train-
ability of single neurons. Journal of Computer and System Sciences,
50(1):114–125, 1995.

John H. Holland. Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An
Artificial Intelligence Approach: Volume II, pages 593–623. Kaufmann,
Los Altos, CA, 1986.

Robert C. Holte, Liane Acker, and Bruce W. Porter. Concept learning and
the problem of small disjuncts. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, pages 813–818, Detroit,
MI, 1989.

Robert C. Holte. Very simple classification rules perform well on most com-
monly used datasets. Machine Learning, 11(1):63–90, 1993.

Holger H. Hoos. Stochastic Local Search - Methods, Models, Applications.
PhD thesis, TU Darmstadt, 1998.

David W. Hosmer and Stanley Lemeshow. Applied logistic regression. Wiley,
New York, second edition, 2000.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining
of frequent patterns from graphs: Mining graph data. Machine Learning,
50(3):321–354, 2003.

186

BIBLIOGRAPHY 187

Ross Quinlan J. [www.rulequest.com], 2003.

Manfred Jäger. Probabilistic classifiers and the concepts they recognize. In
Tom Fawcett and Nina Mishra, editors, Machine Learning, Proceedings
of the Twentieth International Conference (ICML 2003), August 21-24,
2003, Washington, DC, USA, pages 266–273. AAAI Press, 2003.

Thorsten Joachims. Estimating the generalization performance of an svm
efficiently. In Pat Langley, editor, Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML 2000), Stanford Univer-
sity, Standord, CA, USA, June 29 - July 2, 2000, pages 431–438, 2000.

Matti Kääriäinen, Tuomo Malinen, and Tapio Elomaa. Selective rademacher
penalization and reduced error pruning of decision trees. Journal of Ma-
chine Learning Research, 5:1107–1126, 2004.

Matti Kääriäinen. Relating the Rademacher and VC bounds. Technical Re-
port C-2004-57, Department of Computer Science, University of Helsinki,
2004.

Anil P. Kamath, Narendra K. Karmarkar, K. G. Ramakrishnan, and Mauri-
cio G. C. Resende. A continuous approach to inductive inference. Math-
ematical Programming, 57:215–238, 1992.

Michael Kearns and Ming Li. Learning in the presence of malicious errors.
SIAM Journal on Computing, 22(4):807–837, 1993.

Michael Kearns and Umesh V. Vazirani. An Introduction to Computational
Learning Theory. The MIT Press, Cambridge, Massachusetts, 1994.

Michael Kearns, Yishay Mansour, Andrew Y. Ng, and Dana Ron. An ex-
perimental and theoretical comparison of model selection methods. In
COLT ’95: Proceedings of the Eighth Annual Conference on Computa-
tional Learning Theory, pages 21–30, New York, NY, USA, 1995. ACM
Press.

Ross D. King and Ashwin Srinivasan. Relating chemical activity to struc-
ture: An examination of ILP successes. New Generation Computing,
Special issue on Inductive Logic Programming, 13(3-4):411–434, 1995.

Scott Kirkpatrick and Bart Selman. Critical behavior in the satisfiability of
random Boolean expressions. Science, 264(5163):1297–1301, 27 1994.

Vladimir Koltchinskii. Rademacher penalties and structural risk minimiza-
tion. IEEE Transactions on Information Theory, 47(5):1902–1914, 2001.

Stefan Kramer, Nada Lavrač, and Peter Flach. Propositionalization ap-
proaches to relational data mining. In Saso Dzeroski and Nada Lavrač,

187

188 BIBLIOGRAPHY

editors, Relational Data Mining, pages 262–291. Springer-Verlag, Septem-
ber 2001.

Stefan Kramer. Structural regression trees. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI-96), pages 812–819,
Cambridge/Menlo Park, 1996. AAAI Press/MIT Press.

Mark-A. Krogel and Stefan Wrobel. Transformation-based learning us-
ing multirelational aggregation. In Céline Rouveirol and Michèle Sebag,
editors, Inductive Logic Programming, Proceedings of the Eleventh In-
ternational Conference, ILP 2001, Strasbourg, France, September 9-11,
2001, volume 2157 of Lecture Notes in Computer Science, pages 142–155.
Springer, 2001.

Mark-A. Krogel. On propositionalization for knowledge discovery in rela-
tional databases. PhD thesis, Otto-von-Guericke Universität Magdeburg,
2005.

Niels Landwehr, Kristian Kersting, and Luc De Raedt. nFOIL: Integrating
näıve Bayes and FOIL. In Manuela M. Veloso and Subbarao Kambham-
pati, editors, Proceedings, The Twentieth National Conference on Artifi-
cial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA,
pages 795–800. AAAI Press / The MIT Press, 2005.

Niels Landwehr, Andrea Passerini, Luc De Raedt, and Paolo Frasconi.
kFOIL: Learning simple relational kernels. In Proceedings of the Twenty-
First National Conference on Artificial Intelligence and the Eighteenth
Innovative Applications of Artificial Intelligence Conference, July 16-20,
2006, Boston, Massachusetts, USA. AAAI Press, 2006.

John Langford. Tutorial on practical prediction theory for classification.
Journal of Machine Learning Research, 6:273–306, 2005.

Nada Lavrač and Sašo Džeroski. Inductive Logic Programming: Techniques
and Applications. Ellis Horwood, 1994.

Nada Lavrač, Branko Kavsek, Peter A. Flach, and Ljupco Todorovski. Sub-
group discovery with CN2-SD. Journal of Machine Learning Research,
5:153–188, 2004.

Wenmin Li, Jiawei Han, and Jian Pei. Cmar: Accurate and efficient classi-
fication based on multiple class-association rules. In ICDM ’01: Proceed-
ings of the 2001 IEEE International Conference on Data Mining, pages
369–376, Washington, DC, USA, 2001. IEEE Computer Society.

188

BIBLIOGRAPHY 189

Hu Li, Chun Wei Yap, Choong Yong Ung, Ying Xue, Zhi Wei Cao, and
Yu Zong Chen. Effect of selection of molecular descriptors on the pre-
diction of blood-brain barrier penetrating and nonpenetrating agents by
statistical learning methods. Journal of Chemical Information and Mod-
eling, 45(5):1376–1384, 2005.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algo-
rithm. Information and Computation, 108:212–261, 1994.

Huan Liu and Hiroshi Motoda. Feature Selection for Knowledge Discovery
and Data Mining. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and as-
sociation rule mining. In Rakesh Agrawal, Paul E. Stolorz, and Gre-
gory Piatetsky-Shapiro, editors, Proceedings of the Fourth International
Conference on Knowledge Discovery and Data Mining (KDD-98), pages
80–86. AAAI Press, 1998.

John W. Lloyd. Logic for learning: learning comprehensible theories from
structured data. Springer-Verlag, 2003.

Heikki Mannila and Hannu Toivonen. Levelwise search and borders of the-
ories in knowledge discovery. Data Mining and Knowledge Discovery,
1(3):241–258, 1997.

Mario Marchand and John Shawe-Taylor. Learning with the set covering
machine. In Carla E. Brodley and Andrea Pohoreckyj Danyluk, editors,
Proceedings of the Eighteenth International Conference on Machine Learn-
ing (ICML 2001), Williams College, Williamstown, MA, USA, June 28 -
July 1, 2001, pages 345–352. Morgan Kaufmann, 2001.

Mario Marchand and John Shawe Taylor. The set covering machine. Journal
of Machine Learning Research, 3:723–746, 2003.

Mario Marchand, Mohak Shah, John Shawe-Taylor, and Marina Sokolova.
The set covering machine with data-dependent half-spaces. In Tom
Fawcett and Nina Mishra, editors, Machine Learning, Proceedings of the
Twentieth International Conference (ICML 2003), August 21-24, 2003,
Washington, DC, USA, pages 520–527. Morgan Kaufmann, 2003.

Llew Mason, Jonathan Baxter, Peter L. Bartlett, and Marcus R. Frean.
Boosting algorithms as gradient descent. In Sara A. Solla, Todd K. Leen,
and Klaus-Robert Müller, editors, Advances in Neural Information Pro-
cessing Systems 12, [NIPS Conference, Denver, Colorado, USA, Novem-
ber 29 - December 4, 1999], pages 512–518. The MIT Press, 1999.

189

190 BIBLIOGRAPHY

David McAllester, Bart Selman, and Henry Kautz. Evidence for invariants
in local search. In Proceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applications of Artificial In-
telligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence,
Rhode Island, pages 321–326, Providence, Rhode Island, 1997. AAAI Press
/ The MIT Press.

David McAllester. PAC-Bayesian model averaging. In COLT ’99: Pro-
ceedings of the Twelfth Annual Conference on Computational Learning
Theory, pages 164–170, New York, NY, USA, 1999. ACM Press.

Colin McDiarmid. On the method of bounded differences. In Surveys in
combinatorics, volume 141 of London Mathematical Society Lecture Note
Series, pages 148–188. Cambridge University Press, Cambridge, 1989.

Ryszard S. Michalski. On the quasi-minimal solution of the covering prob-
lem. In Proceedings of the Fifth International Symposium on Information
Processing (FCIP-69), volume A3 (Switching Circuits), pages 125–128,
Bled, Yugoslavia, 1969.

Ryszard S. Michalski. A theory and methodology of inductive learning.
Artificial Intelligence, 20(2):111–161, 1983.

Ryszard S. Michalski. Attributional calculus: A logic and representation
language for natural induction. Technical Report MLI 04-2, Machine
Learning and Inference Laboratory, George Mason University, Fairfax,
VA, 2004. [http://hdl.handle.net/1920/1487].

Raymond J. Mooney. Encouraging experimental results on learning CNF.
Machine Learning, 19(1):79–92, 1995.

Stephen Muggleton and Cao Feng. Efficient induction in logic programs.
In S. Muggleton, editor, Inductive Logic Programming, pages 281–298.
Academic Press, 1992.

Stephen Muggleton, Huma Lodhi, Ata Amini, and Michael J. E. Sternberg.
Support vector inductive logic programming. In A. G. Hoffmann, H. Mo-
toda, and T. Scheffer, editors, Proceedings, Discovery Science, Eighth In-
ternational Conference, DS 2005, Singapore, October 8-11, 2005, pages
163–175. Springer, 2005.

Stephen Muggleton. Inverse entailment and Progol. New Generation Com-
puting, 13(3&4):245–286, 1995.

Jennifer Neville, Matthew Rattigan, and David Jensen. Statistical rela-
tional learning: Four claims and a survey. In Proceedings of the Workshop
on Learning Statistical Models from Relational Data, Eighteenth Interna-
tional Joint Conference on Artificial Intelligence., 2003.

190

BIBLIOGRAPHY 191

Shan-Hwei Nienhuys-Cheng and Ronald De Wolf. Foundations of Inductive
Logic Programming, volume 1228 of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

Manfred Opper. On the annealed VC entropy for margin classifiers: a sta-
tistical mechanics study. In Advances in kernel methods: support vector
learning, pages 117–126. MIT Press, Cambridge, MA, USA, 1999.

Aline Paes, Železný Filip, Gerson Zaverucha, David Page, and Ashwin Srini-
vasan. ILP through propositionalization and stochastic k-term DNF learn-
ing. In S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, editors,
Inductive Logic Programming, Proceedings of the Sixteenth International
Conference, ILP 2006, Santiago de Compostela, Spain, August 2006, vol-
ume 4455 of Lecture Notes in Computer Science, pages 379–393, 2007.

Andrea Passerini, Paolo Frasconi, and Luc De Raedt. Kernels on Prolog
proof trees: Statistical learning in the ILP setting. Journal of Machine
Learning Research, 7:307–342, 2006.

Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An
improved exponential-time algorithm for k-sat. Journal of the ACM,
52(3):337–364, 2005.

Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. Optimizing
the induction of alternating decision trees. In Proceedings of the Fifth
Pacific-Asia Conference on Advances in Knowledge Discovery and Data
Mining (PAKDD2001), pages 477–487, 2001.

Bernhard Pfahringer, Geoffrey Holmes, and Cheng Weng. Millions of ran-
dom rules. In Workshop on Advances in Inductive Rule Learning, Fif-
teenth European Conference on Machine Learning (ECML 2004), pages
123–131, Pisa, Italy, 2004.

Tadeusz Pietraszek. Optimizing abstaining classifiers using ROC analysis.
In Luc De Raedt and Stefan Wrobel, editors, Machine Learning, Proceed-
ings of the Twenty-Second International Conference (ICML 2005), Bonn,
Germany, August 7-11, 2005, pages 665–672. ACM, 2005.

Leonard Pitt and Leslie G. Valiant. Computational limitations on learning
from examples. Journal of the ACM, 35(4):965–984, 1988.

G.D. Plotkin. A further note on inductive generalization. In Machine Intel-
ligence, volume 6, pages 101–124. Edinburgh University Press, 1971.

Alexandrin Popescul and Lyle H. Ungar. Statistical relational learning for
link prediction. In IJCAI03 Workshop on Learning Statistical Models from
Relational Data, 2003.

191

192 BIBLIOGRAPHY

Alexandrin Popescul and Lyle H. Ungar. Cluster-based concept invention
for statistical relational learning. In Won Kim, Ron Kohavi, Johannes
Gehrke, and William DuMouchel, editors, KDD ’04: Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 665–670, New York, NY, USA, 2004. ACM Press.

Alexandrin Popescul and Lyle H. Ungar. Dynamic feature generation for
relational learning. In Proceedings of the Third International Workshop
on Multi-Relational Mining (MRDM-2004), at the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2004.

Alexandrin Popescul, Lyle H. Ungar, Steve Lawrence, and David M. Pen-
nock. Towards structural logistic regression: Combining relational and
statistical learning. In Proceedings of the Workshop on Multi-Relational
Data Mining (MRDM-2002) at KDD-2002, pages 130–141, Edmonton,
Canada, 2002.

Ariel D. Procaccia and Jeffrey S. Rosenschein. Exact VC-dimension of mono-
tone formulas. Neural Information Processing — Letters and Reviews,
10(7):165–168, July 2006. Research letter.

J. Ross Quinlan and R. Mike Cameron-Jones. Induction of logic programs:
FOIL and related systems. New Generation Computing, 13(3 & 4):287–
312, 1995.

J. Ross Quinlan. Learning logical definitions from relations. Machine Learn-
ing, 5(3):239–266, 1990.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

J. Ross Quinlan. MDL and categorial theories (continued). In A. Prieditis
and S. Russell, editors, Proceedings of the Twelfth International Confer-
ence on Machine Learning (ICML 1995), pages 464–470, Lake Tahoe, CA,
1995.

J. Sunil Rao and Robert Tibshirani. The out-of-bootstrap method for model
averaging and selection. Technical report, Department of Statistics, Uni-
versity of Toronto, 1996.

Gunnar Rätsch, Manfred K. Warmuth, Sebastian Mika, Takashi Onoda,
Steven Lemm, and Klaus-Robert Müller. Barrier boosting. In Nicolò Cesa-
Bianchi and Sally A. Goldman, editors, Proceedings of the Thirteenth An-
nual Conference on Computational Learning Theory (COLT 2000), June
28 - July 1, 2000, Palo Alto, California, pages 170–179, San Francisco,
CA, USA, 2000. Morgan Kaufmann Publishers Inc.

192

BIBLIOGRAPHY 193

Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
Learning, 62(1-2):107–136, 2006.

Patricia Riddle, Richard Segal, and Oren Etzioni. Representation design
and brute-force induction in a boeing manufactoring domain. Applied
Artificial Intelligence, 8:125–147, 1994.

Ryan Rifkin and Aldebaro Klautau. In defense of one-vs-all classification.
Journal of Machine Learning Research, 5:101–141, 2004.

Jorma Rissanen. Modelling by the shortest data description. Automatica,
14:465–471, 1978.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246,
1987.

Dan Roth and Wen–tau Yih. Relational learning via propositional algo-
rithms: An information extraction case study. In Bernhard Nebel, editor,
Proceedings of the Seventeenth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10,
2001, pages 1257–1263. Morgan Kaufmann, 2001.

Ulrich Rückert and Luc De Raedt. An experimental evaluation of simplicity
in rule learning. Accepted for publication in Artificial Intelligence, 2007.

Ulrich Rückert and Stefan Kramer. Stochastic local search in k-term DNF
learning. In Tom Fawcett and Nina Mishra, editors, Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), Au-
gust 21-24, 2003, Washington, DC, USA, pages 648–655. AAAI Press,
2003.

Ulrich Rückert and Stefan Kramer. Frequent free tree discovery in graph
data. In H. Haddad, A. Omicini, R. L. Wainwright, and L. M. Liebrock,
editors, Proceedings of the 2004 ACM Symposium on Applied Computing,
pages 564–570. ACM, 2004.

Ulrich Rückert and Stefan Kramer. Towards tight bounds for rule learn-
ing. In Machine Learning, Proceedings of the Twenty-first International
Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. ACM,
2004.

Ulrich Rückert and Stefan Kramer. Margin-based first-order rule learning.
In S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad, editors, Inductive
Logic Programming, Proceedings of the Sixteenth International Confer-
ence, ILP 2006, Santiago de Compostela, Spain, August 2006, number
4455 in Lecture Notes in Artificial Intelligence, pages 46–48. Springer,
2006.

193

194 BIBLIOGRAPHY

Ulrich Rückert and Stefan Kramer. A statistical approach to rule learn-
ing. In Machine Learning, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29,
2006, pages 785–792. ACM Press, 2006.

Ulrich Rückert and Stefan Kramer. Margin-based first-order rule learning.
To appear in Machine Learning, 2007.

Ulrich Rückert and Stefan Kramer. Optimizing feature sets for struc-
tured data. Accepted for publication in Machine Learning: ECML 2007,
Eighteenth European Conference on Machine Learning, Warsaw, Poland,
September 17-21, 2007, Proceedings, 2007.

Ulrich Rückert and Stefan Kramer. Towards a framework for relational
learning and propositionalization. Accepted for publication in Sixth Work-
shop on Multi-Relational Data Mining at the Eighteenth European Con-
ference on Machine Learning, Warsaw, Poland, September 17-21, 2007,
2007.

Ulrich Rückert, Stefan Kramer, and Luc De Raedt. Phase transitions and
stochastic local search in k-term DNF learning. In H. Toivonen T. Elomaa,
H. Mannila, editor, Machine Learning: ECML 2002, Thirteenth European
Conference on Machine Learning, Helsinki, Finland, August 19-23, 2002,
Proceedings, volume 2430 of Lecture Notes in Computer Science, pages
405–417. Springer, 2002.

Ulrich Rückert. Machine learning in the phase transition framework. Mas-
ter’s thesis, Ludwig-Maximilians-Universität München, 2002. [http:
//wwwkramer.in.tum.de/rueckert/da.pdf].

Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based
on a smooth margin. In John Shawe-Taylor and Yoram Singer, editors,
Learning Theoryro, Seventeenth Annual Conference on Learning Theory,
COLT 2004, Banff, Canada, July 1-4, 2004, Proceedings, volume 3120 of
Lecture Notes in Computer Science, pages 502–517. Springer, 2004.

Daniil Ryabko. Pattern recognition for conditionally independent data.
Journal of Machine Learning Research, 7:645–664, 2006.

Robert E. Schapire, Yoav Freund, Peter L. Bartlett, and Wee Sun Lee.
Boosting the Margin: A New Explanation for the Effectiveness of Voting
Methods. The Annals of Statistics, 26(5):1651–1686, 1998.

Robert E. Schapire. The strength of weak learnability. Machine Learning,
5:197–227, 1990.

194

BIBLIOGRAPHY 195

Robert E. Schapire. The boosting approach to machine learning: An
overview. In D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and
B. Yu, editors, Nonlinear Estimation and Classification, pages 149–172.
Springer, 2003.

Richard Segal and Oren Etzioni. Learning decision lists using homogeneous
rules. In Proceedings of the Twelfth National Conference on Artificial
Intelligence, Volume 1, Seattle, WA, USA, July 31 - August 4, 1994,
pages 619–625, Menlo Park, CA, USA, 1994. American Association for
Artificial Intelligence.

Bart Selman, Henry A. Kautz, and Bram Cohen. Local search strategies for
satisfiability testing. In D. S. Johnson and M. A. Trick, editors, Cliques,
Coloring, satisfiability: the second DIMACS implementation challenge,
volume 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 521–532. AMS Series in Discrete Mathematics
and Theortical Computer Science 26, 1996.

Stephen Frederick Smith. A learning system based on genetic adaptive al-
gorithms. PhD thesis, Department of Computer Science, University of
Pittsburgh, 1980.

Marina Sokolova, Mario Marchand, Nathalie Japkowicz, and John Shawe-
Taylor. The decision list machine. In Suzanna Becker, Sebastian Thrun,
and Klaus Obermayer, editors, Advances in Neural Information Process-
ing Systems 15 [Neural Information Processing Systems, NIPS 2002, De-
cember 9-14, 2002, Vancouver, British Columbia, Canada], pages 921–
928. MIT-Press, Cambridge, MA, USA, 2003.

Ashwin Srinivasan and Ross D. King. Feature construction with inductive
logic programming: A study of quantitative predictions of biological activ-
ity aided by structural attributes. Data Mining and Knowledge Discovery,
3(1):37–57, 1999.

Ashwin Srinivasan, Stephen Muggleton, Michael J. E. Sternberg, and
Ross D. King. Theories for mutagenicity: A study in first-order and
feature-based induction. Artificial Intelligence, 85(1-2):277–299, 1996.

Charles J. Stone. Consistent nonparametric regression. Annals of Statistics,
5(4):595–645, 1977.

Ljupčo Todorovski, Peter Flach, and Nada Lavrač. Predictive performance
of weighted relative accuracy. In Djamel A. Zighed, Jan Komorowski, and
Jan Zytkow, editors, Principles of Data Mining and Knowledge Discovery,
4th European Conference, PKDD 2000, Lyon, France, September 13-16,
2000, Proceedings, volume 1910 of Lecture Notes in Computer Science,
pages 255–264. Springer, 2000.

195

196 BIBLIOGRAPHY

L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

Vladimir Vapnik and Alexey Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
and its Applications, 16(2):264–280, 1971.

Vladimir Vapnik and Alexey Chervonenkis. Theory of Pattern Recognition
[in Russian]. Nauka, Moscow, 1974. (German Translation: W. Wapnik
& A. Tscherwonenkis, Theorie der Zeichenerkennung, Akademie-Verlag,
Berlin, 1979).

Vladimir Vapnik. The nature of statistical learning theory. Springer, New
York, 1995.

Vijay V. Vazirani. Approximation Algorithms. Springer, March 2003.

Liwei Wang and Jufu Feng. Rademacher margin complexity. In Nader H.
Bshouty and Claudio Gentile, editors, Learning Theory, 20th Annual Con-
ference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-
15, 2007, Proceedings, volume 4539 of Lecture Notes in Computer Science,
pages 620–621. Springer, 2007.

Geoffrey I. Webb. Further experimental evidence against the utility of Oc-
cam’s razor. Journal of Artificial Intelligence Research, 4:397–417, 1996.

Gary M. Weiss and Haym Hirsh. A quantitative study of small disjuncts.
In Proceedings of the Seventeenth National Conference on Artificial In-
telligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence, pages 665–670. AAAI Press / The MIT Press, 2000.

Sholom M. Weiss and Nitin Indurkhya. Optimized rule induction. IEEE
Expert, 8(6):61–69, 1993.

Sholom M. Weiss and Nitin Indurkhya. Lightweight rule induction. In Pat
Langley, editor, Proceedings of the Seventeenth International Conference
on Machine Learning (ICML 2000), Stanford University, Standord, CA,
USA, June 29 - July 2, 2000, pages 1135–1142. Morgan Kaufmann, 2000.

Sholom M. Weiss, Robert S. Galen, and Prasad Tadepalli. Maximizing the
predictive value of production rules. Artificial Intelligence, 45(1-2):47–71,
1990.

Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(1):69–101, 1996.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann,
1999.

196

BIBLIOGRAPHY 197

David H. Wolpert. The Mathematics of Generalization: The Proceedings of
the SFI/CNLS Workshop on Formal Approaches to Supervised Learning.
Perseus Publishing, 1994.

David H. Wolpert. The lack of a priori distinctions between learning algo-
rithms. Neural Computation, 8(7):1341–1390, 1996.

Adam Woźnica, Alexandros Kalousis, and Melanie Hilario. Kernels over
relational algebra structures. In Tu Bao Ho, David Cheung, and Huan
Liu, editors, Advances in Knowledge Discovery and Data Mining, Ninth
Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May 18-20,
2005, Proceedings, volume 3518 of Lecture Notes in Computer Science,
pages 588–598. Springer, 2005.

Xifeng Yan and Jiawei Han. gSpan: Graph-based substructure pattern min-
ing. In Vipin Kumar and Shusaku Tsumoto, editors, Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM 2002), 9-12
December 2002, Maebashi City, Japan, pages 721–724. IEEE Computer
Society, 2002.

Xiaoxin Yin and Jiawei Han. Cpar: Classification based on predictive asso-
ciation rules. In Daniel Barbará and Chandrika Kamath, editors, Proceed-
ings of the Third SIAM International Conference on Data Mining, San
Francisco, CA, USA, May 1-3, 2003. SIAM, 2003.

Fumitaka Yoshida and John Topliss. QSAR model for drug human oral
bioavailability. Journal of Medicinal Chemistry, 43:2575–2585, 2000.

Filip Železný and Nada Lavrač. Propositionalization-based relational sub-
group discovery with RSD. Machine Learning, 62(1-2):33–63, 2006.

Filip Železný, Ashwin Srinivasan, and C. David Page. Randomised restarted
search in ILP. Machine Learning, 64(1-3):183–208, 2006.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. 1-norm
support vector machines. In Sebastian Thrun, Lawrence K. Saul, and
Bernhard Schölkopf, editors, Advances in Neural Information Processing
Systems 16 [Neural Information Processing Systems, NIPS 2003, Decem-
ber 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. MIT
Press, 2004.

Xiaojin Zhu. Semi-supervised learning literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison, 2005. [http:
//www.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf].

197

Index

1-norm support vector machine, 94,
102, 106, 128, 176

3-way similarity, 65
3SAT, 156

abstaining
classifier, 55, 91–92
ensemble, 91, 96

abstaining voting classifier, 92
accuracy, 2
AdaBoost, 49
AGM, 150
agnostic propositionalization, 144
Akaike information criterion, 45
Aleph, 149
approximation error, 40–41, 44, 49
Apriori, 24
AQ, 9
association rule mining, 24
attribute, 29

background knowledge, 127, 136, 140
bagging, 3, 19, 24, 47–49, 94, 176
Bayes classifier, 33
Bayes error, 33
Bayes optimal classifier, 53
Bayesian averaging, 53
Bayesian information criterion, 45
bias, 16, 18, 35, 37, 38, 39–40, 43,

49, 53, 58, 76, 80, 85, 91,
100, 127, 138, 163, 168, 175

declarative, 138, 139, 147, 149
inductive, 18
towards large margins, 100

bias-variance decomposition, 39

block, 65
boosting, 24, 49–51
bootstrap sample, 47
Brute, 23
BruteDL, 24

C4.5, 22
C4.5rules, 13, 22
C5.0, 79
canonical code, 160

string, 161
capacity control, 6, 41, 81, 85

for DNF rule sets, 75
for weighted rule sets, 108

CBA, 24
class label, 29, 142
class label space, 29
class-correlated dispersion score, 155
classification, 2, 29

binary, 29
multi-valued, 29

classifier, 29
CMAR, 24
CN2, 12, 19, 22, 78
CN2-WRACC, 78
CNF, see conjunctive normal form
comprehensibility, 2–4, 16, 58
concept drift, 31
conjunctive normal form, 127
consistency, 34
cost function, 30
covariance matrix, 123
covering number, 45
CPAR, 24

198

INDEX 199

cross validation, 45, 75
cutoff time, 71
CxProlog, 139

decision function, 142
decision list, 11–12, 99, 177
decision stump, 79
decision tree, 22
default rule, 11
disjunctive normal form, 6, 10
dispersion

based rule generation, 150–162
plugin, 139
score, 154

divide-and-conquer, 22
DNF, see disjunctive normal form
DNF formula, see DNF rule set
DNF rule set, 6, 10–11, 57, 59, 75,

85, 99, 177
domain, 29

ECL, 23
empirical margin, 103–105, 109, 110,

116, 120, 126, 128
empirical margin minus variance, 105,

116, 123, 126
empirical risk minimization, 6, 41–

43, 59, 101, 175
empirical variance, 105, 114
ensemble, 3, 6, 24, 28, 47, 47–56, 81,

85, 86, 92
methods, 13, 19, 24–25, 28, 47,

176
ERM, see empirical risk minimiza-

tion
error, 30

approximation, 40–41, 44, 49
empirical, 30, 41, 45, 56, 60, 70,

72, 87, 101, 109
estimation, 40–41, 44, 48, 49, 76
test, 18, 30–32, 51
true, 30, 31–33, 35, 42, 48, 56,

94, 101, 106, 125

estimation error, 40–41, 44, 48, 49,
76

evolutionary algorithm, 23
example, 29
exponential loss, 51

feature, 29
first-order learning, 5, 136, 137
first-order logic, 136
first-order representation, 5, 136, 176,

178
FOIL, 19, 79, 149, 172
FreeTreeMiner, 131, 139

G-Net, 23
genetic algorithm, 23
Gibbs classifier, 56, 115
GOLEM, 9
graph trie, 160, 162
growing set, 19
gSpan, 139, 150

Hadamard matrix, 153
half-space, 17, 101
Hamming distance, 65
hinge loss, 43, 102, 132
Hoeffding’s inequality, 119
holdout set, 45
hyperplane, 3, 17, 100, 103, 106
hypothesis space, 23, 30, 34, 40, 41,

55, 60, 101, 115

i.i.d. assumption, 31
identification in the limit, 28
ILP, see inductive logic programming
importance sampled learning ensem-

ble, 24
incremental reduced error pruning, 19
induction principle, 4
inductive logic programming, 9, 11,

136
input space, 29, 136, see also instance

space
instance, 29

199

200 INDEX

instance space, 29, 35, 37, 46, 85,
120, 142, 167

instance-based learning, 23
intercept, 103
IREP, 19

JRIP, 94

k-decision list, 16
k-DNF, 43
k-DNF formula, 16, 60
k-term DNF

consistency, 60–69
formula, 16, 60
maximum agreement, 60, 70–74

kFOIL, 149, 162, 171
Kronecker delta, 64

language bias, 14, see also bias
large margin, 17, 43, 100, 102, 127,

175
Las Vegas algorithm, 71
lasso penalty, 46
learning system, 27, 39, 40, 47, 53,

55, 110, 136, 143–145, 175
least generalization, 61
LERILS, 23
linear loss, 132
logistic regression, 4, 51, 172
loss, see also error

exponential, 51
function, 30
hinge, 43, 102, 132
linear, 132
squared, 39, 49
zero-one, 30, 39, 40, 43, 49, 51,

60, 88, 101, 132
LRI, 13, 25, 95

machine learning, 2, 9, 22, 27, 58
margin, 6, 12, 17, 19, 51, 55, 92, 99,

101, 172, 177
based learning, 100, 162
empirical, 103–105, 109, 110, 116,

120, 126, 128

for abstention, 92
large, 17, 43, 100, 102, 127, 175
soft, 101, 102, 126, 169
true, 104, 110, 116

margin minus variance, 6, 105, 105–
108, 109, 113, 122, 166, 169,
176

empirical, 105, 116, 123, 126
optimization, 105, 128, 141
true, 106, 116, 123

maximum a posteriori classifier, 53
maximum agreement, see k-term max-

imum agreement
maximum discrepancy, 45
McDiarmid’s inequality, 111
meta plugin, 139
missing values, 15, 78, 130
MMV, see margin minus variance
model, 2, 11, 18

predictive, 2, 29
representation, 2, 3
selection, 41, 44, 75, 109, 125,

128
selection criterion, 45

Monte Carlo algorithm, 71
multi-relational

data, 138
learning, 5, 141, 162
learning systems, 144
representation, 136

Naive Bayes, 13, 54, 100, 172
neural network, 3
no free lunch, 35–38

theorem, 36
noise free setting, 34
noise model, 86
noise probability, 71

Occam’s razor, 16
off-training set error, 37
output space, 29
overfitting, 15, 18, 41, 44, 58, 75, 80,

126, 140, 145, 169

200

INDEX 201

and bagging, 48
and boosting, 50
avoidance, 18, 35, 164

PAC learning, see probably approxi-
mately correct learning

PAC-Bayes, 56, 88–91, 95, 115–119,
145

PART, 12, 22, 78, 94, 128, 176
perceptron, 13
phase transition, 17, 74
post-pruning, 18
posterior probability, 52
pre-pruning, 18
predictive accuracy, 3
predictor, 29
prior probability, 52
PRISM, 11, 22
probably approximately correct learn-

ing, 28, 49
Progol, 149
Prolog, 136, 139, 163

plugin, 139
propositional

learning, 138
representation, 5, 10, 141

propositionalization, 138, 149
system, 144

pruning, 18, 19, 57
pruning set, 19
PVM, 24

query language, 142

Rademacher
average, 45
complexity, 109
error complexity, 110
margin complexity, 110
random variable, 110
second margin moment complex-

ity, 110
Random Forest, 47, 59, 85
reduced error pruning, 19
refinement operator, 14, 138, 145, 163

regression, 2, 29
ordinal, 29

regularization, 40, 45–46, 100, 120,
122, 141

parameter, 45
RELAGGS, 149
relation generation functions, 149
relative least general generalization,

9
REP, 19
ridge penalty, 46, 141
RIPPER, 3, 11, 19, 22, 78, 94
RISE, 23
risk, see error
rote learning, 16, 23, 91
rule learning, 1, 3, 9–25, 28, 35, 43,

48, 57–60, 76, 78, 80, 81, 86–
88, 91, 92, 99, 100, 102, 109,
127, 128, 135, 136, 138, 144,
162, 164, 175–178

RuleFit, 9, 13, 20, 24
Rumble, 125–127, 128, 137–141, 150,

162, 163, 176, 178

SAR, see Structure-Activity Relation-
ship

semi-supervised classification, 17
separate-and-conquer, 4, 9, 12, 17,

20–22, 22, 35, 48, 57, 79, 81,
94, 136, 143, 144

sequential covering, 4, see also separate-
and-conquer

set covering, 20, 22, 78
set covering machine, 95
simplicity, 57, 58, 76, 79, 175, 177
SL2, 58, 75–77, 78, 80, 81, 138, 176,

177
SLIPPER, 13, 19, 25, 95, 128, 176
SLS, see stochastic local search
SLSearch, 71, 72, 91
small disjuncts, 12, 17, 22, 81
soft margin, 101, 102, 126, 169
squared loss, 39, 49

201

202 INDEX

SRM, see structural risk minimiza-
tion

stepwise refining system, 144
stochastic local search, 23, 70–74, 151,

158–160
strong learner, 49
structural logistic regression, 149
structural risk minimization, 43–45,

54, 58, 75, 176
for DNF rule sets, 75
for weighted rule sets, 108

Structure-Activity Relationship, 5, 136
support vector machine, 3, 13, 17,

100, 101, 169

target label, see class label
terms plugin, 139
test set bound, 32
Tilde, 146, 149
true margin, 104, 110, 116
true margin minus variance, 106, 116,

123
true variance, 105

underfitting, 18, 41, 58, 75
universal consistency, 34
unstable predictor, 28, 47, 81

validation set, 18
variance, 24, 28, 31, 39, 46, 49, 115,

122, 177
empirical, 105, 114
true, 105

VC dimension, 42, 44
VC entropy, 45
voting classifier, 56, 89

WalkSAT, 97
Warmr, 148, 150
weak learner, 24, 28, 49
weighted reduced accuracy, 21, 78
weighted rule set, 12–13, 14, 16, 17,

25, 43, 54, 99–101, 115, 125,
176, 177

white noise model, 87, 94

YAP Prolog, 139

zero-one loss, 30, 39, 40, 43, 49, 51,
60, 88, 101, 132

202

