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viii Chapter 0.1. Summary

0.1 Summary

An extended scheme for basis set extrapolation of the correlation energy is presented
and analyzed for a large number of atoms and molecules. The focus in the development
is on the use in generating high level potential energy surfaces (PES) for multidimen-
sional IR spectroscopy. Methyl benzoate (MB) is studied as a model compound for the
development of new IR pulse schemes with possible applicability to biomolecules. Anhar-
monic vibrational modes of MB are calculated on different level (MP2, SCS, CCSD(T)
with varying basis sets) ab-initio PESs using the vibrational self-consistent field (VSCF)
method and its correlated extensions. Dual level schemes, combining different quantum
chemical methods for diagonal and coupling potentials, are systematically studied and
applied successfully to reduce the computational cost.
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0.2 Zusammenfassung

Ein erweitertes Schema zur Extrapolation der Korrelationsenergie zum Basissatzlimit wird
vorgestellt und für eine umfangreiche Anzahl von Atomen und Molekülen analysiert. Das
Ziel der Entwicklung liegt in der Anwendung zur Berechnung von exakten Potentialen-
ergieflächen (PES) für die Simulation multidimensionaler IR-Spektroskopie. Methylben-
zoat (MB) wurde als Modellsystem zur Entwicklung neuer IR Pulssequenzen, mit dem
Hintergrund der Anwendbarkeit auf Biomoleküle, untersucht. Anharmonische Schwingun-
gsmoden für MB wurden auf ab-initio PES unterschiedlicher Güte (MP2, SCS, CCSD(T)
mit variierenden Basissätzen) mittels der ”vibrational self-consistent field” (VSCF) Meth-
ode und Ihrer korrelierten Erweiterungen berechnet. Gemischte Ansätze, welche ver-
schiedene quantenchemische Methoden für die Diagonal- und Kopplungspotentiale verknü-
pfen, wurden systematisch analysiert und erfolgreich zur Reduzierung des Rechenaufwan-
des verwendet.





Chapter 1

Introduction

Two of the central questions in physical chemistry and biophysics are how structures of

complex molecular systems evolve, and how such dynamics are related to the important

chemical and biological processes.1 Infrared (IR) vibrational spectroscopy is among the

foremost experimental tools in the exploration of molecular properties.2 Linear IR spec-

troscopy has been used for a long time, however, many important properties of molecular

systems cannot be determined by linear spectroscopy. On the other hand two-dimensional

(2D) nuclear magnetic resonance (NMR)3–6 can resolve the structure of complex molecules

with atomic resolution, but its millisecond time scale is too slow to follow ultrafast dynam-

ics directly,7 which is crucial to understand many chemical and the biological processes.

The recent success in the experimental realization of coherent 2D IR spectroscopy

provides a powerful new tool to study the structure and dynamics of biological systems

with temporal resolution down to the sub-picosecond regime.8–12 This technique has the

ability to disentangle congested vibrational spectra of biomolecules to some extent similar

to 2D NMR, but on an ultrafast timescale. The most significant feature of non-linear 2D

IR spectroscopy is the possibility to directly measure coupling constants and orientations

of the transition dipole moments of the IR active modes.7 The structural and dynamical

information is typically available in terms of diagonal and cross-peak shapes, locations

and intensities and their respective temporal evolution.7 The interpretation of this data

in terms of a dynamical model of the biomolecule under investigation requires extensive

theoretical modeling.

Until very recently, theoretical calculations of vibrational spectra were most often

restricted to the harmonic approximation.2 Such studies have been very useful, but they

are also of limited significance since many biological molecules are very “floppy” and

subject to strong anharmonic effects. Also, much of the interest in the molecular dynamics

1



2 1. Introduction

is away from the equilibrium configurations, where the harmonic approximation is very

poor. The main computational difficulties in the calculation of anharmonic spectra is that

the different vibrational modes are not mutually separable and one has to face a large

number of coupled degrees of freedom with the number of couplings growing very quickly

with system size.

Several approaches are known to compute vibrational spectra for anharmonic systems.

Among others, the discrete variable representation (DVR),13–16 diffusion quantum Monte

Carlo (DQMC),17–20 and vibrational self-consistent field (VSCF)21–23 methods proved their

applicability to study anharmonic effects in systems with different sizes. The VSCF

method is most successful among them to simulate the spectroscopic data for large an-

harmonic systems. The success of the VSCF method (and also all other methods) depends

upon the accuracy of the calculated potential energy surface (PES).24,25

In the VSCF approach, the PES enters the calculation in the form of multidimensional

integrals for the effective one-dimensional potentials which is the most difficult part of the

VSCF calculations. To simplify these integrals it is possible to express the PES in terms

of a hierarchical many-body expansion.26 In typical molecular problems quadruple and

higher interaction potentials have a negligible influence on the vibrational spectrum and

are therefore commonly neglected in the VSCF calculations. In a recent detailed analy-

sis it has been shown that even only few triple couplings have a significant influence.27

For large typically molecular systems diagonal and pair potentials are usually sufficient

if the PESs are calculated accurately in an appropriately chosen coordinate system. Ad-

ditionally diagonal potentials may be calculated employing a higher level computational

method than the pair potentials to increase the accuracy of the VSCF calculations signifi-

cantly. Such a dual level computation not only improves the accuracy but also reduces the

computational expenses significantly due to the large number of possible pair potential.

The PES calculated at the semi-empirical methods28,29 seems promising but not suf-

ficient for the high resolution spectroscopy. The quantum chemical ab initio method

recently reached to a high level of accuracy for small molecules30,31 and is expected to

improve the accuracy of the PES calculation. The highly accurate ab initio calculation

requires the basis functions to be as large as possible.32 As the basis function increases,

the computational expense grows much faster than the rate at which the accuracy is im-

proved,32 which makes the method unaffordable for the highly accurate PES calculation.

On the other hand, spectroscopic accuracy can not be achieved by the smaller basis sets.

In such a situation extrapolation of the energy to the basis set limit may speed up the
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PES calculation if there is a general extrapolation scheme. It is well known that Hartree-

Fock (HF) energy converges very quickly and essentially reaches the basis set limit with

the small basis set. Therefore spectroscopic accuracy only depends upon the accurate

calculation of the correlation energy, which is known to converge very slowly. Two point

extrapolation of the correlation energy, proposed by Halkier et al.31 reached to the spec-

troscopic accuracy but this method suggests to extrapolate from two larger basis sets,

which is not feasible for large molecules. Inclusion of fifth order term from Schwartz’s

formula33 provides an efficient route to extrapolate the correlation energy from small ba-

sis sets and reduces the computational expenses by two to three order of magnitude to

reach the basis set limit correlation energy.34 A further improvement on the extrapolation

scheme is required for more accurate PES calculation with a reasonable effort which will

lead to the VSCF, a generous method for the simulation of spectroscopic data of large

anharmonic systems like proteins and peptides.

Spectroscopically the amide-I, amide-II modes and the coupling between the amide-I

and β-hydrogen located in the side chain of proteins and peptides are most important

because they can provide information about secondary structural motifs of proteins and

peptides. The so-called amide-I band, which consists mostly of the stretch vibrational

motion of the C=O group is a strong IR absorber, which is spectrally isolated from the

other vibrational modes even in large proteins. The C–H or C–D stretch vibrations as

backbone modes are particularly important structural probes in biological systems because

they are very localized. Especially the C–D stretch frequency is an excellent structural

probe since it is usually spectrally isolated even in the spectrum of large proteins. It is

necessary to compute and identify these important vibrational bands efficiently.

Proteins have a too complicated structure to be studied in details. On the other hand

Methyl benzoate itself is a small organic molecule and provides some of the structural

similarities with proteins and peptides. Computationally it is more favorable due to its

structural simplicity and can be studied in more detail. Structurally it is a stable planar

molecule except for the two hydrogen atoms at the methyl group which are symmetrically

out-of-plane with respect to the rest of the molecule. The C=O double bond in the

carboxylic ester group behaves as a local oscillator similar to the amide-I band in proteins

and provides a convenient mode to study the amide-I band structure of proteins. A

potentially interesting coupling in proteins is the coupling between the amide-I and the

β-hydrogen located in the sidechain. Methyl benzoate also provides a similar structure

where the ortho hydrogen in the phenyl ring provides the counter-part of β-hydrogen in
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protein sidechains. Due to the low potential barrier, ester group rotate about the C–C

single bond in a ultrafast process and provide an efficient route to develop the new pulse

scheme to study ultrafast phenomena in biomolecules. For all these above mentioned

reasons Methyl benzoate is considered to be an important model system to develop the

pulse sequence technique for the vibrational spectroscopy of proteins and peptides.35

In the following chapters we will systematically develop and improve computational

methods which in the long run will allow us to study large biological systems. Chapter 2

shortly reviews the quantum chemical methods used, especially the perturbative electron

correlation method (MP2) and the basis sets as these are the basis of the chapter 3.

Chapter 3 mainly discusses the convergence behavior of the correlation energy. With a

short review of Schwartz’s work on the He atom, it is shown that the convergence behavior

of correlation energy is rather slow33 (l−4, where l is the maximum angular momentum

quantum number in one-particle basis). Extrapolation of the energy towards the basis

set limit is frequently used to overcome the slow convergence since it does not increase

any further cost. Several extrapolation methods are discussed with their advantages and

disadvantages. An extensive investigation of the proposed extrapolation scheme with a

large number of atoms and molecules is presented in this chapter. It is discussed also in

this chapter how efficiently the PES can be calculated by extrapolation method.

Chapter 4 mainly discusses vibrational spectroscopy of Methyl benzoate. A short

review of the VSCF method and the PES expansions are presented which are the basis

for the further investigations and discussions. Diagonal and off-diagonal anharmonicity

calculation techniques are given here. It is also shown how the 1D and 2D PES were

calculated to make the VSCF method successful. Finally it presents the detail calculations

and analysis of vibrational anharmonic frequencies of Methyl benzoate and and its two

isotopomers.



Chapter 2

Quantum Chemistry

2.1 Quantum Chemical Methods

2.1.1 The Electronic Problem

Molecules are nothing but many-body systems consisting of nuclei and electrons. The

central problem in quantum chemistry is to solve the Schrödinger equation for this many-

body system and find the wave functions. Here we will consider the solution of the

non-relativistic time-independent Schrödinger equation, i.e.,

H |Φ〉 = E |Φ〉, (2.1)

where H is the Hamiltonian operator for the system of nuclei and electrons described

by position vectors RA and ri, respectively. A molecular coordinate system is shown

in Fig. 2.1, where A and B denote nuclei and i and j denote electrons. Assuming the

nuclei and electrons to be point masses and neglecting spin-orbit and other relativistic

interactions, the complete Hamiltonian for this system, in atomic units, is given by

H = −1

2

N∑

i=1

▽2
i −

M∑

A=1

1

2mA

▽2
A −

N∑

i=1

M∑

A=1

ZA

riA

+
N∑

i=1

N∑

j>i

1

rij

+
M∑

A=1

M∑

B>A

ZAZB

RAB

, (2.2)

where the first two terms of the right-hand-side represent the kinetic energy operator of

the N -electrons and M-nuclei, respectively. While the third term describes the interac-

tion between nuclei and electrons, the last two terms represent the inter-electronic and

inter-nuclear interactions. mA is the atomic mass of nucleus A. The Laplacian operator

▽2 involves differentiation with respect to the coordinates of the particle (i.e., electron or

nucleus) and is defined as,

5
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ABR  = R − RB A

r  = r  − RB j B

RA

RB

rj

r  = r − rij ji

r  = r  − Ri BBi

ri

j

 i  j   

A  B 

electrons

nuclei

A

B

y

x

z

j

i

, 

,

Figure 2.1: Molecular coordinate system.

▽2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.3)

in Cartesian coordinates. The restriction j > i and B > A avoids self interaction terms

like e2/rii as well as the overcounting of the interactions.

Born-Oppenheimer approximation

For any molecule larger than Hydrogen molecular ion (H+
2 ), the molecular Hamiltonian

(Eq. (2.2)) cannot be solved exactly. Born and Oppenheimer proposed a simplified ap-

proach inspired by an idea by Newton. In 1687 Newton showed that due its large mass

the earth does not move towards the apple but rather the apple falls on the earth’s surface

from a tree. Born and his student Oppenheimer introduced a similar approach in quantum

mechanics in 1927. Since nuclei are much heavier than electrons (a single proton is about

1836 times heavier than an electron), to a good approximation one can consider nuclei as

fixed in space and electrons are moving under a constant electrostatic force field of the

nuclei.36 In this approximation the kinetic energy (KE) of the nuclei, i.e., the second term

in the r.h.s. of Eq. (2.2) vanishes. Since nuclei are fixed, the repulsions between nuclei

are constant. Any constant added to an operator only adds to the operator eigenvalues
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E
   

 (
R

   
)

to
t

A
B RAB

Figure 2.2: Path of nuclear motion. Here RAB is the inter nuclear distance and Etot(RAB)
is the molecular energy at different nuclear distances.

and has no effect on the operator eigenfunctions. Neglecting the 2nd and the 5th term in

Eq. (2.2), one obtains the Hamiltonian for the purely electronic system, i.e.,

Hel = −1

2

N∑

i=1

▽2
i −

N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij
. (2.4)

Now the Schrödinger equation for electronic motion becomes,

(Hel + VNN)Φel = EtotΦel. (2.5)

The energy Etot in Eq. (2.5) is the electronic energy including the internuclear repulsion

(VNN). The internuclear distances RAB in Eq. (2.2) are parameters of the electronic

problem. The electronic wave functions thus depend explicitly on electronic coordinates

but depends parametrically on the nuclear coordinates,

Φel = Φel({ri}; {RA}). (2.6)

Similarly, electronic energy,

Eel = Eel({RA}). (2.7)

The total energy Etot({RA}) provides a potential for the nuclear motion. This function

represents a potential energy surface (PES) as shown schematically in Fig. 2.2. Thus the

nuclei in the Born-Oppenheimer approximation move in a PES obtained by solving the

electronic problem.
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2.1.2 Hartree-Fock Self-Consistent Field Method

The main goal of quantum chemistry is to find the exact electronic wave function. For

many-body systems, the problem becomes so complicated that the calculation of the ex-

act wave function becomes impossible. It is only possible to find a good approximation

to the exact wave function for the system which can explain most of the properties of the

system accurately. The total Hamiltonian for N non interacting particles can be written

as,

H =
N∑

i=1

h(i), (2.8)

where h(i) is the operator describing the kinetic energy and potential energy of electron

i, and defined as,

h(i) =
1

2
▽2

i −
N∑

A=1

ZA

riA
. (2.9)

Considering the spin of single electron wave function (orbital) χi(qi), where,

χ(qi) = Φ(xi, yi, zi)αi(ω), (2.10)

for the i-th electron, the time-independent Schrödinger equation separated into N one

electron equations

h(i)χj(qi) = εjχj(qi). (2.11)

Now, instead of considering non-interacting electrons, the electronic repulsion can be

included in an average way and Eq. (2.9) becomes,36

h(i) =
1

2
▽2

i −
N∑

A=1

ZA

riA
+ υel

i , (2.12)

where υel
i is the average repulsive force between the i-th electron and all other electrons.

Since H is a sum of one-electron Hamiltonians, the corresponding wave function of

the N -electron system will be the simple product of N individual wave functions. The

total wave function can be written as,

ΦH(q1, q2, · · · , qN ) = χi(q1)χj(q2) · · ·χk(qN), (2.13)

and the Schrödinger equation becomes,

H ΦH = E ΦH, (2.14)
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where the eigenvalue E is sum of the spin orbital energies of each of the spin orbitals

appearing in ΦHF,

E =

k∑

i=0

εi. (2.15)

The best possible approximate wave function for a many electron system is obtained

by making a guess for the trial functions χi, and solving the Schrödinger Eq. (2.11) re-

peatedly. This procedure is continued until the resulting wave function no longer changes.

This procedure is called the Hartree self-consistence process.37 The many electron wave

function obtained by this method is still an approximate wave function, because the

many-electron Schrödinger equation is not separable, so the true wave function cannot be

written as the direct product of N single-electron functions.

Since the Hartree product does not take into account the indistinguishability of the

electrons, Fock instead of taking the direct product of N one-electron functions, con-

structed an appropriate linear combination of these wave functions which will satisfy the

Pauli principle. The antisymmetric wave functions can be written in determinant form,

known as Slater determinant,36

Ψ(q1, q2, · · · , qN) = (N !)−1/2




χi(q1) χj(q1) · · · χk(q1)
χi(q2) χj(q2) · · · χk(q2)

...
...

...
χi(qN ) χj(qN ) · · · χk(qN )


 , (2.16)

where (N !)−1/2 is the normalization factor. This Slater determinant has N electrons occu-

pying spin orbitals (χi, χj, · · · , χk) without specifying which electron is in which orbitals

and satisfies the antisymmetry principle. In a short-hand notation this determinant is

written as,

Ψ(q1, q2, · · · , qN) = |χiχj · · ·χN〉. (2.17)

A many electron wave function described by such a Slater determinant incorporates

exchange correlation, which means that the motion of two electrons with parallel spins is

correlated while being non-correlated for electrons of opposite spin.36

2.1.3 Concept of basis

The main objective of any of the above mentioned molecular quantum-mechanical method

is to solve the time-independent Schrödinger equation, which is an integro-differential
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equation. One can solve this equation analytically, but as the number of electrons increases

in the system, quickly the problem goes beyond analytical solution. There is a possibility

to solve the equation numerically, and a common practice is to solve atomic problem,

but still there are no practical procedures presently available to solve molecular problem.

Roothan in 1951 showed an elegant way to solve such a problem by using so called basis

functions, which could convert the differential equation to a set of algebraic equations and

efficiently solved by standard matrix techniques.38

Now consider a set of K known basis function {φµ(r)| µ = 1, 2, · · · , K} and expand

the unknown molecular orbitals in the linear expansion

Ψi =

K∑

µ=1

Cµiφµ, (2.18)

which is nothing but matrix representation of a one particle (orbital ) wave function. If

the set φµ is complete, the molecular orbital can be represented exactly. But in practice

complete basis set is not manageable within the present technology and methods available,

and therefore one has to work with a finite set of K basis functions. Then it is important

to choose a basis that will provide, as far as possible, a reasonably accurate expression

for the exact molecular orbitals Ψi.

Choice of basis functions

In the most general sense, a basis set is nothing but a mathematical representation of

electron path in atomic or molecular environment. Slater developed a function to describe

the atomic orbitals, the so-called Slater type orbital (STO),39 as,

φSF
1s (ζ, r) =

(
ζ3

π

)1/2

e−ζr, (2.19)

where ζ is the Slater orbital exponent and r is the instantaneous distance between nucleus

and electron.

Another popular type of orbital is Gaussian type orbital (GTO),36

φGTO
1s (α, r) =

(
2α

π

)3/4

e−αr2

, (2.20)

where α is the Gaussian orbital exponent. Although there are several different kind of

basis functions, these two are more popular due to their excellent ability to express atomic

and molecular orbitals and also in computational sense, they are easy to compute. The
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main advantage of Gaussian type function over Slater type function is that, product of two

Gaussian functions is another Gaussian function, which makes it easier to perform two

electrons calculations and save enormous time of calculations. Where as calculation with

Slater function such a two electron calculations are most expensive and time consuming.

On the other hand, the Gaussian function could not able to describe Coulomb cusp

and also decays rapidly at large distances, as compared to actual behavior of molecular

orbitals. Slater type orbital, however, is a smoothly varying function at r → 0 and also

slowly decays at large distances, which is more physical.

Contracted Gaussian basis set

In 1950, S. F. Boys suggested to construct an approximate Slater type function using more

than one Gaussian primitive.40 This approximate Slater function defines atomic orbitals

more efficiently still using Gaussian functions which simplifies the computation. Such an

approximate function is known as contracted Gaussian function,

φCGF
µ (r) =

N∑

p=1

dpµφ
GF
p (αpµ, r), (2.21)

where N is the length of the contraction and dpµ is the contraction coefficient. The pth

normalized primitive Gaussian φGF
p in the basis function φCGF

µ has a functional dependence

on the Gaussian orbital exponent αpµ. By a proper choice of the contraction length, the

contraction coefficients, and the contraction exponents, the contracted Gaussian function

can be made to assume Slater functional form consistent with primitive functions used.

This procedure is known as STO-NG method and basis sets constructed this way are re-

ferred to as STO-NG. A very common example being the use of three Gaussian primitives:

STO-3G.41,42 Figure 2.3 shows a comparison of different contracted Gaussian functions

and Slater functions. These basis sets are known as minimal basis sets, since they used

one STO (or GTO) per spin-orbital. It considers one functional (1s) for H and He, five

functional (1s, 2s, 2px, 2py, 2pz) for Li → Ne, and nine functional for Na → Ar, and so on.

Extended basis sets

A minimal basis set approximates all the orbitals to be of same shape. However, in reality

this is a poor approximation, since the s orbital is circular, the p is in dumbbell shape, etc.

The next approach to improve the minimal basis set is to use two contracted Gaussians for

each of the minimal basis functions, which differ in their orbital exponent ζ , the so-called
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Figure 2.3: Comparison of the quality of the least-squares fit of a 1s Slater function
(ζ = 1.0) obtained at the STO-1G, STO-2G, and STO-3G levels. Contraction exponents
and contraction coefficients are used from Ref. 36.

double-zeta (DZ) basis set.36 The best orbital exponent of the two STOs are commonly

slightly above and slightly below the optimal exponent of the minimal basis function.

Φ2s(r) = ΦSTO
2s (r, ζ1) + dΦSTO

2s (r, ζ2) (2.22)

The two STOs are added in some proportion. The constant d determines the contribution

of each STO to the final orbital, i.e., whether the effective orbital has to be expanded

or contracted. The higher order basis sets, e.g., triple-zeta, quadruple-zeta, etc., in this

series are formed in the similar way.

Split valence basis

Most of the chemical properties of atoms mostly depend on the valence shell rather than

the inner shells which have only some, mostly constant, contribution to the total energy.

Therefore, instead of using more STOs for inner shell if one uses only a single STO,

it saves enormous effort while performing calculation using the double-zeta, triple-zeta,

etc., basis set which does not affect much to calculate most of the chemically interested

properties like dipole moment, ionization potential, charge density, dissociation energy etc.

Some popular basis sets in this series are 3-21G,43–48 6-21G,43,47 4-31G,49–52 6-31G etc.
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For example in 4-31G basis core orbitals are constructed with four Gaussian primitives,

where as three Gaussian primitives used for first STO and one for the second STO. For

Li → F, the contractions are,

φ1s(r) =

4∑

i=1

di,1sg1s(αi,1s, r), (2.23)

φ′
2s(r) =

3∑

i=1

d′i,1sg1s(α
′
i,2sp, r), (2.24)

φ′′
2s(r) = g1s(α

′′
2sp, r), (2.25)

φ′
2p(r) =

3∑

i=1

d′i,2pg2p(α
′
i,2sp, r), (2.26)

φ′′
2p(r) = g2p(α

′′
2sp, r). (2.27)

Polarized basis sets

More than one STO basis sets may describe an isolated atomic orbital quite efficiently, but

in molecular environment, orbitals will not be as they are in isolated atom. For example

if one look at on an isolated hydrogen atom, it is just the spherical 1s orbital. Now if the

hydrogen atom is placed in a uniform electric field, the electron cloud is attracted to the

direction of the electric field and the orbital shape will be no longer the spherical 1s but a

mixture of the original 1s orbital and a p-type orbital. Similarly when atoms are brought

closer, their charge distribution shows a polarization effect due to the electric field of other

atoms, which distorts the shape of the atomic orbitals. In this case the s orbitals tend to

have a little of the p flavor and the p orbitals tend to have a little of the d flavor and so

on. This polarization effect is described by adding higher orbitals angular-momentum in

the basis sets, the so-called polarized basis sets are represented by adding an asterisk (*)

after the basis set, e.g., 4-31G → 4-31G*.

Diffuse basis sets

So far all the basis sets developed mainly concerned about the inner shell electrons which

are responsible for main energy of atom. This is the main area under the wave function.

The area to the left of the dotted line in Fig. 2.4 indicate this region. The area to the right

of the dotted line is not really a factor in calculation. But the outer shell valence electrons

are mainly responsible for the molecule formation, which has less contribution in energy.
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Figure 2.4: Atomic wave function. Diffuse basis set take care the wave function right to
the dotted line.

However, when an atom is negatively charged or in an exited state, the loosely bound

electrons which are responsible for the energy in the tail region of the wave function,

become very important. This contribution is taken into account by using the so-called

diffused basis set. Normally diffused functions are with very small orbital exponent.

Diffused basis set is denoted by ’+’ sign, like 3-21+G, 3-21++G etc. Single ’+’ sign

indicates that the basis sets are formed adding four highly diffused functions (s, px, py,

pz) on each first and second row elements. Double plus sign indicates that, a highly

diffused s function is added for the hydrogen atom.53–55

Dunning basis sets

So far all basis sets developed are optimized at the HF level of computation. Dunning first

pointed out that basis sets optimized at the HF level might not be ideal for correlated

computations. Dunning and co-workers optimized the basis sets at singly and doubly

excited configuration interaction level and named as “correlation-consistent” (cc) basis set.

Over the last decade Dunning and co-workers developed a set of hierarchical sequences
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of basis sets like correlation consistence polarized valence X-tuple-zeta basis set (“cc-

pVXZ”), where X = D, T,Q, 5, · · · . Adding diffused functions with cc-pVXZ basis set

they also developed another hierarchical sequences of basis set, called as augmented cc-

pVXZ (aug-cc-pVXZ).53,54, 56–59

2.1.4 Electron Correlation

Molecular energies calculated by the Hartree-Fock (HF) method are typically in error by

0.5% to 1%. For describing chemical processes, this accuracy is far from sufficient. The

main drawback of the HF approximation is that the electronic interactions are taken into

account only in an average way. This is an incorrect representation, since electron-electron

interaction depends on their instantaneous position. Consider for example the two electron

hydrogen molecule. In HF representation when counting the interaction of one electron,

the other electron’s effect is symmetrically distributed over both the atoms. But in reality

when one electron is situated near a hydrogen atom, it electrostatically repulse the other

electron. There is only a small probability to find the second electron near the region

of the first electron, which means the motion of electrons are correlated. Therefore the

instantaneous electron correlation should be introduced into the wave function.

The one way to overcome the problem is the so-called configuration interaction (CI)

method. The basic idea behind CI is to diagonalize the N -electron Hamiltonian in a basis

of N -electron functions (Slater determinants). The exact wave function is represented as

a linear combination of N -electron trial functions and the linear variational method is

used. If the basis is complete, one obtains the exact energies for ground state as well as

excited state of the system. But in practice, one can handle only a finite set of N -electron

trial functions, consequently CI provides only upper bound to the exact energies.

Limitation of CI

Consider a system with N electrons. Now if the basis sets have 2K spin orbitals, then N

will be occupied orbitals and 2K − N orbitals will be unoccupied. Now we can choose

n spin orbitals from those occupied orbitals by
(

N
n

)
ways. Similarly we can choose n

spin orbital from 2K − N virtual orbitals by
(
2K−N

n

)
ways. Thus total number of n-

tuple excited determinants is
(

N
n

)(
2K−N

n

)
. Due to such a large determinantal form, CI

calculation quickly becomes formidably large although it gives best results for a given

one-electron basis set. Figure 2.5 shows how the exact nonrelativistic Born-Oppenheimer

wave function is approached as the size of the one-electron and N -electron basis sets
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Figure 2.5: Dependence of correlations on size of one-electron and N-electron basis sets.

increase. One can obtain the best result by increasing both one-electron and N -electron

basis sets sufficiently, indicated by the diagonal arrow. For a given number of one-electron

basis function, N -electron basis function itself increases so rapidly that one can not reach

the exact calculation. For a practical purpose to obtain a computationally viable scheme

one must has to truncate the full CI matrix.

2.1.5 Møller-Plesset Perturbation Theory

The CI is a systematic procedure for going beyond the HF approximation. But due to

the size-consistency problem, truncated CI is not a good choice for calculation of corre-

lation energy. Physicist were successfully using perturbation treatment for many-body

problems like crystal structure, nucleons in a nucleus, etc. and known as many body

perturbation theory (MBPT). Brueckner showed that MBPT is size-consistence at each

order.60 Motivated by Brueckner’s results, in 1934, Møller and Plesset proposed a pertur-

bation treatment of atoms and molecules in which the unperturbed wave function is the

HF function. This form of MBPT is called Møller-Plesset (MP) perturbation theory.61

In this approach the total Hamiltonian is divided into two parts, the unperturbed or the

zeroth order Hamiltonian (HF Hamiltonian), denoted by H, which has known eigenfunc-

tions (HF wave functions) and known eigenvalues, and the perturbation part describing
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correlation effects.

When the perturbation is small, using power series expansion one can write the total

Hamiltonian of the system as,

Hi = H
(0)

i + λH
(1)

i + λ2
H

(2)
i + · · · . (2.28)

Similarly exact eigenfunctions and eigenvalues expanded as,

|φi〉 = |Ψ(0)
i 〉 + λ|Ψ(1)

i 〉 + λ2|Ψ(2)
i 〉 + · · · , (2.29)

Ei = E
(0)
i + λE

(1)
i + λ2

E
(2)
i + · · · . (2.30)

Now substituting Eqs. (2.28), (2.29) and (2.30) in the time independent Schrödinger

equation Eq. (2.1) and equating the coefficient of λn, one can get the different order energy

correction E
(n)
i .

E
(1)
i = 〈Ψ(0)

i |H (1)
i |Ψ(0)

i 〉, (2.31)

E
(2)
i =

∑

i6=j

|〈ψ(0)
i |H (2)

i |ψ(2)
i 〉|2

E
(0)
i − E

(0)
j

. (2.32)

Zeroth and first order together yield the HF energy. When second order energy correction

is added to the HF energy, the MP2 energy is obtained.62–67 Higher order corrections give

MP3, MP4,68 MP5,69 etc. energy.





Chapter 3

Extended scheme of the basis set
extrapolation

3.1 Introduction

Ab initio quantum chemical calculations of molecular properties have reached a remark-

ably high level of accuracy for small molecules.30,31 Highly accurate electronic structure

calculations of molecules require the expansion of the electronic wave function to be as

nearly complete as possible both in one- and n- electron space. But with the increase of the

number of basis functions towards a near complete basis, computational cost grows much

faster than the rate at which the accuracy is improved. In fact, it grows approximately

as the fourth power in the reduction of the basis-set truncation error.32 That means,

to reduce the error of the computed energy by a factor of ten, the computational cost

increases by a factor of 104. This tendency of a large increase in computational cost is the

main obstacle to perform accurate calculations of molecular properties in most cases. The

problem can be resolved either by using a wavefunction which explicitly depends on inter-

electronic coordinates or by using an extrapolation scheme which should accelerate the

systematic convergence to the basis set limit.32 There have been impressive developments

in the field of wave function based methods which explicitly depend on inter-electronic

coordinates70–83 during the last two decades. But due to the presence of inter-electronic

terms r12 in the wavefunctions, these methods are also not suitable for larger molecular

systems. On the other hand the extrapolation approach does not incur any further cost

to estimate the basis-set limit. It may therefore be an efficient method for highly accurate

calculations if a general extrapolation scheme can be devised to accurately estimate the

basis set limit energy.

19
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3.2 Theoretical background

It is well known that the Schrödinger equation for the many body problem can only be

solved approximately using the variational principle which is based on an imperfect fitting

of some trial function. With a sufficiently (infinitely) flexible trial function it is assumed

that convergence to the exact result is achieved. Then, the question is, how rapidly does

the answer converge?

Let us consider the Ritz variational principle for the energy of a bound state,84

E =
(ψHψ)

ψψ
, (3.1)

and suppose the trial function ψ is represented by a finite linear combination of appropriate

functions un,

ψ =

N∑

n=1

Cnun (3.2)

Depending on the total number N of variational coefficients Cn, a sequence of approxi-

mations (EN) according to Eq. (3.1) will be obtained which will converge to the correct

energy value E. The rate of convergence depends upon how fast |EN −EN−1| goes to zero

as N goes to infinity.

Let us now focus on a particular example: the two electron system in the helium atom.

Pekeris carried out the original Hylleraas85 program for the calculation of the helium

ground state and reached an accuracy several orders of magnitude beyond any previous

attempt.86 Schwartz analyzed the same helium atom problem and studied explicitly the

convergence behavior of the second order energy in a systematic way. In the following,

we will present a short summary of this analysis.

3.2.1 Correlation energy in the two electron atom

Consider the ground state of a two-electron system having nuclear charge Z = 2. Using

perturbation theory, the zeroth order ground state wave function of the system is written

as,

ψ0 =
4

4π
exp[−(r1 + r2)], (3.3)

which is nothing else but the product of two 1s states of the hydrogen atom and r1 and

r2 are the radial coordinates of the two electrons. The first order correction of the wave

function ψ1 is then given by

(E0 −H0)ψ1 = (H1 −E1)ψ0, (3.4)
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where E0 = −1, E1 = 5/8 and H1 = 1
r12

in atomic units (see Ref. 84). The second-order

energy E2, can be calculated after ψ1 has been obtained and is defined by

E2 =

∫
ψ0(H1 −E1)ψ1dv (3.5)

Yet, an exact solution for E2 has never been obtained. The problem may be reduced by

expanding ψ1 in a series of Legendre polynomials

ψ1 =
∞∑

l=0

ψ
(l)
1 (r1, r2)Pl(cosθ), (3.6)

E2 =
∞∑

l=0

E2(l), (3.7)

where θ is the angle between the two position vectors and l is the angular momentum

quantum number. If we express Eq. (3.4) in operator form, we obtain

[
1

2
∇2

1 +
1

2
∇2

2 +
1

r1
+

1

r2
− 1

]
ψ

(l)
1 (r1, r2) =

[
rl
<

rl+1
>

− 5

8
δl,0

]
ψ0, (3.8)

where the subscripts < and > designate the lesser and the greater of the two distances r1

and r2, respectively, and ∇ is the radial part of the kinetic energy operator and defined

by

∇2 → 1

r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2
, (3.9)

E2(l) =

∫
ψ0

rl
<

rl+1
>

ψ
(l)
1

dv1dv2

(2l + 1)
(l > 0). (3.10)

An exact solution of this two-dimensional problem is not feasible. We will seek for an

approximate solution valid in the limit of large l in order to see how rapidly the series

Eq. (3.7) for E2 converges. First, we inspect the inhomogeneous term in Eq. (3.8) for

ψ
(l)
1 (r1, r2). For large values of l the quantity rl

</r
l+1
> is strongly peaked around the

point r1 = r2, where the two electrons are in the same place. This is prohibited by the

Pauli exclusion principle and creates a singularity in the Coulomb potential. The value

of rl
</r

l+1
> rapidly decays to zero as one goes away from the point r1 = r2. Thus the

important contributions to the first-order corrected wave function ψ
(l)
1 are due to the

immediate neighborhood of the point r1 = r2.

We introduce the Hylleraas coordinates85

s = r1 + r2, t = −r1 + r2. (3.11)
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Now ψ
(l)
1 is a function of new variables s and t and can be expressed as

ψ
(l)
1 = ψ0fl(s, t), (3.12)

In this new coordinate system Eq. (3.8) becomes

[
d2

ds2
+
d2

dt2
+

4s

s2 − t2
d

ds
− 4t

s2 − t2
d

dt
− 4l(l + 1)(s2 + t2)

(s2 − t2)2
− 2

d

ds

]
fl

= 2
(s− |t|)l

(s+ |t|)l+1
. (3.13)

For simplicity, we introduce the variable x = t/s. Then the right hand side of Eq. (3.13)

becomes
2

s

(1 − |x|)l

(1 + |x|)l+1
, (3.14)

which can be expanded like

(
1 − x

1 + x

)P

= exp

{
−2Px

(
1 +

x2

3
+
x4

5
+ · · ·

)}
. (3.15)

Introducing

y = |x|λ1/2, λ = (l +
1

2
)2, (3.16)

Eq. (3.13) becomes

[
s2 d

2

ds2
− 2y

d

dy
s
d

ds
+ y2 d

2

dy2
+ 2y

d

dy
− 2s2 d

ds
+ 2sy

d

dy

− 4

1 − y2/λ

(
2y

d

dy
− s

d

ds

)
+ λ

d2

dy2
− 4

(
λ− 1

4

)
(1 + y2/λ)

(1 − y2/λ)2

]
fl

=
2se−2y exp [−(2y3/3λ) − (2y5/5λ2) − · · · ]

(1 − y2/λ)1/2
. (3.17)

In removing the absolute value sign we are left with the boundary condition

d

dy
fl

∣∣∣∣
y=0

= 0. (3.18)

The variable y has the range [ 0, λ1/2], but because of the term e−2y on the right, the

effective range of fl is only over values of y of order unity. It is then straightforward to

make an expansion in inverse powers of λ:

fl = λ−1f (−1) + λ−2f (−2) + · · · (3.19)
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The equation determining f (−1) is to leading order in λ

[
d2

dy2
− 4

]
f (−1) = 2se−2y, (3.20)

which is easily solved and yields,

f (−1) = −1

4
se−2y(1 + 2y). (3.21)

Similarly, we obtain the next order term

f (−2) = −1

4
se−2y[(−1

3
y4 − 4

3
y3 − y2 +

3

4
y +

3

8
) − s(

2

3
y3 + y2 + y +

1

2
)]. (3.22)

The second order energy E2(l) becomes

E2(l) =
1

λ

∞∫

0

ds s4e−2s

λ1/2∫

0

dy e−2y (1 − y2/λ)2

(1 − y2/λ)1/2
fl exp

[
−2y3

3λ
− 2y5

5λ2
· · ·

]
. (3.23)

This can also be expanded as a power series in λ−1 and, accounting for the first two terms,

Eq. (3.23) becomes

E2(l) = − 45

256

1

(l + 1
2
)4

[
1 − 19/8

(l + 1
2
)2

+O

(
1

l4

)]
. (3.24)

This indicates that the second-order energy E2(l) converges very slowly (at a rate of l−4)

with increasing l. The second term of Eq. (3.24) indicates that one does not have to go

to very large l values before this asymptotic formula is usable.

3.2.2 MP2-R12

Quantum chemical ab initio methods have two main sources of error: (1) the truncation

of the one-electron basis set and (2) the use of an approximation to the “full CI” wave

function in the given basis. The basis truncation problem is due to the slow convergence

of the energy or properties with increasing basis set size to the basis set limit.

The slow convergence of the CI expansion is due to the inability to correctly describe

the correlation cusp87 at r12 = 0,

lim
r12→0

(
∂ψ

∂r12

)

av

=
1

2
ψ(r12 = 0), (3.25)

which is the direct consequence of the singularity of the Coulomb repulsion.
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For two-electron systems partial wave functions of the form of Eq. (3.6) converge more

and more slowly with increasing l due to the increasingly singular nature of the partial

wave contribution rl
</r

l+1
> to r12. The convergence of the partial wave expansion can be

sped up considerably by including the inter-electronic terms (r12) in the wave function

explicitly, which can be expressed as,88

ψ(r1, r2) =
1

2
r12ψ0(r1, r2) + χ, (3.26)

where

χ =
∑

l

χl(r1, r2)Pl(cosθ), (3.27)

and ψ0 is some single-particle model reference function. Now, substituting Eq. (3.26) into

the inhomogeneous differential equation Eq. (3.4), we get

(H0 −E0)χ1 = −(H12 − E1)ψ0. (3.28)

The noticeable thing is that the interaction potential g12 = r−1
12 is replaced by the residual

interaction operator H12, where

H12 = [T1 + T2,
1

2
r12] + g12,

= −1

2

r12

r12
(∇1 −∇2). (3.29)

The operator H12 is much less singular at r12 = 0 than g12.

The second order energy can be obtained from the Hylleraas functional,85

F (ψ) = 2Re〈ψ|V −E1|ψ0〉 + 〈ψ|H0 − E0|ψ〉 (3.30)

If ψ0 is the Hartree-Fock function, then F (ψ) decouples into a sum of pair contributions

F (ψ) =
n∑

i<j 6=1

f(uij). (3.31)

Where

uij(1, 2) =
1

2
cij{1 − P (1)}{1− P (2)}r12[ij] +

∑
dab

ij [ab], (3.32)

P (a) =
∑

k

|ψ0k(a)〉〈ψ0k(a)|, a = 1, 2 (3.33)

where ψ0k is the exact eigenfunction of the Fock operator and

[pq] =
1√
2
{ψ0p(1)ψ0q(2) − ψ0q(1)ψ0p(2)}. (3.34)
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The labels i, j, k, · · · refer to occupied spin orbitals, a, b, c, · · · to unoccupied and p, q, r, · · ·
to arbitrary spin orbitals and cij and dab

ij are linear variational parameters.

Substituting Eq. 3.32 into Eq. 3.30, yields

f(uij) = 2Re〈[ij]|r−1
12 |uij(1, 2)〉 + 〈ui,j(1, 2)|F (1) + F (2) − ǫi − ǫj |uij(1, 2)〉, (3.35)

where F is the Fock operator. Exact evaluation of Eq. (3.35) requires the evaluation of

three electron integrals. Assume now ψ0i and ψ0j are the exact eigenfunctions of the Fock

operator and that the orbital set {ψ0p} is complete in one-electron space, i.e.,

1 =
∑

p

|ψ0p(1)〉〈ψ0p(1)| ≡ Q(1). (3.36)

The result of inserting these assumptions into Eq. (3.35) is that the pair energy becomes

a sum of two terms: the conventional MP2 pair energy eij and a term correcting for the

incompleteness in two-electron space,

3∑

k=1

〈[ij]|r12[1 −Q(1)Q(2)]Ak|[ij]〉, (3.37)

where

A1 = (cij −
1

2
c2ij)

1

r12
, (3.38)

A2 = −1

4
c2ij

1

rij
(rij .(∇1 −∇2)), (3.39)

A3 = −1

4
c2ij [K(1) +K(2), r12]. (3.40)

Here K denotes the exchange operator.

In the atomic case, the MP2 partial wave expansion has increments ∼ (l+ 1/2)−4 for

each successive completed l−shell in the basis set. The term A1 looks after this deficiency,

and the terms A2 and A3 look after the ∼ (l + 1/2)−6 deficiency. Thus, if the terms A1,

A2 and A3 are computed, the partial wave expansion for the MP2-R12 method will have

increments ∼ (l + 1/2)−8. This convergence is much faster than the conventional MP2

convergence.71,74, 78, 89

Density fitting has been recently introduced to approximate all of the 4-index 2-

electron integrals in the explicitly correlated MP2-R12 theory, which requires only 2-

and 3-index integrals over various 2-electron operators. This method is called DF-MP2-

R1290–92 and is computationally much faster than the MP2-R12 method.
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Table 3.1: Calculation time (CPU time in second) and require memory space (in MB) for
different level of methods with different size of basis set for H2O.

Basis MP2 CCSD(T) DF-MP2 DF-MP2-R12
function CPU Mem. CPU Mem. CPU Mem. CPU Mem.
cc-pVDZ 0.35 2.23 0.46 6.11 2.10 3.41 3.52 2037.76
cc-pVTZ 1.01 5.14 1.54 13.01 3.66 4.21 15.88 2037.76
cc-pVQZ 7.51 40.10 13.74 104.22 10.53 6.87 84.98 2037.76
cc-pV5Z 81.18 164.23 137.37 971.75 47.18 13.89 497.85 2037.76
cc-pV6Z 675.64 863.73 987.49 6103.04 Not Available

A further improvement over MP2-R12 has been proposed by Manby recently,93 where

the explicit inter-electronic distance r12 is replaced by an arbitrary function f12 of the

inter-electronic distance. This method is known as the MP2-F12 method. It is generally

more accurate and also converges faster than the MP2-R12 method.

3.2.3 Cost of different methods

We have now several highly accurate quantum chemical processes for atomic and molecular

properties evaluation. Their ability and cost effectiveness bound us to choose them for

different applications. The most accurate method in our hand is r12 dependent explicit

correlation method (MP2-R12). Although this method takes care the correlation cusp

and speed up the convergence behavior of basis sets but still it is restricted to apply on

only very small systems because of its computational cost. Where as DF-MP2-R12 speed

up the calculation further over MP2-R12 but still prohibitively costly. On the other hand

highly accurate coupled cluster method is several times much faster than the DF-MP2-

R12 method, see Table 3.1. We have now a huge computational power in our hand, but

still performing CCSD(T) calculations with large basis sets, even if for medium size of

molecule is prohibitively costly. Where as MP2 method is much much less expensive

then the coupled cluster and explicit correlated methods. DF-MP2 method speed up the

calculation again over regular MP2 method, see Table 3.1. Basis sets size Vs. normalized

CPU time plotted in Fig. 3.1, which clearly indicates that coupled cluster and explicit

correlated methods are not economical in compare to regular MP2 and DF-MP2 methods.

In such a situation it is a great challenge whether extrapolation improve the results or not.

Since for extrapolation one need not to pay further any cost, so it is a time to find out a

general extrapolation scheme which can efficiently estimate the basis set limit results for

polyatomic systems.
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Figure 3.1: Normalized basis function vs. normalized CPU time for different level of
calculations for water molecule.

3.3 Extrapolation methods

The extrapolation based methods have become very popular after the development of

the family of correlation consistent basis sets cc-pVXZ and aug-cc-pVXZ (X = 2, 3, 4

· · · are the cardinal numbers of the basis sets) by Dunning and coworkers53,54, 56, 57, 94–97

who provided a systematic study of the convergence behavior of the energy and other

molecular properties as the basis-set limit is approached. With the knowledge of basis-

set convergence behavior one can predict the complete basis-set-limit results through

extrapolation without actually performing computations close to the basis-set limit.

3.3.1 Exponential extrapolation

Feller used Dunning’s sequential basis sets to calculate the energy of the water molecule98

and water dimer99 and proposed a simple three-parameter exponential extrapolation
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model for the total energy

Etotal
∞ = a+ b exp (−cX), (3.41)

where Etotal
∞ is the total energy at the basis-set limit. The convergence behavior of the

total energy for the H2O molecule is shown in Fig. 3.2. It is clear from Eq. (3.41) that,
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Figure 3.2: Convergence behavior of the HF, MP2 and CCSD(T) total energy with the
size of the basis set for the water molecule at equilibrium geometry.

in order to calculate the basis-set-limit energy, at least three energy points are required.

The exponential model was found to provide a reasonable fit for the Hartree-Fock total

energy (see Refs. 98–102).

3.3.2 Power-law extrapolation of the total energy

The exponential fit proposed by Feller99 was so successful for Hartree-Fock energies and

hence for total energies, that it would appear natural to use the same extrapolation scheme

for total energies from correlated methods as well. The total energy can usually be approx-

imately described by an exponential fit since it is (for small basis sets at least) dominated

by the HF energy (see Table 3.2). Yet the total energy from a correlation method does

not actually follow an exponential law (see Fig. 3.4). Table 3.2 presents the total energy

for different basis sets, and the energy differences between any two neighboring basis sets

(∆E) for the water molecule. For the HF energy, this difference decreases very quickly

and there is essentially no gain in accuracy from the 5Z to the 6Z result. This convergence

behavior of the HF energy matches reasonably well with the exponential fit proposed by
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Feller. But for MP2 and CCSD(T) calculations, the convergence with basis-set size is

very slow and far from being converged at the 5Z basis set (see Table 3.2). It shows

some inverse power law rather than exponential behavior. A power-law convergence for

correlated methods has therefore been proposed by Martin103 where

E∞ = A +B(l + 1/2)α, α < 0. (3.42)

Here l is the maximum orbital angular-momentum quantum number present in the basis

set and α is an empirical parameter.
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Figure 3.3: Convergence behavior of the
HF energy with the size of the basis set
for the water molecule at equilibrium ge-
ometry using cc-pVXZ basis sets.
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Figure 3.4: Convergence behavior of the
MP2 and the CCSD(T) total energy
with the size of the basis set for the wa-
ter molecule at equilibrium geometry us-
ing cc-pVXZ basis sets.

Table 3.2: Convergence behavior of the HF, MP2 and CCSD(T) total energy for the H2O
at equilibrium geometry. All energies are in mEh. ∆E is the energy difference between
any two consecutive basis set energies.

Basis HF MP2 CCSD(T)
Total ∆E Total ∆E Total ∆E

cc-pVDZ -76026.808 -76228.417 -76241.016
cc-pVTZ -76057.181 -30.373 -76318.630 -90.213 -76332.189 -91.172
cc-pVQZ -76064.848 -7.667 -76347.634 -29.004 -76359.793 -27.605
cc-pV5Z -76067.104 -2.255 -76358.598 -10.964 -76369.040 -9.246
cc-pV6Z -76067.420 -0.316 -76362.611 -4.013 -76372.017 -2.977

Truhlar suggested another approach where the HF and correlation energy are treated

separately.104 The total energy for a correlated method is the sum of the HF and the



30 Chapter 3.3. Extrapolation methods

correlation energy, and can be written as,

Etot = EHF + Ecorr. (3.43)

For both contributions Truhlar attempted an inverse power law fit but with different

exponents, as,

EHF
X = EHF

∞ + AHFX−α, (3.44)

Ecorr
X = Ecorr

∞ + AcorrX−β. (3.45)

Where Ecorr
X is the correlation energy for a basis set of cardinal number X and Ecorr

∞

is the basis-set limit correlation energy. After optimizing over a small set of molecules,

the following values for the parameters were obtained:104 α = 3.4, βMP2 = 2.2 and

βCCSD = βCCSD(T ) = 2.4.

Although this method gives a reasonable fit for double-zeta and triple-zeta basis sets,

it does not follow the actual convergence behavior. Focussing on the correlation energy,

it becomes clear that the asymptotic behavior of the correlated methods is due to the

correlation energy as HF is already converged for smaller values of X. Table 3.3 shows

the convergence behavior for MP2 and CCSD(T) correlation energy. Since the correlation

Table 3.3: Convergence behavior of the MP2 and CCSD(T) correlation energy with basis
set size for water molecule at equilibrium geometry. ∆E is the energy difference between
two consecutive basis set energies.

Basis MP2 (mEh) CCSD(T) (mEh)
Corr. ∆E Corr. ∆E

cc-pVDZ -201.609 -214.208
cc-pVTZ -261.449 -59.840 -275.008 -60.800
cc-pVQZ -282.786 -21.336 -294.945 -19.937
cc-pV5Z -291.494 -8.709 -301.936 -6.991
cc-pV6Z -295.191 -3.697 -304.597 -2.661

part is the most expensive part of the calculation and it converges frustratingly slowly

with basis set size, it is necessary to concentrate mainly on the correlation energy to find

a reasonable extrapolation method.

3.3.3 Extrapolation of the correlation energy

Schwartz’s work on the two-electron atom33 (He) (sec 3.2.1) supports the empirical finding

(Eq. (3.45)) that the correlation energy does not converge exponentially, but rather as an
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inverse power of the highest angular-momentum quantum number present in the basis set.

Investigating the second-order energy of the Z−1 perturbation expression for the ground

state of He (Eq. (3.24)), Schwartz showed that the asymptotic convergence with respect

to the orbital angular-momentum quantum number ℓ contained in the one-particle basis

follows

Ecorr
ℓ = − 45

256
(ℓ+

1

2
)−4

{
1 − 19

8
(ℓ+

1

2
)−2 + O

[
(ℓ+

1

2
)−4

]}
. (3.46)

Carroll et al. also found empirically a similar behavior based on configuration inter-

action results for the helium atom,105 which was later analyzed in more detail by Hill106

Ecorr
ℓ − Ecorr

ℓ−1 = a (ℓ+
1

2
)−4 + b (ℓ+

1

2
)−5 + O

{
(ℓ+

1

2
)−6

}
, (3.47)

where a = −0.074 and b = −0.031. This asymptotic expression represents the energy

increment for adding a saturated shell of atomic basis functions of angular momentum

quantum number ℓ. The above analysis is based on the helium atom where the basis

sets at each level are completely saturated with respect to the radial part of the basis

functions. For molecules, such a formula can be an approximation only, since the orbital

angular momentum quantum number is not a good quantum number anymore. In fact,

for the correlation-consistent polarized basis sets,56,107 the highest angular momentum

(ℓ ≤ L) in the basis is L = X − 1 for H and He, and L = X for second row atoms ( Li to

Ne). Martin therefore proposed a compromise value for L of L = X − 1
2
.103

Two-point extrapolation

For a near complete-basis set, Halkier et al. proposed a very simple relation31 based on

only the first dominating term of Eqs. (3.46) and (3.47),

Ecorr
X = Ecorr

∞ + AX−3, (3.48)

where A is an empirical parameter. Since there are only two unknown parameters (A

and Ecorr
∞ ), two energy points are sufficient to estimate the basis-set limit value. Halkier

et. al. studied their model extensively for Ne, N2 and H2O and tabulated errors from

extrapolations with different combinations of basis sets. Table 3.4 presents their main

results, where all the errors are with respect to MP2-R12 results using a cc-pV6Z basis

set. They concluded that the best extrapolations are obtained using two-point fits with

the two highest cardinal numbers available. The best limit energy will thus be obtained
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Table 3.4: Mean error, standard deviation, mean absolute error, and maximum absolute
error of the extrapolated basis-set limits using two-point extrapolation formula for data
with X = Xmin, · · · , Xmax. All results are for the water molecule and errors are in mEh.
[See Ref. 31.]

Xmin Xmax
Mean
error

Standard
deviation

Mean abs.
error

Max abs.
error

2 3 13.54 5.22 13.54 22.50
2 4 8.23 4.00 8.23 15.27
2 5 5.66 3.12 5.66 11.12
2 6 4.27 2.52 4.27 8.66
3 4 0.73 2.42 2.01 5.08
3 5 0.27 1.70 1.41 3.17
3 6 0.16 1.30 1.08 2.31
4 5 -0.35 0.86 0.86 1.41
4 6 -0.17 0.69 0.63 1.26
5 6 0.06 0.52 0.42 1.07

from quintuple-zeta and sextuple-zeta basis sets. If not available, always the two highest

possible basis sets (X,X + 1) will give the limit energy with somewhat lower accuracy

but with the best result for this maximum of X.31 It was also suggested that easily

generated energies of cardinal numbers X < 5 should be omitted from the fit as they

contain less information about the asymptotic limit than the points with X ≥ 5 and will

thus introduce more noise than information in the extrapolation. It was also strongly

suggested not to use double-zeta basis set even if higher basis set energies are not possible

to calculate.31

This approach proved to be successful for large values of X, which is to be expected

from their basic assumption,31 that “for a near complete basis set, the first term of

Eqs. (3.46) and (3.47) dominates”. With this in mind it becomes clear why Eq. (3.48)

is successful for large X values and that the inclusion of double-zeta basis sets in the

extrapolation lowers the accuracy significantly.31

Cost analysis of Halkier’s approach.

Although the two-point extrapolation method yields accurate basis-set limits for the cor-

relation energy,31 it is not at all economical, since it needs very large basis sets for more

accurate results. For comparison, Table 3.5 presents the required memory and compu-
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tational time (CPU time) for the H2O and CH3NH2 molecules, for different levels of

computations (SCF, MP2, CCSD(T)) and different basis sets (cc-pVDZ to cc-pV6Z). An

increase of almost one order of magnitude in memory is observed for each increment in

Dunning’s sequential basis sets for the water molecule. The corresponding rate of in-

crease for the methylamine is even higher which indicates that as the molecular size, and

especially the number of heavy atoms increases, so does the memory consumption (see Ta-

ble 3.5). This is quite obvious, because a large number of basis functions are required for

the heavy atoms. Not only the memory consumption but also the required computational

Table 3.5: CPU time and memory requirement for different levels of computation with
different size of basis sets, for the water and methylamine molecules at their equilibrium
geometry.

Molecule Basis CPU time (in Sec.) Memory
SCF MP2 CCSD(T) MB

cc-pVDZ 0.03 0.06 0.16 8.02
cc-pVTZ 0.23 0.10 1.51 14.91

H2O cc-pVQZ 2.23 0.55 14.81 106.12
cc-pV5Z 28.30 5.98 131.31 973.65
cc-pV6Z 60.28 17.44 410.23 6103.04

cc-pVDZ 0.22 0.17 2.78 13.46
cc-pVTZ 5.31 3.54 83.49 317.41

CH3NH2 cc-pVQZ 88.84 61.30 1206.63 4843.52
cc-pV5Z 1080.26 618.93 10529.60 43816.96
cc-pV6Z Not Available

CPU time increases steeply with the size of the basis sets. As a matter of fact, correla-

tion energy calculations with larger basis sets soon become unaffordable (see Table 3.5).

In such a situation getting a 5Z or 6Z quality basis set result for the extrapolation is

prohibitively expensive. Although one may still afford this for a single-point energy cal-

culation, for dynamics it becomes unrealistic since a large number of single-point energy

calculations are required for a reasonable representation of the PES.

Fifth order correction

The asymptotic behavior of the correlation energy is dominated by the fourth order term

of Schwartz’s equation (Eq. (3.46)) but higher order terms can also have a significant

influence on the convergence behavior. This is particularly important when extrapolating
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from smaller basis sets. Following a suggestion by Varandas,34 including the next order

term from Schwartz’s formula yields

Ecorr
X = Ecorr

∞
{
1 + A1X

−3(1 + A2X
−1)

}
, (3.49)

where A1 and A2 are two empirical parameters.

Clearly Eq. (3.49) requires at least three energy points to get the basis set limit energy.

After analyzing known results for a large number of molecules, Varandas found that A1

and A2 are approximately exponentially correlated for a set of atoms and molecules34

from first and second row elements. This allows us to express one of them as a function

of the other parameter and again yield a two point extrapolation formula which we will

call X5. This name indicates that the fifth order term has been taken into account from

Schwartz’s formula.

3.3.4 Gradient and Hessian calculation for the correlation method

The success of vibrational spectroscopy simulations depends upon the accuracy of the

PES. To generate a smooth PES, it is necessary to calculate a large number of single energy

points on a grid of well chosen coordinates. Such a large number of energy calculations

are not only time consuming but also economically unfavorable. We have just shown

how to reduce the computational cost by several orders of magnitude by extrapolation

of the energy to the basis set limit. A further reduction of the cost can be achieved

by interpolating fewer energy points on non-uniform grids. Several multidimensional

interpolation methods have been available for a long time, but most of them are applicable

only for regularly spaced data points. At the end of the 1960’s Donald Shepard introduced

an interpolation scheme based on the weighted average of the data points.108 This method

is thus capable of generating a smooth surface from irregularly spaced data points. The

main requirements for the modified Shepard interpolation108 are the gradient and the

Hessians at each data point. The calculation of gradient and Hessians are the most

expensive part in the computation chemistry especially with the larger basis set. Like

the energy, gradient and Hessians are also converge with the basis sets size. Therefore,

gradient and Hessians also can be extrapolated if there is any simple relation.

The MP2 total energy is define as,

EMP2 = Ecorr + EHF . (3.50)
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Differentiating both sides of the Eq. (3.50) with respect to the coordinate qi we get,

∂EMP2

∂qi
=
∂Ecorr

∂qi
+
∂EHF

∂qi
. (3.51)

The MP2 gradient is the sum of the HF gradient and the gradient of the correlation

part.

Differentiating both sides of Eq. (3.50) with respect to the coordinates qi, qj we get,

∂2EMP2

∂qi∂qj
=
∂2Ecorr

∂qi∂qj
+
∂2EHF

∂qi∂qj
. (3.52)

As for the gradient, the total Hessian for the correlated method is also the sum of the

HF Hessian and the Hessian of the correlation energy.

3.3.5 Extrapolation of Gradient and Hessians

It was observed that like for the correlation energy, the correlation part of the gradient

and the Hessian converged slowly. It is therefore more important to concentrate the efforts

on the correlation part of the gradient and Hessian. Since the two-point extrapolation

and the X5 method provide successful schemes to extrapolate the correlation energy, it is

natural to apply them also to extrapolate the gradient and Hessian.

Two point extrapolation

Let us consider two energy points with basis sets of cardinal number X and Y . Then the

two point extrapolation is defined as

EX = E∞ + AX−3, (3.53)

EY = E∞ + AY −3. (3.54)

Now solving above two equations for the parameter A we get,

A =
EX −EY

X−3 − Y −3
.

Therefore Eq. (3.53) becomes,

E∞ = EX − EX −EY

X−3 − Y −3
X−3, (3.55)

E∞ = (1 − p)EX + pEY , (3.56)
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where

p =
X−3

X−3 − Y −3
.

Differentiating Eq. (3.56) successively we get the expressions for the basis set limit gradient

and Hessian.
∂E∞

∂qi
= (1 − p)

∂EX

∂qi
+ p

∂EY

∂qi
(3.57)

∂2E∞

∂qi∂qj
= (1 − p)

∂2EX

∂qi∂qj
+ p

∂2EY

∂qi∂qj
(3.58)

Extrapolation with the X5 method

Since A2 is a slowly varying parameter we can assume ∂A2

∂qi
= 0 for all qi and the expression

for the gradient and the Hessian at basis set limit becomes,

∂E∞

∂qi
=

∂EY

∂qi
X−3 − ∂EX

∂qi
Y −3 + A2(

∂EY

∂qi
X−4 − ∂EX

∂qi
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)
, (3.59)

and

∂2E∞

∂qi∂qj
=

∂2EY

∂qi∂qj
X−3 − ∂2EX

∂qi∂qj
Y −3 + A2(

∂2EY

∂qi∂qj
X−4 − ∂2EX

∂qi∂qj
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)
. (3.60)

(For details see Appendix A.2)

If A1 and A2 are both constant, then the expressions for the gradient and the Hessians

simplify to

∂E∞

∂qi
=

∂EX

∂qi

1 + A1X−3(1 + A2X−1)
(3.61)

∂2E∞

∂qi∂qj
=

∂2EX

∂qi∂qj

1 + A1X−3(1 + A2X−1)
(3.62)

3.4 Choice of model systems

To verify the applicability of Eq. (3.49) we chose a few small and medium size molecules

relevant to our prime objective, i.e., to obtain a parameterized model for larger molecules,

mainly proteins and other bio-molecules. The basic structural unit of proteins is the

amino acid. An amino acid consists of an amino group, a carboxyl group, a α-hydrogen
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atom, and a distinctive R group, called sidechain, bonded to a central carbon atom which

is called the α-carbon.109 Twenty different kinds of sidechains varying in size, shape,

charge, hydrogen bonding capacity and chemical reactivity occur naturally in proteins.

Since the amino acids differ from each other by the presence of different sidechains, it

is necessary to study the side chain behavior. The characteristics of the sidechain mainly

depend upon the characteristics of functional groups present in the sidechain. These

functional groups can be represented by small model compounds. We chose some of them

for our model systems along with few other atoms and molecules with first and second

row elements. The model systems are H2, He, Ne, N2, H2O, CH2O, CH4, C2H2, C2H4,

C2H6, N2H2, N2H4, NH3, CH3OH, CH3NH2, CH3COOH, C6H6, and N-methylacetamide

(NMA). Some of the structural similarity of model systems and protein sidechains are

shown in Fig. 3.5.
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Figure 3.5: Structural similarity between functional group of protein side chain and small
molecules.

3.5 Computational details

The molecular geometry of each of the chosen molecules was optimized employing density

functional theory (DFT),110 with Becke’s 3-parameter Lee, Yang, Parr (B3LYP) func-

tional111 and aug-cc-pVTZ basis sets, using the GAUSSIAN112 quantum chemical com-

putational package. We have calculated total energies at the equilibrium geometry of
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Table 3.6: The extrapolated basis set limits using the two point formula for the wa-
ter at equilibrium geometry. Different combination of energy points were used for the
extrapolation. All energies are in mEh.

Basis MP2 Extrapolated energy
set corr DZ TZ QZ 5Z
DZ -201.608
TZ -261.449 -286.645
QZ -282.785 -294.382 -298.355
5Z -291.494 -297.640 -299.771 -300.631
6Z -295.190 -297.640 -300.011 -300.414 -300.269

each molecule and also for some geometries corresponding to deformations along internal

coordinates (stretch, bend, torsion) of the molecules (without partial re-optimization).

All energy points have been calculated at the level of second-order Møller-Plesset pertur-

bation theory (MP2)61–63 and coupled-cluster theory with singles and doubles excitations

and a perturbative triples correction [CCSD(T)]113 using Molpro.114 For both levels of

theory, Dunning’s cc-pVXZ and aug-cc-pVXZ basis sets have been used.53,54, 56, 57, 94–97

Some MP2 energy points were also calculated using the TURBOMOLE115 package. In

some cases, correlation energies have been calculated with density fitting MP2 (DF-MP2)

also known as resolution of identity MP2 (RI-MP2) method.116–118

In our study, the (QZ - 5Z) two point extrapolated results were generally used as a

reference since, according to Halkier et. al., the highest possible two basis-set results

yield the best possible estimate of the basis-set limit energy. Although for some small

molecules and atoms in our data set 6Z basis set computations are possible this would

be prohibitively expensive for most of the medium sized molecules and for molecules like

benzene, CH3COOH, CH3NH2, CH3OH, and N-methylacetamide (NMA) it is beyond our

current computational resources. For reasons of consistency, we thus omit the 6Z basis set

results for small molecules and atoms and use only up to the 5Z basis set for all systems.

A comparison of different levels of the extrapolated results for the water molecule

are presented in Table 3.6. The two point extrapolation from the QZ-5Z basis is about

0.36 mEh apart from th 5Z-6Z extrapolated result, which indicates that the two point

extrapolation from the QZ-5Z generally provides a reasonable reference.
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3.6 Results and discussion

The basis set extrapolation of the MP2 and CCSD(T) correlation energy has been stud-

ied for a representative set of atoms and molecules. In the following sections we discuss

the results and characteristics of the X5 extrapolation method. Two possible extrapola-

tion formula and their performance is discussed in section 3.6.1. The characteristics of

the exponential A1/A2 relation ship for the MP2 and CCSD(T) methods is discussed in

section 3.6.2. The following section shows that MP2 and RI-MP2 share identical fitting

parameters if appropriate fitting basis sets are chosen. It is also discussed here how the

parameterization changes for different families of basis sets. The general features of the

X5 extrapolation method are described in section 3.6.4. The efficiency of the X5 method

to calculate the PES with global parameters is presented in section 3.6.5. Section 3.6.6

shows how the local parameterization improves the accuracy of the PES calculation in

the vicinity of a fixed point. The convergence behavior of the gradient and the Hessian

are presented in section 3.6.7.

3.6.1 Choice of the extrapolation method

In analogy to Eq. (3.48) an alternative extrapolation formula for the correlation energy

is conceivable which differs from Eq. (3.49) in the inclusion of Ecorr
∞ :

Ecorr
X = Ecorr

∞ + Ã1X
−3(1 + Ã2X

−1) (3.63)

where Ã1 and Ã2 are again two empirical parameters. A1 vs. A2 and Ã1 vs. Ã2 for a set

of molecules and different combinations of energy points are plotted in Figs. 3.6 and 3.7

respectively.

As seen from Fig. 3.6, the variation of A1 and A2 parameters for a set of atoms and

molecules consisting of first and second row elements exhibits a noticeable correlation

and one of the parameters may be expressed as a function of the other. Then, essentially,

Eq. (3.49) depends only on a single empirical parameter. Therefore only two energy points

are sufficient to estimate the basis set limit using Eq. (3.49) and makes it a two point

extrapolation formula.

As suggested by Varandas,34 A2 can be express as

A2 = a exp(b A1 + c). (3.64)

On the other hand, Ã1 vs. Ã2 does not exhibit any correlation (see Fig. 3.7) for the

same set of atoms and molecules. Thus Ã1 and Ã2 are independent parameters. To get
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Figure 3.6: Correlation between A1 and
A2 for different combinations of the en-
ergy points for Eq. (3.49).
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Figure 3.7: Correlation between Ã1 and
Ã2 for different combinations of the en-
ergy points Eq. (3.63).

the basis set limit using Eq. (3.63) we need at least three energy points, which means even

if we start from the DZ basis set, it is necessary to perform a QZ basis set calculation

which makes the extrapolation method expensive again. For that reason we will drop

Eq. (3.63) and all further investigations have been carried out only with Eq. (3.49). We

will call this extrapolation model X5, which indicates that the fifth order term has been

taken into account from Schwartz’s formula. For further studies we strictly use the DZ-TZ

basis set results to estimate the basis set limit energy using the X5 extrapolation method.
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Figure 3.8: Correlation between A1 and A2 at the MP2 level with the cc-pVXZ basis set.

The parameters A1 and A2 obtained for a set of atoms and molecules are plotted in
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Fig. 3.8, where energy points are calculated at MP2/cc-pVXZ level. For each molecule a

set of configurations representing deformations along vibrational and rotational internal

coordinates have been chosen. Least-squares fit of Eq. (3.64) over the total data set yields

a = 4.8278, b = 0.8397 and c = −1.0843.

3.6.2 MP2 vs. CCSD(T) parameterization

A noticeable change is observed in the exponential fitting curves when the energy is

calculated at different levels of theory (e.g., MP2 and CCSD(T)) employing the same

family of basis sets. For a set of atoms and molecules the function (Eq. (3.64)) is plotted

for the A1 and A2 parameters for MP2 and CCSD(T) in Fig. 3.9. The dependence on

the correlation tritment is clearly visible. It is therefore necessary to parametrize them

-6 -4 -2

-1

0

1

2

3

MP2
CCSD(T)

A2

1A

Figure 3.9: Correlation between A1 and A2 at the MP2 and the CCSD(T) levels with the
cc-pVXZ basis set

Table 3.7: Exponential parameters for the MP2 and the CCSD(T) calculations.

Method a b c
MP2 4.8278 0.8397 -1.0843

CCSD(T) 5.7873 1.0871 -0.8905

separately. The optimized parameters are presented in Table 3.7. A large difference in
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parameter sets indicates that mixing of data from different computational methods would

strongly affect the fitting curves. Also, parameter sets obtained for one computational

method can not be used for the other. Therefore separation of the data sets and and

separate optimization are the mandatory requirements for the success of the X5 method.

3.6.3 Standard MP2 vs RI-MP2 parameterization.

The effect of the DF (also called RI) approximation to the MP2 method on the extrapo-

lation coefficients A1 and A2 was studied explictly. Computations using TURBOMOLE

and Molpro show that the influence is negligible if appropriate fitting basis sets are cho-

sen. The calculated A1 and A2 parameters for the RI-MP2 and the standard MP2 are
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Figure 3.10: Comparison of correlation between A1 and A2 for the MP2 with the cc-pVXZ
basis set and the RI-MP2 with the cc-pVXZ and the aug-cc-pVXZ basis set.

plotted in Fig. 3.10. The empirical parameters (A1 and A2) for the standard MP2 and the

RI-MP2 are almost identical and their exponential fitting curves are practically indistin-

guishable when the energy points are calculated with the same family of basis sets. This

investigation indicates that although the calculated correlation energy is slightly different

for the standard and the RI-MP2 methods, mixing of data would not give any problem

in extrapolation if same family of basis sets is used.

But when the calculation is performed with a particular computational method but

employing a different family of basis sets, then the A1 and A2 parameters differ substan-

tially. This is also shown in Fig. 3.10 where energy points calculated with the RI-MP2
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Table 3.8: Exponential parameters for the standard MP2 and the RI-MP2 calculations.

cc-pVXZ aug-cc-pVXZ
Parameters MP2 RI-MP2 RI-MP2

a 4.8278 4.8126 3.3145
b 0.8397 0.8503 0.7449
c -1.0843 -1.0853 -1.1370

method employing cc-pVXZ as well as aug-cc-pVXZ basis sets are plotted. A large change

in the exponential fitting curves yields different sets of exponential fitting parameters.

The exponential fitting parameters for different methods and families of basis sets are

presented in Table 3.8. It is obvious that exponential parameters optimize for a regular

basis set can not be use for the corresponding augmented basis set and vice versa.

3.6.4 Performance of the X5 method

The extrapolated results at MP2 level for a set of atoms and molecules at their equilibrium

geometries are presented in Table 3.9. The last column of Table 3.9 presents the basis set

limit correlation energy obtained by the two point extrapolation from the QZ-5Z basis

set results, which is taken as a reference and compare a to all other approximations.

The two point extrapolated results from the DZ-TZ and the TZ-QZ are presented as

well to prove the performance of the X5 extrapolation method with global parameters

(exponential parameters from A1/A2 exponential fit). For comparison DZ, TZ, QZ and

5Z basis results are also presented here.

As seen from the Table 3.9, the DZ basis set always over-estimates the correlation

energy far beyond the basis set limit value. The error reduces by almost 50% using the

TZ basis set, but the computational cost increases by about one order of magnitude at the

same time. The QZ basis computation, which is two orders of magnitude more expensive

than for the DZ basis, is still far away from the basis set limit results and shows about

5% error. For the 5Z basis set, which is three to four order of magnitude more expensive

than the DZ basis, the results improve very little over the QZ basis and still exhibit 2-3%

error in the correlation energy.

The two point extrapolated correlation energy from the DZ-TZ basis sets is far from

reaching the basis set limit for the correlation energy, which is to be expected and was first

observed by Halkier et al.. The two point extrapolated correlation energy from DZ-TZ
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basis sets is even worse than the 5Z basis result. The TZ-QZ extrapolation with the two

point formula performs much better than the DZ-TZ combination and comes close to the

basis set limit. The errors in basis set limit calculations are typically less than 0.5% of the

correlation energy, but the computational cost increases nearly one order of magnitude

over the DZ-TZ computational cost.

Table 3.9: Errors in the MP2 correlation energy (in mEh) calculation with different size
basis sets and with different extrapolation methods. All energies are compared to the
two-point extrapolation from the QZ-5Z basis set results.

System cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Two-point extrapolation X5 Ecorr
∞

DZ-TZ TZ-QZ (QZ-5Z)
H2 -7.8411 -2.5437 -1.1090 -0.5678 -0.3132 -0.0620 0.7105 -34.2245
He -11.5523 -4.2431 -1.9027 -0.9742 -1.1656 -0.1948 0.2469 -37.3807
Ne -133.8561 -55.0566 -25.8069 -13.2131 -21.8779 -4.4624 -6.6503 -319.3794
N2 -113.6821 -46.3052 -21.2412 -10.8755 -17.9360 -2.9513 -4.9158 -420.0696
H2O -99.0221 -39.1818 -17.8455 -9.1369 -13.9859 -2.2758 -2.4221 -300.6311
CH4 -57.4112 -20.5143 -8.7383 -4.4740 -4.9788 -0.1449 2.1513 -218.9506
CH2O -130.8455 -52.1052 -23.5980 -12.0822 -18.9514 -2.7955 -3.7353 -448.1022
C2H2 -89.2793 -34.7492 -15.3640 -7.8663 -11.7892 -1.2179 -1.2516 -343.5602
C2H4 -97.0844 -36.5635 -15.9259 -8.1541 -11.0811 -0.8660 0.6142 -372.4877
C2H6 -106.7132 -39.0910 -16.8650 -8.6349 -10.6185 -0.6459 2.4491 -409.4205
N2H2 -133.1312 -52.8413 -23.9402 -12.2574 -19.0351 -2.8502 -3.5195 -444.9168
N2H4 -149.8023 -58.5253 -26.5299 -13.5833 -20.0930 -3.1818 -2.4542 -496.6646
NH3 -78.3940 -29.6005 -13.1363 -6.7258 -9.0559 -1.1218 0.3731 -264.6532
CH3OH -146.6560 -56.7313 -25.3899 -12.9996 -18.8683 -2.5191 -1.4908 -485.1429
CH3NH2 -126.7904 -47.7225 -20.9745 -10.7389 -14.4307 -1.4557 0.8487 -452.8129
CH3COOH -269.0912 -106.8199 -48.2015 -24.6792 -38.4951 -5.4259 -7.1372 -909.2622
C6H6 -271.3662 -104.7758 -45.9231 -23.5126 -34.6324 -2.9766 -2.4398 -1056.1373
NMA -301.5884 -117.3309 -52.2985 -26.7768 -39.7489 -4.8424 -4.1422 -1069.4420

On the other hand, the X5 extrapolation method seems to be very efficient to estimate

the basis set limit correlation energy from the DZ-TZ basis set as seen from the Table 3.9.

The error for a set of atoms and molecules is typically less than 0.5% even for the large

molecules like NMA, CH3COOH, etc. It is also noticed that the extrapolated correlation

energies using the X5 method are much better than the 5Z basis set results even though

one pays 2 to 3 orders less in computational cost than for the 5Z basis set calculation.

Especially for large molecules, where the 5Z basis set performance is prohibitively costly,

one can achieve better results than with the 5Z basis set based only on the DZ-TZ basis set

result. Over all samples X5 is at best as good as the TZ-QZ two-point extrapolation, but

one has to pay almost one order less in computational cost than for the TZ-QZ two-point

extrapolation.

The noticeable feature of the X5 method is that it is more efficient for large than for

small molecules. For example, in H2, where two point extrapolation from TZ-QZ includes

only 0.06 mEh of absolute error, the X5 includes 0.711 mEh of the absolute error which is
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∼ 2% of the correlation energy. A similar situation is encountered for nitrogen, helium,

neon, methane, and CH2O in our test. For the large molecules like NMA, C6H6, etc. the

X5 method is as good as the two point extrapolation from TZ-QZ basis set results and

the error is only about 0.5% of the correlation energy. For such a large molecules the use

of QZ basis sets is generally too costly, and X5 is an elegant method to achieve close to

basis set limit accuracy.

Another noticeable feature of the X5 extrapolation method with the global parameter

set (exponential A1/A2 parameter correlation for a set of atoms and molecules) is, that

it gradually under-estimate the basis set limit energy when a large number of hydrogen

Table 3.10: The X5 method systematically under estimate the extrapolated correlation
energy as the number of hydrogen increase in the molecule. All energies are in mEh.

Molecule cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Two-point extrapolation X5 Ecorr
∞

2-3 3-4 (QZ-5Z)
H2 -7.8411 -2.5437 -1.1090 -0.5678 -0.3132 -0.0620 0.7105 -34.2245
CH4 -57.4112 -20.5143 -8.7383 -4.4740 -4.9788 -0.1449 2.1513 -218.9506
C2H2 -89.2793 -34.7492 -15.3640 -7.8663 -11.7892 -1.2179 -1.2516 -343.5602
C2H4 -97.0844 -36.5635 -15.9259 -8.1541 -11.0811 -0.8660 0.6142 -372.4877
C2H6 -106.7132 -39.0910 -16.8650 -8.6349 -10.6185 -0.6459 2.4491 -409.4205
N2H2 -133.1312 -52.8413 -23.9402 -12.2574 -19.0351 -2.8502 -3.5195 -444.9168
N2H4 -149.8023 -58.5253 -26.5299 -13.5833 -20.0930 -3.1818 -2.4542 -496.6646
NH3 -78.3940 -29.6005 -13.1363 -6.7258 -9.0559 -1.1218 0.3731 -264.6532

atoms is present in the molecule. A systematic study has been carried out with small

hydrocarbon and corresponding nitrogen compounds with different proportions of hydro-

gen atoms. Results are presented in Table 3.10. For acetylene (C2H2), the X5 method

over-estimates the basis set limit energy by 1.252 mEh whereas for ethylene (C2H4) it

under-estimates by 0.614 mEh. When two more hydrogen atoms are added to yield ethan

(C2H6) X5 under-estimates the limit energy by 2.449 mEh. A similar behavior is also

observed for the N2H2, N2H4 and NH3 molecules (see Table 3.10).

Although X5 is a very efficient method to extrapolate correlation energies to the basis

set limit for a set of atoms and molecules at their equilibrium structure. Due to the geom-

etry dependence of A1 and A2 parameters, the extrapolated result may deteriorate w.r.t

the basis set limit. Especially for the highly correlated CCSD(T) method the hydrogen

molecule shows a strong geometry dependency of the A2 parameter (see Fig. 3.11). The

A2 parameters for the hydrogen molecule are in general also quite off set from all other

molecules. A systematic study based on CCSD(T)/cc-pVXZ calculation has been carried

and the results are presented in Table 3.11. The sixth column presents the error in ex-

trapolation when the global parameter set is optimized including the hydrogen molecule
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Figure 3.11: Geometry dependence of A1 and A1 parameters for the CCSD(T) calculation
with cc-pVXZ basis set.

Table 3.11: Errors in the CCSD(T) correlation energy (in mEh) calculation with different
size of basis sets and with different extrapolation methods. All energies are compared to
the two-point extrapolation from the QZ-5Z basis sets results. The terms “with H2” and
“without H2” indicate that the parameterization has been performed including H2 in the
data set or excluding it respectively.

System cc-pVQZ cc-pV5Z Two-point extrapolation X5 Ecorr
∞

DZ-TZ TZ-QZ with H2 without H2 (QZ-5Z)
H2 -0.5689 -0.2913 0.4399 0.1335 0.7252 0.8822 -40.9108
He -1.2920 -0.6615 -0.3122 0.0345 0.0927 0.3155 -42.1886
Ne -23.2957 -11.9274 -19.0158 -1.6752 -14.1073 -11.4071 -323.5157
N2 -16.6637 -8.5318 -10.4284 0.0593 -6.2084 -3.8869 -430.0182
H2O -14.3258 -7.3348 -8.6631 0.2230 -4.9573 -2.9187 -309.2708
CH4 -5.9629 -3.0530 -0.6922 1.3011 1.5118 2.7242 -240.9647
CH2O -18.5888 -9.5175 -11.1606 0.4858 -6.3014 -3.6283 -467.4811
C2H4 -11.2142 -5.7417 -3.5715 1.6584 0.0884 2.1017 -404.4420
C2H6 -11.8346 -6.0593 -2.6645 2.0289 1.4130 3.6562 -445.9864
CH3OH -19.8876 -10.1825 -10.3863 1.0304 -4.8614 -1.8220 -510.3177
CH3NH2 -15.5401 -7.9565 -5.8787 1.6893 -1.0624 1.5872 -483.4477

in the data set and the seventh column presents the error excluding hydrogen from the

data set. In general, the result improves when hydrogen is excluded. This may seem a

motivation to omit hydrogen from the data set. But for hydrogen rich molecules, the

estimated basis set limit energy deteriorates if hydrogen is absent in the data set. For

example, with hydrogen included X5 under-estimates the limit energy by 1.413 mEh for

C2H6, but when hydrogen is excluded, it under-estimates the basis set limit energy by
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3.656 mEh. A similar behaviors observed for the C2H4, CH4 molecules. Since biomolecules

are rich in hydrogen atoms, it is necessary to include the hydrogen in the data set.

3.6.5 The PES calculation

Now the obvious question arises how efficient is the X5 method to generate a PES? A

systematic study has been carried out for a large number of molecules and their different

vibrational and rotational motions, especially all the 30 normal modes of vibration have

been studied for the NMA molecule. Although A1 and A2 parameters depend on the

geometry of the molecule they are slowly varying parameters, and in general the estimation

of basis set limit energies can be reasonably well achieved with a global parameter set

for the PES calculation in the vicinity of the equilibrium structure. Table 3.12 presents

the errors in the PES calculation based on the X5 extrapolation method along with the

errors for the two-point extrapolation results and different basis sets for the C–O stretch

vibration of methanol. Although the X5 method with a global parameter set always

Table 3.12: Error in the PES calculation along C–O vibrational band for methanol. All
energies present here are in mEh.

CO bond cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Two-point extrapolation X5 Ecorr
∞

length in Å DZ-TZ TZ-QZ (QZ-5Z)
1.265 -147.2149 -56.9331 -25.3590 -12.9838 -18.9197 -2.3184 -1.4733 -481.7091
1.285 -147.0813 -56.8810 -25.3519 -12.9802 -18.9020 -2.3441 -1.4713 -482.0564
1.305 -146.9677 -56.8377 -25.3484 -12.9784 -18.8882 -2.3697 -1.4711 -482.4293
1.325 -146.8734 -56.8024 -25.3483 -12.9783 -18.8777 -2.3953 -1.4721 -482.8269
1.345 -146.7974 -56.7750 -25.3513 -12.9799 -18.8708 -2.4205 -1.4745 -483.2479
1.365 -146.7387 -56.7546 -25.3572 -12.9829 -18.8666 -2.4455 -1.4778 -483.6912
1.385 -146.6962 -56.7409 -25.3657 -12.9872 -18.8650 -2.4703 -1.4817 -484.1557
1.405 -146.6690 -56.7333 -25.3767 -12.9929 -18.8656 -2.4948 -1.4861 -484.6400
1.425 -146.6560 -56.7313 -25.3899 -12.9996 -18.8682 -2.5191 -1.4908 -485.1429
1.445 -146.6562 -56.7345 -25.4052 -13.0074 -18.8727 -2.5432 -1.4959 -485.6634
1.465 -146.6684 -56.7425 -25.4224 -13.0163 -18.8790 -2.5672 -1.5013 -486.2001
1.485 -146.6917 -56.7549 -25.4413 -13.0260 -18.8868 -2.5909 -1.5071 -486.7519
1.505 -146.7250 -56.7715 -25.4619 -13.0365 -18.8963 -2.6144 -1.5133 -487.3178
1.525 -146.7672 -56.7918 -25.4839 -13.0478 -18.9074 -2.6377 -1.5202 -487.8966
1.545 -146.8173 -56.8156 -25.5074 -13.0598 -18.9201 -2.6608 -1.5278 -488.4873
1.565 -146.8745 -56.8427 -25.5320 -13.0724 -18.9346 -2.6837 -1.5365 -489.0890
1.585 -146.9375 -56.8727 -25.5578 -13.0856 -18.9507 -2.7063 -1.5463 -489.7007

contains an intrinsic error of ∼ 1.5 mEh, it is in general far better than the 5Z result, for

which the error is about 13 mEh. The two-point extrapolation from DZ-TZ basis sets is

∼ 18.8 mEh off for the PES calculation. The X5 method is also much more efficient than

the two point extrapolation from the TZ-QZ basis sets (see Table 3.12 ).
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3.6.6 The PES calculation with local parameters

The intrinsic error in the basis set limit energy calculation arises due to the global param-

eter where A2 is an approximation only. It is then more desirable to generate a system

base parameter to achieve higher accuracy. It was observed that the A2 is a very slowly

varying parameter with the geometry of the molecule, at least for near equilibrium points

(see Table 3.13). This motivates an approximation where the A2 parameter is frozen. We

freeze A2 at the equilibrium geometry (A0
2) and use that parameter for all other geome-

tries. Such a system based local method is named X5*, and requires, in addition to an

estimate for Ecorr
∞ (X0), only two energy points (e.g., DZ and TZ) to get the basis set limit

energy for every PES point.

Table 3.13: Variation of the A1 and A2 parameters with the geometry change along
the C=O stretch vibration of NMA. Negative sign indicates the contraction of the bond
length.

C=O A1 A2

0.7156 -4.349687 -0.972768
0.3577 -4.362339 -0.970373
0.0894 -4.368825 -0.967725
0.0000 -4.370373 -0.966505
-0.0428 -4.371245 -0.965885
-0.1712 -4.373243 -0.963576
-0.3423 -4.376430 -0.959431

The error in extrapolation for the PES of water is presented in Table 3.14. Table 3.15

presents the corresponding error for the NMA molecule, where the PES is calculated

along the C=O stretch vibrational mode. As can be seen from Table 3.14, the calculated

error is about 14 mEh for the two-point extrapolation from the DZ-TZ basis sets, for the

bending motion of water. The two point extrapolation from the TZ-QZ basis sets deviates

about 2.3 mEh from the exact result. Whereas the X5* method introduces only 0.12 mEh

maximum error along with the PES cut, which is only 0.04% of the total correlation

energy.

A similar behavior is also observed for NMA. The error in the PES is about 40 mEh

when calculated with the two point extrapolation from the DZ-TZ basis sets. The 5Z

basis set results are also far from the basis set limit results and one has to pay a high cost

for that. The two point extrapolation from TZ-QZ is about 5 mEh away from the limit
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Table 3.14: Errors in the PES calculations for the bending mode of the water. All energies
are in mEh.

Two-point extrapolation X5 E∞
Angle DZ-TZ DZ-QZ TZ-QZ A0

1 & A0
2 A0

2 (QZ-5Z)
-5 13.904 6.205 2.252 -0.456 -0.103 -301.020
-4 13.925 6.217 2.259 -0.360 -0.084 -300.932
-3 13.948 6.230 2.266 -0.267 -0.064 -300.849
-2 13.971 6.242 2.273 -0.176 -0.043 -300.772
-1 13.994 6.255 2.281 -0.086 -0.022 -300.700
0 14.018 6.268 2.288 0.000 0.000 -300.633
1 14.043 6.282 2.296 0.084 0.022 -300.572
2 14.068 6.295 2.303 0.167 0.045 -300.516
3 14.094 6.309 2.311 0.248 0.069 -300.465
4 14.120 6.322 2.318 0.326 0.093 -300.420
5 14.146 6.336 2.325 0.403 0.118 -300.379

value. The X5 method with global parameters is as good as the two-point extrapolation

from the TZ-QZ basis sets. The error reduces surprisingly when the X5 method is used

with a fixed A0
2 parameter, and the maximum error drops to only 0.644 mEh.

Table 3.15: Errors in the PES calculations for the C=O stretch vibration in NMA with
different approximations. The X5 extrapolation form (2,3) with A2 = 0 is essentially the
two-point extrapolation from the DZ-TZ basis sets. All energies are in mEh.

∆q (C=O) 5Z (3,4) X5 extrapolation from (2, 3) Ecorr
∞

A2 = 0 X5 A0
1 A0

2 A0
2 (QZ-5Z)

0.7156 -26.958 -5.101 -40.169 -4.532 1.040 -0.576 -1082.253
0.3577 -26.864 -4.999 -39.922 -4.308 0.495 -0.354 -1075.132
0.0894 -26.797 -4.907 -39.699 -4.067 0.126 -0.111 -1070.457
0.0000 -26.780 -4.880 -39.611 -3.958 0.000 0.000 -1069.055
-0.0428 -26.776 -4.873 -39.570 -3.903 -0.066 0.057 -1068.421
-0.1712 -26.767 -4.848 -39.428 -3.700 -0.276 0.267 -1066.659
-0.3423 -26.784 -4.826 -39.216 -3.339 -0.639 0.644 -1064.727

Another approximation has been applied to make the PES generation more economic.

As observed, A1 is also a slowly varying parameter with the geometry within a system

at least for near equilibrium points (see Table 3.15). To a good approximation one can

also freeze A1 (A0
1) along with A2 for the system of interest in molecular dynamics. Then

one needs only a single energy point in each configuration to get the basis set limit value.
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That means one can obtain a high quality PES only performing a DZ basis set calculation

at each point in the PES, which is a remarkable achievement.

Results for this approach are presented in Tables 3.14 and 3.15 as well for the bending

mode of the water and the C=O stretch vibrational mode of the NMA, respectively.

With this approximation the calculated basis set limits deteriorate slightly from the X5*

method, but are still far better than the 5Z or the two-point extrapolation from the TZ-QZ

results, which is achieved by only performing DZ basis set calculations.

3.6.7 The gradient and the Hessians

The convergence behavior of the gradient and the Hessian have been studied explicitly for

the water molecule using standard MP2 and the CCSD(T) calculations (no DF) employing

cc-pVXZ basis sets. Table 3.16 and 3.17 present the average error in gradient and Hessian

extrapolation respectively. The average error is defined as,

∆av =
∑(

||H∞ −H limit||
)
/n2,

where H∞ is the extrapolated gradient or Hessian calculated with two-point extrapolation

from the QZ-5Z basis set, H limit is the approximate basis set limit value and n2 is the

number of elements in the gradient or the Hessian matrix. The two-point extrapolation

results from different combinations of energy points are also included in the table.

Table 3.16: Errors in the gradient extrapolation from different combinations of basis
sets with the two-point and the X5 extrapolation methods. X5* is the X5 extrapolation
with A0

2 and X5** is the X5 extrapolation with A0
1 and A0

2. Gradients are calculated at
equilibrium, at 0.04 Å symmetric O–H stretch and at −5◦ H-O-H bending.

equilibrium δr =0.04Å δφ = −5◦

MP2 CCSD(T) MP2 CCSD(T) MP2 CCSD(T)
23 0.326 0.321 0.319 0.312 0.275 0.267
24 0.255 0.246 0.229 0.227 0.261 0.255
34 0.347 0.319 0.336 0.306 0.355 0.328

X5* 0.304 0.289 0.287 0.276 0.252 0.231
X5** 4.257 4.727 4.411 4.824 4.434 4.892

As seen from the Table 3.16, the gradient extrapolation with the X5* method from the

DZ-TZ basis sets gives a similar error as the two-point extrapolation from the DZ-TZ basis

sets, which means the A2 parameter does not have any influence on the extrapolation.
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Table 3.17: Errors in the Hessian extrapolation from different combinations of basis sets
with the two-point and the X5 extrapolation methods. X5* is the X5 extrapolation
with A0

2 and X5** is the X5 extrapolation with A0
1 and A0

2. Hessians are calculated at
equilibrium, at 0.04 Å symmetric O–H stretch and at −5◦ H-O-H bending.

equilibrium δr = 0.04Å δφ = −5◦

MP2 CCSD(T) MP2 CCSD(T) MP2 CCSD(T)
23 2.859 0.238 0.281 0.222 0.330 0.238
24 0.995 0.121 0.163 0.145 0.179 0.170
34 0.113 0.107 0.147 0.137 0.169 0.162

X5* 4.155 0.205 0.201 0.232 0.222 0.200
X5** 11.227 2.145 2.647 2.451 2.363 2.087

A large increase of error is observed in gradient extrapolation when A1 and A2 are both

constant i.e., for A0
1 and A0

2. Since the influence of A2 is negligible, the error is due

to the fixed A1, which means A1 is strongly depended on the local geometry of the

molecule and choosing A1 as a constant is a poor approximation for gradient extrapolation.

The two-point extrapolation with TZ-QZ also gives a similar error in the basis set limit

gradient calculation for both the MP2 and CCSD(T) level, which indicates that gradient

extrapolation may not be necessary.

A similar result is observed in case of the basis set limit Hessians calculation. It also

indicates that the extrapolation is not necessary for the Hessian calculations.





Chapter 4

Vibrational Spectroscopy of Methyl
benzoate

4.1 Introduction

Vibrational spectroscopy is among the foremost experimental tools in the exploration

of molecular potential-energy surfaces (PES). Its application to biological systems has

so far been severely handicapped, both by experimental difficulties and by the unavail-

ability of adequate computational tools for quantitative interpretation. Recent success

in the experimental realization of coherent multidimensional infra-red (IR) spectroscopy

provides a new powerful tool to study structure and dynamics of biomolecules with a

temporal resolution down to the sub-picosecond regime,8,119, 120 prepared by any of the

ultrafast initiation techniques (photo-switches, pH jump, local electric field, etc.) devel-

oped recently.121 Multidimensional IR spectroscopy has the potential to disentangle the

congested vibrational spectra of biomolecules to some extent similar to multidimensional

NMR3–6 but with significantly higher temporal resolution. In nonlinear multidimensional

spectra the structural and dynamical information is typically available in terms of diagonal

and cross-peak shapes, locations and intensities and their respective temporal evolution.

The interpretation of this data in terms of a dynamical model of the biomolecule under

investigation requires extensive theoretical modeling.

The calculation of vibrational spectra of biomolecules within the harmonic approxi-

mation is very useful, but often has limited significance since many biological molecules

are “floppy” and subject to strong anharmonic effects. Anharmonic effects are even much

larger in weakly bound complexes of biological molecules, e.g., their hydrogen-bonded

complexes with water.2 Also, much of the interest in the PES is away from the equilib-

53
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rium configuration, where the harmonic approximation is even less applicable. The main

problem of anharmonic spectroscopic calculations is that different vibrational modes are

not mutually separable like in the harmonic approximation. Therefore one has to face the

task of calculating wavefunctions and energy levels for systems of many coupled degrees of

freedom. Several attempts have been made to overcome this problem. Among others, the

discrete variable representation (DVR),13–16 diffusion quantum Monte Carlo (DQMC),17–20

and vibrational self-consistent-force field (VSCF),21–23 methods proved their applicability

to study anharmonic effects in systems with different size. The VSCF method is most

successful among them to effectively handle large molecular systems.

Most reactions in chemistry and biology occur in condensed phase under thermal con-

ditions. IR absorption spectra of peptides and proteins are dominated by vibrational

bands that can be described approximately in terms of oscillators localized in each repet-

itive unit and their mutual couplings. The most extensively studied bands are amide-A

and amide-B in the region 3000–3500 cm−1 and amide-I and amide-II between 1500-1700

cm−1, which are spectrally well separated from the remaining spectrum and exhibit a

strong dependence on the structural motifs present in the investigated biomolecules.7

The amide-I vibrational mode, which involves mainly the C=O stretch coordinate has

experimentally been the most important mode due to its large transition-dipole moment

and because it appears to be mostly decoupled from the remaining vibrational modes in

proteins. A detail understanding of these modes are then necessary to understand the

structure and dynamics of the protein and peptide. But due to the complex structure of

protein a detail theoretical understanding of these modes are complicated. A simple small

molecule is then necessary where these important modes can be studied in more details.

Methyl benzoate has a planar configuration, except for the two hydrogen atoms at

the methyl group which are symmetrically out-of-plane with respect to the rest of the

molecule (see Fig. 4.1). The methyl carboxylate group is co-planar with the phenyl ring.

In Methyl benzoate, the C=O double bond in the carboxylic ester group behaves as a

local oscillator similar to the amide-I band in proteins and provides a convenient mode to

study the amide-I band structure of proteins. Another potentially interesting coupling in

proteins is the coupling between the amide-I and the β-hydrogen located in the sidechain.

Methyl benzoate also provides a similar structure where the ortho hydrogen in the phenyl

ring provides the counter-part of a β-hydrogen in protein sidechains. The structural

similarities of these two bands in Methyl benzoate and proteins are depicted in Fig. 4.2.

Isotopic substitution is a valuable tool in the identification of molecular structure



Chapter 4.1. Introduction 55

Figure 4.1: Structure of Methyl benzoate.
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Figure 4.2: Structural similarity of protein backbone and Methyl benzoate.

and dynamics. The C–H or C–D stretch vibrations are particularly important struc-

tural probes, because they are very localized, specific and abundant. Especially the C–D

stretching frequency is an excellent structural probe since it is usually spectrally isolated

(∼2200 cm−1) even in the spectrum of large proteins. Substitution of β-hydrogen by deu-

terium provides a probe to obtain a better understanding of the structure and dynamics

of the protein backbone.
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4.2 Theoretical Background

4.2.1 Normal-mode analysis

Interest in the vibrational motion of molecules is pervasive in chemistry.122 The traditional

view of this motion is based on the Born-Oppenheimer approximation123 which separates

the motion of the electrons from that of the nuclei. The electronic motion produces

an effective potential which holds atoms together and governs their vibrational motion.

The complexity of this potential gives rise to the richness of much of chemistry. Thus,

a theoretical picture of the vibrations of molecules is at the heart of many chemical

questions.

The traditional view of vibrational motion is based on the harmonic approximation to

the full nuclear potential. This very simple approximation gives rise to an extraordinarily

simple and useful picture of vibrational motion, namely, that of independent vibrational

modes, usually called “normal modes”.124 A normal mode in an oscillating system is

the frequency at which a deformable structure will oscillate when weakly disturbed. The

normal mode frequency is also known as natural or fundamental frequency of the system.

A many-body system of N bodies has 3N degrees of freedom. Out of the total 3N degrees

of freedom three are purely translational and three are purely rotational for any nonlinear

system. These do not contribute to the oscillation of the localized oscillator of the system.

Thus, there are 3N-6 remaining normal modes in an N-body nonlinear system. For a linear

N-body system the number of normal modes is 3N-5.

Let us consider that such a many-body system is vibrationally excited. If we express

the displacement of each body by mass-weighted Cartesian displacement coordinates (i.e.,

q1 =
√
m1∆x1, q2 =

√
m1∆y1, q3 =

√
m1∆z1, q4 =

√
m2∆x2, and so on), the kinetic

energy of the system is defined by,124

2T =

3N∑

i=1

q̇2
i , (4.1)

and the potential energy V to the second order in the vicinity of a minimum by

2V =
3N∑

i,j=1

fijqiqj. (4.2)

where fij =
(

∂2V
∂qi∂qj

)
0
, with fij = fji, and q̇i is the time derivative of qi.
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Since T is a function of velocity only and V is a function of the coordinates only,

Newton’s equations of motion can be written as,

d

dt

∂T

∂q̇j
+
∂V

∂qj
= 0 j = 1, 2, · · · , 3N. (4.3)

Substituting the expression for T and V , in Eq. (4.3) one gets124

q̈j +

3N∑

i,j=1

fijqi = 0. (4.4)

This is a set of 3N simultaneous second-order linear differential equations. One possible

solution is,124

qi = Ai cos (λ1/2t+ ǫ), (4.5)

where Ai is the amplitude of oscillation, and ǫ is the phase. Now Eq. (4.4) becomes,

3N∑

i=1

(fij − δijλ)Ai = 0 j = 1, 2, · · · , 3N, (4.6)

where δij is the Kronecker delta function.

Only for special values of λ, Eq. (4.6) has non-vanishing solutions, for all other values

of λ, the solution is trivial and corresponds to no vibration.

The special values of λ are those for which
∣∣∣∣∣∣∣∣∣

f11 − λ f12 · · · f1,3N

f21 f22 − λ · · · f2,3N
...

...
...

f3N,1 f3N,2 · · · f3N,3N − λ

∣∣∣∣∣∣∣∣∣

= 0. (4.7)

The elements of this determinant are the coefficients of the unknown amplitudes Ai. For

a particular value of λ, say λk, the coefficient of the unknown variable becomes fixed, say

Aik, which is the amplitude of vibration for a particular normal mode of vibration. Each

normal mode is a fundamental property of the system and follows the same characteristics.

These are:124

1. Each normal mode acts like a simple harmonic oscillator.

2. A normal mode is a concerted motion of many bodies.

3. The center of mass does not move.

4. All bodies pass through their equilibrium positions at the same time.

5. Normal modes are independent; they do not interact.



58 Chapter 4.2. Theoretical Background

4.2.2 Different approaches for normal-mode analysis

Normal-mode analysis provides the fundamental mechanical properties of many-body sys-

tems. Therefore, it is an excellent tool to study molecular structure and properties. But

as the number of atoms increases in the molecule, the solution of Eq. (4.6) becomes com-

plicated. We therefore need an efficient method for normal-mode analysis to understand

the molecular structure and dynamics.

Several approaches exist to achieve this goal. Among them grid methods are successful

for small polyatomic systems and clusters.125–130 Here, a widely used technique is the

discrete variable representation (DVR) method.13–16 For small systems like H+
3 or Ar3 it

has been established as a powerful method for vibrational analysis,16 but it also brings

out the enormous difficulties encountered owing to both computer memory as well as

speed limitations for larger systems. A method that scales very well with system size

is the diffusion quantum Monte Carlo (DQMC) algorithm and related techniques such

as the vibrational quantum Monte Carlo approach.17–20 The DQMC is a very effective

method for obtaining the vibrational ground state of large anharmonic systems, including

the extreme case of quantum clusters.131–134 The DQMC method is, however, limited to

calculation of the ground state. In specific cases it is possible to employ this method also

for excited states135 and applications to spectroscopy have been made on this basis.136

However, a general extension of DQMC for excited vibrational states is not yet at hand.

The approach that seems at present to provide the most effective tool for spectroscopy

of large polyatomic systems is the vibrational self consistent field (VSCF) approximation

and its generalizations.21–23

4.2.3 The VSCF Approximation

The basic idea behind the VSCF approach comes from the Hartree approximation.25

First a minimum energy configuration of the system is considered and all the normal-

mode coordinates are computed for that configuration. These are then used to express

the vibrational Hamiltonian operator of the system. For a system with the total angular

momentum J = 0, and with all rotational coupling effects neglected, the vibrational

Schrödinger equation can be written as,124

[
−1

2

N∑

j=1

∂2

∂q2
j

+ V (q1, · · · , qN)

]
Ψn(q1, · · · , qN ) = EnΨn(q1, · · · , qN ), (4.8)
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where N is the total number of vibrational normal modes, and V is the potential function

of the system. Although normal modes are chosen to describe the vibrations of the system,

the harmonic approximation is not made to describe the potential function V (q1, · · · , qN).

The VSCF approximation is based on the Hartree product ansatz for the wave function:

Ψn(q1, · · · , qN) =
N∏

j=1

ψ
(n)
j (qj), (4.9)

which, using the variational principle, leads to the single-mode VSCF equations23,122

[
−1

2

N∑

j=1

∂2

∂q2
j

+ V
(n)

j (qj)

]
ψ

(n)
j (qj) = ε

(n)
j ψ

(n)
j (qj), (4.10)

where V
(n)

j (qj), the one-dimensional mean-field potential for the mode qj , is given by:

V
(n)

j (qj) =

〈
N∏

l 6=j

ψ
(n)
l (ql)|V (q1, · · · , qN)|

N∏

l 6=j

ψ
(n)
l (ql)

〉
. (4.11)

For single mode wavefunctions, energies in Eq. (4.10), and one-dimensional effective po-

tentials Eq. (4.11) must be solved iteratively until self-consistency is achieved. Both

ground and excited SCF states of the total system can be obtained using Eq. (4.10). The

VSCF approximation for the total energy is given by:

En =

N∑

j=1

ε
(n)
j − (N − 1)

〈
N∏

j=1

ψ
(n)
j (qj)

∣∣∣∣V (q1, · · · , qN )

∣∣∣∣
N∏

j=1

ψ
(n)
j (qj)

〉
. (4.12)

The computational efficiency of the VSCF method depends upon the calculation of

the single mode effective potentials, Eq. (4.11), which involves in general the evaluation of

multidimensional integrals. The main computational difficulty in solving Eq. (4.11) and

hence Eq. (4.10) for large systems is the need to evaluate the multidimensional integrals

involving the potential function V (q1, · · · , qN). Below, we describe some approaches to

evaluate the integrals efficiently.

Power-series expansion of the potential

A very advantageous approach, in certain cases, is to expand the potential function in

powers of the normal modes.24 The expansion can be written as,

V (q1, · · · , qN) =
∑

m1,··· ,mN

Vm1,··· ,mN
(q1)

m1 · · · (qN)mN , (4.13)
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which requires the evaluation of one-dimensional integrals only to obtain the one-dimensional

effective potentials V
(n)

j (qj). Then the one-dimensional potential function is written as,24

V
(n)

j (qj) =
∑

m1,··· ,mN

Vm1,··· ,mN

N∏

l 6=j

F (l),(n)
ml

(qj)
mj , (4.14)

where,

F (l),(n)
ml

=

〈
ψ

(n)
l (ql)

∣∣∣∣(ql)
ml

∣∣∣∣ψ
(n)
l (ql)

〉
. (4.15)

Although the number of one-dimensional integrals increases with the system size, if

the order of the expansion is modest the computational task is feasible even for thousands

of modes.25 Fourth order polynomial approximations for the PES have been successfully

used.24,137–139 Sixth order and fourth order polynomial representations for the cluster

(Ar)13 show similar results, which supports the validity of this approach.24,25 But when

higher order expansions are required, the method quickly looses its advantages.

The coefficients Vm1,··· ,mN
are typically obtained by differentiation of the potential en-

ergy function at the equilibrium configuration. But higher order numerical derivatives cal-

culated near the equilibrium configuration provide a poor approximation for anharmonic

systems and the polynomial expansion method breaks down completely. The power series

for the potential either diverges or requires extremely high powers for acceptable accu-

racy. Jung and Gerber’s study on the water dimer illustrates this difficulty.24 Figure 4.3

shows the VSCF potential for mode 12, a soft torsional mode of (H2O)2. The failure of

the power-series expansion is obvious from the flat-bottom shape of the PES.

Higher order coupling

Carter et al. first suggested that the VSCF PES can be expressed in terms of a hierarchical

expansion26

V (q1, · · · , qN) =
N∑

j

V
(1)
j (qj) +

∑

i<j

V
(2)
i,j (qi, qj)

+
∑

i<j<k

V
(3)
i,j,k(qi, qj, qk) + · · ·

+
∑

i<j···<r<s

V
(n)
i,j,··· ,r,s(qi, qj , · · · , qr, qs) + · · · . (4.16)

where V
(1)
j (qj) is the diagonal potential, V

(2)
i,j (qi, qj) is the pairwise potential, V

(3)
i,j,k(qi, qj , qk)

is the triple coupling and so on.
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Figure 4.3: The VSCF potential for a torsional mode of (H2O)2. The normal mode here
is q12; Obtained from Ref. [24].

Usually, it is possible to represent the potential function V (q1, · · · , qN) with sufficient

accuracy by assuming only pairwise interactions between normal modes.24,140 Accounting

for the pairwise interactions, the potential function can be approximated by

V (q1, · · · , qN) = V0 +
N∑

j

V
(1)
j (qj) +

∑

j

∑

i>j

V
(2)
i,j (qi, qj), (4.17)

where V
(1)
j (qj) is the diagonal potential function defined by

V
(1)
j (qj) = V (0, · · · , qj , · · · , 0) − V0, (4.18)

and V
(2)
i,j (qi, qj) are the pairwise interactions defined by

V
(2)
i,j (qi, qj) = V (0, · · · , qi, · · · , qj , · · ·0) − V

(1)
j (qj) − V

(1)
i (qi) − V0. (4.19)

Including pairwise couplings, the effective single-mode VSCF potential V
(2)(n)
j (qj) reads

V
(2)(n)
j (qj) =

∑

i6=j

〈
ψ

(n)
i (qi)

∣∣∣∣V
(2)
i,j (qi, qj)

∣∣∣∣ψ
(n)
i (qi)

〉
(4.20)
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The computation of these integrals can be efficiently done by using a grid representa-

tion for V
(2)
i,j (qi, qj), combined with a routine technique for solving the one-dimensional

Schrödinger equation for the ψi(qi). Grid size takes crucial role in this approach.

For typical molecular problems, quadruple (n = 4) interaction potentials have a negli-

gible influence on the vibrational spectrum.26 Most generally used models for the descrip-

tion of multidimensional vibrational spectroscopy in larger molecules do not even include

any three mode coupling,7 i.e., they assume V (n) = 0 for all n > 2. But in a recent detailed

analysis of the effect of triple contributions on high level VSCF computations for small

molecules it was observed that some triple contributions may have a significant effect.27

It was shown that the triple couplings V
(3)
ijk which contribute most to the anharmonic

frequencies involve modes which also exhibit large mutual pair-couplings V
(2)
ij , V

(2)
ik , and

V
(2)
jk . Therefore it is justified to first analyze the pair couplings and then to include triple

couplings where it is required.

4.2.4 Configuration interaction VSCF

Configuration interaction VSCF (CI-VSCF) is a very efficient and accurate method to

solve the vibrational problem of polyatomic molecules proposed first by Bowman and co-

workers.141 In the CI-VSCF method,142,143 the eigenfunctions of the vibrational Schrödinger

equation Eq. (4.8) are expanded in a basis of VSCF states:

ψn(q1, · · · , qN) =
∑

m

Cn
m

N∏

j=1

φ
(m)
j (qj), (4.21)

where φ
(m)
j (qj) is a modal function of the VSCF Hamiltonian for mode qj , and m is the

excitation level of the state computed. It is to be noted that different VSCF states are

not orthogonal. Then the VSCF energies En are obtained by solving the secular equation:

det [H − ES] = 0, (4.22)

where H is the full vibrational Hamiltonian matrix and S is the overlap matrix. The

matrix elements are defined as

Hm,m′ =

〈
N∏

j=1

φ
(m)
j (qj)

∣∣∣∣∣H
∣∣∣∣∣

N∏

j=1

φ
(m′)
j (qj)

〉
(4.23)

Sm,m′ =

〈
N∏

j=1

φ
(m)
j (qj)

∣∣∣∣∣

N∏

j=1

φ
(m′)
j (qj)

〉
. (4.24)
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Alternatively, it is possible to express the CI expansion by virtual VSCF states obtained

from the solutions of the VSCF Hamiltonians for a fixed vibrational effective potential.

The virtual VSCF states are orthogonal, and S becomes the unit matrix. For a sufficiently

large basis, CI-VSCF becomes a rigorous method to solve the vibrational eigenvalue prob-

lem for a coupled mode system with spectroscopic accuracy. Applying the CI-VSCF

method for small polyatomic molecules, an accuracy of 1 cm−1 is achieved.26,137, 144, 145

It is also possible to incorporate rotational coupling effects (including Coriolis coupling)

in CI-VSCF treatments of the vibrational state calculations.144,145 With these general-

ization, this method can be applied to the full Watson Hamiltonian146 of the vibrational

problem, which is essential for small polyatomic systems, for quantitative comparisons

with the experimental data, but plays a lesser role in larger systems. Although the CI-

VSCF method is a very powerful tool for small systems it also has some disadvantages.

First of all for some systems and states the CI-VSCF expansion may converge slowly

which makes the computation costly. Secondly the computational effort in CI-VSCF is

expected to scale as N5 or worse, with the number of normal modes N , which makes the

method unaffordable very soon with increasing system size.

4.2.5 Correlation Corrected VSCF

The correlation corrected VSCF (CC-VSCF) method was developed24,138 based on the

assumption that at least for low-lying vibrational excited states VSCF already yields

results of very good accuracy. This suggests that correlation effects for such states are

relatively small, and can be treated by perturbation theory. This approach is analogous

to the very familiar Møller-Plesset method for electronic structure calculations, where

perturbation theory is used to introduce correlation effects and improve the Hartree-Fock

approximation. In the CC-VSCF approach, the full Hamiltonian is written as:

H = HSCF,(n) + ∆V (q1, · · · , qN), (4.25)

where,

HSCF,(n) =
∑

j

H
(n)

j (qj), (4.26)

with H
(n)

j (qj), the SCF Hamiltonian for the mode qj in the state (n),

H
(n)

j (qj) ≡ −1

2

∂2

∂q2
j

+ V
(n)

j (qj). (4.27)
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The potential energy change ∆V in the perturbed system in Eq. (4.25) is defined as:

∆V (q1, · · · , qN) = V (q1, · · · , qN) −
N∑

j=1

V
(n)

j (qj). (4.28)

The correlation effects are all included in ∆V . Assuming correlation effects are small

and the SCF part of the Hamiltonian dominates, the effect of ∆V can be calculated by

perturbation theory. Using second order perturbation theory, the energy expression to

the second order in ∆V is24

EMP2
n = EVSCF

n +
∑

m6=n

∣∣∣∣∣

〈
N∏

j=1

ψ
(n)
j (qj)

∣∣∣∣∣∆V
∣∣∣∣∣

N∏

j=1

ψ
(n)
j (qj)

〉∣∣∣∣∣

2

E
(0)
n −E

(0)
m

. (4.29)

The label MP2 comes since the correlation correction term is calculated by second order

Møller-Plesset perturbation theory, whereas EVSCF
n is the VSCF approximation to the

total energy, given by Eq. (4.12). The wave functions ψ
(m)
j and the energies E

(0)
m in

Eq. (4.29) are calculated from the VSCF Hamiltonian HSCF,(n), corresponding to the

state n.

E(0)
m =

N∑

j=1

ε
(n),m
j . (4.30)

The superscript (n) in Eq. (4.30) indicates that the levels are calculated from the Hamil-

tonian H
(n)

j (qj), while m is the level of the state computed. ε
(n),m
j is the mth SCF energy

level of the jth mode, computed from the Hamiltonian H
(n)

j (qj). Higher order corrections

to the energy can be computed with a reasonable effort, but these corrections are prob-

ably very small25 and sometimes diverge. The CC-VSCF method is successful even for

medium and large polyatomic systems. But a serious problem arises when two or more

states are nearly degenerate, i.e., E
(0)
m ∼ E

(0)
n . This problem can be resolved by carrying

out a small CI calculation in the subspace of nearly degenerate SCF states only. This is

essentially equivalent to applying the degenerate perturbation theory to this subspace.147

Then, the split levels and the corresponding states could be coupled to the other states

with which they are not degenerate, by ordinary perturbation theory. The CC-VSCF

method is computationally very efficient even for many hundreds of coupled modes. An

interesting point concerning this is that the correlation effects are generally smaller for

larger systems, at least on the average. The percentage of correlation correction is defined
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as24

R =
1

N

[
N∑

j=1

r(j)

]
× 100, (4.31)

where r(j) is the ratio of the MP2 correction to the jth fundamental excitation and N is

the number of normal modes. Figure 4.4 shows the dependence of R with cluster size for
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Figure 4.4: Average correlation-correction percentage versus cluster size n for (H2O)n.
Obtained from Ref. 24.

water clusters (H2O)n.
24 The plot indicates that the correlation errors decrease with the

cluster size. This suggests that the Møller-Plesset perturbation series should on average

converge better for larger systems.

Although historically this method has been introduced as CC-VSCF it is more appro-

priately called vibrational MP2 (V-MP2) and, after correction for the degeneracy problem,

the best way to call it is vibrational corrected MP2 (VC-MP2).

4.2.6 Anharmonicity

As discussed in section 4.2.1, the force constant k can be calculated from the curvature

of the potential energy curve near equilibrium (∂2V
∂q2 )0. In practice, however, for larger
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displacements from equilibrium, the potential energy does not follow a harmonic behavior,

making the harmonic-oscillator approximation poor. Instead of following a parabolic

path, the potential energy follows a higher order polynomial curve. This potential energy

surface is called the anharmonic PES. In normal mode analysis, higher order terms than

quadratic terms are neglected, which contain important information on the system. The

anharmonic potential is typically less confining than the parabolic potential and energy

levels can be expected to converge148 as the vibrational quantum number increases. Not

only do the the energy levels change, but also the wave functions change from those of

the harmonic oscillator, therefore the selection rules, which are based on integrals over

the wave functions are also modified.

Therefore it is important to know about the anharmonicity for high resolution spec-

troscopy. Even in low resolution work they are significant when the displacement of the

nuclei reaches values far from the equilibrium. This occurs when the vibration is excited

to high quantum numbers. Then a more accurate expression for the molecular vibrational

energy that allows for the anharmonicity of the vibration is149

Evib = (ν +
1

2
)~ω − (ν +

1

2
)2

~ωx, (4.32)

where ωx is the anharmonicity constant. Two types of anharmonicities are often discussed,

one is diagonal anharmonicity and the other is off-diagonal anharmonicity. A pictorial

representation of these two is given in Fig. 4.5 where the diagonal anharmonicity is defined

ωb
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Figure 4.5: Pictorial description of anharmonicity. (a) diagonal anharmonicity, ∆ω =
ω′ − 2ω, and (b) off-diagonal anharmonicity ∆ω′ = ω′ − (ωa + ωb)

as,

∆ω = ω′ − 2ω, (4.33)
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and the off-diagonal anharmonicity is defined as,

∆ω′ = ω′ − (ωa + ωb). (4.34)

Here ω′ is the wave number calculated from second excitation and ω is calculated from

first excitation. ωa and ωb are wave numbers calculated from first excitation for two

different normal modes. The off-diagonal anharmonicity accounts for the coupling of two

different normal modes.

4.3 Computational methods

Geometry optimization of Methyl benzoate was performed using second order Møller-

Plesset61 (MP2) perturbation theory62,63 and employing the augmented correlation-consistent

polarized-valence-triple zeta (aug-cc-pVTZ) basis set. Harmonic normal-mode analysis

was performed with the density fitting MP2 (DF-MP2) method using an aug-cc-pVTZ

regular basis and cc-pVTZ fitting basis sets. All calculations were performed with the

MOLPRO quantum chemistry program.150

The choice of the computational method and the basis set are not arbitrary. A stan-

dard MP2 with aug-cc-pVTZ basis set level of computation is generally a reliable method

to generate an anharmonic PES. For a system like Methyl benzoate it is not suitable

due to the size of the molecule and the resulting high computational cost. To find a

suitable method a comparison of computations employing different basis sets has been

performed and is presented in Table 4.1. The standard MP2 calculation employing an

aug-cc-pVTZ basis set is given in the first row and provides the reference. From Table 4.1

it is clear that the standard MP2 method with aug-cc-pVTZ basis is beyond our scope

to study all 48 normal modes for Methyl benzoate, as it takes almost one day and a very

large memory space for a single-point energy calculation. If no specially optimized fitting

basis sets are available for a certain regular AO basis set it is common practice for the

DF-MP2 computations to use a fitting basis set one order higher than the regular basis

set. The DF-MP2 with aug-cc-pVTZ regular basis and cc-pVQZ fitting basis speeds up

the calculation dramatically (see Table 4.1) without sacrificing quality compared to the

standard MP2/aug-cc-pVTZ results. A single-point energy calculation with this method

takes only one and a half hours and requires almost 200 times less memory. Whereas the

DF-MP2 method employing aug-cc-pVTZ regular and cc-pVTZ fitting basis sets gives

almost identical energy values in half the time using far less disc space and is a reasonable

choice for our purpose.
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Table 4.1: Single point energy, calculation time and the required memory for energy calcu-
lation of Methyl benzoate at equilibrium geometry with different basis sets are presented.
First row represents the normal MP2 result.

Basis Energy in Eh CPU time Memory
mp2fit jkfit SCF MP2 Total in Sec. in MB

-457.510382 -1.760440 -459.270822 85363 6799.36
avtz vtz -457.510134 -1.760075 -459.270209 2822 270.39
avtz vqz -457.510341 -1.760277 -459.270618 5829 361.65
avqz vqz -457.537351 -1.860767 -459.398118 17132 3194.88
avqz v5z -457.537383 -1.860811 -459.398194 29014 3194.88

The anharmonic pair couplings are calculated with the DF-MP2 level of theory em-

ploying the same cc-pVDZ basis for regular and fitting basis set.

The grid was chosen using according to the harmonic frequency analysis and PM3

PES cuts. The innermost two points (-h, h) are determined from the second derivative of

the PES at equilibrium corresponding to the harmonic frequencies of the normal modes.

The outer two points (-a, b) are determined as those points on the 1D-PES cuts along

the normal modes for which the PM3 energy reaches six times the harmonic frequency

quantum w.r.t. V0 (see Fig. 4.6). The remaining points are calculated dividing the interval

with different proportion e.g., c = −a+(−h)
2

, d = b+h
2

, e = c+(−h)
2

, f = d+h
2

, i = −a+c
2

,

j = d+b
2

, k = e+(−h)
2

and l = f+h
2

. The choice of an appropriate grid size is crucial

−a −h h b

Figure 4.6: Grid limits to generate the PES. (-h, h) are determined from the second
derivative of the PES at equilibrium corresponding to the harmonic frequencies of the
normal modes. (-a, b) are determined as those points on the 1D-PES cuts along the
normal modes for which the PM3 energy reaches six times the harmonic frequency w.r.t.
V0.
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for anharmonic frequency calculations for both diagonal and pair potentials. Diagonal

potentials with 6 points (see Fig. 4.7 (a)) are insufficient for a reasonable description

of the PES in the calculation of anharmonic frequencies. In particular, a denser set of

energy points is required near the equilibrium configuration. A comparative study has

been carried out with 8 point (see Fig. 4.7 (b)) and 12 point (see Fig. 4.7 (c)) 1D grids.

It indicates that the 8 point grid PES is a reasonable choice for anharmonic frequency

calculations (see Table B.1). All diagonal points were first evaluated on an eight point

one-dimensional grid as shown in Fig. 4.7(b), then interpolated to the equally spaced 16

point grids which were used in the collocation treatment. Pair potentials, calculated at

semiempirical PM3 level, were evaluated on 8 × 8 point direct product grids and then

interpolated to 16 × 16 point grids by two-dimensional cubic spline interpolation.151 To

lower the computational cost while maintaining high quality pair potentials, we performed

DF-MP2/cc-pVDZ computations on irregularly spaced two-dimensional grids, as shown

in Fig. 4.8. Energy points are calculated at the grid points marked with crosses. The

undetermined points (marked with circles in Fig. 4.8) are filled by using non-uniform IMLS

(interpolating moving list-squares)152 interpolation, which provides a potential on 8 × 8

point direct product grids. The 8 × 8 point grid is extended to the 16 × 16 point grid by

using 2D cubic-spline interpolation. For some of the most problematic modes the diagonal

potentials are calculated with the local density fitting coupled cluster singles and doubles

and perturbative triple correction DF-L-CCSD(T)153–155 method with the cc-pVTZ basis

set in a dual-level scheme. All computations were additionally performed using the density

fitting spin-component scaled (DF-SCS) MP2 method156 employing different basis sets.

The theoretical calculation of the vibrational spectra of Methyl benzoate has been

performed at its minimum energy structure obtained by a standard optimization proce-

dure using the MP2 correlation treatment and employing aug-cc-pVTZ basis sets. The

Cartesian normal modes obtained from this structure are further used for the expansion

of the anharmonic PES. The harmonic and anharmonic frequencies of Methyl benzoate

are obtained using the non-correlated VSCF method as well as the correlation corrected

VSCF method.
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Figure 4.7: Diagonal grid with different grid size; (a) 6 points grid, (b) 8 points grid, (c)
12 points grid
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Figure 4.8: Irregular spaced 2-dimensional grid. Energy points are calculated at the grids,
marked with crosses. The grids marked with circles are filled up by 2-dimensional IMLS
interpolation.

4.4 Results and Discussion

4.4.1 Description of normal modes

A complete description of normal modes of Methyl benzoate are presented here with the

corresponding mode number.
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Mode 1 Rotation of ester group about C–C single bond.

Mode 2 Out-of-plane bending of ring along with ester group.

Mode 3 Out-of-plane C–H bending in methyl group.

Mode 4 In-plane rotation of phenyl ring as well as ester group.

Mode 5 Out-of-plane ring deformation along with out-of-plane bending of

ester group.

Mode 6 In-plane deformation of ester group.

Mode 7 In-plane bending of O=C–O along with symmetric H–C–H bending

in methyl group.

Mode 8 Out-of-plane ring deformation but ester group remain stationary.

Mode 9 Out-of-plane ring deformation along with out-of-plane

O=C–O bending.

Mode 10 In-plane rotation of phenyl ring and ester group in opposite direction.

Mode 11 In-plane deformation of phenyl ring but ester group remain stationary.

Mode 12 In-plane deformation of phenyl ring along with in-plane bending

of O=C–O.

Mode 13 Out-of-plane deformation of phenyl ring along with O=C–O

out-of-plane bending.

Mode 14 Out-of-plane deformation of phenyl ring along with O=C–O

out-of-plane bending.

Mode 15 O=C–O in-plane bending.

Mode 16 Out-of-plane phenyl ring deformation along with C–H

out-of-bending in phenyl ring.

Mode 17 Out-of-plane phenyl ring deformation but ester group remain stationary.

Mode 18 In-plane deformation of phenyl ring along with in-plane bending of ester

group.

Mode 19 In-plane ring deformation with very little coupling with ester group.

Mode 20 In plane ring deformation, ester group remain stationary.

Mode 21 Out-of-plane C–H bending in phenyl ring.

Mode 22 In-plane C–H bending in phenyl ring.

Mode 23 Out-of-plane C–H bending in phenyl ring.

Mode 24 Rocking motion of methyl group along with in-plane C–H bending

in phenyl ring.

Mode 25 In-plane C–H bending in phenyl ring along with in-plane ring
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deformation and C-O-C in-plane bending.

Mode 26 Asymmetric C–H bending in methyl group along with C-O-C

out-of-plane bending.

Mode 27 Symmetric C–H bending in phenyl ring.

Mode 28 Out-of-plane C–H bending in phenyl ring.

Mode 29 C–O–C in-plane bending along with C–H bending in methyl group.

Mode 30 C–O stretching along with C–H bending in methyl group.

Mode 31 In-plane C–H bending in phenyl ring.

Mode 32 C–C stretching in phenyl ring.

Mode 33 C–H in-plane bending in phenyl ring as well as methyl group.

Mode 34 C–C stretching in phenyl ring along with C–H bending in

methyl group.

Mode 35 Rocking motion of methyl group.

Mode 36 C–H bending in methyl group.

Mode 37 C–C stretching along with C–H in-plane bending in phenyl ring.

Mode 38 In-plane ring deformation.

Mode 39 In-plane ring deformation.

Mode 40 C=O stretching.

Mode 41 Symmetric C–H stretching in methyl group.

Mode 42 Asymmetric C–H stretching in methyl group.

Mode 43 C–H stretching in phenyl ring.

Mode 44 C–H stretching in phenyl ring.

Mode 45 Symmetric C–H stretching in methyl group.

Mode 46 C–H stretching in phenyl ring.

Mode 47 C–H stretching in phenyl ring.

Mode 48 C–H stretching in phenyl ring.

4.4.2 Vibrational spectrum of Methyl benzoate

There are not many experimental results (except for the low-resolution IR Raman spec-

trum of Chattopadhyay157) available for Methyl benzoate. Also not all modes are resolved

and identified experimentally, especially for low-frequency modes and near-degenerate

modes. We therefore choose our best computational result, which agrees comparatively

well with the known experimental results,157–160 as a reference and then discuss all other
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levels of computation with respect to that. For this purpose, we choose the non-correlated

VSCF results as a reference, where diagonal and pair potentials are calculated using the

DF-SCS method employing a cc-pVDZ basis set.

The entire vibrational spectrum of Methyl benzoate can be divided into three dif-

ferent important frequency regions. Most interesting high frequency modes are due to

the C-H stretching modes. Low frequency (up to ∼1000 cm−1) modes are primarily due

to bending motions involving the phenyl ring and the ester group. Between these two

extremes there are modes with combinations of bending and stretching motions and also

the spectroscopically well-separated C=O band.

The vibrational frequencies of all modes of Methyl benzoate calculated at different

levels of theory are presented in Table 4.2 along with their experimentally observed val-

ues. The deviation of the vibrational frequencies calculated at different levels of theory

with respect to the frequency obtained from the non-correlated VSCF/DF-SCS method

are plotted in Figs. 4.9, 4.10, 4.11 and 4.12. The trend observed for the root mean squared

deviation (RMSD) with respect to VSCF/DF-SCS going from harmonic (148 cm−1) to the

inclusion of only diagonal anharmonic potentials (151 cm−1), and finally to the full po-

tential expansion up to pair contributions at PM3 level (78 cm−1) and DF-MP2/cc-pVDZ

level (24 cm−1) shows that a balanced description of diagonal and coupling contributions

is of importance in simplified models. Surprisingly, for VC-MP2 the RMSD (45 cm−1) for

VSCF/DF-SCS deteriorates compared to the non-correlated VSCF treatment. Correla-

tion correction may not be necessary for such a large system,24 and the VC-MP2 method

may suffer from a degeneracy problem due to the high density of states in Methyl ben-

zoate. As seen from Figs. 4.10, 4.11 and 4.12, the VC-MP2 vibrational frequencies

deteriorate for modes 2, 14, 16, 17, 35, 41, 45 and 46. The V-MP2 also shows degen-

eracy problem for these modes. Other than these modes, VC-MP2 method shows good

agreement with the experimental results.

For low frequency modes dual level calculations with PM3 pair couplings are not re-

liable. Sometimes it overestimates and sometimes it underestimates the results. The

RMSD calculated for all 40 low frequency modes is thus quite high, 73 cm−1. Harmonic

and diagonal frequencies (frequency calculated from the anharmonic diagonal PES) are

also quite offset for few modes (modes 1, 2, 3, 13, 18, 35, 41 to 48) from the reference

frequencies and give RMSDs of 35 cm−1 and 37 cm−1, respectively. Frequencies calculated

with the non-correlated VSCF method with DF-MP2/cc-pVDZ diagonals and pair cou-

pling potentials are in good agreement with the experimental results, which yields a very
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Figure 4.9: A comparison of vibrational frequencies of Methyl benzoate calculated at
different levels of theory with respect to the VSCF/DF-SCS calculation. The labels
indicate which level of theory was used for the calculation.
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Figure 4.10: A comparison of vibrational frequencies of Methyl benzoate calculated at
different levels of theory with respect to the VSCF/DF-SCS calculation for the first 20
vibrational modes. The labels indicate which level of theory was used for the calculation.

low RMSD. For the 40 low frequency modes RMSD at this level of calculation is 14 cm−1.

Dual level calculation using DF-MP2/aug-cc-pVTZ diagonal and DF-MP2/cc-pVDZ pair

potentials, improve the results further, with a RMSD of 11 cm−1. For the VC-MP2 the
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Figure 4.11: A comparison of vibrational frequencies of Methyl benzoate calculated at
different levels of theory with respect to the VSCF/DF-SCS calculation for modes 21 to
40 only. The labels indicate which level of theory was used for the calculations.

41 42 43 44 45 46 47 48

-150

-100

-50

0

50

100

PM3/AVTZ        
VSCF/MP2-VDZ    
V-MP2/MP2-VDZ   
VC-MP2/MP2-VDZ  

-253-181

750 227

Figure 4.12: A comparison of vibrational frequencies of Methyl benzoate calculated at
different levels of theory with respect to the VSCF/DF-SCS calculation for high fre-
quency modes (41 to 48) only. The labels indicate which level of theory was used for the
calculations.
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RMSD slightly deteriorates to 18 cm−1.

Table 4.2: Vibrational frequencies of Methyl-Benzoate with different level of theories,
where diagonal grids are calculated with the DF-MP2/AVTZ level. Mode numbers are
based on normal mode frequencies. The RMSD calculated with respect to the anharmonic
frequency calculated with VSCF/DF-SCS method.

Mode Harmonic Diagonal VSCF VC-MP2 VSCF/ Experiment
PM3 MP2 SCS-DZ [Ref. 157]

1 52 82 147 103 87 112
2 112 154 178 192 160 196
3 185 361 366 316 352 342
4 167 170 169 173 169 179 134
5 208 217 236 239 234 242 218
6 331 333 326 334 331 340
7 358 358 356 366 365 363 360
8 404 411 419 416 414 421
9 454 458 477 470 466 468
10 481 481 481 476 475 477
11 617 617 618 612 611 617 630
12 678 679 685 676 673 681 674
13 712 728 788 737 726 754
14 795 801 840 808 837 813 782
15 831 830 818 818 812 823 820
16 694 760 759 781 724 731 714
17 863 894 880 856 841 891 864
18 1003 1004 1170 974 971 978
19 1012 1012 1052 991 989 979
20 1048 1049 1146 1029 1025 1035 1027
21 977 1000 980 978 987 986 980
22 1097 1101 1162 1082 1074 1096 1097
23 938 970 951 931 926 958 950
24 1142 1144 1220 1111 1103 1126 1128
25 1174 1189 1154 1153 1146 1167 1161
26 1185 1199 1074 1170 1161 1182
27 1191 1198 1176 1164 1156 1183 1177
28 958 994 908 968 982 979
29 1221 1227 1164 1200 1194 1214 1192
30 1317 1321 1350 1283 1262 1303 1278
31 1330 1334 1287 1301 1309 1320 1295
32 1472 1469 1318 1423 1415 1342 1310

continued to next page
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continued from previous page
Mode Harmonic Diagonal VSCF VC-MP2 VSCF/ Experiment

PM3 MP2 SCS-DZ [Ref. 157]
33 1479 1482 1354 1433 1411 1447 1435
34 1471 1475 1461 1436 1434 1452 1444
35 1509 1507 1320 1459 1454 1453
36 1519 1517 1322 1488 1488 1485
37 1518 1519 1529 1478 1477 1498 1474
38 1634 1636 1750 1587 1581 1606 1594
39 1634 1634 1747 1587 1580 1603 1585
40 1766 1759 1915 1724 1724 1778 1724
41 3092 3059 2909 2946 2795 2974 2998
42 3183 3255 2787 2582 2492 2560 2542
43 3205 3208 2887 2893 2849 2855 2855
44 3214 3247 2867 2872 2834 2834 2852
45 3217 3213 2868 2860 2694 2832 2845
46 3222 3233 2913 2995 2849 2963 2952
47 3226 3191 2932 3014 3035 3039 3064
48 3238 3161 2898 2933 2928 2985 3022

RMSD 148 151 78 24 45

In the low frequency region mode 32, which corresponds to the asymmetric bending

motion in the methyl group, is the most problematic mode, as seen in Fig. 4.9 and

4.11. Harmonic and diagonal frequencies for this mode are 130 and 192 cm−1 too high,

respectively. The frequency calculated employing DF-MP2/cc-pVDZ pair potentials is

also too high (∼ 80 cm−1) compared to experimental result.

High frequency vibrational modes

The high-frequency vibrational modes (41 to 48) are spectrally isolated from all other

modes of Methyl benzoate (see Table 4.2). The deviation in frequency for these 8 modes

calculated at different levels of theory with respect to the VSCF/SCS-VDZ method is

plotted in Fig. 4.12. Harmonic and diagonal frequencies (green and black bars) are too

high as can be seen in Fig. 4.9. The RMSD w.r.t. the VSCF/DF-SCS results for the C–H

stretch vibrational modes (modes 41–48) alone is 319 cm−1 for the harmonic frequency,

whereas it is 454 cm−1 for the diagonal frequencies. The large RMSDs for these eight

modes from the harmonic and the diagonal frequency calculations are mostly due to

mode 42, which shows an unexpected red shift to the frequency ∼ 2550 cm−1, whereas

the harmonic frequency for the mode 42 is 3183 cm−1 and the diagonal frequency is 3255
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cm−1. However, when pair couplings are included, the RMSD is reduced dramatically.

Dual level calculations, with DF-MP2/aug-cc-pVTZ diagonal potentials and PM3 pair

potentials (see Table 4.2) yield a RMSD of 100 cm−1. In this case mode 42 is also quite

high but shows a red shift from the conventional C–H stretch vibrational frequency to a

frequency of 2787 cm−1. Modes 43, 44, and 45 are 30−35 cm−1 higher than the reference

frequencies, whereas modes 46, 47, 48 are lower in frequency. Dual level non-correlated

VSCF computation with DF-MP2/aug-cc-pVTZ diagonal and DF-MP2/cc-pVDZ pair

potentials are surprisingly accurate for the C–H stretch vibrational frequencies. The

RMSD calculated for these eight modes is 13 cm−1 only. The main reason for large

RMSDs in the case of harmonic and diagonal anharmonic frequencies is that these neglect

all coupling terms. In reality, a C–H stretch vibrational mode is strongly coupled to other

C–H stretch vibrational modes. This is also the reason why the C–H stretch vibrational

frequencies are obtained rather accurately from the pair coupling approximation. It is also

observed that these couplings are localized, that means the coupling is only with other

C–H stretch vibrations. The methyl group C–H stretch vibrations are completely isolated

from the phenyl ring C–H stretch vibrations. Results for C–H stretch vibrational modes

may be further improved by adding triple contributions for these modes and performing

vibrational CI calculations. Our investigation with selected semi-empirical PM3 triple

contributions over DF-MP2/cc-pVDZ though does not improve the results much, only 2

to 3 wave number frequency shifts are observed. Triple contributions from higher level

quantum chemical methods should yield more accurate results.

A rather surprising result of the anharmonic pair-coupling calculations is that one of

the C–H stretch vibrational modes is shifted to a much lower frequency than the remaining

C–H stretch vibrations. No such frequency lowering can be observed in the harmonic and

the anharmonic diagonal vibrational frequency calculations. This red shift of the C–H

stretch vibrational mode has not been discussed in literature, so far. A close inspection

of the experimental spectra,161 however, reveals the presence of an unassigned peak at

2560 cm−1, with low intensity. In a recent 1D IR experimental study of Methyl benzoate

by the Steinel group,162 a low intensity peak is observed at 2542 cm−1 which matches the

calculated frequency.

Closer inspection of this mode reveals that this frequency originates from the asym-

metric C–H bond stretching in the methyl group, where two out of plane hydrogens vibrate

along the C–H bond in opposite direction. Their motion is depicted in Fig. 4.13.

Since this red shift is observed only from the pair coupling analysis and not from
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Figure 4.13: Vibrational motion of Methyl benzoate for unexpected red shift.

the harmonic and the diagonal anharmonic analysis, a noticeable coupling to some other

modes must exist. It was found that the vibrational mode (mode 1) corresponding to the

rotation of the ester sub-group with respect to the phenyl ring about the C–C bond is

coupled to this C–H vibrational mode. The rotational motion is indicated in Fig. 4.13 by

a curved arrow. This rotation pulls in one out-of-plane hydrogen to the plane of molecule

and pushes the other from the molecular plane. Due to this motion force constant of

this mode may change unexpectedly which may give rise to this red shift of the C–H

vibrational frequency.

C=O band

The C=O stretch vibrational frequency is spectrally isolated from all other vibrational

frequencies in the Methyl benzoate spectrum. Even for large proteins, the C=O vibra-

tional band is easily resolved with high intensity. Computationally, however, the study

of this vibrational mode is not straightforward. The harmonic and the anharmonic di-

agonal frequencies at DF-MP2/aug-cc-pVTZ level are relatively higher (1766 and 1759

cm−1 respectively) for this mode, compared to its experimental frequency (1724 cm−1)

(see Table 4.2). The harmonic frequency calculated at SCS/aug-cc-pVTZ level is found to

be higher than the observed frequency as well. Energy extrapolation (HF energy extrap-

olated with exponential fit and correlation energy is extrapolated with the X5 method,

see chapter 2) to the basis set limit yields results similar to MP2/aug-cc-pVTZ harmonic
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frequency.

The anharmonic diagonal frequency at MP2/aug-cc-pVTZ with an 8 points grid (see

Fig. 4.7) improves the results over the harmonic frequency and yields a C=O vibrational

frequency of 1755 cm−1. On the other hand, the anharmonic frequency calculated em-

ploying MP2/cc-pVDZ pair potentials is again quite high, i.e., 1771 cm−1. SCS/cc-pVDZ

pair potentials yield even worse results.

Dual level frequency calculations employing DF-MP2/aug-cc-pVTZ diagonal and the

PM3 pair potential is even worse (see Table 4.2). The calculated C=O frequency is im-

proved when dual level calculation are performed replacing the DF-MP2/cc-pVDZ diago-

nal potential for the C=O vibrational mode alone by a DF-L-CCSD(T)/cc-pVTZ diagonal

potential. A perfect match with the experimentally observed frequency (1724 cm−1) is

obtained. For Methyl benzoate, the non correlated VSCF computation yields the C=O

stretch vibrational frequency of 1726 cm−1, where as both V-MP2 and VC-MP2 yield

1727 cm−1. For the C=O stretch mode a high level description of the diagonal potential

is thus of tantamount importance.

4.4.3 Deuterated Methyl benzoate

Vibrational frequencies are strongly affected by the change in mass due to isotope substi-

tution. Upon isotopic substitution, the normal mode frequency changes roughly with the

square root of the inverse of the reduced mass, i.e., ν ∝ 1√
µ
. If the isotope mass difference

is large, it significantly affects the vibrational frequency. For that reason the substitution

of hydrogen by deuterium (atomic mass twice that of hydrogen) is an excellent method for

structure determination of bio-molecules, where localized C–H vibrational frequencies are

lowered (red shifted) by several hundreds of wave numbers upon deuterium substitution.

Deuteration of Methyl benzoate in the ortho position of the benzene ring yields the

syn- and anti- isomers of ortho-deutero methyl benzoate (o-DMB) shown in Fig. 4.14. The

ester group can rotate around the C–C single bond and yields these two main structural

conformers. In the potential energy minima the ester group remains in the same plane as

the benzene ring. Upon thermal excitation, the conformers interconvert by a rotation of

the ester group around the C–C bond axis. The barrier height for the ester group rotation

in Methyl benzoate is ∼ 0.25 eV, as calculated by the DF-MP2 method with aug-cc-

pVTZ basis set. This is rather small and easily accessible even at room temperature and

thus the conformers can easily interconvert. Since both conformers have nearly the same

equilibrium structural energy, they are also equally populated. Although both conformers
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Figure 4.14: Two structural conformers of Methyl benzoate and their approximate inter-
conversion barrier height. (a) syn-o-deutero-methyl-benzoate (b) anti-o-deutero-methyl-
benzoate

have the same molecular energy, they possess different vibrational C–D frequencies due to

the different couplings to the ester group. With the best possible computation (dual level

VSCF) a C–D stretch frequency difference for these two conformers of about 10 cm−1 is

found.

Identification of isotope effects by co-diagonalization

A symmetric matrix (A) can be diagonalized by an orthogonal matrix. For a set of

matrices, if they have an average eigen-structure it is possible to find an orthogonal

matrix which can diagonalize all the matrices as much as possible. This process is called

co-diagonalization of matrices. In the co-diagonalization process, not all the off-diagonal

elements become zero, but the sum of the square of all off-diagonal elements (
∑

i6=j A
2
ij)

is minimized.

The co-diagonalization process has an advantageous application in vibrational spec-

troscopy to identify the coupling of different modes and isotope effects. When an atom

is substituted with its isotope, some of the eigen-vectors differ from the non-substituted

molecule. In co-diagonalization these are identified by non-zero off-diagonal elements.

The frequency shift for the primary isotope effect appears in the diagonal element and

secondary effects appear as off-diagonal elements. Fig. 4.15 (a) and (b) depict the re-

sulting co-diagonalized matrices of the syn- and anti-o-DMB where frequencies are on

the diagonal and the residual couplings are shown in the upper left triangle on the same
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Figure 4.15: Frequency spectrum for isotopomers. (a) syn-o-deutero-methyl-benzoate and
(b) anti-o-deutero-methyl-benzoate. Fundamental frequencies are plotted on the diagonal
and the residual couplings are shown in upper left triangle on the same scale of diagonal.
The scale is shown by left rainbow color spectrum. Magnified coupling elements are shown
in lower right triangle. the corresponding scale is shown by right rainbow color spectrum.

scale as of the diagonal. But the order of magnitude is so small that they are essentially

invisible. The lower right triangle shows magnification of couplings by approximately a

factor of ten.

The syn- and anti-isomers show a clear primary isotope effect for the 43rd (Fig. 4.15

(a)) and 48th (Fig. 4.15 (b)) vibrational modes, respectively. The primary isotope effect

is observed in to the C–D stretching vibration. The secondary isotope effects are mainly

due to the coupling with the C–D vibrational modes as seen from the Fig. 4.15 (a) and

(b). These appear in the low frequency region. A noticeable feature of the isotope effect is

that both isotopomers show secondary isotope effects for the same normal modes (modes

8, 13, 14, 17, 18, 19, 20, 23, 27 and 31), where as primary isotope effects are observed for

different normal modes (see Table 4.10).

Vibrational frequencies of anti-o-deutero-methyl-benzoate

For the deuterated species, the overall RMSD shows a similar behavior as in all-H Methyl

benzoate. Calculated harmonic and anharmonic diagonal frequencies are quite offset

from the reference frequencies and give high RMSD values of 137 cm−1 and 130 cm−1,

respectively. Non-correlated VSCF dual level frequency calculations based on MP2/aug-
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Figure 4.16: A comparison of vibrational frequencies of anti-o-deutero-methyl-benzoate
calculated at different levels of theory with respect to VSCF/DF-SCS calculation.The
labels indicate which level of theory was used for the calculations.
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Figure 4.17: A comparison of vibrational frequencies of anti-o-deutero-methyl-benzoate
calculated at different levels of theory with respect to VSCF/DF-SCS calculation for the
first 20 modes only. The labels indicate which level of theory was used for the calculations.
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Figure 4.18: A comparison of vibrational frequencies of anti-o-deutero-methyl-benzoate
calculated at different levels of theory with respect to VSCF/DF-SCS calculation for
modes 21 to 40 only. The labels indicate which level of theory was used for the calculations.
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Figure 4.19: A comparison of vibrational frequencies of anti-o-deutero-methyl-benzoate
calculated at different levels of theory with respect to VSCF/DF-SCS calculation for
modes 41 to 48 only. The labels indicate which level of theory was used for the calculations.
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cc-pVTZ diagonal and PM3 pair potentials also deviate considerably from the reference

frequencies (RMSD = 76 cm−1). The non-correlated VSCF frequencies employing DF-

MP2/cc-pVDZ pair and DF-MP2/aug-cc-pVTZ diagonal potentials show good agreement

with the reference frequencies and yield a very low RMSD of 14 cm−1, for all 48 modes

(see Table B.2). Figs. 4.16, 4.17, 4.18 and 4.19 depict the general features of the different

computational methods for the deuterated Methyl benzoate and Table B.2 presents the

vibrational frequencies for the anti-o-deutero-methyl-benzoate. Dual level frequency cal-

culation employing DF-MP2/aug-cc-pVTZ diagonal potentials and PM3 pair potentials

for all 40 low frequency modes are not reliable, but for the high frequency modes it yields

quite reasonable results. The harmonic and the diagonal anharmonic frequencies are also

too high in the low frequency region as well as the high frequency region. For the low

frequency modes (40 modes) the non-correlated VSCF employing DF-MP2/aug-cc-pVTZ

diagonal and DF-MP2/cc-pVDZ pair potentials are in good agreement with the reference

frequencies, yielding a RMSD of 13 cm−1. This level of computation is also efficient in

the high frequency region and yields a RMSD for the 8 C–H stretch vibrational modes of

17 cm−1.

C–D band

C–H stretch vibrations are very localized in the region 2850–3100 cm−1. Upon isotopic

substitution of a hydrogen by deuterium, the respective frequency is lowered by the several

hundred wave numbers. In biological systems the C–D stretch frequency is an excellent

structural probe since it is usually spectrally isolated even in the spectrum of large pro-

teins.

In Methyl benzoate, the study of the ortho C–H stretch vibrational mode and its

coupling with other modes, in particular, with the C=O stretching mode, is an important

model for similar (C=O to β-hydrogen) couplings in peptides. Computationally however,

the study of this vibrational mode is not straightforward. Lower level computational

methods predict this vibrational frequency very poorly. Also, the experimental vibrational

frequency associated with the C–D stretching mode in the deuterium substituted Methyl

benzoate has not yet been reported.
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Figure 4.20: 1D IR experimental spectrum of deuterated Methyl benzoate. [165]
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The harmonic C–D vibrational frequencies at DF-MP2/aug-cc-pVTZ level are rather

large for the two possible conformers, at 2384 and 2392 cm−1 for the syn- and anti-o-

DMB, respectively. The harmonic analysis at SCS/aug-cc-pVTZ level also predicts similar

results. When the 1D PES is generated by extrapolating the HF energy by the exponential

extrapolation and the correlation energy by the X5 extrapolation, the harmonic frequency

calculation yields slightly lower C–D frequencies, of 2381 cm−1 and 2389 cm−1 for the syn-

and anti-o-DMB, respectively. The anharmonic diagonal frequencies at DF-MP2/aug-cc-

pVTZ level are lower them by about 70 cm−1 from the harmonic frequency.

It is noteworthy that the C–D stretching frequency is significantly improved by using

the pair potentials calculated at DF-MP2/cc-pVDZ level. The non-correlated dual level

VSCF method yields C–D vibrational frequencies of 2171 cm−1 and 2161 cm−1, for the

syn- and anti-isomer, respectively. The VC-MP2 at DF-MP2/cc-pVDZ level yields 2194

and 2185 cm−1 for these same isomers.

An interesting result is observed when the dual level calculations are performed with

systematically improved diagonal PES for the C–D stretch vibrational mode. With the

improved basis set (for all atoms same basis sets are used) for the diagonal PES, the

C–D anharmonic vibrational frequency exhibits a red shift. The frequency change is

rather large for the DZ to TZ basis change, and it converges quickly for larger basis sets.

For example, when the diagonal potential for C–D (in anti-o-DMB) vibrational mode is

calculated with augmented basis sets, a 32 cm−1 frequency shift is found going from AVDZ

to AVTZ. On the other hand, a basis set improvement from AVTZ to AVQZ shows just

1 cm−1 frequency shift (see Table 4.3). When the 1D PES is generated by extrapolating

the total energy (the HF energy by exponential extrapolation and correlation energy by

the X5 extrapolation), the C–D frequency is lowered by 4 cm−1. The C–D shows also a

red shift when highly correlated methods are used. A non-correlated VSCF calculation

where the diagonal potential for the C–D vibrational mode is calculated at the DF-L-

CCSD(T)/cc-pVTZ level, yields C–D frequencies of 2161 cm−1 and 2171 cm−1 for the

syn- and anti-o-DMB respectively. When the DF-L-CCSD(T) calculation is performed

using larger basis sets (cc-pVQZ) only for the deuterium and the directly connected carbon

(for all other atoms cc-pVTZ basis are used), the frequency is lowered further by 5 cm−1

with respect to the DF-L-CCSD(T)/cc-pVTZ result (see Table 4.3).

A detailed analysis shows that only a few modes are coupled with the C–D stretch

vibrational mode. Table 4.4 shows the coupling effect of different modes on the C–D

stretch vibrational mode. It is observed that modes 17 and 19 which correspond to the
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Table 4.3: The C–D vibrational frequency for anti-o-deutero-methyl-benzoate. DF-
MP2/cc-pVDZ diagonal and the pair potentials are used for all modes. The diagonal
potential for the C–D stretch vibrational mode alone replaced by the C–D stretch PES
calculated at different level of theory and employing different size of basis sets. Selected
PM3 triple points are (i=17, j, k=41, where j = 12, 13, 14, 15, 16, 18, 20, 23) are also
used for triple level of computation.

isotope Method Basis Diagonal SCF V-MP2 VC-MP2
MP2 DZ 2367 2233 2243 2247

syn MP2 TZ 2336 2187 2210 2210
o-DMB MP2 ATZ 2198 2180 2202 2201

CCSD(T) TZ 2308 2161 2185 2184
MP2 DZ 2374 2242 2257 2257
MP2 TZ 2343 2196 2220 2219
MP2 QZ 2338 2190 2214 2214
MP2 ADZ 2359 2221 2239 2239

anti MP2 ATZ 2235 2189 2212 2212
o-DMB MP2 AQZ 2335 2188 2212 2211

Ext AVXZ 2331 2183 2208 2207
CCSD(T) TZ 2315 2171 2194 2194
CCSD(T) T/QZ 2310 2166 2190 2189
PM3 selected triple 2172 2197 2197

C–D bending modes, are strongly coupled with the C–D stretching mode. Also some

other modes like 12, 13, 14, 15, 16, 18, 21, 24, have some weak coupling with the C–D

stretch vibrational mode (see Table 4.4). All these modes are involved with some kind

of C–D bending motions (see Table 4.10). All other modes have negligible influence on

the C–D stretching mode. It is therefore to be expected that higher level calculations

for these selected coupling potentials will further improve the result for the C–D stretch

vibrational frequency.

One might expect that higher order terms in the many-body expansion of the PES

have a significant influence on the vibrational frequency of the anharmonic system. A

recent analysis27 shows though that only those triple couplings contribute most to the

anharmonic frequencies which involve modes that also exhibit large mutual pair-couplings.

The PM3 triple coupling potentials were used for such an analysis. Selected PM3 level

triple couplings were added to the DF-MP2/cc-pVDZ pair coupling. The lowers the C–

D stretching frequency negligibly (see Table 4.5) indicating a minor influence of triple

couplings for this particular mode.
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Table 4.4: Strongly coupled modes with C–D vibrational mode for anti-o-deutero-methyl-
benzoate. Although the frequency differ a little amount, but the qualitative result does
not depend upon the isotopomers.

Coupled modes SCF V-MP2 VC-MP2
all decoupled 2316.40 2316.44 2316.44
17 2287.35 2295.99 2295.85
19 2294.76 2294.72 2294.72
17,19 2265.62 2274.69 2274.52
12,17,19 2243.13 2258.98 2258.71
12,14,17,19 2232.27 2249.85 2249.54
12,14,15,17,19 2226.44 2244.31 2243.99
12,14,15,17,19,21 2219.96 2238.80 2238.46
12,14,15,17,19,21,24 2215.64 2234.14 2233.79
12,13,14,15,17,19,21,24 2211.43 2230.34 2229.98
12,13,14,15,16,17,19,21,24 2204.51 2224.82 2224.43
12,13,14,15,16,17,18,19,21,24 2199.23 2220.17 2219.76
8,12,13,14,15,16,17,18,19,21,24 2192.27 2214.07 2213.63
7,8,12,13,14,15,16,17,18,19,21,24 2187.93 2209.99 2209.54
7,8,12,13,14,15,16,17,18,19,21,24,30 2183.82 2205.96 2205.49
7,8,9,12,13,14,15,16,17,18,19,21,24,30 2180.06 2202.65 2202.16

Table 4.5: Strongly coupled PM3 triple contributions for C–D vibrational mode of anti-
o-deutero-methyl-benzoate. Although the frequency differ a little amount, but the quali-
tative result does not depend upon the isotopomers.

Coupled modes SCF V-MP2 VC-MP2
all decoupled 2003.2 2038.9 2038.3

17,j,40 19 2167.98 2192.07 2191.50
17,j,40 12,19 2168.40 2192.41 2191.84
17,j,40 12,14,19 2168.01 2192.01 2191.44
17,j,40 12,14,15,19 2172.64 2196.65 2196.09
17,j,40 12,14,15,19,21 2172.16 2196.17 2195.60
17,j,40 12,14,15,19,21,24 2173.87 2198.86 2198.29
17,j,40 12,13,14,15,19,21,24 2173.06 2198.59 2198.02
17,j,40 12,13,14,15,16,19,21,24 2172.46 2198.02 2197.44
17,j,40 12,13,14,15,16,18,19,21,24 2171.63 2197.20 2196.62

There are two strong peaks observed in the linear IR absorption spectra (see Fig. 4.20)

which are equally separated from the calculated C–D stretch frequency. It seems that the
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C–D stretch frequency mode is coupled with some low vibrational modes and thus it is

shifted equally in both the directions and appears as two peaks. Vibrational CI calculation

may be necessary to describe this feature.

C=O band
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2.4998 2.3966

Figure 4.21: Possibility to form five member rings between ortho hydrogen of the phenyl
ring and the ester group. Bond lengths are given in Å and bond angles in degree.

Table 4.6: Anharmonic vibrational frequency for the C=O stretch mode calculated at dual
level VSCF method with DF-L-CCSD(T)/cc-pVTZ diagonal and DF-MP2/cc-pVDZ pair
potentials.

isotope SCF V-MP2 VC-MP2 Experimental
syn-o-DMB 1724.5 1724.4 1724.5
anti-o-DMB 1724.3 1724.1 1724.1 1724

MB 1725.6 1727.2 1727.2

Due to the structural arrangement, there is a possibility to form a strained five mem-

bered ring between the ester and the phenyl ring, which may induce an additional coupling

between the C=O and the C–D band. The possible structure is shown in Fig. 4.21. Both

the oxygen atoms in the ester group may take part in five membered rings along with the

two ortho hydrogens of the phenyl ring. The calculated possible non-bounded distances

are 2.499 Å and 2.397 Å for the syn- and anti- positions, respectively, which are much

larger than the required bond length to form a true five membered ring. Therefore, iso-

topic substitution at the ortho position in the phenyl ring does not have any influence

on the C=O vibrational frequency. The C=O vibrational frequency remains largely un-

changed for both syn- and anti-o-DMB. Calculated anharmonic frequencies in dual level

calculations yield the same frequency of 1724 cm−1 for both syn- and anti- conformers,

which is in agreements with the experimental results.
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4.4.4 Anharmonicity observed in the VSCF calculations

Table 4.7: Diagonal anharmonicity for vibrational frequencies of Methyl benzoate and its
two isotopomers are calculated at the non-correlated VSCF method.

Mode Isotopomer Mode Isotopomer
No. MB syn- anti- No. MB syn- anti-
1 17.67 18.98 17.57 25 13.86 13.19 12.17
2 17.45 16.79 16.67 26 9.72 5.72 1.34
3 83.80 78.25 79.38 27 10.37 10.25 9.97
4 4.16 4.14 3.83 28 22.96 22.88 19.70
5 9.05 8.95 8.80 29 5.65 6.16 5.88
6 3.78 3.77 3.73 30 -3.19 -8.34 -6.33
7 -5.71 -2.53 -2.24 31 4.96 7.17 4.45
8 3.66 4.42 3.56 32 1.51 10.88 9.98
9 5.20 5.81 5.30 33 5.02 4.20 6.72
10 0.29 0.73 0.79 34 3.81 6.24 5.20
11 1.94 1.92 1.92 35 1.17 0.93 1.22
12 -0.47 -0.92 -1.31 36 -10.23 -10.05 -10.13
13 21.11 21.71 19.16 37 2.92 3.39 2.37
14 15.04 14.94 15.46 38 -2.05 -1.32 -1.85
15 1.32 -0.12 0.30 39 0.04 0.93 0.26
16 7.82 7.00 5.51 40 -6.85 -7.09 -6.60
17 25.71 4.03 3.69 41 -120.76 -28.66 -29.07
18 1.58 9.65 9.94 42 -278.75 -123.61 -123.67
19 11.41 12.56 15.04 43 -155.03 -214.25 -216.96
20 3.32 -5.11 -5.94 44 -198.70 -170.12 -124.85
21 26.03 29.62 24.43 45 -88.52 -114.61 -68.48
22 5.73 1.67 3.41 46 -102.29 -90.28 -87.35
23 21.06 20.36 21.55 47 -88.28 -87.37 -85.05
24 -2.10 0.10 4.42 48 -67.71 -70.31 -94.47

The diagonal anharmonicities in frequency calculations are presented in Table 4.7

where mode numbers are based on the harmonic normal mode analysis. The diagonal

anharmonicities are very high for the high frequency C–H stretch vibrational modes, up

to a few hundred wavenumbers. Other than the C–H stretch vibrational modes, diagonal

anharmonicities are rather small (< 10 cm−1). The calculated anharmonicities excied

the value of 10 cm−1 only for some low frequency modes. These vibrational modes are

mostly involved with C–H bending motions. The assignment of these modes is presented

in Table 4.8.
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Figure 4.22: Percentage of anharmonicity vs. the mode number for the fundamental
transitions of Methyl benzoate

The relative anharmonicities with the mode numbers are plotted in Fig. 4.22. For the

first three modes the calculated vibrational frequencies are not reliable and for that reason

anharmonicities are also unreliable and omitted from the plot. As seen in the Fig. 4.22,

the relative anharmonicities are very high for C–H stretch vibrational modes. Especially

mode 42, which is unexpectedly red shifted, shows maximum percentage of anharmonicity

> 10%. For most of the low frequency modes anharmonicities are rather small.

Off-diagonal anharmonicity

Off-diagonal anharmonicities calculated (see Section 4.2.6) for the few spectroscopically

most important modes are presented in Table. 4.9. Calculated off-diagonal anharmonici-

ties (see Fig. 4.5) for the C=O vs. C–D coupling modes for both the isotopomers are less

than a wave number. Such a negligibly small off-diagonal anharmonicity also indicates
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Table 4.8: The modes for which diagonal anharmonicities are observed larger than 10
cm−1.

Mode Isotopomer Assignment
MB syn-o-DMB anti-o-DMB

13 754 708 704 phenyl opd O=C-O opb
14 813 829 834 phenyl opd O=C-O opb
17 891 phenyl opr
18 978 759 771 phenyl ipd, ester ipd
19 979 973 973 phenyl ipd
21 986 984 984 phenyl opd, P-CH opb
23 958 956 980 phenyl opd, P-CH opb
25 1167 1171 1173 pCH ipb
26 1182 1180 1181 CH3 sopb, C-O-C opb
27 1183 1149 1141 pCH sipb
28 979 969 984 pCH opb
36 1485 1485 1485 CH3 sb

Symbols: opr = out-of-plane rotation, ipb = in-plane bending, opb = out-of-plane bend-
ing, ipd = in-plane deformation, opd = out-of-plane deformation, sb = symmetric bend-
ing, sipb = symmetric in plane bending, pCH = phenyl CH bond.

Table 4.9: Off diagonal anharmonicities for the C=O and C–D coupling modes calculated
with non-correlated VSCF method with DF-MP2/AVTZ diagonal and DF-MP2/VDZ
pair potentials.

Coupling level ωa ωb ω′ ∆ω
SCF 1771.03 2233.49 4003.846 0.67

CO CD7 V-MP2 1768.81 2242.75 4012.076 -0.52
VC-MP2 1768.81 2246.59 4015.142 0.36
SCF 1770.62 2242.33 4012.771 0.18

CO CD11 V-MP2 1768.75 2257.22 4025.613 0.36
VC-MP2 1768.75 2257.22 4025.654 0.32

that there is negligible coupling between the C=O and the C–D vibrational modes.

4.4.5 Assignment of vibrational frequencies

Table 4.10 represents a complete assignment of the vibrational frequencies of Methyl

benzoate along with the deuterated species. The normal mode along with the mode

number 17 and 20 in deuterated species are completely different from the non-deuterated
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species. Frequencies for these two modes are kept blank for deuterated species in the

Table 4.10.

Table 4.10: Assignment of the vibrational frequencies of Methyl-Benzoate and its two
deutorated species.

Mode Isotopomer Assignment
MB syn-o-DMB anti-o-DMB

1 112 111 111 Phenyl-ester opr
2 196 197 198 Phenyl opb, ester opb
3 342 344 343 CH3 asb
4 179 177 177 Phenyl-ester ipr
5 242 243 242 Phenyl-ester opb
6 340 339 340 Phenyl-Ester ipr
7 363 361 361 O=C-O ipb, phenyl ipb
8 421 402 403 phenyl opb
9 468 458 461 phenyl opb, O=C-O-C opb
10 477 474 471 phenyl ipr, O=C-O-C ipr
11 617 612 612 phenyl ipd
12 681 678 680 phenyl ipd O=C-O ipb
13 754 708 704 phenyl opd O=C-O opb
14 813 829 834 phenyl opd O=C-O opb
15 823 822 821 O=C-O ipb, phenyl, CH3 ipb
16 731 734 725 phenyl opd
17 891 phenyl opr
18 978 759 771 phenyl ipd, ester ipd
19 979 973 973 phenyl ipd
20 1035 phenyl ipd, P-CH sipb
21 986 984 984 phenyl opd, P-CH opb
22 1096 1047 1048 phenyl ipd, P-CH ipb
23 958 956 980 phenyl opd, P-CH opb
24 1126 1112 1121 OCH3 r, O=C-O ipb

continued to next page
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continued from previous page
Mode Isotopomer Assignment

MB syn-o-DMB anti-o-DMB
25 1167 1171 1173 pCH ipb
26 1182 1180 1181 CH3 sopb, C-O-C opb
27 1183 1149 1141 pCH sipb
28 979 969 984 pCH opb
29 1214 1212 1213 OCH3 r, O=C s, C-O s
30 1303 1298 1307 OCO ipb pCH ipb
31 1320 1268 1259 pCH ipb
32 1447 1444 1447 CH3 asb
33 1342 1348 1345 pCC s
34 1452 1445 1455 pCC s
35 1453 1454 1453 CH3 wagging
36 1485 1485 1485 CH3 sb
37 1498 1480 1483 pCC s, pCH ipb
38 1606 1602 1600 phenyl ipd-sy
39 1603 1598 1604 phenyl ipd-sy
40 1725 1724 1724 C=O s
41 2974 2974 2973 mCH ss
42 2560 2561 2559 mCH as
43 2855 2809 2889 pCH as
44 2834 2171 2971 pCH as
45 2832 2858 2832 mCH ss
46 2963 2831 2957 pCH as
47 3039 3017 3065 pCH as
48 2985 2989 2161 pCH as

Symbols: R = rotation, r = rocking, ipr = in-plane rotation, opr = out-of-plane rotation,

ipb = in-plane bending, opb = out-of-plane bending, ipd = in-plane deformation, opb

= out-of-plane deformation, as = asymmetric stretch, ss = symmetric stretch, asb =

asymmetric bending, sb = symmetric bending, sipb = symmetric in plane bending, mCH

= methyl CH bond, pCH = phenyl CH bond, sy = symmetric.





Chapter 5

Conclusions

The purpose of the present work is to improve the efficiency of the computational meth-

ods to explore the molecular properties more efficiently and accurately and then use the

improved computational method to study a model system. The exploration of dynamical

properties of molecules depends upon the accurate calculation of the PES along different

vibrational normal modes. In the first part of the present work we developed a com-

putational technique to generate the PES more accurately and more efficiently with a

reasonable expense.

We have performed a systematic study of the convergence behavior of the MP2 and

CCSD(T) correlation energies with basis set size. The proposed X5 method proved to

be an efficient method to estimate the basis set limit correlation energy from the DZ-TZ

basis sets, which is much better in accuracy than the 5Z basis set result. It reduces the

computational cost by two to three orders of magnitude to achieve this accuracy, which

is a remarkable achievement for the high quality ab initio calculation. The X5 method

also proved its efficiency to calculate basis set limit correlation energy for larger molecules

than small molecules and atoms.

The proposed extrapolation method (X5 method) needs two model parameters (A1

and A2) to estimate the basis set limit correlation energy which show an exponential

correlation. The global parameter based X5 method is specific to the computational

method as well as family of basis set. The A1 vs. A2 fitting curves for a set of atoms and

molecules consisting the first and second row elements differ substantially between MP2

and CCSD(T). This indicates that mixing of data from different levels of computation

affects the performance of the X5 method negatively and that parameters optimized for

one level can not be used for the other. It is also necessary to optimize the exponential

fitting parameters separately for different families of basis sets as the correlation of A1

97
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and A2 differs substantially.

The X5 method gradually under-estimates the basis set limit energy as the number

of hydrogen atoms increases in the molecule. This has been investigated systematically

for carbon and nitrogen based molecules with different proportions of hydrogen atoms.

Although the A2 parameter for the hydrogen molecule is quite off-set from the other atoms

and molecules and its absence in the optimization of correlation parameters deteriorates

the performance of the X5 method for hydrogen dominated molecules.

The PES generation has been carried out with the X5 method for several molecules

for their different rotational and vibrational motions, and in particular, for all 30 normal

modes of the NMA molecule. An excellent performance of the X5 method has been

observed with the global parameter set, but it always includes an intrinsic error in the

PES. It has been observed that the A1 and A2 parameters are slowly varying parameters

w.r.t. internal coordinate of the molecule and to a good approximation they are constant

within the system for small deviations in the molecular geometry. The constant A1 and

A2 parameters calculated at the equilibrium geometry (A0
1 and A0

2) may be used in the

extrapolation of correlation energies with the X5 method for all other configurations in the

PES. This approach yields an improved PES just performing DZ basis set calculations.

The local parameter based X5 extrapolation removes the intrinsic error of the global

parameter method and nearly reaches to the spectroscopic accuracy (< 0.5 mEh).

The convergence behavior of the correlation part of the gradient and Hessian have

been analyzed with the MP2 and CCSD(T) methods for the water molecule. A rather

small change has been observed in the correlation part of the gradient and Hessian with

the basis set size. It appears that basis set extrapolation is not necessary but a higher

correlation method may provide more accurate gradient and Hessian. This accurate gra-

dient and Hessian can be used to generate a smooth PES from non-uniform energy points

by modified Shepard interpolation.

Such highly accurate PESs have been used in the harmonic and anharmonic vibrational

analysis of Methyl benzoate and its sys- and anti-ortho-deutero isotopomers.

It has been observed that harmonic frequencies are a very poor approximation to assign

the vibrational frequencies of Methyl benzoate and its two isotopomers. Anharmonic

diagonal frequencies show some improvements but were still not sufficient to reach a

reasonable assignment. The fundamental transition frequencies calculated with the VSCF

method from a pair potential energy surface expansion seem promising, especially when

the 2D PES are calculated at a sufficiently high ab initio level. The success of the VSCF
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frequency calculations depends upon the accuracy of the PES, in particular near the

equilibrium where denser grid points are required. Dual level computations in which

the diagonal anharmonic potential along a single vibrational mode is calculated using

higher level ab initio methods than for coupling potentials provide an efficient route to

the computation of the PES expansion in the VSCF framework. Such a dual level VSCF

calculation with DF-L-CCSD(T)/cc-pVTZ diagonal and DF-MP2/cc-pVDZ pair coupling

potentials provided a nearly perfect agreement of the C=O vibrational frequency with

respect to the experimental result.

Carrying out a systematic study, we have shown that not all pair couplings are nec-

essary to describe a particular vibrational band. Using only 14 coupling potentials for

the C–D stretch vibrational mode the computed frequency is in good agreement with the

result based on the full set of 1128 couplings. Such a reduced coupling potential may

provide a novel method to study even larger systems with reasonable computational cost.

Non-uniform IMLS interpolation has been successfully used to reduce the computational

cost for potential energy surface generation even further.

An unexpected red shift has been observed for a C–H stretch vibrational mode when

the VSCF calculation has been performed with pair coupling potentials. The inability to

find this mode in harmonic and diagonal anharmonic calculations indicates that this is

a concerted anharmonic effect and pair and higher order couplings are in fact necessary

to understand this feature. Our investigations for the C–H(D) stretch vibrational modes

with selected triple couplings at PM3 level do not improve the results much over the

ab initio pair coupling calculations. This could indicate that either PM3 triple coupling

potentials are in sufficient or that higher order coupling effects are negligible in this model.

The correct assignment of the C–D stretch frequency still poses a problem to both the

theoretician and experimentalist. The calculated C–D stretch frequency just sits between

the two strong peaks observed in the linear IR absorption spectra at the expected C–D

frequency region. It seems that the C–D stretch frequency mode is coupled with some low

vibrational frequency modes and thus it is shifted equally in both directions and appears

as two peaks. Vibrational CI calculation may necessary to describe this feature. Still now,

the best possible calculation identifies the syn- and anti- ortho deutero Methyl benzoate

by a frequency difference of 10 cm−1 for the C–D stretch vibrational mode.

The diagonal and the off-diagonal anharmonicities have been calculated by non-correlated

VSCF method. Other than for a few low frequency modes, which are involved in the C–

H bending modes, diagonal anharmonicities are very small. The negligible off-diagonal
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anharmonicity for C=O and C–D coupling modes indicates that these modes are mostly

decoupled.

Outlook

The proposed extrapolation method (X5 method) accounts up to the fifth oder term from

the Schwartz formula. Inclusion of higher order terms may improve the efficiency of the

extrapolation. Although A2 is a slowly varying parameter for a small perturbed system,

further improvements on the PES calculations are made feasible by interpolation of the

A2 parameter if there is any simple relation between the A2 and the geometry of the

molecule. Similarly better gradient and Hessian calculations may also be possible by

basis set extrapolation using interpolated A2 parameter.

The description of strongly anharmonic modes and especially modes exhibiting large

amplitude motions still poses a problem in the VSCF framework. These are mainly C–

H stretching modes of the phenyl ring and methyl group, C–C stretching modes in the

phenyl ring, and some other low frequency modes. Diagonal potentials at a higher level

of theory and inclusion of selected triple coupling potentials may solve the problem. It

may be possible to describe the C–D band much better by performing the CI calculation

for the C–D stretch vibration mode.



Appendix A

A.1 Calculation of A1 and A2

After obtaining Ecor
∞ from Eq. (3.48), only two unknown parameters remain in Eq. (3.49):

A1 and A2. We can calculate them with two consecutive basis sets. Let the cardinal

number of two consecutive basis sets be X and Y, then Eq. (3.49) becomes

Ecor
X − Ecor

∞
Ecor

∞
= A1X

−3 + A1A2X
−4 (A.1.1)

Ecor
Y − Ecor

∞
Ecor

∞
= A1Y

−3 + A1A2Y
−4 (A.1.2)

Multiplying eq.(A.1.1) by Y −4 and eq.(A.1.2) by X−4 we get,

Ecor
X − Ecor

∞
Ecor

∞
Y −4 = A1X

−3Y −4 + A1A2X
−4Y −4

Ecor
Y −Ecor

∞
Ecor

∞
X−4 = A1X

−4Y −3 + A1A2X
−4Y −4

therefore,

A1 =
EXdY

−4 −EY dX
−4

X−3Y −4 −X−4Y −3
(A.1.3)

where,

EXd =
Ecor

X − Ecor
∞

Ecor
∞

EY d =
Ecor

Y −Ecor
∞

Ecor
∞

A2 =
EXd −A1X

−3

A1X−4
(A.1.4)
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A.2 The gradient and Hessian extrapolation with the

X5 method

For the two basis sets of cardinal number X and Y , the X5 method can be written as,

EX = E∞{1 + A1X
−3(1 + A2X

−1)}, (A.2.5)

EY = E∞{1 + A1Y
−3(1 + A2Y

−1)}. (A.2.6)

Now eliminating A1 from above two equations we get,

EX − E∞

EY −E∞
=
X−3(1 + A2X

−1)

Y −3(1 + A2Y −1)
.

∴ EXY
−3(1+A2Y

−1)−E∞Y
−3(1+A2Y

−1) = EYX
−3(1+A2X

−1)−E∞X
−3(1+A2X

−1)

∴ E∞{X−3(1+A2X
−1)−Y −3(1+A2Y

−1)} = EYX
−3(1+A2X

−1)−EXY
−3(1+A2Y

−1)

∴ E∞ =
EYX

−3(1 + A2X
−1) − EXY

−3(1 + A2Y
−1)

X−3(1 + A2X−1) − Y −3(1 + A2Y −1)

∴ E∞ =
(EYX

−3 − EXY
−3) + A2(EYX

−4 − EXY
−4)

(X−3 − Y −3) + A2(X−4 − Y −4)
(A.2.7)

Differentiating both sides of Eq.-(A.2.7) with respect to the coordinate qi we get,

∂E∞

∂qi
=

∂EY

∂qi
X−3 − ∂EX

∂qi
Y −3 + ∂A2

∂qi
(EYX

−3 − EXY
−3) + A2(

∂EY

∂qi
X−4 − ∂EX

∂qi
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)

−
{(EYX

−3 − EXY
−3) + A2(EYX

−4 − EXY
−4)}∂A2

∂qi
(X−4 − Y −4)

{(X−3 − Y −3) + A2(X−4 − Y −4)}2
, (A.2.8)

since A2 is geometry dependent.
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Differentiating both side of Eq.-(A.2.8) again with respect to qj we get,

∂2E∞

∂qi∂qj
=

∂2EY

∂qi∂qj
X−3 − ∂2EX

∂qi∂qj
Y −3 + ∂2A2

∂qi∂qj
(EYX

−4 −EXY
−4) + ∂A2

∂qi
(∂EY

∂qj
X−4 − ∂EX

∂qj
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)

+

∂A2

∂qj
(∂EY

∂qi
X−4 − ∂EX

∂qi
Y −4) + A2(

∂2EY

∂qi∂qj
X−4 − ∂2EX

∂qi∂qj
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)

−
{∂EY

∂qi
X−3 − ∂EX

∂qi
Y −3 + ∂A2

∂qi
(EYX

−3 −EXY
−3) + A2(

∂EY

∂qi
X−4 − ∂EX

∂qi
Y −4)}∂A2

∂qj
(X−4 − Y −4)

{(X−3 − Y −3) + A2(X−4 − Y −4)}2

−
{∂EY

∂qj
X−3 − ∂EX

∂qj
Y −3 + ∂A2

∂qj
(EYX

−3 −EXY
−3) + A2(

∂EY

∂qj
X−4 − ∂EX

∂qj
Y −4)}∂A2

∂qi
(X−4 − Y −4)

{(X−3 − Y −3) + A2(X−4 − Y −4)}2

−
{(EYX

−3 − EXY
−3) + A2(EYX

−4 − EXY
−4)} ∂2A2

∂qi∂qj
(X−4 − Y −4)

{(X−3 − Y −3) + A2(X−4 − Y −4)}2

+
{(EYX

−3 − EXY
−3) + A2(EYX

−4 − EXY
−4)}∂A2

∂qi
(X−4 − Y −4)∂A2

∂qj
(X−4 − Y −4)

{(X−3 − Y −3) + A2(X−4 − Y −4)}3
(A.2.9)
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Since A2 is a slowly varying parameter with respect to the geometry, for a small

perturbation the first and second derivatives of A2 essentially become zero, and Eqs.-

(A.2.8) and (A.2.9) become,

∂E∞

∂qi
=

∂EY

∂qi
X−3 − ∂EX

∂qi
Y −3 + A2(

∂EY

∂qi
X−4 − ∂EX

∂qi
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)
, (A.2.10)

and

∂2E∞

∂qi∂qj
=

∂2EY

∂qi∂qj
X−3 − ∂2EX

∂qi∂qj
Y −3 + A2(

∂2EY

∂qi∂qj
X−4 − ∂2EX

∂qi∂qj
Y −4)

(X−3 − Y −3) + A2(X−4 − Y −4)
. (A.2.11)

Eqs.-(A.2.10) and (A.2.11) are the expression for the gradient and the Hessians at basis

set limit.



Appendix B

B.1 Convergence of diagonal frequency with grid size.

An appropriately grid size is crucial for the success of anharmonic frequency calculation,

spatially a dense energy points are required near the equilibrium configuration. A sys-

tematic study have been carried out with 6 points, 8 points and 12 points diagonal grid

(see Fig. 4.7). The improvement of frequency calculations are presented in Table B.1. A

significant frequency change is found going from 6 points grid to 8 points grid. On the

other hand when calculations are performed with 12 points grid a very small change in

frequency are observed. It indicates that 8 points grid which contain more points near

equilibrium (see Fig. 4.7) is sufficient for the reasonable description of the 1D PES in

anharmonic vibrational calculation.

Table B.1: Diagonal frequencies of Methyl benzoate with different grid size and PES
calculated at MP2/AVTZ level. For only 6 and 12 points grid the frequency differences
from 8 points grid are presented here.

Mode Methyl benzoate syn-o-DMB anti-o-DMB
8p 8p-6p 8p-12p 8p 8p-6p 8p-12p 8p 8p-6p 8p-12p

1 82 2.66 0.45 82 2.52 0.37 81 2.52 0.36
2 154 1.10 1.65 153 0.92 1.45 154 0.92 1.46
3 361 1.29 3.66 360 0.87 3.24 360 0.87 3.24
4 170 1.39 0.21 168 1.21 0.03 168 1.21 0.03
5 217 2.52 0.39 216 2.35 0.19 215 2.33 0.19
6 334 0.55 0.65 331 0.22 0.27 332 0.21 0.32
7 359 -0.15 0.49 356 -0.49 0.14 357 -0.50 0.14

continued to next page
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continued from previous page
Mode Methyl benzoate syn-o-DMB anti-o-DMB

8p 8p-6p 8p-12p 8p 8p-6p 8p-12p 8p 8p-6p 8p-12p
8 411 1.87 0.44 394 1.69 -0.00 394 1.59 -0.01
9 459 1.39 0.51 452 1.05 0.05 452 1.05 0.04

10 482 0.55 0.48 478 0.07 -0.01 475 0.08 -0.00
11 618 0.86 0.65 612 0.24 0.03 612 0.24 0.03
12 679 0.87 0.69 695 4.50 0.22 691 4.67 0.25
13 728 4.67 0.82 676 0.21 0.01 676 0.20 0.01
14 802 3.35 0.76 743 0.85 -0.04 734 0.62 -0.04
15 831 1.55 0.67 829 0.56 -0.12 827 0.58 -0.12
16 761 0.29 0.23 816 4.11 0.04 820 3.67 0.08
17 824 -62.16 1.34 858 -13.11 0.16 864 -16.08 0.09
18 1142 138.32 1.63 816 40.48 0.02 818 36.99 0.03
19 1057 44.68 1.08 1119 123.33 0.04 1105 107.31 0.04
20 1145 96.76 1.32 1053 49.42 0.41 1071 69.54 0.45
21 934 -59.24 1.01 874 -47.36 0.13 878 -54.24 0.26
22 1159 59.49 1.16 1159 96.59 0.17 1155 93.09 0.20
23 904 -57.57 0.95 927 -65.23 0.20 928 -54.88 0.08
24 1220 76.64 1.54 1181 56.12 0.14 1177 47.44 0.03
25 1150 -33.77 1.18 1194 31.38 0.11 1205 49.51 0.25
26 1032 -161.36 1.39 1153 -34.30 0.02 1151 -34.33 0.03
27 1178 -17.60 1.17 1029 -161.76 0.30 1031 -162.21 0.31
28 866 -118.46 0.57 884 -101.96 -0.18 878 -108.94 -0.25
29 1148 -76.90 1.92 1147 -77.77 0.79 1147 -78.13 0.76
30 1381 60.48 1.62 1246 -47.76 0.04 1257 -23.29 0.06
31 1287 -46.24 1.33 1419 97.36 0.28 1392 65.16 0.16
32 1322 -145.89 1.82 1327 -140.94 0.39 1327 -140.28 0.49
33 1333 -148.01 1.42 1426 -40.42 0.04 1362 -110.10 0.04
34 1458 -16.45 1.50 1340 -138.72 0.06 1418 -54.59 0.03
35 1351 -158.43 1.42 1349 -159.78 0.07 1349 -159.78 0.07
36 1338 -180.60 1.51 1518 15.54 0.03 1516 15.23 0.03
37 1529 10.10 1.56 1337 -181.61 0.18 1337 -181.95 0.18
38 1759 123.44 1.82 1752 119.97 0.04 1760 130.94 0.06
39 1755 120.81 1.89 1752 125.40 0.10 1748 118.62 0.17
40 1938 175.94 2.42 1937 175.00 0.51 1935 173.28 0.51
41 3040 -36.72 2.70 2196 -148.92 1.40 2205 -148.02 1.42
42 3171 -60.49 4.49 3037 -39.59 -0.28 3037 -39.49 -0.28

continued to next page
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continued from previous page
Mode Methyl benzoate syn-o-DMB anti-o-DMB

8p 8p-6p 8p-12p 8p 8p-6p 8p-12p 8p 8p-6p 8p-12p
43 3122 -77.38 5.18 3168 -63.71 1.27 3168 -63.71 1.27
44 3150 -85.34 3.43 3109 -85.87 2.18 3177 -54.66 0.64
45 3149 -55.45 5.86 3149 -70.08 1.16 3054 -134.99 0.70
46 3144 -84.94 3.33 3141 -62.75 2.71 3145 -59.56 2.73
47 3038 -164.40 2.88 3037 -161.14 -0.05 3145 -83.93 0.25
48 2944 -227.40 5.38 2942 -229.04 2.55 3003 -196.92 -0.27

B.2 Vibrational frequencies for anti-deutero-oDMB

Table B.2: Vibrational frequencies of anti-o-deutero-methyl-benzoate at DF-MP2/AVTZ
level. The RMSD calculated w.r.t. the non-correlated VSCF frequencies at SCS/cc-pVDZ
level.

Mode Harmonic Diagonal VSCF CC-VSCF Exact Observed
PM3 MP2 SCS [Ref. 157, 165]

1 51 81 145 112 99 111
2 112 154 177 197 171 198
3 185 360 365 339 343 343
4 165 168 169 177 174 177
5 206 215 233 242 238 242
6 330 332 325 339 336 340
7 357 357 355 364 364 361
8 387 394 401 402 401 403
9 447 452 471 461 457 461

10 475 475 475 472 471 471
11 612 612 612 610 609 612 629
12 672 691 743 702 684 704 686
13 676 676 683 679 677 680 713
14 728 734 748 725 685 725 855
15 828 827 818 821 817 821 820
16 801 820 862 832 841 834
17 873 864 860 852 848 857 864
18 727 818 835 770 773 771 782
19 998 1105 1106 974 959 973 965
20 1002 1071 1098 987 999 984 980
21 898 878 906 908 906 910
22 1061 1155 1159 1048 1042 1048 1047

continued to next page
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continued from previous page
Mode Harmonic Diagonal VSCF CC-VSCF Exact Observed

PM3 MP2 SCS [Ref. 157, 165]
23 963 928 971 975 985 980
24 1127 1177 1183 1119 1113 1121 1097
25 1154 1205 1204 1140 1132 1141 1161
26 1176 1151 1154 1171 1165 1173 1128
27 1185 1031 1072 1179 1173 1181 1177
28 960 878 915 982 997 984
29 1220 1147 1165 1207 1202 1213 1192
30 1277 1257 1257 1255 1246 1259 1295
31 1324 1392 1364 1306 1301 1307 1256
32 1471 1327 1323 1434 1431 1345 1310
33 1470 1362 1380 1441 1428 1447 1435
34 1471 1418 1428 1449 1452 1455
35 1509 1349 1318 1446 1442 1453 1445
36 1500 1516 1517 1478 1481 1483
37 1519 1337 1321 1479 1476 1485 1474
38 1627 1760 1751 1598 1595 1600 1585
39 1629 1748 1740 1602 1596 1604 1594
40 1767 1935 1917 1771 1769 1777 1724
41 3092 3037 2906 2980 3034 2973 2940
42 3183 3168 2784 2579 2499 2559 2542
43 3207 3177 2889 2902 2874 2889 2855
44 3214 3054 2907 2981 2942 2971 2952
45 3217 3145 2866 2853 2698 2832 2845
46 3222 3145 2913 2968 2929 2957 2998
47 3226 3003 2934 3072 3078 3065 3064
48 2392 2205 2174 2242 2257 2166 2118

RMSD 137 130 76 14 28
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