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Abstract

In this article, we propose a new linear multiple-input multiple-output (MIMO) system with the receiver matched to the
transmit filter plus channel, leading to a linear transmission system which diagonalizes the MIMO channel into its eigenspace
similar to joint transmit and receive filter optimization (joint TX/RX optimization). The proposed transmission scheme is
shown to achieve comparable bit-error performance to joint TX/RX optimization in the case of adaptive modulation. Fur-
thermore, the proposed scheme outperforms joint TX/RX optimization in terms of complexity: if neither the possibility of
feedback, nor sufficient computational resources at both sides of the link are available, the joint TX/RX optimization ap-
proach is not applicable contrary to the proposed approach. We investigate different optimization criteria well known from
linear precoder design and joint TX/RX optimization: maximizing the signal-to-noise ratio, removing the interference, and
minimizing the mean square error. Closed-form solutions are derived for these cases.
� 2005 Elsevier GmbH. All rights reserved.
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1. Introduction

Contrary to the approaches of receive-only [1] and
transmit-only optimization [2,3], where only one side of the
communication link is optimized with respect to a specific
optimization criterion while the other side of the communi-
cation link is assumed fixed and a priori known, it is also
possible to assume a cooperative design of the signal pro-
cessing at the transmitter and the receiver. This optimization
approach is denoted as joint transmit and receiver filter
(TX/RX) optimization. Joint TX/RX optimization is a well
researched and understood approach to deal with multiple-
input multiple-output (MIMO) systems (e.g. [4–10]) where
the receive and transmit filters result from one optimization,
as described in Section 4.
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A big disadvantage of the joint TX/RX optimization is the
required computational complexity at both sides of the com-
munication link or alternatively, a large amount of feedback.
Since the design of the linear precoder as well as the linear
receiver evolve from one joint optimization approach, either
both sides of the communication link have to perform the
optimization, or the result of the optimization is computed
at one side of the communication link for the price of having
to transmit the optimization result to the other side of the
communication link. If neither the possibility of feedback,
nor sufficient computational resources at both sides of the
link are available, the joint TX/RX optimization approach is
not applicable.

To overcome this dilemma we propose the new semi-joint
TX/RX optimization approach, where one side of the com-
munication link is simplified with respect to the computa-
tional complexity, i.e. a restricted receiver structure. In this
article, we will derive a MIMO system where we assume
a simplified receiver structure such, that the receiver is a
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matched-filter, however, not only to the channel but also to
the precoding filter.1 This assumption is advantageous in
two ways.

First, we end up with a decomposition of the channel
into its eigenmodes similar to joint TX/RX optimization.
This diagonalization of the channel provides good conditions
for spatial multiplexing: due to the diagonalization of the
MIMO channel there is no inter-stream interference between
parallel transmitted data streams.

Second, the pilot symbols necessary for channel estima-
tion at the receiver can be transmitted time multiplexed with
the data and do not have to bypass the precoding filter. There-
fore, the receiver estimates the combination of the precod-
ing filter and the channel together with the imperfections
of the transmission chain (e.g. erroneous synchronization or
calibration).

Our contributions are as follows:

• We obtain closed-form solutions for three semi-joint
TX/RX optimizations.

• We highlight that the TX-only (likewise, the RX-only)
approaches clearly outperform the joint and semi-joint
TX/RX optimizations in terms of BER for systems with
fixed modulation alphabet.

• We perform a thorough comparison of the joint and
semi-joint TX/RX optimizations with adaptive modula-
tion for the cases of instantaneous and long-term chan-
nel knowledge.

2. Overview and notation

The article is organized as follows: the system model of
the considered linear MIMO transmission chain is explained
in Section 3. Section 4 reviews the derivation and solution
of the joint TX/RX optimizations. The approach of semi-
joint TX/RX optimization is described in Section 5. Both
approaches, joint TX/RX optimization and semi-joint opti-
mization, are compared in Section 6 where also an exten-
sion towards adaptive modulation and exploitation of long-
term properties of the channel is performed. A conclusion
is drawn in Section 7.

The following notation is used: vectors and matrices ap-
pear as bold lower-case and bold capital letters, respectively.
With this notation 1 denotes the identity matrix. Commonly
used operators are: E {·} denotes the expectation operator,
tr(.) sums up the diagonal elements of its argument, ‖.‖2 is
the Euclidean norm, (·)∗ denotes complex conjugate, (·)T

denotes transposed and (·)H conjugate transposed, ⊗ is the
Kronecker product, and vec(·) performs a vectorization of
the argument by stacking the columns.

1 Note, that other receiver concepts, like the zero-forcing or Wiener
filter approach, also diagonalize the MIMO channel. However, since the
MF already is sufficient to diagonalize the channel we choose it due to
its simplicity with respect to the computational complexity.
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Fig. 1. Block diagram for linear TX and RX processing.

3. MIMO system model

The data s[k] ∈ CD are filtered by the precoder F ∈
CMT×D at the base station (BS) to form the transmit signal.
In the following, we assume that all transmit filters use the
whole available transmit power Pt , i.e.

E
{
‖Fs[k]‖2

2

}
= Pt .

After propagation over the frequency flat single-user MIMO
channel H ∈ CMR×MT with MT transmit and MR receive
antenna elements and perturbation by the Gaussian noise
n[k], the received signal is passed through the linear receive
filter G ∈ CD×MR leading to the estimate (cf. Fig. 1)

ŝ[k] = GHFs[k] + Gn[k] ∈ CD . (1)

The noise is complex Gaussian distributed with zero mean
and spatial covariance matrix Rn which computes as

Rn = E
{

n[k]nH[k]
}

∈ CMR×MR .

The corresponding spatial covariance matrix of the signal is
denoted as Rs ∈ CD×D . In the following we will restrict
the signal covariance matrix to Rs =�2

s 1. The derivation for
general Rs can be found in [11]. Furthermore, we restrict
ourselves to transmitting a constant data rate of b bits per
channel use over D independent data streams with average
transmit power Pt . Furthermore, we restrict to MIMO sys-
tems with D=min(MT, MR). For the general case, see [11].

All linear precoders and receivers in the remainder of this
paper can be expressed as a function of the eigensystem of
the following matrix product:

RH = HHR−1
n H = [V Ṽ]

(
� 0
0 �̃

)
[V Ṽ]H, (2)

where the matrices � and V contain the dominant (non-
zero) eigenvalues and the corresponding eigenvectors. We
assume that the eigenbase in V and � is sorted such, that in
� = diag{�1, �2, . . . , �D} we have �1 ��2 � · · · ��D . Fur-
thermore, the ith column of the eigenbase V is the unit norm
vector vi .

4. Joint linear TX/RX optimization

The idea of joint TX/RX optimization is to perform a
cooperative design of the linear precoder and the linear re-
ceiver. It is intuitively clear that this approach will obtain
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the best performance of the linear signal processing methods
with respect to the chosen optimization criterion.

4.1. Joint matched filter

Maximizing the signal-to-noise ratio (SNR) at the receiver
via a joint optimization of the linear transmitter F and the
linear receiver G leads to the joint MF design

{
Fjt

MF, Gjt
MF

}
= argmax

{F,G}

|E
{

ŝH[k]s[k]
}

|2
E

{
sH[k]s[k]} E

{‖Gn[k]‖2
2

}
s.t. E

{
‖x[k]‖2

2

}
= Pt .

As already shown in [10,12–15], the solution to above opti-
mization reads as

Fjt
MF =

√
Pt

�2
s

v1
cT

‖c2‖
and

Gjt
MF = �

c∗

‖c2‖vH
1 HHR−1

n , (3)

where the scalar � ∈ C is arbitrary, since it does not influence
the SNR �, and c ∈ CD is an arbitrary vector of unit norm.
When choosing � to be a scalar Wiener filter to recover the
signal amplitude, we get

� =
√

Pt

Pt�1 + √
�2

s

∈ R+.

Note that all transmit power Pt is transmitted over the eigen-
vector v1 corresponding to the maximum eigenvalue �1 of
RH . Thus, the joint MF always provides a rank 1 transmis-
sion situation.

4.2. Joint zero-forcing filter

The cooperative design of the linear precoder and the lin-
ear receiver eliminating the inter-stream-interference and es-
tablishing the same unit path attenuation on every substream,
i.e. GHF = 1, leads to the joint ZF solution. However, dif-
ferent approaches are possible.

In [10], the joint ZF is derived by eliminating the inter-
stream-interference and demanding an identical SNR on
each data stream which achieves the same BER on each data
stream for fixed modulation schemes. Consequently, this ap-
proach is denoted as equal-error design. The joint ZF filter
with equal error design can be written as [10]

Fequal
ZF =

√
Pt

�2
s tr(�−1)

V�−1/2

and

Gequal
ZF =

√
�2

s tr(�−1)

Pt

�−1/2VHHHR−1
n . (4)

The achieved SNR on each data stream computes as

� = Pt

�2
s tr(�−1)

.

Note, that contrary to the previous solution of the joint MF
the joint ZF does not switch off any data stream.

As an alternative approach to derive the joint ZF filter it
is also possible to minimize the MSE between the data sym-
bols s[k] and their estimates ŝ[k] under the transmit power
constraint{

Fjt
ZF, Gjt

ZF

}
= argmin

{F,G}
E

{
‖s[k] − ŝ[k]‖2

2

}

s.t. ŝ[k]|n[k]=0 = s[k] and E
{
‖x[k]‖2

2

}
= Pt . (5)

With the Lagrangian multiplier method, we find for the so-
lution of the joint ZF approach minimizing the MSE

Fjt
ZF =

√
Pt

�2
s tr(�−1)

V�−1/4

and

Gjt
ZF =

√
�2

s tr(�−1)

Pt

�−3/4VHHHR−1
n . (6)

Again, this joint ZF does not switch off any data stream.

4.3. Joint Wiener filter

The minimization of the MSE between the transmitted
symbols s[k] and the estimates ŝ[k] by a cooperative design
of the linear precoder F and the linear receiver G with trans-
mit power constraint leads to the joint WF optimization{

Fjt
WFGjt

WF

}
= argmin

{F,G}
E

{
‖s[k] − ŝ[k]‖2

2

}

s.t. E
{
‖x[k]2

2

}
= Pt . (7)

The joint WF solution is [7,8,10,16]

Fjt
WF = 1

�s

V
√

(�−1/2�2
s�

−1/2 − �−1)+

and

Gjt
WF =

√
(�1/2�2

s�
1/2 − �1)+�−1VHHHR−1

n , (8)

where the Lagrangian multiplier � ∈ R has to be chosen to
fulfill the transmit power constraint. The (·)+ operator sets
all negative elements to zero.

Note, that the joint WF converges to the joint MF solution
for very low SNR, while it converges to the joint ZF solu-
tion that minimizes the MSE (see Eq. (6)) for high SNR.
Since the joint MF transmits only one data stream over the
dominant eigenmode of the channel and the joint ZF always
uses all eigenmodes of the channel for data transmission,
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the joint WF approach successively increases the number of
used eigenmodes with increasing SNR. This behavior can
also be recognized in the solution of Fjt

WF and Gjt
WF where

the operator (·)+ switches off the data streams, whose cor-
responding matrix entries are less than zero. The power al-
location is accomplished such, that the weakest eigenmodes
of the channel are not used, while in the remaining eigen-
modes more power is allocated in the weaker eigenmodes
to minimize the MSE.

5. Transmit optimization with fixed receiver
strategy

The joint TX/RX optimization described in Section 4 pro-
vides a cooperative design of the linear precoder F and the
linear receiver G to perform the previously described con-
ventional optimization criteria:

• maximizing the SNR after the receiver,
• eliminating the inter-stream-interference, and
• minimizing the MSE between s[k] and ŝ[k].

The joint TX/RX optimization represents the optimum ap-
proach that can be achieved with linear transmit/receive pro-
cessing in terms of the mentioned optimization criteria. If
there is not enough feedback available and additionally both
sides of the communication link do not offer the required
computational power to perform the optimization task, a dif-
ferent approach has to be taken to design the transmit and
receive processing. To this end an approach of semi-joint
TX/RX optimization is described which has two major ad-
vantages: First, it does not require a large amount of compu-
tational complexity at the receiver side. Second, no feedback
is necessary, if the channel state information is available at
the transmitter. This makes the new approach especially at-
tractive in time division duplex systems, where the channels
of the two links are reciprocal and the transmitter can esti-
mate the channel during reception in the other link.

In this system setup with restricted receiver structure the
linear precoder as well as the linear receiver are jointly opti-
mized, however, the receiver is limited to a MF to the chan-
nel plus precoder and a scaling g ∈ R to recover the signal
amplitude. We will denote the proposed MIMO processing
scheme semi-joint optimization [15]. The block diagram of
this new system setup is illustrated in Fig. 2.

Hs [k]

n [k]

ŝ [k]gF H H H R −1
nF

DD y [k]

x [k]

MT MR

Fig. 2. Block diagram for linear TX and RX processing with
restricted receiver structure.

The transmission equation of above system is given as

ŝ[k] = gFHHHR−1
n (HFs[k] + n[k]). (9)

In the sequel, we will optimize the components of the sys-
tem in Fig. 2 by maximizing the SNR after the receiver
(SemiMF), eliminating the interference (SemiZF), and min-
imizing the MSE (SemiWF).

5.1. Semi-joint matched filter

The semi-joint MF is found by maximizing the SNR after
the receiver gFHHHR−1

n with transmit power constraint

{FMF, gMF} = argmax
{F,g}

� s.t. E
{
‖x[k]‖2

2

}
= Pt , (10)

where the SNR can be expressed as

� =
|E

{
ŝH[k]s[k]

}
|2

E
{
sH[k]s[k]} E

{‖gFHHHR−1
n n[k]‖2

2

} .

We obtain as solution (see Appendix A.1)

Fsemi
MF =

√
Pt

�2
s

v1cT

and

gsemi
MF = 1

Pt�1 + 1
, (11)

where c ∈ CD is an arbitrary vector of unit norm. With this
setup the joint MF and the semi-joint MF are identical. Note,
that the semi-joint MF also transmits only one data stream
as in the case of the joint MF.

5.2. Semi-joint zero-forcing filter

Designing a linear precoder under the restriction of a
linear MF receiver to eliminate the inter-stream interfer-
ence where we simultaneously minimize the MSE leads to
the semi-joint ZF approach. The optimization with transmit
power constraint can be written as (cf. Eq. (5)){

Fsemi
ZF , gsemi

ZF

}
= argmin

{F,g}
E

{
‖ŝ[k] − s[k]‖2

2

}

s.t. E
{
‖x[k]‖2

2

}
= Pt and ŝ[k]|n[k]=0 = s[k]. (12)

The solution according to Appendix A.2 can be written as

Fsemi
ZF =

√
Pt

�2
s tr(�−1)

V�−1/2

and

gsemi
ZF = �2

s tr(�−1)

Pt

. (13)
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The solution of the semi-joint ZF approach achieves a perfect
inter-stream interference elimination and the whole trans-
mission chain between the symbols s[k] and ŝ[k] is reduced
to the identity matrix. Like the joint ZF approach, the semi-
joint ZF approach does not switch off eigenmodes of the
channel.

Moreover, the semi-joint ZF is identical to the joint ZF
providing equal SNR on each data stream, cf. Eq. (4).

5.3. Semi-joint Wiener filter

Minimizing the MSE between the receive filter output ŝ[k]
and the signal s[k] with the special choice of a linear MF
receiver produces the semi-joint WF solution. The optimiza-
tion under the transmit power constraint can be expressed as{

Fsemi
WF , gsemi

WF

}
= argmin

{F,g}
E

{
‖ŝ[k] − s[k]‖2

2

}

s.t. E
{
‖x[k]‖2

2

}
= Pt .

Expanding the cost-function of the optimization yields (cf.
Eq. (9)){

Fsemi
WF , gsemi

WF

}
= argmin

{F,g}
tr

[
g2FHRH F

×(gFHRH F − 1)2�2
s

]
s.t. �2

s tr(FFH) = Pt . (14)

The solution can be written according to A.3 as

Fsemi
WF =

√
tr(�)

2�2
s tr(� − �2)

V�−1/2�1/2

and

gsemi
WF = 2�2

s

tr(� − �2)

tr(2� − �2)
(15)

with � = (1 + �′′�−1)+. The solution for the semi-joint
optimization can be found in an iterative procedure, where
the parameter �′′ is chosen such to fulfill the transmit power
constraint.

Note, that the semi-joint WF converges to the semi-joint
MF for low SNR and to the semi-joint ZF for high SNR. Also
note, that the semi-joint WF solution has the same property
of the joint WF to successively increase the number of used
data streams with increasing SNR.

6. Simulation and comparison

In this section, we present the simulation results of the
joint TX/RX optimization and the semi-joint optimization
where we will also take into account the performance of the
transmit-only approaches as reference for the optimization

only on one side of the communication link, e.g. the trans-
mitter. All results are the mean of 50 000 randomly chosen
channel realizations obtained by Monte-Carlo simulations.

6.1. Fixed QPSK modulation

The core assumption for the following simulations is a
fixed modulation format of QPSK, a flat Rayleigh fading
channel H ∈ C4×4, i.e. MT =4 transmit and MR =4 receive
antenna elements, where each entry is i.i.d. complex Gaus-
sian distributed with zero mean and unit variance, a fixed
transmission rate of 8 bits per channel use, and complex
Gaussian distributed noise n[k] with zero mean and covari-
ance Rn = �2

n1. To ensure the required data rate, always 4
data streams are transmitted. The performance measures are
MSE and uncoded BER.

In addition to the receiver structures (see Figs. 1 and 2),
we have added a scalar WF at the receiver to allow a fair
comparison with respect to the MSE: especially in the case
of transmit-only processing, a correct amplitude cannot be
guaranteed at the receiver without a scalar WF.

Figs. 3 and 4 show the MSE and uncoded BER as func-
tion of the transmit SNR, respectively, for the three linear
transmission strategies: the joint TX/RX optimization, the
semi-joint optimization, and the transmit-only optimization.
If we look at the MSE results of the different joint TX/RX
optimization approaches in Fig. 3 we can see that the joint
WF achieves the best performance with respect to the MSE
compared to all other approaches, as it was demanded by
the optimization in Eq. (7). Moreover, it converges to the
joint MF for low SNR, while it converges with the joint ZF
approach minimizing the MSE. We also see, that the per-
formance of the semi-joint WF coincides with the joint WF
at low SNR, but loses performance with increasing SNR.
The TX-only WF starts with a worse performance compared
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0

joint WF

semi-joint WF

TX-only WF

joint ZF-SNR
joint ZF-MSE

semi-joint ZF
(semi)joint MF

TX-only ZF
TX-only MF

M
SE

Pt /�2
n in dB

Fig. 3. MSE of the three transmission strategies as function of the
transmit SNR for fixed QPSK modulation.
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Fig. 4. BER of the three transmission strategies as function of the
transmit SNR for fixed QPSK modulation.

to the joint and semi-joint WF approaches but outperforms
the semi-joint WF at SNR values above approximately 3 dB.
However, it is not achieving the performance of the joint WF.

Among the ZF strategies the joint ZF approach minimiz-
ing the MSE achieves best performance compared to the
joint ZF demanding equal SNR, semi-joint ZF and TX-only
ZF approach. The semi-joint ZF and the TX-only ZF ap-
proach achieve a perfect inversion of the channel, however,
with the restricted/simplified receiver structure it is not pos-
sible to minimize the MSE of each data stream. The re-
ceiver structure of the joint ZF approach however, can be
designed to achieve a minimization of the MSE of each data
stream. Note, that the MSE of the TX-only ZF, the semi-
joint ZF, and the joint ZF-SNR approach are identical in
this case where Rs = �2

s 1 and Rn = �2
n1. This is due to the

fact, that

• in the TX-only ZF approach, a perfect inversion of the
channel is accomplished. With the very simple receiver
consisting only of a scalar WF, the MSE is only de-
termined by a scaled version of the noise covariance
matrix Rn. The MSE is identical for each data stream;

• in the semi-joint ZF case, also a perfect inversion of
the channel is accomplished. The special choice of the
linear receiver as MF to channel plus precoder reduces
the MSE as scaled version of the transmit covariance
matrix Rs . The MSE is identical for each data stream;

• in the joint ZF-SNR case, the channel is perfectly in-
verted and the equal-error constraint results in an identi-
cal MSE on each data stream, as in the two other cases.

The joint MF (which is identical to the semi-joint MF)
achieves optimum performance at very low SNR. A situa-
tion in which interference suppression is less important be-
cause of the high noise power compared to the signal power.
However, the joint MF saturates at high SNR since it only

transmits one data stream over the strongest eigenmode of
the channel.

Fig. 4 shows the uncoded BER as function of the trans-
mit SNR. Comparing the BER among the WF strategies we
see that the TX-only WF achieves best performance. This
result seems surprising on the first hand, since the trans-
mission strategy with the least computational effort and the
most simple receiver structure (only a scalar WF) achieves
the best performance. However, this results can be explained
by the fact, that the other WF strategies (joint and semi-joint
WF) are suffering from the fixed modulation set. Both, the
joint WF solution, and the semi-joint WF solution switch off
data streams at low and medium SNR. With the assumption
of a fixed modulation scheme of QPSK and the fixed trans-
mission rate of 8 bits per channel use, always 4 data streams
have to be transmitted. This leads to 50% BER on the ne-
glected data streams, opposite to the TX-only WF where no
data streams are neglected. Giving up the assumption of a
fixed modulation scheme will improve the performance of
the joint and semi-joint transmission strategies as we will
see in the next subsection.

The semi-joint ZF and the TX-only ZF approach have
identical performance with respect to the uncoded BER due
to their identical MSE. Note, that the joint ZF approach
outperforms the joint WF approach for high SNR. This effect
can also be explained by the constraint of a fixed modulation
set that leads to a degradation of the WF approaches that
switches off data streams at specific SNR ranges.

The joint MF saturates at 37.5% BER. This saturation
level is very clear, since all but one data stream are sup-
pressed in the joint MF approach.

BERMF(� → ∞) = 1
4 (3 · 50% + 0%) = 37.5%.

6.2. Adaptive modulation

The simplest approach to obtain a data rate of b bits per
channel use is to uniformly distribute the b bits onto the D
data streams and to use the same, fixed modulation alphabet
for each data stream, as performed in the previous subsec-
tion. The key assumptions of this strategy are a fixed data
rate and a fixed modulation scheme. It has been shown in
the previous subsection that this assumptions causes a large
restriction to the system performance of the joint and semi-
joint transmission approach, since the particular linear pre-
coders have the property of switching off the weakest eigen-
modes of the channel.

A more sophisticated approach to achieve the aspired data
rate of b bits per channel use is to distribute the b bits onto
the D data streams according to an additional optimization
criterion which will allocate a higher data rate onto stronger
data streams aiming at a minimization of the BER [15,17,9].
This consideration leads to adaptive modulation. Since the
channel is diagonalized in the joint and semi-joint transmis-
sion approach and the strength of each eigenmode is known
from the computation of the linear precoding and receive
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filter it is possible to compute the SNR of each eigenmode
including the amplitude weighting of each data stream for
the actual channel realization. With the known SNR it is now
possible to numerically compute the bit-error-probability
for each data stream for a given modulation alphabet a
priori as [18]

pi = f (�i , SNRi ,Mi ), i = 1, . . . , D,

where pi , �i , SNRi , and Mi denote the bit-error-probability,
the positive real weighting of the symbols, the SNR, and the
modulation alphabet of data stream i, respectively. The de-
sired data rate of b bits per channel use is now achieved by
distributing the b bits onto the D data streams with appro-
priate modulation schemes by minimizing the average bit-
error probability over all data streams of the actual channel
realization:

{Mopt,k}Dk=1 = argmin
{Mk}Dk=1

BEP

s.t.
D∑

i=1

log2|Mi | = b, (16)

where the average bit-error-probability reads as

BEP = 1

b

D∑
i=1

f (�i , SNRi ,Mi )log2|Mi |

and log2|Mi | is the number of bits that are assigned to
modulation alphabet Mi . The constraint in (16) ensures a
fixed data rate of b bits per channel use.

The distribution of the data onto the eigenmodes of the
channel that have been chosen in the optimization process
might result in a further reduction of the number of used
data streams. Consider the case where the optimization re-
sult consists of two data streams where the second stream
has a lower SNR compared to the first data stream. If the
SNR difference is large enough, it might be advantageous
to minimize to the total BER by putting all data onto the
stronger eigenmode by choosing an appropriate high order
modulation scheme. If the number of used data streams has
been reduced by the optimization in Eq. (16) the transmit
power Pt consequently has to be re-allocated according to
the actual optimization approach. In particular, the number
of data streams D is reduced to D′ and the power alloca-
tion is being recomputed with D′ < D to fulfill the trans-
mit power constraint while re-computing the linear precoder
F and the linear receiver G. However, the number of used
transmit and receive antennas remains unchanged. Note, that
in the case of joint TX/RX optimization both sides of the
communication link have perfect channel knowledge. Con-
sequently, both sides of the communication link can perform
the additional optimization with respect to the modulation
scheme in Eq. (16). In the case of the semi-joint optimiza-
tion the receiver is only a matched filter to the channel plus
linear precoder. If we assume that the receiver is notified
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Fig. 5. BER of the three WF transmission strategies as function
of the transmit SNR for the use of adaptive modulation.

Table 1. Used modulation set with adaptive modulation

Modulation sets

256-QAM 8 bits
64-QAM, QPSK 6 + 2 bits
16-QAM, 16-QAM 4 + 4 bits
16-QAM, QPSK, QPSK 4 + 2 + 2 bits
QPSK, QPSK, QPSK, QPSK 2 + 2 + 2 + 2 bits

about the used modulation set,2 adaptive modulation is also
applicable.

A diagonalization of the channel is not achieved with TX-
only processing. Adaptive modulation is not applicable with
the simplest receiver structure consisting only of a scalar
WF, as the remaining interference leads to a prohibitive com-
putational complexity.

Fig. 5 shows the uncoded BER as function of the transmit
SNR for the three WF approaches with adaptive modulation.
The possible modulation sets are given in Table 1. In com-
parison to Fig. 4 the BER of the joint and semi-joint WF
obtain a large performance increase. Both BER curves even
obtain a higher slope for high SNR, which indicates a higher
order of exploited diversity. This increase of exploited di-
versity can be explained by the re-distribution of the data
rate onto the number of existing data streams. No data is
lost as in the case of a fixed modulation set. Especially at
low and medium SNR, where the joint and semi-joint WF
optimization switches off data streams, the constant number
of MR = 4 receive antennas offer a higher order of diver-
sity compared to the WF approaches with fixed modulation
scheme.

2 This requires only very little information. If we have K modulation
sets, we require 	log2(K)
 bits to inform the receiver.
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Fig. 6. Mean SNR on the data streams for the joint WF and
semi-joint WF, where data stream 1 has highest SNR, data stream
2 has second highest SNR.

Also note, that the semi-joint WF slightly outperforms
the joint WF for very high SNR, despite the simpler re-
ceiver structure. This higher performance can be explained
by a more favorable statistic of the SNR on the individual
data streams in the case of the semi-joint WF compared to
the joint WF. Fig. 6 shows the mean SNR of the used data
streams in the case of the joint WF and the semi-joint WF,
where in each case data stream 1 has highest SNR, data
stream 2 has second highest SNR, and so on, due to the
ordered EVD (see Eq. (2)). In the whole SNR range the
strongest eigenmode in the case of the joint WF has always
a higher mean SNR compared to the strongest eigenmode
of the semi-joint WF. At low and medium SNR range the
data is mostly put into the strongest or the two strongest
eigenmodes. In this case it is advantageous if the eigen-
mode containing the biggest portion of the data (which is the
strongest eigenmode) has a higher SNR. However, at high
SNR ranges the solution of the joint and semi-joint WF with
adaptive modulation tend to uniformly distribute the data
onto all eigenmodes. In this case the data stream with the
lowest mean SNR is limiting the BER performance. Since
the fourth eigenmode of the joint WF has a lower mean SNR
compared to the fourth eigenmode of the semi-joint WF, the
BER performance of the joint WF is suffering from this ef-
fect at high SNR.

6.3. Influence of spatial correlations

All previously presented simulation results of Sections
6.1 and 6.2 were performed for frequency-flat uncorrelated
Rayleigh fading channel realizations H ∈ CMR×MT , where
the matrix entries hi,j are i.i.d. complex Gaussian distributed
with zero mean and unit variance. This type of channel mod-
els transmission situations where both the transmitter and
the receiver are located in a dense scattering environment.

To get an insight into the effects of spatial correlations
at the transmitter and the receiver onto the uncoded BER
we modify the generation of the frequency-flat channel H
to produce pre-defined correlation matrices at the transmit-
ter side and receiver side, where we take a set of correlation
matrices from the 3GPP standardization proposal of [19] to
obtain realistic spatial correlations. The used set of correla-
tion matrices at the transmitter and receiver is taken from
the standardization scenario #3.

Since a channel scenario with spatial correlations has non-
trivial long-term properties, it is also possible to perform
signal processing based only on the long-term properties
of the channel, i.e. based on the statistics of the channel.
This procedure has the advantage of reduced computational
complexity and a reduction of required channel knowledge
at the transmitter. Note, that long-term properties are slow-
changing characteristics of the channel which allows for a
more accurate estimation due to a longer time period that is
available to perform this estimation [20].

6.3.1. Instantaneous channel knowledge
Figs. 7 and 8 show the uncoded BER as function of the

transmit SNR in a correlated channel scenario for fixed mod-
ulation and adaptive modulation, respectively.

Fig. 7 shows the uncoded BER of the ZF and WF strat-
egy for the three linear transmission approaches TX-only,
joint and semi-joint optimization with fixed modulation. In
comparison to Fig. 4, where the channel is uncorrelated,
we see that the performance is drastically decreased in each
case. This behavior can be explained by the more disper-
sive eigenmodes of the channel. Since the fixed data rate
and the fixed modulation set of QPSK requires the use of
all eigenmodes the overall performance is suffering from
the degeneration of the weakest eigenmode of the channel.
The ZF strategies are suffering most in this situation. As in
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Fig. 7. BER of the three transmission strategies for ZF and WF as
function of the transmit SNR for fixed modulation in a correlated
channel scenario.
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Fig. 8. BER of the MF, and WF transmission strategies as function
of the transmit SNR for the use of adaptive modulation in a
correlated channel scenario.

the case of the uncorrelated channel situation the TX-only
WF again achieves best performance. Note the ripples in the
BER curve of the joint and semi-joint WF curves at an SNR
level of 12 dB. Due to the given spatial correlation matrices
in this correlated channel scenario the waterfilling behavior
of the joint and semi-joint WF approaches to switch off the
weakest eigenmodes is much more associated with a certain
SNR level, compared to the uncorrelated channel scenario
where the waterfilling behavior is more smooth over the
abscissa (SNR).

Fig. 8 shows the MF and WF strategies of the joint and
semi-joint optimization with adaptive modulation in the
same correlated channel situation as in Fig. 7. We see that
the adaptive modulation can compensate a lot for the more
dispersive eigenvalues of the channel. However, in compar-
ison to Fig. 5 with the uncorrelated channel situation each
transmission concept is still losing in performance. Note,
that the degradation of the joint and semi-joint MF approach
has decreased due to the increase of the strongest eigenvalue
in the correlated channel situation. In comparison to Fig. 7
the ripples of the WF approaches have vanished. The BER
curve of the TX-only WF with fixed QPSK modulation in
this correlated channel situation is given as dotted line for
reference.

6.3.2. Long-term channel knowledge
The derived transmission approaches of joint TX/RX opti-

mization and semi-joint optimization can also be performed
on a long-term basis by taking the eigenbase VLT and the
eigenvalues �LT not of the instantaneous channel covariance
RH , but rather performing an EVD of the long-term average

E {RH } = VLT�LTVH
LT.

With this simplification of the channel knowledge, the lin-
ear precoders of the joint TX/RX optimization and semi-
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Fig. 9. BER of joint and semi-joint ZF and WF as function of the
transmit SNR for fixed QPSK modulation in a correlated channel
scenario. The solid lines are instantaneous channel knowledge,
while the dashed lines are long-term channel knowledge at the
transmitter.

joint optimization are now computed based on the long-term
eigenbase VLT and eigenvalues �LT.

The linear receivers have knowledge about the instanta-
neous channel realization H but the EVD is only performed
on a long-term basis to compute the long-term eigenbase
VLT and eigenvalues �LT (see Eq. (2)). No EVD of the chan-
nel is performed at the receiver. As consequence, the MIMO
channel is no longer diagonalized in each channel realiza-
tion H. The diagonalization only takes place on average.

Fig. 9 shows the uncoded BER as function of the trans-
mit SNR for the joint and semi-joint ZF and WF approach,
where the solid lines represent the usage of the instantaneous
eigenbase and eigenvalues, while the dashed lines represent
the usage of the long-term eigenbase and eigenvalues. The
consequence of LT processing is that the MIMO channel is
no longer diagonalized in each channel realization H. There-
fore the LT approaches are now experiencing inter-stream-
interference. This interference leads to a saturation of the
BER curves at high SNR.

Note, that the BERs of the LT WF approaches are worse
compared to the corresponding WF approaches utilizing the
instantaneous eigensystem. However, the LT ZF approaches
outperform the corresponding ZF approaches utilizing the
instantaneous eigensystem at low SNR. This can be ex-
plained by the zero-forcing condition of the ZF approaches,
where the inversion of the channel in the case of instanta-
neous knowledge might also contain channel situations with
large eigenvalue spread which lead to a rather high SNR
degradation. In the case of LT knowledge the inversion of
the channel is only performed on average, where the SNR
degradation is not so high as in the case of instantaneous
knowledge, however at the price of inter-stream-interference
which leads to a saturation of the BER curves. Obviously it
is more advantageous to have higher interference and lower
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the transmitter.

SNR degradation, compared to no interference and higher
SNR degradation in the case of the ZF approaches at low
and medium SNR.

Fig. 10 shows the uncoded BER as function of the transmit
SNR for the joint and semi-joint MF and WF approaches
with adaptive modulation in a correlated channel scenario.
The usage of instantaneous knowledge is given as solid lines,
while the usage of long-term channel knowledge is given as
dashed lines. For clearness the curves of the ZF approaches
are not shown.

The performance of the joint/semi-joint MF is only de-
grading by a rather tiny amount when assuming only long-
term knowledge of the eigenbase. Obviously the dominant
eigenmode varies only by a small amount between different
channel realization H.

The BER performance of the joint and semi-joint WF
degrade strongly and achieve the same performance as the
LT MF when assuming knowledge not of the instantaneous
eigenbase but of the long-term eigenbase. Since the eigen-
base and the eigenvalues are only known on a long-term
basis, adaptive modulation also can be performed only on
long-term basis. The choice of the modulation set merely
depends on the SNR level, and the long-term statistics of
the channel, which is constant. Because of the correlations
of the channel model, the first eigenmode is very dominant.
Obviously the dominant eigenmode is large enough that the
adaptive modulation allocates only one data stream on this
eigenmode with 256-QAM modulation in the shown SNR
range.

7. Conclusion

In this article we have proposed a new linear transmis-
sion strategy with a simple MF receiver structure and a

precoder optimization according to the matched filter, zero-
forcing, and minimum mean-square error principle. This
new transmission concept accomplishes a diagonalization of
the MIMO channel into its eigenmodes, similar to a joint
TX/RX optimization, however, at a much lower computa-
tional cost for the receiver side. It has further been shown
that with respect to the BER the proposed system concept
has comparable performance as the joint TX/RX optimiza-
tion scheme in the case of adaptive modulation. At high
SNR the new transmission concept even outperforms joint
TX/RX optimization due to a more favorable statistic of the
scalar weightings of the diagonalized MIMO channel, com-
pared to the joint TX/RX case.

Appendix A.

A.1. Computation of the semi-joint MF

Note that the SNR � and the transmit power constraint
for the optimization of the semi-joint MF in Eq. (10) are
independent of the scalar receive weighting g. Therefore, we
have that g ∈ R is arbitrary.

The Lagrangian function for the semi-joint MF optimiza-
tion approach is given as (cf. Eq. (9))

L(F, g, �) = �2
s tr(FHRH F)

D
− �[�2

s tr(FFH) − Pt ].

Differentiating the Lagrangian function with respect to F∗
provides the KKT condition

�L

�F∗ = 0 : 0 = �2
s

D
RH F − �2

s�F. (A.1)

By taking the vec(·) operator of the above KKT condition
and applying the properties of the vec(·) operator3 we can
re-write the above equation as

1

D
[1 ⊗ RH ]vec(F) = � vec(F). (A.2)

Eq. (A.2) is an eigenvalue problem. Performing the sorted
eigenvalue decomposition (EVD) of RH from Eq. (2) and
using a property of the Kronecker product4 we can con-
clude, that

vec(F) = �c ⊗ vi ,

where vi is the ith column of the eigenvectors V and �
is a scalar weighting. Note, that any arbitrary c ∈ CD is
an eigenvector of the identity matrix 1 belonging to the
eigenvalue 1. In other words

F = �vicT.

3 vec(ABC) = (CT ⊗ A)vec(B) as given in [21].
4 If a is an eigenvector of A with eigenvalue � and b is an eigenvector

of B with eigenvalue � then a ⊗ b is an eigenvector of A ⊗ B with
eigenvalue (� · �), see [21].
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The Lagrangian multiplier � is the corresponding eigenvalue
�i divided by D. If we left-multiply Eq. (A.1) with FH and
take the trace of the result we obtain utilizing the transmit
power constraint in Eq. (10)

� = tr(FHRH F)�2
s

D
= �Pt ,

where � is the cost function we want to maximize in
Eq. (10). Consequently, we have to choose the eigenvector
v1 of RH that belongs to the maximum eigenvalue �1. With
the transmit power constraint we obtain as solution

Fsemi
MF =

√
Pt

�2
s

v1
cT

‖c‖2
. (A.3)

Remember that g ∈ R is arbitrary. To correctly recover the
signal amplutide of the transmitted data sequence s[k] we
apply a scalar WF after the filter output which computes as

gsemi
MF = 1

Pt�1 + 1
∈ R+. (A.4)

A.2. Computation of the semi-joint ZF

The Lagrangian function for the optimization of the semi-
joint ZF in Eq. (12) is

L(F, g, �, �) = gD − �[�2
s tr(FFH) − Pt ]

− 2 Re{tr[�(gFHRH F − 1)]}, (A.5)

where � ∈ R and � ∈ CD×D are Lagrangian multipliers.
Differentiating the Lagrangian function with respect to F∗
and g gives the KKT conditions

�L

�F∗ = 0 : 0 = −gRH F� − gRH F�H − �2
s�F,

�L

�g
= 0 : 0 = D − 2 tr(�FHRH F + FHRH F�H).

From the second KKT condition we can make the substitu-
tion M = � + �H which simplifies the KKT conditions to

gRH FM + �2
s�F = 0,

D − 2 tr(FHRH FM) = 0.

Left-multiplying the first equation with FH and utilizing the
zero-forcing constraint gFHRH F = 1 we directly obtain the
solution

M = −�2
s�FHF.

Re-inserting this in the first KKT condition leads to the
equation

F = gRH FFHF. (A.6)

By performing the eigenvalue decomposition RH according
to Eq. (2) and a singular-value decomposition of F as follows

F = UF �F VH
F ∈ CMT×D (A.7)

with �F ∈ RD×D
0,+ , Eq. (A.6) modifies after some simplifi-

cations to

�−2
F = gUH

F RH UF .

The right-hand side has to be diagonal. Consequently, we
can conclude, that the left-hand side singular vectors UF of
F are identical with the eigenvectors V of RH , except for a
permutation �:

UF = V� with � ∈ {0, 1}D×D . (A.8)

Eq. (A.6) now simplifies to

�−2
F = g�T��.

The linear transmit processing can now be written as

F = 1√
g

V�−1/2�VH
F .

Inserting this in the transmit power constraint gives5

Pt = �2
s tr(FFH)

= �2
s

g
tr(V�−1/2�VH

F VF �T�−1/2VH)

= �2
s

g
tr(�−1),

where we can conclude

gsemi
ZF = �2

s tr(�−1)

Pt

. (A.9)

Note, that gsemi
ZF is the cost function we want to optimize (cf.

Eq. (A.5)). Since the cost function is neither a function of
the permutation � nor of the right-hand side singular vectors
VF we choose both as identity matrices. The solution for
the semi-joint ZF evolves as

Fsemi
ZF =

√
Pt

�2
s tr(�−1)

V�−1/2. (A.10)

A.3. Computation of the semi-joint WF

The Lagrangian function for the optimization of the semi-
joint WF in Eq. (14) is given as

L(F, g, �) = tr
[
(gFHRH F − 1)2�2

s + g2FHRH F
]

− �[�2
s tr(FFH) − Pt ],

where � ∈ R is the Lagrangian multiplier for the transmit
power constraint. The KKT conditions are

0 = 2g2�2
s RH FFHRH F + (g2 − 2g�2

s )RH F − ��2
s F,

0 = 2g�2
s tr((FHRH F)2) + (2g − 2�2

s )tr(F
HRH F).

5 Note the property of the permutation matrix ��T = �T� = 1.
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To obtain the solution we perform an eigenvalue decompo-
sition of RH according to Eq. (2) and perform an SVD of
F as in Eq. (A.7). The first KKT condition reads after some
simplifications as

2g2�2
s UH

F RH UF �2
F UH

F RH UF �2
F

+ (g2 − 2g�2
s )U

H
F RH UF �2

F = ��2
s�

2
F .

We can conclude that the left-hand side singular vectors UF

have to be identical to the eigenbase V up to a permutation
� ∈ {0, 1}D×D:

UF = V�,

since the right-hand side of above equation is diagonal. For
notational convenience we substitute �̂=�T��. With these
assumptions the KKT conditions evolve now as

0 = 2g�2
s (g�2

F �̂ − 1)�̂�F + g2�̂�F − ��2
s�F ,

0 = 2g�2
s tr(�4

F �̂
2
) − 2�2

s tr(�2
F �̂) + 2g tr(�2

F �̂).

From the second KKT condition we can solve for g as

g = �2
s tr(�2

F �̂)

tr
(
�2

s�
4
F �̂

2 + �2
F �̂

) . (A.11)

Re-arranging the first KKT condition leads to

2g�2
s�

3
F �̂

2 + (g − 2�2
s )�̂�F − �′�2

s�F = 0,

where we have scaled the Lagrangian multiplier as �′ =�/g.
We obtain with the substitution

� = 2g�2
s

2�2
s − g

(A.12)

after another scaling of the Lagrangian multiplier that �F

follows from[
��2

F �̂ − (1 + �′′�̂−1
)
]
��̂�2

F = 0.

By defining the auxiliary variable

B = ��̂�2
F (A.13)

we obtain the well-known problem [22]

[B − (1 + �′′�̂−1
)]B = 0

which has the solution

B = (1 + �′′�̂−1
)+ = �T�� (A.14)

with � = (1 + �′′�−1)+. The solution for the semi-joint
optimization can be found in an iterative procedure, where
the parameter �′′ is chosen such to fulfill the transmit power

constraint. Note, that B is always diagonal, positive semi-
definite. The original argument of the optimization after
back-substituting �̂ = �T�� computes as

�2
F = 1

�
�̂

−1
B

= tr(�)

2�2
s tr(� − �2)

�T�−1��. (A.15)

For the linear precoder we get

F = UF �F VH
F

=
√

tr(�)

2�2
s tr(� − �2)

V��T�−1/2�1/2�VH
F

=
√

tr(�)

2�2
s tr(� − �2)

V�−1/2�1/2�VH
F .

Inserting this solution of F in the optimization criterion, cf.
Eq. (14), shows that neither the cost function nor the transmit
power constraint depend on the permutation � and right-
hand side singular vector VF . Therefore we choose them to
be the identity matrix and the solution computes as

Fsemi
WF =

√
tr(�)

2�2
s tr(� − �2)

V�−1/2�1/2 (A.16)

with � = (1 + �′′�−1)+. The optimum weighting
gsemi

WF can be computed by inserting the solution of
Eq. (A.15) in Eq. (A.11) which yields

gsemi
WF = 2�2

s

tr(� − �2)

tr(2� − �2)
. (A.17)
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