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Abstract

In this paper, we consider a reduced-complexity equalization method for turboMulti-User Detection(MUD) in a
frequency-selectiveCode Division Multiple Access(CDMA) uplink scenario. The non-linear trellis-based detector
which is normally used in turbo receivers, is replaced by theMatrix Wiener Filter (MWF), the optimal linear filter
based on theMean Square Error(MSE) criterion. To further reduce the complexity, theBlock Conjugate Gradient
(BCG) algorithm is used to approximate the MWF in a low-dimensional Krylov subspace. Additionally, second
order statistics of non-stationary random processes are approximated by their time-invariant averages. Simulation
results show that embedding the suboptimal MWF in a turbo receiver does not lead to significant performance loss,
while reducing the computational complexity enormously.

1 Introduction

In an uplink scenario, MUD denotes the detection
of data from different transmitters when the data is
observed at the receiver in a non-orthogonal multiplex.
Such observation may occur in a CDMA scenario
if the spreading codes are non-orthogonal or if the
channel between transmitters and receiver is frequency-
selective. Thus, one of the main tasks at the receiver
is to compensate multiple-access and intersymbol in-
terference.

Assuming that the transmitters use channel coding,
the optimal Maximum A Posteriori(MAP) receiver
which performs jointly symbol detection and decoding
to combat interference, is computationally not feasible.
Therefore, Douillard et al. [1] introduced the turbo
equalizer consisting of a MAP detector and a MAP
decoder exchanging iteratively soft information about
the coded data bits. Here, the two sources of diversity
which are required in every turbo system, are on the one
hand the channel encoders at the transmitters and on
the other hand the multipath channel. Thus, the system
can be interpreted as an iterative decoding scheme for
serial concatenated codes [2] where the inner encoder
is the channel and the inner decoder is the detector.
Since the complexity of implementing a MAP detector
is still very high, Wang and Poor [3] replaced the
non-linear detector by the optimal linear detector, the
Wiener Filter (WF). To further reduce the complexity,
Dietl [4] approximated the WF in a low-dimensional
Krylov subspace and showed that after a few turbo
iterations, the performance loss due to the reduced-rank
WF is negligible in a single-user uplink scenario.

In this paper, we consider a multi-userDirect Se-
quence CDMA(DS-CDMA) uplink scenario for mo-

bile communications with multiple antennas at the
receiver. Despite orthogonal spreading codes, multiple-
access and intersymbol interference occur due to
the frequency-selectiveSingle-Input Multiple-Output
(SIMO) channel. To combat interference, the observa-
tion vector at the receiver is high-dimensional leading
to a high computational complexity even if linear
techniques for joint multi-user detection and equaliza-
tion are used. Conventional methods aiming to reduce
the dimensionality of the observation vector, are the
Principal Component(PC) [5] or the Cross-Spectral
(CS) [6] method which approximate the MWF in an
eigen subspace of the auto-covariance matrix of the
observation. An approximation of the MWF in the
Krylov subspace of the auto-covariance matrix of the
observation and the cross-covariance vector between
the observation and the desired signal, has been shown
to outperform the PC and CS method. TheMulti-Stage
Wiener Filter(MSWF) developed by Goldstein et al. [7]
is a possible implementation of the WF approximation
in Krylov subspaces. In this paper another implemen-
tation is used, namely the BCG algorithm [8].

The main contribution of this paper is to present how
computational complexity can be reduced by using the
BCG algorithm for multi-user detection in combination
with the turbo principle. Another important result is that
although the receiver detects all users simultaneously
by using the BCG algorithm, the performance loss
compared to separate detection of all transmitters is
negligible. Simulation results in Section 4 show the
benefit of using the BCG algorithm.

In order to reduce complexity not only the Krylov
subspace approximation of the MWF will be considered
but also the approximation of second order statistics of
non-stationary random processes by their time-invariant
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averages. This idea was developed for full-rank WFs [9]
but holds also for the reduced-rank MWF presented in
this paper.

Throughout the paper, vectors and matrices are de-
noted by lower and upper case bold letters, and random
variables are written usingsans seriffonts. The matrix
In is then× n identity matrix,ei its i-th column and
0m×n them×n zero matrix. The operation ‘⊗’ denotes
the Kronecker product, ‘∗’ convolution,tr{·} the trace
of a matrix,E{·} expectation,(·)T transpose,(·)H Her-
mitian, d·e ceil, b·c floor, and‖·‖2 the Euclidean norm.
The matrix S(`,M,N) = [0M×`, IM ,0M×(N−`)] ∈
{0, 1}M×(M+N) is used for selection. The soft infor-
mation of a binary random variabled ∈ {0, 1} is
represented by theLog-Likelihood Ratio(LLR) l =
ln(P(d = 0)/P(d = 1)) [10]. The auto-correlation
matrix of the random vectoru is denoted asRu =
E{uuH} and the cross-correlation matrix between the
vectorsu andv is Ru,v = E{uvH}.

2 System Model

2.1 Transmitter

Fig. 1 depicts the block diagram of the communication
system from the receiver’s point of view. Because the
signals at the transmitter are not known at the receiver
they are modelled as random processes. There areK
users in the uplink scenario, each aiming to transmit an
information bit blockdi ∈ {0, 1}B, i = 1, 2, . . . , K,
to the base station. After encoding the information
blocks for useri with a rate r convolutional code,
the resulting coded bit blockbi ∈ {0, 1}B

r has the
lengthSQ = B/r. The coded block is then interleaved
using the same permutation matrixΠ ∈ {0, 1}SQ×SQ

for all users leading tob′
i ∈ {0, 1}SQ, and mapped

to the complex symbol blockssi ∈ MS using the
modulation alphabetM whose cardinality is2Q. The
mapper can be described by the bijective functionM :
{0, 1}Q → M, b′

i,m+1 7→ si[m] = M(b′
i,m+1), where

b′
i,m+1 = S(mQ,Q,(S−1)Q)b′

i and si[m] = eT
m+1si,

m = 0, 1, . . . , S − 1. The symbol blocksi is then
transformed into a chip blockxi of length χS using
a Orthogonal Variable Spreading Factor(OVSF) code
of lengthχ, and transmitted over the channel.
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Figure 1. Block diagram of transmitters and channel

Considering the blocksi, i = 1, 2, . . . , K, as a
vector containing elements of the sequencesi[m], the
spreading ofsi[m] using the OVSF codesci[n] of length
χ which leads to the chip sequencexi[n], can be written

using zero padding:

xi[n] = ci[n] ∗
∞∑

m=−∞
si[m]δ[n − χm]

= ci[n] ∗ zi[n], (1)

whereδ[n] denotes the unit impulse function andzi[n]
is defined implicitely by Eq. (1). Then the vector
sequencex ′[n] = [x1[n], x2[n], . . . , xK [n]]T ∈ CK is
expressed using the matrix-vector notation

x ′[n] = C ′z ′[n], (2)

with C ′ = [C0, C1, . . . ,Cχ−1] ∈ C
K×Kχ andz ′[n] =

[z̄T[n], z̄T[n−1], . . . , z̄T[n−χ+1]]T ∈ CKχ. Hereby,
Cp = diag{c1[p], c2[p], . . . , cK [p]} ∈ {−1, +1}K×K

and z̄ [n] = [z1[n], z2[n], . . . , zK [n]]T ∈ CK .
x ′[n] is transmitted via a frequency-selective MU-

SIMO channel of orderL with impulse response

H ′[n] =
L∑

`=0

H`δ[n − `] ∈ C
R×K , (3)

where R is the number of receive antennas. The re-
ceived signal vector

r ′[n] = H ′[n] ∗ x ′[n] + h′[n] ∈ C
R, (4)

is perturbed by stationaryAdditive White Gaussian
Noise (AWGN) h′[n] = [h1[n], h2[n], . . . , hR[n], ]T ∈
CR with the circular complex normal distribution
Nc(0R, σ2

ηIR).
In order to compute the linear equalizer filter of

orderG in Section 3, an alternative matrix-vector model
of the time-dispersive MU-SIMO channel is derived
in the following. The vectorr [n] = [r ′,T[n], r ′,T[n −
1], . . . , r ′,T[n−G]]T ∈ CR(G+1) is composed ofG+1
adjacent received signal vectorsr ′[n]. Using the block
Toeplitz matrix

H =
L∑

`=0

S(`,G+1,L)⊗H` ∈C
R(G+1)×K(L+G+1), (5)

Eq. (4) may be rewritten as

r [n] = Hx [n] + h[n] ∈ C
R(G+1), (6)

where, analogous tor [n], the vectorx [n] ∈ C
K(L+G+1)

is composed ofL + G + 1 adjacent transmit signal
vectorsx ′[n], andh[n] of G+1 adjacent noise vectors
h′[n].

Taking into account Eq. (2) where the vectorz ′[n] is
built up by K valuessi[m] andK(χ − 1) zeros,x [n]
can be rewritten as

x [n] = Cs [m], (7)

with s [m] = [s ′,T[m], s ′,T[m − 1], . . . , s ′,T[m − es +
1]]T ∈ CKes, s ′[m] = [s1[m], s2[m], . . . , sK [m]]T, es =
d(L + G + χ)/χe, C ∈ {−1, +1}K(L+G+1)×Kes, and
n = χm. Thus, Eq. (6) can be rewritten as

r [n] = HCs [m] + h[n], (8)

whereC is defined implicitly.
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2.2 Receiver
At the receiver side, theSoft-Input Soft-Output(SISO)
detector calculates the extrinsic informationl

(Det)
ext,i ∈

RSQ about the interleaved and coded bit blockb′
i for

each useri. Roughly speaking, extrinsic information
refers to the incremental information about the current
bit obtained through the decoding process from all
other bits. The extrinsic informationl(Det)

ext,i is computed
using the observation signal blockr and thea priori
informationl

(Det)
apr,i ∈ RSQ aboutb′

i which is calculated

by interleaving the extrinsic informationl(Dec)
ext,i ∈ RSQ

about the coded bit blockbi computed by the decoder
at the previous iteration step. A detailed description of
the detector is given in the next section.
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Figure 2. Block diagram of receiver

The SISO decoders fulfil two tasks. During the iter-
ative process, thei-th decoder computes the extrinsic
informationl

(Dec)
ext,i about the coded bit blockbi from its

a posterioriLLR vectorl(Dec)
apo,i ∈ RSQ using itsa priori

information l
(Dec)
apr,i ∈ RSQ. The a priori information

l
(Dec)
apr,i is the deinterleaved extrinsic informationl(Det)

ext,i

about the interleaved coded bit blockb′
i at the output of

the detector at the previous iteration step. The second
task is to computêdi, the detected information bit block
di after the last turbo iteration. Being a MAP decoder,
the k-th bit, d̂i,k, k = 1, 2, . . . , B, in the block d̂i is
obtained from the optimization problem

d̂i,k = argmax
d∈{0,1}

P(eT
k di = d|l (Dec)

apr,i = l
(Dec)
apr,i ), (9)

where l
(Dec)
apr,i is a realization of the vector random

variablel (Dec)
apr,i . For more details see e. g. [11].

3 Linear Detection and Rank Re-
duction

3.1 A Priori Based Linear Equalization

In order to computel(Det)
ext,i , the optimal detector based

on the MAP criterion has an extremely high com-
putational complexity and therefore, in the following,
a reduced-rank linear equalizer based on the MSE-
criterion is presented. The detector’s inputs are the
received signal and thea priori information about the

interleaved coded bit block. Due to thea priori infor-
mation, the random processessi[m], i = 1, 2, . . . , K,
must be assumed to be non-zero mean and non-
stationary. Taking into account the latency timeν on
chip level, the optimal linear detector(W [m], a[m])
must compute an estimate ofs ′[m] according to

ŝ ′[m] = [ŝ1[m], . . . , ŝK [m]]T

= W [m]r [χm + ν] + a[m], (10)

where

r [χm + ν] = HCνsν [m] + h[χm + ν]. (11)

The matrix Cν ∈ {−1, +1}K(L+G+1)×Keν
s and the

vector sν [m] ∈ CKeν
s are the modified versions of

C and s [m] from Eq. (8) in order to consider the
latency timeν, i. e., es must be replaced byeν

s which
is defined byL, G, χ, and ν. With ez = L + G +
2χ − χd(L + G + χ)/χe − 1, eν

s can be computed
by eν

s = d(L + G + χ)/χe for ν ≤ ez and eν
s =

d(L + G + χ)/χe+ bν/χc − d(ν − ez)/χe for ν > ez.
The vectora[m] must be used in order to take into

account the meanE{s ′[m]} of s ′[m] = Sνsν [m], with
Sν = S(Kbν/χc,K,K(eν

s −1)). With

ξm(W , a)=E
{‖s ′[m]−(Wr [χm + ν]+a)‖2

2

}
(12)

being the MSE produced by the detector(W , a)
when estimatings ′[m], we obtain theMinimum MSE
(MMSE) based optimal linear equalizer by solving the
optimization problem

(W [m],a[m])=argmin
(W,a)

E{‖s ′[m]−Wr [χm+ν]−a‖2
2}.

(13)

Using Eq. (11) and the relations ′[m] = Sνsν [m],
ξm(W , a) can be rewritten as

ξm(W , a) =tr{E{(WHCνsν [m] + Wh[χm + ν]
+ a − Sνsν [m])(WHCνsν [m]

+ Wh[χm + ν] + a − Sνsν [m])H}}.
The minimum ofξm(W , a) can be found by jointly
solving the equations resulting from setting the deriva-
tives of ξm(W , a) with respect toW and a, respec-
tively to zero. This leads to

a[m]=−W [m]HCν E {sν [m]}+Sν E {sν [m]} , (14)

and

W [m]=SνRsν[m]CT
νH

H(HCνRsν[m]CT
νH

H+Rη)−1,
(15)

whereRsν [m] is the covariance matrix ofsν [m].
In order to apply theturbo principle[12], the detector

from Eqs. (14) and (15) must be modified to take into
account the fact that there is noa priori information
in the extrinsic information [4]. Applied to the design
of the equalizer, this means thatE{s ′[m]} = 0K×1

and σ2
s,i[m] = rs,i[m] = 2−Q

∑
s∈M

|s|2 =: %s,i,
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i = 1, . . . , K, must be assumed. Therefore, in Eq. (10),
W [m] is replaced by

Ω[m]=SνΓsν[m]CT
νH

H(HCνΓsν[m]CT
ν HH+Rη)−1,

(16)

anda[m] by

α[m] = −Ω[m]HCνµsν [m], (17)

where Γsν [m] is the adjusted auto-covariance matrix
andµsν [m] the adjusted mean of the vectorsν [m]. The
difference betweenRsν [m] andΓsν [m] is that in the ad-
justed auto-covariance matrix the variancesσ2

s,i[m] of
the (bν/χc+1)-th diagonalK ×K-block are replaced
by the second moments%s,i wherei = 1, 2, . . . , K. The
non-diagonal elements inRsν [m] and Γsν [m] vanish
because the symbolssν [m] are temporally uncorrelated
due to the interleaver and because we assume that the
sent signals of the different users are uncorrelated. In
µsν [m], the(Kbν/χc+ 1)-th to the(Kbν/χc+ K)-th
entry are zero due to the requirement thatE{s ′[m]} =
0K×1.

For a given modulation scheme, it is easy to calculate
rs,i[m] and therefore, the only missing part in order
to computeΓsν [m] and µsν [m] are the expectations
E{si[m]} with i = 1, 2, . . . , K andm = 1, 2, . . . , S−1.
In the following, a way to expressE{si[m]} is pre-
sented using thea priori LLR l

(Det)
apr,i which is delivered

by the decoder. It holds that

E {si[m]} =
∑
s∈M

sP(si[m] = s). (18)

With D : M → {0, 1}Q, si[m] 7→ b′i,m+1 =
D(si[m]) being the inverse function of the mapper
M , for P(si[m] = s) = P(b′

i,m+1 = D(s)) it can
be written

P(si[m] = s) = P(b′
i,m+1 = D(s))

=
Q∏

q=1

P(b′
i,mQ+q = eT

q D(s)). (19)

With

P(b′
i,mQ+q = ±1) =

exp(±l
(Det)
apr,i,mQ+q)

(1 + exp(±l
(Det)
apr,i,mQ+q))

, (20)

one obtains

P(b′
i,mQ+q = eT

q D(s)) =
1
2

(
1 + (1 − 2eT

q D(s))

· tanh
l
(Det)
apr,i,mQ+q

2

)
. (21)

Now, this expression and Eq. (19) can be plugged into
Eq. (18) and depending on the modulation alphabet

which is used, the expectationE{si[m]} can be com-
puted. For QPSK, one obtains

E{si[m]} =
1√
2

(
tanh

l
(Det)
apr,i,mQ+1

2

+ j tanh
l
(Det)
apr,i,mQ+2

2

)
. (22)

With this result and knowing thatrs,i[m] = 1 for
QPSK, one can firstly computeΓsν [m] and µsν [m],
and thenΩ[m] andα[m].

3.2 Soft Demapping
The second step to obtain the SISO detector is to softly
demap of the estimated symbols which were calculated
using(Ω[m], α[m]), to the extrinsic LLRs of the coded
and interleaved bits. It can be written

l
(Det)
ext,i,mQ+q = ln

∑
bi ∈ {0, 1}Q

eT
q bi = 0

g1(ŝi[m], bi)

∑
bi ∈ {0, 1}Q

eT
q bi = 1

g1(ŝi[m], bi)
, (23)

with

g1(ŝi[m], bi) = pŝi[m](ŝi[m]|b′
i,m+1 =bi)

·
Q∏

` = 1
` 6= q

P(eT
` b′

i,m+1 = eT
` bi), (24)

where q = 1, 2, . . . , Q and m = 0, 1, . . . , S − 1.
P(eT

` b′
i,m+1 = eT

` bi) can be expressed by replacing
D(s) by bi in Eqs. (19) and (21). The probability
density functionpŝi[m](ŝi[m]|b′

i,m+1 = bi) can be
approximated by the complex Gaussian distribution [9],
[13]

pŝi[m](ŝi[m]|b′
i,m+1=bi)=

exp
(
− |ŝi[m]−µ(bi)[m]|2

σ2
(bi)

[m]

)
πσ2

(bi)
[m]

,

(25)

where

µ(bi)[m] = E
{
ŝi[m]|eT

i Sνsν [m] = M(bi)
}

= M(bi)eT
i Ω[m]HCνST

ν ei, (26)

and

σ2
(bi)

[m] = E{|ŝi[m]|2|eT
i Sνsν [m] = M(bi)}

− |µ(bi)[m]|2

=
µ(bi)[m]
M(bi)

− |µ(bi)[m]|2. (27)

Hereby, it has been assumed that%s,i = |M(bi)|2 and
it has been used that

ŝi[m] = eT
i (Ω[m]r [χm + ν] + α[m]). (28)
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Plugging these results into Eq. (23), one obtains for
QPSK modulation

l
(Det)
ext,i,mQ+1 + j l(Det)

ext,i,mQ+2 =
√

8 ŝi[m]
1 − eT

i Ω[m]HCνST
ν ei

.

(29)

At this point, all required relations have been derived to
determinel(Det)

ext,i given the received signal blockr and

l
(Det)
apr,i with i = 1, 2, . . . , K, and thereby all components

which built up the detector.

3.3 Complexity Reduction
The computation ofΩ[m] and α[m] using Eqs. (16)
and (17) must be carried out for every vectorŝ ′[m] ∈
CK , m = 0, 1, . . . , S − 1, at each turbo iteration. Al-
though, using an MMSE based linear equalizer requires
much less resources than a MAP based equalizer, the
complexity is still large. Therefore, two attempts are
presented to reduce the receiver’s complexity, knowing
that the matrix inversion in Eq. (16) causes the major
computational work.

The first attempt is to replace the second order matrix
Γsν [m] by its time averageΓ̄sν which is the mean
over all Γsν [m] with m = 0, 1, . . . , S − 1 at the
current turbo iteration. This reduces the complexity
enormously, because the matrix inversion in Eq. (16)
must be calculated only once per iteration for the entire
block leading to

Ω̄ = SνΓ̄sν CT
ν HH(HCνΓ̄sν CT

ν HH + Rη)−1. (30)

The second attempt focuses on the reduced-rank imple-
mentation of the equalizers from Eq. (16) or Eq. (30),
respectively. In order to obtainΩ or Ω̄, the systems
of equations can be solved iteratively using the BCG
algorithm. The BCG algorithm is a method to solve
the system of equationsAX = B iteratively, with
A ∈ C

M×M being non-singular,X ∈ CM×N , and
B ∈ CM×N . At thek-th iteration the algorithm approx-
imatesX by Xk which lies in the block Krylov sub-
space span{B, AB, A2B, . . . ,Ak−1B}. The pseudo-
code for the BCG algorithm is shown in Alg. 1.
Stopping the BCG iterations before the algorithm con-
verges, reduces the computational complexity as well as
the performance loss due to channel estimation errors
which is especially a problem in low-sample support
scenarios. The latter property of the BCG algorithm is
due to its inherent regularizing effect described in [14].

Algorithm 1 (BCG algorithm):
X(0) = 0M×N

2: D(0) = R(0) = B − AX(0)

for k ∈ {0, 1, . . . , dm/ne − 1} do
4: Φ(k) = (DH

(k)AD(k))−1RH
(k)R(k)

X(k+1) = X(k) + D(k)Φ(k)

6: R(k+1) = R(k) − AD(k)Φ(k)

Ψ(k+1) = (RH
(k)R(k))−1RH

(k+1)R(k+1)

8: D(k+1) = R(k+1) + D(k)Ψ(k+1)

end for

With A corresponding toHCνΓ̄sν CT
ν HH + Rη, B

to SνΓ̄sν CT
ν HH, andX to Ω̄, Alg. 1 can be used to

determine the detector. Taking advantage of the iterative
way in which the BCG algorithm solves the system of
equations one can stop the computation before conver-
gence to the exact solution and use an approximation
of Ω̄. By doing this, the computational complexity can
be reduced enormously while the performance of the
receiver remains almost unchanged as the simulations
in Section 4 show.

4 Simulation Results
In the sequel, we present results from a Monte Carlo
simulation with1000 trials for a representative channel
realization showing theBit Error Rate(BER) as a func-
tion of theSignal-to-Noise Ratio(SNR) 10 lg(Eb/N0)
in dB with Eb being the energy per information bit
andN0 the noise power density for the CDMA-system
with the following specifications: QPSK modulation,
K = 8 number of users,R = 2 receive antennas
at the base station ordered in an uniform linear array
with spacingλ/2 where λ is the carrier wavelength,
spreading factorχ = 8, 13 pilot symbols per user,
512 information bits per user, order of FIR filter in the
equalizerG = 13, L + 1 = 4 number of propagation
paths for each user, and latency timeν = 9 Tc where
Tc is the chip duration. The channels between theK
transmitters are uncorrelated, the angles of arrival at
the receiver are Laplacian distributed with an angular
spread of10◦ and the power delay profile is exponential
with rate of decayTc. It is assumed that all users encode
their information bits using a rate-1/2 non-recursive
convolutional encoder with the generator polynomial
G(D) = (1+D2, 1+D +D2) whereD represents the
delay operator. Moreover, a random interleaver is used
where the permutation matrixΠ is randomly occupied.
At the receiver, the BCJR algorithmis used for MAP
decoding.

Figure 3 shows the BER curves obtained when calcu-
lating the detector using Eqs. (16) and (17), and Fig. 4
the BER curves when using Eqs. (17) and (30). The
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Figure 3. Iterative decoding and detection usingΩ[m], BCG

curves for the turbo iterations0, 1, and2 (marked with
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arrows) are plotted for the three cases: perfect Channel
State Information (CSI) and full-rank MWF solution,
Least Squares (LS) channel estimation and full-rank
MWF solution, and LS channel state estimation and
MWF approximation in the Krylov subspace of order
d. In Fig. 3 as well as in Fig. 4, it can be seen that
after the first turbo iteration, there is no significant
difference between the MWF solution and the Krylov
subspace approximation of the MWF. Moreover, it can
be observed that the main gain is reached when the
detector receives a priori information from the decoder
for the first time, i. e., at the first turbo iteration. It
is remarkable and one of the main results presented
in this paper that maximum rank-reduction leads to
approximately the same BER as the full-rank equalizer
when performing iterative detection. A comparison of
Fig. 3 with Fig. 4 justifies the use of̄Ω instead ofΩ.
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Figure 4. Iterative decoding and detection usingΩ̄; BCG

Using the BCG algorithm for equalization implies
that at each BCG iteration the valuesŝ ′i[m] for all
K users, i. e.,ŝ ′[m], are computed at once due to
the block nature of the algorithm. This means less
computational work than solving an equation for each
user separately, e. g., using theConjugate Gradient
(CG) algorithm. On the other hand, when considering
ŝ ′i[m] of useri, it also means that the detector does not
useE{s ′i[m]} from the other users to combat multiple-
access interference. Fig. 5 shows the BER curves when
the detector computes an equalizer for every user. It can
be seen that after three turbo iterations there is almost
no difference to the block procedure. Thus, using the
BCG algorithm for the detector is justified.

5 Conclusions
The main purpose of this work is to present two possi-
bilities how complexity can be reduced in an iterative
turbo multi-user CDMA system. The first measure to
decrease the complexity is to approximate second order
statistics of non-stationary random processes by their
time-invariant averages. The second measure implies
using the BCG algorithm such that the solution of
the Wiener-Hopf equation lies in a Krylov subspace.
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Figure 5. Iterative decoding and detection usingΩ̄, CG

Simulations show that despite the enormous complexity
reduction both methods lead to excellent results.
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